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Abstract
We study the homology of Riemannian manifolds of finite volume that are covered by
an r -fold product (H2)r = H

2 × · · · × H
2 of hyperbolic planes. Using a variation of a

method developed by Avramidi and Nguyen-Phan, we show that any such manifold M pos-
sesses, up to finite coverings, an arbitrarily large number of compact oriented flat totally
geodesic r -dimensional submanifolds whose fundamental classes are linearly independent
in the homology group Hr (M;Z).
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1 Introduction

Let M be a Riemannian manifold of finite volume that is covered by (H2)r = H
2 ×· · ·×H

2.
If r = 1, then M is a hyperbolic surface and its homology is well understood. Otherwise, M
can be a complicated object. For example, let d > 0 be a square-free integer and consider
the real quadratic field F = Q(

√
d) with its two distinct embeddings σ1, σ2 : F ↪→ R. Let

OF be the ring of integers of F . Then the group SL2(OF ) acts properly discontinuously on
the product H2 × H

2 by

γ · (z1, z2) := (σ1(γ ) · z1, σ2(γ ) · z2),
where σi (γ ) · zi is the action of SL2(R) on H

2 by fractional linear transformations. For
any torsion-free subgroup of finite index Γ ⊂ SL2(OF ), the quotient Γ \(H2 × H

2) is a
Riemannian manifold of finite volume that is covered by H

2 × H
2. It is called a Hilbert

modular surface and is an irreducible locally symmetric space of higher rank.
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The homology of such a locally symmetric space is in general hard to compute, and
even if one can do so, the geometric meaning of the homology classes is often lost during the
computation.We choose amore geometric approach going back toMillson [13], in which one
studies homology classes that are the fundamental classes of totally geodesic submanifolds.

Promising candidates for such submanifolds are the compact flat totally geodesic subman-
ifolds of dimension equal to the rank of the locally symmetric space. It is known that these
submanifolds exist in any nonpositively curved locally symmetric space of finite volume (see
[17, Proposition 5.1]). Furthermore, Pettet and Souto proved in [17, Theorem 1.2] that they
are non-peripheral, which means they cannot be homotoped outside of every compact subset
of the locally symmetric space. This suggests that these submanifolds might contribute to the
homology of the locally symmetric space. Avramidi and Nguyen-Phan [2] have investigated
this question for the locally symmetric space M = SLn(Z)\SLn(R)/SO(n) and proved
that, in fact, up to finite coverings, the compact oriented flat totally geodesic submanifolds
of dimension equal to the rank of M contribute to the free part of the homology group of M .

We prove the following theorem, which shows that this is also true for all Riemannian
manifolds of finite volume that are covered by products of hyperbolic planes:

Theorem 1.1 Let M be a Riemannian manifold of finite volume that is covered by (H2)r .
Then for any n ∈ N, there exists a connected finite covering M ′ → M and compact oriented
flat totally geodesic r-dimensional submanifolds F1, . . . ,Fn ⊂ M ′ such that the images of
the fundamental classes [F1], . . . , [Fn] in Hr (M ′;Z) are linearly independent.

In particular, this implies that the r th Betti number of M can be made arbitrarily large
by going to a finite covering space of M . We remark that this fact was already known. It
follows from the non-vanishing of the r th L2-Betti number of M (see [1, p. 715]) and Lück’s
approximation theorem. However, our result shows that the corresponding homology classes
can be realized geometrically, which, to our knowledge, is a new result.

Our proof proceeds as follows: Using induction on dim(M), one finds irreducible Rie-
mannian manifolds M1, . . . , Mk for some k ∈ N and a finite covering M1 × · · ·× Mk → M .
An application of the Künneth theorem for homology now shows that it suffices to prove
Theorem 1.1 for irreducible manifolds. So assume that M is irreducible. If r = 1, then M
is a hyperbolic surface and we can find a finite covering surface M ′ of M whose genus is at
least n. The surface M ′ then has n distinct simple closed geodesics whose homology classes
are linearly independent in H1(M ′;Z). This proves Theorem 1.1 for r = 1.

On the other hand, if r > 1, then Margulis’ arithmeticity theorem implies that M is
arithmetic, which means that it is finitely covered by a quotient of (H2)r by an arithmetically
defined lattice in SL2(R)r .

The goal of this article is to explain our proof of Theorem 1.1 for arithmetic manifolds.
It is structured as follows: In Sect. 2, we fix our notation for algebraic groups, discuss
arithmetically defined lattices, and state Margulis’ arithmeticity theorem. In Sect. 3, we
describe the arithmetically defined lattices in SL2(R)r using quaternion algebras. In Sect. 5,
we study flats in symmetric spaces, and in Sect. 6 we discuss geometric cycles. Finally,
in Sect. 7, we describe our construction of the covering M ′ → M and the submanifolds
F1, . . . ,Fn ⊂ M ′ for an arithmetic manifoldM . This construction is based on the techniques
developed by Avramidi and Nguyen-Phan in [2].

The material covered in this article evolved from the author’s doctoral thesis [23]. There,
the interested reader can find more details on our construction and the proof of Theorem 1.1.
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2 Algebraic groups andMargulis’ arithmeticity theorem

We consider algebraic groups as special cases of group schemes and identify them with their
functors of points (see [14,22]). By this, wemean the following: Let R be a commutative ring.
A group scheme over R is a functor G : AlgR → Grp from the category of commutative R-
algebras to the category of groups whose composition with the forgetful functor Grp → Set
is representable by a finitely generated R-algebra. We denote this algebra byO(G). One can
think of G as a group functor defined by polynomial equations with coefficients in R. In
fact, by choosing a surjection π : R[X1, . . . , Xn] → O(G), we obtain for each commutative
R-algebra A a natural inclusion

G(A)
∼=−→ hom(O(G), A)

π∗
↪→ hom(R[X1, . . . , Xn], A)

∼=−→ An,

which identifies the group G(A) with the vanishing set of ker(π) ⊂ R[X1, . . . , Xn] in An .
For a topological R-algebra A, we put on G(A) the unique weakest topology for which the
above (and thus any such) inclusion is continuous with respect to the product topology on
An .

The extension of scalars of a group scheme G over R to some ring extension S/R is
the group scheme GS : AlgS → Grp, A 	→ G(resR(A)). Here, resR(A) denotes A as an
R-algebra. If the extension map σ : R ↪→ S is not clear from the context, then we write
resσ (A) instead of resR(A) and Gσ instead of GS .

An algebraic group over a field K , or in short a K -group, is now simply a group scheme
G over K . Its group G(K ) of points with values in an algebraic closure K of K is then an
affine variety in the space K

n
equipped with the Zariski topology and the group operations

are polynomial maps. The algebraic group G is said to be connected or finite if this affine
variety is connected or finite, respectively.

Let L/K be a finite separable field extension. The restriction of scalars of an algebraic
group H over L to K is the functor ResL/K H : AlgK → Grp, A 	→ H(A ⊗K L). This is an
algebraic group over K (see [14, p. 57]) and the natural isomorphism K ⊗K L

∼=−→ L induces
an isomorphism of topological groups (ResL/K H)(K )

∼=−→ H(L).
Every algebraic group G over a number field F has an integral form. This is a group

scheme G0 over the ring of integers OF of F together with an F-isomorphism (G0)F
∼=−→ G.

A subgroup Γ ⊂ G(F) is called an arithmetic subgroup if it is commensurable with the
image of G0(OF ) in G(F) for some integral form G0 of G. This notion is independent of
the choice of the integral form because the groups ofOF -points of any two integral forms of
G are commensurable with each other (see [18, Proposition 4.1]).

