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Abstract: 3D-inkjet-printing is just beginning to take off in the optical field. Advantages of this
technique include its fast and cost-efficient fabrication without tooling costs. However, there are
still obstacles preventing 3D inkjet-printing from a broad usage in optics, e.g., insufficient form
fidelity. In this article, we present the formulation of a digital twin by the enhancement of an optical
model by integrating geometrical measurement data. This approach strengthens the high-precision
3D printing process to fulfil optical precision requirements. A process flow between the design of
freeform components, fabrication by inkjet printing, the geometrical measurement of the fabricated
optical surface, and the feedback of the measurement data into the simulation model was developed,
and its interfaces were defined. The evaluation of the measurements allowed for the adaptation of
the printing process to compensate for process errors and tolerances. Furthermore, the performance
of the manufactured component was simulated and compared with the nominal performance, and
the enhanced model could be used for sensitivity analysis. The method was applied to a highly
complex helical surface that allowed for the adjustment of the optical power by rotation. We show
that sensitivity analysis could be used to define acceptable tolerance budgets of the process.

Keywords: digital twin; modeling; simulation; additive manufacturing; 3D inkjet-printing; freeform
optics; varifocal optics

1. Introduction

Additive manufacturing (AM) offers great freedom in design, a short lead-time, and
the possibility of functional integration [1]. AM technologies can be divided into seven
main categories [2,3], including 3D ink-jet printing. In 3D-ink-jet printing, ink droplets
are deposited and cured, layer by layer, by UV illumination. The ink may be polymer
or hybrid polymer (e.g., Ormocer (R)) based. Moreover, metal or ceramic nanoparticle-
enhanced polymer inks continuously increase the application range of 3D-ink-jet printing.
Ink rheological properties, piezo waveform, and nozzle shape are important parameters for
droplet generation. Upon droplet impact on the substrate or on previously printed layers
wetting behavior, droplet size, droplet overlap, droplet coalescence, and UV-curing strategy
govern layer formation. A considerable amount of research has gone into developing
an understanding of these complex interrelations between materials, equipment, and
printed shapes. Though 3D printing was originally primarily used for prototyping, it has
evolved to be used for the custom mass production of functional parts [4,5] and is used in
several industrial fields, e.g., automotive, aerospace, and medical, as a well-established
alternative to conventional manufacturing processes [6–9]. The potential of high-resolution
3D printing to produce parts with a high degree of design freedom makes this technology
interesting for optical applications where an increasing use of optical freeform surfaces
can be observed. Optical applications using freeform optical surfaces include automotive
lighting [10,11], beam expanders [12], and ophthalmic implants [13–15]. The established
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processes to manufacture freeform optical components from optical polymers are the
direct diamond turning of the optical component [16] and the diamond turning of a
mold insert for precision injection molding [17]. High-resolution 3D printing, with its
enormous flexibility in terms of shape variation, opens up great potential for creating
new approaches and solutions for optical systems [18]. The manufacturing of optical
components and, especially, freeform surfaces has to meet high requirements, e.g., the high
fidelity of the optical surfaces. Macroscopic imaging freeform optics pose great challenges
for high-resolution 3D inkjet printing with regard to shape fidelity [19]. There are only few
companies mastering the above-mentioned complex set of 3D-inkjet printing to a degree
that optical surface can be realized. This process know-how is their competitive advantage
and thus, understandably, not disclosed to the public. For the performance prediction of
the manufactured freeform optics in an optical system, the use of measurement data of the
manufactured parts to enhance the optical model with respect to realistic representation
of the optical surfaces as manufactured is a useful strategy [20]. Detailed comparisons of
nominal freeform surfaces with tactile measurements of freeform surfaces produced by
3D inkjet printing allow for a better understanding of the 3D inkjet printing process and
the derivation of process improvement strategies [21]. Though the term digital twin is
versatilely used, there is a basic and common understanding in scientific and industrial
publications that a digital twin is a virtual equivalent of a real system [22]. It maps physical
objects and does not only describe physical objects but also optimizes physical objects
based on models [23]. This article presents the development of a digital twin on the basis
of the above-described approach to adapt the high-resolution inkjet printing process to a
respective geometry with the objective of increasing the shape fidelity of optical surfaces.
Our work was based on an enhancement of the simulation models with data from surface
measurements. This allows for the detection of discrepancies in shape fidelity and for the
direct determination of the influence of these discrepancies on the optical performance
of a freeform component. Hence, the printing process can be adjusted in order to reduce
or increase material accumulation or to adjust curing strategies, thus leading to higher-
performance components. The organization of the paper is as follows: in Section 2, the
digital twin and the process flow are developed. Section 3 introduces the optical system
used as an example. The evaluation of the measurements leading to a height map of
the difference surface between measured and nominal surface is presented in Section 4.
Section 5 is about the model enhancement and the usage of the digital twin in sensitivity
analysis. A discussion of the achievements closes this article.

