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Introduction

The beauty of solid state physics, first and foremost, arises from the idealization of crystalline solids:
their perfect periodicity, and the translational invariance it entails, allows us to describe them in terms
of simple and elegant mathematics. However, the real world is neither ideal nor perfect, and the same
holds for crystals. Regardless of the extent to which we improve crystal growth methods, they always
contain some sort of imperfection - be it defects, deficiencies, impurity atoms or grain boundaries. The
fact that these are randomly distributed all over the crystal introduces disorder into our system.
One of the most prominent consequences of imperfect crystals is finite electrical conductivity.

Without the scattering of electrons on impurities, the world as we know it would be quite different.
And although at first it may seem as a nuisance, disorder affecting the underlying physical properties
and dynamics is responsible for numerous fascinating and technologically valuable phenomena.
Thus, it seems apparent to deliberately make use of disorder to tune physical systems to our desire
and need. One possibility to achieve this is via chemical substitution by which a specific atomic type
in the host material is replaced by another to some degree. And indeed, mankind has been doing so
for decades: among other applications, by doping semiconductors we can induce a spatial dependence
of electronic properties and construct complex semiconductor devices - computers.
Apart from this famous example, in many material classes magnetic, structural, superconducting,

and even topological phases are governed by substitutional disorder. Hence, disorder provides us with a
powerful tool to fabricate complex materials with beneficial properties. However, this comes at a cost:
while translational symmetry is the foundation on which the success of solid state theory is in large
parts based, it is inherently not preserved in a disordered system. Thus, we lose the ability to describe
our system with the simple mathematics we are used to. The absence of full translational symmetry
forces us to leave pen and paper behind and resort to the power of numerical methods and computers.
Even in the well established field of first principle electronic structure calculations, the description of
substitutional disorder is a challenging task. Especially the treatment of arbitrary concentrations is
far from trivial.
Many theoretical frameworks have been developed to describe substitutional disorder. Among them,

the supercell approach is widely applied. Here, disorder is incorporated by enlarging the unit cell to
such an extend as to accommodate for partial occupation. Physical observables are then gained by
averaging over a finite number of configurations in an attempt to approximate the thermodynamic
limit. However, this method is computationally feasible only for very specific concentrations, as unit
cells must be extended ever further. Consequently, arbitrary concentrations remain out of reach.
A more promising route to their description is given by the so-called effective medium theories. Among
them, the virtual crystal approximation (VCA) can be regarded as the most rudimentary method, in
which the atomic potentials are replaced by a concentration weighted average. Although it has supplied
good results for a limited set of problems, it is unable to fully capture the random nature of disorder,
neglecting environmental disorder effects.
One of the most sophisticated representatives of effective medium theories in the context of substi-

tutional disorder is the coherent potential approximation (CPA) [1–3], best known within the Kohn-
Korringa-Rostocker (KKR) framework [4, 5]. In this work, we shall focus on a more recent version
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of the CPA within a pseudopotential density functional theory (DFT) framework as developed by A.
Herbig [6], based on the CPA formalism due to Blackman, Esterling and Berk (BEB) [3].
A significant portion of the work conducted for this thesis has gone into the extension of the base
CPA formalism [6] to include spin polarization, the description of vacancies, and spin-orbit coupling.
Both the SOC and vacancy extension were essential to the central topics of this thesis outlined below.
Beyond these specific fields of interest, the enhanced versatility of the formalism enables a broad
application of the CPA in the context of materials design with respect to a multitude of systems,
providing a powerful tool for future works.
We have already emphasized the potential of intentionally induced disorder via chemical substitution

for manufacturing new materials tailored to our needs. With the CPA at our disposal we are not
restricted to purely academic considerations but can in fact provide guidance to experiment. This is
an overarching objective of this work - to initiate a feedback loop between theory and experiment. A
promising target material class in this context, which has received enormous scientific attention since
its discovery in 2008 [7], are the iron-based superconductors. They provide a rich hunting ground
for our intentions, as they possess highly diverse phase diagrams [8–11] with structural, magnetic
and superconducting phase transitions. As superconductivity is most prominently characterized by
vanishing resistivity at low temperatures, it holds great technological prospect. After the discovery
of the cuprates [12], the iron-based superconductors extended the realm of compounds with high
superconducting transition temperature [13–15], adding to their attractiveness for materials design.
While most quantum phase transitions in condensed matter physics (such as structural transitions,
paramagnet-ferromagnet transitions and superconductivity) can be explained by Landau’s theory of
phase transitions [16] in terms of broken symmetry, in recent years another class of phase transitions
has entered the arena. With the discovery of the quantum Hall effect [17] in 1980, it became apparent
that a new type of order had emerged which was beyond the limits of Landau’s theory. The changes
in the quantized value of the Hall conductance with varying magnetic field implied quantum phase
transitions without breaking of symmetries.
It was realized by Thouless, Kohmoto, Nightingale, and den Nijs [18] that the distinct phases of the

quantum Hall effect were in fact not a consequence of symmetry but rather of topology. Considering
two phases with a gap in the vicinity of the Fermi surface, we can consider them topologically distinct
(with respect to a given set of symmetries) if there exists no continuous deformation that respects the
symmetries and transforms one phase into the other without closing the gap. We refer to a system
as topologically nontrivial if it is topologically distinct from the vacuum. As a consequence, such a
system will exhibit gapless modes at its boundary, with fascinating physical properties.
This subject has since drawn immense scientific interest from the condensed matter community, and
many system with "topological order" have since been identified and proposed. Among them are
topologically nontrivial superconductors - candidates for which are expected to be found among the
iron-based superconductors.
This thesis will be concerned with all three aspects mentioned above - disorder, iron-based su-

perconductors, and topology. We will to a large extent focus on FeSe0.5Te0.5 which is proposed to
be a topological superconductor [19]. This system exhibits a band crossing point along the high
symmetry line ΓZ at which spin-orbit coupling (SOC) opens a direct gap. The topological nature of
the bandstructure leads to the emergence of a surface Dirac cone (SDC) inside this gap that could host
exotic anyonic surface states at the core of vortices in the superconducting phase. These Majorana
zero modes are subject to non-Abelian exchange statistics [20] and constitute promising candidates for
fault-tolerant scalable quantum computers [21].
However, the aforementioned SDC is located well above the Fermi level and model calculations predict
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a topological superconducting phase only to be realized if the latter crosses the SDC [22]. Furthermore,
the position of the SDC prevents access of experimental techniques such as surface transport measure-
ments which are of great interest in the context of topological surface states. It will be the main task
of this work to devise a strategy which employs chemical substitution in order to bring the SDC into
the vicinity of the Fermi level.
By band engineering FeSe0.5Te0.5 via the CPA we will identify viable substitutional candidates

which introduce additional electrons into our system, thus raising the Fermi level towards the SDC.
Specifically, we will consider two hypothetical substituted crystals of the form Fe1−yTM ySe0.5Te0.5 and
FeSe1−y−xHayTex, respectively. Here, TM denotes transition metal substitution at the Fe site with
concentration y, while Ha denotes halogen substitution at the Se site.
Simultaneously, we will investigate the broadening effects resulting from the additional disorder to
ensure that the SOC gap (and subsequently the SDC) persists - a task for which the CPA is ideally
suited, as it naturally provides the necessary spectral information.
In addition to the central topic of this thesis, we will apply the CPA in the context of partial

occupation of the interstitial site in FeSe0.5Te0.5 with iron. This excess iron, which naturally occurs to
varying degree in grown samples, is intricately connected to the suppression of superconductivity in the
system under consideration. Hence, it has great bearing on the fabrication of a crystalline platform for
the realization of Majorana zero modes. We will asses the impact of impurity scattering by comparing
the effect of interstitial iron to other substitutions which are known to suppress superconductivity.

The analysis presented in this thesis is structured as follows: we begin the first part of this thesis
with an introduction to the field of electronic structure calculations. We recapitulate the fundamental
theoretical framework of disorder theory in Chapter 1 and give an overview of the field of substitutio-
nal disorder in solid state systems and some of the most commonly used methods. In particular, we
will present the coherent potential approximation (CPA) in the BEB-formalism and briefly discuss its
practical implementation. All further technical details concerning the program package, as well as its
usage, and details of individual calculations are documented in Appendices A-J.
The powerful extensions to the base formalism and program [6] are presented and discussed in Chapter
2. As a proof of concept of our theoretical approach, each extension is validated with an appropriate
case study.
In the second part of this thesis (Chapter 3), the ab-initio CPA will be applied to FeSe0.5Te0.5, focusing
on band engineering the material’s surface Dirac cone. A detailed analysis of doping and disorder effects
is presented by exploring the substitutional phase space. Accordingly, an optimal doping strategy is
developed with the goal of raising the Fermi level towards the surface Dirac cone while preserving the
spin-orbit coupling gap, thus creating the necessary conditions for topological superconductivity and
Majorana zero modes.
Our investigations into FeSe0.5Te0.5 are concluded in Chapter 4, where the connection between interstitial
iron content and the suppression of superconductivity due to impurity scattering is examined. Finally,
a summary of the work presented in this thesis is given, together with concluding remarks and an
outlook on possible improvements and future work.
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1 Chapter 1

Fundamentals: electronic structure
calculations and disorder

1.1 Density functional theory

The most prominent and successful theory applied in electronic structure calculations to date is
undoubtedly density functional theory (DFT). Its application ranges from solid state physics over
chemistry [23] to biology [24]. The importance of the electronic density n(r) for the ground state
properties of atoms was first realized by Fermi and Thomas resulting in the Thomas-Fermi-Theory
[25, 26]. With the electronic density as its only input, the kinetic energy was approximated as that
of the uniform electron gas and repulsive interactions treated in terms of the classical electrostatic
Coulomb potential. Later on, Dirac was able to show how to incorporate exchange effects [27]. The
greatest leap forward was made possible by the work of Hohenberg and Kohn [28] in 1964, which we
shall take a closer look at in Sec. 1.1.2.
Despite its great success, especially in solid state physics, it has proven to be an insufficient description
in some cases. Numerous extensions and methods have been developed (and are still being developed)
to overcome these challenges. Aside from issues with strongly correlated electron systems, DFT is not
well suited for the treatment of disordered crystals - a fact of particular interest for this work.
Nevertheless, DFT still provides a solid basis for more sophisticated methods when dealing with real
materials. This includes the Coherent potential approximation (CPA) used within this work for the
treatment of substitutional disorder and so we will begin with a comprehensive introduction to density
functional theory. The following brief review is largely based on the work of Ref. [6], which provided
the underlying program further developed in this work.

1.1.1 The many-body problem

In solid state physics, we are typically interested in the properties and dynamics of systems composed
of a large number of electrons and nuclei. To describe the interactions between all these particles, we
can express the Hamiltonian of the system in the general form

H = Tel + Tnuc + Vel-el + Vel-nuc + Vnuc-nuc. (1.1)

The kinetic terms of electrons and nuclei are represented by Tel and Tnuc, respectively, while V s denote
interactions between particles. We must consider interactions between electrons themselves (Vel-el),
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between electrons and nuclei (Vel-nuclei), and those between nuclei and nuclei (Vnuc-nuc). Unfortunately,
such many-body problems cannot be solved exactly, due to the enormous number of particles involved
and consequently enormous number of degrees of freedom to consider. Luckily, we may often help
ourselves with approximations that greatly reduce the problem complexity down to a manageable
extent while still giving astonishingly accurate results.
The most essential approximation to electronic structure calculations, neglecting lattice dynamics, is
the so-called Born-Oppenheimer approximation. Recognizing that the mass of a nucleus is orders of
magnitude greater than that of an electron (Mnuc � me) and that consequently the motion of an
electron will instantaneously follow that of the nuclei, we can decouple their dynamics. We are thus
left with independently solving two Schrödinger equations

(Tel + Vel-el + Vel-nuc)
∣∣Ψ〉 = Eel({RI})

∣∣Ψ〉 (1.2)
(Tnuc + Vnuc-nuc + Eel({RI}))

∣∣ϕ〉 = Etot
∣∣ϕ〉, (1.3)

where Eel signifies the total energy of the electrons which only depends parametrically on the ionic
positions RI . We have hereby greatly simplified the electronic problem, yet the many-body nature is
still present in Vel-el and requires further approximations.

1.1.2 Hohenberg-Kohn theorems

In contrast to the prevalent wave function based ansatz typically applied in physics, DFT takes on a
different approach: as the fundamental quantity we identify the electronic density n(r). This approach
is based on the theorems derived by Hohenberg and Kohn [28]. Quantum mechanics tells us that an
external potential vext(r) uniquely defines the ground state and thus the electronic density

vext(r)→ H →
∣∣Ψ〉→ n(r)

where in the context of solids this external potential is identified as the ionic background. It was shown
by Hohenberg and Kohn that this argumentation may be reversed, i.e., the electronic density defines
the external potential up to a constant

n(r)→ vext(r) + C

and thus all properties of the system, including the Hamiltonian and the many-body wave function.
Consequently, a density functional F [n(r)] exists such that

Eel[n(r)] = F [n(r)] +
∫

d3r n(r)vext(r) (1.4)

is minimal for the ground state density. This provides a variational principle from which we may
determine the ground state energy. In most modern applications, the energy functional in Eq. (1.4) is
not minimized directly. Following the work of Kohn and Sham [29], instead of studying a system of
interacting particles we turn to a fictitious system of non-interacting particles with an effective potential
veff(r) that produces the same ground state density. This ansatz leads to the Kohn-Sham-equations:(

~2

2m∆ + veff(r)
)
ϕi(r) = εiϕi(r) (1.5)

veff(r) = vext(r) + vHartree[n(r)] + vXC[n(r)] (1.6)

n(r) =
N∑
i=1
|ϕi(r)|2. (1.7)
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1.1 Density functional theory

In this picture, φi are the Kohn-Sham orbitals with eigenenergies εi. The effective potential that was
introduced to map the interacting system onto a non-interacting one is comprised of three contributions:
the ionic potential vext of the crystal lattice, the Hartree potential

vHartree(r) = e2

2

∫
d3r′

n(r)n(r′)
|r − r′|

(1.8)

to describe density-density interactions and the exchange and correlation (XC) potential vXC. Absorbed
within the XC potential are all other relevant many-body interactions beyond the Hartree term.
According to Kohn and Sham we may thus reduce the complexity of the insoluble many-body problem
to an effective single-particle problem. As simplifications often do, this comes at a price: Eqs. (1.5)-
(1.7) must be solved self-consistently. If we wish to determine the orbitals ϕi we must solve the
single-particle Schrödinger Eq. (1.5) which is governed by veff. However, the external potential in turn
consists of the Hartree- and XC-potential, which both depend on the electronic density n(r). But the
electronic density itself is determined by ϕi according to Eq. (1.7).
Usually, such a system of self-consistent equations is solved iteratively by starting from an initial guess
of the effective potential or the density. In order to arrive at a single-particle problem we condensed
all electronic correlations into the XC potential for which no exact expression exists. Consequently,
we must again resort to approximations: among the most commonly used are the local-density
approximation (LDA) and generalized gradient approximation (GGA), of which the former is used
within this work. To this day, no single approximation has been found that is capable of describing
(strongly) correlated electron systems to a sufficient degree of accuracy.

