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Abstract  

A follow up to an earlier review on the coordination and extraction of trivalent actinide and 
lanthanide ions with triazinylpyridine N-donor ligands is presented. It reviews the recent 
development in the fields of ligand modifications and improvements, considering both 
hydrophobic compounds (to be used as extracting agents) and hydrophilic compounds (to be 
used as stripping agents), with a focus on fundamental studies.   

Introduction  

For more than 50 years, Renato Chiarizia had inspired the Solvent Extraction and Actinide 
Separations community, both as a scientist and as a long-time Editor of Solvent Extraction & 
Ion Exchange. The separation of trivalent “minor” actinides is one of the numerous fields he 
was interested in.1-6 Working in this field, too (albeit using different chemistry), we feel 
honoured for having been invited to contributing to this special issue of Solvent Extraction and 
Ion Exchange in memory of Renato. We hope he would have enjoyed reading our contribution.  

In 2012 we reviewed the complexation and extraction of trivalent actinides, An(III), and 
lanthanides, Ln(III) by bis-triazinyl-(bi)pyridine N-donor ligands.7 Such ligands play a central 
role in the development of solvent extraction processes aimed at separating An(III) from 
irradiated nuclear fuels.8 Ligand design ultimately must keep applicability in mind. With this, 
among the major constraints are compatibility (i. e. sufficient solubility of both the ligand and 
the formed complexes in appropriate media), selectivity (more is better; however, even a 
separation factor of ≈ 2 is sufficient to design a separation process), affinity (equilibria must be 
easily reversible — too high distribution ratios impede stripping), kinetics (obviously, faster is 
better), chemical and radiolytic stability.  
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Indeed, alkylated bis-triazinyl pyridines (known as BTP, Figure 1 left) were the first extracting 
agents to extract Am(III) and Cm(III) selectively over Ln(III) out of solutions containing 
approximately molar nitric acid.9-10  

             

Figure 1. Generic BTP (left), BTBP (centre), and BTPhen (right) structures. 

The first BTP compounds unfortunately were easily degraded by nitric acid and by radiation. 
The development leading to 6,6’-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo-1,2,4-
triazin-3-yl)-2,2’-bipyridine (CyMe4-BTBP, Figure 2),11-12 the European reference compound 
for An(III)/Ln(III) separations to date, is reviewed in the literature in due detail.7, 13-16  

 

Figure 2. Molecular structure of CyMe4-BTBP. 

Covering the period from 2013 onwards, the present review gives an update on BTP, BTBP, 
and BTPhen (Figure 1) compounds (including some promising modifications to the backbone) 
relating to An(III)/Ln(III) separations. We explicitly do not review the literature on solid-state 
structures,17-18 solvent extraction process development,19-30 solid-liquid applications,31-40 
radiolysis and stability studies,41-50 non-An(III)-Ln(III) chemistry, 51-56 and theory studies.57-66  

A sound knowledge of their coordination chemistry is instrumental to designing improved 
extracting and complexing agents. Thus, this article reviews the recent literature on 
An(III)/Ln(III) solvent extraction and coordination chemistry with the above-mentioned 
ligands, highlights current trends, and proposes directions to proceed. Finally, this article also 
reflects the authors’ views.  
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Systematic modifications to hydrophobic BTP and BTBP ligands  

To optimize their properties as extracting agents, structural modifications were carried out on 
BTP and BTBP ligands. Recent modifications include variations to the substituents at the 
triazines67 or the substituents on the pyridine ring.68-69 2,6-bis(5,6,7,8-tetrahydro-5,9,9-
trimethyl-5,8-methano-1,2,4-benzotriazin- 3-yl)pyridine (CA-BTP, Figure 3 top left)70 was 
further studied, extending to further diluents.71 CA-BTP however is not further studied in 
Europe due to problems with scale-up of the synthesis, i. e. the production of larger batches 
with reproducible properties.  

