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H I G H L I G H T S

• The study compares bacteria isolated
from different wastewater biotopes.

• The highest health risks were posed by
resistant bacteria from clinical waste
water.

• These bacteria were frequently resistant
to antibiotics of last resort.

• Hospital wastewater signature was still
observed at entry into the treatment
plant.

• Bacteria harboring mcr 1 were isolated
only from slaughter house wastewater.
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Multidrug resistant bacteria cause difficult to treat infections and pose a risk for modern medicine. Sources of
multidrug resistant bacteria include hospital, municipal and slaughterhouse wastewaters. In this study, bacteria
with resistance to 3rd generation cephalosporins were isolated from all three wastewater biotopes, including a
maximum care hospital, municipal wastewaters collected separately from a city and small rural towns and the
wastewaters of two pig and two poultry slaughterhouses. The resistance profiles of all isolates against clinically
relevant antibiotics (including β lactams like carbapenems, the quinolone ciprofloxacin, colistin, and trimetho
prim/sulfamethoxazole) were determined at the same laboratory. The bacteria were classified according to
their risk to human health using clinical criteria, with an emphasis on producers of carbapenemases, since carba
penems are prescribed for hospitalized patients with infections with multi drug resistant bacteria. The results
showed that bacteria that pose the highest risk, i. e., bacteria resistant to all β lactams including carbapenems
and ciprofloxacin, were mainly disseminated by hospitals and were present only in low amounts in municipal
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WWTP, wastewater treatment plant.
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wastewater. The isolates from hospital wastewater also showed the highest rates of resistance against antibiotics
used for treatment of carbapenemase producers and some isolates were susceptible to only one antibiotic sub
stance. In accordance with these results, qPCR of resistance genes showed that 90% of the daily load of
carbapenemase genes entering the municipal wastewater treatment plant was supplied by the clinically influ
enced wastewater, which constituted approximately 6% of the wastewater at this sampling point. Likewise, the
signature of the clinical wastewater was still visible in the resistance profiles of the bacteria isolated at the
entry into the wastewater treatment plant. Carbapenemase producers were not detected in slaughterhouse
wastewater, but strains harboring the colistin resistance genemcr 1 could be isolated. Resistances against orally
available antibiotics like ciprofloxacin and trimethoprim/sulfamethoxazole were widespread in strains from all
three wastewaters.

1. Introduction

Infections with antibiotic resistant bacteria may be difficult to treat
and have demanded an estimated number of 33,000 deaths in 2015 in
the EU. The largest effect on deaths could be attributed to 3rd generation
cephalosporin resistant Escherichia coli, methicillin resistant Staphylo
coccus aureus (MRSA), 3rd generation cephalosporin resistant Klebsiella
pneumoniae and carbapenem resistant Pseudomonas aeruginosa (Cassini
et al., 2019).

ESBL (extended spectrumβ lactamases, that inactivate 3rd generation
cephalosporins and penicillins) producing enterobacteria have spread
around the globe since the turn of the century (Woerther et al., 2013)
and colonize about 3.5 6.8% of the population in Germany (Idelevich
et al., 2016). ESBL producers have been isolated from Europeanwastewa
ters and wastewater treatment plants (WWTPs), e. g., in Ireland and En
gland (Raven et al., 2019; Smyth et al., 2020), surface waters in Sweden,
Norway, and Croatia (Egervarn et al., 2017; Jørgensen et al., 2017;
Maravić et al., 2015), wildlife in France (Ngaiganam et al., 2019), and on
European as well as imported meat products in Germany and the
Netherlands (Evers et al., 2017; A. Müller et al., 2018). In short, ESBL
seem to have achieved a ubiquitous dissemination. Severe infections
with ESBL producers are treated with carbapenems, piperacillin/tazobac
tam or ciprofloxacin (Pana and Zaoutis, 2018). However, frequent use of
these antibiotics led to the selection of strains resistant to these sub
stances as well (Qu et al., 2019; Yang et al., 2020). These multidrug
resistant bacteria often harbor large plasmids that combine several resis
tance genes and leave few options for choice of antibacterials (Partridge
et al., 2018).

In order to identify key antibiotics that are vital for humanmedicine
and the use of which should bemonitored, theWHO has graded antibi
otics into three classes (WHO, 2019a). The “access” group includes an
tibiotics that are active against common susceptible pathogens and
show low potential for resistance development. Sulfamethoxazole/tri
methoprim, many penicillins, tetracyclines, clindamycin and amikacin
belong to this group. In contrast, the “watch” group contains the highest
priority antibiotics with a higher potential for selection of resistant
strains. The 3rd generation cephalosporins ceftazidime and cefotaxime,
piperacillin/tazobactam, ciprofloxacin, the carbapenems and vancomy
cin belong to this group and are also listed as “Critically Important Anti
microbials for HumanMedicine” (WHO, 2019b). The “reserve” group of
antibiotics includes “antibiotics of last resort” that should be only given
to patients that are infected with multidrug resistant organisms, espe
cially multi drug resistant producers of carbapenemases. Colistin, cef
tazidime/avibactam, ceftozolane/tazobactam, intravenous fosfomycin,
tigecyline and linezolid belong to this group. These antibiotics should
“be protected and priorized as key targets of stewardship programs to
preserve their effectiveness” (WHO, 2019a). Ceftozolane/tazobactam
and ceftazidime/avibactam have been introduced into clinical medi
cine in the EU in 2015, only shortly before the study started (EMA,
2015a, 2015b). Tigecycline was approved in 2007 by the EU (EMA,
2007). Amikacin, an aminoglycoside antibiotic, is employed in the
hospital as part of a combination therapy and is not available in an

oral formulation. Amikacin is the aminoglycoside at least prone to
acquired resistance (Ramirez and Tolmasky, 2010). Ciprofloxacin
and sulfamethoxazole/trimethoprim belong to the orally available anti
biotics and are also prescribed to patients that are not hospitalized, and
especially sulfamethoxazole/trimethoprim is frequently used. The oral
formulation of fosfomycin is grouped with the “watch” group (WHO,
2019a) and is used in the outpatient setting as a single shot oral treat
ment of uncomplicated urinary tract infections in women (Gardiner
et al., 2019).

