
Modelling and Verifying Access Control for

Ethereum Smart Contracts

Frederik Reiche, Jonas Schi�, Robert Heinrich, Bernhard Beckert, Ralf
Reussner

Karlsruhe Institute of Technology
firstname.lastname@kit.edu

Abstract. Smart contracts are programs on decentralized platforms.
They provide services in the form of function calls, which are in princi-
ple visible to and callable by everyone on the network. However, smart
contracts often contain some functionality intended only for a restricted
subset of callers. Such smart contracts require access control.
In this work, we develop an approach for modelling access control on
the architecture level, using the Palladio tool. From this model, we au-
tomatically generate code stubs and source code which enforces access
control. Furthermore, we generate a formal speci�cation such that if the
implementation adheres to this speci�cation, access control is correct
according to the model. We also describe our concrete experience with
formal veri�cation of the generated as well as the interactively written
speci�cation. Overall, our approach enables de�ning an access control
model on a high level of abstraction, and ensuring its correct implemen-
tation.

1 Introduction

Ethereum smart contracts are programs, usually written in the Solidity pro-
gramming language, which run on the Ethereum blockchain, managing digital
currency and other assets on it. Numerous use cases have been suggested and
implemented. However, safety and security of smart contracts has often been
lacking, leading to a number of exploits causing great losses. Therefore, improv-
ing the security of smart contracts has become an active research area.

One major issue with Ethereum smart contract security has been the question
of access control. In classical software development, most of a system is a �closed
world�: Execution is deterministic, and even for public functions, it is clear by
whom (e.g., by which classes or components) and in which context they can be
called. Only at the system boundary, e.g., where user interaction or external
systems are involved, is access control required.

In contrast, the Ethereum smart contract network is an �open world�: ev-
ery public function of smart contracts can be accessed by every account on the
blockchain. In practice, some parts of a contract's functionality must be inac-
cessible to all but a speci�c set of network participants (think of the �withdraw�
functionality of a bank). If that is the case, e.g., if using some functionality or

writing to a certain storage area must be limited to a certain set of accounts,
some form of access control must be used. The design of the access control and
the correctness of the implementation of this design are an important security
property of Ethereum smart contracts.

In this work, we design an approach for achieving a correct implementation of
a role-based access control. Our approach starts from modeling a smart contract
application and its access control model on a high level of abstraction in the
Palladio Component Model. From the model, we automatically generate parts
of the application source code, as well as speci�cation annotations for formal
veri�cation of parts that cannot be automatically generated. Finally, we describe
how to formally verify the correctness of the implementation of the access control.

Outline Section 2 provides the necessary foundations for our approach. As a
running example, we use an auction system on the blockchain. We describe it in
Section 3.

In Section 4 we describe how model driven engineering approaches are used
to generate code and formal speci�cation for veri�cation. For this purpose, the
Palladio Component Model (PCM) of Reussner et al. [2] is applied to the domain
of smart contracts in Section 4.1. A model is presented in Section 4.2 which ex-
tends the PCM to enable automatic code generation for Solidity smart contracts.
The model contains the application's storage variables, its functions, and the ac-
cess control model. The access control model contains the existing roles and a
description which storage variables and which functions each role may access.
With these models, a skeleton implementation of the application, consisting of
function stubs and storage variables, is automatically generated. This approach
is described in Section 4.3.

Correctness of the access control and its usage is then achieved as follows:
The generator is extended to generate modifiers, which limit access to func-
tions according to the role model. This extension is described in Section 4.4. Our
approach to limiting access to storage is described in Section 4.5: We generate
formal speci�cation describing which parts of the storage each function may ac-
cess. Formal veri�cation tools can then be used to show that the implementation
actually conforms to the generated formal speci�cation. From the combination
of limiting access to functions and limiting each function's access to storage, we
achieve correct access control to storage.

Finally, we use formal methods to verify that the implementation of the
access control is correct (Section 5.2), and that an attacker cannot assume a role
in an unintended way (Section 5.3).

2 Foundations

In this section, the foundations for the approaches are provided. Generation
of source code and model-driven engineering is described in Section 2.1. For
the generation of the source code, the PCM is used as an architectural model
(Section 2.2). The Solidity programming language is the de-facto standard for

Ethereum smart contracts. We give a short introduction in Section 2.3. The
foundations of role-based access control are provided in Section 2.4.

2.1 Model-Driven Engineering

To cope with the complexity of software systems, models can be used to describe
systems of di�erent levels of abstraction. We use the term model according to
the de�nition of Stachowiak [4]. In this de�nition a model is a representation of a
real- or virtual world entity, created for a certain purpose. The representation of
the entity only contains attributes for that purpose. As stated by Schmidt [3], in
model-driven engineering (MDE), domain speci�c languages describe a system
capturing di�erent aspects like the application structure or behavior. Models can
be used as input for approaches to analyse, for example, quality characteristics
like performance, reliability or security. The Palladio approach of Reussner et
al. [2], for example, uses models to represent di�erent views on the system and
provides an analysis approach to predict the performance of a system. Another
aspect mentioned by Schmidt [3] is the application of transformation engines
and generators to synthesize di�erent artifacts like source code or other models.
When generating source-code from other models, e.g. from architectural mod-
els, correspondences can be established and used to link elements of di�erent
views of the system. These correspondences can be used for consistency preser-
vation between the elements of the views or, as stated by Schmidt [3], between
analysis information. As shown by Yurchenko et al. [5] MDE approaches can
also support the veri�cation and analysis of security capabilities by generating
source-code and formal speci�cation from enriched architectural models. These
formal speci�cation have then to be veri�ed by a veri�cation tool.

