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Abstract
This article gives a synopsis on new developments in affine invariant tests for multi-
variate normality in an i.i.d.-setting, with special emphasis on asymptotic properties of
several classes of weighted L2-statistics. Since weighted L2-statistics typically have
limit normal distributions under fixed alternatives to normality, they open ground for a
neighborhood of model validation for normality. The paper also reviews several other
invariant tests for this problem, notably the energy test, and it presents the results of a
large-scale simulation study. All tests under study are implemented in the accompa-
nying R-package mnt.

Keywords Test for multivariate normality · Weighted L2-statistic ·
Affine invariance · Consistency
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1 Introduction

Testing for multivariate normality (for short MVN) is a topic of ongoing interest. A
survey of dozens of MVN tests, including graphical procedures for assessing mul-
tivariate normality, is provided by Mecklin and Mundfrom (2004). The review of
Henze (2002) concentrates on affine invariant and consistent procedures, and the book
of Thode (2002) contains a chapter on testing for MVN.
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In a standard setting, let X , X1, X2, . . . be independent identically distributed (i.i.d.)
d-variate random (column) vectors, which are defined on a common probability space
(Ω,A,P). The distribution of X will be denoted by P

X . We write Nd(μ,Σ) for the
d-variate normal distribution with expectation μ and covariance matrixΣ , and we let

Nd := {Nd(μ,Σ) : μ ∈ R
d ,Σ positive definite}

denote the class of all non-degenerate d-variate normal distributions. Testing for d-
variate normality means testing the hypothesis

H0 : PX ∈ Nd ,

against general alternatives, on the basis of X1, . . . , Xn . At the outset, it should be
stressed that each model can merely hold approximately in practice. In particular,
there can only be approximate normality, in whatever sense. Consequently, there is
the following basic drawback inherent in any goodness-of-fit test, not only of H0, but
also of other families of distributions: If a level-α-test of H0 does not lead to a rejection
of H0, the null hypothesis is by nomeans ‘validated’ or ‘confirmed.’ Presumably, there
is merely not enough evidence to reject it! A further fundamental point is that there
cannot be an optimal test of H0, if one reallywants to detect general alternatives. In this
respect, Janssen (2000) shows that the global power function of any nonparametric test
is flat on balls of alternatives, except for alternatives coming from a finite-dimensional
subspace. Thus, loosely speaking, each test of H0 has its own ‘non-centrality.’

Regarding the task of reviewing MVN tests here in 2020, we cite Mecklin and
Mundfrom (2004), whowrite ‘the continuing proliferation of paperswith newmethods
of assessing MVN makes it virtually impossible for any single survey article to cover
all available tests.’ And they continue: ‘When compared to the amount of work that has
been done in developing these tests, relatively little work has been done in evaluating
the quality and power of the procedures.’

This reviewcan also only be partial.Wewill take the above testing problemseriously
and concentrate on genuine tests of H0 that have been proposed since the reviewHenze
(2002), and we will judge each of these according to the following points of view:

– affine invariance
– theoretical properties (limit distributions under H0 and under fixed and contiguous
alternatives to H0, consistency)

– feasibility with respect to sample size and dimension.

Thus, e.g., we will not deal with tests for H0 that allow for n ≤ d (see Tan et al.
2005 or Yamada and Himeno 2019), since the condition n ≥ d + 1 is necessary to
decide whether the underlying covariance matrix is non-degenerate or not. Moreover,
unlike the review ofMecklin andMundfrom (2004), we will not discuss purely graph-
ical procedures, as proposed in Holgersson (2006). We will also not embark upon a
review of tests for normality in non-i.i.d.-settings, like testing for Gaussianity of the
innovations in MGARCH processes (see, e.g., Lee and Ng 2011 or Lee et al. 2014),
or situations with incomplete data (see, e.g., Yamada et al. 2015), since such a task
would go beyond the scope of this review.Wewill also not review tests for Gaussianity
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in infinite-dimensional Hilbert spaces, see, e.g., Górecki et al. (2020) or Kellner and
Celisse (2019).

Regarding affine invariance, notice that the class Nd is closed with respect to full
rank affine transformations. Hence, any ‘genuine’ statistic Tn = Tn(X1, . . . , Xn) (say)
for testing H0 should satisfy Tn(AX1 + b, . . . , AXn + b) = Tn(X1, . . . , Xn) for each
regular (d × d)-matrix A and each b ∈ R

d . Otherwise, it would be possible to reject
H0 on given data and do not object against H0 on the same data, after performing a
rotation, which makes little, if any, sense. In the sequel, let

Yn, j = S−1/2
n (X j − Xn), j = 1, . . . , n, (1.1)

denote the so-called scaled residuals. Here, Xn = n−1∑n
j=1 X j is the sample mean,

Sn = n−1∑n
j=1(X j − Xn)(X j − Xn)

� stands for the sample covariance matrix of
X1, . . . , Xn , and the superscript� denotes transposition of columnvectors. Thematrix
S−1/2
n is the unique symmetric square root of S−1

n . The lattermatrix exists almost surely
if n ≥ d +1 and PX is absolutely continuous with respect to d-dimensional Lebesgue
measure, see Eaton and Perlman (1973). These assumptions will be standing in what
follows. We remark that Sn is sometimes defined with the factor (n − 1)−1 instead
of n−1, but this difference does not have implications for asymptotic considerations.
A good account on finite-sample distribution theory of Yn,1, . . . ,Yn,n under H0 is
provided by Takeuchi (2020).

Affine invariance is achieved if the test statistic Tn is a function of Y�
n,i Yn, j , i, j ∈

{1, . . . , n}, or if Tn is a function of (only)Yn,1, . . . ,Yn,n , and Tn(OYn,1, . . . , OYn,n) =
Tn(Yn,1, . . . ,Yn,n) for eachorthogonal (d×d)-matrixO . If a statisticTn is affine invari-
ant (henceforth invariant for the sake of brevity), the distribution of Tn under the null
hypothesis H0 does not depend on the parameters μ and Σ of the underlying normal
distribution. Thus, regarding distribution theory under H0, we can without loss of gen-
erality assume thatPX = Nd(0, Id). Here, 0 is the origin inRd , and Id is the unit matrix
of order d. But invariance of a statistic Tn also entails that it is no restriction to assume
EX = 0 and EXX� = Id when studying the distribution of Tn under an alternative
to H0 that satisfies E‖X‖2 < ∞, where ‖ · ‖ denotes the Euclidean norm in Rd .

As for the second point, i.e., properties of a test of H0 based on a statistic Tn that go
beyond mere simulation results, there should be a sound rationale for the test, which
means that there should be good knowledge ofwhat is estimated by Tn if the underlying
distribution is not normal. This rationale is intimately connected to the property of
consistency. If Tn is some invariant statistic, it must be regarded—perhaps after some
suitable normalization—as an estimator of some invariant functional T (P) of the
unknown underlying distribution P , where P = P

X . This means that T (P) = T (P̃)

if P̃ is a full rank affine image of P , whence T (·) is constant over the class Nd . For
such a functional, consistency of a test based on T against general alternatives can not
be expected if T does not characterize the classNd , in the sense that there are P1 ∈ Nd

and P2 /∈ Nd such that T (P1) = T (P2). Examples of non-characterizing functionals
are time-honored measures of multivariate skewness and kurtosis, see Sect. 8. The
most prominent of this group of tests is Mardia’s invariant nonnegative skewness
functional
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848 B. Ebner, N. Henze

T (P) = β
(1)
d (P) = E

[(
(X1 − μ)�Σ−1(X2 − μ)

)3]
. (1.2)

Here, X1, X2 are i.i.d. with distribution P , meanμ and non-singular covariancematrix
Σ . The functional β(1)

d does not characterize the classNd since it does not only vanish
on Nd , but in particular also for each non-normal elliptically symmetric distribution
for which the expectation figuring in (1.2) exists. This fact has striking consequences
for a standard test of H0 that rejects H0 for large values of the sample counterpart of
β

(1)
d , see Sect. 8.
The paper is organized as follows: Sect. 2 gives a thorough account on general

aspects of weighted L2-statistics for testing H0, and besides the class of BHEP tests, it
reviews five recently proposed tests for multivariate normality that are based on either
the characteristic function, the moment generating function, or a combination thereof.
Section 3 reviews the Henze–Zirkler test with bandwidth depending on sample size
and dimension, which is not a weighted L2-statistic in the sense of Sect. 2. In Sect. 4,
we summarize the most important features of the meanwhile well-established energy
test of Székely and Rizzo (2005), and Section 5 deals with the test of Pudelko (2005).
Section 6 reviews new theoretical results on a time-honored test of Cox and Small
(1978), while Sect. 7 considers the test of Manzotti and Quiroz (2001), which is based
on functions of spherical harmonics. In Sect. 8, we review tests based on skewness and
kurtosis, and in Sect. 9, we try to give a brief account on further work on the subject.
Section 10 presents the results of a large-scale simulation study that comprises each
of the tests treated in Sects. 2–8. The final Sect. 11 draws some conclusions, and it
gives an outlook for further research.

