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1 Introduction

Ever since Dark Matter (DM) became an inevitable ingredient in model building, all kind of
proposals integrating DM candidates into phenomenologically viable models have emerged,
from the simplest extensions of the Standard Model (SM) to fairly intricate models. The
accumulated data from astrophysics and cosmology strongly suggests that if DM is a par-
ticle, it is most probably cold and with a mass close to the electroweak scale. Particles
with these features are known as Weakly Interacting Massive Particles (WIMPs). In this
work we study a simple extension of the SM where a complex singlet is added to the SM
field content. The model is built such that after spontaneous symmetry breaking one of the
singlet components will mix with the SM-like Higgs boson while the other one will play the
role of the DM candidate. This type of extension was first proposed in refs. [1–4], reviewed
with updated experimental constraints in ref. [5] and more recently in ref. [6].
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A particular version of this extension known as the Pseudo Nambu-Goldstone DM
model (PNGDM) has a scalar potential invariant under a global U(1) symmetry which
would give rise to a Nambu-Goldstone boson. The symmetry is then softly broken and
a pseudo Nambu-Goldstone boson emerges as the Dark Matter candidate. As discussed
in previous works [7, 8], the nature of this particle makes the DM-nucleon tree-level cross
section proportional to the velocity of the DM particle and therefore negligible (see also
ref. [9] for an interesting discussion on the subject of Goldstone and pseudo-Goldstone
bosons). Hence, the leading order cross section is given by its one-loop contribution. The
first calculation of the electroweak corrections to this process was performed in ref. [8] and
almost at the same time a second calculation appeared in ref. [10]. In this work we will
perform once again the calculation of the electroweak corrections to the DM-nucleon cross
section while discussing in detail the main differences with respect to the two previous
calculations and the reasons for settling this issue. Our calculation will be performed with
a different renormalisation scheme. This allows us to perform a rough estimate of the
remaining uncertainties on the cross section due to missing higher-order corrections.

We then perform a scan in the parameter space taking into account the most relevant
theoretical and experimental constraints. We will show that there are still allowed points
in the parameter space above the neutrino floor [11] but only experiments in the far future
will be able to probe them.

The paper is organized as follows. In section 2 we briefly present the complex singlet
extension of the SM while in section 3 we introduce the renormalisation of the model. The
various aspects of the DM direct-detection cross section at tree level and at one-loop level
are discussed in 4. In section 5 we discuss the results and future prospects of DM detection
in this model taking into account the most recent constraints. We summarise our findings
in section 6.

2 The model

A simple extension of the SM by a scalar gauge singlet is enough to provide a valid DM
candidate. The new complex scalar field S, with zero hypercharge and zero isospin only
enters the model via the scalar potential that can be written as

V = −µ
2
H

2 |H|
2 + λH

2 |H|
4 − µ2

S

2 |S|
2 + λS

2 |S|
4 + λHS |H|2 |S|2 −

m2
χ

4 (S2 + S∗2) , (2.1)

where the mass parameters µ2
H , µ2

S , m2
χ and the quartic couplings λS , λH , λHS are real

due to hermicity. The doublet H and singlet S fields are expanded as follows

H =
(

G+

1√
2
(
v + ΦH + iG0)

)
, S = 1√

2
(vs + ΦS + iχ) , (2.2)

with the electroweak vacuum expectation value (VEV) v and the singlet VEV vs. With
this definition the model is invariant under the DM charge conjugation S → S∗, which
guarantees the stability of the imaginary part of S. Furthermore, in order to simplify the
potential, an invariance under the Z2 symmetry S → −S has also been imposed. The
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real part of S develops a vacuum expectation value (VEV), while the doublet develops the
usual (SM) VEV that gives mass to the SM fermions and gauge bosons,

〈H〉 = 1√
2

(
0
v

)
, 〈S〉 = vs√

2
(2.3)

with v = 2mW /g, mW the W boson mass and g the SU(2) coupling constant. Because the
real part of S acquires a VEV, ΦS cannot be a viable DM candidate and it mixes with the
doublet real neutral component ΦH . Using the minimum conditions

∂V

∂H

∣∣∣∣
VEV

= 0 ⇐⇒ TH ≡
v

2
(
−µ2

H + λHv
2 + λHSv

2
s

)
= 0 ,

∂V

∂S

∣∣∣∣
VEV

= 0 ⇐⇒ TS ≡
vs
2
(
−µ2

S + λSv
2
s + λHSv

2 −m2
χ

)
= 0 .

(2.4)

we can write the mass matrix of the two neutral states as

M2
T =M2 + T , M2 =

(
λHv

2 λHSvvs
λHSvvs λSv

2
s

)
, T =

(
TH/v 0

0 TS/vs

)
, (2.5)

The mass eigenstates h1 and h2 are obtained from the gauge eigenstates via(
h1
h2

)
≡ R(α)

(
ΦH

ΦS

)
, M2 ≡ R(α)M2R−1(α) =

(
m2
h1

0
0 m2

h2

)
(2.6)

with the orthogonal matrix R(α)

R(α) ≡
(

cosα sinα
− sinα cosα

)
. (2.7)

One of these mass eigenstates is identified as the 125GeV Higgs boson. The DM particle
is given by χ. Exploiting the tadpole conditions eq. (2.4) its mass can be written as

m2
χ + TS

vS
. (2.8)

We also require that the potential is bounded from below inducing the tree-level conditions

λH > 0, λS > 0, λHS > −
√
λHλS . (2.9)

The parameters of the potential can be written as functions of the masses, mixing angle
and the VEVs as

λHS = −
m2
h2
−m2

h1

2vvs
sin 2α ,

λH =
m2
h2

sin2 α+m2
h1

cos2 α

v2 ,

λS =
m2
h2

cos2 α+m2
h1

sin2 α

v2
s

.

(2.10)

– 3 –



J
H
E
P
1
2
(
2
0
2
0
)
0
3
4

We choose the following parameters as independent input parameters,

v , vs , α , m
2
h1 , m

2
h2 , m

2
χ , TH , TS . (2.11)

Some final comments regarding the scalar potential are in order. The potential is
invariant under a U(1) symmetry (S → eiαS) that is softly broken by the dimension-two
term proportional to m2

χ. The Goldstone boson related to the U(1) symmetry acquires a
mass proportional to m2

χ. Due to the Z2 symmetry there are no more terms contributing to
the mass of the pseudo Nambu-Goldstone boson. Hence, the U(1) symmetry is recovered
by setting m2

χ = 0, where the true Nambu-Goldstone boson is recovered.

3 Renormalisation of the PNGDM

In the following, we present the renormalisation of the PNGDM in order to be able to
calculate the electroweak (EW) corrections to the scattering process of the pseudo Nambu-
Goldstone DM particle with a nucleon. Having defined the full set of input parameters in
eq. (2.11), the bare parameters p0 are replaced with the renormalized ones, p, according to

p0 = p+ δp , (3.1)

where δp corresponds to the counterterm of the respective bare parameter p0. For a generic
bare field Ψ0 (scalar, fermion or vector field), the renormalized field Ψ is expressed as

Ψ0 =
√
ZΨΨ , (3.2)

with the field strength renormalisation constant ZΨ ≡ 1 + δZΨ. Note that ZΨ is a matrix
for mixing fields as present in the PNGDM. Dropping for simplicity the index 0 in the
following, we hence make the following replacements

p→ p+ δp (3.3)

Ψ→
(

1 + 1
2δZΨ

)
Ψ , (3.4)

and analogously for the tadpole parameter

T → T + δT . (3.5)

In the following we discuss each sector separately.