2.2 The Palladio Component Model

The PCM of Reussner et al. [2] is an architecture design language to specify the
architecture of component-based software systems. The model can be used, for
instance, to provide performance, reliability or security predictions in the de-
sign time. For this purpose, the PCM provides modelling capabilities for several
views on component-based software architecture. The views include, for instance,
structural, deployment and behavioral aspects in the context of component-based
software systems. In this report, we focus only on the structural views.

The structural aspects of a system can be described in the PCM by the the
Repository model and System model. In the Repository model, components
and interfaces are �rst class entities. BasicComponents are the basic building
blocks of the software system and are used to describe a single blackbox compo-
nent. CompositeComponents are used to assemble components out of other com-
ponents. In the PCM, an Interface groups functionalities which are represented
as OperationSignatures. Each OperationSignature contains Parameters and
a ReturnType. The repository also provides prede�ned PrimitiveDataTypes,
for example string or bool. For de�ning more complex types, the nameable

CompositeDataTypes can be used, which is composed of other DataType ele-
ments. To assign if a component provides or requires functionality in an interface,
the OperationProvidedRole or OperationRequiredRole elements exist, which
connect a component and an interface. The Systemmodel can be used to describe
which components are connected and interact with each other in the software
system. For this purpose components are instantiated in a System element by
creating an AssemblyContext that references a component in the Repository

model. The AssemblyConnector element connects the OperationProvidedRole
and an OperationRequiredRole of the same interface of two components to de-
scribe that a component uses the functionality provided by another component.

2.3 Solidity

On the Ethereum blockchain, smart contracts exist in EVM bytecode. Bytecode
is usually not directly written. Rather, smart contracts are written in Solidity, a
high-level programming language, and then compiled to EVM Bytecode. Since
our approach targets smart contract development, Solidity is our target language.

Solidity is �contract-oriented� 1 in that it provides some primitives which are
useful primarily for smart contracts, such as cryptographic primitives for signing
and encrypting, a built-in address data type, and keywords for identifying the
caller of a function or the amount of currency transferred in a function call.

A smart contract consists of a set of storage variables pointing to (sets of)
locations in the storage of the EVM, and a set of functions. Functions with the
private modi�er can only be called from within a contract, while public func-
tions can be called by any account (i.e., any user or any other smart contract).

Additional function modi�ers can be de�ned by the developer. Modi�ers
are reusable pieces of code that execute statements before or after functions
consisting of a modi�er head and a modi�er body. The code to be executed is
contained in the modi�er body. The statement _; marks where the code of the
modi�ed function is executed. The usage of a modi�er in a function is speci�ed
in the function head by providing the modi�er name.

require clauses are designed to check at runtime whether a condition is
met. If it is not, the function reverts, i.e., its e�ects on the global state are not
applied, but no exception is thrown. In contrast, the assert statement throws
an exception if its condition is violated. require clauses are used for input
sanitization, e.g., checking whether the call parameters are valid. This includes
access control.

2.4 Role-based Access Control for Solidity

In our understanding, access control for smart contracts encompasses two things:
Access to functions, and access to storage. Both have to be de�ned for each role
in an application.

1 https://github.com/ethereum/solidity

https://github.com/ethereum/solidity

A role-based access control (RBAC) model speci�es a set of roles R. For the
set F of functions of a Solidity smart contract and the set S of storage variables
of the contract, the RBAC speci�es two relations Rf : R Ö F and Rs : R Ö

S, specifying which role has access to which function calls or storage variables,
respectively.

Rf The relation Rf maps roles to functions. (r, f) ∈ Rf means that someone
who has role r has access to function f. (r, f) /∈ Rf means that when r calls f, f
should do nothing, except possibly reporting an error.

Rs Rs maps roles to storage. (r, s) ∈ Rs means that someone who has role r is
allowed to access storage variable s. Since storage can only be changed through
function calls, this can be decomposed into the requirement that a function which
modi�es s must limit access to those roles r for which (r, s) ∈ Rs.

In general, the smart contract application must enforce the following condi-
tion:

∀f ∈ F, s ∈ S, r ∈ R : modifies(f, s) => ((r, f) ∈ Rf => (r, s) ∈ Rs)

2.5 Solc-verify

solc-verify [1] is a tool for formal veri�cation of Ethereum smart contracts
on the Solidity level. Its annotation language allows specifying contract-level
invariants, function-level pre- and postconditions, loop invariants, and frame
conditions.

The require and assert statements in the Solidity source are translated to
pre- and postconditions, respectively. Annotations can contain quanti�ers, and
bounded sum terms. Function postconditions can refer to the return value of
the function and to the old value of a state variable before the function was
executed. modifies clauses in the speci�cation of a function express which part
of the state may be changed by the function.

The tool works by translating the source code and the annotations to the
Boogie intermediate language, generating veri�cation conditions which can be
discharged by the z3 SMT solver. While speci�cation is supplied by the devel-
oper, veri�cation is automatic.

3 The Auction Case Study

As a running example, an auction case study is introduced, where users can sell
items on the blockchain. Sellers can create an auction from a central Auction-
Manager smart contract where the function createNewAuction receives the item
to be sold and the expiration time of the auction. The AuctionManager con-
tract creates a new SingleAuction contract for the auctioning of a single item.

