KIT | KIT-Bibliothek | Impressum | Datenschutz

Microfluidic Evolution-On-A-Chip Reveals New Mutations that Cause Antibiotic Resistance

Zoheir, Ahmed E. 1; Späth, Georg P. 1; Niemeyer, Christof M. ORCID iD icon 1; Rabe, Kersten S. ORCID iD icon 1
1 Institut für Biologische Grenzflächen (IBG), Karlsruher Institut für Technologie (KIT)

Abstract:

Microfluidic devices can mimic naturally occurring microenvironments and create microbial population heterogeneities ranging from planktonic cells to biofilm states. The exposure of such populations to spatially organized stress gradients can promote their adaptation into complex phenotypes, which are otherwise difficult to achieve with conventional experimental setups. Here a microfluidic chip that employs precise chemical gradients in consecutive microcompartments to perform microbial adaptive laboratory evolution (ALE), a key tool to study evolution in fundamental and applied contexts is described. In the chip developed here, microbial cells can be exposed to a defined profile of stressors such as antibiotics. By modulating this profile, stress adaptation in the chip through resistance or persistence can be specifically controlled. Importantly, chip‐based ALE leads to the discovery of previously unknown mutations in Escherichia coli that confer resistance to nalidixic acid. The microfluidic device presented here can enhance the occurrence of mutations employing defined micro‐environmental conditions to generate data to better understand the parameters that influence the mechanisms of antibiotic resistance.


Verlagsausgabe §
DOI: 10.5445/IR/1000129554
Veröffentlicht am 12.02.2021
Originalveröffentlichung
DOI: 10.1002/smll.202007166
Scopus
Zitationen: 13
Dimensions
Zitationen: 14
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biologische Grenzflächen (IBG)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 11.03.2021
Sprache Englisch
Identifikator ISSN: 1613-6810, 1613-6829
KITopen-ID: 1000129554
HGF-Programm 43.33.11 (POF IV, LK 01) Adaptive and Bioinstructive Materials Systems
Erschienen in Small
Verlag John Wiley and Sons
Band 17
Heft 10
Seiten Art.-Nr.: 2007166
Vorab online veröffentlicht am 18.01.2021
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page