2. Concept of Generating and Using the Digital Twin

The flow between the individual process steps of process parameter deviation and
digital twin generation is shown in Figure 1. The first step was the creation of an initial
optical design. The arbitrary freeform optical surface was calculated with the help of
mathematical software. The mathematical development tool Mathematica [24] served as
a tool in our example. To perform an optical analysis of the complete system model, the
mathematical freeform surface was input to an optical simulation tool. In our example,
OpticStudio [25] was used for this purpose. In order to perform an automatic analysis
of the optical properties of different variants, a communication between the two tools
was implemented based on the WSTP (Wolfram Symbolic Transfer Protocol) extension of
OpticStudio. A design optimization of the initial design was realized by integration of
the Single-Objective Genetic Algorithm (SOGA) of the Sandia Dakota (Design Analysis
Kit for Optimization and Terascale Applications) Box [26]. The evolutionary algorithm
controlled the optimization process of the optical freeform surface with respect to the
specific system requirements. The optimized optical freeform surface S0 was the initial
design for the process flow and was input in the optical performance evaluation where
performance analysis was carried out on the basis of optical simulations. The surface Si
(where the index i denotes the number of passes of this loop; the initial surface therefore
has the index 0) was then transferred into mechanical design, where an optical component
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Ci was generated by adding a thickness and support structures, e.g., substrate or mounting
and alignment structures. Manufacturing complex structures requires an adaption of the
design to the design rules of the involved processes, e.g., the manufacturing of the optics,
or the assembly of the optical parts to an adjusted optical system.
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A way to approach such adaptations and the final design for manufacture were de-
scribed in [27]. The finalized CAD model contained both optical and mechanical structures
in one comprehensive model and described the optical component Ci that was digitally
input to the printing process. Up to this transfer, the optical component was described
entirely digitally. After the manufacturing process, a real part existed. The printing process
took place on a high resolution 3D inkjet printer and was carried out by the Dutch company
Luximprint [28]. The result of the printing process was a real optical part Pi where the opti-
cal surface and the mechanical alignment structures were manufactured in a single process
step [29]. In the next step of digital twin generation, measurements were carried out on the
basis of the finished optical parts Pi. The characterization of the optical properties of the
printed optical component were conducted both in a laboratory setup to analyze the optical
performance and by tactile surface measurement, using a Dektak V220 SI profilometer,
to analyze the dimensional accuracy of the printing process. The resulting data Di of the
measurement were again digital descriptions, now of the surface of the real manufactured
part. On the basis of the measurement results, three different surfaces were generated: the
surface SR of the real manufactured part, which was input into the optical performance
evaluation to simulatively analyze the systems performance of the manufactured part; the
surface Si,R that was an adaptation of the nominal design to different tolerance budgets of
the manufacturing process and was also input to the optical performance evaluation for the
sensitivity analysis of a manufacturing process with unknown tolerance distribution (see
also Section 5); and the surface Si-R that was the difference between the nominal surface Si
and the measured surface SR. On the basis of the difference surface Si-R, a spatially resolved
height map Mi-R of the differences between target and actual geometry was created by
comparing the measured data with the nominal data of the freeform surfaces. This map
was used to derive feedback to the printing process and to determine at which positions
adjustments to material deposition were necessary. With this information, the printing pro-
cess could be adjusted to the respective freeform surface by adapting printing parameters
(printing speed, drop size, UV-illumination control for curing).
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In Figure 2, exemplary results of the individual process steps are shown to illustrate
the flow diagram in Figure 1. The initial optics design is depicted in superelevated repre-
sentation, and the optical performance evaluation is presented by a raytracing section and
a map of the point spread function. In the mechanical design, the underlying substrate is
shown, as are the alignment and centering structures of the optical component. A detailed
discussion of the individual alignment structures can be found in [29]. The high-resolution
3D ink-jet printed optics part acted as input to measurements. Imaging and surface mea-
surements at the laboratory setup were conducted. Here, the measurement and imaging
results of the tactile measurement are shown. The evaluation step shows the resulting
measured surface, the adapted surface, and the height map. On the basis of these data,
adjustments to the printing process, as well as input in the optics design process to enhance
the systems model, were derived. Both ways led to creation of a digital twin that allowed
us to simulatively evaluate the system performance of the manufactured parts and derive
fabrication process improvements.
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3. Optical System Used as Example

