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Abstract N-Phenylphenothiazines are an important class of photore-
dox catalysts because they are synthetically well accessible, they allow
the tuning of the optoelectronic properties by different substituents,
and they have strong reduction properties for activation of alkenes.
One of the major disadvantages of N-phenylphenothiazines, however, is
the excitation at 365 nm in the UV-A light range. We synthesized three
differently dialkylamino-substituted N-phenylbenzo[b]phenothiazines
as alternative photoredox catalysts and applied them for the nucleo-
philic addition of alkohols to -methyl styrene. The additional benzene
ring shift the absorbance bathochromically and allows performing the
photocatalyses by excitation at 385 nm and 405 nm. This type of pho-
toredox catalysis tolerates other functional groups, as representatively
shown for alcohols as substrates with C–C and C–N triple bonds.
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Over the last decade, photoredox catalysis has become a

powerful method in modern synthetic organic chemistry.

Light, preferably in the visible range, provides enough ener-

gy to overcome activation barriers of reactions by alterna-

tive pathways that are not accessible by the conventional

thermal approach.1 Photoredox catalysis complements the

available synthetic methods by so far unknown transforma-

tions and thereby overcomes limits of current synthetic

methods.2 The majority use transition-metal complexes

mainly with ruthenium due to their photophysical proper-

ties and their (photo)chemical robustness. In order to en-

hance the sustainability by the combination of using light

from energy-saving LEDs and nonmetallated photoredox

catalysts, organic dyes are important alternatives, for in-

stance, eosin Y,3 rhodamine 6G,4 mesityl5 and aminoacrid-

inium,6 naphthyochromenones,7 and 4,6-dicyanoben-

zenes.8 However, there is not one single organic photoredox

catalyst for different types of organic reactions. Instead,

each organic photoredox catalyst has its own reactivity pro-

file and substrate scope. In order to apply organic dyes in

advanced photoredox catalysts in a versatile way, it is bene-

ficial that modifications can be made to the core structure

in order to tune optical and redox properties.8,9 N-Phenyl-

phenothiazines10 (Figure 1) meet these criteria. They are

important new photoredox catalysts because they (i) are

easily synthetically accessible, (ii) they allow the introduc-

tion of electron-donating or electron with-drawing groups

at the core or at the phenyl group to tune the optoelectronic

properties, (iii) they are strongly reducing photoredox cata-

lysts, and (iv) they are photochemically stable.11,12 We re-

cently used the strong reductive power of N-phenylpheno-

thiazines to activate inert SF6 and to obtain pentafluorosul-

fanylated organic compounds.13 One of the major

disadvantages of N-phenylphenothiazines, however, is the

excitation at 365 nm in the UV-A light range that may cause

undesired side reactions. N-Phenylbenzo[b]phenothiazines

are important alternatives as their unsubstituted core

structure was applied for ATRA polymerization.14 We pres-

ent herein differently dialkylamino-substituted N-phenyl-

benzo[b]phenothiazines 1–3 as strongly reducing photore-

dox catalysts for the nucleophilic addition of alcohols to -

methyl styrene 7 (Figure 1). The condensation with an addi-

tional benzene ring yields a bathochromically shifted exci-

tation wavelength and should allow running the photoca-

talysis at 385 nm and even at the border to visible light (405

nm).

The syntheses of N-phenylbenzo[b]phenothiazines 1–3

(Scheme 1) start with the condensation of naphthalene-

2,3-diol (9) with 2-aminobenzothiol (10) to 12H-ben-
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zo[b]phenothiazine (11)15 as the core chromophore struc-

ture. Subsequent Hartwig–Buchwald aminations with the

corresponding dialkylamino-substituted phenyl bromides

yield the target compounds 1,16 2,17 and 318 in sufficient

yields of 33–65%.

Our recently published N-phenylphenothiazines are

strongly reducing photoredox catalysts, able to activate SF6

for pentafluorosulfanylations, but they have to excited at

365 nm. In principle, irradiations that are more selective are

realized by shifting the excitation of the photoredox cata-

lyst from the UV-A range into the bathochromic direction.

Irradiations at 385 nm and 405 nm LEDs gain selectivity be-

cause this is outside the typical n–* absorption range of

carbonyl-substituted substrates. This is an important goal

because it improves the tolerance of other functional

groups in the substrates. With the extension of the aromat-

ic system of the core structure of benzo[b]phenothiazines a

significant bathochromic shift of the absorption bands is

achieved. A high electronic ground-state potential is com-

bined with a relatively small S0–S1 gap E00. The UV/Vis ab-

sorbance of 1–3 show additional broad bands ranging from

350–420 nm that are not observable with N-phenylpheno-

thiazines 4–6 (Figure 2). Cyclic voltammetry of 1–3 show

two fully reversible potentials that can be assigned to the

formation of the radical cation and further to the dication,

respectively (Figure 2). The benzo condensation has no sig-

nificant influence on the first oxidation potential Eox(X+•/X)

Figure 1  N-Phenylbenzo[b]phenothiazines 1–3 in comparison with N-phenylphenothiazines 4–6,11 conventional transition-metal complexes as pho-
toredox catalysts, their oxidation potentials, and the reduction potentials of differently substituted olefin substrates, in particular 7, for nucleophilic 
addition of alcohols to products with Markovnikov selectivity, like 8.