We conclude this section by pointing out some general notation. Throughout the
paper, Bd stands for the σ -field of Borel sets in R

d , Sd−1 := {x ∈ R
d : ‖x‖ = 1} is

the surface of the unit sphere in Rd , and Φ(·) denotes the distribution function of the

standard normal distribution. The symbol
D−→ stands for convergence in distribution of

randomelements (variables, vectors and processes), and
P−→,

a.s.−→ denote convergence
in probability and almost sure convergence, respectively. Each limit refers to the setting

n → ∞. The symbol
D= denotes equality in distribution. Throughout the paper, each

unspecified integral will be over Rd . The acronyms (E)MGF and (E)CF stand for the
(empirical) moment generating function and the (empirical) characteristic function,
respectively. Finally, we write 1{A} for the indicator function of an event A.

2 Weighted L2-statistics

In this chapter, we review the state of the art of weighted L2-statistics for testing H0.
These statistics have a long history, and they are also in widespread use for goodness-
of-fit problems with many other distributions, see, e.g., Baringhaus et al. (2017). A
weighted L2-statistic for testing H0 takes the form

Tn =
∫

Z2
n(t)w(t) dt . (2.1)
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Here, Zn(t) = zn(X1, . . . , Xn, t), zn is a real-valued measurable function defined on
the (n + 1)-fold Cartesian product of Rd , and w : Rd → R is a nonnegative weight
function satisfying

∫

z2n(x1, . . . , xn, t)w(t) dt < ∞ for each (x1, . . . , xn) ∈ (Rd)n .

The function zn can also be vector-valued; then Z2
n(t) in (2.1) is replaced with

‖Zn(t)‖2. Typically, Zn(t) takes the form

Zn(t) = 1√
n

n∑

j=1

�
(
t�Yn, j

)
, t ∈ R

d , (2.2)

where �(·) is some measurable function satisfying
∫
E
[
�2(t�X)

]
w(t) dt < ∞, and

E
[
�(t�X)

] = 0, t ∈ R
d , if X

D= Nd(0, Id).
In view of (2.1), a natural setting to study asymptotic properties of Tn is the

separable Hilbert space H := L2(Rd ,Bd , w(t)dt) of (equivalence classes) of mea-
surabe functions on Rd that are square-integrable with respect to w(t)dt . If ‖ f ‖H :=
(∫

f 2(t)w(t) dt
)1/2

denotes the norm of f ∈ H, then Tn = ‖Zn‖2H. The general

approach to derive the limit distribution of Tn under H0 is to prove Zn
D−→ Z for

some centered Gaussian random element of H, whence Tn
D−→ ‖Z‖2

H
by the contin-

uous mapping theorem. To this end, it is indispensable to approximate Zn figuring in
(2.2) by a suitable random element Zn,0 of H of the form

Zn,0(t) = 1√
n

n∑

j=1

�0(t
�X j ), (2.3)

whereE[�0(t�X)] = 0, t ∈ R
d ,
∫
E[�20(t�X)]w(t)dt < ∞, and‖Zn−Zn,0‖H P−→ 0.

The central limit theorem in Hilbert spaces (see, e.g., Theorem 2.7 in Bosq 2000) then

yields Zn,0
D−→ Z for some centeredGaussian element ofH having covariance kernel

K (s, t) = E
[
�0(s, X)�0(t, X)

]
, s, t ∈ R

d .

The distribution of Z is uniquely determined by the kernel K (·, ·), and the distribu-
tion of ‖Z‖2

H
is that of

∑∞
j=1 λ j N 2

j , where the N j are i.i.d. standard normal random
variables, and λ j , j = 1, 2, . . ., are the positive eigenvalues corresponding to eigen-
functions f j of the (linear second-order homogeneous Fredholm) integral equation

λ f (s) =
∫

K (s, t) f (t)w(t) dt, s ∈ R
d , (2.4)

see, e.g., Kac and Siegert (1947). The problem of finding the eigenvalues and associ-
ated eigenfunctions of (2.4) is called the kernel eigenproblem. In this respect, hitherto
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850 B. Ebner, N. Henze

none of the integral equations corresponding to the test presented in this section has
been solved explicitly. Notice that knowledge of the largest eigenvalue λmax (say)
opens ground for the calculation of the approximate Bahadur slope and hence for
statements on the Bahadur efficiency which, for asymptotically normal statistics, typ-
ically coincides with the Pitman efficiency, for details see Bahadur (1960) and Nikitin
(1995).

To find a random element Zn,0 of the form (2.3) that approximates Zn , one has
to evaluate the effect of replacing Yn, j in (2.2) with X j . Putting Δn, j = Yn, j − X j ,
j = 1, . . . , n, the following result, taken from Dörr et al. (2020), is helpful.

Proposition 1 Let X , X1, X2, . . . be i.i.d. random vectors satisfying E‖X‖4 < ∞,
E(X) = 0 and E(XX�) = Id . We then have

n∑

j=1

‖Δn, j‖2 = OP(1),
1

n

n∑

j=1

‖Δn, j‖2 a.s.−→ 0, max
j=1,...,n

‖Δn, j‖ = oP
(
n−1/4

)
.

Since �(t�Yn, j ) = �(t�X j + t�Δn, j ), the function �(·) must be smooth enough to
allow for a Taylor expansion. To tackle the linear part in this expansion, it is crucial
to have some information on Δn, j = (S−1/2

n − Id)X j − S−1/2
n Xn . Such information

is provided by display (2.13) of Henze and Wagner (1997), according to which

√
n(S−1/2

n − Id) = − 1

2
√
n

n∑

j=1

(
X j X

�
j − Id

)
+ OP

(
n−1/2

)
.

Since Proposition 1 holds under general assumptions, onemay often obtain asymptotic
normality of weighted L2-statistics under fixed alternatives. To this end, notice that

Tn
n

=
∫ (

1

n

n∑

j=1

�(t�Yn, j )

)2
w(t) dt .

Under suitable conditions, we will have Tn/n
P−→ Δ, where Δ = ‖z‖2

H
, and z(t) =

E
[
�(t�X)

]
, z ∈ R

d . An immediate consequence of this stochastic convergence is
the consistency of a test for H0 based on Tn against each alternative distribution that
satisfiesΔ > 0. But we have more! Writing 〈u, v〉H = ∫ u(t)v(t)w(t) dt for the inner
product in H, there is the decomposition

√
n

(
Tn
n

− Δ

)

= √
n
(
‖Zn‖2H − ‖z‖2

H

)

= √
n
〈
Zn − z, Zn + z

〉
H

= √
n
〈
Zn − z, 2z + Zn − z

〉
H

= 2
〈√

n(Zn − z), z
〉
H

+ 1√
n
‖√n(Zn − z)‖2

H
.
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These lines carve out the quintessence of asymptotic normality of weighted L2-
statistics under fixed alternatives. Namely, if one can show that the sequence Vn :=√
n(Zn−z) of random elements ofH converges in distribution to some centered Gaus-

sian random element V of H, then, by the continuous mapping theorem and Slutski’s
lemma, we have

√
n

(
Tn
n

− Δ

)
D−→ N(0, σ 2), (2.5)

where

σ 2 = 4
∫∫

K (s, t)z(s)z(t)w(s)w(t) dsdt,

and K (·, ·) is the covariance kernel of V , see Theorem 1 of Baringhaus et al. (2017).
As a consequence, if σ̂ 2

n is a consistent estimator of σ 2 based on X1, . . . , Xn , then,
for given α ∈ (0, 1),

In,1−α =
[
Tn
n

− Φ−1
(
1 − α

2

) σ̂n√
n
,
Tn
n

+ Φ−1
(
1 − α

2

) σ̂n√
n

]

(2.6)

is an asymptotic confidence interval for Δ of level 1 − α. Moreover, from (2.5) and
Slutski’s lemma, we have

√
n

σ̂n

(
Tn
n

− Δ

)
D−→ N(0, 1), (2.7)

which opens the ground for a validation of a certain neighborhood of H0. Namely,
suppose that we want to tolerate a given ‘distance’ Δ0 to the class Nd . We may then
consider the ‘inverse’ testing problem

HΔ0 : Δ(PX ) ≥ Δ0 against KΔ0 : Δ(PX ) < Δ0.

Here, the dependence of Δ on the underlying distribution PX has been made explicit.
From (2.7), the test which rejects HΔ0 if

Tn
n

≤ Δ0 − σ̂n√
n
Φ−1(1 − α),

has asymptotic level α, and it is consistent against general alternatives, see Section
3.3 of Baringhaus et al. (2017). Notice that this test is in the spirit of bioequivalence
testing (see, e.g., Czado et al. 2007; Dette and Munk 2003 or Wellek 2010), since it
aims at validating a certain neighborhood of a hypothesized model.

We now review the time-honored class of BHEP tests and several recently suggested
L2-statistics for testing H0. Each of these statistics has an upper rejection region, and
it is invariant, because it is a function of Y�

n, j Yn,k , where j, k ∈ {1, . . . , n}.
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852 B. Ebner, N. Henze

2.1 The BHEP tests

Generalizing a test for univariate normality based on the ECF due to Epps and Pulley
(1983), the first proposals for weighted L2-statistics for testing H0 are due to Baring-
haus and Henze (1988) and Henze and Zirkler (1990), who considered the statistic

BHEPn,β = n
∫
∣
∣Ψn(t) − Ψ0(t)

∣
∣2wβ(t) dt . (2.8)

Here,

Ψn(t) = 1

n

n∑

j=1

exp(it�Yn, j ), t ∈ R
d , (2.9)

denotes the ECF of Yn,1, . . . ,Yn,n ,Ψ0(t) = exp(−‖t‖2/2) is the CF of the distribution
Nd(0, Id), and the weight function wβ is given by

wβ(t) =
(
2πβ2

)−d/2
exp

(

−‖t‖2
2β2

)

, (2.10)

where β > 0 is a fixed constant. That BHEPn,β is indeed of the type (2.1) will become
clear from the representation (2.13).

