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1 Introduction

Since the introduction of the Renewable Energies Act in 2000, more than 1.8 million

photovoltaic (PV) systems with a nominal capacity of 49 GWp have been installed

in Germany (Bundesverband Solarwirtschaft, 2020c), including more than 1 million

small-scale rooftop systems with 6.4 GWp (50Hertz et al., 2019a). These high instal-

lation rates have led to drastic cost decreases for electricity generated by rooftop PV

systems (Kost et al., 2018). At the same time, the retail electricity prices faced by

German households have followed an upward trend in the past years (Bundesverband

der Energie- und Wasserwirtschaft, 2020). As a consequence, grid parity has been

reached in Germany around 2012, meaning that the cost of self-produced electricity

from PV systems has fallen below the retail electricity prices. The politically driven

reduction of PV feed-in remuneration – as a reaction to the falling generation cost –

further increases the attractiveness of self-consumption (Wirth, 2020).

Moreover, prices for lithium-ion batteries have decreased by more than 50 % since

2013 and continue to decline. Consequently, in the past years, about every second

new small-scale PV system in Germany has been equipped with a battery storage in

order to increase self-consumption. As of today, more than 180000 battery systems

have already been installed (Bundesverband Solarwirtschaft, 2020b). In contrast,

most PV systems installed before 2012 feed large shares of their electricity into the

grid. However, feed-in tariffs under the Renewable Energies Act are only granted for

20 years after installation. Thus, starting from 2020, the first of these systems will

not receive such remuneration anymore. Since retrofitting the existing PV systems

with battery storage is often profitable, this will most likely lead to additional battery

installations (Fett et al., 2018). However, despite the potentially significant impacts

on the electricity market, literature investigating the long-term impacts of residential

battery storage diffusion is still scarce.

Against this background, we propose a novel modeling framework consisting of

a prosumer simulation and an agent-based electricity market simulation, which is

applied to Germany and its neighboring countries. In contrast to most of the existing

literature, the prosumer simulation includes a calibrated diffusion model in order to

account for certain non-financial drivers of households’ investment decisions. The
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developed methodology allows us to analyze transformation pathways in great detail

while accounting for the respective actors’ (households and utilities) perspectives and

their mutual influence. A particular emphasis is put on the regulatory framework.

We simulate the status quo of the German regulation for self-consumption, a more

system-friendly operational strategy, and a restrictive regulation comprising fixed

grid charges as well as a self-consumption charge. Following this procedure, we are

able to quantify long-term impacts of residential battery storage in a realistic and

complex real-world setting. This enables us to provide policy advice regarding an

adequate regulatory framework for self-consumption.

The remainder of this paper is structured as follows. In Section 2, we briefly

review the relevant literature on residential battery storage and derive the research

gap our paper aims to fill. Section 3 introduces the proposed simulation framework

including the required input data. In Section 4, we provide an overview of the

investigated scenarios and discuss the results of our simulations. Section 5 discusses

limitations of the study. Finally, we summarize our findings, draw conclusions and

derive policy implications in Section 6.

2 Literature Review and Research Gap

Given the scope of our work, the following literature review explicitly focuses on

quantitative studies that investigate the system impact of residential battery stor-

age. In contrast, we do not delve into the large body of literature taking a pure

household perspective (e.g., Bertsch et al., 2017; Fluri, 2019; Kaschub et al., 2016;

Klingler, 2017; Schopfer et al., 2018). Although the research interest in system im-

pacts of residential battery storage has grown over the past years, literature that

simultaneously considers the household and the utility perspective is still scarce and

neglects certain important aspects.

Jägemann et al. (2013) analyze the impact of the current regulatory framework

in Germany on investments in residential battery storage and ultimately, the system

impact of these storage units. The authors use two different optimization models,

which are iteratively applied until convergence has been reached. In the first model,

several sample households minimize their electricity cost by carrying out investments
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in optimally sized photovoltaic and battery storage systems. The second model takes

the households’ decisions into account and minimizes the cost of the electricity sys-

tem by deciding on investments in large-scale generation technologies and optimally

operating these units. The resulting electricity prices are in turn an input to the

household optimization model. Despite the proximity to our concept, two important

aspects are not considered by Jägemann et al. (2013). Firstly, all households are as-

sumed to invest as soon as a battery storage system becomes profitable. However, a

lack of information and uncertainty about PV battery storage and its costs – as well

as other non-financial drivers – have an essential impact on households’ investment

decisions. This needs to be considered, e.g., by applying a diffusion model. Secondly,

different operational strategies of the battery storage systems are not taken into ac-

count, but a maximization of self-consumption is assumed as the sole goal of each

household. These two aspects are likely to lead to a substantial overestimation of

the amount of battery storage being installed and are therefore crucial.

Say et al. (2019) apply a bottom-up simulation model to estimate investments in

residential battery storage and analyze their impact on the electricity system. Their

case study relies on demand and photovoltaic electricity generation time series of

261 real households in Australia. Using different feed-in tariff schemes, Say et al.

first determine optimally sized photovoltaic and battery storage system investments

for the different households. The resulting changes in the residual demand of all

households are then aggregated to estimate impacts on the network and the retailer

revenues. In a subsequent study, the methodological approach is extended by cou-

pling the household simulation model with an optimization model of the Western

Australian electricity system (Say et al., 2020). Like this, the authors are able to

analyze the system impacts of large amounts of residential battery storage. However,

the system optimization model is only applied for a single future year (2030). Con-

sequently, the transformation pathway of the system cannot be investigated and the

residential electricity prices need to be defined exogenously rather than being derived

from simulated wholesale prices. Moreover, also the work by Say et al. (2019, 2020)

neither applies a diffusion model nor considers different operational strategies.

Klingler et al. (2019) investigate the diffusion of residential battery storage in

the EU countries, Norway and Switzerland. For this purpose, they apply the elec-
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tricity system optimization model ELTRAMOD to derive wholesale electricity prices

and then determine optimally sized battery storages for an average household per

country. Finally, the authors use a diffusion model to estimate the total installed

battery capacities for all countries. Also in this study, the impact of different oper-

ational strategies for the batteries is not analyzed. Moreover, ELTRAMOD is only

used to provide wholesale electricity prices, rather than to evaluate system effects of

residential battery storages.

Schwarz et al. (2019) use an agent-based model to analyze the diffusion and sys-

tem impacts of residential battery storages in California under different policy sce-

narios. Their approach consists of three modules. Firstly, future wholesale electricity

prices are forecasted based on a simple linear regression model. Secondly, these prices

are converted to retail electricity prices. Thirdly, several sample households decide

on a potential adoption of a photovoltaic and battery storage system. Much like in

the studies mentioned above, the authors do not account for non-financial drivers

of the households’ investment decisions. Moreover, the module depicting the Cali-

fornian wholesale market is strongly simplified and is therefore not able to properly

account for long-term market dynamics.

