Soil N intensity as a measure to estimate annual N$_2$O and NO fluxes from natural and managed ecosystems

Zhisheng Yao1, David E Pelster2, Chunyan Liu1, Xunhua Zheng1 and Klaus Butterbach-Bahl1,3

As natural and managed terrestrial ecosystems are major sources of the potent greenhouse gas nitrous oxide (N$_2$O) and of the atmospheric pollutant nitric oxide (NO), predicting the source strengths of these ecosystems is central to understanding and sustainably managing the N-oxides fluxes. Here we reviewed 82 high temporal resolution datasets on N$_2$O and 57 on NO fluxes collected from multi-site and multi-year field measurements, including grasslands, forests, and agricultural crops, to assess whether soil N intensity, that is, the time-weighted sum of soil NH$_4^+$ and/or NO$_3^-$ concentrations, can be used to estimate annual N-oxides emissions. We show that soil N intensity alone can accurately predict annual N$_2$O and NO emissions, and that the N$_2$O emission strength is exponentially related to the soil inorganic N load. Thus, measuring soil inorganic N loads should improve current estimates of N-oxide emissions from global terrestrial ecosystems, and open possibilities for monitoring N$_2$O mitigation efforts.

Addresses

1 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, PR China

2 Agriculture and Agri-Food Canada, Quebec City, Canada

3 Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, D-82467 Garmisch-Partenkirchen, Germany

Corresponding author:

Klaus Butterbach-Bahl (klaus.butterbach-bahl@kit.edu)

Introduction

Nitrogen (N)-oxide gases (i.e. nitrous oxide [N$_2$O] and nitric oxide [NO]) play an important role in the biogeochemical N cycling, but also have significant environmental impacts [1,2]. Nitrous oxide is known as a potent greenhouse gas (GHG) as well as the most abundant stratospheric ozone (O$_3$)-depleting substance [3], and NO affects tropospheric O$_3$ concentrations, an important GHG and atmospheric oxidant, and aerosols through atmospheric chemistry [4]. All of these effects contribute to global radiative forcing. Soils are recognized as major sources of both atmospheric N$_2$O and NO. According to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [5], soils under agricultural crops and natural vegetation contribute 5.0–13.8 Tg N$_2$O-N and 8.7–11.7 Tg NO-N to the atmosphere annually. Uncertainties in estimates of the source strengths of N$_2$O and NO are still very large, but might be narrowed if easy to measure proxies can be used to predict soil N-oxide fluxes [e.g. Refs. 6–9,10].

So far, while studies have identified empirical relationships to quantify soil N-oxide fluxes for individual sites, these relationships often fail to work for other sites [11]. Relationships that were found to be sufficiently robust to approximate emissions across sites differing widely in environmental conditions (management, vegetation, soil properties, and climate) remain rare and limited in their regional and temporal scope. For example, Rochette et al. [10] showed that growing season N$_2$O fluxes from Canadian agricultural soils can be predicted by growing season precipitation, soil texture (coarse, medium and fine), type of N (synthetic and organic), and crop type (perennial and annual), although the accuracy of this approach at larger scales remains untested.

In soils, N-oxides emissions are closely linked to the microbial processes of nitrification (the oxidation of ammonium [NH$_4^+$] to nitrite [NO$_2^-$] and nitrate [NO$_3^-$]) and denitrification (the reduction of NO$_3^-$ and NO$_2^-$ to NO, N$_2$O, and dinitrogen [N$_2$]) [12,13]. Both processes use soil mineral N (NH$_4^+$ and NO$_3^-$) as substrates that originate mainly from the mineralization of organic matter or, in managed systems, from fertilization. Consequently, there is a strong theoretical basis for the relationship between soil...
N availability, N cycling rates and N-oxide fluxes. This context can be well described by the conceptual ‘hole-in-the-pipe’ model [14,15], within which rates of N cycling and N availability control the ‘size of the pipe’ (i.e. the amount of N that is nitrified and denitrified), while the ‘sizes of the holes’ (i.e. the N-oxide losses from each process) are controlled by factors such as soil moisture, pH and carbon content as well as the types and quantities of microbes (nitrifiers and denitrifiers). However, N cycling rates and N availability (e.g. soil net N mineralization and inorganic N concentrations) are temporally and spatially highly variable so that in most studies only weak or no correlations between measured N-oxide fluxes and soil NH$_4^+$ and/or NO$_3^-$ concentrations in cropland [e.g. \(R^2 = 0.08 \); 16], grassland [e.g. \(R^2 = 0.04 \) ; 17\^] or forest [e.g. \(R^2 = 0.17 \); 18\^] have been found.