3.1 Gauge sector

The gauge sector of the PNGDM is not extended compared to the SM. To set our notation
and conventions we will list the counterterms of the gauge sector in the following. We choose
to perform the renormalisation in the mass basis of the PNGDM, so that the following set
of on-shell (OS) counterterms are taken for the gauge sector

m2
W → m2

W + δm2
W , (3.6a)

m2
Z → m2

Z + δm2
Z , (3.6b)

e→ e+ δZee , (3.6c)
g → g + δg , (3.6d)
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wheremZ is the mass of the EW neutral gauge boson Z and the electric coupling is denoted
by e. The renormalized fields are obtained through the field strength renormalisation
constants as

W± →
(

1 + 1
2δZWW

)
W± , (3.7a)(

Z

γ

)
→
(

1 + 1
2δZZZ

1
2δZZγ

1
2δZγZ 1 + 1

2δZγγ

)(
Z

γ

)
. (3.7b)

Applying OS conditions yields the following mass counterterms

δm2
W = ReΣT

WW

(
m2
W

)
and δm2

W = ReΣT
ZZ

(
m2
Z

)
, (3.8)

with T indicating the transverse part of the self-energies Σii (ii = W,Z). The counterterm
for the gauge coupling g is obtained from the one for the electric charge and the one for
the Weinberg angle θW using

e = g sin θW , with cos θW = mW

mZ
. (3.9)

The electric charge counterterm is fixed in the Thomson limit, which by making use of
Ward identities allows us to write [12]1

δZe = 1
2
∂ΣT

γγ(p2)
∂p2

∣∣∣∣∣
p2=0

+ sW
cW

ΣT
γZ(0)
m2
Z

, (3.10)

where we introduced the short-hand notation sW ≡ sin θW , cW ≡ cos θW , and

δg

g
= δZe + 1

2
1

m2
Z −m2

W

(
δm2

W − c2
W δm

2
Z

)
. (3.11)

The corresponding wave-function renormalisation constants guaranteeing the correct
OS properties are given by

δZWW = −Re∂Σ2
WW (p2)
∂p2

∣∣∣∣
p2=m2

W

, (3.12a)

(
δZZZ δZZγ
δZγZ δZγγ

)
=


−Re∂ΣTZZ(p2)

∂p2

∣∣∣∣
p2=m2

Z

2ΣTZγ(0)
m2
Z

−2ΣTZγ(0)
m2
Z

−Re∂ΣTγγ(p2)
∂p2

∣∣∣∣
p2=0

 . (3.12b)

3.2 Scalar sector

In the PNGDM we have two additional scalars, one extra CP-even Higgs boson and the
DM candidate χ. The two CP-even scalars are mass-ordered as h1 and h2 with mh1 < mh2

1Note that the sign in the second term of eq. (3.10) differs from the one in [12] due to different sign
conventions in the covariant derivative.
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and the SM-like Higgs boson, with a mass of 125.09 GeV, can be either of them. We again
use an OS scheme for the fields. The field strength renormalisation constants read(

h1
h2

)
→
(

1 + 1
2δZh1h1

1
2δZh1h2

1
2δZh2h1 1 + 1

2δZh2h2

)(
h1
h2

)
. (3.13)

The mass matrix with the additional tadpole contributions is given by

Mh1h2 =
(
m2
h1

0
0 m2

h2

)
+R(α)

(
TH/v 0

0 TS/vS

)
R(α)T︸ ︷︷ ︸

≡δT

. (3.14)

The rotation matrix R(α) is defined in eq. (2.7) and diagonalises the gauge eigenstates
in the Higgs mass basis. The tadpole terms δT in the tree-level mass matrix are bare
parameters. At next-to-leading (NLO) they get shifted due to EW corrections to the
vaccuum state of the potential. Defining the tree-level VEV to be the same to all orders
of perturbation theory, requires the introduction of tadpole counterterms such that the
one-loop renormalized one-point function T̂i (i = H,S) vanishes

T̂i = Ti − δTi
!= 0 . (3.15)

Note that the rotation matrix from the gauge states to the Higgs mass states also applies
to the tadpoles, yielding the relation between the tadpoles Ti (i = H,S) and Thi (i = 1, 2)(

Th1

Th2

)
= R(α) ·

(
TH
TS

)
. (3.16)

The one-loop mass counterterm of the Higgs sector is then given by

Mh1h2 →Mh1h2 + δMh1h2 , (3.17)

with

δMh1h2 =
(
δm2

h1
0

0 δm2
h2

)
+R(α)

(
δTH
v 0
0 δTS

vS

)
R(α)T ≡

(
δm2

h1
0

0 δm2
h2

)
+
(
δTh1h1 δTh1h2

δTh2h1 δTh2h2

)
.

(3.18)
Equation (3.18) is strictly expanded to one-loop order, so that terms O (δαδTi) are dropped.
Applying OS conditions yields (i = 1, 2)

δm2
hi = Re

[
Σhihi(m2

hi)− δThihi
]
, (3.19)

δZhihi = −Re
[
∂Σhihi(p2)

∂p2

]
p2=m2

hi

, (3.20)

δZhihj = 2
m2
hi
−m2

hj

Re
[
Σhihj (m2

hj )− δThihj
]
, i 6= j . (3.21)

There is just one DM candidate and therefore the renormalisation constants are defined by

δZχχ = −Re
[
∂Σχχ(p2)
∂p2

]∣∣∣∣∣
p=m2

χ

, δm2
χ = Re

[
Σχχ(p2 = m2

χ)− δTS
vS

]
, (3.22)

with the self-energy Σχχ of the DM candidate.
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3.3 Quark sector

In the quark sector we assume a diagonal CKM matrix for simplicity. This means we
neglect flavor mixing and the OS scheme is applied for each quark individually. The field
strength renormalisation constant has to be formulated for the left- and right-handed field
of the quarks (q = u, d, s, b, t) [13]

qL/R →
(

1 + 1
2δZ

L/R
qq

)
q , (3.23)

and the mass counterterm is introduced through

mq → mq + δmq . (3.24)

The two-point correlation function of the quarks is written as

Γqq(p) = i
(
/p−mq

)
+ i

[
/pω−ΣL

qq(p2) + /pω+ΣR
qq(p2) +mq (ω+ + ω−) ΣS

qq(p2)
]
, (3.25)

where the superscripts L,R and S correspond to the left-, right-handed and scalar parts of
the self-energies, respectively. The ω± are the left- and right-handed projectors. The full
set of counterterms is then given in terms of the left-/right-handed and scalar parts of the
respective self-energies as

δmq = mq

2 Re
[
ΣL
qq(m2

q) + ΣR
qq(m2

q) + 2ΣS
qq(m2

q)
]
, (3.26a)

δZLqq = −Re
[
ΣL
qq(m2

q)
]
−m2

qRe
[
∂ΣL

qq(p2)
∂p2 +

∂ΣR
qq(p2)
∂p2 + 2

∂ΣS
qq(p2)
∂p2

]∣∣∣∣∣
p2=m2

q

, (3.26b)

δZRqq = −Re
[
ΣR
qq(m2

q)
]
−m2

qRe
[
∂ΣL

qq(p2)
∂p2 +

∂ΣR
qq(p2)
∂p2 + 2

∂ΣS
qq(p2)
∂p2

]∣∣∣∣∣
p2=m2

q

. (3.26c)

3.4 Renormalisation of the mixing angle

The rotation eq. (2.6) of the interaction states ΦH and ΦS to the mass eigenstates h1 and h2
introduces the mixing angle α that needs to be renormalized as well. The renormalisation
of the mixing angles in SM extensions was thoroughly discussed in refs. [14–26]. There
are many possibilities to renormalize the mixing angle. One possibility is to use a physical
process, like a decay. However, it is known that the usage of a process-dependent scheme
may yield an unphysically large counterterm [15] which in turn leads to extremely large
corrections. In this work we will use the KOSY scheme, proposed in refs. [27, 28], which
connects the angle counterterm with the usual OS counterterms for the scalar.2The bare
parameter α0 can be expressed in terms of the renormalized one, α, as

α0 = α+ δα . (3.27)

