Zugehörige Institution(en) am KIT | Institut für Produktionstechnik (WBK) |
Publikationstyp | Forschungsdaten |
Publikationsdatum | 11.02.2021 |
Erstellungsdatum | 01.12.2020 - 10.02.2021 |
Identifikator | DOI: 10.5445/IR/1000129520 KITopen-ID: 1000129520 |
Lizenz | Creative Commons Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International |
Projektinformation | DFG, DFG EIN, FL 197/77-1 |
Schlagwörter | Condition Monitoring, Deep Learning, Machine Learning, Object Detection, Semantic Segmentation, Instance Segmentation, Classification, Dataset |
Liesmich | The dataset contains 1104 channel 3 images with 394 image-annotations for the surface damage type “pitting”. The annotations made with the annotation tool labelme, are available in JSON format and hence convertible to VOC and COCO format. All images come from two BSD types. The dataset available for download is divided into two folders, data with all images as JPEG, label with all annotations, and saved_model with a baseline model. The authors also provide a python script to divide the data and labels into three different split types – train_test_split, which splits images into the same train and test data-split the authors used for the baseline model, wear_dev_split, which creates all 27 wear developments and type_split, which splits the data into the occurring BSD-types. Instruction dataset split split-type (mandatory) Result: |
Art der Forschungsdaten | Dataset |
Relationen in KITopen |