1.1.3 The mixed-basis pseudopotential framework

Now that we have introduced the main concepts of DFT calculations we can turn to the actual
implementation. Generally speaking, most DFT programs are tasked with self-consistently solving a
set of equations similar to Eqs. (1.5)-(1.7). The route to this solution, however, may differ with regards
to the approaches chosen. We shall concentrate here on two main ingredients of an implementation
and the possible distinctions between DFT codes: the electron-ion potential vext and the basis in which
to express the Kohn-Sham orbitals ϕi.
There are two main approaches to treat the electron-ion interaction: the all-electron and the pseudo-
potential approach. Within the former, vext is taken to be the bare potential of a nucleus and,
consequently, the self-consistent equations must be solved for all electrons. The associated immense
computational cost can be drastically reduced by resorting to the pseudopotential approach. Instead
of having to treat all electrons on an equal footing, we may restrict ourselves to the valence electrons
if we take vext to be an effective nucleus potential screened by the core electrons.
As to the choice in basis set: most implementations make use of plane waves which provide a simple
and elegant mathematical treatment. However, this comes at the cost of slow convergence for elements
with strongly localized electrons such as 3d transition metals. Such elements may be more efficiently
described by employing a set of atom centered functions. Yet they are a poor choice for the description
of quasi-free electrons and require a more sophisticated mathematical treatment. It seems natural
to combine the advantages of both basis set schemes by employing a basis set comprised of a linear
combination of plane waves and a few localized atomic functions. This approach was implemented in
the mixed-basis pseudopotential (MBPP) [30, 31] code referred to in this work which further makes
use of norm-conserving pseudopotentials constructed after Vanderbilt [32]. Together, this allows for
an efficient treatment of elements with strongly localized electrons and guarantees computational
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1 Fundamentals: electronic structure calculations and disorder

feasibility, as discussed above.
The version of the MBPP used within this work is an adaptation of the original approach developed
by Steven Louie and co-workers [33] and was completely reformulated and implemented by Bernd
Meyer and co-workers [30]. It was adapted by Rolf Heid and Alexander Herbig to supply all necessary
quantities needed for the treatment of substitutionally disordered systems, i.e., it provides the input
to the CPA program (see Sec. 1.3).

1.2 Disorder through chemical substitution

Before we focus on the method used within this work to describe substitutional disorder we give a brief
overview of disorder and present a few early electronic structure methods.

1.2.1 A brief overview of disorder

The fundamental property of an ideal solid which allows an elegant mathematical description is perfect
periodicity. For such an idealized crystal we may restrict ourselves to a single unit cell from which
we may straightforwardly derive all bulk properties. As it turns out, nature is not ideal and perfect,
and so crystals themselves are not ideal: they do not exhibit perfect periodicity, but rather randomly
distributed impurities. These lead to disorder effects which manifest themselves in the electronic
properties of our crystals. Although at first this may seem as a great downside, we can make use of
this imperfection and the entailed physical effects to tune our systems to exhibit desired effects and
properties.
In contrast to unwanted but inevitable defects such as vacancies and boundaries, disorder by chemical
substitution provides a powerful tool to access the physics of solid state system. Within this work we
will concentrate on this type of wanted disorder. The changes we can induce by exchanging specific
atomic types in the crystal structure are manifold: we can drive phase transitions, enhance or diminish
magnetism and superconductivity, make an insulting material conductive (and vice versa) or even
induce topological properties. Disorder is often responsible for the phase diagrams of many material
classes (such as the iron pnictide superconductors or the high-Tc cuprates)
In a disordered crystal certain host atom types are replaced by a substituent type or left unoccupied
randomly, i.e., we are faced with a non-periodic occupation of crystallographic sites and consequently
the periodicity of the system is broken. As such, the properties of the system will, strictly speaking,
be determined by the distribution of the different atoms onto the disordered lattice sites.
Although modern day DFT is capable of treating up to a few hundred atoms with reasonable computa-
tional effort, generic substitutional disorder is beyond its limits, due to broken translational symmetry.
Given the enormous amounts of atoms in a real crystal (of the order of 1023), we cannot expect to
give an exact treatment, and so we must resort to meaningful approximations and theories capable of
treating arbitrary substitutional disorder in the thermodynamic limit.
We shall now briefly discuss some early approaches to disorder before we focus on the specialized DFT
based method used within this work.

Supercell method

A straightforward approach to substitutional disorder can be made by recognizing that most physical
quantities can be obtained to a reasonable degree of accuracy by averaging over only a finite number
of configurations.
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1.2 Disorder through chemical substitution

This fact is the underlying principle of the supercell approach: the unit cell of the host lattice is enlarged
to accommodate partial occupation. Then, according to the impurity concentration, a fraction of the
host sites is occupied by the substituent species. In order to fully account for the random nature
of substitutional disorder, the average over several configurations must be taken. The quality of the
thermodynamic average introduces an additional computational cost factor. Obviously, only a small
set of substitutional concentrations are practical within this approach (e.g. 50%, 25%, 12.5%), as
even they lead to large supercells and considering huge numbers of configurations to acquire accurate
thermodynamic averages - making calculations sumptuous. An arbitrary concentration would thus
require an enormous supercell.
Given these drawbacks, the supercell approach is only viable for a limited set of cases and is not suited
as a tool to describe generic disorder. Nonetheless, supercell methods have provided valuable insight
and produced sophisticated algorithms for supercell construction.
However, as there are a number of material classes that exhibit fascinating physics at low substitutional
concentrations, a tool for generic disorder is highly desirable. The class of methods capable of dealing
with these arbitrary concentrations are usually termed effective medium theories.

Virtual crystal approximation

The simplest of these methods is the virtual crystal approximation (VCA), where the host atomic
potential at a certain site is replaced by an average over host and impurity potential, weighted by their
respective concentrations:

{VA(Ri), VB(Ri)} → VVCA(Ri) = cAi VA(R)i + cBi VB(Ri). (1.9)

Here, VA(B) is the atomic potential of atom type A(B) and cA(B)
i is the atomic concentration of species

A(B) at site i. Even though the VCA is rather simple, it has provided good results in some areas, e.g.
lattice dynamics. However, it comes at no surprise that this basic treatment of disorder fails in many
scenarios. One example is the split band limit of an alloy: with increasing impurity concentration a
formerly single band splits into two individual bands, as is the case in Cu1−xZnx alloys (see Ref. [6]).
The VCA fails here because it neglects the inhomogeneity of the electronic density in a real disordered
A1−xBx alloy. Due to the random distribution of potentials of types A and B, the probability of
finding an electron near A differs from that of finding it near B. This behavior cannot be reproduced
by averaging the potentials as is done in the VCA.

1.2.2 The coherent potential approximation

One of the most successful and sophisticated theories to deal with substitutional disorder is the coherent
potential approximation (CPA). Early applications were widely based on the multiple-scattering for-
malism of the Korringa-Kohn-Rostoker CPA (KKR-CPA) - and are still in use today [34, 35]. Newer
versions, such as the tight-binding-linear-muffin-tin-orbital CPA (TB-LMTO-CPA) [36] and linear-
combination-of-atomic-orbitals CPA (LCAO-CPA) [6, 37, 38], are computationally less demanding
and capable of dealing with complex unit cells and even surfaces and interfaces [37].
The subsequent derivation of the CPA is largely based on Ref. [6], which provided the foundation for
the work presented in this thesis.
In developing a theory of disorder in solid state systems, the most convenient starting point is to
consider onsite energies εi randomly distributed among sites i. In a localized framework we may
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1 Fundamentals: electronic structure calculations and disorder

describe this situation by a single-particle Hamiltonian of the form

Ĥ =
∑
ij

tijc
†
icj +

∑
i

εic
†
ici. (1.10)

Here, c†i (ci) represent fermionic creation (annihilation) operators and tij denote the hopping matrix
elements of an electron between sites i and j.
The incorporation of disorder via the onsite energy term is included in the conventional CPA, yet
disorder of the surrounding sites is only treated on average. Thus, the approach neglects correlations
of a given site with the disordered environment - a short-coming of this simple theory that was resolved
by Blackman, Esterling and Berk [3], as we will see in Sec. 1.2.3. The problem described by Eq. (1.10)
can be solved by taking the onsite energies εi as perturbations, leading to a Born’s series for the Green’s
function in frequency domain

Gij(ω) = G0
ij(ω) +

∑
k

G0
ik(ω)εkG0

kj(ω) +
∑
kl

G0
ik(ω)εkG0

kl(ω)εlG0
lj(ω) + · · · (1.11)

with the Green’s function of the unperturbed Hamiltonian G0
ij(ω) =

[
(ω − t)−1

]
ij

that is solely
determined by the hopping elements tij and assumed to be known. In the closed formulation of a
Dyson’s equation this can be rewritten as

Gij(ω) = G0
ij(ω) +

∑
k

G0
ik(ω)εkGkj(ω). (1.12)

As the physical observables of a disordered system are thermodynamic averages, we can take the
configurational average of each term in Eq. (1.11):

〈Gij(ω)〉 = G0
ij(ω) +

∑
k

G0
ik(ω)〈εk〉G0

kj(ω) +
∑
kl

G0
ik(ω)〈εkG0

kl(ω)εl〉G0
lj(ω) + · · · (1.13)

= G0
ij(ω) +

(
G0(ω)Σ(ω)〈G(ω)〉

)
ij
. (1.14)

In the last step of Eq. (1.13) we have absorbed all repeated averaging processes into a complex,
frequency dependent self-energy Σ(ω) that can only be treated approximately. One of the simplest
possible simplification is to take it as a single-site quantity Σij = Σi δij , as proposed independently by
Soven [1] and Taylor [2].
Before diving into the mathematical derivation of the CPA, it is instructive to first consider the
underlying idea sketched in Fig. 1.1 for a two-dimensional A-B-alloy: we replace the actual sites of a
disordered crystal by an initially unknown effective medium. This effective medium is associated with
an effective medium Green’s function, that is in turn determined by an effective medium self-energy.
Then an arbitrary site in the effective medium is replaced by a real impurity with a well defined onsite
energy. Due to the single-site nature of the CPA it does not matter which site is replaced.
We then perform the replacement with every species allowed to be substituted at the aforementioned
site and demand that these replacements must not change the medium on the average. This provides
us with a self-consistency condition for the CPA resulting in an iterative scheme to determine the
initially unknown medium.
Having briefly outline the underlying idea, we can now derive equations that mathematically express
the CPA self-consistency condition in the so-called locator framework.
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1.2 Disorder through chemical substitution

Figure 1.1: Illustration of the CPA principle: The random A-B-alloy is replaced by an effective
medium (shaded circles) which must be equal to the average over all replacements with real
impurities in the effective medium. Schematic drawing in the style of Fig. 2.1 in Ref. [6] taken
from Ref. [39].

We here closely follow the outline given in Ref. [6], which relies on the derivation presented by
Ref. [40]. By introducing the so-called locator gi(ω) = (ω − εi)−1 [41], we may write Eq. (1.11) as

Gij(ω) = gi(ω) δij +
∑
k 6=i

gi(ω)tikGkj(ω). (1.15)

This formulation is equivalent to Dyson’s equation Eq. (1.12), with the sole distinction that here we
have started from the Green’s function g(ω) of a localized state with energy εi and taken hopping t as
the perturbation.
We can now simplify Eq. (1.11) by removing the sum restriction. To this end, we need to introduce
the so-called interactor [42]

∆i =
∑
j 6=i

tijgjtji +
∑
j 6=i

∑
k 6=i

tijgjtki + · · · . (1.16)

As we shall see along the derivation, we will be able to remove it from our equations after it has served
its purpose. The interactor allows us to reformulate the locator equation of motion Eq. (1.15) for the
diagonal elements into a form similar to Eq. (1.14) and we find

Gii =
(
g−1
i −∆i

)−1
. (1.17)

At this point, we have found a mathematical formulation which makes it convenient to introduce the
effective CPA-medium via the self-energy Σ(ω) and the effective medium Green’s function Γ(ω). Using
the effective medium interactor ∆̄ and the effective medium locator

γi(ω) =
(
ω − Σi(ω)

)−1 (1.18)

we find
Γii(ω) =

(
γ−1
i (ω)− ∆̄i(ω)

)−1
(1.19)

from Eq. (1.17).
As we have discussed above, within the CPA-scheme a real impurity is to be inserted into the effective
medium and we may define a corresponding impurity Green’s function qG(ω). By introducing an
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1 Fundamentals: electronic structure calculations and disorder

impurity locator gqi (ω) = (ω − εqi )−1 with species dependent onsite energy εqi and replacing γ in
Eq. (1.19) we arrive at

qGii =
(

(gqi )
−1 − ∆̄i(ω)

)−1
=
(

Γ−1
ii + Σi − εqi

)−1
. (1.20)

In combining Eqs. (1.19) and (1.18), we have here removed ∆̄ which only served to simplify our
description.
The CPA condition depicted in Fig. 1.1 can now be formulated mathematically with the use of the
impurity Green’s function: the effective medium Green’s function must be equal to a concentration
weighted sum of the impurity Green’s function over impurity species, i.e.,

Γii(ω) !=
∑
q

cqi
qGii(ω) (1.21)

with cqi being the atomic concentration of species q at site i. We may now make the connection between
the effective medium and the configurationally averaged Green’s function 〈G〉 of Eq. (1.13): as the
former was introduced in order to approximate the latter, Γ and 〈G〉 must coincide. Consequently, the
same holds for the self-energy and Dyson’s equation. Inserting G0

ii and rearranging Eq. (1.14) finally
yields

Γii
!=
〈
Gii
〉

=
[
(G0

ii)−1 − Σi

]−1
=
[
ω − tii − Σi

]−1
. (1.22)

Since the effective medium exhibits the full translational symmetry of the parent compound we can
obtain Γii(ω) from the k-space representation via Fourier transformation. Detailed information on the
definitions and conventions chosen for the Fourier transformation of matrix elements can be found in
App. D. Here, we simply state the Fourier transform of the hopping matrix elements:

tst(k) = e−k(Rs−Rt)
∑
L

e−ikRLtLst. (1.23)

In Eq. (1.23) we have expressed the compound site index i by the lattice index L and an atomic index
s within the unit cell, such that

Ri = RL +Rs. (1.24)

From this we may calculate the effective medium Green’s function according to

Γss(ω) =
∫

1.BZ
d3k Γss(k, ω) =

∫
1.BZ

d3k
[
ω − t(k)− Σ

]−1
∣∣∣
ss
, (1.25)

where only the onsite elements Γss are needed in the CPA cycle.
With Eqs. (1.20), (1.21), and (1.25) we have thus found a set of self-consistent equations for the CPA
formalism. They may be solved according to the following iterative scheme:

1. For iteration n, compute the effective medium Green’s function (n−1)Γ according to Eq. (1.25)
with the hopping matrix elements and self-energy from the previous iteration n− 1. In the first
iteration the initial self-energy must be guessed.

2. Calculate the impurity Green’s function according to Eq. (1.20) for every species q.
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1.2 Disorder through chemical substitution

3. Using the CPA condition (Eq. (1.21)), calculate the current effective medium Green’s function nΓ.

4. Calculate the change in self-energy via dΣi =
(

(n−1)Γ
)−1

∣∣∣∣
ii

−
(

(n)Γ
)−1

∣∣∣∣
ii

.

5. If dΣ < δ for a user defined threshold δ the scheme is finished, else continue with iteration n+ 1
at step 1.

As we have mentioned in the beginning of this section, the CPA presented here is of single-site nature.
Consequently, it neglects environmental disorder effects. Nonetheless, it provides a computationally
feasible approach to arbitrarily disordered systems in an ab-initio framework and has been applied
successfully. Most commonly within the KKR method that relies on a multi-scattering Greens function
formalism [34]. A number of extensions have emerged in the past seeking to incorporate environmental
disorder, such as the molecular coherent potential approximation (MCPA) [43] and the nonlocal
coherent potential approximation (NLCPA) [44]. Both these methods go beyond embedding single
impurities into the effective medium by rather embedding impurity "clusters". Although successful in
their own right, most of these methods suffer from symmetry violation or nonanalyticity [40]. We shall
now present a powerful formalism free of these shortcomings: the BEB-CPA.

