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ABSTRACT: A potentially green process to produce hydrogen peroxide (H2O2) is its direct 

synthesis from molecular hydrogen and oxygen. Still, the lack of mechanistic understanding of the 

reaction impedes a knowledge-based catalyst design for improved selectivity and stability. In this 

study, we employed X-ray absorption spectroscopy (XAS) to obtain structural information on a 

titania-supported palladium (Pd) catalyst under H2O2 synthesis conditions. The study focuses on 

the effect of the liquid-phase H2:O2 ratio between 0.67 and 3 and solvent composition under 

industrially relevant conditions, that is ethanol with and without H2SO4 and NaBr as selectivity 

enhancers at 40 bar. The X-ray near-edge structure of the absorption spectra (XANES) and the 

extended X-ray absorption fine structure (EXAFS) revealed that ethanol fully reduces Pd 

nanoparticles, even when saturated with oxygen. Oxygen presence at the Pd surface could only be 

suspected based on its small contribution to the EXAFS signal. A palladium hydride phase is 

detected under stoichiometric conditions due to lattice expansion. Addition of H2SO4 causes Pd 

lattice expansion and an increased yield at stoichiometric conditions. Further addition of bromide 

did not lead to any significant change in catalyst state and activity. 

 

Introduction 

Hydrogen peroxide (H2O2) constitutes an efficient and versatile liquid commodity oxidant with 

large-scale applications ranging from bleaching pulp and paper to semiconductor etching 1. Cheap 

H2O2 offers the potential to pave the way to a cleaner and more sustainable industrial oxidation 

chemistry 2 as it generates only water as by-product in contrast to chlorinated oxidizers. Despite 

its advantages, H2O2 is still not economically competitive compared to other oxidizers 3 which is 

related to the anthraquinone process 4, the current standard for industrial H2O2 production. This 

process comprises a complex multi-stage process which is only economical in large-scale plants 5. 
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The centralized production, however, requires shipping concentrated solutions 6 and thus these 

expenses antagonize a further H2O2 price reduction. The appeal of small-scale on-site production 

for cheap H2O2 has fueled the search for process alternatives in the last decade 1,3,7, such as 

electrochemical synthesis 8–11, plasma processes 12,13 and the direct synthesis of H2O2 
14–16. 

The direct synthesis of H2O2 is an attractive route that involves reacting both molecular hydrogen 

and oxygen over a palladium-based supported catalyst in contact with a liquid phase in a single 

process stage 17. The process so far has only entered the pilot phase 18 . The main reason impeding 

a viable process is the low selectivity 19. This results from parallel and consecutive H2O formation 

(Scheme 1) associated with irreversible O-O bond scission 20. Therefore, the key for 

commercialization is kinetic control for high selectivity in conjunction with a high structural 

stability, even at high H2O2 concentrations in the reaction mediumKlicken oder tippen Sie hier, 

um Text einzugeben.. This challenge calls for a rational catalyst design based on a fundamental 

understanding of the reaction. Although many different key findings have been disclosed on the 

mechanism, however, a consistent picture of direct synthesis has not yet been established at the 

molecular level 14,17. 

 

 

Scheme 1. Reaction network of the direct synthesis of H2O2. 
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In particular, the Langmuir-Hinshelwood-Hougen-Watson (LHHW) model is the most widely 

assumed mechanism 21–24 where surface-activated hydrogen species react with absorbed dioxygen 

adsorbed on the catalyst surface. However, the LHHW model was inconsistent with the recent 

experimental results of Wilson and Flaherty 25. Instead, the authors proposed a heterolytic 

mechanism characterized by a proton-electron transfer where H2O2 is formed from two-electron 

oxygen reduction (ORR) with solvent protons and electrons released by hydrogen oxidation 

reaction (HOR) without external electric circuit. The mechanism is supported by experimental 

similarities to the electrocatalytic oxygen reduction reaction 26. Moreover, recent results propose 

that hydrogen in the form of a metal hydride may also contribute to the reaction 27,28. This illustrates 

that the electronic state of hydrogen is still insufficiently understood. 

Likewise, there are different views on the mode of interaction of the solvent additives bromide and 

mineral acids denoted as "selectivity enhancers" 16,17,29. Bromide has been attributed to promote 

the selectivity through site blocking 30–32, nanoparticle restructuring 29, but also electronic effects, 

i.e. reducing the occupation of the electronic levels near the Fermi level to diminish the O-O 

cleavage reactivity 14. Brønsted acids have been attributed to diminish the base-catalyzed 

decomposition of H2O2 
16 and also to electronically modify the surface33, in particular supporting 

the oxidation of the palladium nanoparticles in order to inhibit the sites responsible for water 

formation 29. Since both bromide and acids have been ascribed an electronic effect, the question 

inevitably arises as to how the selectivity promoters and the solvent itself influence the electronic 

state of the catalyst, which in turn could provide insights into the actual mechanism. However, the 

matter is even more complicated because it is known that the oxidation state of palladium can vary 

depending on the hydrogen and oxygen concentrations within a single reactor 27,34,35. In this light, 
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experimental studies uncovering structure-activity relationships under actual working conditions 

are one important element to get closer to mechanistic understanding on a molecular level.  