Considering the field strength renormalisation before the rotation,(
h1
h2

)
= R (α+ δα)

√
ZΦ

(
ΦH

ΦS

)
, (3.28)

2Note, however, that the KOSY scheme can lead to gauge-dependent results [15].
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and expanding it to strict one-loop order,

R (α+ δα)
√
ZΦ

(
ΦH

ΦS

)
= R(δα)R(α)

√
ZΦR(α)T︸ ︷︷ ︸

!=
√
ZH

R(α)
(

ΦH

ΦS

)
+O(δα2) =

√
ZH

(
h1
h2

)
,

(3.29)
yields the field strength renormalisation matrix

√
ZH connecting the bare and renormalised

fields in the mass basis. Using the rotation matrix expanded at one-loop order results in

√
ZH = R(δα)

(
1 + δZh1h1

2 δCh

δCh 1 + δZh2h2
2

)
≈
(

1 + δZh1h1
2 δCh + δα

δCh − δα 1 + δZh2h2
2

)
. (3.30)

Demanding that the field mixing vanishes on the mass shell is equivalent to identifying the
off-diagonal elements of

√
ZH with those in eq. (3.13),

δZh1h2

2
!= δCh + δα and δZh2h1

2
!= δCh − δα . (3.31)

With eq. (3.21) the mixing angle counterterm reads

δα = 1
4 (δZh1h2 − δZh2h1) (3.32)

= 1
2(m2

h1
−m2

h2
)
Re
(
Σh1h2(m2

h1) + Σh1h2(m2
h2)− 2δTh1h2

)
. (3.33)

We do not perform a comparison of various renormalisation schemes, like a process-
dependent, MS, or the KOSY scheme, in this work. We note, however, that in our previous
work [29], when comparing these three schemes, we found that only the KOSY scheme led
to reasonable NLO predictions.

3.5 Renormalisation of the singlet VEV vs

In the Standard Tadpole (ST) scheme that we are using in this work, there is no need to
renormalize the singlet VEV vs. It was shown in ref. [30] that when choosing an Rξ gauge
in the ST scheme there is no divergence associated with vs at one-loop order if the scalar
field obeys a rigid invariance. In these SM extensions the singlet field is disconnected from
the gauge sector and hence invariant under global gauge transformations. This is exactly
the case for typical extended scalar sectors with a singlet field, like the complex (or real)
singlet extension of the SM or the Next-to-2-Higgs-Doublet Model, where a real singlet
field is added to the 2-Higgs-Doublet Model. We note, however, that in the alternative
tadpole scheme as defined in ref. [31] for the SM and in ref. [18] for the N2HDM this is no
longer true and a counterterm for vs is needed.

4 Spin-independent cross section in the PNGDM

In the following, the calculation of the spin-independent (SI) cross section for the direct
detection of DM is presented. The starting point is the scattering process of a DM particle

– 8 –
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with the nucleon. The effective coupling of this process is denoted by αn,

αn

χ χ

n n

= iAn = iαnunun = i · 2mnαn , (4.1)

where it is additionally assumed that the momentum of the nucleon is not altered, that
is, the momentum transfer between the DM particle and the nucleon is negligible. We can
then use the normalisation for the spinors, unun = 2mn. The DM-nucleon cross section
with the interaction in eq. (4.1) is then given by

σn = 1
4π

(
mn

mn +mχ

)2

|αn|2 , (4.2)

where mn corresponds to the nucleon mass and mχ to the DM mass. Since the nucleon is a
bound state the contributions to the effective DM-nucleon coupling is on the one hand given
by the light valence quarks (q = u, d, s) and on the other hand by the gluon interactions.
In order to calculate the cross section the parton basis is used to describe the interaction
between the DM and the nucleon. The SI DM-nucleon cross section is calculated by taking
the related operators in the non-relativistic limit. The parton operator basis forming the
most general SI-interactions for scalar DM is given by [32]

Leff =
∑
q

CqSO
q
S + CgSO

g
S +

∑
q

CqTO
q
T , (4.3)

with the operators

OqS = mqχ
2q̄q , (4.4a)

OgS = αs
π
χ2GaµνG

aµν , (4.4b)

OqT = 1
m2
χ

χ2i∂µi∂ν 1
2 i q̄

(
∂µγν + ∂νγµ −

1
2gµν

/∂

)
q︸ ︷︷ ︸

≡Oqµν

. (4.4c)

The operators are built with the DM field χ, the quark spinor q and the gluon field strength
tensor Gµνa and αs denotes the strong coupling constant. The operator OqS describes the in-
teraction induced by the quark-DM interactions and OgS the one induced by the gluon-DM
interactions. The twist-2 operator Oqµν also contributes to the SI cross section due to ad-
ditional gluon induced interactions. Assuming on-shell nucleon states |n〉, the expectation
values of the operators in eq. (4.4) can be expressed as [33–35]

〈n|mq q̄q |n〉 ≡ mnf
n
q , (4.5a)

〈n| − αs
12πG

a
µνG

aµν |n〉 ≡ 2
27mnf

n
g , (4.5b)

with the nucleon matrix elements fnq and fng calculated on the lattice. The numerical values
for the matrix elements used in the analysis are given in section 5.1. Eq. (4.5) allows to

– 9 –



J
H
E
P
1
2
(
2
0
2
0
)
0
3
4

formulate the effective DM-nucleon coupling αn in terms of the Wilson coefficients defined
in eq. (4.3) arriving at [36]

σn = 1
π

(
mn

mχ+mn

)2
∣∣∣∣∣∣
∑

q=u,d,s

mnf
n
q C

q
S−

8
9mnf

n
g C

g
S+ 3

4mn

∑
q=u,d,s,c,b

(qn(2)+q̄n(2))CqT

∣∣∣∣∣∣
2

.

(4.6)
The numerical values of the second momenta of the quarks qn(2) are also given in sec-
tion 5.1.

In order to give an estimate of the DM-nucleon cross section the remaining task is to
calculate the Wilson coefficients Cq/gS and CqT in eq. (4.6).

4.1 SI cross section at tree level

We will start by showing that the SI cross section vanishes in the limit of vanishing mo-
mentum transfer. The Feynman diagrams representing the quark contributions together
with the corresponding amplitude are given by

χ χ

q q
h1 +

χ χ

q q
h2 = −i

(m2
h1
−m2

h2
) cosα sinα

(t−m2
h1

)(t−m2
h2

)vvS
mqt ū(p2)u(p1) , (4.7)

wheremhi (i = 1, 2) are the neutral Higgs boson masses and t = (pχ − pq)2 the Mandelstam
variable. The momenta of the DM particle and the quark are denoted by pχ and pq,
respectively. The amplitude in eq. (4.7) allows to read off the Wilson coefficient CqS by
identifying mqūu as the operator OqS . The amplitude and therefore the Wilson coefficient is
proportional to the momentum transfer t and vanishes in the limit of vanishing momentum
transfer. Hence, the quark contribution to the SI cross section is zero. Note that this
behaviour is related to the U(1) symmetry of the model as will be discussed later. Let us
show that also the gluon part of the cross section vanishes in the same limit which implies
that the SI cross section vanishes at tree level in the limit of vanishing momentum transfer.
(Note that the twist-2 operator does not contribute at leading order.)

The QCD trace anomaly allows to relate the quark operator of the heavy quarks
Q = b, c, t with the gluon field strength tensor yielding the effective gluon interaction with
DM particles

mQQ̄Q→ −
αs

12πG
a
µνG

aµν . (4.8)

The corresponding Feynman diagram is depicted in figure 1 and can be calculated by first
calculating the process with a (heavy) external quark as in eq. (4.7) and using eq. (4.8) to
determine the effective gluon interaction. These amplitudes are then used to the extract
the Wilson coefficients CgS . Note that the gluon contributions are extracted in the same way
as in eq. (4.7), and are therefore proportional to the momentum transfer t. Consequently,
also the gluon contributions vanish in the limit of vanishing momentum transfer.