Whereas Baringhaus and Henze (1988) studied the special case β = 1, the general
case was treated by Henze and Zirkler (1990). An extremely appealing feature of the
weight function wβ in (2.10) is that BHEPn,β takes the feasible form

BHEPn,β = 1

n

n∑

j,k=1

exp

(

−β2‖Yn, j − Yn,k‖2
2

)

− 2

(1 + β2)d/2

n∑

j=1

exp

(

−β2‖Yn, j‖2
2(1 + β2)

)

+ n

(1 + 2β2)d/2 . (2.11)

The BHEP test is the most thoroughly studied class of tests for multivariate normality.
Csörgő (1989) coined the acronym BHEP for this class of tests for H0, after early
developers of the idea, and he proved that lim infn→∞ n−1BHEPn,β ≥ C(PX , β) > 0
almost surely for some constant C(PX , β) if PX does not belong to Nd . As a conse-
quence, a test for normality based on BHEPn,β is consistent against any alternative.

If E‖X‖2 < ∞ and EX = 0, EXX� = Id (the last two assumptions entail no loss
of generality in view of invariance), then

1

n
BHEPn,β

a.s.−→ Δβ :=
∫
∣
∣Ψ (t) − Ψ0(t)

∣
∣2wβ(t) dt (2.12)

(Baringhaus and Henze 1988), where Ψ (t) = E exp(it�X), t ∈ R
d , is the CF of X .

Hence,Δβ = Δβ(PX ) is the functional associated with the BHEP test. Using a Hilbert
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space setting, Gürtler (2000) proved (2.5) for Tn = BHEPn,β , where Δ = Δβ and
σ 2 = σ 2

β depend on β, under each alternative distribution satisfying E‖X‖4 < ∞.

Moreover, Gürtler (2000) obtained a sequence σ̂ 2
n,β of consistent estimators of σ 2

β and
thus an asymptotic confidence interval of the type (2.6).

In view of the representation (2.11), Baringhaus and Henze (1988) and Henze and
Zirkler (1990) obtained the limit null distribution of BHEPn,β as n → ∞ by means
of the theory of V-statistics with estimated parameters. Upon observing that

BHEPn,β =
∫

Z2
n(t) wβ(t) dt, (2.13)

where Zn(t) = n−1/2∑n
j=1

(
cos(t�Yn, j ) + sin(t�Yn, j ) − Ψ0(t)

)
, Henze and Wag-

ner (1997) considered Zn(·) as a random element in a certain Fréchet space of random
functions, and they showed that Zn converges in distribution in that space to some
centered Gaussian random element Z , see Theorem 2.1 of Henze and Wagner (1997).

Moreover, BHEPn,β
D−→ ∫

Z2(t) wβ(t) dt , and the test is able to detect a sequence
of contiguous alternatives that approach Hd at the rate n−1/2. Henze and Wagner
(1997) also obtained the first three moments of the limit null distribution of BHEPn,β .
Finally, the class of BHEP tests is ‘closed at the boundaries’ β → 0 and β → ∞
since, elementwise on the underlying probability space, we have

lim
β→0

BHEPn,β

β6 = n

6
· b(1)

n,d + n

4
· b̃(1)

n,d , (2.14)

where b(1)
n,d and b̃(1)

n,d are given in (8.1) and (8.3), respectively, see Henze (1997b).
Thus, as β → 0, a scaled version of BHEPn,β is approximately a linear combination
of two measures of multivariate skewness. The limit distribution of the right-hand side
of (2.14) under general distributional assumptions on X has been studied by Henze
(1997b). Last but not least, we have

lim
β→∞ βd (BHEPn,β − 1

) = n

2d/2 − 2
n∑

j=1

exp

(

−‖Yn, j‖2
2

)

, (2.15)

see Henze (1997b). Hence, as β → ∞, rejection of H0 for large values of BHEPn,β

means rejection of H0 for small values of
∑n

j=1 exp(−‖Yn, j‖2/2). The latter statistic,
like Mardia’s measure of multivariate kurtosis b(2)

n,d (see (8.1)), merely investigates an
aspect of the ‘radial part’ of the underlying distribution.

Guided by theoretical and simulation based results in the univariate case, Tenreiro
(2009) performed an extensive simulation study on the power of the BHEP test for
dimensions d ∈ {2, 3, . . . , 10, 12, 15} and sample sizes n ∈ {20, 40, 60, 80, 100}. He
concluded that the choice β = 0.5 gives ‘the best results for long tailed or moderately
skewed alternatives, but it also produces very poor results for short tailed alternatives.’
If no relevant information about the tail of the alternatives is available, he strongly
recommends the use of β = √

2/(1.376 + 0.075d) (in fact, his recommendation is
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854 B. Ebner, N. Henze

in terms of h = 1/(β
√
2))), and there are similar recommendations for short tailed

alternatives and long tailed or moderately skewed alternatives, respectively.

2.2 A weighted L2-statistic via themoment generating function

Henze and Jiménez-Gamero (2019) generalized results of Henze and Koch (2020)
to the multivariate case and considered a MGF analogue to the BHEP-test statistic.
Letting

Mn(t) = 1

n

n∑

j=1

exp
(
t�Yn, j

)
, t ∈ R

d , (2.16)

denote the EMGF of Yn,1, . . . ,Yn,n , and writing M0(t) = exp(‖t‖2/2), t ∈ R
d , for

the MGF of the standard normal distribution Nd(0, Id), the test statistic is

HJn,γ = n
∫

(Mn(t) − M0(t))
2 w̃γ (t) dt, (2.17)

where

w̃γ (t) = exp
(
−γ ‖t‖2

)
, (2.18)

and γ > 2 is some fixed parameter. Notice that the condition γ > 1 is necessary for
the integral in (2.17) to be finite, and the more stringent condition γ > 2 is needed for
asymptotics under H0.

The test statistic HJn,γ has a representation analogous to (2.11) (see display (1.4) of
Henze and Jiménez-Gamero 2019). Elementwise on the underlying probability space,
we have

lim
γ→∞ γ 3+d/2 6HJn,γ

πd/2 = n

6
· b(1)

n,d + n

4
b̃(1)
n,d (2.19)

which, interestingly, is the same limit as in (2.14). By working in the Hilbert space
L2(Rd ,Bd , w̃γ (t)dt) of (equivalence classes) of measurabe functions on R

d that are
square-integrable with respect to w̃γ (t)dt , Henze and Jiménez-Gamero (2019) derived
the limit null distribution of HJn,γ , which is that of HJ∞,γ := ∫

W 2(t)w̃γ (t) dt ,
where W is some centered Gaussian random element of that space. Henze and
Jiménez-Gamero (2019) also obtained the expectation and the variance of HJ∞,γ .
Moreover, if X is a (standardized) alternative distribution with the property M(t) :=
E(exp(t�X)) < ∞, t ∈ R

d , then

lim inf
n→∞

HJn,γ

n
≥
∫

(M(t) − M0(t))
2 w̃γ (t) dt P-almost surely. (2.20)
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This inequality implies the consistency of the MVN test based on HJn,γ against those
alternatives that have a finite MGF. Indeed, one may conjecture that this test is con-
sistent against any alternative to H0.

2.3 A test based on a characterization involving theMGF and the CF

Volkmer (2014) proved a characterization of the univariate centered normal distribu-
tion, which involves both the CF and the MGF. Henze et al. (2019) generalized this
result as follows: If X is a centered d-variate non-degenerate random vector withMGF
M(t) = E[exp(t�X)] < ∞, t ∈ R

d , and R(t) := E[cos(t�X)] denotes the real part
of the CF of X , then

R(t) M(t) − 1 = 0 for each t ∈ R
d (2.21)

holds true if and only if X follows some zero-mean normal distribution.
Since Yn,1, . . . ,Yn,n provide an empirical standardization of X1, . . . , Xn , a natural

test statistic based on (2.21) is

HJMn,γ := n
∫

(Rn(t) Mn(t) − 1)2 w̃γ (t) dt,

where

Rn(t) := 1

n

n∑

j=1

cos
(
t�Yn, j

)
, t ∈ R

d ,

is the empirical cosine transform of the scaled residuals, and Mn(t) and w̃γ (t) are
given in (2.16) and (2.18), respectively. There is a representation of HJMn,γ similar
to (2.11), but involving a fourfold sum (see display (3.7) of Henze et al. 2019). The
main results about HJMn,γ are as follows: Elementwise on the underlying probability
space, we have

lim
γ→∞ γ 3+d/2 8HJMn,γ

πd/2 = n

6
· b(1)

n,d + n

4
· b̃(1)

n,d .

Interestingly, this is the same linear combination of two measures of skewness as
in (2.14) and (2.19). If γ > 1, then the limit null distribution of HJMn,γ is that of
HJM∞,γ := ∫ W 2(t)w̃γ (t) dt , where W is a centered random element of the Hilbert
space L2(Rd ,Bd , w̃(t)dt) with a covariance kernel given in Theorem 5.1 of Henze
et al. (2019). Moreover, that paper also states a formula for E[HJM∞,γ ] and, under
the assumption M(t) < ∞, t ∈ R

d , obtains the inequality

lim inf
n→∞

HJMn,γ

n
≥
∫

(R(t)M(t) − 1)2 wγ (t) dt P-almost surely, (2.22)
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which is analogous to (2.20), seeTheorem6.1ofHenze et al. (2019).Weconjecture that
also the MVN test based on HJMn,γ is consistent against any non-normal alternative
distribution.