X-ray absorption spectroscopy (XAS) is a powerful method that enables nondestructive structural 

characterization of catalysts under working conditions 36, revealing the metal oxidation state and 

coordination environment amongst other key data 37. The direct synthesis has so far only been 

investigated in a few studies using XAS operando or in situ 27,38–42, because it is challenging to 

safely operate this three-phase reaction under increased pressure and simultaneously perform X-

ray measurements at a synchrotron facility. However, these conditions are necessary to obtain 

structure-performance relationships in the actual relevant process window. In this XAS study, we 

present the structural changes of supported monometallic palladium nanoparticles in true 

continuous-flow of ethanoic media at 40 bar corresponding to industrially relevant working 

conditions 43,44. With defined stepping the H2:O2 ratio from 2:3 to 3:1, we first elucidate the 

palladium nanoparticle structure in pure ethanol. We further analyze the effects of H2SO4 and NaBr 

in ethanol in both oxygen and hydrogen-rich conditions, and compare the resulting structure-

activity relationships with the data obtained in water medium 27. 

 

Methods 

Catalyst preparation and methods 

We used a titania-supported palladium catalyst as described in our previous operando XAS study 

27. The catalyst was synthesized by wet-impregnation according to the procedure described by 

Inoue et al. 45. Briefly, 10 g of rutile phase titania powder (Nanostructured & Amorphous Materials 

Inc., 50 nm average particle size, 99.9%) was immersed under vigorous stirring into 100 mL 
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aqueous solution HCl (Merck, 1.0M) and 167 mg PdCl2 (Sigma-Aldrich, 99%). The resulting 

slurry was dried over a hot plate. The solid was gently ground into a fine powder, which was 

subsequently calcined in static air for 6 h at 350°C, then reduced in a flow of 5%H2/95%Ar for 3 h 

at 350°C. We obtained 50–200 µm agglomerates for use in the continuous-flow cell by uniaxial 

pressing and sieving. The final metal content of Pd was 1 wt.-%, confirmed by ICP-OES (Agilent 

725). The average Pd nanoparticle (NP) size was 2.8 nm according to transmission electron 

microscopy (FEI Titan 80-300) 27. 

 

High Pressure Setup and Experimental Procedure 

The setup is based on the process concept of spatial separation of gas-liquid mass transport and 

catalytic reaction, resulting in a single-phase liquid flow with dissolved gases through the fixed 

bed (Scheme 2). A defined gas flow of synthetic air or hydrogen respectively (controlled by mass 

flow controllers) is mixed with a defined volume flow of solvent (controlled by HPLC pumps). 

The gases are then continuously dissolved in the liquid for bubble-free single-phase flow by means 

of SiC packed beds for enhanced interfacial mass transfer. The entire experimental setup except 

for the HPLC pump heads was thoroughly degreased and in situ passivated according to a standard 

nitric acid procedure 46 so that the H2O2 decomposition is estimated to be less than 5% with respect 

to the concentration immediately after the XAS cell (cf. Supporting Information S2). The catalytic 

cell with PEEK X-ray windows (2 mm thickness) was loaded with impregnated 1%Pd/TiO2 

catalyst, (sieve fraction 50–200 μm). Sample loading was 35 ± 5 mg with a sample volume of ca. 

12 x 5 x 1 mm (length x depth x width). The catalyst was packed in between two quartz wool 

plugs, which were supported by a 6–8 mm long bed of SiC particles (sieve fraction 50–200 μm, 
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Alfa Aesar), in turn, supported by further quartz wool plugs for enhanced packed-bed stability. 

The liquid stream flowing out of the reactor was monitored using a near-infrared (NIR) 

spectrometer (multispec® NIR, tec5) coupled to a high-pressure transmission process flow cell 

(3/8″ Process Flow Cell, Ocean Optics). 

 

 

Scheme 2. High-pressure continuous-flow setup. 

 

All experiments were conducted at 40 bar system pressure for complete gas dissolution upstream 

of the XAS cell and at ambient temperature. The first measurement series aimed at investigating 

the influence of different H2:O2 ratios in ethanol solution. Therefore, a constant flow (rate: 

3.0 mLNTP/min) of pure hydrogen (5.0 purity, AlphagazTM 1, Air Liquide) was dissolved in a 
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constant liquid flow (rate: 1.0 mL/min) of absolute ethanol (≥ 99.8% E, ACS, AnalaR 

NORMAPUR®, VWR BDH Chemicals) and subsequently mixed with another constant stream of 

absolute ethanol (rate: 7.18 mL/min) and varying flow of synthetic air. Thus, the combined liquid 

flow was set to 8.18 ml/min resulting in a low catalyst contact time (τmod = 2.4 ± 0.5 (kgPd s)/m3) 

with a fixed hydrogen concentration of 16.4 mmol/L, corresponding to a thermodynamic saturation 

pressure of 4.8 bar according to ref 47. Oxygen was added as synthetic air (20.9±0.2% O2 in N2, 

5.0 purity, AlphagazTM 2, Air Liquide) with air (oxygen) gas flows between 4.8 (1.0) mL/min and 

28.7 (6.0) mL/min to fit the range of the available mass flow controller. Complete dissolution of 

gases was confirmed when no bubbles could be observed for at least 45 min through the piece of 

transparent tubing in the bypass channel of the setup (Scheme 2).  To obtain reference spectra, 

ethanol streams containing only synthetic air or H2, respectively, were fed to the catalytic fixed 

bed. Table 1 shows the experimental conditions with gradually increased hydrogen content, 

starting from oxygen towards hydrogen only. The measurements were done in total on three 

catalyst beds, the catalyst bed replacement was required due to poor mechanical stability of the 

used catalyst which resulted in blocking of the flow through the reactor. After each repacking of 

the reactor the catalyst was reduced in flow of pure ethanol for a minimum of 5-8 hours (until no 

changes in the Pd XANES spectra were observed). At first, the reference conditions (O2 only and 

H2 only) were measured. The following measurements (reactor repacked with a new catalyst bed) 

were intended to cover the most different conditions with respect to the reducing potential, finally 

(new catalyst bed) approaching stoichiometric H2:O2 ratio, and at last probing the influence of 

selectivity enhancers.   
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Table 1. Reaction conditions with pure ethanol as reaction solvent. Gas flow at standard reference 

according to DIN 134348 (T○ = 273.15 K, p○ = 1013.25 hPa). 