By an important theorem of Borel and Harish-Chandra [3], any arithmetic subgroup
Γ ⊂ H(Q) of a semisimple algebraic group H over Q is a lattice in H(R). The follow-
ing definition describes all lattices in the group of real points of an algebraic group over R
that are constructed in this way:

Definition 2.1 Let G be a connected semisimple R-group without R-anisotropic almost R-
simple factors. An irreducible lattice Δ ⊂ G(R)0 is arithmetically defined if there exists a
connected almost Q-simple Q-group H, an R-epimorphism

Φ : HR � G

so that (kerΦ)(R) is compact, and an arithmetic subgroup Γ ⊂ H(Q) such that Δ is com-
mensurable with Φ(H(Γ )).
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Non-arithmetically defined lattices are known to exist in some real algebraic groups of
rank one. For example, in SL2(R) this follows from the existence of uncountably many
non-commensurable hyperbolic surfaces (see [10, p. 63]).

Margulis’ celebrated arithmeticity theorem states that in a real algebraic group of higher
rank, or similarly in a real Lie group of higher rank, all irreducible lattices are arithmetically
defined (see [12, Theorem IX.1.11]):

Theorem 2.2 (Margulis’ arithmeticity theorem) Let G be a connected semisimple R-group
without R-anisotropic almost R-simple factors and with rankR(G) > 1. Then every irre-
ducible lattice in G(R)0 is arithmetically defined.

3 Unit groups in quaternion algebras

The arithmetically defined lattices in SL2(R)r can be described using quaternion algebras.
Let K be a field of characteristic zero. A quaternion algebra over K is an algebra D over K
for which there exists a vector space basis {1, i, j, k} and a, b ∈ K× such that

i2 = a, j2 = b, k = i j = − j i . (1)

We then call {1, i, j, k} a quaternionic basis for D. The reduced norm of an element x =
x0 + x1i + x2 j + x3k ∈ D is

N (x) = x20 − ax21 − bx22 + abx23 ∈ K . (2)

The reduced norm of x ∈ D is preserved by every automorphism of D and is therefore
independent of the choice of the quaternionic basis. For example, in the case of the matrix
algebra D = M2(K ), we have N (x) = det(x). An element x ∈ D is invertible if and only if
N (x) �= 0. We write D1 for the group of units of reduced norm one in D.

Thegeneral linear group associated to a quaternion algebra D over K is the algebraic group
GLD : AlgK → Grp, A 	→ (A ⊗K D)×. We extend the reduced norm to tensor products
A⊗K D for K -algebras A using (2) and define the special linear group SLD : AlgK → Grp,
A 	→ (A ⊗K D)1.

We now study quaternion algebras over number fields. Let F be a number field and let D
be a quaternion algebra over F . The analog for D of the ring of integers of a number field is
an order Λ ⊂ D. This is a subring Λ of D which is a finitely generatedOF -submodule of D
and spans D over F . For example, the ring M2(OF ) is an order of the matrix algebra M2(F).
A quaternion algebra has many orders, but the groups of units of any two of its orders are
commensurable with each other (see [9, Lemma 4.6.9]).

Let Λ ⊂ D be an order. We define the general linear group GLΛ : AlgOF
→ Grp,

A 	→ (A⊗OF Λ)×. This is a group schemeoverOF and an integral formof the algebraic group
GLD . If Λ is the OF -span of a quaternionic basis for D, then we again extend the reduced
norm using (2) and define the special linear group SLΛ : AlgOF

→ Grp, A 	→ (A⊗OF Λ)1,
which is an integral form of SLD . It follows that for any order Λ ⊂ D, the group of units of
reduced norm one Λ1 := Λ ∩ D1 is an arithmetic subgroup of SLD(F).

For any real embedding σ : F ↪→ R, the algebra D ⊗F resσ (R) is either isomorphic to
M2(R) or is a division algebra. In the first case, we say D is split at σ and otherwise ramified
at σ . This leads us to the following definition:

Definition 3.1 A subgroup Δ ⊂ SL2(R)r is said to be derived from a quaternion algebra if
there exists a totally real number field F , a quaternion algebra D over F that is split at exactly r
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distinct real embeddingsσ1, . . . , σr : F ↪→ R, an isomorphism τi : D⊗F resσi (R)
∼=−→ M2(R)

for each i ∈ {1, . . . , r}, and an order Λ ⊂ D such that

Δ = {(
τ1(x), . . . , τr (x)

) : x ∈ Λ1}.

Remark 3.2 The maps τi : D ⊗F resσ (R)
∼=−→ M2(R) in Definition 3.1 are not uniquely

determined, but any two choices for τi differ only by conjugation with a matrix in GL2(R)

by the Skolem–Noether theorem. So up to commensurability and conjugation in GL2(R)r ,
the subgroup derived from a quaternion algebra D depends only on the isomorphism class
of D.

A subgroup derived from a quaternion algebra is readily seen to be an arithmetically
defined lattice in SL2(R)r = (SL2 × · · · × SL2)(R). In fact, every arithmetically defined
lattice in SL2(R)r comes from a quaternion algebra (see [23, Theorem 5.44]):

Proposition 3.3 A subgroup of SL2(R)r is an arithmetically defined lattice if and only if it
is commensurable with a subgroup derived from a quaternion algebra.

We write D = (a, b)F for the quaternion algebra determined by the relations in (1). The
field E := F(

√
a) is then a splitting field for D. By this, we mean that it is a field extension

E/F so that D ⊗F E ∼= M2(E). A quadratic extension E/F is a splitting field for D if and
only if for every place v of F where D is ramified, the local completion Ev/Fv is a quadratic
extension (see [11, Theorem 7.3.3 and its proof]). Here, Ev is the completion of E at some
place of E lying above v. Note that for any two places of E lying above v, the corresponding
completions of E are Fv-isomorphic to each other by [16, Proposition II.9.1], which is why
we denote it just by Ev . Moreover, for any a ∈ F× for which F(

√
a) is a splitting field for

D, there exist some b ∈ F× with D ∼= (a, b)F (see [7, Proposition 1.2.3]).
Next, we show that the constants a, b ∈ F× defining the isomorphism class of the

quaternion algebra (a, b)F can always be chosen in a certain way. We will need this in
our computations later in Sect. 7.

Lemma 3.4 Let F be a number field. Then for every quaternion algebra D over F, there
exist a, b ∈ OF in the ring of integers of F such that D is isomorphic to (a, b)F and such
that for any real embedding σ : F ↪→ R at which D is split, we have σ(a) > 0.

Proof We use the Grunwald–Wang theorem [20, p. 29] to construct a splitting field for D.
By this theorem, there exists a quadratic extension E/F with the following two properties:

1. For every place v of F where D is ramified, Ev/Fv is a quadratic extension.
2. For every real place v of F where D is split, Ev/Fv is a trivial extension.

Then E/F is a splitting field for D by the criterion stated above. Moreover, since E/F is
a quadratic extension, we have E = F(

√
a) for some a ∈ F×. Let σ : F ↪→ R be a real

embedding at which D is split. By the second property, we have Ev
∼= R for the place

v of F corresponding to σ . Hence the image of the extension σ̃ : E ↪→ C of σ given by
σ̃ (x + y

√
a) = σ(x) + σ(y)

√
σ(a) for x, y ∈ F stays in R, and so we must have σ(a) > 0.

Since E/F is a splitting field for D, we find b ∈ F× with D ∼= (a, b)F . Finally, we can
also achieve that a, b ∈ OF because of (a, b)F ∼= (c2a, c2b)F for all c ∈ F× by [11, p. 78].