Yu (2018) investigates systemic effects of residential battery storages in France.

For this purpose, levelized costs of electricity generation for a photovoltaic and bat-

tery storage system are estimated. Subsequently, changes in the French residual load

duration curve are calculated if all detached houses in France were to use such a sys-

tem. The study by Yu makes some strong simplifications. Firstly, only one generic

household is considered, although the diversity of household load profiles and solar

profiles plays a crucial role. Secondly, no diffusion model is used, but all households

are assumed to invest directly. Thirdly, the impact of different operational strategies

and changes in the regulatory framework are neglected. Fourthly, France is consid-

ered as an isolated system without electricity exchange and pumped storage units.

This is a particularly critical assumption given the strongly interconnected European

electricity system. In consequence, the system impacts of residential battery storages

in France are likely to be heavily overestimated.

In summary, our article complements the existing literature in a number of impor-

tant aspects. We propose a novel modeling framework consisting of a prosumer sim-
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ulation and an agent-based electricity market simulation. As previously described,

most of the related literature only includes rudimental (if any) representations of

the wholesale electricity market. In contrast, our agent-based approach allows to in-

vestigate transformation pathways in great detail while accounting for the respective

actors’ (households and utilities) perspectives and their mutual influence. Apart from

the work of Jägemann et al. (2013), the proposed approach is the only in the literature

to consider bidirectional dependencies between the different decision parties involved.

Moreover, existing studies typically neither apply diffusion models nor consider alter-

native operational strategies for the batteries. In consequence, the system impacts

of residential battery storage are likely to be substantially overestimated. This is

sometimes further intensified by the use of standard load profiles which neglects the

crucial role of diversity in terms of household load profiles and solar profiles. Our

paper addresses the risk of overestimation by using a diffusion model, considering

different operational strategies, and relying on empirically measured household load

profiles. For the described reasons, the novel approach presented in the following is

very well suited to capture dynamic long-term impacts of residential battery storage

diffusion in Germany under different regulatory settings.

3 Methodology and Data

3.1 Overview of the Simulation Framework

In order to capture both, the household and the utility perspective, we apply a novel

modeling framework comprising a prosumer simulation and an agent-based electricity

market simulation (Fig. 1). In both models, an individual actor’s perspective is

taken. The decisions of the household agents affect those of the the utility agents

(via changes in the residual load curves) and vice versa (via changes in the wholesale

electricity prices). Thus, household agents and utility agents iteratively adjust their

decisions until convergence has been reached1. In Section 3.2, we present more details

1In a similar fashion as Jägemann et al. (2013), we use the deviation of the cumulative yearly
residential PV and battery storage capacities between two iterations as the criterion for conver-
gence. For our simulations, we define convergence as a deviation below 2 %. In all scenarios under
investigation, one iteration is sufficient to fulfill this criterion.
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on the prosumer simulation, while Section 3.3 introduces the agent-based electricity

market model PowerACE.

3.2 Prosumer Simulation

3.2.1 Investment Decisions

Similarly as Say et al. (2020), we use empirically measured household load profiles

and consider them as representative for the total household electricity consumption.

This approach allows to account for the diversity of households’ load curves and

avoid biases that result from aggregated or synthesized data (Quoilin et al., 2016;

Schopfer et al., 2018; Fett et al., 2019).

The prosumer investment module assumes economically rational behavior of the

households and a fixed investment horizon of 20 years (the period of the guaran-

teed feed-in tariff for PV installations in Germany). Net present values (NPVs)

are determined for every combination of PV system size2 (0–10 kWp with step size

0.5 kWp) and battery size (0–10 kWh with step size 0.5 kWh) as well as for each

sample household. For this purpose, the total costs including investment, expendi-

tures for electricity, and income from PV feed-in remuneration are calculated and

compared to the costs under the benchmark no investment case. These calculations

require to simulate the battery operation for each system configuration and sample

household (see Section 3.2.2)3. Additional model inputs are wholesale electricity

prices from the electricity market simulation (Section 3.3), projections of the dif-

ferent components of the retail electricity price, and forecasts for PV and battery

installation costs4. Households assume a constant PV feed-in remuneration and an

electricity price that increases by 2 % per year, both based on their installation year.

2The size limit is chosen because prosumers with PV systems above 10 kWp receive a lower feed-
in remuneration (Bundesverband Solarwirtschaft, 2020a) and have to pay the self-consumption
charge of 40 % of the renewable energy levy (§ 61a EEG 2017).

3Please note that since the household load profiles and the insolation profiles are assumed to
remain unchanged throughout the simulation period, the battery operation only needs to be cal-
culated once for each system configuration and sample household. Two matrices containing self-
consumption and self-sufficiency rates can then be determined and re-used in each simulation year.

4Specific investments in PV and storage systems are assumed to be size-independent, which
leads to a slight underestimation of system sizes (Dietrich and Weber, 2018).
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Figure 1: Overview of the applied simulation framework. In the prosumer simulation, sev-
eral agents representing sample households decide on optimal battery sizes and their operation.
Using a calibrated diffusion model, the residual load curves of the individual households after
battery operation are then scaled up to obtain an aggregated residual load curve of all German
households. In the electricity market simulation, the utility agents react on the changes of
the residential load curves and adjust their capacity expansion planning and day-ahead market
dispatch accordingly. The resulting wholesale electricity prices serve as an input for the house-
holds’ decisions to invest in battery storages. If required, the prosumer simulation and the
electricity market simulation are run in multiple iterations until convergence has been reached.

8



These model inputs are summarized in Table 1. Finally, for each sample household,

if profitable investments exist, the system configuration with the highest NPV is cho-

sen. The described process is also performed for existing PV systems to consider the

retrofit of battery storage systems after the expiry of the guaranteed 20-year feed-in

tariffs. It is assumed that the PV system has a remaining lifetime of 15 years if the

inverter is replaced.

Since we are interested in the transformation pathway, the investment module

is run for each simulation year. In contrast to most of the related literature (see

Section 2), we also consider certain non-financial drivers of households’ investment

decisions by combining the results of the investment module with a diffusion model

(Section 3.2.3). Following this procedure, we finally obtain the additional PV feed-in

and self-consumption, which are used to compute the self-reinforcing effect on the

different charges and levies. This effect occurs because the increased feed-in has to

be remunerated through the renewable energy levy, while at the same time, the grid

consumption – to which the charges and levies are allocated – is reduced by the

self-consumed electricity volume (for more details, see Fett et al., 2019).

3.2.2 Operational Strategies

Under the current regulatory framework and retail electricity tariffs, German house-

holds are neither exposed to dynamic prices nor to dynamic remuneration for excess

electricity fed into the grid. Consequently, as of today, residential battery storage

systems are most commonly operated with the sole objective of maximizing self-

consumption (Klingler, 2017). This is reflected in our reference operational strategy

(later referred to as default) that works as follows. The PV generation is first used

to cover the household’s electricity demand. Excess PV generation charges the bat-

tery or – if the battery is already fully charged – is fed into the grid. Contrary, if

the household’s electricity demand exceeds the current PV generation, the battery

supplies electricity to the household until it is fully discharged. Demand not covered

by PV generation and battery discharging is supplied by the electricity grid. No

exchange between battery and the grid is allowed.