No. H2:O2 ratio 

(-) 

H2 gas flow 

(mL/min) 

Ethanol flow 

(H2 channel) 

(mL/min) 

Air (O2) gas 

flow 

(mL/min) 

Ethanol flow 

(O2 channel) 

(mL/min) 

1 O2 only 0 1.0 28.70 (6.0) 7.18 

2 0.67 3.0 1.0 21.50 (4.5) 7.18 

3 1 3.0 1.0 14.35 (3.0) 7.18 

4 1.5 3.0 1.0 9.57 (2.0) 7.18 

5 2 3.0 1.0 7.17 (1.5) 7.18 

6 2.4 3.0 1.0 5.98 (1.25) 7.18 

7 3 3.0 1.0 4.80 (1.0) 7.18 

8 H2 only 3.0 1.0 0 7.18 
a [H2 concentration]/[O2 concentration] in ethanol, calculated as [H2 gas flow]/[O2 gas flow] 

(steady-state complete gas dissolution). 

 

The second measurement series aimed at investigating the influence of adding sulfuric acid and 

sodium bromide. We studied the Pd/TiO2 catalyst in absolute ethanol containing 0.12 mol/L 

sulfuric acid (95–97%, p.a, EMSURE® ISO, Merck) at a fixed H2:O2 ratio of 0.67 in a combined 

ethanoic solution flow of 8.18 mL/min. Subsequently, the solvent was further modified through 

adding solid sodium bromide (purum p.a., Fluka). For this reason, 314 mg of NaBr was added to 

2.1 L of the previously prepared ethanol with 0.12 mol/L sulfuric acid and stirred for 30 min. After 

that, the remaining solid residue was removed by filtration. Solubility of NaBr in pure ethanol is 

reported as approx. 2.5 g per 100 g solvent 49, and Na2SO4 is practically insoluble 50. After drying 

in ambient air, the weight of the solid residue (a mixture of NaBr and Na2SO4·10H2O) was 

determined as 316 mg. From the mass change a bromide concentration of approx. 0.02 mmol/L 

was estimated. The influence of acidic and bromide additives was studied at fixed H2:O2 ratios of 

0.67 and 2 in the combined liquid flow of 8.18 mL/min. 
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Safety note: The experiment features potential explosive hazard, as oxidizing synthetic air is 

combined with the fuels H2 and ethanol at elevated pressure. A dry-out of the catalyst in presence 

of a H2/O2 gas mixture is critical in particular, as this is known to ignite 51. Hence, bubble-free 

saturation via inline absorption columns is crucial for safe operation which requires extensive 

testing prior to reaction experiments. The process conditions require pressure-rated equipment; 

devices in O2-enriched atmosphere must be specially cleaned and free of grease. Further safety 

measures include narrow restriction of the process window (automatic mass flow controller 

shutdown in case of high flow of reactant gases, high-pressure pump shutdown), small diameter 

tubes for minimized liquid holdup, and electrical grounding of the tubing. The reactor effluent 

container is N2-purged to ensure H2 concentrations in the effluent below its lower explosive limit.  

Note on mass transfer limitations: The absence of external and internal mass transport limitations 

is crucial for the significance of the X-ray absorption spectroscopy itself as this technique provides 

volume-averaged structural information of the catalyst sample. The Weisz-Prater criterion52 

indicates that the catalyst was operated at the limit with respect to internal (pore diffusion) mass 

transport limitations in this study (Supporting Information S3). The Mears criterion 53 confirms 

that no mass transport limitations are anticipated due to high flow rate of 8.18 mL/min (Supporting 

Information S4). 

 

Determination of the H2O2 concentration 

Catalytic performance during XAS experiments was qualitatively monitored by a NIR 

spectrometer probing the liquid stream at the outlet of the reactor (cf. Supporting Information S5), 

however due to overlapping H2O2 and H2O absorbance bands activity and selectivity could not be 
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quantitatively analyzed using the NIR spectra measured at the beamline. The H2O2 concentration 

was determined by repeating the experiments in the laboratory using the same experimental setup 

and identical conditions to the synchrotron studies but complete sodium bromide dissolution 

(5 mmol/L NaBr). The amount of produced H2O2 was determined manually by cerimetric redox 

titration by repeating the experimental procedure in the laboratory. For the titration, 50 µL ferroin 

indicator solution were added to 50 mL of diluted sulfuric acid (1:19 vol. H2SO4/H2O). The stirred 

solution was titrated with 0.01 M Ce(SO4)2 (approx. 125 µL) until a color change from red to pale 

blue was observed. 10 mL of the product solution were added and titrated with 0.01 M Ce(SO4)2 

to a pale blue endpoint. The measurement uncertainty equals 0.05 mmol/L corresponding to the 

pipette volume of 10 µL used for the titration.  