4.2 EW corrections to the SI cross section

As shown in the last section, the SI cross section of the PNGDM is suppressed at tree level
due to its proportionality to the momentum exchange. Since we work in the limit t = 0,
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Figure 1. Interaction of a DM particle and a gluon via a Higgs boson mediator and a quark loop.

χ χ

q q

=

χ χ

q q
+

χ χ

q q
+

χ χ

q q

+

χ χ

q q
+

χ χ

q q
+

χ χ

q q

Figure 2. One-loop EW corrections to DM-quark scattering. They are given by propagator
corrections, vertex corrections, box and triangle diagrams.

the tree-level cross section vanishes and we have to calculate the cross section in the next
order of perturbation theory. In this section we calculate the EW corrections to the SI
cross section which follows very closely our approach presented in ref. [29] and updated in
ref. [37]. Note that the vector DM model presented in our previous work does not show
the tree-level suppression present in the PNGDM, hence the cross section is now calculated
by taking the NLO amplitude squared whereas in vector DM model the LO times NLO
term was taken. The generic one-loop EW corrections are depicted in figure 2, where the
gray blob denotes the renormalized 4-point vertex (left-side), the renormalized propagator
corrections (first diagram on the right-hand side), the upper renormalized vertex (second
diagram), the lower renormalized vertex (third diagram) and the box corrections (last three
diagrams). The box corrections can be split in the genuine square box corrections, crossed
box and triangle corrections. In figure 2 only the quark contributions are shown and we
will comment on the gluon contributions at NLO later on.

4.2.1 Mediator corrections

In this section we will discuss the propagator corrections. To calculate the one-loop cor-
rections to the mediator we first evaluate all genuine one-loop diagrams in figure 3 and
construct the corresponding counterterm. This can be achieved by evaluating the renor-
malized one-loop propagator (i, j = 1, 2)

∆hihj = −
Σ̂hihj (p2 = 0)
m2
hi
m2
hj

, (4.9)

with the renormalised self-energy matrix(
Σ̂h1h1 Σ̂h1h2

Σ̂h2h1 Σ̂h2h2

)
≡ Σ̂(p2) = Σ(p2)− δm2 − δT + δZ

2
(
p2 −M2

)
+
(
p2 −M2

) δZ
2 . (4.10)
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χ χ

q q

Φ1

a)
hi

hj

χ χ

q q

b)
hi

hk hl

hj

χ χ

q q

c)
hi

Φ2 Φ2

hj

χ χ

q q

d)
hi

G0 Z
hj

χ χ

q q

e)
hi

G+ W+

hj

χ χ

q q

f)
hi

hj

Figure 3. The one-loop EW corrections to the mediator. They can be split in the genuine
one-loop diagrams a)-e)) and the respective counterterm amplitude (diagram f)). The indices
i, j, k, l = 1, 2 indicates the respective Higgs mediator h1, h2. The possible field insertions are given
by Φ1 = {hi, χ,G(0,±), Z,W±} and Φ2 = {χ,G(0,±), Z,W±, ηZ , ηW , f}, where f stands for all
SM fermions, G(0,±) for the neutral and charged Goldstone bosons, respectively, and ηZ,W for the
ghost fields.

We now have everything to determine the contribution of the diagrams in figure 3. Note
that the field strength renormalisation constant δZ is introduced artificially, since the Higgs
bosons correspond to an internal degree of freedom. As it turns out, if the field strength
renormalisation constants are included in all separate topologies (lower vertex, upper vertex
and mediator corrections), they cancel each other exactly in the sum. Hence, in the end
no artificially introduced δZ parts remain in the calculation. The inclusion of these δZ
factors on the other hand allows to check for the UV finiteness in each topology by itself,
simplifying the calculation or rather the bookkeeping of the contributions.

4.2.2 Upper vertex (upV) corrections

The upper vertex corrections — referred to as upV— are depicted in figure 4. Diagrams
a) to f) are the genuine one-loop corrections and are calculated in the limit of vanishing
momentum transfer (i.e. the incoming momentum is equal to the outgoing momentum,
pin = pout). Note that this specific limit is stricter than taking q2 = (pχ − pq)2 = 0 implying
for instance vanishing Gram determinants complicating the reduction to the standard one-
loop scalar integrals. The numerical evaluation of the integrals is performed with the
Collier package [38–40] and explicitly cross-checked with an in-house implementation.
The counterterm diagram figure 4(g) is constructed by varying the tree-level coupling of
the χχhi vertex (i = 1, 2)

Cχχhi = −
m2
hi

vs
Ri2 , (4.11)

yielding

δCχχhi = −Ri2
vs
δm2

hi −
δRi2m

2
hi

vs
= −Ri2

vs
δm2

hi −
Ri1m

2
hi

vs
δα . (4.12)

Note that, since we are using the standard tadpole scheme, the introduction of a coun-
terterm for the singlet VEV vs is not required to obtain a UV finite result (cf. discussion
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hj hk

hi

χ χ

q q

b)
χ

χ χ

hi

χ χ

q q

c)

χ

hj hi

χ χ

q q

d)

χ

hjhi

χ χ

q q

e)
hj hk

hi

χ χ

q q

f)
Φ1 Φ1

hi

χ χ

q q

g)

hi

Figure 4. The EW NLO corrections to the upper vertex. The indices i, j, k = 1, 2 indicate the
respective Higgs mediator h1, h2. The field insertion is given by Φ1 = {χ,G(0,±)}.

χ χ

q q

a)
hi

hj hk

q

χ χ

q q

b)
hi

Φ1 Φ1

q′

χ χ

q q

c)
hi

q′ q′

Φ2

χ χ

q q

d)
hi

G0, G+ Z, W+

q′

χ χ

q q

e)
hi

Z, W+ G0, G+

q′

χ χ

q q

f)

hi

Figure 5. The EW NLO corrections to the lower vertex. The indices i, j, k = 1, 2 indicate the
respective Higgs mediator h1, h2. The possible field insertions are given by Φ1 = {G(0,±), Z,W±},
Φ2 = {hi, G(0,±), γ, Z,W±}. The quark q′ corresponds to the up- or down-type quark depending
on the field insertion, respectively. Note that for simplicity a diagonal CKM matrix is assumed.

in 3.5). The corresponding counterterm amplitudes read then

iACT
upV,h1 = −Cqqh1

m2
h1

[
δCχχh1 + 1

2 (Cχχh1δZh1h1 + Cχχh2δZh2h1) + Cχχh1δZχχ

]
ū(pq)u(pq) ,

(4.13a)

iACT
upV,h2 = −Cqqh2

m2
h2

[
δCχχh2 + 1

2 (Cχχh2δZh2h2 + Cχχh1δZh1h2) + Cχχh2δZχχ

]
ū(pq)u(pq) ,

(4.13b)

with the quark Higgs coupling (i = 1, 2)

Cqqhi = − gmq

2mW
Ri1 , (4.14)

and the quark spinors u. The artificially introduced δZ factors for the internal Higgs
mediator are again included to ensure the proper cancellation in the sum of all topologies.