The SingleAuction contract contains the three storage variablesmanagerAddress,
sellerAddress and auctionClosed. The managerAddress contains the address of
the AuctionManager smart contract, while the sellerAddress contains the ad-
dress of the seller. Both are set in the constructor and cannot not be changed
afterwards. The auctionClosed is of boolean type and contains the information
whether the auction is still active.

Bidders can bid a certain amount of money by calling the bid function. The
function is payable, so that the amount they want to bid can be transferred with
the function call. Sellers and auction managers should not be able to make bids
for their own auctions. Therefore, they are not allowed to call the bid function.
Bidders can withdraw their funds if they are currently not the highest bidder.
After the expiration time, either the seller or any bidder can close the auction
(setting auctionClosed to true) by calling the close function. After the auction
is closed, the seller can withdraw their money by calling sellerWithdraw.

Each SingleAuction smart contract provides the function emergencyShut-

down that can be called by an auction manager which aborts the auction (de-
stroys the smart contract) and returns all funds transferred so far to the bidders.

An access control smart contract AccessCtrl is created for each SingleAuc-

tion contract to restrict the access to the functions to avoid misuse of public
functionality (e.g. to avoid that the seller can cancel the auction by calling emer-
gencyShutdown when a certain sum is not reached). For our auction example,
the roles are determined when the SingleAuction contract is created. Therefore,
we chose a static access control where the participants of the auction are de�ned
in advance and cannot be modi�ed afterwards.

The AccessCtrl contract can be used to check if an identity has a certain role
with checkId. In the access control, the seller is identi�ed by the role Seller and
the AuctionManager smart contract by the role Manager. Bidders are identi�ed
by the role Bidder. Table 1 shows which roles may access the provided functions
of the SingleAuction smart contract. Also Table 2 shows which roles may modify
the storage variable of the SingleAuction smart contract.

Function Roles

bid Bidder
close Bidder, Seller
emergencyShutdown Manager
withdraw Bidder
sellerWithdraw Seller

Table 1: Mapping of functions to roles which may access them

Storage Variables Roles

auctionClosed Bidder, Seller
managerAddress -
sellerAddress -

Table 2: Mapping of storage variables to roles which may modify them

4 Generation of Code for Correct Access Control

The Palladio Component Model (PCM) of Reussner et al. [2] is already applied in
the development, analysis and veri�cation of component-based software systems.
Yurchenko et al. [5], for instance, applies the PCM and MDE to support system
correctness by generation of proof obligations for veri�cation of information �ow
correctness into the source code.

To support software engineering in smart contract architecture development
and veri�cation with existing models and tools, we explore how the PCM can be
applied for ensuring access control correctness in the domain of smart contracts.
For this purpose, the applicability of the PCM to the domain of smart contracts
is explored in Section 4.1 by modelling the case study described in Section 3.
In Section 4.2, we extend the PCM to research the application of MDE and the
PCM in the context of smart contracts to ensure access control correctness. The
extended model enables the de�nition of access restrictions by assigning roles
to storage variables and functions. In Section 4.3, we develop a generator for
code stubs which builds on the extended model. Furthermore, we generate code
enforcing access restrictions (Section 4.4) and speci�cation annotations which
ensure (if veri�ed) that access control to storage variables is handled correctly
(Section 4.5). Finally, we discuss the applicability of the PCM in the domain of
smart contracts in Section 4.6.

4.1 Modelling Smart Contracts in Palladio

We develop a mapping from smart contracts to elements in Palladio's
Repository model and System model, in order to explore the applicability of
the PCM to model smart contract architectures. Figure 1 shows the Repository
model that results from applying this mapping to our case study.

In general, components consist of more than one entity. In the context of
smart contracts, however, we assign one contract to a BasicComponent. There-
fore, the terms �smart contract� and �component� are used interchangeably in
the context of the PCM.

To group strongly related public functions in smart contracts, Interface
elements are used. The functions can be represented as OperationSignatures
with their Parameters and Return type. The functionality for access control
enforcement in the running example is described in the Interface AccessCon-

trolling, which contains the functionality checkId to check whether a certain role
is assigned to the given identity.

<<CompositeDataType>>
Item

tokenLink : STRING

<<CompositeDataType>>
address

Address : BYTE

<<CompositeDataType>>
Roles

Role : INT

<<Interface>>
SingleAuctionManagement

void emergencyShutdown()

<<Interface>>
Bidding

void bid(int value)
void withdraw()

<<Interface>>
AuctionManagement

void createNewAuction(Item item, int expiration)

<<Interface>>
Closing

bool close()

<<Interface>>
Selling

void sellerWithdraw()

<<Interface>>
AccessControlling

void checkId(address identityToCheck, Roles roleToCheck)

<<BasicComponent>>
AuctionManager

SEFFCompartment

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
SingleAuction

SEFFCompartment

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
AccessCtrl

SEFFCompartment

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<Requires>>
SingleAuctionM...

<<Requires>>
AccessControlling

<<Provides>>
AuctionManagement <<Provides>>

SingleAuction...

<<Provides>>
Bidding

<<Provides>>
Selling

<<Provides>>
Closing

<<Provides>>
AccessControlli...

Fig. 1: Repository model of the auction case study

The PCM PrimitiveDataType String, Boolean, Integer and Byte can be
mapped to their Solidity equivalents. In Solidity, the address type is prede�ned
for unique identi�cation of users and smart contracts. In the PCM, no such
PrimitiveDataType exists. Therefore, a corresponding CompositeDataType has
to be de�ned manually (see Figure 1).