So far, ligands foregoing the basic triazine-(bi)pyridine-triazine structure (e.g., 2,6-bis(1,2,4-
triazol-3-yl)pyridines (Figure 3 bottom left),9 2,6-bis(pyrazol-3-yl)pyridines (Figure 3 bottom 
right),72 and others73-74) did not extract An(III) nitrates, requiring addition of a lipophilic anion 
source such as 2-bromohexanoic acid.  

Based on the favourable complexing properties of the water-soluble ligand PyTri-Diol (see 
section PyTri-Diol below and references75-76), several lipophilic derivatives were synthesised 
and tested. Of these, 2,6-bis[1-(2-ethylhexyl)-1,2,3-triazol-4-yl]pyridine (PTEH, Figure 3 top 
right) dissolved in kerosene/1-octanol mixtures extracts Am(III) directly (i. e., without 
requiring the addition of 2-bromohexanoic acid) from 1–4 mol/L HNO3, separating it from 
Eu(III) (SFAm(III)/Eu(III) = 70–100).77  

  

  

Figure 3. Molecular structures of CA-BTP (top left), PTEH (top right), 2,6-bis(1,2,4-triazol-3-yl)pyridines 
(bottom left), and 2,6-bis(pyrazol-3-yl)pyridines (bottom right). 

Furthermore, the influence of the number of aromatic nitrogen atoms in the lateral rings on 
complexation properties was studied. In this context, two remarkable studies have to be 
mentioned. These show that theoretical predictions78 are not necessarily confirmed by 
experiment.79  

Density functional theory was used to evaluate fundamental properties (intrinsic binding 
affinity for Ln(III), basicity, and hardness) for prototype azine donors pyridine, pyridazine, 
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pyrimidine, pyrazine, 1,2,3-triazine, 1,2,4-triazine, and 1,3,5-triazine.78 The calculations 
showed pyridazine having the strongest intrinsic affinity for metal ions and being the second 
softest donor. Based on this information, three new prototype compositions of different azines 
were proposed which should exhibit improved metal ion affinity and An(III)/Ln(III) selectivity: 
pyridazine-pyridine-pyridazine, pyridazine-pyrazine-pyridazine, and pyridazine-1,3,5-triazine-
pyridazine.  

To obtain experimental evidence of these predictions two BTP-type N-donor ligands with 
different numbers of aromatic nitrogen atoms were synthesized and studied: 2,6-bis(4-ethyl-
pyridazin-1-yl)pyridine (Et-BDP, a pyridazine-pyridine-pyridazine) and 2,6-bis(4-propyl-
2,3,5,6-tetrazin-1-yl)pyridine (nPr-tetrazine), see Figure 4. Their complexation properties 
towards Cm(III) in 2-propanol–water (1:1, vol.) were compared to that of nPr-BTP (Figure 1 
left, R = propyl) in the same solvent.79  

  

Figure 4. Molecular structures of Et-BDP (left) and nPr-tetrazine (right). 

Speciation studies using time-resolved fluorescence spectroscopy (TRLFS) showed both Et-
BDP and nPr-tetrazine to form 1:1, 1:2, and 1:3 complexes with Cm(III), whereas in case of 
nPr-BTP the 1:3 complex is formed exclusively. The conditional stability constants of the 1:3 
complexes in 2-propanol/water (1:1, vol.) increase in the order lg β3 [Cm(Et-BDP)3] = 7.7 ± 
0.3, lg β3 [Cm(nPr-Tetrazine)3] = 9.1 ± 0.4 and lg β3 [Cm(nPr-BTP)3] = 12.9 ± 0.3. Hence, the 
complexation of Cm(III) with both ligands is thermodynamically less favoured than the 
formation of [Cm(nPr-BTP)3]. A similar trend was observed in solvent extraction tests:73 Both 
Et-BDP and nPr-Tetrazine hardly extract any Am(III) and Eu(III) from solutions containing 
> 0.1 mol/L HNO3. In contrast to the theoretical predictions,78 the 1,2,4-triazine substituent was 
found to represent a structural optimum regarding complexation and solvent extraction 
performance.  