1.2.3 The Blackman, Esterling and Berk formalism

As we have discussed, the CPA as introduced in Sec. 1.2.2 lacks the ability to capture off-diagonal
disorder. A description which allows to incorporate off-diagonal disorder by accounting for disordered
hopping elements was introduced by Blackman, Esterling and Berk (BEB) [3]. Not only was this
approach proven to be analytic [45] but it also preserves all symmetries of the parent compound.
Furthermore, as was shown by Koepernik et al. [37] that it is applicable in the context of nonorthogonal,
overlapping basis sets, as employed within this work.
In order to incorporate off-diagonal disorder, BEB introduced a set of binary occupation variables

ηPi =
{

1 if site i is occupied with species P
0 otherwise. (1.26)

that are subject to a number of rules to ensure physical plausibility:

1. Avoid occupation of the same site by multiple species

ηPi η
Q
i = δPQη

P
i (1.27)

2. Ensure that a site is occupied by a species∑
P

ηPi = 1 (1.28)

3. Relate the random occupation variables to an atomic concentration

〈ηPi 〉 = cPi (1.29)

4. Assume statistical independence of the occupations of different sites

〈ηPi η
Q
j 〉 = cPi c

Q
j (1.30)
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1 Fundamentals: electronic structure calculations and disorder

Formally, the BEB-CPA deals with a non stochastic extended Hilbert space containing all configurations
from which we can project a single specific configuration via these η:

Ĥ =
∑
ijPQ

ηPi H
PQ
ij ηQj c

†
icj =

∑
ijPQ

ηPi t
PQ
ij ηQj c

†
icj +

∑
iP

ηPi ε
P
i c
†
icj . (1.31)

Here and in the following, underlined symbols denote quantities in extended Hilbert space. In Eq. (1.31),
the Hamiltonian Ĥ describes a specific configuration that is acquired from the more general H by
specificying the η. Being non stochastic, all quantities in extended Hilbert space (such as H and S)
retain the full translational and point group symmetries of the parent compound. Only via the η do
we introduce randomness into a configuration. As was highlighted in the beginning of this section, the
BEB-CPA accommodates disorder not only via the random onsite energies εi but also via the random
distribution of hopping elements tij = ηPi t

PQ
ij ηQj . In this way, the η encode the disordered environment

of a site in the crystal for a specific random configuration.
In deriving the self-consistency equations for the BEB formalism, we closely follow the route chosen in
Ref. [6] which leans on Ref. [45] and provided the basis for the presented thesis. It may be understood as
a generalization to the derivation presented in Sec. 1.2.2. Instead of complex numbers (as in Sec. 1.2.2)
the site matrix elements take the form of matrices in species space due to the BEB-transformation in
Eq. (1.31). Thus for the Green’s function and locator we find

GPQij = ηPi Gijη
Q
j gP

i
= ηPi gi. (1.32)

Special care must be taken in considering the locator gP
i
: having been defined as a site-diagonal

quantity, BEB-rule Eq. (1.26) additionally enforces species diagonality. Within the BEB-formalism,
the equations of motion of the real physical system and the effective medium

Gii =
(
g−1
i
−∆i

)−1
Γii =

(
γ−1
i
− ∆̄i

)−1
(1.33)

take on the same form in site indices of extended Hilbert space as in the conventional CPA. However,
they become matrix equations in species space. We may now define a self-energy Σ, analogous to the
conventional case, via

γ
i

=
(
ω − Σi

)−1
. (1.34)

In contrast to the Green’s function, the locator and the Hamiltonian, the self-energy is not related to
its conventional counterpart via a BEB-transformation. The impurity locator in which we replace the
self-energy with an onsite energy of a particular species q at site i then follows as

qgP
i

=
[
ω − εqi δPq − (1− δPq)ΣPP

i

]−1
. (1.35)

Analogous to Sec. 1.2.2, we find the impurity Green’s function

qGPQii =
[(

Γ−1
)PQ
ii

+
(

ΣPQ
i − εqi

)
δPQδPq

]−1

(1.36)

and the CPA condition to be
ΓPQii =

∑
q

cqi
qGPQii . (1.37)
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1.2 Disorder through chemical substitution

Given the preserved translational symmetry in extended Hilbert space, we can define

ΓPQii =
∫

1.BZ
d3k

[
ω1− t(k)− Σi

]−1
∣∣∣PQ (1.38)

in analogy to Eq. (1.25) to complete our set of self-consistent equations. These equations are the BEB-
analog to those of the conventional CPA defined in Eqs. (1.20), (1.21) and (1.25). The only formal
difference lies in the underlined quantities, which now represent complex matrices in species indices
instead of complex numbers. They are solved in the same iterative scheme as described in Sec. 1.2.2.

1.2.4 Ab-initio implementation of the pseudopotential framework in an orbital basis

In the last section we have introduced the BEB-CPA formalism as a tool for the description of
substitutionally disordered systems. This theory grants access not only to arbitrary impurity con-
centrations but also to the treatment of off-diagonal environmental disorder. The physics of such a
system is governed by its Hamiltonian, whose matrix elements HPQ

ij enter the self-consistent equations
via the onsite terms and the hopping matrix elements. Thus, we are task with extracting these matrix
elements from a first-principles DFT calculation following the work of Koepernik et al. [37].
For this purpose, we generalize the site- and species dependent matrix elements to include an orbital
degree of freedom, i.e., an orbital momentum quantum number l and the corresponding magnetic
quantum number m ∈ {−l, l}. With this we may define the CPA Hamiltonian matrix elements as the
result of evaluating our DFT Hamiltonian operator ĤDFT between LCAO orbitals

HPQ
ilm,jl′m′ =

〈
iP lm

∣∣∣ĤDFT

∣∣∣jQl′m′〉 (1.39)

where i and j are site indices, and P and Q denote species. From this we may identify the onsite
matrix elements Ḣ as the onsite energies εi and the offsite elements H̆ as the hopping matrix elements
t. As the LCAO basis is not restricted to be orthonormal, the overlap

SPQilm,jl′m′ =
〈
iP lm

∣∣∣jQl′m′〉 (1.40)

may take a nontrivial form. Within this work, such a nonorthonormal basis is employed (see App. B
for a detailed discussion) for which the unit operator takes the form

1 =
∑
iP lm
jQl′m′

|iP lm〉
(
S−1

)PQ
ilm,jl′m′

〈jQl′m′| . (1.41)

As we have discussed in Sec. 1.1.3, in the MBPP code a basis set comprised of localized functions and
plane waves was chosen in order to efficiently cover a wide range of elements. However, the latter are
not well suited in the framework of a local, site dependent theory such as the BEB-CPA.
To gain purely atom centered LCAO basis functions that can describe its local nature, some post
processing of the Kohn-Sham orbitals in the mixed-basis representation is necessary within the MBPP.
This transformation is performed by a number of subroutines initially intended for local chemical
analysis [31]. These routines employ the same atomic functions as in the mixed basis, but modified by
cut-off functions. The parameters describing these cut-off functions are then optimized according to
the so-called spillage function [46, 47] to best reproduce a converged band structure as obtained from
the mixed-basis approach.
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1 Fundamentals: electronic structure calculations and disorder

The focus of this optimization lies on the region below the Fermi level and thus generally gives a poor
reproduction of the unoccupied DFT bands. However, being a ground state theory, DFT itself is not
supposed to be reliable with respect to these unoccupied bands and they usually are not important.
In order to gain a good representation of the Kohn-Sham orbitals in terms of a local basis, a large
overlap of the involved functions is required. From the LCAO-scheme we find the basis functions φlm
of the local orbitals expressed in terms of radial functions fl and cubic Harmonics Klm:〈

r
∣∣iP lm〉 = φPilm(r) = φPlm(r −Ri) φPlm(r) = ilfPl (r)Klm(r̂). (1.42)

Here, r = |r| and r̂ = r/r is the unit vector along r. The basis functions themselves are normalized
within this thesis, such that the onsite overlap

Ṡ
P
ilm,l′m′ = SPPilm,il′m′ =

〈
iP lm

∣∣∣iP l′m′〉 = δll′δmm′ (1.43)

is always unity. In order to evaluate the Hamiltonian matrix elements, we must first assume a local
decomposition of the electronic density according to

n(r) =
∑
iP

ηPi n
P
i (r). (1.44)

Taking the fundamental Kohn-Sham equation for the electronic density

n(r) =
N∑
n=1
|ϕn(r)|2, (1.45)

where n is a band index, and expanding the Kohn-Sham orbitals in terms of the local orbitals φ yields

n(r) =
∑
iP lm

φPilm(r)
∑
jQl′m′

CPQilm,jl′m′
[
φQjl′m′(r)

]∗
. (1.46)

Here, the expansion coefficients C are given by

CPQilm,jl′m′ =
∑

i′P ′l1m1

∑
j′Q′l2m2

(
S−1

)PP ′
ilm,i′l1m1

〈
i′P ′l1m1

∣∣∣n〉〈n∣∣∣j′Q′l2m2

〉(
S−1

)Q′Q
j′l2m2,jl′m′

. (1.47)

They are provided in by the LCAO routine in the MBPP in a slightly different form in k-space. For
a more detailed discussion of these local decomposition we refer to App. D.
With the local decomposition of the electronic density we can now in turn locally decompose the
potential

V (r) =
∑
iP

ηPi V
P
i (r) = Vpseudo(r) + VHartree(r) + VXC(r). (1.48)

To this end, we must locally decompose all three contributing terms. For the first term this is trivial, as
the pseudopotential is already decomposed in terms of species and angular momentum by construction.
As the Hartree potential depends linearly on the electronic density, its decomposition can be found
directly from Eq. (1.44). The most difficult contribution to decompose is the XC potential which in
fact is a non-linear functional of the electronic density and, consequently, a multipole expansion cannot
be carried out analytically.
A simple treatment can be achieved via the atomic sphere approximation (ASA), as used by Ref. [37].
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Within a sphere of radius r, VXC is calculated from the total electronic density of the disordered system
and a constant value is postulated in the interstitial region between spheres. A major limitation to this
scheme is the fact that it only works under isotropic considerations, neglecting all angular momentum
contributions beyond l = 0.
For the BEB-CPA implementation used within this work, a more sophisticated approach was chosen:
instead of non-overlapping atomic spheres, spherically symmetric shape functions S were introduced
to deal with the decomposition of VXC. They are characterized by a site-dependent cutoff radius Ri
such that

Si(r) = Si(|r|) = S

(
r

Ri

)
S(1) = 0. (1.49)

In contrast to the ASA, these shape functions are not only allowed but even required to overlap. In order
to circumvent double-counting and guarantee a well-defined result we define the local decomposition
according to

XCV P
i (r −Ri) = VXC[n(r)]Si(r −Ri)

N (r) , (1.50)

where
N (r) =

∑
i

Si(r −Ri) (1.51)

ensures proper normalization. This decomposition can be shown to be exact and consistent in the
special case of a clean compound for which

VXC[n(r)] !=
∑
i

XCVi(r −Ri) =
∑
i

VXC[n(r)]Si(r −Ri)
N (r)

= VXC[n(r)]N (r)
N (r) . (1.52)

In case of a disordered system the decomposition is obviously no longer exact, but is only approximately
valid.
In order to acquire the decomposed XC-potential, we begin from the full XC-potential which is
calculated from the total electronic density. We then proceed by locally decomposing it via the
shape functions for each species and additionally an angular momentum decomposition is performed
numerically via a Gauß-Legendre integration [48–50]. For a more detailed discussion of the shape
function approach and the XC-potential decomposition see App. D.1.4.
For a random configuration the Hamiltonian matrix elements are calculated according to

Hilm,jl′m′ = ηPi H
PQ
ilm,jl′m′η

Q
j = ηPi

〈
iP lm

∣∣∣T̂ +
∑
kR

ηRk V̂
R
k (r)

∣∣∣jQl′m′〉 ηQj , (1.53)

with the kinetic energy operator T̂ . Strictly speaking, due to the contributions of the decomposed
potentials to HPQ

ilm,jl′m′ and their dependence on η (Eq. (1.48)), the above equation is no longer non-
stochastic. Consequently, the Hamiltonian matrix elements defined in extended Hilbert space would
no longer retain the full translational symmetry of the crystal. However, we can overcome this obstacle
by only treating the potentials located at the terminal sites exactly and considering the rest of the
sum as a conditional average over the whole crystal [37]. This procedure restores the full translational
symmetry of H, which is a prerequisite of the BEB formalism. Thus, we find the Hamiltonian matrix
elements to be

HPQ
ilm,jl′m′ =

〈
iP lm

∣∣∣T̂ + V̂ P
i + V̂ Q

j +
∑

k 6=(i,j),R

cRk V
R
k

∣∣∣jQl′m′〉 . (1.54)
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1 Fundamentals: electronic structure calculations and disorder

It is then straight forward to decompose Eq. (1.54) into its onsite

Ḣ
PQ
ilm,jl′m′ = δijδPQ

〈
iP lm

∣∣∣T̂ + V̂ P
i +

∑
k 6=i,R

cRk V̂
R
k

∣∣∣iP l′m′〉 (1.55)

and offsite contribution

H̆
PQ
ilm,jl′m′ = (1− δij)

〈
iP lm

∣∣∣T̂ + V̂ P
i + V̂ Q

j +
∑

k 6=(i,j),R

cRk V̂
R
k

∣∣∣jQl′m′〉 . (1.56)

Once again, BEB rule Eq. (1.26) manifests itself in the onsite term via δPQ. The computation of
the Hamiltonian matrix elements requires the solution of multi-center integrals between wavefunctions
expressed in cubic Harmonics (see Eq. (1.42)), which is computationally demanding. To simplify these
calculations, a multipole expansion of the potentials is implemented in the CPA code, reducing the
workload to the solution of one-dimensional radial integrals (a detailed discussion can be found in
App. D). An exemption to this is VXC, as discussed above.
We shall now turn to the discussion of the central self-consistent equations of the BEB-CPA formalism.
As the CPA implementation works with a non-orthogonal basis we will briefly summarize some of the
most important properties of Green’s functions in this context. Once again, we will closely follow the
derivation given in Ref. [6], which is based on Refs. [51] and [52]. Further details can be found in
App. G. We will drop species indices and underscores denoting quantities in extended Hilbert space
for the time being. Given a non-orthogonal basis set we are faced with two sets of Green’s functions

Gilm,jl′m′(t) = −iθ(t)
〈
{ailm(t), a†jl′m′}

〉
(1.57)

Gilm,jl′m′(t) = −iθ(t)
〈
{cilm(t), c†jl′m′}

〉
(1.58)

where {·, ·} once again denotes the anticommutator. These Green’s functions are defined via two
distinct types of creation and annihilation operators. For Eq. (1.57), a†iµ (aiµ) creates (annihilates) an
electron in orbital ϕµ(r −Ri) with commutation relations given as

{ailm, a†jl′m′} = Silm,jl′m′ . (1.59)

The second case corresponds to an operator ciµ defined via the field operators Ψ(r) =
∑

iµ ciµϕµ(r −
Ri). Here, the commutation relations can be shown to be given by

{cilm, c†jl′m′} = S−1
ilm,jl′m′ . (1.60)

Considering a system of non-interacting electrons, we follow the standard procedure [53, 54] inserting
a complete set of eigenstates

∑
n |n〉 〈n| = 1 and Fourier transforming into frequency domain, where

the Green’s functions are given by

G(ω) =
(
ω+S −H

)−1
(1.61)

G(ω) = SG(ω)S = S(ω+S −H)−1S. (1.62)

Here, H is the LCAO-Hamiltonian and ω+ = ω + iδ. The infinitesimal complex part δ ensures
analyticity of the retarded Green’s functions in the upper complex half plane. Similar to Sec. 1.2.3, we
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1.2 Disorder through chemical substitution

will introduce the locator concept, which can be done most conveniently from the equation of motion
for G: (

ωṠ − Ḣ
)

︸ ︷︷ ︸
≡g−1

G +
(
ωS̆ − H̆

)
G = 1. (1.63)

