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Denitrification is a key but poorly quantified component of the N

cycle. Because it is difficult to measure the gaseous (NOx, N2O, N2)

and soluble (NO3) components of denitrification with sufficient

intensity, models of varying scope and complexity have been

developed and applied to estimate how vegetation cover, land

management and environmental factors such as soil type and

weather interact to control these variables. In this paper we assess

the strengths and limitations of different modeling approaches,

highlight major uncertainties, and suggest how different

observational methods and process-based understanding can be

combined to better quantify N cycling. Representation of how

biogeochemical (e.g. org. C., pH) and physical (e.g. soil structure)

factors influence denitrification rates and product ratios combined

with ensemble approaches may increase accuracy without

requiring additional site level model inputs.
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Introduction
Denitrification partially closes the global nitrogen (N)

cycle because it converts different species of biologically

reactive N (Nr) to inert N2. In contrast to the amount of

anthropogenic N2 fixation to Nr which is fairly well

constrained, the amount of Nr transformed back to N2

by denitrification is more uncertain [1�]. However, it is

clear that since approximately 1970 the amount of N2

returned to the atmosphere is less than the amount fixed

because reactive forms of N are accumulating in the

Earth’s atmosphere, soils, and aquatic systems [2]. It is

challenging to quantify denitrification rates because the

reactants and products involved are difficult to measure

and are influenced by other biogeochemical processes.

Anthropogenically fixed Nr added to terrestrial systems

from industrial N2 fixation (mostly for fertilizer) and

microbial N2 fixation (mostly by legume cropping), cur-

rently exceeds natural N fixation [3]. As this Nr cascades

through ecosystems it is transformed to various organic,

soluble and gaseous components that contribute to air and

water pollution, as well as global warming and strato-

spheric ozone depletion [3,4]. Initial fixation produces

reduced N compounds, mainly ammonia (NH3), which

undergo various oxidation reactions. One of these, nitrifi-

cation, results in formation of water-soluble nitrate (NO3),

which is a primary source of N for plants as well as the

substrate for denitrification.

Denitrification is influenced directly and indirectly by

various processes. A combination of observational and

modeling approaches is used to quantify the rates of these

processes and how much of the different species of Nr

reside in various pools. For example, mineral and organic

forms of Nr are routinely measured from soil and water

samples extracted from research plots, particularly in

agricultural systems because this informs N availability

to plants and helps determine the amount of fertilizer and

legume N recommended to optimize crop and forage

production. Similarly, gaseous emissions of ammonia

(NH3) and N oxides (NOx, N2O) are occasionally mea-

sured for agricultural soils and livestock production sys-

tems. But because measurements provide only a snapshot
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of limited spatial and temporal extent and often entail

some degree of plant/soil system disturbance, modeling

approaches are needed to more completely quantify the

rates of processes responsible for N transformations and

the quantities of reactants and products involved in these

transformations. In particular, it is difficult and expensive

to measure N2 gas emitted from soils and water bodies

due to its high atmospheric background concentration, so

models are relied upon almost entirely to estimate these

flux rates. Lack of measurements to constrain model

derived estimates of this major flux of N lead to high

uncertainty. In this paper we describe the major N

transformation processes with a focus on denitrification,

overview and compare/contrast the different modeling

approaches, and suggest research priorities to improve

estimates and reduce uncertainties.

Denitrification in context of N cycling
Denitrification is the biochemical reduction of NO3 to

NO2
�, NO, N2O, and N2 under O2 limited conditions

mostly by heterotrophic microbes [5]. In addition to the

amount of NO3 in soil, other factors influencing the

denitrification rate include water content, labile carbon

(C) supply, temperature, gas diffusivity, pH, as well as

microbial community structure and gene expression.

Denitrification rates tend to be limited in well aerated

soils and increase as soils become wetter and as soil gas

exchange and O2 concentration decrease. In addition to

water content, bulk soil porosity, pore size distribution,

and O2 demand from auto and heterotrophic respiration

influence O2 supply. As conditions become more anoxic

denitrification rates, as well as the portion of N lost as N2

instead of NOx or N2O, tend to increase. For example,

flooded rice systems often have high denitrification rates,

but relatively low losses of N2O because pervasive anaer-

obic conditions in these environments facilitate complete

reduction to N2 [6].