9



Table 1: Overview of the input data used for the prosumer simulation.

Model parameter Unit Value Sources

Model characteristics

Empirical household profiles # 162 Tjaden et al. (2015);
Kaschub (2017)

Simulation time step h 0.25 Kaschub et al. (2016)
Investment horizon a 20 (new) Fett et al. (2018)

15 (retrofit)
Yearly discount rate % 4 Fett et al. (2019)

Photovoltaics

Evaluation range kWp 0–10 Own assumption
Specific investment1 EUR/kWp 1169–537 Ram et al. (2019)
Lifetime a 20 (new) Fett et al. (2018)

15 (retrofit)
Operation & maintenance cost EUR/(kWp a) 24.26 Kaschub et al. (2016)
Specific annual yield kWh/kWp 1087 Kaschub (2017)

Battery storage

Evaluation range kWh 0–10 Own assumption
Energy-to-power ratio kWh/kW 1 Kaschub et al. (2016)
Specific investment1 EUR/kWh 794–193 Ram et al. (2019)
Lifetime a 20 Kaschub et al. (2016)
Round-trip efficiency % 88 Fett et al. (2019)

Cost and remuneration of electricity

Yearly increase of retail prices2 % 2 Fett et al. (2019)
Yearly decrease of feed-in tariff % 1 Bundesverband

Solarwirtschaft (2020a)

Renewable energy levy EUR/kWh time series Öko-Institut and Agora
Energiewende (2019)

Yearly increase of surcharges3 % 1 50Hertz et al. (2019b,c,d);
Bundesverband der Energie-
und Wasserwirtschaft
(2020); Fluri (2019)

1 Due to technological learning, the specific investments are assumed to decrease from 2020 to 2050.
2 Expected by the household agents for the investment decision. The realized retail prices may differ.
3 Only applicable for grid charges, CHP surcharge, §19 surcharge, and offshore wind surcharge. Other

surcharges are assumed to remain constant.
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Alternatively, households could also use a forecast-based operational strategy

and thereby potentially relieve the grid (Dehler et al., 2017; Deutsch and Graichen,

2015). We therefore additionally implement the so-called dynamic feed-in limitation

(later referred to as dynamic) as proposed by Bergner et al. (2014). The aim of

this operational strategy is to lower the peak PV feed-in as far as possible while

keeping the impact on self-sufficiency at a minimum. This is achieved by shifting

the battery charging to the hours with the highest PV generation around noon,

rather than charging the battery directly as soon as a PV surplus occurs. Thus, in

the dynamic strategy, the behavior for supplying the household’s electricity demand

stays the same, only the charging behavior of the battery is controlled differently.

The battery is only charged if the excess PV generation is above a virtual feed-in

limit. In contrast, PV generation below the virtual feed-in limit is self-consumed

or – if the household load is not high enough – fed into the grid. The virtual limit

is determined such that considering the current state of charge, the expected PV

generation and household demand, the battery would be fully charged by the end of

the day. For a formal description of the algorithm, please refer to the original article

by Bergner et al. (2014). Since we assume perfect foresight for the PV and load

forecast, households can maintain the same self-sufficiency rates under the dynamic

strategy as compared to the default strategy. Thus, households can be considered

indifferent with respect to the operational strategy. For this reason, the investment

decisions (Section 3.2.1) are always based on the default strategy.

3.2.3 Diffusion Model

Due to non-financial aspects, e.g., a lack of information and uncertainty about PV

battery storage and its costs, only a small portion of the economic potential of

residential battery storage is realized (Steinbach, 2015). This is often neglected in

the literature, leading to an overestimation of the diffusion numbers and the impact

of residential battery storage (see Section 2). To address this shortcoming, we use

a Bass diffusion model (Bass, 1969) to estimate the number of potential adopters

for PV battery storage systems. The model formulation is shown in Eq. (1), where

N(t) denotes the cumulative number of (potential) adopters for PV battery storage
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systems up to time t. In a Bass model, the process of technology adaption is explained

by innovation effects (represented by the coefficient of innovators p) and imitation

effects (represented by the coefficient of imitators q). The total market size M is set

to 11.15 million, which is the number of (semi-)detached houses that are inhabited

by the owner5 and have suitable roofs for PV systems (Prognos, 2016). In order

to determine the parameters p and q, a nonlinear regression using the historical

installations of small-scale PV systems (<10 kWp) in Germany is carried out.

N(t) = M
1− e−(p+q)(t−t0)

1 + q
p
e−(p+q)(t−t0)

(1)

The Bass model provides projections for the number of potential adopters of PV

battery storage in each simulation year. Since we approximate the real household

load by the load profiles of 162 measured households (see above), the results for these

sample households are then scaled up to the numbers of potential adopters. Whether

the sample households invest in PV battery storage systems is determined in the

investment module described in Section 3.2.1. In case that none of the investment

options is profitable for a given load profile, the respective households are considered

as potential adopters again in the subsequent simulation year.

In addition to potential adopters calculated using the Bass diffusion model, own-

ers of existing PV systems (taken from 50Hertz et al., 2019a) whose feed-in tariffs ran

out after 20 years are considered as potential adopters for battery storage systems.

Moreover, households whose retrofitted systems reach the end of their lifetime, are

also taken into account as additional potential adopters again.

3.3 Electricity Market Simulation

In order to investigate the system impacts of a large-scale diffusion of residential

battery storage systems in Germany, we apply PowerACE, an established agent-

based simulation model. Originally developed for long-term scenario analyses of the

German electricity market, PowerACE has been substantially extended in the past

5Under German legislation, self-consumption is only possible if the consumer and the owner of
the PV system are the same person.

12



years and now includes a representation of multiple interconnected market areas in

Europe. The model has a long-term character with typical time horizons ranging

from 2015 up to 2050. At the same time, the short-term perspective is modeled at a

high temporal resolution of 8760 h/a.

In PowerACE, several agents represent the major market participants such as util-

ity companies, consumers or regulators. As is typical for agent-based approaches, the

different agents follow their own goals and the system behavior ultimately emerges

from the individual actors’ decisions. For example, the utility companies can decide

on the daily operation of their conventional power plants and utility-scale storage

units on the day-ahead market (short-term perspective) as well as on investments in

new generation and utility-scale storage capacities (long-term perspective).

For the simulation of the day-ahead market, the utility companies in all market

areas first create price forecasts in order to estimate the running hours of their gen-

eration fleet on the subsequent day (Fraunholz et al., 2020). The respective agents

then prepare hourly bids including both variable and start-up costs for each of their

power plants. Moreover, price-inelastic bids for renewable feed-in, electricity demand

and utility-scale storage units are created by a single trading agent per market area.