4.2.3 Lower vertex (loV) corrections
In figure 5 all diagrams needed for the lower vertex, in the following referred as loV, are
shown. The diagrams (a-e) correspond to the genuine one-loop diagrams calculated for
vanishing momentum transfer. The counterterm amplitude figure 5(f) is obtained in the
same way as for the upV. The tree-level coupling of the lower vertex qqhi is given in
eq. (4.14), hence the counterterm for this vertex reads

δCqqhi = −gmq

2mW

(
Ri1

(
−δm

2
W

2m2
W

+ δg

g
+ δmq

mq

)
−Ri2δα

)
, (4.15)

– 13 –



J
H
E
P
1
2
(
2
0
2
0
)
0
3
4

q

q

q

γ

q

q

hi

γ

q

q

Figure 6. The QED subset. Left: The quark self-energy containing an internal photon line. Right:
The vertex correction with an internal photon line.

and the full CT amplitude

iACTloV,h1 = −Cχχh1

m2
h1

(
δCqqh1 + 1

2
(
Cqqh1δZh1h1 + Cqqh2δZh2h1 + Cqqh1δZ

L
qq + Cqqh1δZ

R
qq

))
,

(4.16)

iACTloV,h2 = −Cχχh2

m2
h2

(
δCqqh2 + 1

2
(
Cqqh2δZh2h2 + Cqqh1δZh1h2 + Cqqh2δZ

L
qq + Cqqh2δZ

R
qq

))
.

(4.17)

The presence of charged particles in the final states indicates additional infrared (IR)
divergencies in the amplitudes. The introduction of real radiation to regulate these IR
divergencies does not work in this context, since the matching to the parton operators in
eq. (4.4) occurs at the amplitude level and the cancellation of the IR divergencies happens at
the cross section level. Furthermore, the inclusion of real corrections would also introduce
additional tensor structures in the amplitude which have to be accounted for in the parton
operator basis.

The IR divergent parts of the amplitude form a closed subset of diagrams referred to
as QED subset in the following and all diagrams contain an internal photon line. The
corresponding diagrams are depicted in figure 6 where the self-energy of the quarks enters
through the mass counterterm δmq and the field strength renormalisation constants δZL/Rqq ,
and the vertex corrections are part of the genuine one-loop vertex corrections of the lower
vertex. One possible solution is the expansion of the QED subset in terms of the external
quark momentum pq yielding an IR safe result as discussed in ref. [37]. However, the U(1)
symmetry of the potential leads to the complete cancellation of the QED subset, such
that no IR divergencies are present in the final renormalized amplitude of the lower vertex
corrections. Hence no additional treatment is required to regulate IR divergencies.

4.2.4 Box diagrams

The box and triangle topologies contributing to the DM-quark interactions are presented in
figure 7, where the incoming momenta are denoted by p1 and p2, respectively. For simplicity,
the triangle diagrams containing Goldstone bosons (G0, G±) are not shown, but they are
included in the calculation and treated in the same way as the Higgs mediator triangle
diagrams in figure 7. The definition of the momenta reflecting the vanishing momentum
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q q

p1 p1 − k p1

k hi khj

p2 p2 + k p2

+

χ χ

q q

k k

hj hi

p1 p1 − k p1

p2 p2 − k p2

iA∆
ij ≡

χ χ

q q

k k
hi hj

p1 p1

p2 p2 + k p2

Figure 7. Box topologies contributing to the DM-quark scattering referred to as A� and the
triangle topologies denoted by A∆. The indices i, j denote the Higgs mediators h1, h2.

transfer limit allows to express the diagrams as

iA�
ij = i4Aij ū(p2)

∫
d4k

(2π)4
1

k2 −m2
i

1
(p1 − k)2 −m2

χ

1
k2 −m2

j

·
(

/p2 + /k +mq

(p2 + k)2 −m2
q

+ /p2 − /k +mq

(p2 − k)2 −m2
q

)
u(p2) ,

(4.18a)

iA∆
ij = i4Bij ū(p2)

∫
d4k

(2π)4
1

k2 −m2
i

1
k2 −m2

j

/p2 + /k +mq

(p2 + k)2 −m2
q

u(p2) , (4.18b)

The generic couplings are defined as Aij = aiajbibj and Bij = aiajbij , where ai,j and bi,j
are the coefficients of the hi,j q̄q and hi,jχχ vertices, respectively, and bij is the coefficient
of the hihjχχ vertex. The coefficients are given explicitly by

a1 = −imq cosα
v

, a2 = −imq sinα
v

, b1 = −i
m2
h1

sinα
vs

, b2 = −i
m2
h2

cosα
vs

,

b11 = sinα
4vv2

s

(
vs
(
m2
h2 −m

2
h1

)
cos3 α+ vm2

h2 cos2 α sinα+ vm2
h1 sin3 α

)
,

b22 = cosα
4vv2

s

(
vm2

h2 cos3 α+ vm2
h1 cosα sin2 α+ vs

(
m2
h2 −m

2
h1

)
sin3 α

)
,

b12 = cosα sinα
4vv2

s

(
2vm2

h2 cos2 α+ 2vm2
h1 sin2 α− vs

(
m2
h2 −m

2
h1

)
sin 3α

)
.

(4.19)

The main contributions to the amplitudes in eq. (4.18) come from the regions close to
the poles of the propagators, that is where k2 is close to the squared Higgs masses m2

h1
and

m2
h2

which are of the order of several hundreds to thousands of GeV2. In direct detection
experiments, the target nucleus is almost at rest and hence the energy of the nucleons
can be approximated by the Fermi energy, which is in the order of MeV. Therefore the
approximation p2 � k is valid in these integrals and the denominators that contain p2 can
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be expanded as follows [36, 41],

1
(p2 ± k)2 −m2

q

= 1
k2 ± 2p2 · k

= 1
k2 ∓

2p2 · k
k4 +O

((
p2 · k
k2

)2)
, (4.20)

and using the Dirac equation /pu(p) = mqu(p) we obtain

iA�
ij = i4Aij ū(p2)

∫
d4k

(2π)4
1

k2 −m2
i

1
(p1 − k)2 −m2

χ

1
k2 −m2

j

(4mq

k2 + −4p2 · k
k4 /k

)
u(p2),

(4.21a)

iA∆
ij = i4Bij ū(p2)

∫
d4k

(2π)4
1

k2 −m2
i

1
k2 −m2

j

( 1
k2 −

2p2 · k
k4

)
(2mq + /k)u(p2). (4.21b)

The expanded amplitudes in eq. (4.21) can then be reduced with standard techniques to the
Passarino-Veltmann integral basis. Furthermore, we emphasise that the expansion leads
to reduced scalar integrals not depending on kinematic variables as s allowing to use the
matching procedure to the parton operator basis.

4.2.5 General mapping to the Wilson coefficients

All diagrams of the NLO corrections presented in sections 4.2.1 to 4.2.4 have only two
independent spinor structures contributing to the SI cross section, namely ū(p2)u(p2)
(with the remainder of the amplitude independent of momenta) and terms proportional to
(p1 · p2) ū(p2)/p1u(p2). Hence, the amplitude can be cast into the following form

iA = i
(
Aū(p2)u(p2) +B (p1 · p2) ū(p2)/p1u(p2)

)
(4.22)

with some momentum-independent constants A and B. The definition of the twist-2 op-
erator allows to reformulate

q̄i∂µγνq = Oqµν + i q̄
(
∂µγν − ∂νγµ

2 + 1
4gµν

/∂

)
q , (4.23)

where the asymmetric part does not contribute to the SI cross section and it can therefore
be dropped. The resulting amplitude and the coefficients can be mapped to the effective
Lagrangian containing the parton operators

Leff =
(

1
2mq

A+ 1
8m

2
χB

)
mqχχq̄q + 1

2B (χi∂µi∂νχ)Oqµν . (4.24)

Identifying the coefficients in eq. (4.24) with the Wilson coefficients in eq. (4.3) yields

CqS = 1
2mq

A+
m2
χ

8 B , (4.25a)

CqT =
m2
χ

2 B . (4.25b)

By using eq. (4.25) the calculated renormalised amplitude can be mapped to the corre-
sponding Wilson coefficient allowing to determine the SI cross section at NLO.
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Figure 8. Generic one-loop correction of the DM-gluon interaction. The contributions can be split
in mediator, vertex corrections and the effective two-loop contributions. The gray blob indicates the
genuine one-loop corrections and the respective counterterm insertion. Figure 9 shows the details
of the contribution of each of the blobs of the last diagram.