Denitrification is influenced by land management and

interreacts with other biochemical processes. In cropped

and grazed systems, the majority of external Nr input

originates from synthetic fertilizers containing different

formulations of NH4 and NO3, followed by biological N

fixation associated with legume cropping and minor

amounts from atmospheric deposition of N oxides,

NO3 and NH3/NH4. Nitrogen is also recycled internally

within plant/soil/livestock systems from urine and dung

deposition and decomposition of dead vegetation and soil

organic matter which transforms N from organic to min-

eral forms (N mineralization). This added or recycled N

can remain in soil, be taken up by plant roots, transformed

by biochemical processes such as nitrification and deni-

trification, or lost from the system by volatilization, leach-

ing, or erosion. Nitrification is the oxidation of NH3 or

NH4 to NO3 by mainly autotrophic bacteria via the

intermediate products NH2OH and NO2
� [7]. Although

the majority of nitrified N is converted to NO3,
Current Opinion in Environmental Sustainability 2020, 47:37–45 
nitrification leads to substantial gaseous losses of N2O

and NOx. The NO3 resulting from nitrification can be

taken up by plants, leached from the system, or provide

the substrate for denitrification. Besides ammonia oxidiz-

ing nitrification other processes such as heterotrophic

nitrification [8], anaerobic ammonium oxidation [9], nitri-

fier denitrification [10] and dissimilatory nitrate reduction

to ammonium [11] affect the reactants and products of

denitrification. How well these interacting land manage-

ment and biogeochemical processes are represented in

ecosystem models limits the probity of denitrification

modeling [12].

Compare and contrast different modeling
approaches
Models used to quantify N budgets and cycling range

from simple empirical equations to complex simulation

models. In the context of greenhouse gas (GHG) inven-

tories [13] partitions methods into three categories: Tier

1 emission factors based on analysis of global data sets,

Tier 2 factors based on regional data, and Tier 3 methods

which include use of process-based models. For example,

the IPCC Tier 1 factor for direct soil N2O emission

assumes that 1% of N from fertilizer additions and residue

inputs is emitted as N2O. In contrast, simulation models

such as DNDC [14], DayCent [15], APSIM [16], and

CERES-EGC [17] represent the processes (nitrification,

denitrification, plant N uptake, soil water and nutrient

movement, etc.) that interact to control N2O emissions.

Tier 1 methods are transparent and easy to apply, but

process-based simulation models are typically more accu-

rate than emission factor approaches when compared with

site level observations (e.g. Ref. [18]) and estimates using

different methods can vary by a factor of 3 or more [19].

However, there is considerable disparity among simula-

tion models regarding the detail in which processes are

represented, degree of spatial and temporal resolution,

and if processes such as microbial dynamics are implicitly

or explicitly represented [20]. The following sections

compare and contrast how factors and processes control-

ling denitrification are represented in some currently

available models.

Temporal and spatial scaling

The degree of spatial and temporal resolution among

approaches varies widely. At one extreme, Tier 1 emission

factor methods assume uniformity in soil properties,

weather, vegetation cover, and management at landscape,

regional, and greater spatial scales and estimate important

denitrification products/reactants (N2O emissions, NO3

leaching) at annual temporal scale. At the other extreme,

detailed mechanistic models (e.g. Ref. [21�]) attempt to

represent the 3-D soil structure and properties such as

pore space and aggregate size distribution at highly

resolved (� mm) spatial resolution and processes such

as microbial activity and O2 flow at highly resolved

(hourly or less) temporal resolution. In the middle, many
www.sciencedirect.com
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widely used models (e.g. APSIM, DayCent) represent soil

properties at moderate (e.g. plot/field scale, i.e. m2 to ha)

spatial resolution and processes at daily temporal resolu-

tion. Both models and observations are limited because

they integrate quantities to discrete spatial and temporal

scales that are much less resolved than the scales at which

the processes actually occur. Because denitrification rates

often respond non-linearly to important drivers and the

quantities of reactants and products involved are charac-

terized by high spatial and temporal variability (hot spots/

moments), highly resolved models are expected to per-

form better than more coarse methods. However, limited

availability of highly resolved driver data constrains the

applicability of models that rely on detailed information

regarding soil physical, chemical and biological properties

that control denitrification rates.