�

4 Adeles and congruence subgroups

We will use adeles and congruence subgroups to construct subgroups of finite index in
arithmetic groups. Let F be a number field with ring of integers OF . We denote by A f ,F
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the ring of finite adeles of F and by O f ,F the ring of integral finite adeles of F (see [18,
pp. 10–13]). We consider F as a subring of A f ,F by the diagonal embedding F ↪→ A f ,F ,
and similarly OF as a subring ofO f ,F by the diagonal embeddingOF ↪→ O f ,F . This turns
A f ,F and O f ,F into topological algebras over F and OF , respectively.

Let now G be a group scheme over OF . For a subgroup U ⊂ G(O f ,F ) and a nonzero
ideal a ⊂ OF , we write

U (a) := ker
(
U → G(O f ,F/aO f ,F )

)
,

where aO f ,F is the ideal in O f ,F generated by a. We have (see [23, Proposition 4.39]):

Proposition 4.1 Let G be a group scheme over the ring of integers OF of a number field
F. Then the family of groups G(O f ,F )(a) for all nonzero ideals a ⊂ OF is a basis of open
neighborhoods of the identity in both of the groups G(O f ,F ) and G(A f ,F ).

For a subgroup of the integral points Γ ⊂ G(OF ), the group Γ (a) is the kernel of the
map Γ → G(OF/aOF ) and has finite index in Γ . We call Γ (a) the principal congruence
subgroup of Γ of level a. More generally, any subgroup of Γ that contains a principal
congruence subgroup of Γ has finite index in Γ and is called a congruence subgroup of Γ .

In some group schemes G, the group G(OF ) has finite index subgroups which are not
congruence subgroups. Examples of such subgroups in SL2(Z)were already known to Fricke
and Klein in the nineteenth century (see [19, p. 299]). The group schemeG is said to have the
congruence subgroup property if every subgroup of finite index in G(OF ) is a congruence
subgroup. Chevalley [5] proved in 1951 that GL1 has this property:

Theorem 4.2 (Chevalley) Let F be a number field. Then for every subgroup of finite index
Γ ⊂ O×

F , there exists a nonzero ideal a ⊂ OF such that O×
F (a) ⊂ Γ .

5 Polar regular elements and flats

We will use polar regular elements, as introduced by Mostow in [15, p. 12], to algebraically
describe the maximal flat subspaces of a symmetric space.

Let G be a connected linear semisimple Lie group. By [8, p. 431], each g ∈ G has a
unique decomposition

g = gughge (3)

with gu, gh, ge ∈ G such that gu ,gh , and ge correspond in one (and thus any) embedding
G ↪→ GLn(R) to a unipotent, a hyperbolic, and an elliptic matrix, respectively, and such that
they all commutewith eachother.Wecall amatrix inGLn(R) semisimple if it is diagonalizable
over C. A semisimple matrix is called hyperbolic if all its eigenvalues are real and positive,
and it is called elliptic if all its eigenvalues have absolute norm one. We call (3) the real
Jordan decomposition of g.

Definition 5.1 An element g ∈ G is polar regular if for all g′ ∈ G, we have

dim(CG(gh)) ≤ dim(CG(g′
h)),

where CG(gh) denotes the centralizer of gh in G.

Let XG be the symmetric space associated to G. A flat in XG is a connected totally
geodesic submanifold of XG whose curvature tensor vanishes. A flat is called maximal if it
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is of maximal dimension among all flats in XG . For a flat A ⊂ XG , we denote its stabilizer
subgroup in G by

GA := {g ∈ G : g · A = A}.
By [15, Lemma 5.2], we have the following relationship between polar regular elements in
G and maximal flats in XG :

Proposition 5.2 Let G be a connected linear semisimple Lie group and let g ∈ G be polar
regular. Then there exists a unique maximal flat A ⊂ XG in the symmetric space associated
to G such that g · A = A. Moreover, the centralizer CG(g) is a subgroup of GA and acts
transitively on A.

Example 5.3 Let G = SL2(R)r . Then XG = (H2)r . The maximal flats in (H2)r are the
products of geodesic lines in H

2. An element g = (g1, . . . , gr ) ∈ SL2(R)r is polar regular
if and only if each gi has two distinct real eigenvalues (see [23, Lemmas 3.19 and 3.29]).

Let Γ ⊂ G be a lattice. We say that a flat A ⊂ XG is Γ -compact if the quotient ΓA\A
is compact. Then the image of A in Γ \XG is also compact. By [15, Lemma 8.3’], the set of
Γ -compact maximal flats is dense in the space of all maximal flats:

Theorem 5.4 (Density ofΓ -compact flats) Let G be a connected linear semisimple Lie group.
Let Γ ⊂ G be a lattice and let A ⊂ XG be a maximal flat. Then for every open neighborhood
of the identity U ⊂ G, there exists some u ∈ U such that u · A is a Γ -compact maximal flat
in XG that is stabilized by a polar regular element of Γ .

6 Geometric cycles

Let G be a linear semisimple Lie group and let XG be the symmetric space associated to G.
For a closed subgroup H ⊂ G, we can always find a maximal compact subgroup K ⊂ G
such that KH := K ∩ H is a maximal compact subgroup of H . We write XH := H/KH .
Then XH is diffeomorphic to a Euclidean space and the inclusion H ↪→ G induces a closed
embedding

jH : XH ↪→ XG

whose image is a totally geodesic submanifold of XG (see [21, p. 213]).
Consider now a torsion-free latticeΓ ⊂ G and the corresponding locally symmetric space

Γ \XG . The map jH descends to an immersion into the locally symmetric space Γ \XG , but
this map will in general not be an embedding. In the arithmetic setting, we can always obtain
an embedding by passing to a subgroup of finite index (see [21, Theorem D]):

Theorem 6.1 Let G be a connected semisimple Q-group and let H be a connected reductive
Q-subgroup of G. Then any arithmetic subgroup Γ ⊂ G(Q) has a torsion-free subgroup of
finite index Γ0 ⊂ Γ such that for any subgroup of finite index Γ ′ ⊂ Γ0, the map

jH |Γ ′ : (Γ ′ ∩ H)\XH → Γ ′\XG

induced by the above map jH : XH ↪→ XG for G = G(R) and H = H(R) is a closed
embedding and its image is an orientable totally geodesic submanifold.

In the situation of the above theorem, we call the image of jH |Γ ′ in Γ ′\XG a geometric
cycle. An effective strategy to show that the fundamental class of a geometric cycle is non-
trivial in the homology of Γ ′\XG is to find another geometric cycle in Γ ′\XG such that their
intersection product is nontrivial. We will do this in the next section.
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7 Construction of flat submanifolds

In this section, we explain our construction of the compact oriented flat totally geodesic sub-
manifolds with linearly independent homology classes in an arithmetic Riemannianmanifold
covered by (H2)r . This will finish our proof of Theorem 1.1. We will proceed as follows:

– In Sect. 7.1, we construct for an arithmetic quotient M of (H2)r and any given number
n ∈ N two families (Ai )1≤i≤n and (Bj )1≤ j≤n of maximal flats in (H2)r so that Ai and
Bj intersect if and only if i ≤ j and so that the images of the Ai in M are compact.

– Next, in Sect. 7.2, we study the intersections of the images of the flats Ai and Bj in finite
covering spaces M ′ of M . Let us denote these images by Fi and G j , respectively. We
will show that by suitably choosing M ′, one can achieve that Fi and G j are embedded
submanifolds of M ′ and that one can control their intersection numbers.

– Finally, in Sect. 7.3, we will use our knowledge about the intersection numbers of the
submanifolds Fi and G j of M ′ combined with methods from de Rham cohomology to
show that the fundamental classes [F1], . . . , [Fn] are linearly independent in Hr (M ′;Z).

As we have seen in Sects. 2 and 3, it suffices to consider for our task a Riemannian manifold
M = Δ\(H2)r , where Δ ⊂ SL2(R)r is a subgroup derived from a quaternion algebra.