Possible sources for the dissemination of antibiotic resistant bacteria
are areas where antibiotics are frequently used, such as hospitals and
animal breeding, but also colonized members of the community. Espe
cially the use of antibiotics in veterinary medicine and animal produc
tion has been much discussed as a major source for antibiotic resistant
bacteria (Manyi Loh et al., 2018).

Colistin, cephalosporins, sulfamethoxazole, sulfadiazine, oxa
cillin and enrofloxacin (which is metabolized to ciprofloxacin in
the animal (Cester and Toutain, 1997)) are used in food production
in Germany. Especially the use of colistin in food production has a
long tradition (Catry et al., 2015) and it was only revived for
human treatment when carbapenemase producers started to ap
pear (Li et al., 2006). In contrast, other antibiotics of the “reserve”
or the “watch” group are only employed in clinical medicine, e. g.,
carbapenems, piperacillin/tazobactam, intravenous fosfomycin, tige
cycline, the new beta lactam inhibitor combinations (ceftozolane/
tazobactam and ceftazidime/avibactam), linezolid, and vancomycin
(AG Antibiotikaresistenz am BVL, 2018).

In order to develop criteria that allow hospitals to identify the most
critical multidrug resistant strains that cause difficult to treat infec
tions and, therefore, require hygienic precautions, theGerman Commis
sion for Hospital Hygiene and Infection Prevention (KRINKO) has
developed criteria that grade Gram negative bacteria according to
their multidrug resistance (KRINKO, 2019) into the categories 3MDRO
and 4MDRO (multidrug resistant organism with resistance to three/
four clinically important antibiotics). This definition considers clinically
relevant antibiotics of the watch group that are normally used against
Gram negative rods causing severe life threatening infections (Table 1).
The colonization of a patient with a 3MDRO bacteriumwill require isola
tion when this patient is located in a ward that houses especially vulner
able immuno compromisedpatients. Carbapenems are the gold standard
for treatment of systemic infections with 3MDRO Enterobacteriaceae.
Colonization with a carbapenem resistant 4MDRO requires isolation of
the patient and leaves the antibiotics of last resort mentioned above as
choice for therapy.

Patients that are colonizedwithMRSA are isolated aswell and infec
tions are treated with vancomycin. In contrast, vancomycin resistant
enterococci (VRE) have become endemic in many regions, thus, the ne
cessity of contact isolation of patients that harbor VRE is still being con
troversially discussed (Vehreschild et al., 2019). These infections are
treated with linezolid.

Multidrug resistant bacteria and especially 4MDRO compromise
medical procedures (operations, transplantations, chemotherapy) that



have to rely on the availability of effective antibiotics and, therefore,
pose the highest risk for healthcare. This study compares the resistance
profiles of isolates that were collected simultaneously in a large study
between 2016 and 2018 from three different wastewater biotopes,
including hospital, two different municipal and pig and poultry
slaughterhouse wastewaters. The study aimed to isolate resistant
Enterobacterales, P. aeruginosa, A. baumannii, MRSA and VRE. All
isolated strains were analyzed at the same laboratory with the
same methods.

Preliminary data about the 3MDRO and 4MDRO status of the Gram
negative samples of the clinical system and the wastewater of rural
towns, after one year of sampling, have already been published and
identified hospitals as the main source of multidrug resistant bacteria
(H. Müller et al., 2018). In this study, our aim was to compare the com
plete resistance profiles of the Gram negative and Gram positive iso
lates from clinical and municipal wastewater to samples obtained
from process waters and wastewater of poultry (Savin et al., 2020b)
and pig slaughterhouses (Savin et al., 2020b)with emphasis on recently
introduced antibiotics and antibiotics of last resort. These data are com
pared to the concentrations of resistance genes present in the clinical
wastewater samples. Former studies have already shown that antibiotic
resistant bacteria are released from hospitals in many countries (Galvin
et al., 2010; Jakobsen et al., 2008; Korzeniewska and Harnisz, 2013;
Kwak et al., 2015), however, so far, some antibiotics of last resort like
ceftazidime/avibactam or ceftozolane/tazobactam have not been ad
dressed. In addition our results demonstrate that in our systems the dif
ferences between slaughterhousewastewater, clinically influenced, and
municipal wastewater are unusually distinct.

2. Materials and methods

2.1. Sampling sites and methods

Sampleswere taken from thewastewater of amaximum care hospi
tal, starting with the building that houses a hemato oncological clinic
(designated “ward” in the qPCRmeasurements) and the part of the hos
pital where this building is located, these two sampling sites are sub
sumed under the term “building”. The hemato oncological clinic has
the highest antibiotic consumption in the maximum care hospital. The
study then sampled the mixed wastewater of the whole maximum
care hospital (1274 beds) including administrative buildings (“clinic”)
and followed the wastewater to the influent of the local WWTP,
where the clinical wastewater has been diluted with municipal waste
water (“clinic mixed with city”). However, in this part of the city, addi
tional hospitals (comprising 2136 beds) contribute to the wastewater.
Calculated from the number of beds, the yearly amount of wastewater
produced by the maximum care hospital (225 × 1000 m3) and the

total yearly influent into the WWTP (10,036 × 1000 m3) through this
pipe, the total amount of clinical wastewater constitutes about 6% of
the wastewater (603 × 1000 m3; dilution 1:16.6) at the sampling
point “clinic mixed with city”.

Municipal wastewater samples were gained from the wastewater
influent of another city district without any hospitals (“city”) and
from WWTP influents of three small locally separate rural towns
(“rural towns”) without any hospitals. In this part of the country, crop
production is the main agricultural sector (constituting about 42% of
land use within the rural catchment area (Schreiber et al., 2017)). All
sites were visited between 18 and 22 times during all seasons. For
slaughterhouse wastewater, the waste and process waters of two pig
and two poultry slaughterhouses, the influent and effluents of the
slaughterhouse in house WWTPs and a poultry farm were sampled in
another part of Germany (“ww pig” and “ww poultry”) (ww: waste
water). These slaughterhouses process animals from local farms that
are all located within 100 150 km of distance. Each slaughterhouse
was visited at least five times.

Samples from the urban and ruralWWTP influents were obtained as
automated 24 h mixed samples. The samples from the sewer system of
the hospital were taken as qualified samples according to the German
standard method for the examination of water, wastewater and sludge
(DIN 38402 11:2009 02), i. e., five aliquots of the same volume were
obtained every 2 min and mixed afterwards.