As an anaerobic process, maximum denitrification rates

often occur when soils are at, or close to saturation.

However, it is well established that substantial denitrifi-

cation can occur in soil microsites even when bulk soil is

at moderate water content. For example, O2 concentra-

tion tends to be low within aggregate centers due to

physical diffusion constraints [22,23]. Anaerobic condi-

tions also occur under surface water films surrounding

labile particulate organic matter where high respiration

rates can deplete O2 faster than it can be supplied [24].

These observations suggest that it is insufficient to only

include bulk soil anaerobic space, but the distribution of

hotspots of microbial activity and anaerobic pockets must

be represented as well. Consequently, explicit represen-

tation of the soil matrix and how distances between hot

spots and air-filled pores regulate activity of aerobic

versus anaerobic microbes has been suggested to improve

model outcomes [25]. The DNDC model accounts for

this to some extent in that aerobic and anaerobic soil

volumes are represented, versus DayCent and APSIM

only model bulk soil properties. In addition to spatial

variability, soil properties such as porosity vary through

time, for example, in response to water inputs, but most

models assume static soil properties. One exception is

that DNDCv.CAN [26�] recalculates soil water holding

capacity based on changes in organic matter.

In addition to the direct controls (e.g. current soil NO3,

labile C and O2 availability, water content, temperature),

hysteresis (legacy effects) can affect hot moments of high

denitrification rates [27]. For example, N2O production

has been observed to be higher during drying compared to

wetting events at similar water filled pore space implying

hysteresis effects [27]. In addition to wet/drying events,

spring melting of snowpack/frozen soil in northern

regions often leads to pulses of N2O emissions which

are thought to be mainly driven by denitrification. Pulse

magnitude is correlated with accumulated winter season

freezing degree days [28�] which also implies hysteresis

effects. The mechanisms responsible are not entirely
www.sciencedirect.com 
clear but are thought to be related to release of substrates

from aggregate destruction during freeze/thaw cycles,

impacts on soil gas diffusivity and O2 availability in pores

during freeze-thaw events that influence denitrification

rates, and differing temperature sensitives of the enzy-

matic processes that control the amounts of N2 and N2O

gases released during denitrification [27]. Some of these

factors (e.g. freeze/thaw impacts on gas diffusion) are

represented in some of the field scale models (e.g. Ref.

[29,30�]) but not all of them (e.g. aggregate disruption)

are. One approach would be to model temporal changes in

soil properties such as porosity and aggregate formation/

destruction but these dynamics are difficult to represent

and are not currently included in any ecosystem models

we are aware of. Instead of trying to model all the

potential mechanisms, an alternative approach is to

account for the effect of cumulative freezing degree days

(CFD; [28�]) because this relationship is easy to calculate

and avoids the challenge of trying to model short term soil

processes such as aggregate dynamics. It is not entirely

clear why CFD are correlated with freeze/thaw pulse

magnitude, but it is likely that CFD integrates various

controls such as the stable but slow mineralization of

organic matter that can occur under sustained frozen

temperatures [31] as well as the buildup of N2O

entrapped under frozen layers which is suddenly released

upon thaw [32].

Microbial community dynamics

The representation of microbial dynamics varies widely

among approaches. DayCent [15], CERES-EGC [17] and

APSIM [16], for example, do not explicitly represent

microbial dynamics, but microbial impacts are implicitly

represented in these models by assuming that denitrifier

activity is correlated with environmental conditions (e.g.

soil NO3 concentration, water content, and so on, see

Figure 1). More complex models such as DNDC [25�,33],
and ecosys [34], explicitly represent biomass of important

microbial functional groups (e.g. facultatively anaerobic

denitrifiers, aerobic nitrifiers, anaerobic fermenters, etc.).