In Eq. (1.63) we have already decomposed the Hamiltonian and overlap matrices into their onsite and
offsite contributions. Comparing this to Eq. (1.15) we can identify the inverse of the locator g and
transform the equation into the corresponding locator equation of motion

G = g + g
(
H̆ − ωS̆

)
G g =

(
ωṠ − Ḣ

)−1 Ṡ=1=
(
ω − Ḣ

)−1
, (1.64)

where we have made use of Ṡ = 1 for the LCAO basis. In this context, we can consider the term
H̆ − ωS̆ in Eq. (1.64) as a generalized hopping matrix t. This allows us to generalize the BEB-CPA
self-consistency Eqs. (1.36)-(1.38) to the non-orthogonal basis via the substitution t→ H̆ − ωS̆ in the
effective medium Green’s function Γ. We then arrive at our new set of self-consistent equations:

ΓPQii =
∫

1.BZ
d3k

[
ω
(
1 + S̆

)
− H̆(k)− Σi

]−1
∣∣∣∣∣
PQ

(1.65)

qGPQii =
[(

Γ−1
)PQ
ii

+
(

ΣPQ
i − ḢPQ

ii

)
δPQδPq

]−1

(1.66)

ΓPQii =
∑
q

cqi
qGPQii . (1.67)

In analogy to the conventional CPA introduced in Sec. 1.2.2, we may now define an iterative scheme
for the solution of our set of self-consistent equations. This yields an update formula for the effective
medium self-energy:

dΣPQ
ilm,jl′m′ =

(
Γ−1
i

)PQ
lm,l′m′

+
∑
q

1
cqi

[
Ḣ i − Σi − Γ−1

i

]qq
lm,l′m′

δPQδPq. (1.68)

Most physical quantities are evaluated from the effective medium Green’s function Γ, which is defined
analogously to G in Eq. (1.58). However, an exception is the density of states which is connected to
the creation and annihilation of electrons and, thus, is defined over the second Green’s function G.
The connection between the two can be made via G = SΓS. From this the density of states is found
to be

ν(ω) = − 2
π

Im Tr
[
SΓ(ω+)

]
, (1.69)

where an additional factor S−1 arises from taking the trace of an operator in a non-orthogonal basis. In
Eq. (1.69), the factor two accounts for spin degeneracy (which is of course dropped for spin polarized
calculations). In practical calculations, some care must be taken with respect to the argument of
Γ(ω+). The infinitesimal imaginary part δ in ω+ = ω + iδ determined the level of fine structure to
the density of states. The lower δ, the higher the resolution. However, this entails amplified numerical
noise and consequently one must always balance resolution versus noise.
Finally, we come to another important quantity: the Bloch spectral function:

A(k, ω) = − 1
π

Im Tr

 ∑
L∈lattice

eikRL

∫
u.c.

d3r Γ(r −RL, r, ω+)

 . (1.70)
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1 Fundamentals: electronic structure calculations and disorder

It is defined as a discrete Fourier transformation of the Green’s function in real space on the crystal
lattice and an integration over one unit cell. This can be shown to be equivalent to

A(k, ω) = − 1
π

Im Tr
[
S(k)Γ(k, ω+)

]
(1.71)

with Γ(k, ω+) being the kernel of the integral in Eq. (1.65). The spectral function contains all infor-
mation relevant to the band structure of a disordered crystal and thus is the most important quantity
to study momentum resolved disorder effects in more detail.

1.3 CPA work flow and charge self-consistency

With the BEB-CPA formalism outlined in the last section we have developed all necessary tools
for ab-inito electronic structure calculations of arbitrarily substituted crystals. Before we can carry
out a CPA calculation a few preparations must be made: we begin with a MBPP-DFT calculation
of the parent compound from which we gain the pseudopotentials of the involved atomic species,
the local basis functions obtained via the LCAO-fit and relevant information concerning the crystal
lattice such as crystal symmetries. An equivalent calculation must then follow for each substitutional
end member, instead of performing a DFT calculation for the bare atomic substituent. While in
principle possible, the latter approach would have the major disadvantage of not taking into account
the environmental influence on the local electronic densities of the end member constituents. By
considering the substituent atomic species in the substitutional end member configuration, we achieve
faster convergence in the CPA calculations. All MBPP-DFT calculations must be performed for the
same crystal structure to be compatible with the CPA program.
From the local basis functions of all involved species the CPA program then calculates the overlap
matrix and the locally decomposed electronic density according to Eq. (1.44), which is needed for
the local decomposition of the Hartree potential and the computation of the XC potential. The local
decomposition of the latter is then performed using the shape function approach discussed in Sec. 1.2.4.
At this point, the matrix elements of the Hamiltonian are evaluated and fed into the self-consistency
Eqs. (1.65)-(1.67), yielding a change in self-energy via Eq. (1.68).
The newly found self-energy is then reinserted into the self-consistency equations until dΣ falls below
a user-defined threshold and the CPA-cycle delivers an effective medium Green’s function Γ(ω). The
Green’s function and the spectral function contain all relevant information and one could therefore
naively stop the procedure at this point. However, our starting point were several independent DFT
calculations which contain no knowledge of the presence of respective substituted species. Consequently,
the initial densities could only be calculated from the mutually isolated end members and the only
coupling between the isolated calculations would come about through the off-diagonal terms of the
Hamiltonian. Even so, the Hartree- and XC-potential explicitly depend on the density which, up to
this point, contains no disorder effects.

1.3.1 Charge self-consistency

This short-coming was recognized and resolved by Koepernik et al. [37] by the implementation of a
charge self-consistency condition: for each converged CPA calculation a new charge density is calculated
from the respective Green’s function via

n(r) = − 1
π

∫ EF

0
dω ImG(r, r, ω+) (1.72)
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1.3 CPA work flow and charge self-consistency

with the Fermi energy EF being the upper integration limit. This ensures that only occupied states
are taken into account. The new density is then reinserted into the computation of the Hamiltonian.
A repetition of this procedure gradually improves the Hamiltonian until the difference in densities of
two successive iteration drops below a threshold, i.e., convergence is reached.
The real space Green’s function of the disordered system may be connected to the matrix G (see
App. G) using the basis functions ϕPilm(r) of the LCAO framework. From this connection, using the
BEB transformation, we may express the electronic density of a random configuration as

n(r) = − 1
π

∑
iP lm
jQl′m′

ϕPilm(r)
∫ EF

0
dω Im

[
ηPi Gilm,jl′m′(ω+)ηQj

] (
ϕQjl′m′

)∗
. (1.73)

A meaningful comparison with experiment is only possible for configurationally averaged quantities
and so Eq. (1.73) must be averaged leading to

〈n〉 (r) = − 1
π

∑
iP lm
jQl′m′

ϕPilm(r)
∫ EF

0
dω Im

〈
ηPi Gilm,jl′m′(ω+)ηQj

〉
︸ ︷︷ ︸

CPA= ΓPQ
ilm,jl′m′

(
ϕQjl′m′

)∗
. (1.74)

Additionally, for the computation of Hamiltonian matrix elements in extended Hilbert space (which are
not configurationally averaged) we need the species and site decomposition not only of the potential
but also of the electronic density. Thus, we must derive expressions for the local components nPi which
yield the respective decomposition of Eq. (1.73) according to

n(r) =
∑
iP

ηPi n
P
i (r). (1.75)

At this point we must resort to another approximation - the so-called terminal point approximation
described in Ref. [37] which we shall briefly discuss in the following. The main idea behind this
approximation is to replace the Green’s function in extended Hilbert space by its twofold conditional
average

GPQilm,jl′m′ = ηPi Gilm,jl′m′η
Q
j → ηPi

〈
GPQilm,jl′m′

〉
PiQj

ηQj . (1.76)

Here, the average 〈. . .〉Pi,Qj is to be understood as an average over all members of the ensemble of
configurations that contain fixed occupations at the two terminal points, i.e., ηPi = ηQj = 1. Thus, we
are averaging over all sites, except i and j. As Eq. (1.75) demands the full charge density be additively
decomposed into single-site components, we must perform another average: this time only over the
right index of the overlap elements in Eq. (1.76), such that only ηPi remains and Eq. (1.73) takes the
form of a sum over single-site expressions:

nPi (r) = − 1
π

∑
jQ

lml′m′

ϕPilm(r)
∫ EF

0
dω Im

〈
GPQilm,jl′m′(ω

+)
〉
PiQj

(
ϕQjlm(r)

)∗ [
δij + (1− δij)cQj

]
. (1.77)

The expression
[
δij + (1− δij)cQj

]
is a consequence of Eq. (1.30) (BEB-rule four), which postulates

statistical independence of the occupation of different sites. The required conditionally averaged
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1 Fundamentals: electronic structure calculations and disorder

Green’s functions may be obtained via

〈
GPPilm,il′m′

〉
Pi

=
ΓPPilm,il′m′

cPi

〈
GPQilm,jl′m′

〉
PiQj

=
ΓPQilm,jl′m′
cPi c

Q
j

(1.78)

from the effective medium Green’s function (see Ref. [37]). Finally, we may express the local species-
decomposed electronic densities as

nPi (r) = − 1
π

1
cPi

∑
jQ

lml′m′

ϕPilm(r)
∫ EF

0
dω Im ΓPQilm,jl′m′(ω

+)
(
ϕQjl′m′(r)

)∗
. (1.79)

A brief remark on the actual implementation of the charge self-consistency in the CPA code is in order:
were we to use the newly calculated density for the computation of the Hamiltonian matrix elements
we would encounter numerical instabilities. This is a common problem found with self-consistency
methods and may typically be resolved by employing a density that is a mixture of the current and
previous density. To this end, a modified Broyden mixing scheme after Ref. [55] was implemented in
the CPA program by A. Herbig [6].
As was mentioned above, for the evaluation of Eq. (1.73) in the self-consistency cycle we need the Fermi
level of our disordered system. Similar to the density components, it may (indirectly) be calculated from
the effective medium Green’s function: we make use of the fact that the number of valence electrons
N in the pseudopotential framework must be conserved and in a generic disordered compound is given
by

N =
∑
iP

cPi NP
i (1.80)

to fulfill the constraint of charge neutrality (NP
i is the number of valence electrons for individual

atomic types). We can then calculate N from the density of states via

N =
∫ EF

0
dων(ω) = − 2

π

∫ EF

0
Im Tr

[
SΓ(ω+)

]
. (1.81)

The upper integration limit in Eq. (1.81) is successively shifted until we recover the actual number
of valence electrons N . The implementation uses a bisection method that cuts the energy interval in
which EF is searched for in half in each iteration step. The schematic workflow of the implementation
of the ab-initio charge self-consistent CPA method outlined above is depicted in Fig. 1.2.
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1.3 CPA work flow and charge self-consistency

Figure 1.2: Exemplary work flow of the ab-initio CPA program for a doubly substituted system:
Input preparation for parent compound and substitutional end members. Inner self-consistency
CPA-cycle to determine the effective medium and outer loop for charge self-consistent calculation
of the Hamiltonian matrix. Schematic drawing in the style of Fig. 2.2 in Ref. [6].
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2 Chapter 2

Extensions to the original CPA formalism -
Proof of concept

This chapter serves as an overview of the main extensions to the original CPA formalism [6] developed
within this work. Aside from a number of minor alterations to the underlying idea, four major
extensions have been implemented to increase the functionality and thus provide an even more powerful
and versatile tool for the study of disordered solid state systems.

2.1 Fermi sheets and surfaces extension

The simplest definition of a metal is that of a solid with a Fermi surface, separating the occupied from
the unoccupied states [56]. Intricate knowledge of a metal’s Fermi surface is of great importance for
its physical properties: phenomena like Fermi surface nesting are essential ingredients to the formation
of charge-density waves (CDWs) [57], or the potential enhancement of the superconducting pairing
mechanism in the iron-based superconductors [58, 59].

Figure 2.1: Schematics of the Fermi surface scan extension for a square BZ.

Thus, it is vital to have access to its shape and geometry, especially in the context of substituted
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2 Extensions to the original CPA formalism - Proof of concept

crystals. In order to calculate cross sections of the Fermi surface, we have adapted the preexisting
method for band structure calculations to scan a user defined plane in the first Brillouin zone (1. BZ).
The Bloch spectral function A(k, ω = EF ) = − 1

π Im Tr
[
SΓ(k, ω+)

]
is calculated from the effective

medium Green’s function in extended Hilbert space Γ at the Fermi energy EF (for details see App. G.4).
Here, S is the orbital overlap. The spectral function yields quasi particle weight where bands intersect
the scanned plane. This is used to map out the Fermi surface within each sheet (see, e.g., Fig. 2.12).
In order to construct the 3-dimensional Fermi surface, we compute multiple parallel sheets. For the
visualization, spectral weight below a user defined threshold A(k, EF ) < δ must be discarded so as
to only plot regions with considerable contributions (see, e.g., Fig. 2.2 (b)). The sampling scheme is
as follows: for each sheet i ∈ {0,M}, we fix an initial starting point Ki,0 from which we evaluate
A(k, EF ) along a user defined direction kscan1 .
Subsequently, the starting point is shifted along a second predefined direction kscan2 according to

Ki,j+1 = Ki,j + kscan2
N

, (2.1)

with N being the number of sampling points along kscan2 and j ∈ {0, N}. From each new starting point
in sheet i, we perform another scan along kscan1 , thus, sampling the plane spanned by kscan1 and kscan2 .
This procedure is repeated for each sheet, reached by shifting the initial starting point according to

Ki+1,0 = Ki,0 + kscan3
M

(2.2)

along a third direction kscan3 . A schematic drawing of this procedure can be found in Fig. 2.1.

2.1.1 Proof of principle - Fermi surface of copper

As a proof of principle for our Fermi surface extension, we turn to one of the historically most prominent
Fermi surfaces - that of face centered cubic (fcc) Cu - the first sharp Fermi surface to be measured
via anomalous skin resistance [60]. These measurements revealed a roughly spherical "belly" and eight
"necks" intersecting the hexagonal faces of the Brillouin zone - in contrast to the ideal free-electron
sphere.

×k1 ×k2 ×k3 ×k1 ×k2 ×k3

0 0 0 Γ 5/8 1/4 5/8 U
3/8 3/8 3/4 K 1/2 1/4 3/4 W
1/2 1/2 1/2 L 1/2 0 1/2 X

Table 2.1: Symmetry k-points of the fcc lattice. In style of Tab. 3 in Ref. [61].

In Fig. 2.2 (a) we present a schematic drawing of the BZ of the fcc lattice, along with some high
symmetry k-points (see Tab. 2.1). A comprehensive overview on Brillouin zones and high symmetry
k-points for different crystal lattices can be found in Ref. [61]. As can be seen in Fig. 2.2 (b), the
belly deviating from the perfect sphere and the necks, intersecting the hexagonal zone faces, are well
reproduced by our CPA calculation.
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2.1 Fermi sheets and surfaces extension

This deviation from the perfect free-electron sphere is attributed to the interaction of d bands and the
conduction bands [62]. Here, we have constructed the Fermi surface from Fermi sheets calculated on
100× 100 k-mesh grids at 50 discrete sampling points along kscan3 .

(a)
(b)

Figure 2.2: (a) Brillouin zone of the fcc lattice with symmetry k-points (figure in style of Fig. 2
Ref. [61]). (b) Fermi surface of fcc Cu generated from 50 sheets calculated on 100 × 100 k-mesh
grids. The polyhedron represents the 1. Brillouin zone.

In the notation presented above, the choices for the Fermi sheet scans were made to be kscan1 =
(3

8 ,
3
8 ,

3
4), kscan2 = (3

8 ,−
3
8 , 0), kscan3 = (1

2 ,
1
2 , 0). In the practical calculation, only the upper right

quadrant of the Fermi surface in Fig. 2.2 (b) was computed and the crystal symmetry exploited to gain
the full Fermi surface. Calculational details can be found in App. J.1.