4.2.6 Gluon contributions

Besides the DM-quark interactions also the DM-gluon interactions contribute to the SI
cross section. As shown in section 4.1 the leading DM-gluon contributions can be obtained
by using the relation between the heavy quark operators and the gluon field strength
tensor in eq. (4.8), but this returns a vanishing SI cross section for vanishing momentum
transfer (t → 0). Therefore, next-to leading order effects have to be taken into account
to determine the DM-gluon interactions. The leading non-vanishing gluon interactions are
shown in figure 8 which are 2-loop diagrams. The first two diagrams correspond to the
generic mediator and upper vertex EW corrections in combination with the effective vertex
gghi which can be calculated in the heavy quark limit (by using eq. (4.8)). The third term
corresponds to an effective two-loop calculation which will be discussed later.

The first two diagrams can be calculated using the renormalized upper vertex (sec-
tion 4.2.2) and the mediator corrections (section 4.2.1) with external quarks instead of the
gluon and using eq. (4.8) to effectively determine the DM-gluon interactions. By identi-
fying the gluon parton operator Ogs the respective Wilson coefficient can be deduced in
accordance with the quark operators. This method of including the gluon contributions
poses several problems, however.

The first problem is that, as will be shown latter, the correct mass dependence, in
the limit mχ → 0, is not recovered in the limit of zero DM velocity. As discussed in
ref. [9] for an exact symmetry the Goldstone boson completely decouples from all of its
interactions in the limit of vanishing momentum. Furthermore, it can be shown with the
help of a toy model that scattering amplitudes involving Goldstone bosons vanish in the
zero-momentum limit although this is not manifest at the Lagrangian level and only occurs
through a nontrivial cancellation of terms in the S-matrix. The reason is that in the zero-
momentum limit the Goldstone state is a symmetry transformation of the ground state
and therefore indistinguishable from the vacuum in this limit [9]. The pseudo Goldstone
case is similar — we just have to take simultaneously the limit of zero-momentum together
with mχ → 0 which takes us back to the potential invariant under U(1).

The second problem is that by this matching, only the diagrams with electroweak
corrections to the Higgs boson propagator and the upper DM-Higgs boson vertex can
be taken into account. However, electroweak corrections to the lower quark-Higgs boson
vertex would obviously interfere with the quark triangle, which makes a matching to heavy
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Figure 9. Triangle and box diagrams with external gluons. a) shows the meaning of the lower
blob; b) shows the meaning of the upper blob.

quarks non-trivial, since the loops do not factorize. This second problem reveals itself in
the framework of our renormalisation scheme in the following two points. By neglecting
the lower vertex corrections, the cancellation of the artificially introduced δZhihj does not
occur anymore and an uncanceled finite piece of δZhihj remains in the Wilson coefficient.
In particular, the off-diagonal elements of the wave function renormalisation constants
δZhihj (i 6= j) introduce a mass pole 1/

(
m2
h2
−m2

h1

)
yielding a parametric enhancement

for nearly degenerate mass spectra. This divergent enhancement does not correspond to a
physical phenomenon but rather to a wrong method for the determination of the DM-gluon
interactions. Also, the KOSY scheme for the renormalisation of the mixing counterterm
δα produces numerically stable (in the sense of no unphysical parametricly enhanced EW
NLO corrections or divergencies) NLO predictions if either δα and δZhihj appear in a
specific combination or if δα appears in a full process several times canceling the mass
pole structure [22]. The former occurs e.g. in 1 → 2 Higgs decays yielding a δZhihj for
the on-shell Higgs state and a corresponding δα counterterm in the vertex counterterm.
The latter is present for instance in the 2→ 2 scattering process χq → χq, since δα comes
both from the upper and from the lower vertices. By neglecting in the lower vertex the
EW corrections in the triangle-type diagrams in figure 8 the conditions for a numerically
stable KOSY mixing counterterm δα are not given, and hence a non-physical enhancement
is expected.

The third term in figure 8 corresponds to an effective two-loop calculation, where
the two different gray blobs are explained in figure 9. The diagrams in figure 9(a) are
calculated using the approach presented in ref. [41] and already applied to the VDM in
ref. [29]. Applying the heavy quark limit (valid for mediator masses below the top quark
mass) allows us to formulate an effective vertex hihjgg

hi hj

g g

≈ ig2
s

48π2m2
t

aiaj , (4.26)

where ai,j are the Higgs-quark couplings defined in eq. (4.19). The vertex is produced by
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the effective Lagrangian

L ⊃ 1
2

g2
s

48π2m2
t

aiaj hihjG
a
µν G

aµν , (4.27)

and therefore the Wilson coefficients OgS can be extracted by calculating the one-loop
diagrams induced by the vertices depicted in figure 9(b). The one-loop corrections induced
by the last vertex in figure 9(b) have to be calculated with caution. The first two vertices
do not yield a UV pole in the amplitude, hence no counterterm is required. On the other
hand, the last vertex generates in general a UV pole requiring a vertex counterterm, since
these corrections correspond to an effective vertex correction. However, the U(1) symmetry
of the PNGDM ensures the cancellation of all UV poles, yielding a UV safe amplitude.

We emphasise that the inclusion of such effective vertex corrections has to be done
with caution, since the cancellation of the UV poles is not guaranteed and is model de-
pendent. Furthermore, these corrections are effective two-loop calculations, where other
two-loop contributions are dropped because they are assumed to be small. This is not
the case in general. Nevertheless, the size of the included effective two-loop corrections is
small compared to the other EW NLO corrections (upV,loV,med,box) when a scan over
the allowed parameter space is performed. Hence, we have included these corrections in
our calculation.

In the following we will refer to the inclusion of the EW NLO corrections of the upper
vertex or mediator in combination with the effective Higgs-gluon vertex as the approach
with the additional gluon contributions. Whereby, the proper SI cross section is calcu-
lated solely by taking the effective two-loop contributions into account (third diagram of
figure 8). As we will discuss later, these contributions yield only a sub-percentage effect
on the overall cross section, hence the inclusion of these contributions does not alter the
results significantly.

5 Numerical results

5.1 Numerical set-up and parameters

In the following we list the numerical values used for our study. The SM input parameters
are taken as [42]

mu = 0.19 GeV , mc = 1.4 GeV , mt = 172.5 GeV ,

md = 0.19 GeV , ms = 0.19 GeV , mb = 4.75 GeV ,

me = 0.511 MeV , mµ = 105.658 MeV , mτ = 1.777 GeV ,

mW = 80.398 GeV , v = 246 GeV ,

mZ = 91.188 GeV .

(5.1)

The SU(2) electroweak gauge coupling g and the Weinberg angle are expressed in terms of
the gauge boson masses and the electroweak VEV,

g = 2mW /v = 0.653 , sin θW = mW /mZ = 0.472 . (5.2)
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Note that we chose to renormalize the Higgs sector in the mass-ordered Higgs basis h1 and
h2 with the masses mh1 < mh2 . One of the Higgs bosons is identified as the SM-like Higgs
boson with a mass of [43]

mh = 125.09 GeV , (5.3)

and the non-SM like Higgs boson will be referred to as φ, with mass mφ. Both mass
hierarchies mh < mφ and mφ < mh are allowed in the analysis.