Throughout this section, we therefore fix the following notation and assumptions: Let F
be a totally real number field. We denote by {σ1, . . . , σd} the set of all distinct embeddings
F ↪→ R. Further, D = (a, b)F is a quaternion algebra over F that is split at the first r
embeddings and ramified at the remaining ones. We assume that Λ ⊂ D is an order and
Γ ⊂ Λ1 is a torsion-free subgroup of finite index. For each i ∈ {1, . . . , r}, we fix an
isomorphism τi : D ⊗F resσi (R)

∼=−→ M2(R). We assume that Δ is given by

Δ = {
(τ1(x), . . . , τr (x)) : x ∈ Γ

} ⊂ SL2(R)r .

We assume that F ⊂ R and σ1 is the identity embedding. Further, we assume that a, b ∈ OF

and σ1(a), . . . , σr (a) > 0. This is justified by Lemma 3.4. We also assume that the order Λ

is theOF -span of a quaternionic basis {1, i, j, k} for D and that with respect to this basis, τ1
is given by

τ1(x + yi + z j + wk) =
(

x + y
√
a z + w

√
a

b(z − w
√
a) x − y

√
a

)
.

This is justified by Remark 3.2. In particular, we have τ1(D) ⊂ M2(F(
√
a)). In this setting,

we have an action of D1 on (H2)r by

g · (z1, . . . , zr ) := (τ1(g) · z1, . . . , τr (g) · zr ),
where τi (g) · zi is the action of SL2(R) onH2 by fractional linear transformations. Note that
we have M = Γ \(H2)r . We extend the above action of D1 to an action of the group D× on
(H2)r through the maps τi by defining the action of GL2(R) on H2 as follows:

(
a11 a12
a21 a22

)
· z :=

{
(a11z + a12)(a21z + a22)−1, if a11a22 − a12a21 > 0,

(a11z + a12)(a21z + a22)−1, otherwise.

We write (D×)A := {x ∈ D× : x · A = A} for the stabilizer group of a flat A ⊂ (H2)r . One
can check that for our action of D× on (H2)r , the following analog of Proposition 5.2 holds
(see [23, Proposition 3.31] for a proof):
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Proposition 7.1 Let x ∈ D× be such that τ1(x), . . . , τr (x) ∈ GL2(R) each have two distinct
real eigenvalues. Then there exists a uniquemaximal flat A ⊂ (H2)r with x ·A = A.Moreover,
the centralizer CD×(x) is a subgroup of finite index in (D×)A and acts by orientation-
preserving isometries on A.

7.1 Building a configuration of flats

We now start with the construction of the families of flats (Ai )1≤i≤n and (Bj )1≤ j≤n in the
symmetric space (H2)r . The following lemma shows that two generic geodesic lines in H

2

can be slightly perturbed without changing the way they intersect. Here, we denote by ∂∞H
2

the boundary at infinity of the hyperbolic plane (see [6, p. 27]).

Lemma 7.2 (Perturbation Lemma) Let L1 and L2 be two geodesic lines in H
2 whose four

endpoints in ∂∞H
2 are pairwise distinct. Then L1 and L2 are either disjoint or intersect

transversally in a single point. Moreover, there exists an open neighborhood of the identity
U ⊂ SL2(R) such that for all u, v ∈ U, the geodesic lines u · L1 and v · L2 also have
pairwise distinct endpoints in ∂∞H

2 and intersect in the same way as L1 and L2.

Proof Note that L1 and L2 intersect if and only if their endpoints in ∂∞H
2 are linked, in

which case their intersection consists of a single point and is transverse (see Fig. 1).We denote
the four endpoints of L1 and L2 by v1, v2, v3, v4 ∈ ∂∞H

2. The geodesic compactification
H2 := H

2 � ∂∞H
2 as defined in [6, pp. 28–30] is Hausdorff, and so we can find pairwise

disjoint open neighborhoods Vi ⊂ H2 of the points vi . The group SL2(R) acts continuously
on H2, hence the maps φi : SL2(R) → H2 given by φi (g) := g · vi are continuous. So
U := ⋂4

i=1 φ−1
i (Vi ) is an open neighborhood of the identity in SL2(R). By the construction

ofU , the endpoints of two geodesic lines u · L1 and v · L2 with u, v ∈ U in ∂∞H
2 are linked

if and only if whose of L1 and L2 are linked. So the statement of the lemma follows. 
�
We can now describe the construction of the families of flats (Ai )1≤i≤n and (Bj )1≤ j≤n

adapted to the group Γ :

Proposition 7.3 For any n ∈ N, there exist maximal flats A1, . . . , An and B1, . . . , Bn in
(H2)r so that the following conditions are satisfied:

1. The flats Ai and B j intersect transversally in a single point if i ≤ j , and they are disjoint
if i > j .

Fig. 1 Two pairs of geodesic lines in H2 and their endpoints in the boundary at infinity ∂∞H
2
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Fig. 2 A pattern of geodesics
lines in H

2

2. Each Ai is Γ -compact.
3. Each Ai is stabilized by an element αi ∈ D1 such that τ1(αi ), . . . , τr (αi ) each have two

distinct real eigenvalues.
4. Each B j is stabilized by an element β j ∈ D× such that τ1(β j ), . . . , τr (β j ) each have

two distinct real eigenvalues and τ1(β j ) is diagonalizable over F(
√
a).

Proof We start with the first condition. For this, we choose geodesic lines L1, . . . , Ln and
M1, . . . , Mn in H

2 with pairwise distinct endpoints in ∂∞H
2 such that for each i, j ∈

{1, . . . , n}, we have that Li and Mj intersect if and only if i ≤ j (see Fig. 2 for an example
in the case n = 3). Set Ai := Li × · · · × Li and Bj := Mj × · · · × Mj . The first condition
is now satisfied.

By Lemma 7.2, there exists an open neighborhood of the identityU ⊂ SL2(R) so that we
may perturb each Li and Mj by isometries inU without invalidating the first condition. The
product Ur is an open neighborhood of the identity in SL2(R)r . So for each i ∈ {1, . . . , n},
there exists by Theorem 5.4 an element ui ∈ Ur such that ui · Ai is a Γ -compact flat that is
stabilized by an element αi ∈ D1 for which τ1(αi ), . . . , τr (αi ) each have two distinct real
eigenvalues. We now replace each Ai by ui · Ai and the first three conditions are satisfied.

For the last condition, we choose an element x0 ∈ D× with (x0)2 = a and x0 /∈ F .
Then for each k ∈ {1, . . . , r}, we have (τk(x0))2 = σk(a)I2 and τk(x0) /∈ R · I2, where
I2 ∈ M2(R) is the identity matrix. Recall that σk(a) > 0 by assumption. So the minimal
polynomial of τk(x0) overR is

(
X +√

σk(a)
)(
X −√

σk(a)
) ∈ R[X ]. Hence, each τk(x0) has

two distinct real eigenvalues and τ1(x0) is diagonalizable over F(
√
a). So by Proposition 7.1,

there exists a unique maximal flat B0 ⊂ (H2)r that is stabilized by x0. The group SL2(R)r

acts transitively on the set of all maximal flats in (H2)r , and so for each j ∈ {1, . . . , n}, we
can find some Tj ∈ SL2(R)r with Bj = Tj · B0.

By the real approximation theorem [14,Theorem25.70], the imageof D1 inSL2(R)r under
themaps τ1, . . . , τr is dense. Since the subsetsUTj ⊂ SL2(R)r are open, there exist x j ∈ D1

and v j ∈ U with (τ1(x j ), . . . , τr (x j )) = v j Tj . Next, from v j · Bj = v j Tj · (T−1
j · Bj ) =

x j · B0, we conclude that

x j x0x
−1
j · (v j · Bj ) = x j x0 · B0 = x j · B0 = v j · Bj .