We note that quantifying the H2 and O2 concentrations the effluent concentration may be sufficient 

to obtain the moles of reactants consumed as the mass flow controllers define the molar flow to 

the reactor. Quantifying the H2 and O2 concentrations is possible using Raman spectroscopy or gas 

analysis (e.g. gas chromatography with thermal conductivity detector or mass spectrometry) in the 

effluent but was not followed in this study because this is very demanding in terms of 

instrumentation. Instead, a simpler titration method was used to monitor the H2O2 concentration 

in the laboratory experiments. 

X-ray Absorption Spectroscopy and Data Analysis 

XAS measurements at the Pd K absorption edge were performed at the CAT-ACT beamline (CAT 

experimental station) at the KIT synchrotron radiation source 54 using a 2.5 T wiggler source 

(40 poles, 48 mm period length) and a DCM with a Si (311) crystal pair. The beam size was 0.6 mm 

(vertical) x 2 mm (horizontal). The experiments were performed in transmission geometry using 
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ionization chambers as detectors. Spectra were measured at the beginning and end of the catalyst 

bed. The spectra were normalized and the extended X-ray absorption fine structure (EXAFS) 

spectra background subtracted using the ATHENA program from the IFFEFIT software package.55 

The k1-, k2-, and k3-weighted EXAFS functions were Fourier transformed (FT) in the k range of 

2.5–10.5 Å−1 and multiplied by a Hanning window with sill size of 1 Å-1. The FT EXAFS spectra 

are shown without phase shift correction. The structural model was based on a Pd metal core (ICSD 

collection code 52251) and (for a spectrum in O2-saturated ethanol) a Pd-O first shell modeled 

using PdO (ICSD collection code 24692). The structure refinement was performed using the 

ARTEMIS software (IFFEFIT).55 For this purpose the corresponding theoretical backscattering 

amplitudes and phases were calculated by FEFF 6.0.37 The theoretical data were then adjusted to 

the experimental spectra by a least square method in R-space between 1 and 3 Å. First, the 

amplitude reduction factor (S0
2 = 0.87) was calculated using the Pd foil reference spectrum and 

then the coordination numbers, interatomic distances, energy shift (δE0) and mean square deviation 

of interatomic distances (σ2) were refined. The absolute misfit between theory and experiment was 

expressed by ρ. 

 

Results and Discussion 

Structure of Pd species during direct synthesis of H2O2 in pure ethanol 

Reference conditions 

After the initiation of the oxygen dosage for single-phase flow of dissolved oxygen in pure ethanol 

(condition 1, Table 1), the XANES signature gradually changed from partially oxidized state 27 

and was stable after 5 hours on stream showing fully reduced palladium (Figure 1a). EXAFS shows 
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a Pd-Pd distance identical to the Pd reference (Figure 1b). The complete reduction of Pd shown 

here even in O2-saturated feed is exceptionally different from the behavior in oxygen-saturated 

water containing bromide observed in our previous study using the same catalyst. In water, the Pd 

NPs were found to be decorated with chemisorbed oxygen showing an oxidic Pd2+ fraction up to 

20% 27. Sweeping the catalyst with single-phase flow of dissolved hydrogen in pure ethanol 

resulted in a PdHx signature, both in XANES and EXAFS. In XANES, a shift of a peak at 24387 eV 

towards lower energies was observed 27,56. In EXAFS, a lateral peak shift towards higher Pd-Pd 

bond distances was observed in line with lattice expansion due to interstitial hydrogen 57,58.  

 

 

Figure 1. Pd-K edge (a) XANES and (b) Fourier transformed (FT) EXAFS spectra of the Pd/TiO2 

catalyst under reference conditions (O2- and H2-saturated ethanol) compared to the spectrum of 

metallic Pd. k2-weighted EXAFS spectra are given in Figure S6a in order to allow evaluating the 

data quality at ambient temperature in ethanol. 
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The H2:O2 ratio was adjusted to the desired values (Table 1) and XAS spectra were recorded after 

the XANES region of the spectrum was found not to change, which typically occurred after at least 

1 hour time on stream. Spectra measured under working conditions near the beginning and end of 

the catalyst bed were generally similar. This behavior shows that the catalyst state over the entire 

length of the bed was uniform, verifying the aspired differential operation mode of the packed bed 

reactor. For this reason, the spectra measured near the end of the catalyst bed are reported due to 

generally better quality, with the exception of an experiment at H2:O2 = 1, where only the beginning 

was probed. The better data quality is associated with the fact that displacement or compaction of 

the catalyst bed (i.e. mechanical stability issues) have less effect on the end position of the catalyst 

bed (higher packing density and no pinholes). The full set of XANES spectra recorded under 

working conditions exhibits only small variations in the whole range of tested H2:O2 ratios between 

oxygen-rich and hydrogen-rich conditions (Figure 2a). No sign of oxidized Pd could be identified 

in the XANES spectra under working conditions, neither in hydrogen-rich nor in oxygen-rich 

conditions. Thus, contrary to our findings using aqueous reaction medium27, there is no substantial 

contribution from chemisorbed oxygen in the XANES data.  