Please note that the bids for both the electricity demand and the renewable feed-

in include the impact of the residential battery storage systems. A central market

operator collects the supply and demand bids from all market areas and matches

them with the objective of maximizing social welfare subject to the limited intercon-

nector capacities (Ringler et al., 2017). This step is a simplified representation of

EUPHEMIA (NEMO Committee, 2019), the algorithm used for the real-world day-

ahead market clearing process across multiple interconnected market areas. Finally,

all utility companies determine their individual power plant dispatch based on the

outcome of the market clearing. Please note that the model-endogenous represen-

tation of utility-scale storage operation and electricity exchange across market areas

allows to account for potential balancing effects of these flexibility options, which are

likely to reduce the system impact of residential battery storages.

Additionally to the day-ahead market simulation, the utility companies have the

opportunity to invest in new generation and utility-scale storage capacity once per

simulation year. For this purpose, the respective agents estimate the profitability of
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different investment candidates based on long-term price forecasts. In an iterative

procedure, a stable investment plan (more precisely, a Nash-equilibrium) across all

considered market areas is then determined (Fraunholz et al., 2019).

As a detailed bottom-up simulation model, PowerACE relies on substantial

amounts of input data. Table 2 provides an overview of the data used in this study

and the respective sources. In order to adequately account for cross-border effects,

the applied version of PowerACE does not only cover Germany, but also all neigh-

boring countries (Fig. 2). Please note that the developments of electricity generation

from renewables as well as electricity demand are exogenous inputs to PowerACE

and remain unchanged for all scenarios to be investigated (Section 4.1). Additional

model-endogenous investments in renewable technologies are therefore not consid-

ered. Fig. 3 shows the assumed composition of the renewable electricity generation

as well as the total yearly electricity demand. The output data most relevant for this

article comprises wholesale electricity prices up to 2050, the dispatch of conventional

power plants and utility-scale storages, as well as electricity exchange flows between

the different market areas. All these result data sets are determined at an hourly

resolution over the time period from 2020 to 2050.

4 Results and Discussion

4.1 Overview of the Investigated Scenarios

In order to analyze the effects of possible policy changes on the diffusion of battery

storage systems and the resulting system impacts, we define four scenarios which are

summarized in Table 3 and briefly described in the following.

• The scenario No Storage is a reference electricity market simulation without any

residential battery storage. This scenario serves as a benchmark to which the

remaining scenarios are compared.

• In the Status Quo scenario, the grid charges are based on the households’ power

consumption. Surplus solar energy fed into the grid is remunerated with a guar-

anteed feed-in tariff for 20 years. The battery storage systems are operated using
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Table 2: Overview of the input data used for the electricity market simulation with
PowerACE. The table is based on a previous study (Fraunholz et al., 2021) since we mostly
make use of the same data sets.

Input data type Resolution Sources and comments

Conventional power plants unit level Bundesnetzagentur (2017) for Germany,
S&P Global Platts (2015) for all other
countries, and own assumptions

Fuel prices yearly EU Reference Scenario (de Vita et al., 2016)
Carbon prices yearly EU Reference Scenario (de Vita et al., 2016),

scaled to reach 150 EUR/tCO2 in 2050
Investment options yearly Louwen et al. (2018); Schröder et al. (2013);

Siemens Gamesa (2019), and own assumptions
(cf. Tables 6 and 7)

Interconnector capacities yearly Ten-Year Network Development Plan
(ENTSO-E, 2016)

Electricity demand hourly,
market
area

historical time series of 2015 (ENTSO-E,
2017), scaled to the yearly demand given in the
EU Reference Scenario (de Vita et al., 2016)

Renewable feed-in hourly,
market
area

historical time series of 2015 (ENTSO-E,
2017), scaled to reach an overall renewable
share in relation to electricity demand of 80 %
in 2050

Table 3: Overview of the investigated scenarios. Three settings with different regulatory
frameworks are compared to a reference case without residential battery storage.

Scenario Battery
operation

Feed-in
limit

Grid
charges

Feed-in
remuneration

Self-consumption
charge

No Storage – – – – –
Status Quo default 70 % volumetric feed-in tariffs none
Dynamic dynamic 70 % volumetric feed-in tariffs none
Restrictive dynamic 50 % fixed market prices 40 % of renewable

energy levy
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Figure 2: Overview of the market areas covered by PowerACE. While the diffusion of
residential battery storage is only considered in Germany (dark gray), the electricity market is
also simulated for all neighboring countries (light gray) to account for cross-border effects.
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Figure 3: Assumed annual renewable electricity generation and gross electricity demand
(a) aggregated across all countries and (b) in Germany. In 2050, an overall renewable
share of 80 % is reached. Source: de Vita et al. (2016), and own assumptions.
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the default self-consumption maximizing operational strategy (cf. Section 3.2.2).

This scenario aims to represent the current German regulation for prosumers.

• In the scenario Dynamic, the cost structure for prosumers is identical to the Status

Quo scenario. However, the operational strategy is changed to the forecast-based

dynamic strategy (cf. Section 3.2.2). This scenario is designed to analyze the

impact of a more system-friendly operational strategy.

• The scenario Restrictive also relies on the dynamic operational strategy, but the

maximum PV feed-in capacity is reduced to 50 % of the installed capacity. This

was, e.g., a requirement in the recently expired subsidy scheme of the German

Kreditanstalt für Wiederaufbau (Figgener et al., 2018). Additionally, the grid

charges are included in the basic charge of the electricity tariff6. Being inde-

pendent from the actual consumption, the grid charges can then be considered

as pure costs of grid access. In contrast to the two previous scenarios, the fed-

in electricity is remunerated with the PV-weighted mean of the wholesale prices

determined in the electricity market simulation (cf. Section 3.3). Furthermore,

it is assumed that the de minimis threshold is removed, meaning that also pro-

sumer households have to pay the self-consumption charge of 40 % of the current

renewable energy levy. The objective of this scenario is to analyze the impacts

of a more restrictive regulation for self-consumption as compared to the rather

favorable regulatory framework currently in place.

4.2 Investments Decisions of the Prosumer Households

Our simulations confirm that the regulatory framework has a substantial impact on

the PV and battery investment decisions of the modeled sample households as well

as the corresponding amounts of self-consumption. Table 4 presents an overview

of these results alongside a summary of the (partly model-endogenous) cost and

remuneration of electricity under the different scenarios.