Scheme 1  Synthesis of N-phenylbenzo[b]phenothiazines 1–3. 
Reagents and conditions: a) naphthalene-2,3-diol, 2-aminobenzothiol 
(1.00 equiv), 1,2,4-trichlorobenzene, overnight, 200 °C; b) aryl halo-
genide (1.50 equiv), NaOt-Bu (2.50 equiv), tricyclohexylphosphine 
(0.07 equiv), Pd2(dba)3 (0.05 equiv), toluene, overnight, 120 °C.
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that were observed in the range between 0.51–0.58 V, in

comparison to 0.49–0.57 V for 4–611 (Table 1). Due to the

red-shifted absorbance, however, the singlet excitation en-

ergies E00 for 1–3 at 2.8–3.0 eV are lower in comparison to

3.1–3.5 eV for 4–6.11 As result, the oxidation potentials of

1–3 in the excited states Eox(X+•/X*) are also reduced to –2.3

to –2.4 V in comparison to –2.5 to –3.0 eV for 4–6.11 Most

importantly, these potentials are still sufficient to activate

-methyl styrene (7) as representative aromatic substrate

by reduction to the radical anion. According to literature,

such strongly reducing potentials are achieved by merging

photocatalysis and electrocatalysis,20 or by using the acri-

dine radical as photocatalyst.21

Figure 2  Normalized UV/Vis absorption of N-phenylbenzo[b]phenothi-
azines 1–3 in comparison to N-phenylphenothiazines 4–6 and normal-
ized emission of the 365 nm, 386 nm, and 405 nm LEDs (left) and 
representative cyclic voltagram of 2 (right)

Photoredox catalysis were performed with -methyl

styrene (7) and different alcohols (R′OH) as nucleophiles. -

Methyl styrene (7) bears one phenyl group and is thereby

an activated olefin with respect to its reduction potential

Ered(S/S–•) between that of 1,1-diphenylethylene (Ered(S/S–•)

= –2.3 V) and styrene (Ered(S/S–•) = –2.6 V). Notably, a di-

phenylethylene derivative has been applied as substrate for

enantioselective intramolecular alkoxylation by naphtha-

lene dicarboxylates.22 According to Rehm–Weller, the driv-

ing force of this initial electron transfer is estimated accord-

ing to ΔG = Eox – Ered – E00 (omitting the Coulomb interaction

energy Ec). For 1–3, the driving force ΔG for the photoin-

duced electron transfer to 7 lie in the range between –0.2

eV and +0.3 eV, thus not clearly exergonic, close to border-

line cases.

In previous studies, the photoredox catalytic methoxyl-

ation of 7 by N-phenylphenothiazines was restricted to 365

nm excitation because the extinction of 4–6 at higher

wavelengths is too low. Our newly synthesized benzofused

derivatives 1–3 allow excitation by LEDs at 385 nm and

even at 405 nm because the spectral overlap of the absor-

bances with the emission of the 385 nm (and 405 nm) LEDs

is sufficient (Figure 2). After such excitation of the photore-

dox catalysts 1–3 an electron transfer to the substrate 7

yields the charge separated state (Scheme 2). The resulting

radical anion 7 is rapidly protonated to the neutral radical 7

that undergoes the back electron transfer to the cation 7.

The latter intermediate is the strong electrophile that reacts

with alcohols (like MeOH in the simplest case) as weak nuc-

leophiles to the final addition product (like 8). In contrast to

our previous result with N,N-dimethylaminopyrene as pho-

toredox catalyst,23 the alkoxylations with N-phenylben-

zo[b]phenothiazines do not require the addition of trime-

thylamine as electron shuttle for efficient back electron

transfer. Both, the photoinduced charge separation by elec-

tron transfer and the regeneration of the catalyst by back

electron transfer works without an additive, which is a sig-

nificant advantage.