2.4 A test based on a system of partial differential equations for theMGF

The novel idea of Henze and Visagie (2020) for constructing a test of H0 is the
following: Suppose that the MGF M(t) = E[exp(t�X)] of a random vector X exists
for each t ∈ R

d and satisfies the system of partial differential equations

∂M(t)

∂t j
= t j M(t), t = (t1, . . . , td)

� ∈ R
d , j = 1, . . . , d. (2.23)

Since M(0) = 1, it is easily seen that the only solution to (2.23) is M0(t) =
exp(‖t‖2/2), t ∈ R

d , which is the MGF of Nd(0, Id).
If H0 holds, the scaled residuals Yn,1, . . . ,Yn,n should be approximately inde-

pendent, with a distribution close to Nd(0, Id), at least for large n. Hence, a natural
approach for testing H0 is to consider the EMGF Mn of Yn,1, . . . ,Yn,n , defined in
(2.16), and to employ the weighted L2-statistic

HVn,γ := n
∫

‖∇Mn(t) − tMn(t)‖2 w̃γ (t) dt,

where ∇ f stands for the gradient of a function f : R
d → R, and w̃γ is given in

(2.18). Putting Y+
n, j,k = Yn, j + Yn,k , HVn,γ takes the feasible form

HVn,γ = 1

n

(
π

γ

)d/2 n∑

j,k=1

exp

(‖Y+
n, j,k‖2
4γ

)

(

Y�
n, j Yn,k − ‖Y+

n, j,k‖2
2γ

+ d

2γ
+ ‖Y+

n, j,k‖2
4γ 2

)

.

To derive the limit null distribution of HVn,γ , put Wn(t) := √
n (∇Mn(t) − tMn(t)).

Since Wn(t) is R
d -valued, Henze and Visagie (2020) consider the Hilbert space

H, which is the d-fold (orthogonal) direct sum H := L2 ⊕ · · · ⊕ L2, where
L2 = L2(Rd ,Bd , w̃(t)dt). If γ > 2, there is some centered Gaussian random element
W of H with a covariance (matrix) kernel given in display (11) of Henze and Visagie

(2020), so that Wn
D−→ W as n → ∞. By the continuous mapping theorem, we then

have HVn,γ
D−→ HV∞,γ := ∫ ‖W (t)‖2 w̃γ (t) dt . Henze and Visagie (2020) also

obtain a closed form expression for E[T∞,γ ]. Moreover, if the MGF M(t) of X exists
for each t ∈ R

d and X is standardized, we have

lim inf
n→∞

HVn,γ

n
≥
∫

‖∇M ′(t) − tM(t)‖2 w̃γ (t) dt P-almost surely,
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which parallels (2.20) and (2.22).
We remark in passing that a differential equation involving the moment generating

function has been employedbyMeintanis andHlávka (2010) in connectionwith testing
for bivariate and multivariate skew-normality.

2.5 A test based on the harmonic oscillator in characteristic function spaces

Dörr et al. (2020) noticed that the CF Ψ0(t) = exp(−‖t‖2/2) of the distribution
N(0, Id) is the unique solution of the partial differential equation

Δ f (x) − (‖x‖2 − d) f (x) = 0 (2.24)

subject to f (0) = 1, where Δ is the Laplace operator, see Theorem 1 of Dörr et al.
(2020). The operator −Δ + ‖x‖2 − d is called the harmonic oscillator, which is a
special case of a Schrödinger operator. A suitable statistic for testing H0 that reflects
this characterization is

DEHn,γ = n
∫

Rd
|ΔΨn(t) − ΔΨ0(t)|2 w̃γ (t)dt

= n
∫ ∣
∣
∣
∣
1

n

n∑

j=1

‖Yn, j‖2 exp(it�Yn, j ) + (‖t‖2 − d)Ψ0(t)

∣
∣
∣
∣

2

w̃γ (t) dt, (2.25)

where w̃γ is given in (2.18) and γ > 0. The test statistic has the feasible form

DEHn,γ =
(

π

γ

) d
2 1

n

n∑

j,k=1

‖Yn, j‖2‖Yn,k‖2 exp
(

− 1

4γ
‖Yn, j − Yn,k‖2

)

− 2(2π)
d
2

(2γ + 1)2+ d
2

n∑

j=1

‖Yn, j‖2
(‖Yn, j‖2 + 2dγ (2γ + 1)

)
exp

(

−1

2

‖Yn, j‖2
2γ + 1

)

+ n
π

d
2

(γ + 1)2+ d
2

(

γ (γ + 1)d2 + d(d + 2)

4

)

.

Like the class of BHEP tests, also the class of tests based on DEHn,γ is closed at the
boundaries γ → 0 and γ → ∞, since—elementwise on the underlying probability
space—we have

lim
γ→0

(γ

π

)d/2
DEHn,γ = b(2)

n,d , lim
γ→∞

2

nπ
d
2

γ
d
2 +1DEHn,γ = b̃(1)

n,d .

Here, b(2)
n,d is multivariate kurtosis in the sense of Mardia (1970), defined in (8.1), and

b̃(1)
n,d is skewness in the sense of Móri et al. (1993), see (8.3). Dörr et al. (2020) proved
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a Hilbert space central limit theorem for the sequence of random elements

Vn(t) = 1√
n

n∑

j=1

(
‖Yn, j‖2

{
cos(t�Yn, j ) + sin(t�Yn, j )

}− μ(t)
)

, t ∈ R
d ,

whereμ(t) = E[‖X‖2(cos(t�X)+sin(t�X))] and X is a standardized random vector

satisfying E‖X‖4 < ∞. Since μ(t) = −ΔΨ0(t) if X
D= Nd(0, Id) and DEHn,γ =∫

V 2
n (t)w̃γ (t) dt for that choice of μ(t), the authors obtained the limit distribution of

DEHn,γ under H0 as well as under contiguous and fixed alternatives to H0. Under

H0, we have DEHn,γ
D−→ ∫

V 2(t)w̃γ (t) dt , where V is the centered limit Gaussian
random element of the sequence (Vn) (with μ(t) = −ΔΨ0(t)). Under contiguous
alternatives that approach H0 at the rate n−1/2, the limit distribution of DEHn,γ is
that of

∫
(V (t) + c(t))2W̃γ (t) dt , where c(·) is a shift function (see Section 6 of

Dörr et al. 2020). Under a fixed (and because of invariance without loss of generality
standardized) alternative distribution satisfying E‖X‖4 < ∞, we have

DEHn,γ

n
→ Dγ :=

∫
∣
∣ΔΨ (t) − ΔΨ0(t)

∣
∣2w̃γ (t) dt P-almost surely,

where Ψ is the CF of X . Moreover, the limit distribution of
√
n(DEHn,γ /n − Dγ )

is a centered normal distribution with a variance that, under the stronger condition
E‖X‖6 < ∞, can be consistently estimated from the data. Thus, by analogywith (2.6),
an asymptotic confidence interval forDγ is available. Notice that, when comparedwith
(2.12), the almost sure limits above are ‘Laplacian analogues’ of (2.12).

2.6 A test based on a double estimation in a characterizing PDE

Dörr et al. (2020a) suggested to replace both of the functions f occurring in (2.24) by
the ECF Ψn . Since, under H0, ΔΨn(t) and (‖t‖2 − d)Ψn(t) should be close to each
other for large n, it is tempting to see what happens if, instead of DEHn,γ defined in
(2.25), we base a test of H0 on the weighted L2-statistic

DEH∗
n,γ = n

∫ ∣
∣
∣ΔΨn(t) −

(
‖t‖2 − d

)
Ψn(t)

∣
∣
∣
2
w̃γ (t) dt

and reject H0 for large values of DEH∗
n,γ . Putting D2

n, j,k := ‖Yn, j −Yn,k‖2, En, j,k =
exp(−D2

n, j,k/(4γ )), ad,γ = 2γ d(2γ − 1), bd,γ = 16d2γ 3(γ − 1) + 4d(d + 2)γ 2,

cd,γ = (π/γ )d/2, and ed,γ = 8dγ 2 −4(d+2)γ , the statistic DEH∗
n,γ has the feasible

representation

DEH∗
n,γ = cd,γ

n

n∑

j,k=1

[

‖Yn, j‖2‖Yn,k‖2En, j,k − ‖Yn, j‖2 + ‖Yn,k‖2
4γ 2

(
D2
n, j,k + ad,γ

)
En, j,k

+ En, j,k

16γ 4

(
bd,γ + (D2

n, j,k)
2 + ed,γ D

2
n, j,k

)]

.
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Also the class of tests based on DEH∗
n,γ is ‘closed at the boundaries γ → 0 and

γ → ∞’ since, elementwise on the underlying probability space, we have

lim
γ→0

[(γ

π

)d/2
DEH∗

n,γ − d(d + 2)

4γ 2

]

= b(2)
n,d − d2, lim

γ→∞
2γ d/2+1

nπd/2 DEH∗
n,γ = b̃(1)

n,d ,

(2.26)

where b(2)
n,d and b̃(1)

n,d are given in (8.1) and (8.3), respectively. Under H0, we have

DEH∗
n,γ

D−→ DEH∗∞,γ := ∫
S2(t)w̃γ (t) dt , where S is some centered Gaussian

random element of L2(Rd ,Bd , w̃γ (t)dt). Dörr et al. (2020a) also obtain a closed-
form expression for E[DEH∗∞,γ ].