In the following, we refer to the SI cross section as the SI cross section obtained by the
scattering on a proton

σ ≡ σp , (5.4)

where the proton mass is given by

mp = 0.938 GeV . (5.5)

The nuclear matrix elements for the proton needed in eq. (4.6) are [33–35]

fpu = 0.015 13 , fpd = 0.0191 , fps = 0.0447 ,
fpg = 0.921 07 ,

up(2) = 0.22 , cp(2) = 0.019 ,
ūp(2) = 0.034 , c̄p(2) = 0.019 ,
dp(2) = 0.11 , sp(2) = 0.026 , bp(2) = 0.012 ,
d̄p(2) = 0.036 , s̄p(2) = 0.026 , b̄p(2) = 0.012 ,

(5.6)

and it should be noted that the uncertainties in the determination of these nuclear matrix
elements are not taken into account. For the parameter region scan we implemented the
PNGDM in ScannerS [44, 45] which is now publicly available.3

The points generated using ScannerS have to be in agreement with the most relevant
experimental and theoretical constraints. ScannerS allows to check that the potential
is bounded from below, that there is a global minimum and that perturbative unitarity
holds. The SM-like Higgs couplings to the remaining SM particles are all modified by
the same factor. Hence, the bound on the signal strength [43] is used to constrain this
parameter. There are new contributions to the massive gauge-boson self-energies, ΠWW (q2)
and ΠZZ(q2). The variables S, T, U [46, 47] are used to guarantee agreement with the
electroweak precision measurements at the 2σ level (for the bounds on the model from
perturbativity up to Planck scale see [48]).

The collider bounds from LEP, Tevatron and the LHC are all encoded in HiggsBounds
5.6.0 [49] and HiggsSignals 2.3.1 [50]. Agreement at the 95% confidence level is asked
using the exclusion limits for all available searches for non-standard Higgs bosons, including
Higgs invisible decays. The corresponding branching ratios are calculated with AnyHdecay
1.1.0 [45]. This code includes the Higgs decay widths, including the state-of-the art higher-
order QCD corrections, for the complex singlet model as obtained from sHDECAY [51]. The

3The model implementation can be found in ScannerS as CxSMDark.
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Figure 10. The effective SI-DM nucleon cross section versus the DM mass mχ is shown, where the
color code indicates the value of the non-SM like Higgs boson mass mφ. The gray shaded region
denotes the neutrino floor background and the lines the respective (expected) limits of the different
experiments. The vertical red line corresponds to mχ = mh/2.

code sHDECAY is based on the implementation of the singlet models in HDECAY [52, 53]. For
our calculations all EW radiative corrections in HDECAY are turned off for consistency.

The DM relic abundance for each model is calculated with the MicrOMEGAs code [54],
which is compared with the current experimental result (Ωh2)obs

DM = 0.1186 ± 0.002 from
the Planck Collaboration [55]. We do not restrict the DM relic abundance to be exactly
at the experimental value but rather that the value predicted by the model has to be
equal to or smaller than the observed central value plus 2σ. This way, we can consider
both the dominant and subdominant DM cases simultaneously. Regarding direct detection
the XENON1T [56, 57] experiment gives the most stringent upper bound for the DM
nucleon scattering.

The scan ranges are chosen to be

mφ ∈ [ 30 GeV, 1000 GeV ] ,
mχ ∈ [ 30 GeV, 1000 GeV ] ,
vS ∈ [ 1 GeV, 1000 GeV ] ,
α ∈ [ −π/2, π/2 ] .

(5.7)

5.2 Results and discussion

We start the discussion with the Xenon plot in figure 10. The effective SI DM-nucleon
cross section is shown as a function of the DM mass mχ. Note that the actual SI cross
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section has to be rescaled with the factor

fχχ ≡
(
Ωh2)

χ

(Ωh2)DM
(5.8)

with the observed relic density
(
Ωh2)

DM and the produced relic density
(
Ωh2)

χ for the
DM WIMP χ. As discussed, we do not demand that the DM candidate accounts for the
full relic density. When DM is under abundant, the effective factor in eq. (5.8) corrects
the cross section accordingly. The relic density is calculated in the standard freeze-out
mechanism with the help of MicrOmegas implemented in ScannerS. The color code in
figure 10 denotes the value of the non-SM like Higgs boson mass mφ and the gray shaded
region corresponds to the neutrino floor [11]. The different lines correspond to the limits
of the different DM detection experiments. The vertical red line indicates the half of the
SM-like Higgs boson mass.

All parameter points shown in figure 10 are compatible with the theoretical and exper-
imental constraints described previously. The figure shows that for the entire range of the
DM mass from roughly 50GeV up to 1TeV, only small mass regions around mχ ≈ mh/2
and mχ ≈ mφ/2 may yield an effective SI cross section above the neutrino floor. In the
case of mχ ≈ mh/2 we can see a large number of points that are basically above but close
mh/2; points below mh/2 are excluded by the LHC invisible decay constraints. For the
region where mχ ≈ mφ/2 only a few points for mφ of the order of 1TeV are above the neu-
trino floor. There are however more points in this region that are above the region where
most points are concentrated. The fact that only scattered points appear in this region is
related to a combination of the experimental constraints. These regions correspond to the
two resonances h and φ, respectively. The requirement of proper dark matter abundance
leads to the suppression of the coupling between DM and the resonance. However, the
kinematical enhancement caused by the resonance compensates for the suppressed cou-
plings that govern DM annihilation in the early Universe. Parameter points below the
neutrino floor are not of interest, since these points will not be able to be checked by future
direct detection experiments, as the neutrino floor puts a natural limit to the sensitivity
of this kind of experiments. The abrupt cut for mχ below mh/2 is induced by Higgs to
invisible searches yielding a strict limit, since in this parameter region the decay h → χχ

is kinematically allowed. Hence, only a few allowed points are found in this specific pa-
rameter region. We emphasise that the tree-level prediction for the SI cross section is zero
due to the vanishing momentum-transfer limit, hence the parameter points cannot be con-
strained by direct detection experiments with tree-level calculations. However, as shown
in figure 10, the EW NLO corrections can shift the parameter points above the neutrino
floor and approaching the expected limit of the future Xenon 10T experiment. Therefore,
the EW NLO corrections might play an important role in the discussion of the sensitivity
of the direct detection experiments and derived exclusion limits.

In figure 11 the SI cross section is shown as a function of the non-SM like Higgs boson
mass mφ with the color code indicating the mixing angle α. Note that we do not include
the factor fχχ here. The SI cross section drops for degenerate neutral Higgs boson masses
(mφ ≈ mh) because the NLO cross section is proportional to m2

φ−m2
h as shown in ref. [8].
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Figure 11. The SI cross section is shown as a function of the non-SM like Higgs boson mass mφ.
The gray points denote the full sample passing all experimental and theoretical constraints. The
colored points yield SI cross sections above the neutrino floor, where the color code indicates the
mixing angle α. The two vertical lines indicate mφ = mh/2 and mφ = mh, respectively. On the
left-hand side, all of the about 260.000 parameter points fulfilling the theoretical and experimental
constraints are plotted. On the right-hand side, only the parameter points that appear above the
neutrino floor are plotted in color and all remaining parameter points are shown in gray.

On the left-hand side, all of the about 260.000 parameter points fulfilling the theoretical
and experimental constraints are plotted. On the right-hand side, only the parameter
points that lead to direct detection cross sections above the neutrino floor are plotted in
color and all remaining parameter points are shown in gray. It is interesting to note that
there are allowed points with very large cross sections which, however, do not fulfil the
relic density constraints. This way most points with the appropriate relic density have
a cross section below ∼ 10−46cm2, except for a few very heavy non-SM like Higgs boson
masses. All parameter points with an SI cross section above the neutrino floor have a
maximal mixing between the Higgs doublet gauge state ΦH and the singlet ΦS . Only a
single parameter point is above the neutrino floor with one neutral Higgs boson being a
singlet-like Higgs boson, meaning that the mass eigenstate is almost given by the singlet
field component. This parameter point is also the only parameter point having an inverted
Higgs spectrum (mφ < mh) while providing an SI cross section above the neutrino floor.