2.1.2 Fermi surface of a disordered alloy

Having applied our Fermi surface computation scheme to a pure crystal, we shall now apply it to a
disordered alloy: Cu1−xNix.
We can expect the Fermi surface to be changed drastically with increasing Ni content: new Fermi
surfaces may appear, while others disappear or get reshaped. In order to investigate the effect of Ni
substitution on the Fermi surface, we have performed multiple CPA calculations with varying content
x = {0.1, 0.25, 0.5, 0.75}. The Fermi surfaces were constructed from individual Fermi sheets computed
on regular 100× 100 k-mesh grids at 50 discrete sampling points along kscan3 as described above.
We begin by first considering pure Ni, in order to have access to the Fermi surfaces of both clean
systems. This will allow us to interpret the Fermi surfaces of the intermediate compounds Cu1−xNix.
Here, some remarks are in order: firstly, the Fermi surface of fcc Ni consists of two parts - an inner
and an outer part. Accordingly, we have depicted both parts separately in Fig. 2.3. Secondly, the
color coding and perspective for all subsequent Fermi surfaces have been chosen appropriately to best
emphasize the most relevant features of the inner and outer Fermi surfaces, respectively. Finally, for
better visibility, some of the rear segments have been neglected in all depictions.
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2 Extensions to the original CPA formalism - Proof of concept

The inner part of the Ni Fermi surface (see Fig. 2.3 (a)) exhibits two main features: firstly, a central
body (similar to Cu) with neck-like deformations towards the hexagonal faces. In contrast to Cu, these
necks do not penetrate the hexagonal faces.

(a) (b)

Figure 2.3: (a) Inner, and (b) outer part of the Fermi surface of Ni.

Furthermore, we find Fermi surfaces disconnected from the central body in the shape of paraboloids
which intersect the square faces. Secondly, the outer part (see Fig. 2.3 (b)) consists of petal-shaped
Fermi surfaces at the square faces. At their center, we can observe the paraboloids mentioned above.

(a) (b)

Figure 2.4: Fermi surfaces of Cu1−xNix for (a) x = 0.1, and (b) x = 0.25.

With knowledge of the Fermi surfaces of both clean systems, we can assume the substituted com-
pounds Cu1−xNix to gradually morph from one into the other, as Ni content is increased.
While for low Ni content (x = 0.1 and x = 0.25) the Fermi surface still closely resembles that of pure
Cu, the diameter of the necks passing through the hexagonal faces has decreased (see Fig. 2.4). Half
way from Cu to Ni, i.e., x = 0.5, we can already identify clear features of Ni in the Fermi surface (see
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2.1 Fermi sheets and surfaces extension

Fig. 2.5). The central body, along with the Cu necks, has shrunk considerably and already closely
resembles that of pure Ni.

(a) (b)

Figure 2.5: (a) Inner, and (b) outer part of the Fermi surface of Cu1−xNix for x = 0.5.

Additionally, paraboloid necks have appeared, penetrating the zone boundary at the square faces.
In contrast to low Ni content, Cu0.5Ni0.5 posses additional well defined (although strongly broadened)
Fermi surfaces close to the BZ boundary (see Fig. 2.5 (b)) with the recognizable petal-shape known
from Ni.

(a) (b)

Figure 2.6: (a) Inner, and (b) outer part of the Fermi surface of Cu1−xNix for x = 0.75.

As we further approach pure Ni, these features are enhanced. For x = 0.75 the central body has
shrunk even further, and the necks through the hexagonal faces have disappeared entirely - while the
petal-shaped Fermi surfaces are clearly visible.
Thus, we have shown the Fermi surface of Cu1−xNix to gradually transition from one clean end member
to the other. Together with the qualitative reproduction of the measured Cu Fermi surface [60], we
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2 Extensions to the original CPA formalism - Proof of concept

conclude our method to be applicable in both clean and substituted systems.

2.2 Vacancy extension

The ability to treat vacancies in the context of substitutional disorder has a wide range of applicability
in a number of interesting solid state systems: be it the crystallographic interstitial iron site present in
Fe1+yTe and Fe1+y(Se,Te) crystals and its impact on magnetic and superconducting properties [63–65]
(for further details see Chap. 4) or electron doping via oxygen deficiencies in ReFeAsO1−δ [66] (Re -
rare-earth metals) and NdFeAsO1−δ [67].
All of these can, in principle, be treated within the LCAO-CPA given a physically meaningful treatment
of vacancies as a substituent species. As the MBPP is not capable of dealing with vacancies, a number
of quantities that are usually provided by the DFT calculation must be determined independently.
An important question is that of the choice of basis functions: while Koepernik et al [37] treat such
impurities by considering a smooth Gaussian for at least one basis orbital per vacancy site, here, we
have chosen a more sophisticated approach. Instead of assuming a somewhat arbitrary basis functions,
we adopt the basis functions of the to be substituted species for all angular momenta. In this fashion,
we hope to employ basis functions which best suit the underlying environment.
Furthermore, we must deal with other quantities usually provided by the MBPP - the initial angular
momentum resolved real space density and pseudopotentials. The former are initially set to zero,
however, we allow for charge transfer to these vacancy-occupied sites during the CPA process. This
will lead to the generation of Hartree potential contributions from vacancy sites. Trivially, the pseu-
dopotentials and also the partial core potential are set to zero for all vacancies and remain so during
the charge self-consistency cycle.

2.2.1 Proof of principle - turning body centered cubic Fe into simple cubic Fe

In order to benchmark the vacancy extension outline above, we compare two systems: we consider
body centered cubic (bcc) Fe and compare it to hypothetical simple cubic (sc) Fe with one atoms per
unit cell (see Fig. 2.7). The former can also be considered as a sc structure with two atoms per unit
cell.

(a) (b)

Figure 2.7: Unit cell for (a) bcc Fe, and (b) sc Fe. Blue atom indicates site to be substituted in
the following. For both structures the lattice parameter a = 5.4 a0 was chosen.
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2.2 Vacancy extension

The idea now is to perform a substitution of the central atomic site of bcc Fe. In the limit of a
complete substitution, i.e., an impurity concentration of cvacancy = 1, we would expect to recover the
band structure of sc Fe. For practical reasons, we consider a substituted crystal with a very small
but finite iron concentration at the central site, i.e., a vacancy concentration of c = 0.999. Further
calculational details can be found in App. J.2.

2.2.2 Band structure and density of states

We begin our discussion by first considering the respective clean cases and a comparison of their
electronic properties. The resulting band structures along high symmetry lines of the simple cubic
Brillouin zone may be found in Figs. 2.8 (a) and 2.8 (b).

(a) (b)

(c) (d)

Figure 2.8: Comparison of the clean DFT-LCAO and CPA band structure for (a) sc Fe, and (b)
bcc Fe. (c) CPA clean band structure (green) of sc Fe vs. Bloch spectral function (false color) of
Fe1+0.001. (d) DOS Fe1+0.001 vs. sc Fe.

Clearly, these band structures differ substantially from one another. As outlined above, the idea
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2 Extensions to the original CPA formalism - Proof of concept

now is to replace the central atomic site in bcc Fe, which should result in the band structure and DOS
of sc Fe. The results of the aforementioned substitution with a concentration of cvacancy = 0.999 are
presented in Figs. 2.8 (c) and 2.8 (d).

(a)

(b)

Figure 2.9: Comparison of the Bloch spectral function of Fe1+0.5 and the clean band structures
(green lines) of (a) sc Fe, and (b) bcc Fe.

As can be seen in, the vacancy substitution on the second atomic site leads to a band structure almost
identical to that of the crystal with one atom per unit cell. Minor discrepancies may be attributed to
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2.2 Vacancy extension

the remaining iron on the second atomic site and mainly occur well above and below the Fermi level
and may thus be deemed irrelevant.
Similar observations can be made about the DOS presented in Fig. 2.8 (d), which closely coincides
with that of the simple cubic structure with only one atom per unit cell. Though there are minor
discrepancies, the prominent features are well replicated. From these results we may conclude our
approach to the inclusion of vacancies to be not only justified but also successful.
Having shown that our formalism extension works for the extreme limit of a (near) full substitution,
we shall now consider an intermediate configuration to validate our approach: a 50% substitution of
the second atom in the unit cell. Naively, one could expect a band structure somewhere in between the
two clean cases, albeit with a more complex composition. A comparison of the Bloch spectral function
of Fe1+0.5 to the clean band structures of sc Fe and bcc Fe is given in Fig. 2.9.

Figure 2.10: Comparison of the DOS of Fe1+0.5 (red), and clean sc Fe (black), and clean bcc Fe
(blue).

Although the resulting band structure is highly complex for the intermediate system, and shows
significant band broadening due to disorder, it appears to fit the naive expectation. This becomes
most clear along M-R-M, where the band structure exhibits features of both subsystems.
For our purposes it is more convenient to consider the DOSs for our three systems. A comparison of
the three can be found in Fig. 2.10. Here, it is more evident that F1+0.5 lies in between sc Fe and
bcc Fe. Both sc Fe and bcc Fe exhibit two high-density regions: one around EF and the other below
EF . However, the latter regions are well separated in energy, and our intermediate system exhibits a
"mixed" behavior. The lower high-density region appears to be shifted between the lower regions of
the clean cases. Additionally, around EF , the high-density region of Fe1+0.5 shows a peak structure
similar to that of bcc Fe, due to the additional states introduced by the second iron atom.
In conclusion, we find our vacancy extension to the CPA formalism to work both in the extreme
limit of a (near) complete substitution and the intermediate regime. We shall apply the vacancy
substitution in a more complex scenario in Chap. 4, when we study the effect of interstitial iron on the
iron chalcogenide FeSe0.5Te0.5.
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2.3 Spin polarization extension

Magnetism is an interesting quantum mechanical phenomenon in many respects, especially in the
context of substitutional disorder in the iron superconductors. In many of the iron-pnictide and iron-
chalcogenides superconductivity exists close to antiferromagnetic order [68] and the pairing mechanisms
are believed to be closely related to the strong spin fluctuations. Another phenomenon believed
to be connected to the magnetic phase is the nematic phase transition commonly encountered in
the Fe superconductors [69]. It is essential to have a tool which can treat substitutional disorder
in combination with spin polarization, in order to gain greater insight into the nature and origin
of superconductivity and nematicity in the iron superconductors. This extension to the basic CPA
formalism lends such a tool.
We shall only briefly discuss the theoretical and implementational details of the spin polarization
extension here, and refer the interested reader to App. D for a more comprehensive discussion. Including
spin introduces an additional degree of freedom and we must discern between quantities which explicitly
depend on spin and those who don’t. It is common practice to use the pseudopotentials of the
unpolarized atoms, i.e., to assume them equal for both spin channels. Additionally, the Hartree
potential only depends on the total density n = n↑ + n↓ (Sec. D.1.3). As most quantities are spin-
independent, their computation runs analogously to the unpolarized case and we need only account
for spin by doubling the dimensionality of said quantities as

Ô =
(
Ô0 0
0 Ô0

)
(2.3)

where Ô denotes the operator in spin space and Ô0 is that of the unpolarized case. The only potential
explicitly spin-dependent is the XC potential, being a nonlinear functional of the density components
n↑ and n↓. As such, it must be calculated separately for each spin component.

2.3.1 Fe1−xCox as benchmark

In order to test the inclusion of spin polarization in the CPA, we will investigate the evolution of the
magnetic moment of bcc Fe1−xCox alloys with substitutional degree x. Details on the crystal structure
used for our calculations can be found in Sec. J.3, along with relevant calculational parameters.

2.3.2 Band structure of spin polarized clean Fe and Co

We begin our inquiry into spin polarized Fe1−xCox by first studying the pure parent compounds. A
comparison of the MBPP-DFT and CPA band structures can be found in Fig. 2.11.

Atomic type P µ (µB) from DFT µ (µB) from CPA
Fe 2.223 2.183
Co 1.709 1.700

Table 2.2: Magnetic moments of Fe and Co calculated by DFT and CPA.

We find that, for Fe, there is good agreement for both spin up and spin down components (see
Figs. 2.11 (a) and 2.11 (b)), while there is a minor shift in the spin up component of Co compared to
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2.3 Spin polarization extension

the MBPP-calculation (see Fig. 2.11 (c)). However, this shift is only relevant well below the Fermi
level and should thus not be important in our further calculations.
In Tab. 2.2, a comparison of the magnetic moments µ for Fe and Co as calculated by our MBPP-DFT
and CPA method can be found. For both atomic types, the resulting magnetic moments of our CPA
calculations are in good agreement, differing only by 0.04µB and 0.009µB for Fe and Co, respectively.

(a) (b)

(c) (d)

Figure 2.11: Comparison of DFT-LCAO and CPA band structure for (a) Fe spin up (↑), (b) Fe
spin down (↓), (c) Co spin up (↑) and (d) Co spin down (↓).

In Fig. 2.12 we present the cross sections of the Fermi surface of bcc Fe for both spin components in
the (110) plane. Here, we have marked distinct sections of the Fermi surface with roman numerals to
indicate electron and hole surfaces for both majority and minority spins (see Tab. 2.3 for details). For
the majority spin (↑) we find a large electron surface (I) around Γ and a major hole surface around H
(II). Additionally, around H we find an intermediate (III) and minor (IV) hole pocket. The minority
spin (↓) contributes a large hole surface (V) around H and a large electron surface around Γ.

31



2 Extensions to the original CPA formalism - Proof of concept

(a) (b)

Figure 2.12: Fermi sheet of bcc Fe for (a) spin up, and (b) spin down in the (001) plane.
Different Fermi surfaces are marked with roman numerals (see Tab. 2.3). Calculation performed
on a 300× 300 k-mesh.

Centered at N, we find a large hole pocket (VII) and along HΓ the Fermi surface shows a ball
shaped electron pocket. These results are in good agreement with other calculations on bcc Fe with
spin polarization (see Ref. [70]).

Majority (↑) Minority (↓)

I. Large electron surface around Γ V. Large hole surface around H
II. Major hole surface around H VI. Large electron surface around Γ
III. Intermediate hole pocket around H VII. Electron pocket along HΓ
IV. Minor hole pocket around H VIII. Hole pocket around N

Table 2.3: Classification of majority and minority Fermi surfaces of bcc Fe with spin polarization.
Table in style of Tab. IV in Ref. [70].

2.3.3 Evolution of the magnetic moment in Fe1−xCox

Having examined the parent compounds in the last section, we will now turn to spin polarization in the
context of chemical substitution: we will study the evolution of the magnetic moment of Fe1−xCox with
Co-content x. A comparison of our results to those obtained via LCAO-CPA by Koerpernik et al [37],
via TB-LMTO-CPA by Turek et al [71], and experiment can be found in Fig. 2.13. Our calculations
were performed with the local-spin-density approximation (LSDA). Clearly, our implementation of
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2.3 Spin polarization extension

the LCAO-CPA qualitatively reproduces the overall trend, i.e., an initial monotonous increase of the
averaged magnetic moment 〈µ〉CPA with increasing Co content x, followed by a decrease towards pure
Co.

Figure 2.13: Evolution of magnetic moment of Fe1−xCox with cobalt content x. Comparison
of results from our LCAO-CPA (black), LMTO taken from Ref. [71] (fuchsia), LCAO-CPA from
Ref. [37] (green) and experimental values (red, extracted from Ref. [37] Fig. 2).

The averaged magnetic moment is calculated from the local magnetic moments µP of the constituent
atomic types P according to 〈µ〉CPA =

∑
P cPµP , where cP are the respective concentrations.