In the corresponding EXAFS spectra, the Pd peak position (between 2.5 and 3.0 Å) shifted towards 

larger distances and the backscattering intensity increased with higher partial pressure of hydrogen 

(Figure 2b). This is in line with previous studies in water 27. A small contribution from a light 

atom, most probably O, may be present in the EXAFS spectra at approx. 1.8 Å, see Table S2 and 

Figure S7 in the SI for comparison of the fits with and without accounting for a light atom 

contribution. This contribution is more visible under oxygen excess and approaches zero (if 

uncertainty/error bars are taken into account) with more hydrogen. Compared to the previous study 

in water 27, very small amounts of oxygen still may be chemisorbed on the Pd NPs but they do not 
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change the electronic state of Pd (e.g. oxidation) or this change is countered by interaction with 

ethanol so that the XANES spectral region is not influenced. Since this contribution is very minor 

and often within error bars, in the following only the first Pd-Pd shell was fitted. 

 

 

Figure 2. Pd-K edge (a) XANES and (b) FT EXAFS spectra of the Pd/TiO2 catalyst under different 

H2:O2 ratios in the feed. For k2-weighted EXAFS data in k-space see Figure S6b. 
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sorption isotherms 56,59. Compared to the previous study, this intermediate structure expansion is 

still well visible due to improved discrimination of concentration ratios and more data points, 

respectively. A shift of the XANES peak at approx. 24387 eV to lower energies with the increase 

in the H2:O2 ratio additionally confirms transformation from the metallic state to PdHx (Figure 3, 

red circles) 27,56. Furthermore, the reversible increase in the first shell coordination number under 

hydride-forming conditions has also been observed in the previous study in water 27 and attributed 

to hydrogen-induced transformation of Pd NPs from octahedral to icosahedral symmetry. 

We note that the α/β miscibility gap (i.e. the two-phase region) corresponds to a H2 pressure of 

about 20 mbar at room temperature in the thermodynamically equilibrated binary Pd-H system 60. 

This is the case for bulk phase 61 as well as for nanoparticles, where the plateau has a positive slope 

and the two-phase region is smaller overall, but not shifted to lower pressures 62. However, in our 

experiments we fed a constant H2 concentration of 16.4 mmol/L corresponding to an H2 pressure 

of 4.8 bar 61. The α/β hydride phase transition observed at 4.8 bar H2 (direct synthesis) instead of 

20 mbar H2 (binary Pd-H equilibrium) demonstrates that the direct synthesis alters the steady-state 

H surface coverage on the Pd NPs: the reaction itself determines the H concentration in the Pd 

bulk rather than the H2 partial pressure over the catalyst as outlined by ref 63. Consequently, the 

α/β hydride transition is kinetically controlled, suggesting a complex interaction between reaction 

kinetics and Pd hydride phase formation in the direct synthesis.  
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Figure 3. Average Pd-Pd distances obtained from EXAFS analysis (black squares) and position of 

the 2nd peak in the XANES spectra (red circles) depending on the H2:O2 ratio in pure ethanol. 

 

 

Effect of promoters on the structure of Pd species 

Addition of the mineral acid H2SO4 (alone and with NaBr) changed the catalyst state (Figure 4a,b). 

The analysis is reported in Table 3 (H2:O2 = 0.67) and Table 4 (H2:O2 = 2). Addition of H2SO4 at 

H2:O2 =0.67 causes stretching of the average Pd-Pd bond distance. This may mean more interstitial 

H in the Pd lattice. However, the change is relatively small and not visible when qualitatively 

comparing the positions of the Pd-Pd backscattering peaks at 2.6 Å (without phase shift correction, 

Figure 4b). Under hydrogen excess, addition of H2SO4+NaBr to ethanol results in strong features 

related to β-PdHx in the XANES and EXAFS spectra (Figure 4c,d), the Pd-Pd distance is even 

longer than in the reference hydride spectrum (Table 2). Hence, addition of H2SO4 leads to 

O
xy

ge
n

0.
67 1

1.
5 2

2.
4 3

H
yd

ro
ge

n

2.74

2.76

2.78

2.80

2.82

 

 

 

P
d

-P
d

 d
is

ta
n

c
e

 /
 Å

H2:O2 ratio

24386.0

24386.5

24387.0

24387.5

X
A

N
E

S
 2

n
d
 p

e
a

k
 p

o
s
it
io

n
 /

 e
V



 

 18 

elongated Pd-Pd distances and the corresponding changes in XANES (Figure 5), possibly 

facilitating PdHx formation. 

 

Table 2. Refined structural parameters of the Pd/TiO2 catalyst obtained from XANES analysis and 

EXAFS fitting during variation of H2:O2 ratio using pure ethanol as a solvent. Selected fits for the 

spectra measured in O2- and H2-saturated ethanol are given in Figure S8. 

 

 

Table 3. Refined structural parameters of the Pd/TiO2 catalyst obtained from XANES analysis and 

EXAFS fitting at H2:O2 = 0.67 using pure ethanol or ethanol with H2SO4 and NaBr promoters. 

Values reported for spectra measured near both the beginning and end of the catalyst bed. 