2.2. Overview of analyses

All samples were analyzed for growth of antibiotic resistant bac
teria belonging to Enterobacterales, P. aeruginosa, and Acinetobacter
calcoaceticus baumannii clpx., MRSA, and VRE, which were isolated,
identified and tested for resistance phenotypes. Resistance genes in
carbapenem and colistin resistant isolates were determined by
qPCR of isolated strains. Wastewater samples of the clinical system
were analyzed for selected resistance genes by qPCR.

2.2.1. Isolation of strains
All samples were cooled and processed within 24 h. Samples were

analyzed as previously described (H. Müller et al., 2018; Savin et al.,
2020a; Savin et al., 2020b). In brief, depending on the bacterial density,
samples were spread on ESBL, VRE, and MRSA CHROMagar plates
(MAST Diagnostica GmbH, Germany) agar plates (1 ml), or concen
trated by filtration using 10 or 100 ml samples. Highly concentrated
wastewater samples had to be plated in different dilutions (1:10,
1:100, and 1:1000) to enable picking of single colonies. The plates
were incubated at an elevated temperature (42 °C) to exclude growth
of environmental bacteria. Colonies that showed the appearance of one
of the target species (members of the Enterobacterales, P. aeruginosa,

Table 1
Definition of 3MDRO and 4MDRO organisms displaying resistance against 3 (3MDRO) or 4 (4MDRO) clinically important antibiotics using either piperacillin or piperacillin/tazobactam for
the evaluation:

3MDRO_Pipa (KRINKO, 2019) 3MDRO_Pip/Taza (Baum et al., 2011) 4MDROa

Enterobacterales, A. calcoaceticus-baumannii cplx.
Acylureidopenicillins R: piperacillin

S: piperacillin/tazobactam
R: piperacillin/tazobactam R

Ceftazidime and/or cefotaxime R R R
Imipenem and/or meropenem S S R
Ciprofloxacin R R R

P. aeruginosa
Piperacillin/tazobactam R: piperacillin,

S: piperacillin/tazobactam
R: piperacillin/tazobactam R

Ceftazidime R R R
Imipenem and/or meropenem S One of these two categories still active and no carbapenemase R
Ciprofloxacin R R

a The presence of a carbapenemase gene will confer a 4MDRO status to Enterobacteriaceae even if the resistance to carbapenems is not detected in the antibiograms.



the A. calcoaceticus baumannii clpx., E. faecium as well as S. aureus)
underwent purification by subculturing on blood agar (H. Müller et al.,
2018). Wastewater and process water from the animal production
was additionally screened for carbapenemase producers and strains
harboring mcr genes using enrichment broths and dedicated agar
plates (SuperPolymyxin medium) as described previously (Nordmann
et al., 2016; Savin et al., 2020b).

2.2.2. Identification of isolates
Selection of target ESBL producing Gram negative bacteria species

was carried out on specific agar plates (Chromocult Coliform agar,
cetrimide agar and Acinetobacter CHROMagar plates) and using clinical
routine procedures as oxidase and/or catalase testing, depending on
the species. Suspected VRE were sub cultured onto bile esculin agar
and MRSA isolates were confirmed as S. aureus by coagulase testing.
About 6 20 colonies per sample were picked and identified by
MALDI TOF MS employing a VITEK® mass spectrometer (bioMèrieux,
Marcy l'Etoile, France), VITEK® MS CHCA matrix (# 411071), dispos
able targets (# 410893), and the Myla™ software (H. Müller et al.,
2018).

2.2.3. Antimicrobial susceptibility testing (AST)
AST was performed by a commercial “dried” broth microdilution

(Micronaut S MDR MRGN Screening 3 system (MERLIN, Gesellschaft für
mikrobiologische Diagnostika GmbH, Bornheim Hersel, Germany)) for
Gram negative samples. This panel tests for resistance against temocillin,
piperacillin, piperacillin/tazobactam, cefotaxime, ceftazidime, imipenem,
meropenem, amikacin, tigecycline, chloramphenicol, fosfomycin, tri
methoprim/sulfamethoxazole, ciprofloxacin, levofloxacin, and colistin,
andwas used according to thedirections of themanufacturers, employing
Müller Hinton broth for rehydration of the antibiotics. AST of Gram
positive bacteria was performed using the MRSA/GP system (MERLIN),
which includes oxacillin, teicoplanin, penicillin G, fusidic acid, linezolid,
moxifloxacin, clindamycin, daptomycin, erythromycin, erythromycin/
clindamycin, cefoxitin, ceftaroline, vancomycin, rifampicin, synercid
(quinupristin/dalfopristin), and gentamicin.

2.2.4. Typing
Determination of sequence types of Gram negative bacteria was

performed by MLST typing for K. pneumoniae (Diancourt et al., 2005)
or DLST (Basset and Blanc, 2014) and MLST (Curran et al., 2004) for
P. aeruginosa using the procedures and primers indicated on the
websites (http://bigsdb.web.pasteur.fr/klebsiella/, https://pubmlst.org/
paeruginosa/, http://www.dlst.org). DNA was prepared as previously
described (H. Müller et al., 2018). S. aureuswas typed using the spa typ
ing method (Harmsen et al., 2003) and evaluated with the Ridom
StaphType program https://spa.ridom.de/index.shtml (Josten et al.,
2013).

2.2.5. Evaluation of resistance profiles
In order to analyze the composition of the processwaters andwaste

water from slaughterhouses, all samples taken at the connected munic
ipal WWTP or swabs taken from animals were excluded from the
analysis. Gram negative multidrug resistance profiles were evaluated
for Enterobacterales, P. aeruginosa, and isolates of the A. calcoaceticus
baumannii cplx. Other non fermenting bacteria like Burkholderia,
Elizabethkingia, and Stenotrophomonas (total of 6 isolates) were ex
cluded from the evaluation. Only isolates that showed phenotypic resis
tance to cefotaxime and/or ceftazidime (Pseudomonas: cefotaxime and
ceftazidime) in the Micronaut testing system were included into this
evaluation.