Further Solidity data types which cannot be natively mapped to PCM data
types (e.g., enums) are mapped by using a CompositeDataType.

When a smart contract declares certain functions as public (encapsulated in
a Interface), an OperationProvidedRole role can be speci�ed. For instance,
the smart contract AccessCtrl in Figure 1 provides the functionality of Access-
Controlling, e.g., checking whether an identity has a certain role. Therefore,
a OperationProvidedRole connects the BasicComponent AccessCtrl and the
Interface AccessControlling.

Similarly, when a smart contract requires functionality of another contract,
an OperationProvidedRole is speci�ed. The smart contract SingleAuction needs
functionality of the AccessControlling interface (e.g., to check whether the caller
of the emergencyShutdown functionality has the role ofAuction Manager). There-
fore, a OperationRequiredRole is created for the component of SingleAuction
and the AccessControlling interface.

Fig. 2: System model of the auction case study

To describe relation between the smart contracts, the System model is used.
Figure 2 shows the system model for the auction case study. Each smart contract
is represented as a single AssemblyContext. Since, in the PCM, there is no
information about the runtime instantiation of the contracts, only the static
relation between their de�nitions can be described.

To describe which smart contract is called by another smart contract
for using a certain functionality, an AssemblyConnector is created be-
tween an OperationProvidedRole and an OperationRequiredRole of the
AssemblyContexts of both smart contracts. In Figure 2, the SingleAuction smart
contract uses the functionality of the AccessCtrl smart contract. Therefore, an
AssemblyConnector is established between the the provided and required roles
of AccessControlling from the AssemblyContexts of AccessCtrl and SingleAuc-

tion.

4.2 Extending the Palladio Component Model for Role-based

Access Control Information

AccessControl4SmartContractsRepository

RoleOperationAccessibleByRoles

 operation : OperationSignature
 operationprovidedrole : OperationProvidedRole

AccessControllingOperation

 operation : OperationSignature
 roleDetermining : Parameter
 operationprovidedrole : OperationProvidedRole
 identity : Parameter

AlternativeEncoding

content : EString
 dataType : DataType

Storage

 smartContract : BasicComponent

StorageVariable

 dataType : DataType

[0..*] roles

[0..*] accessibleOperationsByRole

[1..1] accOperationDefs [0..*] storage

[0..1] alternativeEncoding

[1..*] role

[0..*] storagevariable

[1..*] roles

Fig. 3: Model rbac4smartcontracts for the PCM

The model we use to extend the PCM for our approach is called
rbac4smartcontracts 2. The elements of the rbac4smartcontracts model are
shown in Figure 3.

The Role element contains a name and is used as a label representing a role.
Therefore, three Role elements with the namesManager, Seller and Bidder exist
for the auction case study. In general, it is assumed that Roles are identi�able by
their name. However, the AlternativeEncoding enables alternative descriptions
for Roles by providing a data type and an arbitrary value.

The OperationAccessibleByRoles element describes the Relation Rf (see
Section 2.4), i.e., that the OperationSignature operation in the Interface pro-
vided by the BasicComponent (de�ned through the OperationProvidedRole)
may only be accessed by the speci�ed roles. For example, close in the interface
Closing provided by the smart contract SingleAuction may only accessed by the
roles Seller and Bidder.

To describe the mapping Rs (see Section 2.4), it is necessary to assign roles
to storage variables of smart contracts. No storage variables can be speci�ed
in the standard PCM, because components are modelled as blackboxes, with
no internal information exposed. However, for the purposes of this work, we
relax the blackbox principle, and introduce the Storage model element to the
rbac4smartcontracts model, as a container for storage variables. Within it,
the StorageVariable element represents a storage variable, consisting of a
name, a DataType, and a set of references to Roles that are allowed to mod-
ify the variable. To assign all variables in the Storage to a smart contract, a
BasicComponent is referenced.

The element AccessControllingOperation de�nes which operation pro-
vided by a component is used to check whether a identity has a certain role.
An OperationSignature and an OperationProvidedRole is referenced for this
purpose (similar to OperationAccessibleByRoles).

roleDetermining references a Parameter element to specify that this param-
eter in the speci�ed OperationSignature is used as input for the role to check
for. This parameter is optional if there is only a single role in the system, and if
the access control only checks whether the identity has this role assigned or not.
For the access checking operation, it is assumed that the operation contains at
least one parameter providing the identity to be checked. Therefore, the refer-
ence identity marks the Parameter in the OperationSignature that is used to
input the identity to be checked.

In Ethereum smart contracts, the address of an account is used for iden-
ti�cation. In the PCM model of the auction example, the AccessCtrl smart
contract provides the function checkId to check whether an identity has
a certain role. Therefore, the AccessControllingOperation indicates the
OperationProvidedRole of the BasicComponent AccessCtrl to the Interface

AccessControlling and also references the OperationSignature checkId. Fur-
thermore, identity de�nes the parameter identityToCheck to be used as input of

2 https://github.com/KASTEL-SCBS/PCM2Solidity

https://github.com/KASTEL-SCBS/PCM2Solidity

pragma solidity ^0.5.0;

import "./ AccessCtrl.sol"; //TODO: Modify Import , if

structure is changed!

contract SingleAuction {

AccessCtrl ac; //TODO: Auto -generated Field!

bool auctionClosed; //TODO: Auto -generated Field!

address managerAddress; //TODO: Auto -generated Field!

function emergencyShutdown () public{

// TODO: implement and verify auto -generated method stub

revert("TODO: auto -generated method stub");

}

function close() public returns (bool output){

// TODO: implement and verify auto -generated method stub

revert("TODO: auto -generated method stub");

}

}

Listing 1.1: Generated code stubs for the SingleAuction smart contract

the identity to be checked for the role provided by the parameter roleToCheck
de�ned by the roleDetermining reference.