Stability constants of An(III)-BTP and An(III)-BTBP complexes  

A wealth of conditional stability constants for the complexation of Ln(III) with BTP and BTBP 
ligands is summarized in our previous review article,7 together with few constants for An(III).  

New stability constants were determined for [Am(BTP)3]3+ 80 and [Am(BTBP)2]3+ complexes81 
in acetonitrile + 0.01 mol/L tetramethylammonium nitrate. The values are in good agreement 
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with stability constants for the respective Cm(III) complexes,82-85 considering that different 
solvents (alcohol-water mixtures) were used.  

To better understand the effect of solvent composition on stability constant values, a systematic 
investigation on the complexation of Cm(III) and Eu(III) with nPr-BTP in methanol/water 
mixtures (5–50 vol% water) using TRLFS was performed.84 The stability constant of the 
[Cm(nPr-BTP)3]3+ complex was shown to increase by three orders of magnitude when the water 
content was reduced from 50 vol% (lg b3 = 14.3 ± 0.1) to 5 vol% (lg b3 = 17.4 ± 0.4). Only a 
slight increase was observed between 50 vol% and 20 vol% due to the preferential solvation of 
Cm(III) by water;86 the increase was more pronounced for water contents between 20 vol% and 
5 vol%. A similar trend was observed for the stability constant of the [Eu(nPr-BTP)3]3+ complex 
(lg b3 = 12.0 ± 0.1 at 50 vol% water content; lg b3 = 14.7 ± 0.4 at 5 vol% water content), 
resulting in a constant difference between the stability constants of the Cm(III) and Eu(III) 1:3 
complexes (∆lg b3 ≈ 2.3, see Figure 5).  

 

 Figure 5. Stability constants of [Cm(nPr-BTP)3]3+ and [Eu(nPr-BTP)3]3+ as a function of the water content 
in methanol-water mixtures (water content, 5–50 vol%, c(Cm(III)ini = 10−7 mol/L, c(Eu(III))ini = 10−5 mol/L, 
c(H+) =10 mmol/L). Reproduced from reference84 by permission of The Royal Society of Chemistry (RSC) 
on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC. 

These results demonstrate the strong impact of the solvent on a ligand’s complexation strength 
as evident from the changes of the stability constants, whereas the selectivity remained constant 
for all solvent mixtures investigated.  
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Update on NMR investigations 

Speciation studies by NMR including 1H-NMR titrations and relaxation titrations have been 
performed to determine the species distribution and complex stoichiometry of An(III) and 
Ln(III) with BTP, BTBP and BTPhen11, 87-95 in solution.  

In addition, comparative NMR studies on Am(III) and Ln(III) with BTP and similar ligands 
were performed to obtain further information on the molecular origin of the selectivity of N-
donor ligands. In particular, 15N NMR spectroscopy using 15N-enriched ligands gave detailed 
insight into the bonding of N-donor ligands with Am(III) and Ln(III). 15N signals from 
coordinating N-atoms in the Am(III) complexes were shifted upfield by ≈ 300 ppm in 
comparison both to Ln(III) complexes and to the free ligand (see Figure 6).96-97 Furthermore, a 
slight temperature dependence of the chemical shifts of NMR resonance signals of the Am(III) 
complexes was observed, indicating a weak paramagnetism of Am(III). This shows that metal-
ligand bonding in [Am(BTP)3]3+ has a larger share of covalence than in the respective Ln(III) 
complexes. Comparable upfield shifts of the 15N signals of the coordinating N atoms were also 
observed for the [Am(C5-BPP)3]3+ complex (C5-BPP = 2,6-bis(5-(2,2-dimethylpropyl)- 
pyrazol-3-yl)pyridine, Figure 3 bottom right, R = 2,2-dimethylpropyl),98 confirming significant 
differences in the bonding of Am(III) and Ln(III) complexes with N-donor ligands in general.  