Due to the high levels of feed-in remuneration and retail electricity prices, only

new residential PV systems with the maximum capacity of 10 kWp are being built in

6For this purpose, the total electricity consumption of the household sector (128.6 TWh) is
allocated to all 40.96 million households in Germany (Fett et al., 2019). Thus, the fixed grid
charges are based on an average electricity consumption of 3140 kWh per household.
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the scenarios Status Quo and Dynamic in 2020. This does not change throughout the

simulation period, since increasing cost of electricity as well as declining installation

cost overcompensate the gradual decrease of the feed-in remuneration. Given the

less favorable regulation for self-consumption in scenario Restrictive (cf. Section

4.1), substantially smaller new systems are initially installed. However, from 2040

on, much like in the other scenarios, households only invest in new PV systems with

the maximum size.

The situation is somewhat different for the retrofit of existing PV systems, i.e,

the installation of a new inverter which comes along with a lifetime extension of 15

years. Until 2030, the results for retrofit systems are identical in all scenarios since

only systems already existing today are retrofit and this is always profitable for the

respective households. In 2040 and 2050, the retrofit systems corresponds to those

model-endogenously built 20 years earlier. Consequently, the PV systems under the

scenario Restrictive are once again much smaller than those in the other scenarios.

As regards residential battery storage, the more liberal regulation in the scenarios

Status Quo and Dynamic leads to substantially larger storage volumes being installed

than in scenario Restrictive. This holds for both, new systems and retrofit systems.

The total storage capacities and volumes of all households are depicted in Fig. 5. In

scenario Restrictive, around one quarter less storage is installed in 2050.

The investment decisions of the households are a direct outcome of their prof-

itability analyses. Consequently, alongside the larger systems also the realized NPVs

of the systems being built increase substantially. This finding clearly shows how

using batteries to increase self-consumption is becoming a more and more profitable

business case for the majority of households over time.

The generally smaller PV and storage systems in scenario Restrictive also lead to

smaller amounts of self-consumption by the households. However, this is particularly

true up to 2030, whereas later on, the self-consumption levels become more similar

in all scenarios for the newly installed systems.

Overall, we can conclude that the ongoing cost reductions for PV and storage

systems render investments in these technologies profitable for many households even

under a far more restrictive regulation than in place today. Thus, while the impact
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of the regulatory framework may be significant in the medium term up to 2030, it

gradually diminishes in the longer term.

4.3 Load Shifting of the Prosumer Households

Let us now move on to the impact of the regulatory framework and the prosumer

households’ investment decisions on their demand patterns. In Fig. 4, the aggregated

PV generation as well as the electricity demand of all prosumer households is shown

for an exemplary summer and winter day in 2050.

In summer, a substantial PV overproduction can be observed across all scenarios.

This is because investments in large PV systems are profitable for two reasons (cf.

Section 4.2). Firstly, prices for PV installation are assumed to decline further until

2050. Secondly, the feed-in remuneration remains relatively high – even in scenario

Restrictive, where the remuneration is determined as the PV-weighted mean of the

simulated wholesale electricity prices.

In scenario Status Quo, the residential batteries are directly charged as soon as

a PV surplus exists. Consequently, by the time of peak PV production (around

12pm), the batteries are already fully charged and the high surplus PV generation

is fed into the grid. Contrary, in scenario Dynamic, the battery charging is shifted

by a few hours and therefore much better aligned with the PV production pattern.

The discharging of the batteries is however not affected by the operational strategy

and similar to the scenario Status Quo. In scenario Restrictive, an overall smaller

amount of PV generation7 can be observed due to the smaller system sizes. The

general patterns of battery charging and discharging are however similar to scenario

Dynamic.

The picture is completely different in winter. Due to the much lower PV genera-

tion, the prosumer households are able to self-consume almost their entire produced

electricity either directly or by charging their batteries8 This finding holds for all

7As previously indicated, the total renewable electricity generation is an exogenous input to the
electricity market simulation and remains unchanged for all scenarios. Thus, if households invest
in smaller PV systems, we assume this to be compensated by more utility-scale PV systems. This
is because the expansion of renewables is typically driven by technology-specific political targets.

8The initial household demand is sometimes higher than the PV generation in the morning
hours, but nevertheless battery charging is carried out. This effect is caused by the diversity of
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Figure 4: Demand patterns of prosumer households under the different scenarios. The
regulatory framework strongly affects the alignment of PV generation and electricity demand.
While a high PV overproduction occurs in summer, substantial self-consumption rates can be
achieved in winter.
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scenarios. Interestingly, since very little PV generation is fed into the grid, the bat-

tery charging and discharging patterns between the default operational strategy in

scenario Status Quo and the dynamic strategy in scenarios Dynamic and Restrictive

differ much less than in summer. Due to the smaller system sizes, we can again see

a lower residential PV generation in scenario Restrictive.

In summary, we find strong impacts of the regulatory framework on the load shift-

ing carried out by the prosumer households. Moreover, significant seasonal differ-

ences between summer and winter exist in terms of PV production and consequently

self-consumption as well as grid feed-in.

4.4 Utility-Scale Generation and Storage Capacities

As already described in Section 4.2, substantially less residential storage is built in

scenario Restrictive as compared to the scenarios Status Quo and Dynamic. We now

change perspective and focus on the impact of the residential storage diffusion on the

expansion planning of the utilities. For this purpose, Fig. 5 shows the capacities of

conventional power plants as well as utility and residential storage. Since the effects

are rather small in magnitude, the middle and bottom part of the figure additionally

shows the deltas with respect to the scenario No Storage.

Interestingly, despite more than 40 GW of residential battery storage capacity in

the scenarios Status Quo and Dynamic – and still more than 30 GW in scenario Re-

strictive – these units only replace small amounts of conventional power plants and

utility storage capacity. This is closely related to the residential storages’ relatively

households’ demand patterns. A simple numerical example with two prosumer households is useful
to illustrate this. Let us assume that household 1 has a demand of 1.0 units and a PV generation
of 0.5 units, while household 2 has no demand at all and generates 0.4 units of electricity. Since
batteries are typically discharged in the morning hours, household 1 then directly self-consumes
all produced electricity and covers the rest of its demand from the grid. Contrary, household 2
has a surplus generation of 0.4 units and uses this to charge its battery. Consequently, although
the aggregated initial demand of both households (1.0 units) already exceeds the aggregated avail-
able PV generation (0.9 units), the aggregated demand is further increased by storage charging of
household 2, leading to an overall aggregated demand of 1.4 units. Fig. 6 in the Appendix shows
the same setting for a sensitivity with a single standard load profile. Here, the described effect does
not occur.
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small energy-to-power ratio9 of 1 (cf. Table 1). Consequently, while the households’

batteries replace little utility storage capacity (in GW), they do indeed replace sub-

stantial amounts of utility storage volume (in GWh). This effect occurs because

the profitability of utility storage investments is largely affected by the availability

of cheap charging electricity due to a surplus of renewable generation. Residential

storage, however, is a competing flexibility option in this regard, since it also relies

on surplus PV generation for charging. Due to the more system-friendly storage

operation, the described effect is more pronounced in scenario Dynamic. In terms of

conventional power plants, we can observe a small shift from open cycle gas turbines

(OCGT, typically used as peak load units) to combined cycle gas turbines (CCGT,

medium load units). This is likely because the residential storages slightly increase

the expected operating hours of conventional power plants, which renders CCGTs

more profitable than OCGTs.