Figure 2.14: Density of states for bcc Fe (blue) and hypothetical bcc Co (red). Solid lines indicate
spin up, dashed lines indicate spin down component.
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2 Extensions to the original CPA formalism - Proof of concept

From the local magnetic moments for each atomic species (delivered by the CPA) we observe that
while the cobalt moment remains relatively constant, the iron moment is strongly affected by the cobalt
content. Cobalt substitution leads to an initial strong enhancement of µFe, resulting in a maximum
of 〈µ〉 around x = 0.2 − 0.3, followed by a saturation to µFe ∼ 2.6µB. While our results are in good
agreement with those obtained via TB-LMTO-CPA, they overestimate the averaged magnetic moment
on the Fe side (O(∆µ) ∼ 2%) and underestimate it on the Co side (O(∆µ) ∼ 5%) compared to the
experimental results and the LCAO-CPA by Ref. [37].

Figure 2.15: Component DOS of Fe0.5Co0.5 for Fe spin up (upper left), Co spin up (upper right),
Fe spin down (lower left), and Co spin down (lower right).

While charge transfer often influences the local magnetic moments in substituted systems, for
Fe1−xCox no noticeable net charge transfer between the constituents occurs - due to almost identical
electronegativities [72]. This observation is supported by our CPA calculations, in which no perceptible
transfer between Fe and Co is found for any concentration x.
From Fig. 2.14 we can tell that the d↑-band in hypothetical bcc Co is fully occupied. Consequently, Co
is already a saturated ferromagnet [72], and no considerable increase in majority spin electrons (↑) is
possible. This is why the Co local magnetic moment in the alloy is largely independent of substitutional
content. In contrast, the d↑-band in pure bcc Fe (see Fig. 2.14) is not fully occupied and in principle,
majority spin states could be filled with minority spin electrons. These observations are in agreement
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2.4 Full ab-initio spin-orbit coupling extension

with results presented in the literature [72].
While the majority spin states of Fe and Co are fully occupied in the fully polarized alloy (see Fig. 2.15),
those of the minority spin are not. According to Ref. [72], this results in a redistribution of minority
spin electrons from Fe to Co and a subsequent back donation of Co-↓ electrons to the Fe d↑-band due
to local charge neutrality conservation. As a result, a net redistribution of electrons from Fe-↓ to Fe-↑
states occurs and the local magnetic moment of Fe is increased.
Overall, we have shown our spin polarization extension to capture the dominant phenomena in clean
compounds as well as in a substituted spin polarized system (as reported in the literature).

2.4 Full ab-initio spin-orbit coupling extension

Spin-orbit coupling (SOC) arises in solid state systems due to the relativistic interaction of a particles
spin with its orbital motion. There are numerous systems which exhibit fascinating physical phenomena
due to spin-orbit coupling, such as the quantum spin hall effect (QSHE) [73], surface Dirac cones [19],
and Majorana zero modes [20, 74], to name a few. All of these are a consequence of the material’s
topology and SOC is often a necessary ingredient in the realization of topologically nontrivial systems.
Consequently, if we wish to study such systems (as we will in Chap. 3), we must extend our CPA
formalism to include SOC.
The full ab-initio treatment of spin-orbit coupling is one of the major formalism extensions to the CPA
that have been developed in this work. A detailed derivation of the SOC Hamiltonian matrix elements
can be found in App. E.

2.4.1 Band structure and Fermi surface of bcc Fe with spin-orbit coupling

We once again turn to bcc Fe as a benchmark for our formalism extensions, this time: spin-orbit
coupling.

Figure 2.16: Comparison of DFT-LCAO and CPA band structure of Fe with spin orbit coupling.
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2 Extensions to the original CPA formalism - Proof of concept

As a first benchmark we compare the band structures resulting from the CPA and MBPP calculations
with SOC in Fig. 2.16, before discussing the effects of SOC in detail.

Figure 2.17: Comparison of CPA band structure of bcc Fe with and without SOC. Green circles
indicate lifted degeneracies due to SOC.

(a) (b)

Figure 2.18: Fermi surface cross section in the (110) plane of bcc Fe (a) without, and (b) with
spin-orbit coupling calculated on a 300× 300 k-mesh. Green circles indicate splitting due to SOC
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2.4 Full ab-initio spin-orbit coupling extension

Apart from some minor shifts, the two band structures are qualitatively in good agreement. In order
to visualize the effects of SOC, we next compare the CPA band structures with and without SOC. From
Fig. 2.17, we can identify a number of effects on the band structure of bcc Fe: along ΓN and NP, we
find multiple lifted degeneracies in form of avoided crossings (indicated by green circles). Additionally,
along PΓ another lifted degeneracy presents itself where a formerly degenerate band clearly splits into
two separate bands.
Although SOC is only a weak effect in bcc Fe, we clearly see the induced band splitting in the
comparison of the Fermi surface cross section in the (110) plane of Fe without SOC and with SOC in
Figs. 2.18 (a) and 2.18 (b). The band splitting along PΓ (see large green circle in Fig. 2.17) is clearly
reproduced in the Fermi surface cross section which shows additional splitting occurs between further
Fermi surfaces (see small green circle).
Thus, we have shown our SOC extension to the CPA to work reasonably well for clean systems,
reproducing all relevant effects, and we shall apply it in a more complex scenario in Sec. 3.5 when we
study the effect of SOC in substituted iron chalcogenides.
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3 Chapter 3

Band engineering of Dirac cones in iron
chalcogenides

The search for solid state systems hosting topologically protected surface states has drawn significant
attention in recent years. Next to topological insulators, another group of interesting systems has
emerged in this context: topological superconductors. Due to the fascinating properties of their
associated surface states, the Majorana zero modes, they hold great promise for the realization of
scalable quantum computers [20, 21, 74–76]. Recent attempts to fabricate such superconductors have
concentrated on layered hetero-structures of semi-conductors and conventional superconductors. Aside
from the complicated manufacturing process, the relatively low superconducting transition temperature
typically found in these compounds is a major drawback. Thus, access to a material with a high Tc,
in addition to intrinsic topological superconductivity, is highly desirable.
A promising platform for the single crystal, high-Tc realization of Majorana zero modes is the Fe-based
superconductor FeSe1−xTex: it exhibits superconductivity over a wide range of composition x [77–79],
while its transition temperature can be brought up to 30 K via application of external pressure [80] and
even above 40 K in monolayer thin films [81]. It exhibits a high tunability of its internal parameters
via chemical substitution [82–84], while possessing a simple crystalline structure (see Fig. 3.2). Most
notably, FeSe0.5Te0.5 was argued to possess a nontrivial band topology characterized by a non zero
Z2 topological invariant [19]. As a consequence, it hosts a surface Dirac cone (SDC) [85] that could
lead to the emergence of Majorana zero modes in vortices [19, 83, 86, 87] due to the proximity to bulk
superconductivity [88].
Here, we are however presented with a significant obstacle: the aforementioned Dirac cone is located
well above the Fermi level, thus rendering it irrelevant with respect to experiments such as surface
transport. Furthermore, as suggested by Ref. [22], topological superconductivity is only realized if the
SDC crosses EF . Recently, attempts to circumvent this problem via surface deposition have shown
promising results [19]. However, such a strategy inevitably disrupts surface transport, a quantity of
great interest in the context of topologically protected surface states. The main goal of this work is to
provide an alternative, non-disruptive strategy to lower the SDC towards the Fermi level, all the while
preserving the pristine surface and allowing access to undisturbed surface transport: intrinsic doping.
The main findings of this chapter were published in Ref. [89].
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3 Band engineering of Dirac cones in iron chalcogenides

3.1 A brief introduction to iron-based superconductors

¸ The age of superconductivity began in the year 1911 with a startling observation made by dutch
physicist Heike Kamerlingh Onnes: upon cooling mercury below 4.2K its electrical resistivity appeared
to have dropped to zero. Although he received the Nobel Prize for his discovery, it took almost 60
years for scientists to explain this phenomenon. In 1957 Bardeen, Cooper and Schrieffer published their
famed "Microscopic Theory of Superconductivity" [90], now widely known as BCS theory. They were
able to ascribe superconductivity to the formation of so called Cooper-pairs, a bound state formed
by two electrons with opposing momentum and spin, due to an attractive force mediated by the
positively-charged ionic lattice. In the presence of an arbitrarily small attractive interaction, the
Fermi sea becomes unstable against the formation of these bound states and the system undergoes a
phase transition to the energetically favorable BCS ground state, below a transition temperature Tc.
Aside from a vanishing resistivity, superconductors exhibit a second unique phenomenon: the Meissner
effect. A superconductor presents itself with perfect diamagnetism, expelling an external magnetic field
(up to a critical strength) from its bulk.

Figure 3.1: Schematic drawing of crystal structures of the Fe-based superconductors (figure
reproduced from Ref. [91] in style of Fig. 5.1. in Ref. [6]).

At the time it seemed that superconductivity as a whole had been understood and only occurred at
very low transition temperatures until the high-Tc cuprates were discovered by Bednorz and Müller
[12] in 1986. The BCS theory failed in describing this new type of superconductor and hence began the
search for unconventional superconductors with pairing-mechanisms distinct from conventional ones.
More and more examples of such superconductors have since been found, most notably the cuprates
and iron-based superconductors (FeSCs). As local magnetic moments can induce spin flips, they have
a Cooper-pair-breaking effect on conventional superconductors [92], and so it was widely assumed that
superconductivity could not be realized in a solid containing magnetic elements such as iron, which
made it all the more astonishing when superconductivity was discovered in LaOFeP below ∼ 4 K
[93]. Shortly after, the first high-Tc candidates were identified: LaFeAsO1−xFx (Tc = 26 K) [7] and
SmO1−xFxFeAs (Tc = 55 K) [94]. Since then, the iron-based superconductors (FeSCs) have attracted
enormous attention with strong evidence pointing towards unconventional pairing mechanisms via
electron correlation [95, 96], such as spin fluctuations [97, 98] and orbital ordering [99, 100]. Su-
perconductivity has been realized in a wide variety of solid state systems, both bulk and thin films
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[83, 101, 102].
In general, the FeSCs may be classified in terms of families according to their composition. For this brief
introduction to the topic, we will focus on the four prominent families depicted in Fig. 3.1 (reproduced
from Ref. [91]). All of these families have one trait in common: a layered structure composed of iron
atoms that form a planar square lattice surrounded by either chalcogen (Ch) or pnictogen (Pn) atoms
[103]. What they differ on is the existence and composition of an additional spacer layer in between the
FeCh/Pn planes. In the 111-family this layer is made up of a single atom of either Li or Na, while the
122-family exhibits one alkali or alkaline earth atom per two Fe atoms. A more complicated structure
is presented by the 1111-family, which exhibits an alternating pattern of rare earth and oxygen planes.
The only family not to exhibit such a spacer layer is the 11-family. In this chapter, we shall concentrate
on three of its members - FeSe, FeTe, and the substituted compound FeSe1−xTex.

3.2 The iron chalcogenides - FeSe, FeTe, Fe(Se,Te)

The iron chalcogenides are part of the 11-family, consisting of an iron layer forming a planar square
lattice surrounded by chalcogens, which site alternately above and below the plane (see Fig. 3.2 (a)).
These layers periodically extend along the c-axis as in Fig. 3.2 (b), primarily bound by van der Waals
forces. Here, we will mainly focus on FeSe, FeTe, and Fe(Se,Te) - the main goal of our inquiries. An
extensive and comprehensive review of FeSe can be found in Ref. [104].

FeSe

Although FeSe possesses the simplest structure of the FeSCs, it exhibits rich physics and allows for
high tunability of superconductivity. Application of high external pressure can raise the transition
temperature from Tc ∼ 8.7 K up to 36.7 K [15], and even Tc > 65 K can be reach in single layer FeSe
deposited onto SrTiO3 [13, 14].

(a) (b)

Figure 3.2: Crystal structure of FeSe/FeTe for (a) a single unit cell (b) layered unit cells. Green
balls denote Fe-sites and brown balls symbolize Se/Te-sites.

While spin fluctuations and the suppression of spin-density wave (SDW) order is considered to be
the dominant superconducting pairing mechanism in the FeSCs, this cannot be the case for FeSe which
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lacks long-range magnetic order. Rather, it has been suggested that superconductivity is linked both to
the nematic phase transition from tetragonal P4/nmm to orthorombic Cmma close to Ts = 90K, and
orbitally selective pairing [105, 106]. As high quality single crystals can easily be grown via chemical
vapor transport [107, 108], it is an ideal candidate for detailed experimental analysis.

FeTe

In contrast to FeSe, our second end member FeTe exhibits no superconducting phase [109] but a
a stripe magnetic phase [110]. Among the iron-chalcogenides it was shown to have the strongest
correlations [111]. Some additional remarks on FeTe are in order for our CPA calculations: firstly,
grown samples always exhibit an interstitial Fe-site, i.e., have stoichiometric composition Fe1+yTe with
occupational degree y. This iron interstitial might play an important role in the first-order structural
phase transitions from tetragonal to orthorombic at Ts ∼ 80 K, and the associated magnetic phase
transitions [112, 113]. In our calculations we ignore this excess Fe and assume a tetragonal crystal
structure without magnetism.

Fe(Se,Te)

Our target system in this chapter will be FeSe1−xTex, for which similar observations as in FeSe have
been made: the moderate Tc ∼ 14.5 K can be brought up 30 K under pressure [114], and even 40 K [81]
in thin films. Most interestingly, however, for x = 0.5 Fe(Se,Te) is proposed to belong to a rare class
of materials: the intrinsic topological superconductors. In this context, topological superconductivity
refers to the superconducting surface states, while in the bulk it remains trivial. The nontrivial
topology of its band structure manifests itself in the emergence of a spin-helical surface Dirac cone
(SDC) inside a spin-orbit-induced gap and centered around Γ of the BZ on (001) surfaces. [19, 85].
Due to proximity to the bulk superconducting electrons, the Dirac cone can host Majorana zero modes
at the core of superconducting vortices [83, 86, 87, 115]. These exotic states are characterized by
non-Abelian quantum statistics and constitute their own antiparticles [116–118]. They are promising
candidates for the realization of fault-tolerant and scalable quantum computers [20, 21, 74].
It should be noted that grown Fe(Se,Te) samples exhibit an interstitial site occupied by excess iron
atoms which has significant effects on the superconducting and magnetic properties of the system [63–
65]. Although superconductivity is suppressed for higher occupational content, it may persist at lower
concentrations [64] and excess iron can even be removed via annealing [119]. This is vital to our search
for Majorana zero modes, as superconductivity is a mandatory prerequisite. In this chapter, we shall
neglect the interstitial iron site and shall study its effects in detail in Chap. 4. So far, experimental
evidence of these states in solid state systems has been found in spin-orbit coupling semiconductor
nanowires [120, 121], ferromagnetic atomic chains [122], and topological insulators [123]. All these
systems, however, come with major drawbacks: proximity to conventional s-wave superconductors is
required, and they must be operated at very low temperatures. Here, Fe(Se,Te) could present us with
the first realization of Majorana zero modes with a high Tc.
However, the position of the SDC well above the Fermi level in Fe(Se,Te) is an obstacle to experiments
such as transport measurements - which are of great interest in the context of nontrivial surface
states. It will be the main goal of this work to establish a strategy to make the SDC accessible
to such experiments by theoretically designing a crystal of either the form Fe1−yTM ySe0.5Te0.5 or
FeSe1−x−yTexHay, where TM and Ha denote a generic substitution of concentration y with transition
metals and halogens, respectively.
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3.3 The origin of the surface Dirac cone in Fe(Se,Te)

We begin our discussion of the emergence of a surface Dirac cone by first postulating the necessary
ingredients for its realization:

1. A band inversion in the ΓZ line.

2. A spin-orbit coupling gap.

3. A nonzero topological invariant Z2.

In the following discussion we will show these conditions to be fulfilled in Fe(Se,Te), where we closely
follow the argumentation presented in Ref. [19]. As a starting point for our discussion of the emergence
of a SDC in FeSe1−xTex we choose to first study the system under consideration without spin-orbit
coupling (SOC).
For a substitutional degree of x = 0.5, we are presented with a band structure along ΓZ as schematically
depicted in the left half of Fig. 3.3. Close to the Fermi level, we find three distinct bands: a highly
dispersive nondegenerate band D (blue line) with pz- and dxy-character, a "flat" nondegenerate band
F1 (green line) with dxy-character and a two-fold degenerate band F2 (red line) with dyz/dxz-character.
We will restrict ourselves to a qualitative discussion here and focus on the effect of Te substitution and
the source of the band structure characteristics in greater detail in Sec. 3.5.