Bacterial resistance profiles were evaluated using the EUCAST
rules and breakpoints of 2019: 4MDRO and 3MDRO organisms
were determined as described in Table 1 by the German Commission
for Hospital Hygiene and Infection Prevention (KRINKO), however,
including two classes of 3MDRO; “3MDRO_Pip” organisms with

resistance to piperacillin only and “3MDRO_Pip/Taz”with resistance
to piperacillin/tazobactam. In the case of P. aeruginosa, which is in
trinsically resistant to cefotaxime, resistance to ceftazidime was al
ways required. There were no strains that would have qualified as
4MDRO_Pip, since all 4MDRO harbored a carbapenemase gene or
were resistant to piperacillin/tazobactam. The interpretation of an
intermediate test results was changed to “susceptible to a high con
centration” and was therefore evaluated as a susceptible result
(“susceptible, increased exposure”) as defined by EUCAST in 2019
(EUCAST, 2019).

In order to observe only the acquired resistance traits, intrinsically re
sistant organisms were excluded from the evaluation as follows: Colistin
was evaluated excluding Proteus, Providencia, Morganella, and Serratia.
Tigecycline was evaluated excluding Proteus, Providencia, Morganella,
and P. aeruginosa. An MIC of 1 μg/ml was evaluated as susceptible.
Trimethoprim/sulfamethoxazole was assessed only for Enterobacterales.
Ceftazidime/avibactam, amikacin, and ciprofloxacin were evaluated for
all species; while temocillin was determined for Enterobacterales and
the breakpoint of the BSAC (British Association of Chemotherapy)
(susceptible ≤ 32 μg/ml) was used. Ceftozolane/tazobactam was evalu
ated for all groups, however following the EUCAST regulations, the
breakpoints of 1 μg/ml for Enterobacterales and 4 μg/ml for Pseudomonas
and Acinetobacter were employed. Acinetobacter strains were excluded
from the evaluationof fosfomycin. AllMRSA strainsweredefinedby resis
tance to cefoxitin in the antibacterial susceptibility test.

2.2.6. Identification of resistance genes in isolated strains
Resistance genes (carbapenemase genes, mcr 1, vanA, and vanB) in

isolated strains were detected by qPCR (TaqMan assays) as previously
described (Froeschen et al., 2018; H. Müller et al., 2018). In short, for
carbapenemase genes, one to three colonies were picked from fresh
blood agar plates, resuspended in 50 μl of water and incubated at
95 °C for 5 min. Carbapenemase genes were then detected by 4Plex
PCR employing the Biozyme 2 × qPCR Mastermix (Biozym, Hessisch
Oldendorf, Germany) and Mic qPCR Cycler (Bio Molecular Systems,
Upper Coomera, Australia). The PCR assay contained 0.25 μM of each
primer, 0.125 μM of each probe and 2 μl of the bacterial lysates. The fol
lowing cycling conditions were used: 95 °C for 2 min, then 45 cycles at
95 °C for 5 s and 60 °C for 30 s. Only signals that had been detected dur
ing the first 30 cycles were counted as positive. Characterized clinical
isolates served as positive controls. mcr 1 was detected with 0.8 μM of
the MCR1CLR5_F and MCR1CLR5_R primers in a monoplex reaction
using the Biozyme 2 × SybergreenMastermix (Biozym) and the follow
ing conditions: 2min at 95 °C, 35 cycles at 95 °C for 5 s and 65 °C for 20 s.
E. coli J53 V163 was employed as control (Falgenhauer et al., 2016).

For detection of vanA/B genotypes, three colonieswere touchedwith
a 1 μl loop and resuspended in 500 μl of H2O and heated to 95 °C for
10 min. 10 μl of Promega GoTaq Probe Mastermix were mixed with
1 μl (10 μM stock) of forward and reverse primer, 0.25 μl (10 μM
stock) of labeled probes and 2.5 μl of cooled down template. The end
volume of reaction was 20 μl. qPCR was performed on a Bio Rad
CFX96 cycler employing 2 min at 98 °C, and 35 cycles at 95 °C for 5 s
and 60 °C for 45 s. 16S rRNA genes served as internal controls. All
primers are listed in Table S1 (Liu et al., 2016; H. Müller et al., 2018;
Swayne et al., 2013; Werner et al., 2011).

2.2.7. Measurement of resistance genes in wastewater by qPCR
For one year, nine wastewater samples (covering all seasons) of the

clinical system were also analyzed for resistance genes, utilizing qPCR
(CFX96 Touch™ Deep Well Real Time PCR Detection System, Bio Rad,
Munich, Germany) in technical duplicates. For further analyses, the
mean value of both duplicates was used. Information about wastewater
quality is provided in Table S2.

For quantification of 16S rRNA, blaNDM, sul1, blaCTX-M-15, and mcr 1
genes, an intercalating Mastermix (Maxima SYBR Green qPCR Master
Mix, Thermo scientific, USA) was used. One complete reaction with a



total volume of 20 μl contained 10 μl MaximaMastermix, 7.2 μl nuclease
free water (Ambion, Life technologies, Karlsbad, Germany), 0.8 μl of
each corresponding primer stock (5 μM, Sigma Aldrich, Darmstadt,
Germany, Table 2), and 1 μl of the sample. The qPCR protocol comprised
10min at 95 °C for activation of the DNA polymerase and DNA denatur
ation followed by 40 cycles of 15 s at 95 °C, and 1min at 60 °C for primer
annealing and elongation. To determine the specificity of the amplifica
tion, a melting curve was recorded by raising the temperature from 60
to 95 °C (1 °C every 10 s).

The detection of the carbapenem resistance gene blaVIM was per
formed in a primer/probe approach. The reaction mix contained 10 μl
PCRMastermix (TaqManuniversal PCRMastermix, Applied Biosystems,
USA), 0.4 μl FAM labeled probe (Sigma Aldrich, Darmstadt, Deutsch
land), 0.6 μl corresponding primers (5 μM), 12.5 μl nuclease free
water, and 1 μl sample. Due to theutilization of a probe, the temperature
gradientwas altered to: initial incubationof 2min at 50 °C and 10min at
95 °C followed by 40 cycles of 95 °C for 15 s and 1 min at 60 °C.