Conditions → 
(position in 

catalyst bed) 

EtOH 
(beginning) 

EtOH  
(end) 

+H2SO4 

(beginning) 
+H2SO4 

(end) 
+H2SO4+

NaBr 

(beginning) 

+H2SO4+

NaBr 

(end) 
Emax. of 2nd peak in 

XANES (eV) 

24387.3 24387.1 24387.3 24387.3 24387.4 24386.8 

d Pd-Pd (Å) 2.757±0.010 2.760±0.010 2.780±0.008 2.774±0.009 2.798±0.010 2.804±0.009 

CN Pd-Pd 9.3±1.4 9.5±1.4 10.1±1.6 7.4±1.5 10.7±2.2 10.0±1.8 

σ2 (10-3 Å2) 10.5±1.4 10.1±0.8 7.9±1.3 4.6±1.6 8.2±1.7 7.5±1.4 

δE0 (eV) -1.5±1.0 -1.3±1.0 0.1±1.0 -0.8±1.3 0.6±1.2 -0.4±1.1 

ρ (%) 1.8 1.7 0.9 1.7 1.3 1.1 

 

 

H2:O2 ratio → O2 only 0.67 1 1.5 2 2.4 3 H2 

Emax. of 2nd peak in 

XANES (eV) 

24387.4 24387.1 24387.6 24387.6 24386.9 24386.0 24386.4 24386.3 

d Pd-Pd (Å) 2.745 

±0.007 

2.760 

±0.010 

2.765 

±0.006 

2.794 

±0.012 

2.780 

±0.008 

2.802 

±0.008 

2.806 

±0.005 

2.803 

±0.007 

CN Pd-Pd 9.0±1.0 9.5±1.4 9.5±1.1 10.2±2.5 10.5±1.1 10.6±1.3 11.0±1.0 10.2±1.0 

σ2 (10-3 Å2) 9.7±1.1 10.1±0.8 7.7±1.0 7.7±2.0 10.7±1.1 9.2±1.1 9.0±0.8 9.8±1.0 

δE0 (eV) -

1.1±0.6 

-1.3±1.0 -

0.6±0.8 

0.1±1.7 -0.8±0.7 -0.7±0.8 -0.3±0.6 -0.6±0.6 

ρ (%) 1.0 1.7 0.8 1.1 0.9 0.7 0.7 0.8 



 

 19 

Table 4. Refined structural parameters of the Pd/TiO2 catalyst obtained from XANES analysis and 

EXAFS fitting at H2:O2 = 2 using pure ethanol or ethanol with H2SO4 and NaBr promoters. Values 

reported for spectra measured near the beginning of the catalyst bed. 

Conditions → 
(position in 

catalyst bed) 

EtOH 
 (beginning) 

+H2SO4+NaBr  

(beginning) 

max. of peak B (eV) 24387.3 24386.3 

d Pd-Pd (Å) 2.780±0.007 2.810±0.007 

CN Pd-Pd 9.6±1.2 9.8±1.3 

σ2 (10-3 Å2) 9.0±1.1 6.5±1.1 

δE0 (eV) -1.0±0.8 -0.4±0.8 

ρ (%) 1.0 1.0 

 

 

Figure 4. Pd-K edge (a) XANES and (b) FT EXAFS spectra of the Pd/TiO2 catalyst under 

conditions of the direct H2O2 synthesis at (a., b.) H2:O2 = 0.67 and (c., d.) H2:O2 = 2. The spectra 
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were measured near the beginning of the catalyst bed. For k2-weighted EXAFS data in k-space see 

Figure S6c. 

 

 

Figure 5. Average Pd-Pd distances obtained from EXAFS analysis (black squares) and position of 

the 2nd peak in the XANES spectra (red circles) depending on the H2:O2 ratio in ethanol with 0.12 

M H2SO4 and NaBr. Dashed lines serve as guides to the eye. 
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did not allow using highly diluted cerium sulfate solutions for lowering the LDQ as this threshold 

depends on the perception of the color change. Hence, only qualitative activity trends can be 

drawn. 

The observed H2O2 concentrations prove that the catalyst is active in pure ethanol and under 

hydrogen-rich conditions (at H2:O2 ratios from 1 to 2.4, Table 5). Adding sulfuric acid to ethanol 

results in a substantial increase in the H2O2 concentration by a factor of four when dosing 

stoichiometric amounts of hydrogen and oxygen (H2:O2 = 1). But the H2O2 productivity remains 

at a similar level compared to pure ethanol conditions at higher H2:O2 ratios of 1.5 and 2.0. No 

H2O2 was measured above this H2:O2 ratio within the uncertainty range. In conclusion, H2SO4 has 

a significant effect on the H2O2 productivity at a stoichiometric H2:O2 ratio with no visible effect 

at hydrogen excess. In contrast, no change in the H2O2 concentration was observed compared to 

acidified ethanol when further adding NaBr. Hence, addition of NaBr had no significant influence 

on productivity under our test conditions. It is however important to emphasize that we have 

assessed only the H2O2 productivity and did not yield the full extent of (hydrogen) conversion and 

selectivity. With the given low catalyst contact time in our operando study and feeding no H2O2, 

we hold the view that the measured H2O2 concentration strongly depends on the H2O2 formation 

rate of the parallel initial pathway (Scheme 1, pathways 1) rather than the consecutive H2O2-

destructive pathways (Scheme 1, pathways 3 and 4). Indeed, the increase in H2O2 productivity we 

observed after acid addition at H2:O2 = 1 is in qualitative agreement with the results of  Han, Liu 

and Lunsford 64,65,33. They studied the direct synthesis with a nearly identical catalyst system 

(Pd/SiO2, ethanol, various combinations of KBr, H2SO4 and also HCl/NaCl) operated in a semi-

batch reactor with an H2:O2 partial pressure ratio of 0.25 (corresponding to a molar H2:O2 ratio in 

ethanol solution of about 0.1 47). Their experimental data show that the addition of 0.12 M H2SO4 
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to pure ethanol resulted in a 30% increase in H2O2 productivity 64,65. When 0.02 mmol/L KBr was 

added to pure ethanol, they observed an increase in H2O2 selectivity of about 30% without 

significantly changing the H2O2 formation rate 33. This is consistent with our results of adding the 

same amount of bromide in the form of NaBr to the acidified ethanol solution.  Our findings could 

indicate that the promoting effect of mineral acid and bromide decreases with increasing H2:O2 

ratio. However, to our knowledge, there is no study investigating the effect of selectivity promoters 

at high H2:O2 ratios.  