The degree to which explicit representation of microbial

dynamics is needed to produce reliable model estimates

of soil N and C flows is debatable with some asserting that

explicit representation leads to improved model perfor-

mance (e.g. Ref. [35]) while others (e.g. Ref. [36�])
emphasize that comparisons with field observations are

limited and inconclusive. Incubation studies provide

some evidence to support explicit representation, for

example, a model that explicitly represents microbial

dynamics more accurately represented measured soil

organic matter decomposition patterns compared to mod-

els that only implicitly include microbes [37]. Similarly,

microbial enzyme kinetic models have been shown to

represent soil N dynamics very well for incubation (e.g.

Ref. [38]) and some field studies (e.g. Ref. [39]). How-

ever, there are very few studies that have rigorously

compared different classes of models with field
Current Opinion in Environmental Sustainability 2020, 47:37–45
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Figure 1

Current Opinion in Environmental Sustainability

Conceptual representation of denitrification in four widely used ecosystem models. All models use substrate (C and N) and environmental controls

to calculate denitrification for different soil depths but vary in level of detail and extent to which processes are implicitly versus explicitly

represented. CERES – EGC, APSIM and DayCent calculate only denitrification of NO3 explicitly. The intermediate products NO2 and NO are

neglected. Denitrification of N2O is determined by the calculation of N2O:N2 ratios. Though denitrification products are directly released to the

atmosphere, transport is implicitly accounted for by changing N2O:N2 ratios depending on, for example, soil diffusivity. DNDC explicitly calculates

denitrification NO3, NO2, NO and N2O. All intermediate products are subject to explicit calculation of soil diffusion and can be subject to different

denitrification steps in varying soil depth.

Current Opinion in Environmental Sustainability 2020, 47:37–45 www.sciencedirect.com
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observations of C or N fluxes across sites. In one such

study, no conclusions regarding model performance could

be affirmed when comparing a suite of models of varying

complexity and implicit versus explicit representation of

microbes with CO2 emission and soil organic matter

observations from field studies that manipulated soil

warming and litter inputs [40]. Explicit representation

of microbial dynamics has potential to improve model

performance because, for example, microbial diversity is

correlated with organic matter mineralization [41] but the

accompanying increase in complexity can increase uncer-

tainties in model outputs because microbial related model

parameters are usually not well constrained [42�]. Par-

tially because of these reasons, most field and larger scale

models do not include microbial community dynamics or

gene expressions. However, increasing insights into

microbial system dynamics may provide the basis for

future considerations [43].

Model selection and complexity

Although defining optimum model complexity remains

debatable, some generalities can be drawn. The spatial/

temporal resolution of available input data and purpose of

model application are primary drivers of model selection.

When data are limited or for purposes of national GHG

inventories, simple Tier 1 or Tier 2 methods are often

acceptable especially if outcomes (e.g. N2O emissions)

are reported at highly aggregated spatial and temporal

scales so errors tend to cancel [44]. But for smaller spatial

and temporal scales and to accurately estimate mitigation

potentials more complex models are needed. Models of

intermediate (e.g. DayCent, APSIM, CERES-EGC) or

greater (e.g. DNDC) complexity typically match obser-

vations of N2O emissions more closely than simpler

emission factor-based methods (e.g. Refs. [18,45]). How-

ever, optimal complexity for field level application has

not been thoroughly addressed and current evidence is

mixed. For example, a comparison of 24 process-based

biogeochemical models of varying complexity, most of

which represent nitrification and denitrification, with

observations of crop or grassland growth and N2O emis-

sions showed that no single model outperformed the

model ensemble [46�]. Highlighting DayCent and

DNDC is instructive in this context because the models

have virtually identical input requirements but substan-

tially different algorithms. For example, DayCent does

not explicitly represent diffusion of gases in soil or the

microbial community responsible for denitrification reac-

tions but implicitly accounts for these processes by

assuming that diffusivity decreases as water content

and field capacity increase and that denitrifier activity

is correlated with NO3 and labile C availability. In con-

trast, the DNDC model explicitly represents diffusive gas

transport as well as separate microbial growth dynamics in

aerobic and anaerobic soil compartments. The share

between aerobic and anaerobic soil compartments is

determined from depth-specific oxygen concentration
www.sciencedirect.com 
depending on respiratory processes. Nr species such as

N2O can be produced in deeper soil layers and further

denitrified to N2 in upper soil layers before they are

released to the atmosphere. Despite these clear differ-

ences in model complexity, comparisons with field obser-

vations of N dynamics are mixed with DayCent perform-

ing better in some cases (e.g. Ref. [47] and DNDC better

in others (e.g. Ref. [48]).