If X has a standardized alternative distribution satisfying E‖X‖4 < ∞, we have

DEH∗
n,γ

n
a.s.−→ D∗

γ :=
∫

| − ΔΨ +(t) + (‖t‖2 − d)Ψ +(t)|2w̃γ (t) dt,

where Ψ +(t) = E[cos(t�X)] + E[sin(t�X)]. Hence, D∗
γ is the measure of distance

from H0 associated with DEH∗
nγ . Interestingly, under the stronger conditionE‖X‖6 <

∞, we have

lim
γ→∞

2γ d/2+1

πd/2 D∗
γ =

∥
∥
∥E
(
‖X‖2X

)∥
∥
∥
2
.

Since the right hand side is population skewness in the sense of Móri et al. (1993)
(see Sect. 8), this result complements the second limit in (2.26). Dörr et al. (2020a)
also show that, under a fixed alternative distribution satisfying E‖X‖4 < ∞,√
n
(
DEH∗

n,γ /n − D∗
γ

)
) has a centered limit normal distribution with a variance that

can be consistently estimated from X1, . . . , Xn .

3 The Henze–Zirkler test

Henze and Zirkler (1990) observed that the BHEP-statistic defined in (2.8) may be
written in the form

BHEPn,β = (2π)d/2β−d
∫

Rd

(

gn,β(x) − 1

(2πτ 2)d/2 exp

(

−‖x‖2
2τ 2

))2

dx,

where τ 2 = (2β2 + 1)/(2β2), and

gn,β(x) = 1

nhd

n∑

j=1

1

(2π)d/2 exp

(

−‖x − Yn, j‖2
2h2

)

,
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where h2 = 1/(2β2). The function gn,β is a nonparametric kernel density estima-
tor with Gaussian kernel w1 (recall wβ from (2.10)) and bandwidth h, applied to
Yn,1, . . . ,Yn,n . The choice h = hn = (4/(2d + 1)n)1/(d+4), taken from Silverman
(1986), p. 87, yields β = βn , where

βn = 2−1/2((2d + 1)n/4)1/(d+4). (3.1)

The Henze–Zirkler test statistic is given by HZn = BHEPn,βn . Notice that the optimal
bandwidth that minimizes the asymptotic MISE of the kernel density estimator, when
both the kernel and the underlying density are the standard d-variate normal density,
is not hn given above, but h̃n = (4/(d + 2)n)1/(d+4).

Apparently unaware of the work of Henze and Zirkler (1990), Bowman and
Foster (1993) proposed a test statistic BFn that turned out to satisfy BFn =
βd
n (2π)d/2BHEPn,βn (see Section 7 of Henze 2002). Thus, BFn is equivalent to a

BHEP-statistic with a smoothing parameter that depends on n. Gürtler (2000) proved
that

nhd2dπd/2BFn − 1

21/2−d/4hd/2
D−→ N(0, 1) (3.2)

as n → ∞ under H0. Under a fixed standardized alternative distribution with density
f , Gürtler (2000) showed that

√
n

2

(

BFn − 1

nhdn2
dπd/2 − C( f , hn)

)
D−→ N(0, σ 2( f )) (3.3)

for constants σ 2( f ) and C( f , hn), where limn→∞ C( f , hn) = ∫ ( f (x)−w1(x))2dx .

In viewof nhdn → ∞, (3.3) entails BFn
P−→ ∫

( f (x)−w1(x))2 dx under f . Hence, the
test of H0 based on BFn (or HZn) is consistent against general alternatives. However,
since (3.2) remains true under contiguous alternatives that approach H0 at the rate
n−1/2, the Henze–Zirkler (Bowman–Foster) test is not able to detect such alternatives,
see also Tenreiro (2007) for more general results on Bickel–Rosenblatt-type statistics.

4 The energy test

For nearly 20 years now, the energy test has emerged as a strong genuine test for mul-
tivariate normality. It is based on the notion of energy distance between multivariate
distributions. The naming energy stems from a close analogy with Newton’s gravita-
tional potential energy, see, e.g., Székely and Rizzo (2013). Besides goodness-of-fit
testing, the concept of energy distance has found applications in many other fields,
such as testing for equality of distributions, nonparametric extensions of analysis of
variance, clustering, or testing for independence via distance covariance and distance
correlation, see, e.g., Székely and Rizzo (2016).

If X and Y are independent random vectors with distributions PX and P
Y , and X ′

and Y ′ denote independent copies of X and Y , respectively, then the squared energy
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distance between P
X and P

Y is defined as

D2(PX ,PY ) := 2E‖X − Y‖ − E‖X − X ′‖ − E‖Y − Y‖,

provided these expectations exist (which is tacitly assumed). The energy distance
D(PX ,PY ) satisfies all axioms of a metric. A proof of the fundamental inequality
D(PX ,PY ) ≥ 0, with equality if and only if PX = P

Y , follows from Zinger et al.
(1992) or Mattner (1997), see also Székely and Rizzo (2005) for a different proof
related to a result of Morgenstern (2001).

The energy test statistic for testing H0 is

En := n

⎛

⎝2

n

n∑

j=1

E‖Ỹn, j − N1‖ − E‖N1 − N2‖ − 1

n2

n∑

j,k=1

‖Ỹn, j − Ỹn,k‖
⎞

⎠ .

Here, Ỹn, j = √
n/(n − 1)Yn, j with Yn, j given in (1.1) and N1 and N2 are independent

random vectors with the normal distribution Nd(0, Id), which are independent of
X1, . . . , Xn . The first expectation is with respect to N1. Notice that E‖N1 − N2‖ =
2�((d + 1)/2)/�(d/2), where �(·) is the gamma function. Since, for a ∈ R

d , the
distribution of ‖a − N1‖2 does only depend on ‖a‖2, the statistic En is seen to be
invariant. The energy test for multivariate normality rejects H0 for large values of
En . It is consistent against each fixed non-normal alternative, see Székely and Rizzo
(2005), and it is fully implemented in the energy package for R, see Rizzo and Székely
(2014). To the authors’ knowledge, there are hitherto no results on the behavior of En
with respect to contiguous alternatives to H0. Since the intrinsic (quadratic) measure
of distance between an alternative distribution PX (which, because of invariance, may
be taken as having zero mean and unit covariance matrix) and the standard d-variate
normal distributionNd(0, Id) is given byΔE (PX ) := D2(PX ,Nd(0, Id)), say, it would
be interesting to see whether

√
n(En −ΔE (PX )) has a non-degenerate normal limit as

n → ∞, with a variance that can consistently be estimated from the data X1, . . . , Xn .
Such a result would pave the way for an asymptotic confidence interval for ΔE (PX ).

5 The test of Pudelko

For a fixed r > 0, Pudelko (2005) suggested to reject H0 for large values of the
weighted supremum distance

PUn,r = √
n sup
0<‖t‖≤r

|Ψn(t) − Ψ0(t)|
‖t‖ ,

where Ψn(t) is given in (2.9), and Ψ0(t) = exp(−‖t‖/2). The test statistic PUn,r

is invariant, since it is a function of the scaled residuals Yn,1, . . . ,Yn,n and rotation
invariant. This statistic is similar in spirit as the statistic studied by Csörgő (1986),
which is sup‖t‖≤r

∣
∣|Ψn(t)|2 − Ψ 2

0 (t)
∣
∣. Under H0, PUn,r converges in distribution to

sup0<‖t‖≤r |P(t)|/‖t‖, where P(·) is a centered Gaussian random element of the
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Banach space C(Br ) of complex-valued continuous functions, defined on Br := {x ∈
R
d : ‖x‖ ≤ r}, equipped with the supremum norm ‖ f ‖C(Br ) := supx∈Br | f (x)|.

Pudelko (2005) also showed that the test is able to detect contiguous alternatives that
approach H0 at the rate n−1/2. The consistency of the test based on PUn,r follows
easily from Csörgő (1989). A drawback of this test is its lack of feasibility, since one
has to calculate the supremum of a function inside a d-dimensional sphere.