The maximum H2O2 concentration of 0.40 ± 0.05 mmol/L in this study corresponds to a H2O2 

productivity of 560 ± 110 mmolH2O2/(gPd h). This value is in range of productivities of most (semi-

)batch experiments (500–5000 mmolH2O2/(gPd h)) as summarized by Menegazzo et al. 17 

(Supporting Information S7). As the catalyst also showed very little activity in our previous 

operando XAS study in water (Supporting Information S7), the modest H2O2 productivity in this 

study may be attributed due to the intrinsic properties of the titania-supported palladium catalyst. 

More precisely, the modest H2O2 productivity is possibly connected to the small NP size below 

3 nm 27 in our experiment which is below the range of 5-15 nm preferred by Menegazzo et al. as a 

compromise between activity and selectivity 17. The structure sensitivity of H2O2 synthesis is not 

studied in sufficient detail with respect to the observed accompanying hydride formation. 

However, hydrogenation reactions on Pd are often structure sensitive 66–68. Different probabilities 

of Pd hydride phase formation for different Pd NP sizes are thought to be responsible for this 

structure sensitivity. This structure sensitivity is explained by simply altering the catalyst phase 

for larger particles while external conditions are unchanged and do not favor hydride formation 

for smaller NPs 66. Therefore, we deem it important to note that larger NPs increase the probability 
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of PdHx formation and, thus, we may expect different catalytic properties with potentially higher 

H2O2 productivities. 

 

Table 5. H2O2 concentrations obtained in pure ethanol and with 0.12 M H2SO4 (addition of NaBr 

does not change productivities).  

Conditions → EtOH 

 

+H2SO4+NaBr 

No. H2:O2 

ratio (-) 

H2O2 concentration  

(mmol/L) 

H2O2 concentration 

(mmol/L) 

1 O2 only < 0.05 < 0.05 

2 0.67 n. a. n. a. 

3 1 0.10 (± 0.05) 0.40 (± 0.05) 

4 1.5 0.05 (± 0.05) 0.10 (± 0.05) 

5 2 0.10 (± 0.05) 0.05 (± 0.05) 

6 2.4 0.05 (± 0.05) < 0.05 

7 3 < 0.05 < 0.05 

8 H2 only < 0.05 < 0.05 

 

 

Comparison with the previous results obtained in water as solvent 

Comparing the XAS study conditions for bromide-containing water27 and acidified ethanol 

containing bromide, we find a comparable low yield at a H2:O2 ratio of 1 of around 2% but the 

observed space-time yield in ethanol is increased by a factor of 25 (see Table 6). We note that in 

this XAS study using ethanol, the molar concentrations of dissolved H2 and O2 are more than three 

times higher compared to our previous study with water27 but – due to the enhanced H2/O2 

solubility in ethanol – the corresponding reactant partial pressures are even lower (Table 6). 

Similarly to the study in water,27 the highest H2O2 concentrations in absolute ethanol were obtained 

in the range of H2:O2 ratios between 1 and 2. Under these conditions XAS identified nanoparticles 

with α-PdHx structure (H2:O2 = 1) and a mixture of α- and β-PdHx phases (H2:O2=1.5 and 2). 
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Unlike the study in water,27 Pd was completely reduced by the solvent so that no PdO fingerprint 

could be observed in the XANES region of the spectra, and only traces of oxygen could be deduced 

from the contribution to the EXAFS signal (Scheme 3). Addition of H2SO4 and NaBr promoters 

to the ethanol solution led to longer Pd-Pd interatomic distances, i.e. higher fraction of β-PdHx. At 

lower and stoichiometric H2:O2 ratios, this increased the H2O2 production rate assuming that 

decomposition and further hydrogenation of H2O2 are low at the given low contact time. In 

contrast, Pd NPs were converted to predominantly β-PdHx under excess H2 (H2:O2 = 1.5 and 2) 

and the obtained H2O2 concentration stayed the same as in absolute ethanol or even decreased. 

Hence, we believe that a certain mixture of α- and β-PdHx phases is optimal for H2O2 formation. 

The promoters increase the rate of β-PdHx formation and therefore suggest that promotors are 

mostly efficient below stoichiometric H2:O2 ratios at which otherwise only metallic Pd or only α-

PdHx phases are present. Since no spectral fingerprint of oxidized Pd2+ and no diminishment of Pd 

NP size (relatively constant Pd-Pd coordination numbers) were observed we can exclude also 

significant Pd leaching in form of dissolved complexes. 

 

Table 6. Comparison of fixed bed and process metrics at H2:O2 = 1 for XAS studies in water27 and 

ethanol. 