This shows that v j · Bj ⊂ (H2)r is stabilized by β j := x j x0x
−1
j ∈ D×. We now replace

each Bj by v j · Bj and then all four conditions are satisfied. 
�
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7.2 Controlling the intersections in the quotient

Our next goal is to find a finite covering space of M = Γ \(H2)r in which the images of
the flats Ai and Bj from Proposition 7.3 are embedded submanifolds and to control the
intersections of these submanifolds.

To ease notation, we fix throughout this subsection two maximal flats A, B ⊂ (H2)r that
are either disjoint or intersect transversally in a single point and we fix α ∈ D1 and β ∈ D×
that stabilize A and B, respectively. We assume that τ1(α), . . . , τr (α) and τ1(β), . . . , τr (β)

each have two distinct real eigenvalues and that τ1(β) is diagonalizable over F(
√
a). We also

assume that A is Γ -compact.

Proposition 7.4 There exists a subgroup of finite index Γcent ⊂ Γ such that every element
of Γcent which stabilizes A commutes with α, and every element of Γcent which stabilizes B
commutes with β.

Proof By Proposition 7.1, the centralizer CD×(α) is a subgroup of finite index in (D×)A. So
there exist y1, . . . , ym ∈ (D×)A with

(D×)A = CD×(α) � CD×(α)y1 � . . . � CD×(α)ym .

We now use the rings A f ,F and O f ,F from Sect. 4. For each i ∈ {1, . . . ,m}, the set
CGLD(A f ,F )(α)yi ⊂ GLD(A f ,F ) is a closed subset that does not contain the identity. Hence,
by Proposition 4.1, we find a nonzero ideal a ⊂ OF such that for all i ∈ {1, . . . ,m}, we have
GLΛ(O f ,F )(a) ∩ CGLD(A f ,F )(α)yi = ∅. Consequently, we have

Γ (a)A ⊂ (D×)A ∩ GLΛ(O f ,F )(a) ⊂ CD×(α).

Similarly, we find a nonzero ideal b ⊂ OF with Γ (b)B ⊂ CD×(β). Then Γcent := Γ (a) ∩
Γ (b) is of finite index in Γ , and the proof is complete. 
�

We can now show that the images of A and B in some finite covering space of Γ \(H2)r

are embedded submanifolds:

Proposition 7.5 There exists a subgroup of finite index Γemb ⊂ Γcent so that for every sub-
group of finite index Γ ′ ⊂ Γemb, the natural maps

Γ ′
A\A → Γ ′\(H2)r and Γ ′

B\B → Γ ′\(H2)r

are closed embeddings whose images are orientable flat totally geodesic r-dimensional sub-
manifolds of Γ ′\(H2)r .

Proof The algebraic group SLD is connected and semisimple. Because of α ∈ SLD(F),
there exists by [14, pp. 33–35] a unique smallest F-subgroup CSLD (α) of SLD such that for
all fields K with F ⊂ K , we have

(
CSLD (α)

)
(K ) = CSLD(K )(α).

Since τ1(α) is a diagonalizable matrix, we see that CSLD (α) becomes isomorphic to GL1

over an algebraic closure of F , so CSLD (α) is connected and reductive.
LetG := ResF/Q(SLD) andH := ResF/Q

(
CSLD (α)

)
. ThenG is a connected semisimple

Q-group and H is a connected reductive Q-subgroup of G. For each i ∈ {r + 1, . . . , d}, we
choose an isomorphism ρi : D ⊗F resσi (R)

∼=−→ H, where H is the real Hamilton quaternion
algebra. The isomorphisms τ1, . . . , τr and ρr+1, . . . , ρd induce an isomorphism

G := G(R)
∼=−→ SL2(R)r × (H1)d−r ,
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which maps the group H := H(R) to
∏r

i=1 CSL2(R)(τi (α)) × ∏d
i=r+1 CH1(ρi (α)). Let

K ⊂ G be the preimage of SO(2)r × (H1)d−r under this isomorphism. Then K is a maximal
compact subgroup of G and KH := K ∩ H is a maximal compact subgroup of H . Consider
now the quotient spaces XG := G/K and XH := H/KH and the embedding jH : XH ↪→
XG induced by the inclusion H ↪→ G. Fix a point x0 ∈ A. Then the diffeomorphism

XG
∼=−→ (H2)r , gK 	→ g · x0

maps jH (XH ) onto the flat A. Note thatH(Q) = CD1(α). So by Propositions 7.1 and 7.4, we
have Γ ′

A = Γ ′ ∩H(Q) for every subgroup of finite index Γ ′ ⊂ Γcent. Hence, by Theorem 6.1,
there exists a subgroup of finite index Γ0 ⊂ Γcent such that for all subgroups of finite index
Γ ′ ⊂ Γ0, the map Γ ′

A\A → Γ ′\(H2)r is a closed embedding whose image is an orientable
flat totally geodesic submanifold.

Similarly, we obtain a subgroup of finite index Γ1 ⊂ Γcent such that for every subgroup
of finite index Γ ′ ⊂ Γ1, the map Γ ′

B\B → Γ ′\(H2)r is a closed embedding whose image
is an orientable flat totally geodesic submanifold. We set Γemb := Γ0 ∩ Γ1 and the proof is
complete. 
�
Lemma 7.6 Let Γ ′ ⊂ Γemb be a subgroup of finite index. Then Γ ′A is a disjoint union of
copies of A, that is, for any γ ∈ Γ ′, we have γ A = A or γ A ∩ A = ∅. Similarly, Γ ′B is a
disjoint union of copies of B.

Proof Let γ ∈ Γ ′ and assume that γ A ∩ A �= ∅. Then there exist x1, x2 ∈ A with x2 =
γ x1, and so we have Γ ′x1 = Γ ′x2. Since the map Γ ′

A\A → Γ ′\(H2)r is injective by
Proposition 7.5, it follows that Γ ′

Ax1 = Γ ′
Ax2. So there exists some δ ∈ Γ ′

A with x1 = δx2.
Hence, we have δγ x1 = x1, and because Γ ′ is torsion-free, this implies that γ = δ−1. So we
have γ ∈ Γ ′

A, or, in other words, γ A = A. The statement for Γ ′B can be proven analogously.

�

Remark 7.7 For any subgroup of finite index Γ ′ ⊂ Γemb, the images of the flats A and B in
Γ ′\(H2)r can be oriented as follows: We choose orientations A+ on A and B+ on B. Then
we defineΓ ′-invariant orientations onΓ ′A andΓ ′B by (γ A)+ := γ A+ and (γ B)+ := γ B+
for any γ ∈ Γ ′. Note that by Proposition 7.5, the maps Γ ′A → Γ ′

A\A and Γ ′B → Γ ′
B\B

are covering maps and their images are diffeomorphic to the images of A and B in Γ ′\(H2)r ,
respectively. Since Γemb ⊂ Γcent, we have by Propositions 7.1 and 7.4 that Γ ′

A and Γ ′
B act by

orientation-preserving isometries on A and B, respectively. So we get induced orientations
on the images of A and B in Γ ′\(H2)r .

Our next task is to find a finite covering space of the locally symmetric space Γ \(H2)r in
which we can control the intersection of the images of A and B. We start with some technical
results:

Lemma 7.8 Let Γ ′ ⊂ Γemb be a subgroup of finite index. Then for any γ1, γ2 ∈ Γ ′, we have
Γ ′
Bγ1A = Γ ′

Bγ2A if and only if there exists some δ ∈ Γ ′
B with γ1A = δγ2A.

Proof If there exists some δ ∈ Γ ′
B with γ1A = δγ2A, then we also have Γ ′

Bγ1A = Γ ′
Bγ2A.