Overall, the impact of the residential battery diffusion on the utilities’ expan-

sion planning is rather small. This finding is largely attributable to balancing effects

arising from utility storage dispatch and electricity exchange with the German neigh-

boring countries.

4.5 System Integration of Residential Photovoltaics

Another relevant effect on system level is that by creating additional electricity de-

mand at times of high PV generation, residential battery storage could support

the system integration of renewables, or more specifically residential photovoltaics.

Given our ambitious assumptions on the share of renewable electricity generation

with respect to total electricity demand (80 % in 2050, cf. Table 2), situations with

surplus renewable generation would occur much more frequently in the future than

today. Thus, an important indicator for the ability of a system to accommodate

renewables is the amount of market-related curtailment10. Against this background,

Table 5 shows the mean yearly curtailment volumes for the different scenarios.

9While the energy-to-power ratio relates the storage volume (e.g., in GWh) to the storage
capacity (e.g., in GW), the reciprocal of this is referred to as the C-rate of a battery.

10Apart from market-based curtailment of renewables, insufficient grid capacities can lead to
additional grid-related curtailment. Although this is currently an issue in Germany and intensively

24



Table 5: Market-related curtailment of renewable electricity generation. The values
show the arithmetic mean over the simulation years 2020–2050. Clearly, a dynamic feed-in
limit incentivizes a more system-friendly operation of the residential battery storages. This
leads to lower curtailment volumes, i.e., a better system integration of residential photovoltaics
in the scenarios Dynamic and Restrictive.

Scenario All countries [TWh/a] thereof Germany [TWh/a]

No Storage 15.00 5.33
Status Quo 14.82 (−1.2 %) 5.13 (−3.6 %)
Dynamic 14.38 (−4.1 %) 4.76 (−10.7 %)
Restrictive 14.43 (−3.8 %) 4.77 (−10.5 %)

On the German level, the residential battery storages indeed contribute to a re-

duction of the renewable curtailment. Interestingly, the way the storages are operated

seems more important than the installed storage volumes. While the curtailment is

only reduced by less than 4 % under the default operational strategy (scenario Status

Quo), the dynamic operational strategy (scenarios Dynamic and Restrictive) leads

to more than 10 % decrease in curtailment. This is remarkable, since substantially

less residential storage is installed in scenario Restrictive (cf. Fig. 5).

Moving on to the overall system perspective comprising all modeled countries,

the percentage decrease of curtailment is obviously lower since the total curtailment

volumes are roughly three times as high as in Germany alone. The reductions of

curtailment are again much higher in the scenarios Dynamic and Restrictive than in

scenario Status Quo. Please recall that the diffusion of residential storage also affects

the expansion of utility-scale storage. In this regard, it is interesting to see that the

impact of the dynamic operational strategy even overcompensates the higher utility

storage volumes of scenario Status Quo (cf. Section 4.4).

In summary, we find the operational strategy of the residential battery storages

to be an important driver for their ability to support the system integration of

renewables. However, at the same time, it is crucial to consider interdependencies

between different flexibility options, in this particular case, residential storage and

utility storage.

discussed (e.g., Hladik et al., 2020), our paper focuses on the market side while grid aspects are out
of the scope.
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4.6 Sensitivity Analyses

In order to investigate a higher diffusion rate as well as the impact of using a single

household load profile rather than several empirically measures ones, we carry out

two additional sensitivity runs.

In scenario High Diffusion, the number of potential prosumers in each year is

increased by 50 %. Nevertheless, the overall system impacts remain small. Interest-

ingly, the positive impact of the residential storages on the curtailment volumes is less

pronounced in scenario High Diffusion than in the scenarios with the dynamic oper-

ational strategy (Dynamic, Restrictive). This confirms our previous finding that the

operational strategy may be more crucial in this regard than the installed residential

storage volumes.

In scenario Standard Load Profile, we find the prosumer households to invest in

smaller battery storage systems than in scenario Status Quo, because the standard

load profile is smoother than the empirical ones. Consequently, smaller batteries are

sufficient to reach similar levels of self-consumption as in scenario Status Quo.

For more details on the results of the sensitivity runs, please see Appendix B.

5 Limitations

Despite substantial modeling effort, our work has certain important limitations,

which we briefly address and qualitatively discuss in the following.

Firstly, while we consider the German neighboring countries in the electricity

market simulation, we only model residential battery storage diffusion in Germany.

This assumption is based on Germany’s clear leadership regarding residential PV

and battery storage systems. Currently, Germany is accountable for two of three

battery units installed in Europe and this trend is expected to continue in the years

to come (SolarPower Europe, 2020). At the same time, Germany has a high level

of retail electricity prices. Consequently, residential storage is profitable for many

German households already today, which is not the case in most other European

countries. Unfortunately, since the regulatory framework for self-consumption differs

substantially across Europe, the developed prosumer simulation model is currently
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only applicable for Germany. Nevertheless, in order to get a more complete picture,

our approach should be extended to countries like Italy and Austria in future work.

Secondly, we assume the empirically measured household demand profiles to re-

main constant throughout the simulation period from 2020 to 2050. However, the

shape of the electricity demand is likely to change in the future, e.g., driven by ef-

ficiency improvements as well as the electrification of heat and transport (Boßmann

and Staffell, 2015). Depending on the flexibility of the new electric household appli-

cations, this could have different effects on investments in residential battery storages

and their operation, which we are unable to quantify with our approach. Under the

reasonable assumption that technologies like heat pumps and e-mobility offer addi-

tional demand flexibility for households, the installed battery storage systems would

become smaller (Kaschub, 2017). Therefore our work is likely to provide an upper

bound on the impact of residential battery storage.

Thirdly, the dynamic operational strategy for batteries is implemented with per-

fect foresight regarding PV generation and electricity demand. In reality, forecasting

errors need to be considered, which slightly reduce the households’ self-sufficiency

(Bergner et al., 2014). However, additional adjustments to the regulatory frame-

work, e.g., a reduction of the feed-in limit, could account for this aspect and create

an incentive for households to apply a dynamic operational strategy nevertheless.

Finally, we have exogenously set technology-specific policy targets for renewable

expansion. Consequently, even if households invest in less PV capacity due to the

regulatory framework conditions, this is compensated by additional utility-scale PV

generation. Thus, with our current modeling framework, we do not analyze the im-

pact of prosumer households in general, but rather the impact of residential battery

storage diffusion and operation. The assumption of a politically driven renewable ex-

pansion is reasonable for the current German setting. Nevertheless, dynamic model-

endogenous investments in utility-scale renewable technologies could be considered

in future work.
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6 Conclusion and Policy Implications

In this article, we developed and applied a novel modeling framework to investigate

the long-term impacts of residential battery storage diffusion in Germany. The pro-

posed approach is the first in the literature to consider bidirectional dependencies

between the decisions of households and utilities, the technology diffusion process,

and alternative operational strategies for the residential batteries. In a simulation

study, different regulatory settings for self-consumption were analyzed, leading to a

number of relevant results which can be summarized as follows.