 XAS study  

using water27 

This XAS study 

using ethanol 

Catalyst mass (mg) 20 35 ± 5  

Palladium mass fraction (%) 1 1 

Liquid feed flow (mL/min) 1.0 8.18 

H2O2 concentration (mmol/L) 0.08 0.4 ± 0.05 

H2 and O2 feed concentration (mmol/L) 4.8 16.4 

     Corresponding H2 pressure (bar) a 6.0 69 4.8 47 

     Corresponding O2 pressure (bar) a 3.4 69 1.7 47 

τmod (kgPd s/m3) 15 2.6 ± 0.4 

H2 yield (%) 1.7 2.4 ± 0.3 

H2O2 productivity (mmolH2O2/(gPd h)) 19 560 ± 110 
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a Thermodynamic equilibrium at 293.15 K 

 

 

Scheme 3. Comparison of the structural data obtained during H2O2 synthesis in water and ethanol 

(this study). 

Furthermore, we may speculate about the following processes that could further consolidate the 

existing image: In pure ethanol, the Pd NP may reduce as lattice oxygen is consumed by oxidative 

dehydrogenation of the solvent itself, forming adsorbed acetaldehyde and further acetate and 

protons. Palladium is known to convert alcohols to aldehydes at mild temperatures as low as 50°C, 

with the metallic phase being the active phase 71. Moreover, acetate formation has been reported 

earlier via QEXAFS for flowing EtOH:H2O (50:50 v/v) but at substantially higher temperature 
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(80°C) 72. Lunsford and co-workers have speculated as early as in 2005 that acetate ions may be 

important in direct synthesis, modifying the Pd NP surface 65. Spent catalyst from our experiments 

smelled considerably like acetic acid after a few weeks of shelf-life at room temperature, which is 

a further indication of this reaction path of oxidative dehydrogenation. We note that this pathway 

is also considered in the electrocatalytic ethanol oxidation reaction (EOR) on Pd 73. The heterolytic 

mechanism with sequential proton−electron transfer (hydrogen oxidation reaction and oxygen 

reduction reaction; electron transport through NP lattice) proposed by Flaherty and co-workers 25 

could explain the role of the solvent and the influence of the mineral acid: Without mineral acid 

addition, protons are delivered by amphiprotic solvent itself and the acetate-acetic acid-

equilibrium at the Pd surface, limiting the overall reaction rate. Due to co-adsorbing acetate in 

ethanol and potentially other poisonous intermediates such as CH, CCO, C 74, the surface 

coverages of H and O may be altered, i.e. as observed less to no surface oxygen opposite to water. 

Mineral acid addition increases the H surface coverage according to the proton−electron transfer 

mechanism (H* ↔ H+ + e− 25). This matches the observed lattice expansion as the increased surface 

coverage may facilitate hydride formation in turn. This contradicts a Langmuir-Hinshelwood-

Hougen-Watson (LHHW) mechanism because it cannot account for the dominant role of the 

hydrogen availability in the lattice and solvent protons. Consequently, the well-performing mixed 

α/β-PdHx may reflect a balanced, moderated hydrogen availability of Pd. A moderated hydrogen 

availability is already known from the selective hydrogenation of triple bonds of alkynes via Pd 

and Lindlar catalysts, with an α-phase being more selective but less active compared to the β-phase 

75–77. 

 

Conclusions 
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In this work we presented structural data on Pd NPs during H2O2 direct synthesis in ethanol under 

a broad range of parameters (H2:O2 ratio, addition of acidic and bromide promoters) and 

differential mode operation. Our study elucidates that the Pd catalyst was fully reduced upon 

contact with ethanol and no PdO signature could be observed in XANES. Even below 

stoichiometric H2:O2 ratios, Pd lattice expansion was observed. The lattice expansion increased at 

higher H2:O2 ratios, and increased even further as a result of adding H2SO4 and NaBr promoters. 

The highest H2O2 concentrations were obtained over Pd NPs with α-PdHx structure and a mixture 

of α- and β-PdHx phases, while less H2O2 was detected over β-PdHx,, which could indicate that 

excess hydrogen of pure β-PdHx leads to H2O formation instead of H2O2 formation. In this context 

we propose to examine which findings from electrocatalytic reactions (e.g. the H2O2 

electrosynthesis itself or ethanol oxidation) can be directly transferred to the direct synthesis, 

which would be mutually beneficial for both scientific communities. Further XAS investigations 

are required to obtain a comprehensive picture of the structural changes upon mineral acid addition 

and bromide. It would be interesting to investigate whether adding a pure acetate salt to water has 

the same effect as ethanol, which is thought to oxidize and in turn reduce the catalyst. Moreover, 

adding H2O2 to the feed would expand the findings to the reactor conditions at elevated 

conversions with a differential reactor mode. Complementary hydrogen isotope labeling the Pd 

NP prior to reaction could facilitate a better understanding of the Pd NP dynamics to further 

distinguish between the contribution of lattice hydride and protons or molecular hydrogen. As the 

direct synthesis can be considered as a structure-sensitive reaction, it is indispensable for a better 

atomistic understanding to look at the interfacial structure and Pd NP/reactant interaction under 

working conditions, e.g. studying the Pd NP surface coverages via operando ATR-IR 

spectroscopy.  
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Supporting Information. The following files are available free of charge. Catalyst powder 

characterization; H2O2 decomposition in the stainless-steel setup; Influence of internal mass 

transfer resistances; Influence of external mass transfer resistances; Near-infrared (NIR) spectra 

of the reactor effluent obtained during XAS measurements; EXAFS data in k-space and the quality 

of the corresponding fits; Comparison of H2O2 productivities. (PDF) 
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