Conversely, ifΓ ′
Bγ1A = Γ ′

Bγ2A, then γ1A∩δγ2A �= ∅ for some δ ∈ Γ ′
B , and so γ1A = δγ2A

by Lemma 7.6. 
�
Proposition 7.9 For every subgroup of finite index Γ ′ ⊂ Γemb, we have

#
{
Γ ′
Bγ A : γ ∈ Γ ′ with γ A ∩ B �= ∅}

< ∞.
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Proof Let π : (H2)r → Γ ′\(H2)r be the projection map. We write F := π(A) and G :=
π(B). SinceF and G are closed totally geodesic submanifolds ofΓ ′\(H2)r andF is compact,
it follows that F ∩G is a compact manifold. In particular, F ∩G has only finitely many path-
connected components. Thus, it suffices to show that for all γ0, γ1 ∈ Γ ′ for which there is a
continuous path in F ∩ G connecting a point in π(γ0A ∩ B) to a point in π(γ1A ∩ B), we
have

Γ ′
Bγ0A = Γ ′

Bγ1A.

Let c : [0, 1] → A′ ∩B ′ be such a path and choose preimages xi ∈ γi A∩B with π(xi ) = c(i)
for i ∈ {0, 1}. Since jB : Γ ′

B\B → B ′ is a diffeomorphism, c induces a path

cB := j−1
B ◦ c : [0, 1] → Γ ′

B\B.

The map pB : Γ ′B → Γ ′
B\B, γ · b 	→ Γ ′

Bb is well-defined by Proposition 7.5 and is a
covering map. By the lifting property of pB and the fact that pB(x0) = cB(0), there exists a
path c̃ : [0, 1] → Γ ′B with c̃(0) = x0 such that the diagram

Γ ′B Γ ′
B\B B ′

[0, 1]

pB jB

c̃
cB c

commutes. From c([0, 1]) ⊂ A′, we deduce that c̃([0, 1]) ⊂ Γ ′A. But Γ ′A is a disjoint
union of copies of A by Lemma 7.6, and so c̃(0) = x0 ∈ γ0A implies that the image of c̃
must be fully contained in γ0A. In particular, c̃(1) ∈ γ0A.

On the other hand, using π(̃c(1)) = c(1) = π(x1) and the injectivity of jB , we see that

Γ ′
Bc̃(1) = pB (̃c(1)) = pB(x1) = Γ ′

Bx1.

Because of x1 ∈ γ1A, this shows that c̃(1) ∈ δγ1A for some δ ∈ Γ ′
B . In conclusion, we have

c̃(1) ∈ γ0A∩ δγ1A, and so Lemma 7.6 implies that δγ1A = γ0A. Hence, by Lemma 7.8, we
have

Γ ′
Bγ0A = Γ ′

Bγ1A.


�
Corollary 7.10 LetΓ ′ ⊂ Γemb be a subgroup of finite index. Then there exist γ1, . . . , γm ∈ Γ ′
such that the intersection of the images of A and B in Γ ′\(H2)r is the image of the projection
map

m⋃

i=1

γi A ∩ B → Γ ′\(H2)r .

Proof By Proposition 7.9, there exist γ1, . . . , γm ∈ Γ ′ with
{
Γ ′
Bγ A : γ ∈ Γ ′ with γ A ∩ B �= ∅} = {

Γ ′
Bγ1A, . . . , Γ ′

Bγm A
}
. (4)

Let π : (H2)r → Γ ′\(H2)r be the projection map. For each i ∈ {1, . . . ,m}, we have
π(γi A∩B) ⊂ π(A)∩π(B). Conversely, let z ∈ π(A)∩π(B). Then there is some x ∈ Γ ′A∩B
with z = Γ ′x . Let γ ∈ Γ ′ with x ∈ γ A. By (4), we have Γ ′

Bγ A = Γ ′
Bγi A for some

i ∈ {1, . . . ,m}. So by Lemma 7.8, there exists some δ ∈ Γ ′
B with γ A = δγi A. Hence, there

is some y ∈ A with x = δγi y. From γi y = δ−1x ∈ B and Γ ′x = Γ ′δγi y = Γ ′γi y, we
deduce that z = Γ ′x ∈ π(γi A ∩ B). 
�
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The next two lemmas will be used in the proof of Proposition 7.13.

Lemma 7.11 For the centralizers of α and β in D ⊗F A f ,F , we have

CD⊗FA f ,F (β) ∩ CD⊗FA f ,F (α) = A f ,F .

Proof We only show that CD(β) ∩ CD(α) = F . This suffices because taking the tensor
product with A f ,F commutes with taking the centralizers. So suppose to the contrary that
there exists x ∈ D with x /∈ F , αx = xα, and βx = xβ. Note that α and β do not commute
with each other because otherwise, wewould have A = B by Proposition 7.1, in contradiction
to our assumptions on A and B. This implies α, β /∈ F , and so we see that {1, x, α, β} is a
linearly independent subset with four distinct elements of the linear subspace CD(x) ⊂ D.
Since dimF (D) = 4, it follows that CD(x) = D, and so we have x ∈ Z(D) = F . But this
contradicts the assumption x /∈ F . 
�

To simplify the notation, we will from now on write CG(g) := {h ∈ G : gh = hg} for a
group G whenever multiplication of elements in G with g is defined, even if g /∈ G.

Lemma 7.12 The group μ2(O f ,F ) := {ω ∈ O f ,F : ω2 = 1} of second roots of unity in
O f ,F acts transitively by ω · (u, v) := (ω−1u, ωv) on the fibers of the map

CSLΛ(O f ,F )(β) × CSLΛ(O f ,F )(α) → SLΛ(O f ,F ), (u, v) 	→ uv.

Proof Let (u1, v1), (u2, v2) ∈ CSLΛ(O f ,F )(β) × CSLΛ(O f ,F )(α) with u1v1 = u2v2. Then

ω := u−1
2 u1 = v2v

−1
1 commutes with both α and β, and so ω is a scalar in O f ,F by

Lemma 7.11. Since N (ω) = 1 and N (ω) = ω2, we have ω ∈ μ2(O f ,F ). It follows that
ω−1u1 = u1ω−1 = u2 and ωv1 = v2. Hence we have ω · (u1, v1) = (u2, v2). 
�

Recall fromProposition 7.1 thatCD×(α) andCD×(β) act by orientation-preserving isome-
tries on the flats A and B, respectively. The next two propositions will, combined with
Corollary 7.10, allow us to control the intersection of the images of A and B in a finite
covering space of Γ \(H2)r .

Proposition 7.13 For every γ ∈ Λ1 that is in the closure of CΛ1(β)CΛ1(α) in SLΛ(O f ,F ),
there exist x ∈ CD×(β) and y ∈ CD×(α) such that γ = xy and such that x acts by
orientation-preserving isometries on (H2)r .

Proof Step 1: We first find x ′ ∈ CSLΛ(O f ,F )(β) and y′ ∈ CSLΛ(O f ,F )(α) such that γ = x ′y′.
This is possible because CSLΛ(O f ,F )(β) and CSLΛ(O f ,F )(α) are both closed in SLΛ(O f ,F ),
so their product is also closed and contains the set CΛ1(β)CΛ1(α), hence also the closure
point γ of this set.

Step 2: Next, we find some c ∈ A f ,F with cx ′ ∈ D×. To achieve this, we observe that x ′
is a solution in D ⊗F A f ,F of the homogeneous system of linear equations

x ′α = (γ αγ −1)x ′,
x ′β = βx ′.