Models such as DayCent, APSIM and DNDC are 1-D in

that lateral flow of water and nutrients are not included.

This likely contributes to poor representation of soil

water contents in some cases and compromises the ability

to address N cycling and NO3 mitigation. To account for

lateral transport processes, biogeochemical models can be

externally coupled [49–51] or internally implemented to

spatially distributed hydrology models such as SWAT

[52]. In the case of DNDCv.CAN [26�], the inclusion

of quasi-2D tile flow, revised root density functions and

simulation of soil C and N processes to 2 m depth greatly

improved the performance of the model for simulating

soil water content, and the timing of water and N trans-

port to tile drains. These modifications were responsible

for improved simulation of N2O emissions presumably

due to better representation of soil water, C and N

dynamics [53].

One constraint on complexity is availability of required

model inputs especially at large spatial scales. Most earth

system models use simple equations based on soil texture

to estimate hydraulic properties and gas diffusion rates.

However, soil structure and aggregation also impact flows

of water and gases. A simple way to partially account for

this is to assume that soil biological activity increases with

plant productivity and SOC which improves soil structure

and increases hydraulic conductivity [54,55]. In addition,

soil structure and aggregate size distribution affect gas

diffusion and N2O emissions tend to increase with aggre-

gate size [56�]. Accounting for impacts of plant growth and

SOC on soil aggregation and structure may provide a way

to increase complexity and potentially improve model

performance without increasing data required for model

inputs or calibration because models already simulate

plant growth and SOC. For example, Jarecki et al. [57]

incorporated a pedo-transfer function in DNDCv.CAN to

recalculate changes in soil water holding capacities based

on changes in SOC, however, the impacts on other soil

hydraulic properties and aggregate stability was not con-

sidered. In contrast, explicitly accounting for how biolog-

ical activity and physical/chemical processes affect soil

structure, aggregate dynamics and C and N flows likely

would require more site level data to inform model inputs.

Research priorities and ways forward
There is opportunity to improve models because not all

relevant environmental and biochemical drivers and pro-

cesses are currently represented in widely used models.
Current Opinion in Environmental Sustainability 2020, 47:37–45
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For example, the impacts of soil pH on both denitrifica-

tion rates and the N2/N2O product ratio are well estab-

lished [58] but are only included in a few models such as

DNDC [59] and recently in DayCent [60] and NOE [61].

Some emergent processes such as heterotrophic nitrifica-

tion, which was observed to be the dominant process

resulting in increased N2O under elevated CO2 [8],

anaerobic ammonium oxidation [9] and dissimilatory

nitrate reduction to ammonium [11] could be implemen-

ted. The benefits of including additional processes should

be compared to the costs of additional complexity and

associated model input burdens. In the case of pH,

representing these impacts does not necessarily increase

the need for additional site level inputs but representing

all of the biochemical pathways that contribute to the

products and reactants involved in denitrification may

entail detailed measurements that are not routinely

performed.

More complete exploitation of established and emerging

observational data provides further opportunity to inform

model selection, optimal complexity, and improvement.

Ensemble models have been used more extensively for

crop than N2O and denitrification modeling [62], but

recent evaluations suggests that this approach could be

promising [12,63] especially when comparing results

with global databases derived from rigorous field studies

(e.g. Ref. [64]). While the vast majority of field studies

reporting N2O emissions used soil surface based bottom

up measurements, N2O fluxes from tower based top

down methods are becoming increasingly available and

have the advantage of integrating fluxes over large time

scales and spatial scales ranging from field (e.g. Ref.