However, this lack of correlation may be different if observations are averaged across longer time intervals, that is, at seasonal or annual time scales. The use of soil N intensity is such an approach. N intensity (i.e. the time-weighted sum of soil NH$_4^+$ and/or NO$_3^-$ concentrations) is an integrated measure indicating the longer term availability of inorganic N to the soil microbial community, which is supposed to affect the presence and activity of nitrifiers and denitrifiers in soils [16]. On longer time scales, such as months to years, several studies found strong correlations between cumulative N$_2$O emissions and soil NO$_3^-$-N intensity [19–24\^]. However, the capacity of such an approach to scale emissions across sites was never tested. Thus, we hypothesized that soil N intensity is a proxy that can be used to accurately scale annual soil N$_2$O and NO fluxes across natural and managed ecosystems, and that compared to soil N intensity other soil environmental factors mostly play a minor role for predicting annual fluxes. We tested this hypothesis by screening the existing literature for datasets on annual N-oxide fluxes and measured soil inorganic N concentrations for various landuses, soil types, and climatic conditions.

Data

To test our hypothesis, we compiled a database of observed annual N$_2$O and NO fluxes and topsoil (usually 0–10 cm) inorganic N concentrations. In total, data from 13 sites were used, mainly in China, but also including sites in Africa, Europe, and Australia, comprising 82 treatment-years (see Table S1 in the Supplementary material). In all studies N$_2$O and NO fluxes were measured using either manual or automated chamber-based techniques with sampling frequencies varying from subdaily to weekly. In the selected studies, topsoil inorganic N concentrations were determined every 1–2 weeks. In all studies, soil inorganic N was measured by extracting soils with a salt solution (CaCl$_2$, KCl, or K$_2$SO$_4$), and measuring the concentrations of NH$_4^+$ and NO$_3^-$ in the extracts colorimetrically. Soil N (NH$_4$-N and NO$_3$-N or the sum of both) intensity was calculated as the integrated sum of topsoil inorganic concentrations over a one year period [16]. In addition to soil N intensity, N application rate, climate (e.g. precipitation), mean soil temperature, soil organic C, clay content, and pH were used in the regression analysis. Non-linear, linear, and stepwise multiple regression analysis were used to test if a relationship between soil N intensity and/or other site characteristics and annual N$_2$O and/or NO fluxes exist. Statistical analyses were done using the SPSS software (SPSS China, Beijing, China).

Relationships between N intensity and annual N-oxides emissions

Across all sites, landuses, climate and soil conditions, stepwise multiple linear regression analysis showed that soil NO$_3^-$-N intensity was the most important factor controlling N$_2$O emissions, explaining 57\% of the variation on its own and 69\% of the variation when combined with four other soil/climatic variables (see Table S2 in the Supplementary material). However, an exponential model using only soil NO$_3^-$-N intensity explained 79\% of the variation in annual N$_2$O emissions (Figure 1); 10\% more variation than the 5-factor multiple linear regression. Correlations with individual soil properties (e.g. soil pH or clay content) alone were not significant (\(P > 0.05 \)), but the addition of soil pH and clay content improved the exponential model with soil NO$_3^-$-N intensity.
explaining 87% of the variability in annual N₂O emissions (see Figure S1 in the Supplementary material).

If the sites and observation years with annual N₂O emissions > 4 kg N₂O-N ha⁻¹ yr⁻¹ are excluded (i.e. excluding observations from intensively fertilized (>200 kg N ha⁻¹ yr⁻¹) horticultural sites such as tea, vegetable and orchard fields), the relationship between annual N₂O emissions and soil NO₃⁻-N intensity changes from non-linear to a linear relationship (Adj. R² = 0.41, P < 0.01, n = 59; Figure 1). For the agricultural fields (i.e. horticulture and different arable crops), there was also a positive correlation between N application rate and annual N₂O emissions (i.e. the IPCC approach); however, this resulted in a lower R² as compared to the relationship of annual N₂O emissions with soil NO₃⁻-N intensity (i.e. Adj. R² = 0.66 versus 0.78, Figure 2).