The example used to illustrate creation and application of the digital twin was a
varifocal optics consisting of two optical freeform surfaces that were helical in shape with
a radius of curvature changing azimuthally [30]. The freeform surfaces are described by
Equation (1) [31].

z(r, α) =
A
2

r2α A : form function; r =
√

x2 + y2 ; α : azimuth (1)

The curvature of the lens bodies depends on the form factor A and the azimuth α,
hence featuring a discontinuity at the transition from α = 2 π to α = 0. The left of Figure 3
shows a helical surface calculated with Equation (1): the surface curvature varied from
convex to concave, starting with the discontinuity (transition between 2 π to 0) following
the azimuth clockwise. The profiles of the surface parallel to the x-axis, along the blue
intersection (Figure 3, mid column) and parallel to the y-axis along the red intersection
path (Figure 3, right) illustrate the surface sag, which indicates the displacement of the
surface along the optical axis (z-axis) of the surface at distance r =

√
x2 + y2 from the

axis. Since discontinuity could seriously affect imaging quality, it has to be obscured by a
diaphragm to prevent any disturbing effects in imaging, e.g., scattering. A combination of
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two lens parts featuring such helical surfaces arranged in sequence perpendicular to the
optical axis would possess a constant refractive power over the complete aperture. The
refraction power could be tuned continuously by mutually rotating the lens bodies around
the optical axis (see Figure 4). This optical system is multifocal, with two sectors with
different individually tunable refraction powers [21,27].
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Figure 4. Rotation optics, consisting of two lens bodies with surfaces of azimuthal curvature depen-
dence arranged coaxially to the optical axis and their plane surfaces facing each other [27].

Freeform surfaces like this with an azimuthal change of curvature and a discontinuity
place very high demands on the manufacturing processes.

4. Evaluation of the Surface Measurements

The first four steps in the process flow (see Figure 1), namely initial design, optical
performance evaluation [27], mechanical design [29], and printing [21], have been described
elsewhere in detail. In this article, we focus on analyzing surface measurements of the
freeform surface and on the derivation of the height difference map between nominal
and printed geometry to determine at which positions adjustments of material deposition
in the printing process were required. This information could be further used to derive
process parameters to directly adjust the printing process to a respective freeform surface
by adapting, e.g., printing speed, drop size, and UV-illumination control for curing.