[28�]) to continental scales [65�]. Running models at

landscape and larger scales for comparing with top down

data relies on availability of spatially and temporally

resolved model input databases. Fortunately, land cover,

soils, and weather data required for model inputs are

available at near complete spatial coverage for countries

such as the USA [66], Canada [67] or at the European

level [68].

Although extensive N2O data are valuable for model

comparisons, they are limited because other processes

such as nitrification directly contribute to observed N2O

fluxes while various Nr transformation indirectly con-

tribute to observed N2O. Measurements of isotopic

composition and intramolecular distribution of 15N in

the N2O molecule can be used to constrain Nr turnover

[69]. Recently, Denk et al. [70�] developed the stable

isotope model SIMONE, which is an offline model that

uses predicted process rates (e.g. mineralization, nitri-

fication, denitrification, etc.) of parent biogeochemical

models to simulate the corresponding isotopic signature

of Nr. The model has been applied to the Landsca-

peDNDC model to evaluate simulated process rates
Current Opinion in Environmental Sustainability 2020, 47:37–45 
and attribute N2O production to either nitrification or

denitrification.

Even though N2 is a major product of denitrification,

modeling studies rarely evaluate simulated N2 emissions

because few observations are available. When models fail

to accurately represent N2O emissions it cannot be deter-

mined if total denitrification rates were incorrect, or if the

stoichiometry of denitrification products was incorrect.

Studies reporting N2 emissions measured using advanced

methods such as helium enclosed chambers [71], 15N

labeled NO3
� [72], and isotope ratios [1�] should be

prioritized for model evaluation. When N2measurements

are not available, emissions for different models could at

least be compared (e.g. Ref. [73]). The scarcity of acces-

sible measurements as compared to the extent of simu-

lated processes is a general problem for the calibration

and validation of complex biogeochemical models.

In many studies it remains unclear if model algorithms for

soil N transformations are incomplete, or if inaccurate

representations of other processes such as soil water flows

(e.g. Ref. [26�]), ammonia volatilization (e.g. Ref. [74])

and plant N uptake (e.g. Ref. [75]) are responsible for

model inaccuracies. Houska et al. [76] showed for the

LandscapeDNDC model that it is not easy to accurately

represent multiple outputs at the same time (0.01% of

model runs sampled by Latin Hypercube Sampling)

while a single output quantity could be well represented

(40–70% of runs) thus providing evidence that models are

often right for the wrong reasons. A recent study showed

that using measured instead of model generated values

for soil water content resulted in worse model perfor-

mance for crop yields and highlights the risk of compen-

sating effects when calibrating model parameters [77].

Systematic evaluation of the sensitivity of denitrification

rates and product ratios to key drivers and comparisons

with measurements would address these issues and iso-

late which model algorithms and parameter values are

most responsible for inaccurate representation of N2O

emissions and other variables related to denitrification.

We conclude that current levels of process understanding

and available observational data sets could be readily

exploited to improve models and to quantify how com-

plexity and burden of required model inputs interact to

determine uncertainty in model outputs.
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58. Bakken LR, Frostegård Å: Sources and sinks for N2O, can
microbiologist help to mitigate N2O emissions. Environ
Microbiol 2017, 19:4801-4805.

59. Li C, Salas W, Zhang R, Krauter C, Rotz A, Mitloehner F: Manure-
DNDC: a biogeochemical process model for quantifying
greenhouse gas and ammonia emissions from livestock
manure systems. Nutr Cycl Agroecosyst 2012, 93:163-200.

60. Del Grosso SJ, Ogle SM, Parton WJ, Nevison C, Smith W, Gran B,
Wagner-Riddle C, Tenuta M, Hartman MD, Blanc-Betes E,
DeLucia EH: Modelling denitrification and N2O emissions from
fertilised cropping systems using Daycent. In Proceedings of
the Workshop on “Climate Change, Reactive Nitrogen, Food
Security and Sustainable Agriculture” 15-16 April, 2019; Garmisch-
Partenkirchen, Germany: 2019.

61. Hénault C, Bourennane H, Ayzac A, Ratié C, Saby NP, Cohan JP,
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