Similar to N₂O, stepwise regression analysis showed that annual NO fluxes correlated most closely with soil NH₄⁺-N intensity (Adj. R² = 0.94, P < 0.01, n = 57; see Figure 3 and Table S2 in the Supplementary material). Weaker, but significant, negative correlations were found between soil pH and annual NO emissions (Adj. R² = 0.37, P < 0.01, n = 57) and soil clay content and annual NO emissions (Adj. R² = 0.24, P < 0.01, n = 57). However, including all parameters in a multiple regression analysis did not result in an improved model as compared to the relationship with soil NH₄⁺-N intensity alone. Observations with high soil NO fluxes (> 4 kg NO-N ha⁻¹ yr⁻¹) were mainly from tea and forest sites that are typically acidic [pH < 5.5; 25,26,27], which drives NO formation via chemo-denitrification rather than by nitrification [28]. Unlike with the N₂O emissions, excluding these high emitting sites did not significantly change the relationship between NH₄⁺-N intensity and annual NO emissions, but only reduced the R² value (Adj. R² = 0.28, P < 0.01, n = 49; Figure 3).

Information on soil N (NH₄⁺+NO₃⁻) intensity can also be efficiently used to predict the sum of annual N₂O + NO emissions (Adj. R² = 0.62, P < 0.01, n = 57; see Table S2 in the supplementary material and Figure 4). Similar to the NO, there were negative relationships between annual N₂O + NO emissions and both soil pH (Adj. R² = 0.18, P < 0.01, n = 57) and clay content (Adj. R² = 0.14, P < 0.01, n = 57). Total water input (precipitation plus irrigation water) was also weakly, but positively correlated to annual N₂O + NO emissions (Adj. R² = 0.13, P < 0.01, n = 57). However, the only significant parameters determined by the stepwise regression were water input and soil inorganic N intensity (Adj. R² = 0.69, P < 0.01, n = 57; see Table S2 and Figure S2 in the Supplementary material). Limiting the regression analysis to observations with annual N₂O + NO fluxes <8 kg N ha⁻¹ yr⁻¹ did not significantly change the equation (FNO = 0.81 + 0.27xInorganic N intensity) but only resulted in a lower R² (Adj. R² = 0.47, P < 0.01, n = 41).

Perspective and implications
Here we show for the first time that the integrated sum of soil inorganic N concentrations and annual N₂O as well as
NO emissions are closely related across a wide variety of sites, landuses, soil conditions, climate and, thus, soil environmental conditions. Such a relationship had been proposed earlier [14,15], although previous studies have mostly failed to demonstrate a close link between soil inorganic N concentrations and instantaneous in-situ N₂O fluxes. The lack of correlation between instantaneous fluxes and inorganic N concentrations is because denitrification, which dominates N₂O production in agricultural systems [29,30], and requires the combination of anaerobic conditions and the presence of an electron donor as well as a source of NO₃⁻. Nitrous oxide may also be produced by nitrification, which tends to vary less over time; however, the product ratio for nitrification is very low [0.02 to 0.09%; 31] compared to denitrification [~9%; 2,32]. As a result, high NO₃⁻ concentrations alone will not produce high N₂O fluxes. But unlike many previous studies, we did not attempt to link seasonal dynamics or short-term emission peaks to soil inorganic N variations, but rather used aggregated annual values [16,19–21]. The use of aggregated inorganic N values tends to correspond better with annual emissions because the probability of anaerobic conditions occurring concurrently with sufficient NO₃⁻ increases with greater N intensities, likely resulting in more episodes of denitrification. This approach is similar to the IPCC approach [33] that estimates soil N₂O emissions based on fertilizer inputs. The non-linear relationship between soil NO₃⁻ intensity and N₂O emissions though, seems to be as robust as the IPCC approach (Figure 2) while better describing the exponential increase of soil emissions of highly fertilized soils [34–37]. Unlike the IPCC approach though, soil NO₃⁻ intensity can also be used to predict fluxes from non-fertilized systems.