 

Figure 6. Overlay of two 1H,15N-HMQC spectra of 243Am(III) complexed with unlabelled and 10% labelled 
nPr-BTP (MeOD-d4 and D2O 3:1) with nJHN of 5 and 2 Hz, respectively. The “expected values” range is 
taken from similar experiments with pure ligand and Lu(III) and Sm(III) complexes. Reproduced from 
reference96 by permission of The Royal Society of Chemistry.  
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BTPhen compounds  

As an alternative to CyMe4-BTBP, CyMe4-BTPhen had been introduced.99 The BTPhen 
backbone is pre-organized in the cis conformation required for complexation and extraction 
while BTBP must overcome a rotational energy barrier prior to complexation. This was 
expected to result in improved properties as an extracting agent.  

Indeed, this modification resulted in drastically changed properties: CyMe4-BTPhen actually is 
a too strong extracting agent, showing significant co-extraction of Ln(III) and impeding back-
extraction. Consequently, numerous studies were performed to understand and improve its 
performance.58, 85, 92-93, 95, 100-111 The following conclusions are drawn:  

• The fact that BTPhen are stronger extracting agents for An(III) and Ln(III) is caused by 
differences in complex stability as evident from displacement experiments performed 
by NMR93 and stability constants determined by TRLFS.85  

• Distribution ratios are repressed by electronically modifying the BTPhen,92, 101, 103-104 by 
adding TEDGA (a competing water soluble ligand),106 by changing the diluent99 or 
using ionic liquids as diluents,107, 111 or by tuning the aliphatic ring size.95  

• Increased Am(III)/Cm(III) selectivity and different intra-Ln(III) selectivity patterns for 
BTPhen99 compared to BTBP12, 112-113 are due to a kinetic effect. Upon extended 
contacting times, BTPhen show a selectivity similar to BTBP.104, 108  

Concluding, BTPhen fulfil the expectation of being stronger ligands compared to BTBP. 
However, bigger is not always better, and their performance as extracting agents to separate 
An(III) from Ln(III) indeed is inferior to that of the corresponding BTBP.  

Water soluble compounds  

SO3-Ph-BTP  

A water soluble BTP, (2,6-bis(5,6-di(3-sulphophenyl)-1,2,4-triazin-3-yl)pyridine tetra-sodium 
salt, SO3-Ph-BTP, Figure 7 top left)114-116 was introduced to selectively strip An(III) from a 
solvent loaded with An(III) and Ln(III). This compound is an alternative to 
polyaminocarboxylates used in TALSPEAK-like processes.117  
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Figure 7. Molecular structures of SO3-Ph-BTP (top left), SO3-Ph-BTBP (top right), and SO3-Ph-BTPhen 
(bottom). 

A couple of recent publications illustrate this compound’s impact on the development of 
An(III)/Ln(III) separation processes. Indeed, processes applying SO3-Ph-BTP to generate an 
Am(III) + Cm(III) product solution26 or a product solution containing Np, Pu, Am and Cm25 
were demonstrated using laboratory scale centrifugal contactor equipment. The latter process 
(known as EURO-GANEX) was finally demonstrated successfully using a genuine high level 
feed solution.30 A product solution containing Np, Pu, Am and Cm with high purity was 
obtained, with recoveries of ≈ 99.9%.  A variation to the EURO-GANEX process, generating 
separate Np, Pu and Am, Cm product solutions, was also demonstrated.27  

SO3-Ph-BTBP  

Owing to the success achieved with SO3-Ph-BTP, sulphonated BTBP and BTPhen (only 
mentioned briefly in our previous review7) were further studied in more detail.118 A BTBP 
carrying two sulphophenyl moieties proved to be rather inefficient. However, BTBP and 
BTPhen with four sulphophenyl moieties had promising properties and were thus studied more 
deeply.  