The coefficients of this system are in F . Let B be an F-basis for the space of solutions of
this system in D. Then the solution space in D⊗F A f ,F is the A f ,F -span of B. In particular,
B �= ∅. Moreover, the function x 	→ N (x) on the solution space in D can be expressed
in coordinates with respect to B by some multivariate polynomial P ∈ F[X1, . . . , Xm].
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Because of N (x ′) �= 0, we have P �= 0. So since F is an infinite field, there exists a solution
with nonzero reduced norm in D, that is, there exists an element x ∈ D× satisfying

xα = (γ αγ −1)x,

xβ = βx .

The element x−1x ′ ∈ D ⊗F A f ,F commutes with β. It also commutes with α because from
the above two linear systems of equations, we deduce that

x−1x ′α = x−1(γ αγ −1)x ′ = x−1(xαx−1)x ′ = αx−1x ′.

So by Lemma 7.11, we have x = cx ′ ∈ D× for some c ∈ A f ,F as required.
Let y := c−1y′. Then y = c−1(x ′)−1γ = x−1γ ∈ D×, and so we have γ = xy with

x ∈ CD×(β) and y ∈ CD×(α). It remains to show that x acts by orientation-preserving
isometries on (H2)r . We do this in the next two steps.

Step 3: We now show that CΛ1(β)x ′ ∩ μ2(O f ,F )U �= ∅ for every open neighborhood
of the identity U ⊂ SLΛ(O f ,F ). Assume to the contrary that U ⊂ SLΛ(O f ,F ) is an open
neighborhood of the identity with CΛ1(β)x ′ ∩ μ2(O f ,F )U = ∅. Then we have

(
CΛ1(β)x ′ × y′CΛ1(α)

) ∩ (
μ2(O f ,F )U × CSLΛ(O f ,F )(α)

) = ∅.

The set μ2(O f ,F )U × CSLΛ(O f ,F )(α) is invariant under the action of μ2(O f ,F ) defined in
Lemma 7.12 and μ2(O f ,F ) acts transitively on the fibers of the multiplication map by this
lemma. Hence, for the images under this map, we obtain

CΛ1(β)γCΛ1(α) ∩ μ2(O f ,F )UCSLΛ(O f ,F )(α) = ∅. (5)

SinceU is an open neighborhood of the identity inSLΛ(O f ,F ), there exists by Proposition 4.1
a nonzero ideal a ⊂ OF with SLΛ(O f ,F )(a) ⊂ U . Consequently, we have Λ1(a) ⊂ U and
so (5) implies that

CΛ1(β)γCΛ1(α) ∩ Λ1(a) = ∅. (6)

On the other hand, γ is in the closure of CΛ1(β)CΛ1(α) and so we have CΛ1(β)CΛ1(α) ∩
Λ1(a)γ �= ∅. Hence, there exist γβ ∈ CΛ1(β), γα ∈ CΛ1(α) and γ0 ∈ Λ1(a) with γβγα =
γ0γ . Since Λ1(a) is normal in Λ1, we obtain

γ −1
β γ −1

0 γβ = γ −1
β γ γ −1

α ∈ CΛ1(β)γCΛ1(α) ∩ Λ1(a)

in contradiction to (6). This proves the claim and thus finishes this step.
Step 4: Finally, we show that x = cx ′ acts by orientation-preserving isometries on (H2)r .

Assume to the contrary that this is not the case. Then there must exist some i ∈ {1, . . . , r}
with det(τi (x)) = σi (N (x)) = σi (c2) < 0. Let E := F(

√
a). We can extend σi to a real

embedding σ̃i : E ↪→ R as in the proof of Lemma 3.4 because by our assumptions we have
σi (a) > 0.

Recall that τ1(D×) ⊂ M2(E). So τ1 induces an F-algebra homomorphism D → M2(E)

and hence also an F-homomorphism GLD → ResE/F GL2. By [18, p. 15], we have an
isomorphism (ResE/F GL2)(A f ,F ) ∼= GL2(A f ,E ), and so we get a continuous group homo-
morphism

Φ : GLD(A f ,F ) → GL2(A f ,E )

that extends τ1 on D×. ThematrixΦ(β) = τ1(β) ∈ GL2(E) is by assumption diagonalizable
over E with two distinct eigenvalues. So there exists a one-dimensional subspace L ⊂ E2

which is invariant under τ1(β). The corresponding eigenspace in (A f ,E )2 of τ1(β) isA f ,E ·L ,
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and so every matrix in M2(A f ,E ) that commutes with τ1(β) stabilizes A f ,E · L . Let now
v ∈ L be a nonzero vector and let � ∈ {1, 2} be such that the �th coordinate of v is v� �= 0.
Consider the map

s : CGLD(A f ,F )(β) → GL1(A f ,E ), g 	→
(

(Φ(g)v)�

v�

)2

. (7)

Note that s is multiplicative and so its image is contained inGL1(A f ,E ) = A
×
f ,E . Moreover,

s is continuous because Φ is continuous and A f ,E is a topological E-algebra. We have
s(CD×(β)) ⊂ (E×)2, and so by writing x ′ = c−1cx ′, we see that

s(μ2(O f ,F )CΛ1(β)x ′) ⊂ (E×)2c−2s(cx ′)

is contained in E× and has only negative images under σ̃i because of σ̃i (c2) < 0. Note that
V+ := {v ∈ O×

E : σ̃i (v) > 0} is a subgroup of finite index in O×
E . So by Theorem 4.2, there

exists a nonzero ideal a ⊂ OE with O×
E (a) ⊂ V+. Hence O×

f ,E (a) ∩ E× ⊂ O×
E (a) ⊂ V+,

and so we obtain

μ2(O f ,F )CΛ1(β)x ′ ∩ s−1(O×
f ,E (a)) = ∅.

Since s is continuous, the preimage s−1(O×
f ,E (a)) is an open neighborhood of the identity

in CGLD(A f ,F )(β), and so there exists a nonzero ideal b ⊂ OF with CGLΛ(O f ,F )(β)(b) ⊂
s−1(O×

f ,E (a)). Let U := SLΛ(O f ,F )(b). Then we have μ2(O f ,F )CΛ1(β)x ′ ∩ U = ∅, or
equivalently,

CΛ1(β)x ′ ∩ μ2(O f ,F )U = ∅.

This contradicts the result from the previous step. So x must act by orientation-preserving
isometries on (H2)r and the proof is complete. 
�
Proposition 7.14 There exists a subgroup of finite index Γprod ⊂ Γemb such that every γ ∈
Γprod with γ A ∩ B �= ∅ can be written as γ = xy with x ∈ CD×(β) and y ∈ CD×(α) so
that x acts by orientation-preserving isometries on (H2)r .

Proof By Proposition 7.9, there exist γ1, . . . , γm ∈ Γemb with
{
(Γemb)Bγ A : γ ∈ Γemb, γ A ∩ B �= ∅} = {

(Γemb)Bγ1A, . . . , (Γemb)Bγm A
}
.

We now choose for every i ∈ {1, . . . ,m} a subgroup Γ(i) ⊂ Γemb as follows: If γi is in the
closure of CΛ1(β)CΛ1(α) in SLΛ(O f ,F ), then we set Γ(i) := Γemb. Otherwise, there exists
by Proposition 4.1 a nonzero ideal ai ⊂ OF with CΛ1(β)CΛ1(α) ∩ SLΛ(O f ,F )(ai )γi = ∅
and we set Γ(i) := Γemb(ai ). Consider

Γprod := Γ(1) ∩ . . . ∩ Γ(m).