4.3 Generation of Solidity Code Stubs

We now build on the extended PCM to automatically generate code stubs for
Solidity smart contracts. For this, we develop a model-to-text generator 3. It
takes the Repository model and System model as well as the extension model
described in Section 4.2 and generates smart contract stubs. Listing 1.1 shows a
generated stub of the SingleAuction smart contract.

For each de�ned BasicComponent, a Solidity �le containing the smart con-
tract de�nition with the component's name is generated. For each smart contract,
the provided functions are generated directly from the OperationSignatures

of the Interface in an OperationProvidedRole.
In Listing 1.1, the generated functions emergencyClose of the

OperationProvidedRole to the interface SingleAuctionManagement as
well the function close from OperationProvidedRole to the interface Closing

is shown. In structural blackbox component-based architectural descriptions, no
information about the implementation of a functionality available. Therefore,
the bodies of the generated Solidity functions contain only a revert statement.

3 also found under https://github.com/KASTEL-SCBS/PCM2Solidity

https://github.com/KASTEL-SCBS/PCM2Solidity

pragma solidity ^0.5.0;

contract AccessCtrl {

enum Roles { Manager , Bidder , Seller }

function checkId(address identityToCheck , Roles roleToCheck

) public {

// TODO: implement and verify auto -generated method stub

revert("TODO: auto -generated method stub");

}

}

Listing 1.2: The generated Roles enum

Smart contracts can call the functionality of another smart contract on an in-
stance of that contract's type. Therefore, when an AssemblyConnector between
two AssemblyContext exists, a �eld with the type of the providing contract is
generated in the requiring smart contract. Furthermore, an import statement
for the providing smart contract is generated. In the auction system model, as
shown in Figure 2, the SingleAuction contract calls functions from the AccessCtrl
contract. Therefore, a �eld with the type of AccessCtrl is generated.

The enum type in Solidity provides a convenient way of expressing which
roles exist in an application. However, in the PCM, enum data types cannot
be speci�ed. We solve this problem by creating a CompositeDataType called
Roles in the PCM. When the generator encounters this in the roleDetermining
parameter of AccessControllingOperation, a role enum with every role in the
rbac4smartcontracts model is generated in the component referenced through
the OperationProvidedRole in AccessControllingOperation.

The example in Listing 1.2 shows the AccessCtrl smart contract with the
enum Roles, consisting of the elements Manager, Seller and Bidder.

For each StorageVariable in a Storage container, a �eld with the given
name and the type corresponding to the referenced DataType is generated into
the referenced smart contract (e.g., auctionClosed in Listing 1.1).

4.4 Generation of Access Control Modi�ers

Access restrictions to functions can be realized by generating code that forces
authorization checks w.r.t. the role model before executing the function. Solidity
provides require clauses (see Section 2.3), which can be used for this purpose.
For reusability and readability, the require clauses can be encapsulated in a
modi�er (see ibid.). To enforce access control, we generate modi�ers which call
an access control functionality in a require clause to check if the caller of the
function has the correct access rights. Listing 1.3 shows the modi�ers generated
for our running example.

pragma solidity ^0.5.0;

import "./ AccessCtrl.sol"; //TODO: Auto -generated Import!

contract SingleAuction {

AccessCtrl ac; //TODO: Auto -generated Field!

bool auctionClosed; //TODO: Auto -generated Field!

address managerAddress; //TODO: Auto -generated Field!

function emergencyShutdown () public onlyManager {

// TODO: implement and verify auto -generated method stub

revert("TODO: auto -generated method stub");

}

function close() public onlyBidderSeller returns (bool

output){

// TODO: implement and verify auto -generated method stub

revert("TODO: auto -generated method stub");

}

modifier onlyBidderSeller {

require(ac.checkId(msg.sender , AccessCtrl.Roles.Seller)

|| ac.checkId(msg.sender , AccessCtrl.Roles.Bidder),

"Only acessible by role(s): Seller , Bidder.");

_;

}

modifier onlyManager {

require(ac.checkId(msg.sender , AccessCtrl.Roles.Manager),

"Only acessible by role(s): Manager.");

_;

}

}

Listing 1.3: SingleAuction with generated modi�ers

For a role combination in the OperationAccessibleByRoles elements with
OperationProvidedRoles for a speci�c component, a modi�er is created in the
corresponding smart contract. Let Rm be that combination for a given modi-
�er. The name of the modi�er is created from the ordered set of role names in
Rm with the pre�x only. If the same role combination is speci�ed for di�erent
OperationSignatures for the same smart contract, only a single modi�er is
created.

In our running example, only the roles Bidder and Seller may use the close
function in the SingleAuction smart contract. Therefore, the modi�er onlyBid-
derSeller is generated in the SingleAuction smart contract.

The generator uses the information given by the
AccessControllingOperation element to generate the modi�er bodies.
Every modi�er body consists of a require statement. In this statement, the
access control function (e.g. in the example checkId) of the smart contract,
de�ned in the AccessControllingOperation, is called for all roles in Rm. For
each call to the operation in the AccessControllingOperation, the identity
and the role to check are provided to the speci�ed parameters identity and
roleDetermining.

In Solidity, the identity of the caller of a function is their address, accessible
via the msg.sender keyword. Therefore, msg.sender is used as input for identity.