6 The test of Cox and Small

According to Cox and Small (1978), a main objective of tests of H0 is ’to see whether
an estimated covariancematrix provides an adequate summary of the interrelationships
among a set of variables,’ and that departure from multivariate normality ’is often the
occurrence of appreciable nonlinearity of dependence.’ To obtain an affine invariant
test that assesses the degree of nonlinearity, they propose to find that pair of linear
combinations of the original variables, such that one has maximum curvature in its
regression on the other. The population functional which underlies the test of Cox and
Small is TCS(P

X ) = maxb∈Sd−1 η2(b), where

η2(b) =
∥
∥E
(
X(b�X)2

)∥
∥2 −

(
E
(
b�X

)3
)2

E
(
b�X

)4 − 1 −
(
E
(
b�X

)3
)2 ,

see Cox and Small (1978), p. 268. The test statistic is Tn,CS = maxb∈Sd−1 η2n(b),
where

η2n(b) =
∥
∥
∥n−1∑n

j=1 Yn, j (b�Yn, j )
2
∥
∥
∥
2 −
(
n−1∑n

j=1(b
�Yn, j )

3
)2

n−1
∑n

j=1(b
�Yn, j )4 − 1 −

(
n−1
∑n

j=1(b
�Yn, j )3

)2

is the empirical counterpart of η2(b). Rejection of H0 will be for large values of Tn,CS .
The statistic Tn,CS is affine invariant, since it is both a function of Yn,1, . . . ,Yn,n

and rotation invariant. Notice that the functional TCS vanishes on the set Nd , but
TCS(P

X ) = 0 does not necessarily imply that PX ∈ Nd . Some missing distributional
properties of the statistic Tn,CS were provided by Ebner (2012). If PX is elliptically
symmetric and satisfies E‖X‖6 < ∞, then

nTn,CS
D−→ d(d + 2)

3m4 − d(d + 2)
max

b∈Sd−1
W (b)�BW (b),

where m4 = E‖X‖4, B is the (d + 1) × (d + 1)-matrix diag(1, . . . , 1,−1), and
W (·) is a centered (d + 1)-variate Gaussian process in C(Sd−1,Rd+1), the space of
continuous functions from Sd−1 to Rd+1 (see Theorem 2.4 of Ebner 2012, where the
covariance matrix kernel of W is given explicitly). As a consequence, the test of Cox
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and Small is not able to detect such elliptical alternatives to normality. Next, writing
μ(b) = E((b�X)2(X , (b�X))�), we have

Tn,CS
P−→ max

b∈Sd−1

μ(b)�Bμ(b)

E(b�X)4 − 1 − (E(b�X)3)2

if E‖X‖6 < ∞. Thus, the test based on Tn,CS is consistent against each alternative
distribution for which the above stochastic limit δ(PX ) (say) is positive. Ebner (2012)
also provides the limit distribution of Tn,CS under contiguous alternatives to H0, but
it is still an open problem whether

√
n(Tn,CS − δ(PX )) has a non-degenerate limit

distribution as n → ∞. From a practical point of view, the test of Cox and Small has
the drawback that finding the maximum of η2n(b) over b ∈ Sd−1 is a computationally
extensive task.

7 The test of Manzotti and Quiroz

Manzotti andQuiroz (2001) propose to test H0 bymeans of averages over the standard-
ized sample of multivariate spherical harmonics, radial functions and their products.

For k ∈ N let f1, . . . , fk : R
d → R, such that E f 2j (X) < ∞ if X

D= Nd(0, Id),
j = 1, . . . , k. Let V = (vi j ) be the (k × k)-matrix with entries

vi j = E[ fi (X) f j (X)] − E fi (X)E f j (X), X
D= Nd(0, Id),

where V is assumed to be invertible. For f = ( f1, . . . , fk)�, let

νn( f j ) = 1√
n

n∑

�=1

{
f j (Yn,�) − E f j (X)

}
and νn(f) = (νn( f1), . . . , νn( fk))

�.

The general type of test statistic of Manzotti and Quiroz (2001) is the quadratic
form

Tn,MQ(f) = νn(f)�V−1νn(f).

To be more specific, let H j , j ≥ 0, be the set of spherical harmonics of degree j
in the orthonormal basis of spherical harmonics in d dimensions with respect to the
uniform measure on Sd−1, and put G j =⋃ j

i=0 Hi . The number of linear independent

spherical harmonics of degree j in dimension d is
(d+ j−1

j

) − (d+ j−3
j−2

)
. A suitable

orthonormal basis can be found using Theorem 5.25 in Axler et al. (2001) or Manzotti
and Quiroz (2001), see also Groemer (1996) or Müller (1998) for details on spherical
harmonics. Manzotti and Quiroz (2001) suggest two different choices for f . Putting
r j (x) = ‖x‖ j , x ∈ R

d , and u(x) = x/‖x‖, x �= 0, the first statistic Tn,MQ(f1) uses
f j of the form g ◦ u for g ∈ G4 \ H0, giving a total of k = (d+3

4

) − (d+2
3

) − 1
functions. Due to orthonormality we have V = Ik , and since no radial functions
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are considered, Tn,MQ(f1) only tests for aspects of spherical symmetry. The second
statistic Tn,MQ(f2) uses the functions r1 and r3(g ◦ u), where g ∈ G2, which comprise
a totality of k = (d+1

2

)+ d + 1 functions.
Both statistics are affine invariant, and Manzotti and Quiroz (2001) derive their

limit null distributions, which are sums of weighted independent χ2
1 random variables.

Although the authors do not deal with the question of consistency of their tests, it is
easily seen that, under an alternative distribution PX (which, in view of invariance, is
assumed to be standardized), and suitable conditions on f1, . . . , fk , we have

1

n
Tn,MQ

P−→ δ( f )�V−1δ( f )

as n → ∞, where δ( f ) = (E f1(X) −E0 f1, . . . ,E fk(X) −E0 fk)�, and E0 f j is the

expectation E f j (N ), where N
D= Nd(0, Id). Since there are non-normal distributions

for which the above (nonnegative) stochastic limit vanishes, the tests of Manzotti
and Quiroz (2001) are not consistent against general alternatives. To the best of our
knowledge, there are no further asymptotic properties of Tn,MQ under alternatives to
H0.

8 Tests based on skewness and kurtosis

A still very popular group of tests for H0 employ measures of multivariate skewness
and kurtosis. The popularity of these tests stems from the widespread belief that, in
case of rejection of H0, there is some evidence regarding the kind of departure from
normality of the underlying distribution.

The state of the art regarding this group of tests has been reviewed in Henze (2002),
but for the sake of completeness, we revisit the most important facts. The classical
invariant measures of multivariate sample skewness and kurtosis due toMardia (1970)
are defined by

b(1)
n,d = 1

n2

n∑

j,k=1

(
Y�
n, j Yn,k

)3
, b(2)

n,d = 1

n

n∑

j=1

‖Yn, j‖4, (8.1)

respectively. The functional (population counterpart) corresponding to b(1)
n,d is β

(1)
d =

β
(1)
d (PX ) = E(X�

1 X2)
3, where X is standardized, X1, X2 are i.i.d. copies of X , and

E‖X‖6 < ∞. The functional accompanying kurtosis is β
(2)
d = β

(2)
d (PX ) = E‖X‖4,

where, like above, E(X) = 0 and E(XX�) = Id . When used as statistics to test H0,
b(1)
n,d has an upper rejection region, whereas the test based on b(2)

n,d is two-sided. If the
distribution of X is elliptically symmetric, we have

nb(1)
n,d

D−→ α1χ
2
d + α2χ

2
d(d−1)(d+4), (8.2)
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where

α1 = 3

d

[
E‖X‖6
d + 2

− 2E‖X‖4 + d(d + 2)

]

, α2 = 6E‖X‖6
d(d + 2)(d + 4)

,

where χ2
d , χ2

d(d−1)(d+4) are independent χ2-variables with d and d(d − 1)(d + 4)
degrees of freedom, respectively, see Baringhaus and Henze (1992), and Klar (2002).

Notice that α1 = α2 = 6 under H0, whence nb(1)
n,d

D−→ 6χ2
d(d+1)(d+2)/6 under nor-

mality, see Mardia (1970). From (8.2), it follows that the test of H0 based on b(1)
n,d is

not consistent against spherically symmetric alternatives satisfying E‖X‖6 < ∞. If
β

(1)
d > 0, then

√
n(b(1)

n,d − β
(1)
d ) has a centered non-degenerate limit normal distri-

bution as n → ∞, see Theorem 3.2 of Baringhaus and Henze (1992). The skewness
functional β

(1)
d (·) does not characterize the class Nd of normal distributions since,

although β
(1)
d (·) vanishes onNd , there are (notably elliptically symmetric) non-normal

distributions that share this property. Since the critical value of b(1)
n,d as a test statistic

for assessing multivariate normality is computed under the very assumption of nor-
mality, the inclination to impute supposedly diagnostic properties to b(1)

n,d in case of
rejection of H0 in the sense that ’there is evidence that the underlying distribution
is skewed’ is not justified, at least not in terms of statistical significance. In fact, the
limit distribution of nb(1)

n,d under certain classes of elliptically symmetric distributions

is stochastically much larger than the limit null distribution of nb(1)
n,d (see Baringhaus

and Henze 1992), and so rejection of H0 based on b(1)
n,d may be due to an underlying

long-tailed elliptically symmetric distribution.

Regarding kurtosis, we have
√
n(b(2)

n,d − β
(2)
d )

D−→ N(0, σ 2) as n → ∞, where σ 2

depends onmixedmoments of X up to order 8, see Henze (1994a). Under H0, we have
β

(2)
d = d(d + 2) and σ 2 = 8d(d + 2), and the limit distribution was already obtained

byMardia (1970), see also Klar (2002) for the case that PX is elliptically symmetric. It
follows that, under the condition E‖X‖8 < ∞, Mardia’s kurtosis test for normality is
consistent if and only if β

(2)
d �= d(d + 2). The critical remarks made above on alleged

diagnostic capabilities of tests for H0 based on measures of skewness apply mutatis
mutandis to a test for normality based on b(2)

n,d or any other measure of multivariate
kurtosis.