The strong exponential correlation between soil NO₃⁻ intensity and cumulative annual N₂O fluxes also suggests that reducing soil NO₃⁻ concentrations is key to mitigating N₂O fluxes. Thus, utilization of the 4R fertilization strategy [38,39], which matches fertilizer type, application rate, location and timing to the plant needs should reduce N₂O emissions even if fertilizer N application rates remain high. Also, the utilization of plant species that can improve N use efficiency [e.g. using plant trait-based approaches such as species mixtures for grasslands and cover crops, intercropping systems, diversified crop rotations and breeding programs, 40*] or inhibit nitrification [e.g. through biological nitrification inhibition – BNI, 41] should also reduce soil NO₃⁻ intensities and hence N₂O fluxes as well.

The addition of soil property information (soil texture and pH in the case of N₂O) into the model further improved the accuracy of the estimates, explaining 87% of the observed variability (see Figure S1). As information on soil inorganic N concentration is easier to gather than field GHG flux measurements, and as recent advancements in sensor technologies that quickly and directly measure inorganic N concentrations in the plant rooting zone come online [42*], the approach suggested here should improve estimates of regional N₂O emissions. This could be
especially useful for estimating anthropogenic N$_2$O emissions from agriculture, forestry and other land-use activities that do not include fertilizer applications (e.g., landuse change, forest degradation due to human activity/N saturation/pollution, etc.). Furthermore, this does not only hold for N$_2$O, but also for NO emissions from soils, which are a significant source for regional tropospheric NOx concentrations.

In summary, the empirical models developed in this study explain 79% of the variance in annual N$_2$O emissions from natural and managed ecosystems, and 94% of the variance in annual NO fluxes. These models are innovative in that the strong link between aggregated inorganic N concentrations and annual N-oxide emissions will allow us to use inorganic N data to support mitigation policy and produce national inventories. In future studies, the reliability of these models should be verified using data external to that used to build the model and improved by using additional datasets with better geographical representation and temporal distribution.

Conflict of interest statement
Nothing declared.

Acknowledgements
We thank the following persons for providing additional data not yet published or reported elsewhere: Yanqiang Wang, Bailing Mei, and Baohua Xie. Financial support for this work was provided by the National Key Research and Development Program of China (Grant No. 2016YFA0600804) and the National Natural Science Foundation of China (Grant Nos. 41977282, 41675144 and 4176114054). Additional support for KBB was received by the Deutsche Forschungsgemeinschaft (Grant No. BU1173/19-1). This article evolved from a workshop titled “Climate Change, Reactive Nitrogen, Food Security and Sustainable Agriculture” held at the Karlsruhe Institute of Technology in Garmisch-Partenkirchen, Germany, on 15–16 April 2019, and which was sponsored by the OECD Co-operative Research Programme: Biological Resource Management for Sustainable Agricultural Systems whose financial support made it possible for the authors to participate in the workshop.

Appendix A. Supplementary data
Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.cosust.2020.03.008.

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

This paper shows that growing season N$_2$O fluxes from Canadian agricultural soils can be predicted by growing season precipitation, soil texture (coarse, medium and fine), type of N (synthetic and organic), and crop type (perennial and annual), which provides useful information for guiding the development of soil N$_2$O emission quantification in other countries.
This article reports for the first time that high-altitude alpine grass meadows are marginal sources of atmospheric NO, and annual cumulative N$_2$O fluxes show a significant dependence on the aboveground net primary productivity.
18. Rowlings D, Grace P, Kiese R, Weier K: Environmental factors controlling temporal and spatial variability in the soil-
atmosphere exchange of \(\text{CO}_2, \text{CH}_4 \) and \(\text{N}_2\text{O} \) from an Australian subtropical rainforest. Global Change Biol 2012, 18:726-738.

40. Abalos D, van Groenen JW, Philippot L, Lubbers IM, De Deyn GB: Plant trait-based approaches to improve nitrogen cycling in agroecosystems. J Appl Ecol 2019, 56:2454-2466. This paper presents key plant traits of importance for \(\phi \) cycling and \(\phi \) use efficiency in agroecosystems, highlighting possible solutions leading to an optimal balance between \(\phi \) fertilizer use and productivity.

42. Houlton BZ, Almaraz M, Anya V, Austin AT, Bai E, Cassman KG, Compton JE, Davidson EA, Erismat JW, Galloway JN et al.: A world of co-benefits: Solving the global nitrogen challenge. Earth’s Future 2019, 7 http://dx.doi.org/10.1029/2019EF001222 This review provides the most comprehensive, solutions-focused strategy for global nitrogen to generate co-benefits for people, the economy, and planet.