Data acquisition was performed using the Bio Rad CFX Manager
software. For calculation of gene copies from the CT value, individual,
linear calibration curves were used. Each calibration curve consists of
a serial dilution over at least 5 log steps of a reference strain containing
the respective gene. Known genome sizes of the reference bacteriawere
used to calculate gene copies in each reaction utilizing the amount of
DNA in each dilution step of the calibration curve. Eq. (1) was used to
create a correlation between the amount of DNA in the calibration solu
tions and the corresponding gene copies. It utilizes an average molecu
lar weight for one base pair of about 650 g/mol, Avogadro's number
with 6.022 × 1023 molecules/mol, and a converting factor of 109 ng/g.

gene copies
amount of DNA ng½ �ð Þ � 6;022 � 1023

average size of genome bp½ �ð Þ � 109 � 650
ð1Þ

Table 3 summarizes all information relevant for the qPCR
quantification. Based on the CT value of each individual sample, the
gene copy number in one ml sample was calculated using (Eqs. (2) (4)).

gene copies
reaction

10
0CT value0 n

m ð2Þ

gene copies
μL sample DNA

10
0CT value0 n

m =VR ð3Þ

gene copies
mL sample

gene copies � VE

VS
ð4Þ

Here VR is the sample volume of the DNA extract used for one reac
tion, VS the original sample volume, and VE represents the total volume
of the eluate after DNA extraction.

To further evaluate the proportion of antibiotic resistance genes on
the complete population, a normalization to the 16S rRNA gene of
each sample was performed based on the gene copies in 100ml sample
of 16S rRNA and the respective gene.

2.2.8. Statistical analysis
The proportions of resistant isolates or different species obtained

during the project were compared pairwise for different sampling
sites using the chi square test. The number of strains tested is shown
in Table 2 and N was at least 200 in case of the staphylococci and 333
1050 for the Gram negative bacteria. The bar charts of the qPCR deter
minations represent themean values of nine samplings covering all sea
sons in one year and the error bars represent their respective standard
deviation calculated as sample variance (sn). For all qPCR determina
tions, significance was calculated using the Mann Whitney U test.

3. Results

3.1. Species

Numbers of isolates and sampling sites are described in Table 3. Fig. 1
shows thedistribution of specieswith resistance to 3rd generation ceph
alosporins at the different sampling sites. Citrobacter and Enterobacter
species (p b 0.05), and Klebsiella species (p b 0.001) were detected sig
nificantly more frequently than E. coli in the wastewater of the clinical
system, whereas E. coliwasmore prevalent in slaughterhouse wastewa
ter (p b 0.001) and in municipal wastewater (p b 0.001) than in clinical
wastewater. In addition, the clinical wastewater harbored also high pro
portions of Pseudomonas (p b 0.001) compared to the slaughterhouse
and municipal wastewater.

3.2. Multidrug resistance profiles of Gram negative isolates

A comparison of the phenotypical multidrug resistance profiles of
all isolates showed, that the strains isolated fromwastewater containing
hospital effluents were characterized by a considerably higher percent
age of multidrug resistant 4MDRO isolates and carbapenemase pro
ducers than strains from the other sampling sites as previously
described (H. Müller et al., 2018). Eighty percent of all carbapenemase
producers of the clinical system harbored a metallo β lactamase gene
(blaNDM, blaVIM, blaGIM or blaIMP). An elevated level of 4MDRO strains
was still detected at the influent of the mixed wastewater at the
WWTP (“clinic mixed with city”) (Fig. 2A). The second sampling site
at the WWTP receiving municipal wastewater of another city district
without hospitals was characterized by significantly less 4MDRO and
only a few carbapenemase producers (“city”). In contrast, the food pro
ductionwastewater contained neither 4MDRO nor carbapenemase pro
ducers; even a more sensitive cultivation method with an enrichment

Table 2
Primers used for qPCR of resistance genes in wastewater samples.

Target Primer sequence Calibration equation curve Amplicon
size

Efficacy R2 LOD Reference strain Literature

Eubacteria
(16S rRNA)

Fwd: TCCTACGGGAGGCAGCAGT
Rev: ATTACCGCGGCTGCTGG

F(x) = 3406x + 36,360 195 bp 96.6% 1.000 10,600 E. coli pNORM (Rocha et al., 2020)

blaCTX M 15 Fwd: CGCTTTGCGATGTGCAG
Rev: ACCGCGATATCGTTGGT

F(x) = 3504x + 34,255 551 bp 92.9% 1.000 93 E. coli pNORM (Paterson et al., 2003;
Rocha et al., 2020)

blaVIM Fwd: GAGATTCCCACGCACTCTCTAGA
Rev: AATGCGCAGCACCAGGATAG
Probe: ACGCAGTGCGCTTCGGTCCAGT

F(x) = 3829x + 40,868 61 bp 82.5% 0.999 118 P. aeruginosa PA49 (van der Zee et al.,
2014)

vanA Fwd: TCTGCAATAGAGATAGCCGC
Rev: GGAGTAGCTATCCCAGCATT

F(x) = 3541x + 33,078 376 bp 91.6% 1.000 43 E. faecium B7641 vanA (Klein et al., 1998)

mcr-1 Fwd: GGGCCTGCGTATTTTAAGCG
Rev: CATAGGCATTGCTGTGCGTC

F(x) = 3386x + 35,349 183 bp 97.4% 0.999 8 E. coli NRZ-14408 (Hembach et al., 2017)

blaNDM Fwd: TTGGCCTTGCTGTCCTTG
Rev: ACACCAGTGACAATATCACCG

F(x) = 3293x + 35,877 82 bp 101.2% 0.999 66 K. pneumoniae ATCC
BAA-2146

(Paterson et al., 2003)

LOD: limit of detection.



broth did not yield any carbapenemase producers (Savin et al., 2020a;
Savin et al., 2020b) (Fig. 2A).

Comparing 3MDRO bacteria, remarkably different results were ob
tained employing piperacillin (3MDRO_Pip) (KRINKO, 2019; Wendt
et al., 2012; Table 1) versus piperacillin/tazobactam (3MDRO_Pip/Taz)
(as defined by Baum et al. (2011) and Magiorakos et al. (2012)) in the
evaluation (Fig. 2B): There were significantly lower numbers of
3MDRO_Pip/Taz than 3MDRO_Pip in the slaughterhouse wastewaters
as well as in municipal wastewaters (sampling points “city”, “rural
towns” and also in “clinic mixed with city”). In addition, the number
of 3MDRO_Pip/Taz species was significantly lower in slaughterhouse
wastewater than in clinically influenced wastewater (sampling point
“city mixed with clinic”) and in the municipal wastewaters (Fig. S1).