The solvent extraction properties of a system containing 6,6’-bis(5,6-di(3-sulphophenyl)-1,2,4-
triazin-3-yl)-2,2’-bipyridine tetra-sodium salt (SO3-Ph-BTBP, Figure 7 top right) in the 
aqueous phase and N,N,N’,N’-tetra-n-octyl diglycolamide (TODGA)119-121 in the organic phase 
were studied in detail.122 Distribution ratios of Am(III), Cm(III) and Ln(III) were determined 
as a function of time and of nitric acid and SO3-Ph-BTBP concentrations. It was expected that 
a TODGA/ SO3-Ph-BTBP solvent extraction system would separate Am(III) from Cm(III) and 
Ln(III), enabling the development of improved Am-only separation processes.123 As evident 
from Figure 8, DAm(III) < 1 and DCm(III), Ln(III) > 1 for [HNO3] ≈ 0.8 mol/L, with SFCm(III)/Am(III) 
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≈ 2.5.122 This separation factor results from TODGA’s selectivity for Cm(III) over Am(III),115 
SFCm(III)/Am(III) ≈ 1.6, and a preferential affinity of BTBP for Am(III) over Cm(III), as observed 
e.g. for CyMe4-BTBP,12 SFAm(III)/Cm(III) ≈ 1.6.  

 

Figure 8. Distribution ratios of Am(III), Cm(III), Y(III), and light Ln(III) as a function of nitric acid 
concentration. Organic phase, 0.2 mol/L TODGA + 5% vol. 1-octanol in Exxsol D80. Aqueous phase, 
241Am(III), 244Cm(III), and 152Eu(III) (1 kBq/mL each) + Ln(III) (6 mg/L each) and 20 mmol/L SO3-Ph-
BTBP in HNO3. Data are from reference.122  

The complexation of Cm(III) and Eu(III) with SO3-Ph-BTBP in various aqueous solutions 
(10−3 mol/L and 0.5 mol/L HClO4, 0.5 mol/L HNO3, NaNO3, and NaClO4) was studied using 
TRLFS.124 SO3-Ph-BTBP was shown to form 1:2 complexes [M(SO3-Ph-BTBP)2]5− (M = Cm, 
Eu), as observed for hydrophobic BTBP.12, 125 The conditional stability constants show a 
systematic variation in dependence of acidity and ionic strength. The conditional stability 
constants in 10−3 mol/L HClO4 were determined to lg β2, Cm(III) = 10.4 ± 0.4 and lg β2, Eu(III) = 8.4 
± 0.4. The difference, ∆lg β02 = 2 was in good agreement with the respective difference 
observed for a lipophilic BTBP83 and with the Cm(III)/Eu(III) selectivity of CyMe4-BTBP,12 
SFCm(III)/Eu(III) ≈ 90.  

SO3-Ph-BTPhen  

2,9-bis(5,6-di(3-sulphophenyl)-1,2,4-triazin-3-yl)-1,10-phenanthroline tetra-sodium salt (SO3-
Ph-BTPhen, Figure 7 bottom) was studied under similar conditions.126 A SO3-Ph-
BTPhen/TODGA solvent extraction system performed slightly better than the respective 
system containing SO3-Ph-BTBP: DAm(III) < 1 and DCm(III), Ln(III) > 1 for [HNO3] ≈ 0.6 mol/L 
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with SFCm(III)/Am(III) = 3.6 (compared to SFCm(III)/Am(III) ≈ 2.5122). With a stability constant of lg β2, 

Cm(III) = 10.7, SO3-Ph-BTPhen forms slightly more stable complexes with Cm(III) compared to 
SO3-Ph-BTBP (lg β2, Cm(III) = 10.4124). This trend, however more pronounced, was also observed 
for lipophilic BTBP and BTPhen.85  

Heteroleptic complexes  

The systems combining TODGA and hydrophilic ligands such as SO3-Ph-BTP, SO3-Ph-BTBP 
or SO3-Ph-BTPhen show an unexpected dependence of Am(III) and Cm(III) distribution ratios 
on ligand concentration: With SO3-Ph-BTP forming 1:3 complexes116 and SO3-Ph-BTBP and 
SO3-Ph-BTPhen forming 1:2 complexes,124, 126 plots of lg DAm(III) versus lg [ligand] should 
have slopes of −3 (SO3-Ph-BTP) or −2 (SO3-Ph-BTBP, SO3-Ph-BTPhen), respectively. 
However, slopes closer to −2115, 127 and −1,122, 126 respectively, were found.  