When the data type of roleDetermining is string and no
AlternativeEncoding is speci�ed, the name of the role is converted to a
string. If an AlternativeEncoding is speci�ed, and the data type �ts to the
one of the roleDetermining parameter, the value in content is supplied. When
using the generation of the enum Roles as described in Section 4.3 the enum

value with the reference to the access control is generated as input for the
roleDetermining parameter. This approach is shown in Listing 1.3. When none
of these approaches �t, a revert statement is generated.

It is assumed that the access controlling operation only returns a boolean
value as signal whether the role is assigned to the identity or not. If the return
type of the OperationSignature in AccessControllingOperation is not of the
Bool data type, no assertion to the require-statement can be made. Therefore,
in this case, a revert statement is generated.

A generated require statement can be seen in the onlyManager modi�er in
the example in Listing 1.3. In the require statement, the function checkId of
the AccessCtrl is called.

If more than one role may access a function, the checks are combined by an
or relation (see the onlyBidderSeller modi�er in Listing 1.3). We append the
statement _; at the end of the modi�er body, so that the code of the modi�ed
function is executed after the access control checks.

Finally, each modi�er's name is added to the function header
corresponding to the OperationSignature that is targeted by the
AccessibleOperationByRoles element. In the running example, Listing 1.3
shows onlyManager in the emergencyShutdown function's header.

The speci�cation on the architectural level makes the role model visible on
a higher level of abstraction. With our generation approach, the con�rmation
if an identity may access the functionality can be deferred to a auto-generated,
reusable set of modi�ers. Through the automated generation, the role model is
automatically enforced.

4.5 Generation of Formal Speci�cation

Apart from ensuring that functions can only be accessed by authorized identities,
we also want to guarantee that access to a smart contract's storage is properly
limited. Access to functions can be limited in a generic way using constructs of
the Solidity language. In contrast, correct authorization of storage access cannot
be enforced through code generation alone. Instead, our approach is to generate
formal speci�cation such that if the application conforms to the speci�cation, it
also enforces correct access to storage.

To prove that the implementation conforms to its speci�cation, we will use
the solc-verify tool. Therefore, the annotations will be generated in its spec-
i�cation language.

Let F be the set of functions of the smart contract, S the set of storage
variables, and R the set of roles. Recall the relationship of the RBAC model and
a function's modi�able storage in Section 2.4. This relationship can be rephrased
as:

∀f ∈ F, s ∈ S, r ∈ R : ((r, f) ∈ Rf ∧ ¬(r, s) ∈ Rs) => ¬modifies(f, s) (1)

We want to generate annotations expressing this relationship. Therefore, if
role r may call function f , but may not modify storage variable s, then we
must generate an annotation expressing that f may not modify s. We �nd the
relevant pairs (f, s) by iterating over the corresponding model elements, i.e.,
OperationAccessibleByRoles and StorageVariable.

Strings are currently not comparable in Solidity, and therefore we cannot
express String equality in a postcondition. Mappings and structs are not rep-
resentable in the PCM without further extensions. Therefore, we only generate
annotations for storage variables of the int, bool, and address types, as well as
arrays of these types.

In solc-verify a postcondition c is written above a function's header as a
comment of the form ///@notice postcondition c. To express that a function
f may not modify a storage variable v, we state that v's value after the execution
of f must be the same as before the execution.

In solc-verify, the pre-state of a function can be accessed via the old

keyword. Let the state of a storage variable s of type int, bool, or address after
the execution of a function f be denoted as Ssf and Sold(sf) the state before the
execution. Then the condition that s must not be modi�ed can be speci�ed as
Svf = Sold(vf). An example for the generated condition is shown in Listing 1.4.

For arrays, the generated speci�cation must quantify over the array in order
to express that all elements remain unchanged (see Listing 1.5)

pragma solidity ^0.5.0;

import "./ AccessCtrl.sol"; //TODO: Auto -generated Import!

contract SingleAuction {

AccessCtrl ac; //TODO: Auto -generated Field!

// Modifiable by: Bidder , Seller

bool auctionClosed; //TODO: Auto -generated Field!

// Modifiable by: Nothing

address managerAddress; //TODO: Auto -generated Field!

/// @notice postcondition auctionClosed ==

__verifier_old_bool(auctionClosed)

/// @notice postcondition managerAddress ==

__verifier_old_address(managerAddress)

function emergencyShutdown () public onlyManager {

// TODO: implement and verify auto -generated method stub

revert("TODO: auto -generated method stub");

}

/// @notice postcondition managerAddress ==

__verifier_old_address(managerAddress)

function close() public onlyBidderSeller returns (bool

output){

// TODO: implement and verify auto -generated method stub

revert("TODO: auto -generated method stub");

}

modifier onlyBidderSeller {

require(ac.checkId(msg.sender , "Seller") || ac.checkId(

msg.sender , "Bidder"),"Only acessible by role(s):

Seller , Bidder.");

_;

}

modifier onlyManager {

require(ac.checkId(msg.sender , "Manager"),"Only acessible

 by role(s): Manager.");

_;

}

}

Listing 1.4: SingleAuction with generated formal speci�cation

/// @notice postcondition forall (int i)

/// (!(0 <= i && i < a.length)

/// || a[i] == __verifier_old_int(a[i]))

function f() public {

...