3.3. Susceptibility of Gram negative isolates to antibiotics of last resort and
the newly introduced antibiotic temocillin

The highest percentage of colistin resistance (percent of colistin
resistant isolates among the strains resistant to 3rd generation

cephalosporins) was present in the wastewater from the clinical
sampling points (Fig. 2C), and again there was a significant differ
ence between the two influents of the WWTP. However, some iso
lates from slaughterhouse and the municipal wastewater (“city”,
“rural towns”) also showed colistin resistance. The transferable
genemcr 1 could not be found in the isolates from clinical or munic
ipal sampling points. In contrast, mcr 1 was detected in the isolates
from the slaughterhouses (Savin et al., 2020b). A part of these iso
lates was obtained using a more sensitive selection procedure and
they did not show resistance to 3rd generation cephalosporins.

High percentages of the isolates obtained from all sampling points
with undiluted clinical wastewater (“building” and “clinic”) were also re
sistant to ceftazidime/avibactam, ceftozolane/tazobactam, and temocillin.
In contrast, resistance levels were significantly lower in the slaugh
terhouse wastewater (Fig. 3A C). As observed for the 4MDRO and
3MDRO_Pip/Taz phenotypes and colistin, significant differences between
the two influents at theWWTPwere detected for ceftozolane/tazobactam
and temocillin. A high susceptibility among isolates from all systems was
observed for the protein biosynthesis inhibitor tigecyline (Fig. 3D).

Table 3
Sampling sites and number of isolates.

Target species Sampling site Designation of
sampling sites
in Figs. 1–6

Number of Gram-negative strains with resistance to
cefotaxime and/or ceftazidime Enterobacteriaceae, P.
aeruginosa, A. calcoaceticus-baumannii clpx.

Number of Gram-positive isolates

MRSA VRE

Clinical wastewater
Gram-negative 759 Isolates

Wastewater of hemato-oncological clinic
and wastewater of hemato-oncological
clinic mixed with 6 additional clinics

“Building” 345 0 59

Mixed wastewater of maximum care
hospital

“Clinic” 218 14 65

Mixed wastewater of clinic and city
including 10 other hospitals (sampled at
the influent into WWTP)

“Clinic mixed
with city”

196 13 46

Municipal wastewater
815 Gram-negative isolates

Mixed municipal wastewater of another
city district (influent into WWTP)

“City” 200 18 33

Wastewater of four little rural towns in an
agricultural area (influent into WWTP)

“Rural towns” 615 22 131

Slaughterhouse wastewater
1049 Gram-negative isolates

Wastewater and process water of two
different pig slaughterhouses

“Ww pig” 386 162 0

Wastewater and process water of two
different poultry slaughterhouses and one
small broiler raising farm

“Ww poultry” 663 86 1
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3.4. Resistance of Gram negative isolates to established and frequently used
antibiotics

The overall resistance burden to amikacin was low; however, the in
fluence of the hospital wastewater was discernible (Fig. 4A). The
percentages of ciprofloxacin resistant bacteria were high from all sam
pling sites, with hospital isolates showing the highest resistance. This
difference was still highly significant at the influent of the clinically

influenced wastewater into the WWTP (Fig. 4B). The resistance rates
were lowest in pig slaughterhouses.

For fosfomycin the highest resistance rate was observed among the
hospital isolates (Fig. 4C). In the community, resistance was also com
monly found and lowest percentages were present in the samples
from the slaughterhouses. The resistance distribution resembled that
of ciprofloxacin: Again the signature of the clinical wastewater was
still detected at the influent into theWWTP and even lower percentages
of resistant bacteria were isolated from the slaughterhouse wastewater.

For trimethoprim/sulfamethoxazole the overall resistance burdens
were high. The difference between pig and poultry slaughterhouses
was significant (Fig. 4D).

3.5. Gram negative XDR isolates showing susceptibility to only one antibi
otic substance

Extensively drug resistant (XDR) strains with susceptibility to only
one antibiotic substancewere isolated exclusively from the clinically in
fluenced sampling sites. All three P. aeruginosawere susceptible to colis
tin and all K. pneumoniae strains remained susceptible to tigecycline or
fosfomycin (Table 4). Pan resistant bacteria were not detected.

3.6. Gram positive resistant isolates

MRSA isolated from wastewater of the different sampling points
were also compared (Fig. 5). Here only low levels of resistance against
the 5th generation cephalosporin ceftarolinewere present. For the quin
olone moxifloxacin, the resistance of the pig isolates was significantly
lower than that of isolates from poultry slaughterhouse. An opposite
tendency was found for resistance to trimethoprim/sulfamethoxazole.
MRSA typing (Fig. 6) showed that hospital associated spa types belong
ing to clonal complexes (CC) CC1 (t127), CC5 (t002, t003, t014, t045,
t688, t1282), CC6 (t304), CC8 (t008, t1767), and CC22 (t016, t032,
t223, t463, t608, t8934), were found in clinical andmunicipal wastewa
ter. In contrast, livestock associated spa types (CC9 (t2922, t1430,
t13177) and CC398 (t011, t034, t899, t1793, t2011, t2576, t8100,
t8588, t9266)) were detected in the slaughterhouses. The only excep
tions were t127 (CC1) and t001 (CC5) that were found for four isolates
from wastewater of the pig slaughterhouses. Here it has to be kept in
mind that the sampled clinical and municipal wastewaters were ob
tained from an area with crop production and little livestock farming.
This might explain the absence of livestock associated MRSA from the
clinical and municipal wastewater systems.

VRE strains from the hospital influenced wastewater as well as from
the municipal systems belonged to the species Enterococcus faecium.
Most strains showed the vanB genotype (clinical system 90% vanB, mu
nicipal wastewater (city: 97% and rural towns: 99%)). Only two strains
that showed resistance to linezolid were recovered from the mixed
wastewater of the clinic. No strain was resistant to all antibiotics tested.
The only VRE recovered from slaughterhouse wastewater harbored
vanA (Savin et al., 2020b).