Tactile surface measurements were conducted with a Dektak V220 SI profilometer.
The measuring window had a dimension of 10.5 mm × 10.5 mm and encompassed the
entire optical aperture (see Figure 5a). In the measurement window, 210 profile lines with
5250 measuring points each were recorded. The path of the measuring tip was chosen to be
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parallel to the surface discontinuity of the rotation optics. Figure 5b shows a superelevated
3D-plot of the 210 measurement profiles, each containing 5250 data points.
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Application-specific manufacturing tolerances could be derived from the difference
surface Si-R of the nominal freeform surface and the measurement data. Figure 6a shows
the overlayed plots of the nominal freeform surface (blue) and the measurement data (red).
It is obvious that too little material was printed in the edge areas of the aperture and too
much material was printed in the central area and near the discontinuity. The penetration
surfaces of the measurement data are clearly seen by the red islands in the blue nominal
surface, indicating a surplus of material. The difference between measured and nominal
surface is depicted in Figure 6b. Regarding the nominal aperture, indicated by the black
ring, it is obvious that the printed optics did not entirely fill the aperture. The discrepancy
between manufactured and nominal surface was evaluated by a comparison of the profiles.
Figure 7 shows selected profiles spanning the entire measurement window.
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The figure shows nominal profiles (blue), measured profiles (red), and difference
profiles (green) inside the limits of the nominal aperture (perpendicular solid black lines).
Considering Figure 7, it is apparent that the printed surface did not extend over the nominal
lens aperture: the red curves depicted in Figure 7 dropped to substrate level far inside the
nominal aperture. The evaluation showed a lens aperture reduced by about 20%. This
shape deviation at the edge of the aperture could be corrected directly by adjusting the
allowance in the process data. The compensation of the lateral shrinkage for such structures
could lead to a design aperture of 125% of the nominal value [21]. Furthermore, strong
form deviations could be observed, and these were most pronounced at the transition from
convex to concave. These form deviations must be corrected by an adapted control of
the high-resolution 3D printing process. To get information of shape deviation over the
entire optical aperture, the difference surface is represented as a spatially resolved height
map Mi-R (Figure 8). The scale of the height map directly shows the tolerance range with
which the respective design could be manufactured by the specific process. Regarding the
given case, the tolerance of the surface accuracy was in the range of ±50 µm. However,
the height map also quantitatively shows the difference between nominal and measured
surface at every surface position. This directly gives information regarding in which areas
more and in which areas less material must be deposited; hence, this was a quantitative
measure of the surface accuracy of the printing process. The quantitative information of
the height map could be used to adjust the parameters of the high-resolution printing by
adapting printing speed, drop size, and UV-illumination control for curing and to define
an allowance for compensation.
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5. Model Enhancement and Digital Twin

To be able to analyze the printed parts by means of optical simulation, an enhance-
ment of the optical model was implemented. The model enhancement was conducted by
integrating the measuring surface data SR into the simulation model [20]. Hence, a perfor-
mance evaluation of the printed part was enabled in the digital space. This approach also
enabled a comparison of the printed parts with the nominal surface description. Table 1
shows a comparison of imaging analysis between the nominal surface S0 and the printed
optics (represented by the measuring surface data SR). The MTF (modulation transfer
function), a well-established measure of optical image quality, and the geometrical imaging
of a bar pattern are presented, each for three adjustments of the varifocal optics: 1, 2,
and 3 dpt (where dpt is the unit symbol for diopter which is the unit of optical power:
1 diopter = 1 m−1). The first row shows the simulation results of the nominal surface, and
the second row shows the simulation results for the optical surface reconstructed from
measurement data. As shown above, the achieved dimensional accuracy corresponded
to a tolerance of ±50 µm. The first row of Table 1 shows the performance of the nominal
rotation optics. The MTF, depicted up to a spatial frequency of 100 lp/mm, is smooth and
resulted in a value of around 0.4 at 100 lp/mm for each of the three adjustments. This value
could be seen as the contrast with which details with a spatial frequency of 100 lp/mm
could be resolved by the optical system. Results are presented underneath the MTF of
the simulated imaging. The clear and sharp imaging of the bar pattern confirms the good
imaging behavior of the nominal system. The second row shows the same analysis for
the measured data representing the manufactured part. The MTF collapsed at around
11 lp/mm (please take notice of the different scale of the spatial frequency axis-in case
of the measured data; the MTF is depicted only up to 50 lp/mm). The geometric image
analysis also reflects the MTF: the harsh collapse of MTF led to a blurred image of the bar
pattern. Ghost reflections, resulting from non-matching surfaces, could also be observed.
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Table 1. The modulation transfer function (MTF) and geometric image analysis of three different adjustments of the rotation
optics (1, 2, and 3 dpt) for the nominal surface (first row) and the measured data (second row).
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The enhanced model on the basis of surface Si,R could be further used as a digital
twin to predict system performance due to realistic and application-specific manufacturing
properties. As defined in Section 2, the surface Si,R is an adaptation of the nominal surface
to different tolerance budgets of the manufacturing process. The approach to this is to
confine the difference between nominal and measured surface to a specific tolerance range.
By adding this confined deviation spatially resolved to the nominal surface, a model of a
manufactured optics was generated for these specific manufacturing tolerances. Hence,
based on measurement data, a new optical surface was synthetically created. In this
way, the effect of different process parameters and processing strategies on component
performance could be studied in digital space without physically manufacturing a large
number of parts.