Among the many measures of multivariate skewness, we highlight skewness in the
sense of Móri et al. (1993), because it emerges in connection with several weighted
L2-statistics for testing H0. This measure is defined by

b̃(1)
n,d := 1

n2

n∑

j,k=1

‖Yn, j‖2‖Yn,k‖2Y�
n, j Yn,k . (8.3)

The corresponding functional (population counterpart) is β̃
(1)
d = ∥

∥E(‖X‖2X)
∥
∥2,

where X is assumed to be standardized and E‖X‖6 < ∞. Limit distributions for
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b̃(1)
n,d have been obtained by Henze (1997a) both for the case that PX is elliptically

symmetric (which implies β̃
(1)
d = 0) and the case that β̃(1)

d > 0, see also Klar (2002).
A further measure of multivariate skewness that has been reviewed in Henze (2002)

is skewness in the sense of Malkovich and Afifi (1973), which is defined as

b(1)
n,d,M = max

u∈Sd−1

{
n−1∑n

j=1(u
�X j − u�Xn)

3
}2

(u�Snu)3
.

General limit distribution theory for b(1)
n,d,M is given in Baringhaus and Henze (1991).

As for further measures of multivariate kurtosis, we mention the measure

b̃(2)
n,d = 1

n2

n∑

j,k=1

(
Y�
n, j Yn,k

)4
,

introduced by Koziol (1989). The corresponding functional is β̃
(2)
d = E(X�

1 X2)
4,

where X1, X2 are i.i.d. copies of the standardized vector X , andE‖X‖8 < ∞. General
asymptotic distribution theory for b̃(2)

n,d is provided by Henze (1994b) and Klar (2002).
Henze (2002) also reviewed kurtosis in the sense ofMalkovich andAfifi (1973), which
is defined as

b(2)
n,d,M = max

u∈Sd−1

n−1∑n
j=1(u

�X j − u�Xn)
4

(u�Snu)2
.

Limit distribution theory forb(2)
n,d,M has been obtained byBaringhaus andHenze (1991)

and Naito (1998).
Since the review Henze (2002), there have been the following suggestions to test

H0 by means of measures of multivariate skewness and kurtosis (which, however, do
not lead to consistent tests and share the drawback stated at the beginning of this sec-
tion): Kankainen et al. (2007) consider invariant tests of multivariate normality that are
based on theMahalanobis distance between twomultivariate location vector estimates
(as a measure of skewness) and on the (matrix) distance between two scatter matrix
estimates (as a measure of kurtosis). Special choices of these estimates yield general-
izations ofMardia’s skewness and kurtosis. The authors obtain asymptotic distribution
theory of their test statistics both under normality and certain contiguous alternatives
to H0, and they compare the limiting Pitman efficiencies to those of Mardia’s tests
based on b(1)

n,d and b(2)
n,d .

Doornik and Hansen (2008) propose a non-invariant test based on skewness and
kurtosis.

Enomoto et al. (2020) consider a transformation of Mardia’s kurtosis statistic, with
the aim of improving the finite-sample approximation with respect to a normal limit
distribution.
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9 Miscellaneous results

Arcones (2007) proposed two invariant test statistics that are based on the following
characterizations, see, e.g., Cramér (1936). Let m ≥ 2 be a fixed integer, and let
X1, . . . , Xm be i.i.d. d-dimensional vectors satisfyingE(X1) = 0 andE(X1X�

1 ) = Id .

Then, m−1/2∑m
j=1 X j

D= Nd(0, Id) if and only if X1
D= Nd(0, Id). Furthermore,

m−1/2∑m
j=1 X j

D= X1 if and only if X1
D= Nd(0, Id). A statistic that corresponds to

the first characterization is D̂n,m = ∫ ∣∣Ψ̂n,m(t) − Ψ0(t)
∣
∣2wβ(t) dt , where Ψ̂n,m(t) =

n!−1(n − m)!∑�= exp
(
it�m−1/2∑m

p=1 Yn, jp

)
, and Σ�= means summation over all

j1, . . . , jm ∈ {1, . . . , n} such that jp �= jq if p �= q. Notice that this approach is a
generalization of the BHEP-statistic given in (2.8). The statistic which is tailored to
the second characterization is Ên,m = ∫ ∣∣Ψn,m(1) − Ψn,1(t)

∣
∣2wβ(t) dt . Both statistics

have representations in form of multiple sums. By using the theory ofU -statistics with
estimated parameters, Arcones (2007) derives almost sure limits of D̂n,m and Ên,m

as well as the limit distributions of nD̂n,m and nÊn,m under H0. Some very limited
simulations, performed for n ≤ 15 and d = 2, indicate that the power of these tests
is comparable to that of the BHEP test. However, the computational burden involved
increases rapidly withm. Bakshaev and Rudzkis (2017) propose a test for multivariate
normality that is based on the supremum of

∣
∣Ψn(t) − Ψ0(t)

∣
∣2 figuring in (2.8), where

the supremum is taken over a fixed d-dimensional cube without zero origin.
Without providing any distribution theory, Hwu et al. (2002) suggest an invariant

two-stage test procedure for testing H0. This procedure combines a modified correla-
tion coefficient related to a Q–Q plot of the ordered values of ‖Yn, j‖2, j = 1, . . . , n,
against ordered quantiles of the χ2

d -distribution, and a test based on Mardia’s nonneg-

ative invariant measure of skewness b(1)
n,d given in (8.1).

Liang et al. (2004) deal with Q–Q plots based on functions of ( j( j +1))−1/2(X1 +
. . . + X j − j X j+1), j = 1, . . . , n − 1, and hence recommend procedures that are
not even invariant with respect to permutations of X1, . . . , Xn . The latter objection
also holds for the procedures suggested by Fang et al. (1998) and Liang and Bentler
(1999).

Tan et al. (2005) extend the projection procedure of Liang et al. (2000) to test
for multivariate normality with incomplete longitudinal data with small sample size,
including cases when the sample size n is smaller than d.

Hanusz and Tarasińska (2008) correct an inaccuracy of the (non-invariant) test of
Srivastava and Hui (1987), and Maruyama (2007) derives approximations of expecta-
tions and variances related to that test under alternative distributions.

Without providing any theoretical results, Hanusz and Tarasińska (2012) aim at
transforming two graphical methods for assessing H0 into formal statistical tests. A
variant of this approach was considered by Madukaife and Okafor (2018).

Cardoso de Oliveira and Ferreira (2010) suggest to perform a chi-quare test based
on ‖Yn,1‖2, . . . , ‖Yn,n‖2 (see also Moore and Stubblebine 1981), and Batsidis et al.
(2013) extend this approach to include more general power divergence type of test
statistics.Madukaife andOkafor (2019) consider �1- and �2-typemeasures of deviation
between ‖Yn, j‖2 and corresponding approximate expected order statistics of a χ2

d -
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distribution (for tests based on ‖Yn,1‖2, . . . , ‖Yn,n‖2, see also Section 5.2 of Henze
2002). Voinov et al. (2016) compare several test statistics that, for fixed r ≥ 2, are
quadratic forms in the vector (Vn,1, . . . , Vn,r )

�. Here, Vn, j = (Nn, j − n/r)/(
√
n/r),

Nn, j =∑n
k=1 1{c j−1 < ‖Yn,k‖2 ≤ c j }, and 0 < c1 < . . . < cr−1 < cr = ∞, where

c j is the ( j/r )-quantile of the χ2
d -distribution, j = 1, . . . , r − 1.

Jönsson (2011) investigates the finite-sample performance of the Jarque–Bera test
for H0 in order to improve the size of the test. Koizumi et al. (2014) improve upon
multivariate Jarque–Bera-type tests by means of transformations. Simulations show
that such transformations essentially improves test accuracy when d is close to n. Kim
(2016) generalizes the univariate Jarque–Bera test and its modifications to the multi-
variate versions using an orthogonalization of data and compares it with competitors
in a simulation study.

Kim and Park (2018) propose a non-invariant test based on univariate Anderson–
Darling-type statistics that are averaged out over the d coordinates. Villasenor Alva
and González Estrada (2009) suggest a non-invariant test that is based on the average
of Shapiro–Wilk statistics, applied to each of the components of Yn,1, . . . ,Yn,n .

Byusing an idea of Fromont andLaurent (2006), Tenreiro (2011) proposes an invari-
ant consistent multiple test procedure that combines Mardia’s measures of skewness
and kurtosis and two members of the family of BHEP tests. The combined procedure
rejects H0 if one of the statistics is larger than its (1− un,α)-quantile under H0, where
un,α is calibrated so that the combined test has a desired level of significance α. In the
same spirit, Tenreiro (2017) combines two BHEP tests and the ’extreme’ BHEP tests,
the statistics of which are given by the right hand sides of (2.14) and (2.15).

Majerski and Szkutnik (2010) consider the problem of testing H0 against some
alternatives that are invariant with respect to a subgroup of the full group of affine
transformations andobtain approximations to themost powerful invariant tests. Special
emphasis is given to exponential and uniform alternatives in the case d = 2, whereas
the case d ≥ 3 is only sketched.

In the spirit of projection pursuit tests (see Section 8.1 of Henze 2002), which
are based on Roy’s union-intersection principle (Roy 1953), Zhou and Shao (2014)
propose a non-invariant test that combines the Shapiro–Wilk test andMardia’s kurtosis
test. In the same spirit,Wang andHwang (2011) suggest a statistic that considers solely
the Shapiro–Wilk statistic.

Wang (2014) provides a MATLAB package for testing H0, which is implemented
as an interactive and graphical tool. The package comprises 12 different tests, among
which are the energy test, the Henze–Zirkler test, and the tests based on Mardia’s
skewness and kurtosis.