Let γ ∈ Γprod with γ A ∩ B �= ∅. Then we have (Γemb)Bγ A = (Γemb)Bγi A for some
i ∈ {1, . . . ,m}. So by Lemma 7.8, there exists some δ ∈ (Γemb)B with γ A = δγi A. Hence
we have γ −1δγi A = A. Let τ := γ −1δγi . Then τ ∈ (Γemb)A and

δ−1τ = (δ−1γ −1δ)γi . (8)

Since Γprod is normal in Γemb, we have δ−1γ −1δ ∈ Γprod. Moreover, we have δ−1 ∈
(Γemb)B ⊂ CΛ1(β) and τ ∈ (Γemb)A ⊂ CΛ1(α). Hence, (8) shows that

CΛ1(β)CΛ1(α) ∩ Γprodγi �= ∅.

123



Geometriae Dedicata

Now because of Γprod ⊂ Γ(i), we have that γi must be in the closure of CΛ1(β)CΛ1(α)

in SLΛ(O f ,F ). So by Proposition 7.13, we can write γi = xi yi with xi ∈ CD×(β) and
yi ∈ CD×(α) such that xi acts by orientation-preserving isometries on (H2)r . Observe that

γ = δγiτ
−1 = δxi yiτ

−1.

So we have γ = xy for x := δxi ∈ CD×(β) and y := yiτ−1 ∈ CD×(α), and x acts by
orientation-preserving isometries on (H2)r because of N (δ) = 1. 
�

We can now show the following result about the intersection of the images of A and B in
a finite covering space of the locally symmetric space Γ \(H2)r :

Proposition 7.15 Let Γ ′ ⊂ Γprod be a subgroup of finite index. Then the images F of A
and G of B in Γ ′\(H2)r intersect if and only if A and B intersect in (H2)r . Further, the
intersection F ∩ G is transverse and consists of finitely many points, all of which have the
same intersection number.

Proof We denote as above by F and G the images of A and B in Γ ′\(H2)r , respectively. By
Corollary 7.10, there exist γ1, . . . , γm ∈ Γ ′ such that the projectionmap induces a surjection

m⋃

i=1

γi A ∩ B � F ∩ G.

Because of Γ ′ ⊂ Γprod, we can apply Proposition 7.14 and write each γi as γi = xi yi for
some xi ∈ CD×(β) and yi ∈ CD×(α) such that xi acts by orientation-preserving isometries
on (H2)r . Now choose orientations A+ on A and B+ on B, and letF and G carry the induced
orientations as described in Remark 7.7. By Proposition 7.1, we have xi · B+ = B+ and
yi · A+ = A+, and so we obtain

γi · A+ ∩ B+ = xi · A+ ∩ B+ = xi · (A+ ∩ x−1
i · B+) = xi · (A+ ∩ B+).

This shows that F and G intersect if and only if A and B intersect. Furthermore, we see
that in this case the intersection of F and G is transverse and the intersection number is the
same in each point of intersection because for each i ∈ {1, . . . ,m}, the action of xi maps the
intersection A+ ∩ B+ to the intersection γi A+ ∩ B+ while also preserving the orientation
of the ambient space (H2)r . 
�

7.3 Finishing the proof of themain theorem

We now use Proposition 7.15 from the previous subsection to show that the flats that we have
constructed in Proposition 7.3 give us a family of linearly independent real homology classes.
For this, we will use some facts about de Rham cohomology from [4].

Let M be a smooth oriented n-manifold. We write H∗
dR(M) for the de Rham cohomology

groups of M and H∗
dR,c(M) for the de Rham cohomology groups of M with compact support.

Let S ⊂ M be a closed oriented k-submanifold. We denote by i : S ↪→ M the inclusion
map. The closed Poincaré dual of S is the unique cohomology class ηS ∈ Hn−k

dR (M) so that
for all ω ∈ Hk

dR,c(M), we have
∫

M
ω ∧ ηS =

∫

S
i∗w. (9)

If additionally S is compact and M is diffeomorphic to the interior of a compact manifold
with boundary, then we can also define the compact Poincaré dual of S. This is the unique
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cohomology class η′
S ∈ Hn−k

dR,c(M) for which (9) holds with η′
S instead of ηS and for all

ω ∈ Hk
dR(M). Note that the natural map Hn−k

dR,c(M) → Hn−k
dR (M) sends η′

S to ηS (see [4,
p. 51]), and that η′

S coincides with the image of the real fundamental class of S under the
composition

Hk(S;R) → Hk(M;R)
∼=−→ Hn−k

c (M;R)
∼=−→ Hn−k

dR,c(M),

where the first map is induced by the inclusion S ↪→ M , the second map is the Poincaré
duality isomorphism and the third map is the de Rham isomorphism for cohomology with
compact support.

The Poincaré dual of a transverse intersection of submanifolds is related to the wedge
product as follows (see [4, p. 69]):

Proposition 7.16 (Geometric interpretation of the wedge product) Let M be a smooth ori-
ented manifold. Then for any two closed oriented submanifolds S1 and S2 of M that intersect
transversally, we have

ηS1 ∧ ηS1 = ηS1∩S2 . (10)

In the above proposition, we equip S1 ∩ S2 with the canonical orientation induced by the
orientations on M , S1, and S2. If S1 and S2 are of complementary dimensions in M , then this
orientation is simply given by the intersection numbers of S1 and S2.

We now use this to finish the proof of our main result. Recall that we call a Riemannian
manifold M covered by (H2)r arithmetic if it is finitely covered by a quotient of (H2)r by
an arithmetically defined lattice in SL2(R)r . The following theorem completes our proof of
Theorem 1.1:

Theorem 7.17 Let M be an arithmetic Riemannian manifold covered by (H2)r . Then for
any n ∈ N, there exists a connected finite covering M ′ → M and compact oriented flat
totally geodesic r-dimensional submanifolds F1, . . . ,Fn ⊂ M ′ such that the images of the
fundamental classes [F1], . . . , [Fn] in Hr (M ′;Z) are linearly independent.

Proof As explained in the beginning of this section, we can and will assume that M =
Γ \(H2)r , where Γ ⊂ Λ1 is a torsion-free subgroup of finite index. We assume that all
the assumptions introduced there are satisfied. By Proposition 7.3, there exist maximal flats
A1, . . . , An and B1, . . . , Bn in (H2)r such that for all i, j ∈ {1, . . . , n}, Proposition 7.15
can be applied to the flats A = Ai and B = Bj . So there exists a subgroup of finite
index Γ ′ ⊂ Γ such that the images of A1, . . . , An and B1, . . . , Bn in M ′ := Γ ′\(H2)r

are closed orientable flat totally geodesic r -dimensional submanifolds. We denote them by
F1, . . . ,Fn and G1, . . . ,Gn , respectively, and choose orientations on them as in Remark 7.7.
By Proposition 7.16, we have

∫

M ′
η′
Fi

∧ ηG j =
∫

M ′
ηFi ∧ ηG j =

∫

M ′
ηFi∩G j =

∑

p∈Fi∩G j

I p(Fi ,G j ).

Furthermore, by what we know about the intersections of Fi and G j from Proposition 7.15,
this sum is nonzero if and only if Fi ∩ G j �= ∅, which is the case if and only if i ≤ j . It
follows that the matrix

(∫

M ′
η′
Fi

∧ ηG j

)

i j
∈ Mn(R)

is upper triangular with nonzero entries on the diagonal, hence is in GLn(R). Since the map
Hr
dR,c(M

′) × Hr
dR(M ′) → R, (ω, τ) 	→ ∫

M ′ ω ∧ τ is bilinear, it follows that the cohomol-
ogy classes η′

F1
, . . . , η′

Fn
∈ Hr

dR,c(M
′) are linearly independent. They are mapped by the
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Poincaré duality isomorphism to the images of the real fundamental classes of F1, . . . ,Fn

in Hr (M ′;R), and so these homology classes are also linearly independent. Thus, the same
holds for the images of the integral fundamental classes [F1], . . . , [Fn] in Hr (M ′;Z). 
�
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