A study was carried out to verify whether this behaviour is caused by the formation of 
heteroleptic complexes in the organic phase, i.e. the replacement of a TODGA molecule by the 
hydrophilic ligand.128 Samples of both organic and aqueous phases from solvent extraction 
experiments with Cm(III) were studied by TRLFS. Only the respective complexes, [Cm(SO3-
Ph-BTP)3]9− and [Cm(SO3-Ph-BTBP)2]5− were detected in the aqueous phases. Organic phases 
only contained the TODGA complex, [Cm(TODGA)3]3+, without any proof of a heteroleptic 
complex (see also reference124). However, 5.5 × 10−5 mol/L SO3-Ph-BTP was detected in the 
organic phase from a solvent extraction experiment involving elevated concentrations 
(0.03 mol/L) of Eu(III).128 Eu(III) is not expected to partition to the organic phase as a 
homoleptic SO3-Ph-BTP complex. Hence, the finding that SO3-Ph-BTP measurably partitions 
to the organic phase when higher concentrations of Eu(III) are extracted was seen as a clear 
indication for the formation of heteroleptic complexes. The heteroleptic complexes’ 
concentration was estimated to 0.2% relative to the [Eu(TODGA)3]3+ complex, which was used 
as an explanation for why they could not be detected spectroscopically. Finally, the formation 
of such heteroleptic complexes was forced by preparing monophasic samples containing 
Cm(III), SO3-Ph-BTP or SO3-Ph-BTBP, and TEDGA, a water soluble DGA. Indeed, emission 
spectra from heteroleptic complexes were identified (see Figure 9 for the TEDGA/SO3-Ph-BTP 
system).128  
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Figure 9. Pure component spectra of the Cm(III) complexes with SO3-Ph-BTP and with TEDGA, and the 
heteroleptic complexes. Reproduced from reference128 by permission of The Royal Society of Chemistry 
(RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.  

Further hydrophilic ligands  

Since such stripping agents are not intended to be recycled, the sulphur content of SO3-Ph-BTP 
and SO3-Ph-BTBP results in the generation of large volumes of solid secondary waste. This is 
a serious problem in a potential industrial application. Compounds containing only C, H, O, or 
N atoms (known as CHON compounds) are combustible to gaseous products.129 Consequently, 
work focused on developing CHON compounds with properties similar to those of SO3-Ph-
BTP and SO3-Ph-BTBP. Unfortunately, compounds hydrophilised by carboxylate groups130 or 
quaternary ammonium functions58 turned out to be rather inefficient for the intended 
applications.  

PyTri-Diol  

A considerable breakthrough was achieved with the development of 2,6-bis(1,2,3-triazol-4-
yl)pyridine ligands hydrophilised with two, four, or six hydroxyl functions.75 These compounds 
allowed stripping Am(III) from a TODGA solvent containing Am(III) and Eu(III) with a 
selectivity up to SFEu(III)/Am(III) = 240. 2,6-bis[1-(3-hydroxypropyl)-1,2,3-triazol-4-yl]pyridine 
(PyTri-Diol, Figure 10), containing two hydroxyl functions, was selected for further studies.  
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Figure 10. Molecular structure of PyTri-Diol.  

A study of the PyTri-Diol/TODGA system’s applicability reports Am(III) and Ln(III) 
distribution data in dependence of PyTri-Diol (Figure 11) and nitric acid concentrations.131 
Nitric acid and PyTri-Diol concentrations of ≈ 0.4 mol/L and 0.08 mol/L, respectively, were 
identified as optimum conditions to selectively strip An(III), i. e. DAn(III) < 1 and DLn(III) > 1.  