3.7. Concentrations of resistance genes in hospital wastewater

The above results indicate which percentage of the isolates with re
sistance to 3rd generation cephalosporins was multidrug resistant and/
or resistant to other antibiotics, but they do not give absolute concentra
tions of resistant bacteria, especially carbapenemase producers. In order
to determine the concentration of resistance genes in the clinical waste
water, the copy numbers of several resistance genes were measured in
the clinical and municipal wastewater by qPCR. In the wastewater of
the ward and clinic, concentrations of carbapenemase genes were
high with 105 106 copies/ml of blaNDM and blaVIM, surpassing the con
centration of the ESBL gene blactx-M-15. These high concentrations de
creased by one to two log steps by dilution with wastewater of the
city. In spite of this, the concentrations of the genes blaNDM, blactx-M-15,
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Fig. 2.A) Percentage of 4MDRO isolates (filled bars) and carbapenemase producers (white
bars) among strains with resistance to 3rd generation cephalosporins; B) percentage of
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(filled bars) and strains harboring mcr-1 (white bars) among strains with resistance to
3rd generation cephalosporins from different sampling sites.



and sul1were still significantly higher in clinically influenced wastewa
ter at the entry into theWWTP (Fig. 7). In theWWTP, about 99 99.9% of
the remaining genes were removed; however, as the initial concentra
tions had been high, resistance genes were still detected in the effluent.
The concentrations of the transferable colistin resistance gene mcr 1
were low. Themeasurement of 16S rRNA copies showed that thewaste
water of the ward carried tenfold less bacteria than the other samples
and that most bacteria were removed in the WWTP (Fig. S2). Normali
zation of the resistance genes to 16S rRNA concentrations demonstrated
the dilution of resistant bacteria in the wastewater path. The apparently
higher concentrations of carbapenemase gene copies/16S rRNA in the ef
fluent of the WWTP compared to the “city”wastewater were not signifi
cant (Fig. S3). The highest concentrations of carbapenemase genes/16S
rRNAwere detected for blaVIM (1.27 × 10−1/16S rRNA in the wastewater
of theward and 7.7 × 10−3/16S rRNA in thewastewater of the clinic); the
concentrations of blaNDM (4.85 × 10−2(ward) and 4.1 × 10−4 (clinic))
were lower.

3.8. Daily loads of resistance genes

It might be argued that, even if the clinical wastewater carries a high
concentration of carbapenemase genes and multidrug resistant organ
isms, it contributes only a small volume to the wastewater that reaches
the local WWTP. This plant receives an average of 27,498m3 wastewater
per day from thepart of the city that harbors all clinics (“clinicmixedwith
city”), whereas the second influent receives an average of 23,389 m3

wastewater per day from a part of the city that is free of hospitals

(“city”). In order to analyze the influence of the hospitals, the total daily
loads of resistance genes in the two influentswere calculated bymultiply
ing the average gene concentrations permlwith the average daily waste
water volumes. Fig. 8 demonstrates that the daily load of blaVIM genes
carried by the clinically influenced wastewater to the WWTP (“clinic
mixed with city”) was about a hundredfold higher than that of the city
wastewater (“city”). For more common genes (blactx-M-15, sul1) the in
crease in clinically influenced wastewater was about 5 10 fold and only
twofold formcr 1. In total, the “city”wastewater contributed only about
16% of all resistance genes to the daily load reaching the WWTP.

4. Discussion

In this study, the highest number of 4MDROwasdetected in themed
ical sector. A dissemination of carbapenemase producers by hospital
wastewater has been described in many countries, e. g., Ireland (Cahill
et al., 2019), Sweden (Khan et al., 2018), India (Bardhan et al., 2020),
and China (Zhang et al., 2020). However, even after dilution with “city”
wastewater, i. e., at the influent of the WWTP, the percentages of
4MDRO, 3MDRO_Pip/Taz and bacteria resistant to several antibiotics of
last resortwere still significantly increased in clinically influencedwaste
water compared to municipal wastewater. A similar study (Galvin et al.,
2010) reached significance only for sulfamethoxazole resistance in the
mixture of hospital and municipal wastewater.

In the clinical wastewater, the concentration of resistance genes was
high: A study thatmeasured blaVIM/16S rRNA genes in Romanian hospi
tal wastewater reached lower values (ranging from 1.85 × 10−6 to
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5.84 × 10−5) than shown here for the “ward” and “clinic” samples
(Szekeres et al., 2017). The values obtained for blaNDM at the sampling
point “clinic”were lower or in the same range as those in earlier studies
of hospital effluents in Tunisia (7.28 × 10−3) (Nasri et al., 2017) and
Spain (6.88 × 10−4 and 7.32 × 10−4) (Subirats et al., 2017). In contrast,
the values for the sampling point “ward”were also higher than these lit
erature values.

When carbapenemase producers started to appear in hospitals, co
listin was advertised as “re emerging antibiotic for multidrug resistant
Gram negative bacterial infections” (Li et al., 2006). In the clinical
strains, resistance to colistin was present in 20% of the isolates. This re
sistance can either bemediated by chromosomal mutations that enable
modification of lipid A or by a transferable gene of the mcr type (Liu

et al., 2016). In the clinical isolates, transferable colistin resistance
genes were not detected, indicating that the resistance depended on
chromosomal mutations (Moffatt et al., 2019). In addition, the mcr 1
genes detected in the wastewaters of the clinical and municipal system
may have been present in bacteria that did not carry ESBL genes and,
therefore, were not selected and analyzed in this study, as was also
shown for a part of the slaughterhouse isolates. The rate of colistin resis
tant isolates from slaughterhouse wastewater (4.4% (pigs) 7.8% (poul
try)) was lower than that of the clinical isolates and not very different
from that of isolates from the municipal wastewater (2.8% (rural
towns) 6.5% (city)). However, the transferable colistin resistance gene
mcr 1 was only detected in the strains from slaughterhouse wastewater.
This gene is also present in municipal WWTPs in Germany (Hembach

Table 4
XDR strains isolated from clinically influenced wastewater. The table describes all strains that were susceptible or intermediately susceptible to only one antibiotic.

Epidemic type Carbapenemase Susceptible to (MIC in mg/l) Sampling point

P. aeruginosa cuww1402 ST273 VIM Colistin (2) Clinic
P. aeruginosa cuww1717 ST235 VIM Colistin (2) Building
P. aeruginosa cuww2103 ST235 VIM Colistin (≤1) Building
K. pneumoniae cuww1225 ST253 NDM, Oxa-48, Oxa48-like Tigecycline (0.5) Clinic
K. pneumoniae cuww1760 ST253 NDM, Oxa-48, Oxa48-like Tigecycline (1) Clinic mixed with city
K. pneumoniae cuww2208 ST16 NDM Tigecycline (0.5) Clinic mixed with city
K. pneumoniae cuww1896 ST15 NDM Fosfomycin (32) Clinic
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et al., 2017) aswell as inGerman surfacewaters (Falgenhauer et al., 2019)
and the continued use of colistin in farming could favor its spread, in spite
of a decrease in colistin consumption from 127.4 to 73.6 tons per year be
tween 2011 and 2017 (AG Antibiotikaresistenz am BVL, 2018).