}

Listing 1.5: Generated annotation stating that all elements of an array a must
stay unchanged by function f

In the auction case study, the variable auctionClosed may only be modi-
�ed by the roles Bidder and Seller. The function emergencyClose may only be
accessed by the role Manager. Therefore, the function must not modify the vari-
able auctionClosed. Likewise, an annotation is created for emergencyShutdown,
stating that auctionClosed has to be the same before and after the execution.
The variable managerAddress should not be modi�ed after the constructor; an
annotation expressing this is generated for every function.

4.6 Discussion: Applicability of the Palladio Component Model

The PCM was created for classical component-based software architectures. Be-
cause smart contracts di�er from this view, the applicability of the PCM for
smart contracts has to be discussed. As presented in Section 4.1 and Section 4.2,
it is possible to use the PCM for describing smart contract architectures. How-
ever, there is a mismatch between components and smart contracts: While com-
ponents generally consist of multiple entities (e.g. several classes), smart contract
design is currently limited to a single entity. Therefore, the semantics of PCM
components have to be adapted for our approach. The same is true for interfaces,
whose role in Ethereum is di�erent from the one in classical software systems.
Furthermore, in Ethereum, there are data types like address or mappings which
are not natively provided by the PCM.

Some problems can be mitigated in the generation of code, e.g., ignoring the
interfaces for function stub generation, or using CompositeDataTypes for data
types not present in the PCM. The Necessity of describing the state of a smart
contract, however, required a deviation from the blackbox principle of the PCM.

We conclude that for further research in the direction of this work, either the
PCM has to be modi�ed to be more �t for smart contracts, or other modelling
tools must be used. The creation of a language explicitly tailored to describing
access control aspects of smart contracts would be another alternative.

Nevertheless, for prediction of quality aspects in conjunction with architec-
tures consisting of classical software components and smart contracts, it could be
bene�cial to introduce mechanisms for the alignment of smart contracts as well
as classical software systems in the PCM. This approach could be used to extend
existing analyses or creating new ones to cope with the challenge of analysing
such architectures.

5 Proving Correctness of the Access Control

From the Palladio Component Model, we generated function stubs, Solidity mod-
i�ers, and formal speci�cation concerning access control, as well as a code skele-
ton of the AccessCtrl smart contract.

However, neither the implementation of access control nor of the application
itself can be automatically generated, and the correctness of the access control
mechanism depends on both implementations. In order to verify the correct
functioning of the access control, we have to prove that (1) the implementation
of the functions conforms to the generated speci�cation, (2) the access control
itself works correctly, e.g., the checkId(addr, owner) function returns true only
if the supplied address actually has the owner role, and (3) the roles can only be
assumed in the intended way. In this section, we give an example access control
implementation for the auction case study, and sketch how the above properties
can be veri�ed.

5.1 Veri�cation of Generated Annotations

In Section 4.5, we generated annotations expressing that a function cannot
change the state of a storage variable. The annotations are in the language
of the solc-verify tool, which we use for veri�cation.

In our example, veri�cation is almost trivial: Since the speci�cation has al-
ready been generated automatically, we simply call the tool after implementation
is �nished. Veri�cation is automatic and takes less than 10 seconds in our case
(of course, this depends on the implementations's complexity). If solc-verify
reports any errors, the implementation has to be adapted accordingly.

5.2 Correctness of the Access Control Implementation

The automatically generated AccessCtrl smart contract provides the function
checkId(addr, role) which is supposed to return true i� the address addr

has the role role. We need to prove that this function behaves correctly.
Listing 1.6 shows an example access control for a �ctional auction application.

In order to evaluate solc-verify's performance, we increase the complexity
compared to our running example. Again, there are three roles: A manager,
identi�ed by a single address; a set of sellers, listed in the corresponding mapping;
and bidders, who are listed in an array.

The speci�cation in our example is a method contract for the checkId()

function, written in the annotation for solc-verify, a tool for functional veri�ca-
tion of Solidity smart contracts. The language allows �rst order logic and Solidity
syntax. In our example, the speci�cation states whether the function should re-
turn true for each of the three roles: For the Manager role, it should return true

if the correct address is given; for the Seller role, it should return true if the
corresponding mapping entry is true; and for the Bidder role, it should return
true if the address is contained in the corresponding array.

pragma solidity ^0.5.0;

contract AccessControl {

enum Roles {Manager , Seller , Bidder}

address manager_addr;

mapping(address => bool) sellers;

address [] bidders;

/// @notice postcondition !(role == Roles.Manager)

/// || (res == (addr == manager_addr))

/// @notice postcondition !(role == Roles.Seller)

/// || (res == (sellers[addr]))

/// @notice postcondition exists (uint i) (!(role == Roles.Bidder)

/// || ((0 <= i && i < bidders.length && bidders[i] == addr) == res))

function checkIdentity(address addr , Roles role)

public view returns (bool res) {

if (role == Roles.Manager) {

return addr == manager_addr;

} else if (role == Roles.Seller) {

return sellers[addr];

} else if (role == Roles.Bidder) {

bool ret = false;

/// @notice invariant role == Roles.Bidder

/// @notice invariant exists (uint u)

/// ((0 <= u && u < i && bidders[u] == addr) == ret)

for (uint i = 0; i < bidders.length; i += 1) {

if (bidders[i] == addr) {ret = true;}

}

return ret;

} else { return false; }

}

}

Listing 1.6: An example access control with formal speci�cation

We now want to prove that our implementation conforms to the speci�ca-
tion, using the solc-verify tool. For the Manager and Seller roles, this works
automatically; however, for the Bidder role, we do not succeed. The speci�cation
requires existential quanti�cation in a disjunction, but even though we supply
a su�cient loop invariant, solc-verify fails to verify the correctness of the
implementation.