In figure 12 we show the SI cross section as a function of the DM mass mχ, where the
DM mass is varied while keeping the other input parameters fixed. On the left side the
resulting SI cross section is shown by starting from the benchmark point given in table 1
and then varying only the DM mass while keeping all other parameters fixed, and on the
right side we show the results by starting from the benchmark scenario presented in ref. [10]
with the input parameters

mφ = 1TeV , vs = 2v , sinα = 0.2 (5.9)

and variable DM mass.
The green line corresponds to the SI cross section calculated in the approach presented

in section 4.2 and the blue line shows the result for the approach with the additional
inclusion of the gluon contributions presented in section 4.2.6. As discussed in section 4.2.6
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Figure 12. In both figures the SI cross section is shown as a function of the DM mass mχ. The
green line indicates the result calculated in our presented approach and the blue line corresponds
to the approach including the additional gluon contributions discussed in section 4.2.6. In the left
plot, our starting point is the benchmark given in table 1 and on the right side the result using as
starting point the benchmark presented in [10] with mφ = 1TeV, vs = 2v and sinα = 0.2 is shown.

mφ [GeV] mχ [GeV] vs [GeV] α fχχ σ(SI) [cm2]
546.93 72.53 152.05 0.224 0.40 8.63 · 10−49

Table 1. Benchmark point of the PNGDM: The benchmark point is used to illustrate the param-
eter dependencies in the following. This parameter point provides an SI cross section above the
neutrino floor.

the additional gluon contributions induce several problems. The first problem can be clearly
seen in both plots in figure 12. The Goldstone nature of the DM candidate χ requires that
the SI cross section scales with the corresponding DM mass mχ [8], implying that the SI
cross section vanishes in the zero DM mass limit, since the Goldstone nature of the DM
candidate is restored. Note that this particular behaviour is only expected for vanishing
momentum transfer as assumed in the calculation. Our approach (neglecting the gluon
contributions) shows for both benchmark points (left and right in figure 12) the desired
behaviour for small DM masses mχ which does not happen when the additional gluon
contributions to the SI cross section are included.

As for the second problem related to the approximation performed in the two-loop
diagrams, it is not clear how it would reflect on the results. What we can see from the
plots is that for large DM masses both approaches yield similar results. The difference is
roughly a factor three induced by the inclusion of the gluon contributions. Further, the
results presented in ref. [10] are exactly reproduced only if we include the additional gluon
contributions. The important point here is to understand that unless a complete 2-loop
calculation of the gluon contribution is performed, nothing can be said about the inclusion
of approximate calculations of some diagrams.

We calculated all contributing diagrams in the general Rξ gauge in order to be able
to check for missing gauge cancellations. As it turned out, our result is completely gauge
independent. For the proper cancellation of all gauge dependencies the Goldstone triangle
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Figure 13. Left: The relative change of the SI cross section as defined in eq. (5.10) is shown as a
function of the gauge parameter ξ. The green line indicates the result calculated in our presented
approach and the blue line corresponds to the approach including the additional gluon contributions
discussed in section 4.2.6. Right: The relative change of the SI cross section as defined in eq. (5.11)
as a function of the DM mass mχ.

diagrams in figure 7 were crucial. They were needed to properly cancel the gauge depen-
dencies introduced in the vertex corrections. These diagrams are often overseen in the
literature. However, the inclusion of the additional gluon contributions introduces gauge
dependencies which are not cancelled. We define the relative change

∆ξσ ≡
σ − σ|ξ=1
σ|ξ=1

, (5.10)

where σ indicates the SI cross section calculated with the additional gluon contributions
in the general Rξ gauge and in the Feynman gauge (ξ = 1), respectively. In the left plot of
figure 13 we show the results for the relative change as a function of the gauge parameter
ξ. The color scheme follows that of figure 12. Again the benchmark scenario presented
in table 1 is used to determine the SI cross section. Obviously, when the additional gluon
contributions are included, the variation of the gauge parameter ξ changes the SI cross
section significantly preventing to make reasonable predictions for the NLO SI cross section.
Hence, not only the correct DM mass dependence is lost with the inclusion of the additional
gluon diagrams but also a strong gauge dependence is introduced.

Finally we will discuss the contribution of the third diagram in figure 8. In the right
plot of figure 13 we show the relative difference

∆gbσ ≡
σ − σ|nogb
σ|nogb

, (5.11)

where σ|nogb is the SI cross section calculated without the effective two-loop vertex (third
diagram in figure 8) and σ the SI cross section as presented. We varied the DM mass mχ

while keeping the other input parameters (same as in table 1) fixed. The most dominant
effect of the gluon boxes is obtained for small or large DM masses. Despite that, the overall
impact given by the gluon boxes is in the sub-percentage region. Hence, not taking into
account the gluon box diagrams and thereby treating all diagrams with external gluons in
figure 8 consistently would not significantly alter the overall result.
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In addition to the phenomenological discussion of the SI cross section of the
PNGDM we implemented the model in BSMPT [58, 59] allowing us to check for a first-order
electroweak phase transition in the early universe. For simplicity we force the vacuum
expectation value of the DM field component χ in eq. (2.2) to be equal to zero at all tem-
peratures while determining the global NLO minimum at finite temperature. This way
we ensure the stability of the DM candidate and its DM nature. All parameter points
above the neutrino floor provide an NLO stable vacuum in the sense that the vacuum
ground state of the one-loop effective potential (at zero temperature) is the same as the
tree-level ground state. However, all parameter points provide a weak phase transition
vc/Tc < 1, where vc is the SU(2) VEV (v) at the critical temperature Tc. The critical
temperature is defined as the temperature where the one-loop effective potential has two
degenerate minima. A more involved study in the phase structure at finite temperature of
the PNGDM might enable a strong first order electroweak phase transition. For instance,
allowing the DM field component to evolve a non-zero VEV at finite temperature leads to
interesting phenomenological consequences. These studies are left for future work.

6 Conclusions

In this work we have calculated the NLO corrections to the spin-independent scattering
cross section of a scalar DM particle off a nucleon in a Pseudo Nambu-Goldstone DMmodel.
This model has a scalar potential invariant under a global U(1) symmetry softly broken such
that a pseudo Nambu-Goldstone boson originates from the broken symmetry. The cross
section was first shown to be proportional to the Dark Matter velocity in ref. [7]. Therefore
there was the need to perform the calculation at NLO. There were two independent
calculations that appeared very close in time [8, 10].

The first calculation [8] was performed by considering from the effective Lagrangian

Leff =
∑
q

CqSO
q
S + CgSO

g
S +

∑
q

CqTO
q
T , (6.1)

only the first term
∑
q C

q
SO

q
S . Instead of nuclear matrix elements for the proton an effective

Higgs-nucleon coupling was used. Because in this case the one-loop result for the Wilson
coefficient is independent of the quark masses, it factorises, and it turns out that the
Higgs-nucleon effective coupling is the sum of the nuclear matrix elements. This calculation
reproduces the correct dependence of the cross section in the limit of vanishing Dark Matter
and is at least 90% of the total cross section, depending on the parameter points. Hence,
relative to this work we have now included the terms CgSO

g
S +

∑
q C

q
TO

q
T .

In the second calculation that appeared in ref. [10] all terms in the effective Lagrangian
were used. As previously discussed, the problem in this calculation resides in the gluon
diagram contributions (specifically the first two diagrams in figure 8). The 2-loop diagram
is not effectively calculated and instead an approximation is performed such that a proper
matching between the heavy quarks and the gluon operators cannot be performed. The
only way to solve the problem would be to perform the complete 2-loop calculation. The
approximation leads therefore to the fact that the Goldstone nature of the DM candidate
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is not recovered and that these gluon contributions present a strong gauge dependence
contrary to the rest of the calculation. Therefore these additional gluon contributions
should be dropped unless the full two-loop calculation is performed.

It is also worth mentioning that although we have used a different renormalisation
scheme than the ones from the two previous calculations our results show a very similar
behaviour when the different contributions are compared. Finally, we showed that with
the present constraints most of the allowed points are below the neutrino floor and only
experiments in the far future will be able to probe them.
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