Unfortunately, the new antibiotic combination of ceftazidime/
avibactam (Spiliopoulou et al., 2020) cannot inhibit the growth of
strains producing metallo β carbapenemases, e. g., NDM, VIM, and
GIM. Similarly ceftozolane/tazobactam does not target the growth of
carbapenem resistant Enterobacteriaceae or strains harboring metallo
β lactamases (Cho et al., 2015). Thus, thehigh concentration of these re
sistant strains in clinical wastewater mirrors the fact that the most fre
quently detected carbapenemase genes were metallo β lactamases.
Also temocillin will not target these bacteria, since it is ineffective
against strains producing OXA 48, VIM, and NDM (Cavaco et al., 2019).

Although we were not able to isolate carbapenemase producers
from the wastewater and process water of slaughterhouses, several
studies describe the isolation of VIM producing Enterobacteriaceae
from pigs and poultry after subculturing in the absence of antibiotics
and specific enrichment procedures (Irrgang et al., 2019; Roschanski
et al., 2018; Roschanski et al., 2019). Our results indicate that these

isolates are probably still rare in Germany, as carbapenems are not li
censed for animal production. Therefore, there is a lack of selection pres
sure that might otherwise favor the spread of these genes in farming
animals. In conclusion, the resistance phenotypes detected in this
study reflect the usages of antibiotics and hence selection pressures in
the different areas of clinical medicine and food production. Penicillins,
cephalosporins, colistin, and enrofloxacin in poultry and pig production
(AG Antibiotikaresistenz am BVL, 2018) select for 3MDRO_Pip. The
Gram negative bacteria (Fig. 4B and D) and MRSA (Fig. 6) from pig
slaughterhouses showed higher resistance to sulfonamides and lower
resistance to quinolones than the isolates from poultry, indicating a dif
ferent consumption of these antibiotics by different species. In contrast,
carbapenems, piperacillin/tazobactam, and other new substances are
only employed in hospitals. The resulting selectionpressure forms a bio
tope with high abundance of 4MDRO with additional resistances and
3MDRO_Pip/Taz. Especially the quinolone ciprofloxacin seems to exert
a strong selection pressure, since ciprofloxacin residues in wastewater
or in sanitary installations have been shown to correlate with the pres
ence of resistant bacteria (Voigt et al., 2020). Extensive genome com
parisons of recent and historic strains (isolated in the nineteen
eighties, when quinolones were introduced into the clinics) have dem
onstrated that the ciprofloxacin selection pressure has led to the rise of
the most problematic multidrug resistant pandemic strains. Among
them were the ESBL producing ST131 E. coli (Ben Zakour et al., 2016),
the carbapenemase producing ST235 P. aeruginosa (Treepong et al.,
2017), and the epidemic MRSA 15 (ST22) (Holden et al., 2013).

Animals that are in contact with 4MDRO in wastewater may also be
colonized, as shown for rats colonized with ESBL and NDM 1 producing
Enterobacter xiangfangensis in Vienna (Desvars Larrive et al., 2019) and
gulls (Atterby et al., 2017; Vittecoq et al., 2017).We have demonstrated
that 4MDRO are still present after wastewater treatment and are re
leased into surface waters (H. Müller et al., 2018). There is still a debate
about how andwhere resistant bacteria might be transmitted from sur
face water back to humans, especially as long as they are not present in
drinking water or food. However, after a drowning accident, a patient
developed an infectionwith IMI 2 producing Enterobacteriaceaepresent
in the river (Laurens et al., 2018), and a higher colonization with ESBL
producing bacteria was also shown for surfers (6.5%) compared to
non surfers (1.5%) in England (Leonard et al., 2018). In addition, resis
tant bacteria may find their way into the food chain, since ESBL pro
ducing bacteria have recently been isolated from fresh products in
Germany (Blau et al., 2018) and hyper virulent ESBL producing
EHEC (enterohemorrhagic E. coli) O104:H4 were transferred by
fenugreek sprouts in the German outbreak in 2011 (Fruth et al.,
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2015). On the other hand, there are numerous reports stating that
colonization of the sanitary installations in hospitals with 4MRDO
may lead to colonization of patients in the affected rooms, leading
to long lasting, low level outbreaks (Clarivet et al., 2016; Wendel
et al., 2015). It was also shown that the colonization with 4MDRO
in the sanitary system is promoted by the presence of antibiotic
residues that are excreted by the patients and which may be pres
ent in selective concentrations in the toilets and siphons (Sib
et al., 2019).

The burden of multidrug resistance in bacteria released by waste
and processwater of the slaughterhouseswas lower than that of clinical
or often even municipal wastewater. However, in contrast to clinical
andmunicipal wastewater, the application of manure from animal hus
bandry as a fertilizer on fields might lead to a spread of such bacteria
into the environment in high concentrations andwithout any passage
through a WWTP. Therefore, it might be wise to abolish use of colistin
and quinolones in animal production. Both antibiotics are categorized
as critically important with the highest priority by the WHO (WHO,
2019b). For quinolones a ban from animal production is already

practiced in Australia and has kept resistance levels low (Cheng et al.,
2012). In the US, the use of quinolones was banned in poultry produc
tion in 2005 (Price et al., 2007).

5. Conclusion

In conclusion, it is tempting to speculate that an introduction ofwaste
water treatment in hospitals or of other measures that inhibit the coloni
zation of the hospital sanitary system would reduce the high levels of
multidrug resistant bacteria and resistance genes detected in the clinical
samples to the lower levels in the municipal wastewater. Also an intro
duction of an ultrafiltration as last step of wastewater treatment would
inhibit dissemination of these bacteria into the environment, as there
was no final disinfection of wastewater in the analyzed WWTPs. Such
measuresmight be costly, but theywould avoid dissemination of bacteria
that cause difficult to treat infections and help to prevent the post
antibiotic era that was predicted by the WHO (WHO, 2015).

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2020.140894.
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