Figure 3.3: Schematic band structure of FeSe0.5Te0.5 without SOC (left), and with SOC (right).
Figurative states at Γ and Z are labeled according to their irreducible representations Γ±n , and Λn
denote small representations along ΓZ. Dashed line indicates Fermi level.

Without spin-orbit coupling (SOC), tetragonal Fe(Se,Te) has point group symmetry D4h. In general,
an arbitrary k-point will have a lower symmetry, transforming as the small group of k. However,
certain high symmetry points retain the full D4h symmetry. This is the case for both Γ and Z, and we
can label the states of the aforementioned bands at these special points according to the irreducible
representations (IRs) of D4h, which we denote as Γ±n , following Ref. [19]. Even and odd parity are
indicated by + and −, respectively. For a comprehensive introduction to group and representation
theory in the context of condensed matter physics, we refer the interested reader to Ref. [124].
Here, we only present the character table for symmetry point group D4 (see Tab. 3.1) along with the
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corresponding IRs and basis functions. The C(′/′′)
n signify n-fold rotational axes. The character table

for D4h is obtained via the direct product D4⊗ (E, i), where E is the unit and i the inversion element.
The inclusion of inversion symmetry will double the number of IRs, due to parity.

basis functions IR E C2 = C2
4 2C4 2C ′2 2C ′′2

x2 + y2, z2 Γ1 1 1 1 1 1
Rz, z2 Γ2 1 1 1 -1 -1

x2 − y2 Γ3 1 1 -1 1 -1
xy Γ4 1 1 -1 -1 1
(xz, yz) (x, y), (Rx, Ry) Γ5 2 -2 0 0 0

Table 3.1: Character table for symmetry point groupD4. Character table forD4h can be obtained
from the direct product D4 ⊗ (E, i) with unit element E and inversion element i.

According to Ref. [19], with inversion symmetry present in Fe(Se,Te), we can combine orbitals into
bonding and anti bonding states with well defined parity. Since Fe only contributes via d-orbitals to
the aforementioned bands, and the chalcogens Se and Te only via p-orbitals, we can confine ourselves
to states ∣∣∣D±α〉 = 1√

2

(∣∣Feα〉± ∣∣Fe’α〉) α ∈ {z2, xz, yz, xy, x2 − y2} (3.1)∣∣∣P±β 〉 = 1√
2

(∣∣∣Xβ〉∓ ∣∣∣X’β〉) β ∈ {x, y, z}, (3.2)

where X ∈ {Se,Te}. Following the convention chosen in Ref. [19], the (x, y) axes are rotated 45° with
respect to the crystallographic axes. The difference in sign of Eq. (3.2) stems from the odd parity
of p-states. In Tab. 3.2 we present the IRs connected to these combined states both at Γ and Z,
respectively, and along the high symmetry line ΓZ. From this we can tell that the states of band D at
Γ and Z transform as Γ−2 , since it is comprised of anti bonding Pz and Dxy. In general, as we move
from one high symmetry point to another, the symmetry of the involved k-points is reduced.

∣∣Dα

〉
parity z2 xz/yz xy x2 − y2

∣∣∣Pβ〉 parity x/y z

D4h + Γ+
1 Γ+

5 Γ+
4 Γ+

3 D4h + Γ+
5 Γ+

1
- Γ−3 Γ−5 Γ−2 Γ−1 - Γ−5 Γ−2

C4v + Λ1 Λ5 Λ4 Λ3 C4v + Λ5 Λ1
- Λ4 Λ5 Λ1 Λ2 - Λ5 Λ1

Table 3.2: Combined states
∣∣Dα

〉
(left) and

∣∣∣Pβ〉 (right) with corresponding irreducible
representations Γ±n at Γ/Z, and Λn along the ΓZ line. Table in style of Tab. II in Ref. [19].

In our case, we start from the Γ point with symmetry groupD4h, move along a path Λ with symmetry
group C4v, and end up at Z - which again has D4h. Due to the reduced symmetry along Λ, the states
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3.3 The origin of the surface Dirac cone in Fe(Se,Te)

which make up the bands transform according to different IRs - the small representations Λn - as
opposed to those at the high symmetry points. Clearly, all relevant bands transform as distinct small
representations (D → Λ1, F1 → Λ4, and F2 → Λ5) and, consequently, no mixing and no avoided
crossings occur.
A comparison of the schematic band structure in Fig. 3.3 and the band structure of FeSe in Fig. 3.4 (a)
(which we shall discuss in greater detail in the following section) mainly yields a shift of D towards
lower energies due to Te-substitution (see Sec. 3.5). As a result, the SOC gap will open closer to EF ,
as we shall explain below. For both FeSe and FeSe0.5Te0.5 we can identify a band inversion, i.e., an
inversion of the order of the odd parity state of D and the even parity state of F2 as we move from Γ
to Z. Thus, one of the postulated conditions for a SDC is fulfilled.
Up to now, we have neglected the considerable SOC in Fe(Se,Te) introduced mainly via the chalcogens.
If we now include SOC, we will need to consider spin degrees of freedom which leads us to the double
group of D4h (see Ref. [124]). In addition to the IRs of D4h the double group contains additional IRs
due to the rotational properties of half-integer angular momenta. These new representations are at
least two-fold degenerate (Kramer’s Theorem [125]). We shall not present the character table for the
double group or the concrete IRs here, but will only comment qualitatively on the impact of SOC on
the IRs of the relevant states and bands.
Without SOC, the highest state at the Γ point (belonging to band D) transformed according to the
irreducible representation Γ−2 , while the states connected to band F1 and the doubly degenerate F2
transformed according to Γ+

4 and Γ+
5 , respectively. The inclusion of SOC has a significant effect on the

bands in question (see right panel of Fig. 3.3): first and foremost, the twofold degeneracy of Γ+
5 states

is lifted, now transforming as the IRs Γ+
6 and Γ+

7 of the double group. Due to the lifted degeneracy,
we label these new bands as F+

2 and F−2 . Secondly, band F1 (with IR Γ+
4 in D4h) now transforms as

Γ+
7 at Γ (and Z), and due to the identical small representation Λ7 of bands F1 and F−2 , we can expect

strong mixing along the high symmetry line (see Fig. 3.3).
Finally, the odd parity state Γ−2 of band D now transforms as Γ−6 . Thus, at the former crossing point
we find states associated with the same small representation Λ6, the consequence of which is an avoided
crossing, i.e., a direct SOC gap as required for our surface Dirac cone.
As argued in Ref. [19], given the SOC gap, a nonzero topological Z2 invariant [126, 127] can be defined
via a "curved chemical potential" and calculated from the parity criterion: from the product of parities
of the occupied states at the time-reversal-invariant momenta (TRIM) Z2 is found to be 1. Such a
nonzero invariant implies a topological phase for FeSe0.5Te0.5, which is necessary for the possibility to
host nontrivial surface states. The generation of these topological surface states is similar to that in
3D strong topological insulators [126], however, for metallic Fe(Se,Te), the surface states necessarily
overlap with bulk states.
According to the arguments and model calculations presented in Ref. [22], in order to realize a
topological superconducting phase in which Majorana zero modes can be trapped at the ends of
magnetic vortex lines, the Fermi level is required to cross the surface Dirac cone. This is in general
not the case for Fe(Se,Te) and we shall address this issue in Sec. 3.7. It should be noted here, that
there is some debate as to the position of band D, which is not seen in angle-resolved photoemission
spectroscopy (ARPES) measurements [128] and, consequently, the band inversion needed for the SDC
is in question. These measurements suggest band D to be situated well above F2, an issue that might
be resolved by our inquiries in Sec. 3.7.2.
Having qualitatively reasoned for the emergence of a SDC in Fe(Se,Te), we will now take a step back
and have a closer look at the parent compound FeSe and its band structure, in order to gain a more
quantitative understanding of the effects of Te substitution.
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3 Band engineering of Dirac cones in iron chalcogenides

3.4 Band structure and Fermi surface of FeSe

The band structure of FeSe has been studied in great detail by ARPES measurements and we shall
give a brief overview of its main features here, closely relating to Ref. [19]. In the DFT and CPA band
structure calculations presented below, we have neglected SOC for the time being, but will include it
in our CPA calculations presented in Sec. 3.7.2. Looking at Figs. 3.4 (a) and 3.4 (b), we find three hole
like bands at the Γ point, where all three valance band tops are unoccupied. These bands are formed
from Fe-dxz, -dyz (labeled α, β in Fig. 3.4 (b)), and -dxy orbitals (labelled γ), respectively. They form
the well known hole pockets of the Fermi surface around Γ, as determined from our CPA calculation
in Fig. 3.5 (b). Experimentally, only two of these are detected by ARPES measurements [129–132].

(a) (b)

Figure 3.4: (a) DFT band structure (red lines) of FeSe with lattice parameters a = 3.7688Å,
c = 5.520Å and z = 0.2668. Green line highlights band D, blue line highlights nondegenerate
band F1, and black line highlights twofold degenerate band F2. Arrow indicates effect of Te-
substitution. (b) The band structure along MΓ with hole-like bands α, β, and γ.

This is a common short coming of most electronic structure calculations when it comes to FeSe and
can be attributed to strong electron-electron correlations [133–135] which are insufficiently captured
by these methods. These correlations typically lead to relatively large renormalization factors of ∼ 3.5
for α and β and even ∼ 9 for γ, and band-dependent energy shifts (see Ref. [132]). Most notably, γ is
situated ∼ 50 meV below the Fermi level in experiments and consequently does not contribute to the
Fermi surface. Here, it is crucial to note that this short-coming of the electronic structure methods
here applied has no negative influence on the emergence of the SDC and our inquiry. As is clear from
our discussion in Sec. 3.3, the hole band γ is not involved in the formation of the SOC gap and hence
irrelevant to the SDC.
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3.4 Band structure and Fermi surface of FeSe

Apart from the three hole pockets, the Fermi surface exhibits two electron pockets around M which take
on the form of crossed ellipses. These can clearly be observed in the cross section of the Fermi surface
at kz = 0 in Fig. 3.5 (b). Additionally, we have depicted the atomic type and angular momentum
decomposed contributions to the Fermi surface in Fig. 3.6. Clearly, the largest contributions stem
from Fe 3d-orbitals with only minor contributions by Se pz.

(a) (b)

Figure 3.5: (a) Fermi surface of FeSe (100×100×10 k-mesh grid), where transparency for certain
sections has been increased for better visibility. (b) Fermi surface sheet in the (kx, ky)-plane at
kz = 0 (300×300 k-mesh grid) where white lines indicate boundaries of 1. BZ and high symmetry
points Γ and M and hole bands α, β, and γ are labeled.

Above the valence band top we find a gap of ∼ 0.5eV to the next state belonging to the Γ−2
representation, a mixture of Fe-dxy and chalcogen pz-orbitals. As we are interested in the possible
realization of a SDC within the SOC gap, we will now restrict ourselves to the discussion of the ΓZ-line
which contains the participating bands (see Sec. 3.3). Similar to the situation in Fe(Se,Te), along the
ΓZ line, the band connected to Γ−2 (labeled D in Fig. 3.4 (a)) exhibits the strongest dispersion of the
three bands closest to the Fermi level. Compared to Fe(Se,Te), however, it is situated even further
above EF . The relatively small dispersivity of bands F1 and F2 close to the Fermi level along ΓZ reflects
the predominant intralayer hopping, while inter layer hopping is strongly reduced. This makes FeSe
rather two- than three-dimensional, most commonly attributed to the limited spatial orbital extent of
the Se-pz-orbitals, giving rise to small orbital overlap and interlayer hybridization [19].
As we have discussed in Sec. 3.3, the SOC gap will open at the crossing point of D and F2 which for
FeSe resides well above the Fermi level. However, for a topological superconducting phase, the SDC
must cross EF ([22]), and so we must lower the crossing point. In Sec. 3.5, we will use our CPA method
to show how this can be achieved via chalcogen, i.e., Te-substitution. We will then include SOC in our
calculations in Sec. 3.6 to show the formation of the SOC gap.
Before we turn to applying our CPA method in this context of substitutional disorder, we will first
study the dependence of the band structure of FeSe, especially of the bands deemed relevant, on the
specific lattice parameters of our system.
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3 Band engineering of Dirac cones in iron chalcogenides

(a) (b)

(c) (d)

Figure 3.6: Fermi surface cross section of FeSe from atomic type and angular momentum
decomposed Bloch spectral function A(ω,k). (a) Fe l = 1, (b) Se l = 1, (c) Fe l = 2, and
(d) Se l = 2. Hole pockets indicated by α, β and γ (for very low contributions, labels have been
dimmed).
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3.4 Band structure and Fermi surface of FeSe

3.4.1 The influence of the lattice parameters on the band structure of FeSe

We now turn to a key characteristic of the band structure of FeSe: its sensitivity towards the specific
lattice parameters - especially with respect to bands D and F2 which are relevant to the formation of
the surface Dirac cone (see Sec. 3.3). In order to gain insight into the dependence of these bands, we
have performed a study concentrating on two key parameters: the chalcogen-height z and the interlayer
distance c. Since both are relevant for the overlap of the chalcogen pz-orbitals between the iron planes,
i.e., the pp-hybridization, we may suspect them to have a crucial impact especially on band D.

Variation of the chalcogen-height z

The results for a variation of the chalcogen-height z can be found in Fig. 3.7, where we compare the
states of the relevant bands a both Γ and Z. Increasing z shortens the distance between the Se atoms
in between the Fe layers and consequently, their orbital overlap increases.
Clearly, the chalcogen-height has only a minor impact on F1, which gets shifted in energy and crosses
the Fermi level, as z is increased. However, its dispersion remains unaltered, indicating that the pz
orbital overlap has barely an influence on this 3d iron band. For our second iron band F2 we find
the opposite situation: while the dispersion is slightly but steadily increased, the center of F2 remains
unshifted. The greatest effect can be found in band D, where we see a minor decrease in dispersion
but an extensive shift downward in energy.

Figure 3.7: Evolution of the position of the states connected to band D, F1, and F2 at the Γ and
Z point with respect to the chalcogen-height z in units of c. Grey region marks subspace in which
a band crossing of D and F2 occurs. Vertical green line indicates the experimentally measured
parameter.

Most notably, only in a small region of the parameter space do we find a crossing point between D
and F2, which we have highlighted in gray in Fig. 3.7. Thus, the specific value of z strongly influences
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3 Band engineering of Dirac cones in iron chalcogenides

the outset of our search for a SDC: without a crossing point between D and F2, no SOC gap can
emerge.

Variation of the interlayer distance c

The results for our parameter study with respect to the intralayer distance c are presented in Fig. 3.8.
Similar to a variation of z, the intralayer distance has an impact on the magnitude of the orbital
overlap of the pz orbitals. Shortening this distance brings the Se atoms closer together - increasing the
overlap.

Figure 3.8: Evolution of the position of the states connected to band D, F1, and F2 at the Γ
and Z point with respect to the interlayer distance c in units of a. Grey region marks subspace
in which a band crossing of D and F2 occurs. Vertical green line indicates the experimentally
measured parameter.