 

Figure 11. Am(III) and lighter Ln(III) distribution ratios as a function of PyTri-Diol concentration. Organic 
phase, 0.2 mol/L TODGA + 5 vol.% 1-octanol in kerosene. Aqueous phase, PyTri-Diol, Am(III) and Ln(III) 
in 0.4 mol/L HNO3. Data are from reference.131  

To better understand the behaviour of the PyTri-Diol/TODGA solvent extraction system, the 
complexation of Cm(III) and Eu(III) with PyTri-Diol was studied in different solutions 
(10−3 mol/L HClO4, 0.44 mol/L HNO3; the latter to reflect conditions relevant to solvent 
extraction) and in aqueous phases from solvent extraction experiments using TRLFS.76 
Conditional stability constants for the 1:3 Cm(III) complexes were log β3, Cm(III) = 9.7 ± 0.3 
(10−3 mol/L HClO4) and log β3, Cm(III) = 5.7 ± 0.3 (0.44 mol/L HNO3). This pronounced decrease 
was found to be due to ligand protonation (pKa = 2.175). The respective Eu(III) stability 
constants were lower by approximately two orders of magnitude (similar differences between 
Cm(III) and Eu(III) stability constants were reported for BTP,82, 84, 116 BTBP,83, 124 and 
BTPhen85). The aqueous phases from a Cm(III) solvent extraction experiment contained 22% 
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1:2 complex and 78% 1:3 complex. An equivalent experiment with SO3-Ph-BTP revealed the 
formation of only the 1:3 complex.128 This difference explains the lower An(III)/Ln(III) 
selectivity of the PyTri-Diol/TODGA solvent extraction system75, 131 compared to SO3-Ph-
BTP/TODGA.115  

To increase the affinity of PyTri-Diol for An(III), an electron donating methoxy moiety was 
attached to the para position of the pyridine.132 This indeed resulted in an increased stability 
constant of the Cm(III) 1:3 complex from log β3, Cm(III) = 9.9 ± 0.5 (PyTri-Diol) to log β3, Cm(III) 
= 10.8 ± 0.4 (PTD-OMe76). Unfortunately, this came along with a greater pKa value (2.54 vs. 
2.1 for PyTri-Diol75), overcompensating the increased affinity for An(III) and resulting in 
inferior performance in solvent extraction experiments.  

A CHON BTPhen  

Based on the PyTri-Diol and PyTri-Tetraol compounds, the first CHON BTPhen ligands were 
synthesized and screened for Am(III)/Eu(III) and Am(III)/Cm(III) separation in combination 
with TODGA.133 Although Am(III)/Eu(III) selectivity was inferior to that of PyTriDiol, the 
new BTPhen/TODGA systems showed an appreciable selectivity for Cm(III) over Am(III), 
SFCm(III)/Am(III) ≈ 2.5. This value is comparable to that of the non-CHON SO3-Ph-BTBP/TODGA 
system.122 Unfortunately, the system had not been studied towards its selectivity between 
Am(III) and the lightest Ln(III), which is usually the bottleneck of such systems.  

Conclusions and outlook  

Our previous review7 on BTP and BTBP coordination and solvent extraction chemistry 
recapitulated the development and evolution of these ligands, from the first BTP up to water 
soluble SO3-Ph-BTP and SO3-Ph-BTBP. We pointed out the link between fundamental 
complexation properties and solvent extraction behaviour. Compiling the structures, 
stoichiometry and stability of An(III) and Ln(III) complexes made evident a wealth of data on 
Ln(III) but a striking lack of data on An(III).  

A traditional cook-and look approach to ligand development had largely been followed in early 
European research programmes. This resulted in a multitude of ligands, most of them without 
useful properties as extracting agents. More systematic approaches have been followed lately, 
focussing on the most promising backbones and considering insight from fundamental and 
theory studies.  

For many years, finding experimental evidence for a larger covalent share in the An(III)-N bond 
compared to the Ln(III)-N bond was an important goal. The first few NMR studies on Am(III)-
BTP complexes finally provided such evidence.  
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Although application and process development were not covered in this review, the advent of 
hydrophilic BTBP and BTPhen ligands have promoted the development of processes for 
separating only Am(III) from Cm(III) and Ln(III). CHON alternatives to SO3-Ph-BTBP has to 
be the next step.  

The development of efficient processes for separating actinides should always be supported by 
fundamental studies. Such studies are not only of scientific value but also help closing gaps in 
process understanding.  
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