Scheme 2  Proposed mechanism for the nucleophilic addition of alco-
hols R′OH to substrate 7 yielding product 8 using 1 as photoredox cata-
lyst

Table 1  Oxidation Potentials Eox(X+•/X) and Eox(X2+/X+•), Singlet Exci-
tation Energies E00, and Estimated Excited-State Oxidation Potentials 
Eox(X+•/X*) of N-Phenylbenzo[b]phenothiazines 1–3

1 2 3

Eox(X+•/X)a (V) 0.58 0.55 0.51

Eox(X2+/X+•)a (V) 1.04 1.04 1.04

E00 (eV)b 3.0 3.0 2.8

Eox(X+•/X*) (V) –2.4 –2.4 –2.3

385nm (M–1cm–1) 4,300 4,600 4,100

405nm (M–1cm–1) 2,100 2,300 2,100

a Converted from the ferrocene scale into the SCE scale: +0.38 V.19

b E00 was estimated by the intersection of the normalized absorbance and 
fluorescence.
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The yields of 8 after irradiation by the 385 nm LED with

1 and 2 as photoredox catalyst are 58% and 48%, respective-

ly (Table 2). The yields are lower but still in a similar range

than the yields obtained by standard 365 nm irradiation. Ir-

radiations by the 405 nm LED yield very low amounts of

product 8 (4% and 2%) due to yield reduced extinction coef-

ficient of 1 and 2 at this wavelength. The best photoredox

catalyst within this small set of differently substituted N-

phenylbenzo[b]phenothiazines is 3 that delivers yields of

88% by 385 nm irradiation, which is even higher than the

yield by 365 nm irradiation, and remarkable 24% by 405 nm

irradiation, respectively. These results show a clear im-

provement of this type of photoredox catalysis, since the

previously applied irradiation at 365 nm is very close to di-

rect activation of substrates and thereby the limit of photo-

catalysis.

To widen the substrate scope of this photoredox cataly-

sis ethanol, isopropanol, pent-4-yn-1-ol, and 2-hydroxy-

propanenitrile were used as alternative alcohols for the nu-

cleophilic addition to substrate 7 (Figure 3 and Table 3).

These reactions were performed with the photoredox cata-

lyst 3 that was previously identified as the best one. The

yields of products 8, 12, and 13 after 385 nm irradiation in

the presence of MeOH, EtOH, and i-PrOH drop from 88%

over 71% to 55%. This drop can be assigned to the increasing

stering demand in this series of alcohols and supports the

proposed nucleophilic addition mechanism (Scheme 2).

The products 14 and 15 are formed in remarkable yields of

77% and 96%, respectively, and representatively show that

this type of photoredox catalysis tolerates other functional

groups, in particular C–C and C–N triple bonds, due to the

selective irradiation wavelength.

Table 3  Yields of Photoredox Catalytic Methoxylations of -Methylsty-
rene (7, 180 mM) to Products 8, 12–15a

In conclusion, the synthesized N-benzophenothiazine-

based catalysts 1–3 show a significantly redshifted absor-

bance in comparison to conventional N-phenylphenothi-

azines, allow excitation at 385 nm (and even at 405 nm),

and provide an excited-state reduction potential of E* = –2.4

V vs SCE. Although this potential is diminished compared to

conventional N-phenylphenothiazines, it is clearly suffi-

cient for alkoxylations of -methylstyrene (7) by photore-

dox catalytic nucleophilic additions. Using photoredox cat-

alyst 3, the addition of MeOH to 7 gives higher yields when

irradiated at 385 nm compared to conventional 365 nm.

The excitation at 385 nm (and 405 nm) allows reactions

that are more selective because other functional groups are

not excited. Hence, this improved photoredox catalysis tol-

erates other functional groups, as representatively shown

for alcohols with C–C and C–N triple bonds.
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Table 2  Yields of Photoredox Catalytic Methoxylations of -Methylsty-
rene (7, 180 mM) to Product 8a

LED (nm) Yield of 1 (%) Yield of 2 (%) Yield of 3 (%)

365 76 89 62

385 58 48 88

405 5 4 24

a Conditions: photoredox catalyst (1, 2, or 3, 10 mol%), MeOH (1.00 mL), 
35 °C, 65 h irradiation at 365 nm, 385 nm, or 405 nm.

Figure 3  Product scope 8, 12–15 for the photoredox catalytic conver-
sion of -methylstyrene (7) with methanol, ethanol, isopropanol, pent-
4-yn-1-ol, and 2-hydroxypropanenitrile, and yields of products 8 and 
12–15. Reagents and conditions: 3 (10 mol%) R′OH (0.75 mL), 35 °C, 65 
h irradiation at 385 nm or 405 nm.

LED
(nm)

Yield of 8 
(%)

Yield of 12 
(%)

Yield of 13 
(%)

Yield of 14 
(%)

Yield of 15 
(%)

385 88 71 55 77 96

405 24 4 1 15 7

a Conditions: 3 (10 mol%), alcohol (1.00 mL), 35 °C, 65 h irradiation at 385 
nm or 405 nm.
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