Thulin (2014) proposes six invariant tests for H0, the common basis of which
are characterizations of independence of sample moments of the multivariate normal
distribution.
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10 Comparative simulation studies

10.1 Available simulation studies

Mecklin andMundfrom (2005) perform an extensive simulation studywith 13 tests for
multivariate normality. From this study, they conclude that ’if one is going to rely onone
andonlyoneprocedure, theHenze–Zirkler test is recommended.This recommendation
is based on the relative ease of use (the test statistic has an approximately lognormal
asymptotic distribution), good Monte Carlo simulation results, and mathematically
proven consistency against all alternatives.’

Farrell et al. (2007) compare four tests of multivariate normality and conclude:
’The results of our simulation suggest that, relative to the other two tests consid-
ered, the Henze and Zirkler test generally possesses good power across the alternative
distributions investigated, in particular for n ≥ 75.’

Hanusz et al. (2018) compare four test of H0 that are based on a combination of
measures of multivariate skewness and kurtosis, and the Henze–Zirkler test. They
concluded that ’the Henze–Zirkler test best preserves the nominal significance level’
and that ’for the number of traits and sample sizes considered, it is not possible to
indicate the most powerful test for all kinds of alternative distributions considered in
the paper.’

Joenssen and Vogel (2014) investigate 15 tests of H0, all of which freely available
as R-functions. They find that some tests are unreliable and should either be corrected
or removed, or their deficits should be commented upon in the documentation by the
package maintainer. Moreover, they summarize: ’On the question of whether or not
multivariate tests offer an advantage over simply testing each marginal distribution
with a univariate test, the answer is a resounding yes. Not only are some multivariate
tests able to detect deviations from normality that are not reflected in the marginals of
the distribution, but these tests are also, in part, more powerful for distributions that
do display the deviations in the marginals.’

10.2 New simulation study

This subsection compares thefinite-sample power performance of the tests presented in
this survey bymeans of aMonte Carlo simulation study. All simulations are performed
using the statistical computing environment R, see RCore Team (2018). The tests were
implemented in the accompanying R package mnt, see Butsch and Ebner (2020).

We consider the sample sizes n = 20, n = 50 and n = 100, the dimensions d = 2,
d = 3 and d = 5, and the nominal level of significance is set to 0.05. Throughout,
critical values for the tests have been simulatedwith 100 000 replications under H0, see
Table 1. Note that, in order to ease the comparison with the original articles, we state
the empirical quantiles of

(
16γ 2+d/2/πd/2

)
HVn,γ , π−d/2HJn,γ , (γ /π)d/2HJMn,γ ,

(γ /π)d/2d−2DEHn,γ , and (γ /π)d/2d−2DEH∗
n,γ and chose whenever available the

tuning parameter γ according to the suggestions of the authors, respectively. For the
sake of readability, we suppress the index n for all tests in the tables. Note that BHEP
denotes the BHEP test with tuning parameter β = √

2/(1.376+0.075d), as suggested
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in Tenreiro (2009). The values given in Table 1 are also reported in package mnt in
the data frame Quantile095 for easy access. Each entry in a table that refers to
empirical rejection rates as estimates of the power of the test is based on 10 000
replications, with the exception of the HJM test, where 1 000 replications have been
considered, due to the heavy computation time of the procedure.

We consider a total of 32 alternatives as well as a representative of the multivariate
normal distribution. By NMix(p, μ,Σ) we denote the normal mixture distribution
generated by

(1 − p)Nd(0, Id) + pNd(μ,Σ), p ∈ (0, 1), μ ∈ R
d , Σ > 0,

where Σ > 0 stands for a positive definite matrix. In the notation of above, μ = 3
stands for a d-variate vector of 3’s and Σ = Bd for a (d × d)-matrix containing
1’s on the main diagonal and 0.9’s for each off-diagonal entry. We write tν(0, Id) for
the multivariate t-distribution with ν degrees of freedom, see Genz and Bretz (2009).
By DISTd(ϑ) we denote the d-variate random vector generated by independently
simulated components of the distribution DIST with parameter vector ϑ , where DIST
is taken to be the uniform distribution U, the lognormal distribution LN, the beta
distribution B, as well as the Pearson type II PI I and Pearson type VII distribution
PV I I . For the latter distribution, we used the R package PearsonDS, see Becker
and Klößner (2017). The spherical symmetric distributions were simulated using the
R package distrEllipse, see Ruckdeschel et al. (2006), and they are denoted
by Sd(DIST), where DIST stands for the distribution of the radii, which was chosen
to be the exponential, the beta, the χ2-distribution and the lognormal distribution.
With MARd (DIST) we denote Nd(0, Id)-distributed random vectors, where the dth
component is independently replaced by a random variable following the distribution
DIST. Here, we chose the exponential, the χ2, student’s t and the gamma distribution.
With NMd(ϑ) we denote the normal mixture distributions generated by

0.5Nd(0,Σϑ) + 0.5Nd(0,Σ−ϑ),

where Σϑ is a positive definite (d × d)-matrix with 1’s on the diagonal and the
constant ϑ for each off diagonal entry. In this family of non-normal distributions
each component follows a normal law. The symbol S|Nd | stands for the distribution
of ±|X |, where X

D= Nd(0, Id), the absolute value | · | is applied componentwise,
and ± assigns, independently of each other and with equal probability 0.5, a random
sign to each component of |X |. Finally, we consider the distribution Nd(μd ,Σ0.5),
with μd = (1, 2, . . . , d)� and the same covariance structure as reported for the NM-
alternatives, in order to show that all tests under consideration are invariant and indeed
have a type I error equal to the significance level of 5%.

The results of the weighted L2-type tests in Tables 2, 3 and 4 are presented for the
same tuning parameters as in Table 1, and in order to keep the tables concise the values
are omitted.

First, we evaluate the results for d = 2. A close look at Table 2 reveals that,
for the family of normal mixture distributions, the HZ test and the PU test perform
best when the shifted standard normal distributions are mixed, whereas for different
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covariance matrices, the strongest procedure is HJM. The HJM test performs also best
throughout the multivariate t-distributions. For the independently simulated compo-
nents, TMQ(f2) is strong, especially for marginal distributions with bounded support.
Interestingly, each of the tests that are based on measures of skewness and kurtosis, as
well as the HV and HJ tests, completely fails to detect these alternatives. For the Pear-
son type VII alternatives, HJM again has the strongest power, while BHEP shows the
strongest performance for LN2(0, 0.5) and BHEP for B2(1, 2). The spherically sym-
metric alternatives with bounded support of the radial distributions are well detected
by the HZ and the E tests. For the case of unbounded support of the radial distribution,
the strongest test is again HJM. This test is also strongest for the marginally perturbed
alternatives MAR2(DIST), where it is just outperformed by the PU test for the pertur-
bation by Exp(1)- and χ2-random variables. The NMd(ϑ)-distributions are uniformly
best detected by HJM, although the power is not very strong, whereas all other tests
almost completely fail to detect these alternatives. Notably, the S|N2| alternatives are
best detected by TMQ(f1). Overall, for the chosen alternatives HJM performs best, but
it also lacks power especially when the support of the distribution is bounded. From
a robust point of view, the weighted L2 procedures, like DEH∗, the HZ test as well as
the energy test E perform very well, especially if the focus is on consistency.

In dimensions d = 3 and d = 5, one can paint the same picture for the allocation
of the best procedures to the alternatives. Interestingly, the power of the procedures
increases compared to the lower-dimensional setting, which appears to be counterin-
tuitive in view of the curse of dimensionality. Some noticeable phenomena arise: For
the Sd(B(2, 2)) distribution, some of the tests, like HV, HJ and TCS , b

(1)
M , b(2)

M seem to
loose power when the sample size is increased. An explanation for this behavior for
the latter tests might be that these procedures use an approximation of the maximum
on the unit sphere, which might be harder to approximate for larger samples. In the
case d = 3, we also observe this behavior for the HJM test. Interestingly, the HJM
test and the PU test increase the power against NMd(ϑ)-alternatives in comparison
with the case d = 2, whereas the other procedures nearly uniformly fail to distinguish
them from the null hypothesis in each dimension considered.

11 Conclusions and outlook

From a practical point of view, we recommend to use the computationally efficient
weighted L2-type procedures, like BHEP (or versions of it like HZ) and DEH∗, or
the energy test E , since they show a good balance between fast computation time
and robust power against many alternatives, and they do not exhibit any particular
weakness. If computation time is not an issue, we suggest to employ the HJM test,
as it outperforms most of the other procedures. Note that by choosing other tuning
parameters, the weighted L2-procedures are expected to benefit in terms of power
against specific alternatives, especially if one is able to choose the tuning parameter
in a data dependent way. For a first step in this direction for univariate goodness-of-fit
tests, see Tenreiro (2019). In general, it would be nice to have explicit solutions of
the Fredholm integral equation (2.4). For some recent cases in which such integral
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equations have witnessed explicit solutions in the context of goodness-of-fit testing,
see, e.g., Theorem 3.2 of Baringhaus and Taherizadeh (2010) or Theorems 3 and 5 of
Hadjicosta and Richards (2019). High-dimensional L2-statistics for testing normality
have not been considered so far in the literature. The efficient implementation of the
tests in the package mnt admits first simulations, which indicate that new interesting
phenomena arise.
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