Using the digital twin to predict optical performance for different tolerance regimes
allows for a sensitivity analysis to determine acceptable manufacturing tolerances in order
to achieve specific performance targets. Table 2 shows the simulation-based optical analysis
of a rotation optics constrained with a manufacturing tolerance of ±10 µm. A comparison
of the simulation results of the imaging quality of the adapted model (Table 2) with that
of the measured data (row 2 in Table 1) allows for the performance evaluation of the two
tolerance regimes: ±50 µm as manufactured and ±10 µm as adapted. Regarding the MTF,
an improvement was mainly seen in the 1 dpt adjustment. The improvement of the MTF
for the 2 and 3 dpt adjustments are not as eye-catching. Regarding the image analysis
underneath the MTF, the improvement in image quality is more obvious. The details in the
bar pattern are resolved, the contrast is higher, and the ghost images are reduced.
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Table 2. Modulation transfer function (MTF) and geometric image analysis of three different adjustments of the rotation
optics (1, 2, and 3 dpt) for the nominal surface constraint with a manufacturing tolerance of ±10 µm.
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The sensitivity analysis of anticipated manufacturing tolerances of ±10 µm resulted
in the expected system performance and thus allowed for the definition of an acceptable
range of manufacturing tolerances depending on system performance.

6. Discussion

The article demonstrates a process flow with the aim of enhancing high resolution
3D inkjet printing to manufacture optical freeform surfaces by means of a digital twin.
Besides its obvious advantages like fast and cost-efficient fabrication, 3D-inkjet printing
offers the possibility to manufacture almost arbitrary shapes. To enable the inkjet printing
process to manufacture freeform surfaces in optical quality, we proposed a process flow
between optical performance evaluation, mechanics design, high resolution inkjet-printing,
measurement, and an evaluation and design adaptation with a feedback to be suited to
control the printing process. Regarding the example of rotation optics in this article, we
focused on the evaluation of the measurement data and the creation of a digital twin. First,
the evaluation of the measured data resulted in a height map that quantitatively indicated
the difference between the printed surface shape and the nominal shape. This information
was available in spatial resolution and, hence, could be used to derive process parameters,
e.g., printing speed, drop size, and UV-illumination control for curing for the specific
freeform surface, to control the printing process so that material deposition and printing
parameters could be adjusted. Second, the enhanced model was used to simulate the
performance of the manufactured part and compare it to the performance of the nominal
shape. The enhanced model was further used as a digital twin for sensitivity analysis
regarding the interaction between process and part when manufacturing tolerances are not
known. Additionally, this approach allowed for the definition of the minimum dimensional
accuracy for a given surface shape to maintain the required system performance.

The surface roughness of printed components could also have an impact on optical
performance. A measurement of surface roughness could be integrated into the process
flow, as shown in Figure 1, in the measurement box and evaluated by means of a digital
twin. The consideration of the surface roughness of the printing process with the aim
of adjusting the process parameters to achieve a higher surface quality is a concern of
future work.
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