We conclude that while our approach has merit, the performance of verif-
cation tools can be a bottleneck, depending on the complexity and the data
structures used in the access control implementation.

5.3 Correctness of Role Management

Apart from the correctness of the access control's implementation, there are
further points to be considered in order to ensure overall correctness of the
access control mechanism: In particular, even if the checkId() function works
correctly, it must be ensured that roles can only be assumed in the correct,
intended way, e.g., it must be impossible for an attacker to insert his address
into the sellers mapping. Furthermore, there may be additional restrictions in
the Palladio model which need to be translated into formal speci�cation.

There is no generic way to specify or even verify the overall correctness of
role management, but we will consider some examples.

Mutual exclusion Consider the extended auction example from the previous
section. In the model, it is speci�ed that the Bidder role is mutually exclusive
with the other roles, i.e., if checkId(addr, Bidder) is true, checkId(addr,
Seller) and checkId(addr, Manager)must both return false. This entails that
if an address is contained in the sellers mapping, it must not be contained in
the bidders array. This, in turn, is an invariant of the auction smart contract,
which every function must maintain. It can be formalized as follows (with A the
set of addresses):

∀a ∈ A : ¬checkId(a, bidder) ∨ ¬checkId(a, seller)

Such an invariant could be automatically generated from the archtitecture
model. However, this invariant contains function calls, which are usually chal-
lenging in formal veri�cation. Some tools, like solc-verify, do not allow func-
tion calls in the annotation language. In order to avoid function calls, the prop-
erty can be expressed on the implementation level:

∀a ∈ A : ¬(sellers[a] ∧ bidders.contains(a))

While this formalisation makes veri�cation easier (or at all feasible), it is
implementation speci�c and cannot be automatically generated.

Dynamic Role Management If the roles are static, i.e., role assignements do not
change at runtime, it is enough to verify that the access control is implemented
correctly. However, if roles can be granted or taken away at runtime, this process
also has to be considered for correctness.

As an example, consider the above auction example, but with an added func-
tionality which enables the contract's manager to transfer the manager role to a
di�erent address, and which also enables the manager to add further addresses
to the set of sellers, or remove addresses from it.

In this scenario, correctness of role management means that only the current
manager address can change the manager address, and that only the manager
address can change the mapping which stores the seller addresses. Therefore, the
question of access control is connected to the question of which functions can
modify the respective storage locations.

A practical approach in our auction example would be to add the
onlyManager modi�er to all functions which can change the manager address.
For all other functions, the solc-verify tool can be used to prove that they can
in fact not modify the manager address by way of a modifies annotation. List-
ing 1.7 shows an example for such an annotation, stating that the function must
only modify the balances mapping at the msg.sender key. A proof that the
function conforms to its speci�cation therefore implies that the function cannot
access either the manager address nor the sellers mapping.

/// @notice modifies balances[msg.sender]

function bid() public payable returns bool {...}

Listing 1.7: A modifies annotation

Another, more convenient approach would be whitelisting, i.e., annotating
each state variable with a list of functions that are allowed to modify it, and
then automatically generating the corresponding formal speci�cation. However,
there is currently no tool which enables this kind of whitelisting speci�cation.

6 Conclusion and Outlook

In this report, we demonstrated the use of high-level modelling tools in combina-
tion with formal methods in order to guarantee a security property of Ethereum
smart contracts, namely, correctness of access control. We adapted the Palladio
tool so that it can handle the constructs that are necessary for this, and imple-
mented automatic generation of Solidity source code, including function stubs,
access modi�ers, and speci�cation annotations. Furthermore, we discussed how
formal methods can be used to prove the correctness of the �nal implementation,
showing a comprehensive approach to correct access control for smart contracts.

We noted some shortcomings of the Palladio tool in the context of smart
contracts. In the future, we could either further extend Palladio, enabling the
handling of all necessary Solidity constructs. Another possible way would be to
implement a standalone tool, building on the experiences of this work.

References

1. Hajdu, Á., Jovanovi¢, D.: solc-verify: A modular veri�er for solidity smart contracts.
In: Chakraborty, S., Navas, J.A. (eds.) Veri�ed Software. Theories, Tools, and Ex-
periments. pp. 161�179. Springer International Publishing, Cham (2020)

2. Reussner, R.H., Becker, S., Happe, J., Heinrich, R., Koziolek, A., Koziolek, H.,
Kramer, M., Krogmann, K.: Modeling and Simulating Software Architectures � The
Palladio Approach. MIT Press, Cambridge, MA (October 2016), http://mitpress.
mit.edu/books/modeling-and-simulating-software-architectures

3. Schmidt, D.C.: Guest editor's introduction: Model-driven engineering. Computer
39(2), 25�31 (Feb 2006)

4. Stachowiak, H.: Allgemeine Modelltheorie. Springer, Wien, New York (1973)
5. Yurchenko, K., Behr, M., Klare, H., Kramer, M., Reussner, R.: Architecture-Driven

Reduction of Speci�cation Overhead for Verifying Con�dentiality in Component-
Based Software Systems. In: Proceedings of MODELS 2017 Satellite Event (MoD-
eVVa Workshop), co-located with ACM/IEEE 20th International Conference on
Model Driven Engineering Languages and Systems (MODELS) 2017). vol. 2019,
pp. 321�323. CEUR-WS (September 2017)

http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures

	Modelling and Verifying Access Control for Ethereum Smart Contracts