On the household level, a more restrictive regulation leads to investments in sub-

stantially smaller photovoltaic and storage systems in the medium term up to 2030.

However, in the long run, this effect gradually diminishes and self-consumption be-

comes profitable for most households despite the unfavorable regulation. This effect

is, amongst others, driven by decreasing cost of photovoltaics and battery storage as

well as increasing retail electricity prices. In terms of battery operation, we find a

forecast-based dynamic strategy to align photovoltaic generation and battery charg-

ing significantly better than a default strategy following the sole objective of maximiz-

ing self-consumption. Importantly, if reasonably accurate forecasts on photovoltaic

generation and electricity demand are available, the self-sufficiency of households

would only slightly suffer from this dynamic strategy. However, driven by relatively

high feed-in remuneration, households are likely to invest in large photovoltaic sys-

tems, such that substantial amounts of photovoltaic generation are fed into the grid

regardless of the operational strategy of the battery.

Despite the strong impacts of residential battery storage on an individual house-

hold level, we find moderate system impacts. There are three major reasons for

this result, all of which are related to our innovative modeling approach. Firstly, we

apply a diffusion model leading to a gradual battery expansion over time, such that

even by 2050, only a fraction of the households invests in photovoltaic and storage

systems. Secondly, the diffusion process of the residential batteries also affects the

electricity market simulation. Since the utilities plan their investments in multiple

decision periods, lock-in effects may occur: if a certain amount of power plants is

built at a time with little residential storage, it will remain in the system even if the
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residential storage capacity increases later on. Thirdly, other flexibility options like

utility-scale storage and electricity exchange with the German neighboring countries

have a tremendous balancing effect. Nevertheless, the positive impact of a dynamic

operational strategy for the residential battery storages is also visible on the sys-

tem level. The more system-friendly operation strongly reduces the curtailment of

renewables and therefore contributes to a better system integration of residential

photovoltaics.

Our findings have important policy implications. Even if restrictive regulatory

frameworks for self-consumption are set up, the diffusion of residential battery storage

seems difficult to steer in the long term. However, on a system level, we find the

way the residential batteries are operated to be more crucial than the amount of

storage installed. Fortunately, relatively simple regulatory adjustments, such as a

reduction of the maximum feed-in limit for residential photovoltaics, are suitable to

incentivize a more system-friendly operation of the residential storages. Apart from

the electricity market impact, the operational strategy of the residential batteries is

also likely to have a substantial impact on the distribution grid level. This aspect

should therefore be investigated in future research. Additionally, dynamic time-of-

use tariffs could further incentivize a system-friendly operation of residential storage.

However, in the German context, this would probably require substantial changes to

the current tariff design. This is because a large portion of the residential electricity

prices does not origin from the wholesale cost of generation, but rather from a number

of taxes and levies. Since these are currently static, there is only a small margin

between high-price periods and low-price periods. Consequently, taxes and levies

might need to be designed dynamically in order to increase the lever.
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Table 6: Conventional power plant investment options modelled in PowerACE with
their respective techno-economic characteristics. Source: Schröder et al. (2013); Louwen
et al. (2018), own assumptions.

Technol-
ogy

Block
size

CCS Net effi-
ciency1

Life-
time

Build-
ing
time

Specific
investment
(2015–2050)1

O&M
costs
fixed

O&M
costs
var.2

[MWel] [%] [a] [a] [ EUR
kWel

] [ EUR
kWel a ] [ EUR

MWhel
]

Coal 600
no 45–48

40 4
1800

60
6

yes 36–41 3143–2677 30

Lignite 800
no 43–47

40 4
1500

30
7

yes 30–33 3840–3324 34

CCGT 400
no 60–62

30 4
800

20
5

yes 49–52 1216–1078 18
OCGT 400 no 40–42 30 2 400 15 3

Abbreviations: CCGT—combined cycle gas turbine, CCS—carbon capture and storage, OCGT—open
cycle gas turbine, O&M—operation and maintenance

1 Resulting from technological learning, the net efficiency is assumed to increase over time. Since
conventional power plants can generally be regarded as mature technologies, it is further assumed
that only the specific investments of the CCS-technologies are declining.

2 Including variable costs for carbon capture, transport and storage, where applicable.

A Input Data

An overview of the techno-economic characteristics of the different investment op-

tions modeled in PowerACE is provided in Tables 6 and 7.

B Results of the Sensitivity Analyses

In the following, we present and briefly describe the results of the two additional

sensitivity runs, which focus on the impact of a 50 % higher diffusion rate (scenario

High Diffusion) and the role of using a single household load profile rather than

several empirically measured ones (scenario Standard Load Profile). In order to put

the results of the sensitivities into perspective, we mostly compare them to scenario
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Table 7: Electricity storage investment options modelled in PowerACE with their re-
spective techno-economic characteristics. Source: Louwen et al. (2018); Siemens Gamesa
(2019), own assumptions.

Technology Block
size

Storage
capacity1

Round-
trip
efficiency2

Life-
time2

Build-
ing
time

Specific
investment
(2015–2050)2

O&M
costs
fixed2

[MWel] [MWhel] [%] [a] [a] [ EUR
kWel

] [ EUR
kWel a ]

Li-ion
battery

300
1200

85–95 20–30 2
3149–572 63–11

3000 7643–1388 153–28
RF battery 300 3000 75–85 20–30 2 4206–892 84–18
A-CAES 300 3000 60–75 30 2 1095 22

ETES 300
1200

50–60 40 2
600 12

3000 672 13

Abbreviations: A-CAES—adiabatic compressed air energy storage, ETES—electric thermal energy
storage, O&M—operation and maintenance, RF battery—redox-flow battery

1 For RF batteries and A-CAES, a substantial share of the investment expenses is related to the
converter units. Consequently, for economic reasons, only higher storage capacities of 3000 MWhel

are eligible as investment options for these technologies.
2 Resulting from technological learning, round-trip efficiency and lifetime are assumed to increase

over time for the emerging storage technologies. Analogously, specific investments and fixed costs
for O&M are assumed to decline.
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Status Quo, sometimes also to the scenarios Dynamic and Restrictive, all of which

are described in detail in Section 4.

In terms of the prosumer households’ PV and battery investment decisions (sum-

marized in Table 8), scenario High Diffusion is identical to scenario Status Quo for

both, new and retrofit systems. This is because the same sample households are con-

sidered and only the diffusion rate is increased by scaling the yearly investments to

150 % of Status Quo. In scenario Standard Load Profile, the diversity of investments

in new PV and storage systems is lost, since only a single load profile is considered

for all prosumer households. As in scenario Status Quo, already in 2020, only PV

systems with the maximum size are built. From 2030 onward, battery system sizes in

scenario Standard Load Profile are somewhat smaller as compared to scenario Status

Quo. Since the standard load profile is smoother than the empirical ones, smaller

batteries are sufficient to reach an even slightly higher self-consumption than in sce-

nario Status Quo. In terms of retrofit PV systems, the sizes are identical to scenario

Status Quo in 2020 and 2030, since the same systems already existing today are

considered. However, storage sizes are smaller, since no diversity in household load

profiles is considered. In 2040 and 2050, the new systems built model-endogenously

in 2020 and 2030, respectively, are retrofit.

Fig. 6 illustrates the load shifting of prosumer households by using their residen-

tial batteries. Again, the results of scenario High Diffusion are identical in shape to

those of scenario Status Quo. However, due to the scaling, the values of generation

and demand are 50 % higher. In scenario Standard Load Profile, steeper load gradi-

ents occur as compared to scenario Status Quo. This is because the lacking diversity

in household load profiles does not allow for balancing effects, but all households

operate their storages in the exact same way.

As regards the impact of the residential battery storages on utilities’ expansion

planning, the effects of the sensitivity scenarios High Diffusion and Standard Load

Profile are qualitatively similar to those of the scenarios Status Quo, Dynamic, and

Restrictive. Interestingly, in scenario Standard Load Profile, the lack of diversity in

household load profiles reduces the effect described in Section 4.4. The residential

storages increase the expected operating hours of conventional power plants to a

lesser extent than in scenarios Status Quo, Dynamic, and Restrictive, thus reducing
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Figure 6: Demand patterns of prosumer households under the different scenarios (sen-
sitivity analyses). The curves of scenario High Diffusion have the same shape as those of
scenario Status Quo, yet the absolute levels of generation and demand are 50 % higher. In
scenario Standard Load Profile, steeper load gradients can be observed as compared to Status
Quo.
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Table 9: Market-related curtailment of renewable electricity generation (sensitivity
analyses). The values show the arithmetic mean over the simulation years 2020–2050. In sce-
nario High Diffusion, the 50 % higher residential storage capacity reduces curtailment stronger
than in scenario Status Quo, whereas the reduction in scenario Standard Load Profile is similar
to scenario Status Quo.

Scenario All countries [TWh/a] thereof Germany [TWh/a]

No Storage 15.00 5.33
High Diffusion 14.64 (−2.4 %) 5.02 (−5.8 %)
Standard Load Profile 14.75 (−1.6 %) 5.16 (−3.1 %)

the incentive to invest in CCGTs. Instead, more utility storage is built in the last

years of the simulation period. Overall, the impact of the residential battery storages

on the utilities’ investments remains small, even under a higher diffusion rate.

Finally, Table 9 presents the curtailment volumes under the two sensitivity sce-

narios. In scenario High Diffusion, much less curtailment needs to be carried out

than in scenario Status Quo. This is caused by the 50 % higher residential battery

storage volumes. However, curtailment can still be reduced even more in scenarios

Dynamic and Restrictive, despite the much lower amount of residential storage. This

confirms our previous finding that the operational strategy may be more crucial in

this regard than the installed residential storage volumes. The results of scenario

Standard Load Profile are similar to those of scenario Status Quo.
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Figure 7: Installed capacities of conventional power plants as well as utility and resi-
dential storage (sensitivity analyses). The figure shows the absolute values (top) and the
deltas with respect to the case without residential battery storage diffusion (middle/bottom).
Both, in scenario High Diffusion and Standard Load Profile, the residential battery storages
replace rather small amounts of peak load capacity, whereas some additional medium load
power plants and utility storages are built. Abbreviations: CCGT—combined cycle gas turbine,
OCGT—open cycle gas turbine.
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dezentraler Stromspeicher. Dissertation. University of Flensburg. Flens-

burg, Germany. URL: https://www.zhb-flensburg.de/fileadmin/

content/spezial-einrichtungen/zhb/dokumente/dissertationen/fluri/

fluri-2019-wirtschaftlichkeit-dez-stromspeicher.pdf.

Fraunholz, C., Keles, D., Fichtner, W., 2019. Agent-Based Generation and Storage

Expansion Planning in Interconnected Electricity Markets, in: 2019 16th Interna-

tional Conference on the European Energy Market (EEM), IEEE, Piscataway, NJ.

doi:10.1109/EEM.2019.8916348.

39

http://dx.doi.org/10.1016/j.eneco.2018.06.014
https://www.entsoe.eu/Documents/TYNDP%20documents/TYNDP%202016/rgips/TYNDP2016%20market%20modelling%20data.xlsx
https://www.entsoe.eu/Documents/TYNDP%20documents/TYNDP%202016/rgips/TYNDP2016%20market%20modelling%20data.xlsx
https://transparency.entsoe.eu/
https://transparency.entsoe.eu/
http://dx.doi.org/10.1007/s11573-019-00936-3
http://dx.doi.org/10.1109/EEM.2018.8469844
http://dx.doi.org/10.13140/RG.2.2.30057.19047
http://dx.doi.org/10.13140/RG.2.2.30057.19047
https://www.zhb-flensburg.de/fileadmin/content/spezial-einrichtungen/zhb/dokumente/dissertationen/fluri/fluri-2019-wirtschaftlichkeit-dez-stromspeicher.pdf
https://www.zhb-flensburg.de/fileadmin/content/spezial-einrichtungen/zhb/dokumente/dissertationen/fluri/fluri-2019-wirtschaftlichkeit-dez-stromspeicher.pdf
https://www.zhb-flensburg.de/fileadmin/content/spezial-einrichtungen/zhb/dokumente/dissertationen/fluri/fluri-2019-wirtschaftlichkeit-dez-stromspeicher.pdf
http://dx.doi.org/10.1109/EEM.2019.8916348


Fraunholz, C., Keles, D., Fichtner, W., 2021. On the role of electricity storage in

capacity remuneration mechanisms. Energy Policy 149, 112014. doi:10.1016/j.

enpol.2020.112014.

Fraunholz, C., Kraft, E., Keles, D., Fichtner, W., 2020. The Merge of Two Worlds:

Integrating Artificial Neural Networks into Agent-Based Electricity Market Simu-

lation. volume 45 of Working Paper Series in Production and Energy. Karlsruhe

Institute of Technology, Karlsruhe, Germany. doi:10.5445/IR/1000122364.

Hladik, D., Fraunholz, C., Kühnbach, M., Manz, P., Kunze, R., 2020. Insights on

Germany’s Future Congestion Management from a Multi-Model Approach. Ener-

gies 13, 4176. doi:10.3390/en13164176.
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