For band F1 we find a behavior similar to that found above: while the band is shifted upward in
energy (and across the Fermi level) no change in dispersion occurs. While we now find a minor decrease
in dispersion for F2, the band center still remains unshifted. Once again, we find the strongest effect in
D, which is not only shifted downward in energy, but shows an inversion of its slope between c = 1.3
and c = 1.4 along with an increase in dispersion. Similar to before, only within a small region of the
parameter space do we find a crossing point between D and F2.
As we have shown here, the specific lattice configuration plays a vital role in realizing the SDC cone
and it is thus of paramount importance for our following CPA calculations to use sensible parameters
as input. Given the strong dependence on lattice parameters, it is most reasonable to resort to
the real lattice parameters as measured by experiment. To his end, we have determined the lattice
parameters used within our subsequent CPA calculations by averaging over two FeSe1−xTex samples
close to x = 0.5. Details of the calculations performed in the remainder of this chapter can be found
in App. J.5.
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3.5 The effect of Te-substitution

3.5 The effect of Te-substitution

We have already qualitatively discussed the band structure of Fe(Se,Te) in Sec. 3.3 and shall now take
a closer and more quantitative look at the effects of Te-substitution on the band structure of FeSe.
On our route to realize the SDC, we seek to lower band D sufficiently to bring the crossing point
with F2 closer to the Fermi level. This can be achieved via Te-substitution - an effect most commonly
attributed to the greater spatial extent of Te pz-orbitals compared to their Se counterparts [19] (a
schematic drawing of the orbital overlap of FeSe and FeTe can be found in Fig. 3.9).

(a) (b)

Figure 3.9: Schematic drawing of orbital overlap for (a) FeSe and (b) FeTe. Figures in style of
Fig. 1 (c) in Ref. [19].

The increased pp-hybridization leads to increased interlayer hopping, resulting in band D being
shifted closer to the Fermi level. This effect of Te-substitution on band D becomes evident from
the comparison of the FeSe band structure in Fig. 3.4 (a) and the Bloch spectral function A(k, ω) of
FeSe0.5Te0.5 in Fig. 3.10 (b), which is calculated according to

A(k, ω) = − 1
π

Im Tr
[
SΓ(k, ω+)

]
, (3.3)

where S and Γ are the orbital overlap and effective medium Green’s function in extended Hilbert space,
respectively. Here, ω+ = ω+ iδ with infinitesimal δ. A detailed derivation and discussion of the Bloch
spectral function is given in App. G.4.
From Fig. 3.10 (b) it is evident that Te-substitution affects the highly dispersive D band in the
desired way: it has been lowered significantly in energy compared to the band structure of real FeSe
(Fig. 3.4 (a)), now crossing the Fermi level and the 3d-bands F1 and F2. In Fig. 3.10 we compare
the band structures of our parent compounds FeSe and FeTe to that of substitutionally disordered
FeSe0.5Te0.5. Here, the lattice parameters for the substituted compound were used in all three CPA
calculations, as the CPA formalism demands equal crystal structures for all substitutional end members
(see App. A.3 for details). This is the reason behind the discrepancy between the band structures of
FeSe in Fig. 3.4 (a) and Fig. 3.10 (a). While the D band lies well above the Fermi level and crosses
the F2 band for real lattice parameters, in the hypothetical crystal it crosses the Fermi level and lies
beneath both 3d-bands, F1 and F2 at Z.
For the second end member FeTe, we find that band D crosses both flat bands. As we have mentioned
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3 Band engineering of Dirac cones in iron chalcogenides

in Sec. 3.2, we have ignored the structural and magnetic phase transitions, and the interstitial iron
in this system. Considering these hypothetical crystals, we can clearly observe that the substituted
compound is intermediate to the two end members with respect to the location of band D.

(a) (b) (c)

Figure 3.10: Bloch spectral function A(k, ω) of (a) FeSe, (b) FeSe0.5Te0.5, and (c) FeTe for lattice
parameters of substituted compound (a = 3.793Å, c = 5.9656Å, z = 0.27885). Relevant bands are
labeled D, F1 and F2.

Now that we have shown the possibility of affecting the location of pz-character band D through
Te-substitution, we have most of the ingredients necessary for the formation of the SDC. The last
missing building block is spin-orbit coupling, which we will include in our calculations in the next
section.

3.6 Inclusion of Spin-orbit coupling

Having discussed the theoretical effects of SOC on the band structure of FeSe0.5Te0.5 and the origin of
the SDC in Sec. 3.3, we can now extend our prior investigation: we will include the considerable SOC
introduced by the chalcogens - especially the heavier Te - in our calculations.
The results presented in this section were obtained by a full ab-initio treatment of SOC within the
CPA (see App. E for details). From Fig. 3.11 (c), we can confirm the predicted effects of SOC on the
bands of interest: for one, the degeneracy of band F2 is lifted, splitting into bands F+

2 and F−2 and a
SOC gap is opened at the crossing point of D and F−2 .
We can clearly identify this SOC gap from the comparison of the project Bloch spectral functions of
FeSe0.5Te0.5 without and with SOC in Figs. 3.11 (b) and 3.11 (d). This approach allows us to directly
map disorder effects to individual bands of the parent compound by projecting the k-dependent Green’s
function S(k)Γ(k)S(k) onto the eigenvectors of the parent compound. We can define this as

Gn(k, ω) =
∑

i,j∈parent
c∗n,i(k)

[
S(k)Γ(k)S(k)

]
i,j
cn,j(k) (3.4)

where cn,i is the ith orbital component of the eigenvector of band n. A detailed discussion of the
projection technique can be found in App. G.
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3.6 Inclusion of Spin-orbit coupling

Another direct consequence of the lifted degeneracy is a shift of the crossing point not only in energy
but also in k-space. As F−2 is shifted below the original F2 band, the crossing point shifts from
k⊗ = 0.285ΓZ and ε⊗ ' 0.1587eV to k⊗ = 0.310ΓZ and ε⊗ ' 0.109eV. At this new crossing point we
can identify the SOC hybridization gap with a magnitude of ∆SOC ' 30 meV. Clearly, each spectral
peak splits into two, transferring spectral weight across the gap.

(a) (b)

(c) (d)

Figure 3.11: Bloch spectral function A(k, ω) along ΓZ for FeSe0.5Te0.5 (a) without SOC, and (c)
with SOC. Comparison of the projected spectral function at the band crossing point (b) without
SOC, and (d) with SOC.

It is within this gap that a SDC occurs on the surface of the system, that is theoretically predicted to
host topologically nontrivial surface states - the Majorana zero modes - in the superconducting phase
[19, 22, 85]. However, there is one major obstacle to overcome in realizing the SDC and topological
surface states: the crossing point, and consequently the SOC gap, lies well above the Fermi level. Thus,
a possible SDC would be irrelevant with respect to experiments such as transport measurements, and
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3 Band engineering of Dirac cones in iron chalcogenides

following Ref. [22] the resulting superconducting phase would be topologically trivial. We are thus
tasked with raising the Fermi level into the vicinity of the SOC gap. In the course of this attempt, we
must also investigate the additional spectral broadening induced by the cosubstitution - it must not
conceal the SOC gap. A major advantage of the CPA, which we will employ for our line of inquiry, is
that it readily supplies us with this information.

3.7 Electron doping via chemical substitution - shifting the Fermi level

In order to bring the band crossing point in Fig. 3.10 (b) closer to the Fermi level, we consider co-
substitution, thus bringing additional electrons into the bulk crystal. This allows us to circumvent
the disruption of surface transport due to surface deposition, as proposed in Ref. [19]. In the search
for topologically nontrivial surface states it is paramount to have access to an unperturbed surface
and surface transport measurements. Here, we follow two distinct strategies: firstly, we consider
cosubstitution of 3d transition metals, namely Ni, Cu, and Co, at the Fe site. Secondly, we consider
cosubstitution at the Se site with the halogens bromine and iodine. The reasons for our specific
choices are two-fold: firstly, introduction of additional electrons. Secondly, without grown and fully
characterized crystals, we must resort to the lattice parameters of FeSe0.5Te0.5. A cosubstitution,
however, will inevitably change the crystal structure and thus our candidates are chosen due to their
close similarity in ionic radii to those atomic types we wish to substitute. Consequently, we can expect
them not to alter the lattice to severely.

3.7.1 3d transition metal substitution at the Fe site

One possibility to bring additional electrons into the system is a cosubstitution with 3d transition
metals at the Fe site.

Figure 3.12: Half-widths (red) and energy position of the band crossing point relative to EF
(blue) of D and F2 for Ni , Cu, and Co for various substitutional degrees. Dotted blue line
indicates Fermi level.
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3.7 Electron doping via chemical substitution - shifting the Fermi level

Accordingly, we consider compounds of the form Fe1−yTM ySe0.5Te0.5 with TM={Ni, Cu, Co} and
substitutional degree y. Due to the enormous computational cost, we have performed the subsequent
CPA calculations without SOC, concentrating on the doping effect. Only for those compounds which
we identify as promising, will we include SOC for further investigation.
In Fig. 3.12 we present the spectral half-widths ∆σ of bands D and F2 at their crossing point, along
with the energetic and k-space positions ε⊗ and k⊗, respectively, for all substituents at different
concentrations. The respective values are summarized in Tab. 3.3.

k⊗ [ΓZ] ε⊗ [eV] ∆σD [eV] ∆σF2 [eV]
FeSe0.5Te0.5 0.285 0.1586 0.0156 0.0057

Co concentration
5% 0.30 0.1394 0.0352 0.0143
10% 0.31 0.1178 0.0367 0.0221
20% 0.33 0.0728 0.0404 0.0360
30% 0.35 0.0259 0.0454 0.0465
40% 0.37 -0.0220 0.0492 0.0529

Ni concentration
2.5% 0.30 0.1387 0.0365 0.0225
5.0% 0.31 0.1177 0.0404 0.0404
7.5% 0.32 0.0958 0.0432 0.0578
10% 0.33 0.0739 0.0483 0.0729
15% 0.35 0.0319 0.0584 0.1034
20% 0.38 -0.0152 0.0667 0.1292

Cu concentration
5% 0.31 0.1010 0.0482 0.0802
10% 0.33 0.0483 0.0654 0.1764
15% 0.36 0.0020 0.0792 0.3053
20% 0.39 -0.0390 0.0998 0.4236

Table 3.3: Table containing the k⊗-point and energy ε⊗ of the crossing point between bands D
and F2 and the corresponding half-widths for FeSe0.5Te0.5, and substituents Co, Ni, and Cu at
different concentrations.

We find the desired effect for all three candidates, i.e., the band crossing point is lowered towards the
Fermi level by introducing additional charges into the bulk. As could have naively been expected, this
is most efficiently achieved with Cu, which possesses the most valence electrons of the substituents.
For yCu = 20%, we find ε⊗ = −0.039 eV to be below EF , which would make the corresponding
SDC accessible to transport measurements. This is closely followed by Ni-substitution, which posses
one valence electron less (ε⊗ = −0.0152 eV at yNi = 20%). However, the major drawback of Cu in
comparison to Ni is the spectral half-width ∆σ of the relevant bands. Here, we find much larger band
broadening due to disorder with ∆σ more than an order of magnitude above that of Ni. The least
pronounced broadening is found for Co-substitution. However, as can be seen from the bottom panel
in Fig. 3.12, a high substitutional degree of yCo = 40% is necessary to cross the Fermi level.
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From Fig. 3.12 we can clearly identify a common trend in the band broadening with increased transition
metal content: while the spectral width of band D is only increased by a factor of ∼ 2, that of F2 is
increased by a factor of ∼ 4 − 6. This can be attributed to the orbital composition of the respective
bands. As F2 mainly stems from Fe 3d orbitals, it seems natural that substitution with 3d transition
metals would have a greater effect here that on the pz character band D. Both the band broadening
effect and the raised Fermi level can qualitatively be observed in the band structure plots presented in
Fig. 3.13 for the "optimal" doping contents. While the respective bands are still well discernible in Ni
and Co, for Cu the band broadening effect is clearly too large to yield well defined bands - especially
considering F2.

(a) (b) (c)

Figure 3.13: Comparison of the Bloch spectral function A(k, ω) along ΓZ of (a)
Fe0.6Co0.4Se0.5Te0.5, (b) Fe0.85Ni0.15Se0.5Te0.5, and (c) Fe0.8Cu0.2Se0.5Te0.5.

As we have discussed previously, band broadening is a limiting factor for the realization of the SDC:
as the SOC gap is relatively small, the additional disorder could conceal it and prevent a SDC from
emerging. It is to be expected that the 3d transition metal cosubstitution could violate the necessity
for small band broadenings, considering the results obtained from our CPA calculation.
Apart from this complication, there is a second circumstance which renders the suggested strategy
useless in the search for a SDC and possible realization of Majorana zero modes: due to the strong
scattering properties of Ni, Cu and Co, superconductivity is suppressed at lower concentrations (yCo ∼
20%, yNi ∼ 10%, yCu ∼ 1.5%) [136–139] than those proposed by us. Thus, for concentrations which
bring the crossing point to EF , superconductivity no longer exists. This is the main drawback of TM
substitution, as the lack of superconductivity inevitably prohibits Majorana zero modes. In conclusion,
3d transition metal cosubstitution in Fe(Se,Te) can be excluded from the search for Majorana zero
modes.

3.7.2 Halogen substitution at the Se site

The second strategy we employ is a cosubstitution at the Se site with halogens, namely bromine
and iodine. Thus, we seek to virtually design an appropriate crystal of the form FeSe1−x−yTexHay
(Ha= {Br, I}). We shall, once again, begin our inquiries by neglecting SOC in order to concentrate
on the doping effects and shall include when discussing our most promising candidate.
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3.7 Electron doping via chemical substitution - shifting the Fermi level

Cosubstitution with bromine

As a first candidate for cosubstitution at the Se site we consider bromine for different substitutional
degrees. The results of the corresponding CPA calculations with respect to the shift and band
broadening effects can be found in Tab. 3.4.

k⊗ [ΓZ] ε⊗ [eV] ∆σD [eV] ∆σF2 [eV]
FeSe0.5Te0.5 0.285 0.1586 0.0156 0.0057

Br concentration
5% 0.20 0.1155 0.1152 0.0150
10% 0.05 0.0796 0.1281 0.0214
15% - - - -

Table 3.4: Table containing the k⊗-point and energy ε⊗ of the crossing point between bands D
and F2 and the corresponding half-widths of FeSe0.5Te0.5 and bromine cosubstitution. For y = 0.15
no crossing point is found and no specification can be made.

From these results we can identify the desired effect of lowering the crossing point of bands D and
F2 closer to the Fermi level. Due to the p-orbital contributions of Br we find a strong broadening of
band D, which is an order of magnitude larger than that for band F2 which stems mainly from Fe
3d-orbitals.

Figure 3.14: Bloch spectral function A(k, ω) of FeSe0.35Br0.15Te0.5 along ΓZ.

However, with increasing Br content band D is shifted down in energy too excessively, thus falling
below F2 before reaching EF . Consequently, the substituted compound no longer exhibits the band
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crossing point necessary for the SOC gap. This can clearly be seen from Fig. 3.14, in which we present
the band structure along ΓZ for y = 15%. Without a crossing point we must exclude Br substitution
from our attempt to realize a SDC close to the Fermi level. We should, however, keep in mind that these
results strongly depend on the lattice parameters, which might differ in a real sample. Consequently,
this strategy should be reexamined with real parameters obtained from a grown sample. We shall now
turn to the most promising candidate our CPA has identified: iodine.

Cosubstitution with iodine

We finally turn to our last candidate in the Se site substitution: iodine. We have performed multiple
CPA calculations for varying substitutional degree y and summarized the results with respect to the
band crossing point in Tab. 3.5.

Figure 3.15: Comparision of the DOS of FeSe, FeSe0.5Te0.5 and FeSe0.325I0.175Te0.5 without SOC.

In the preliminary calculations we have neglected SOC, due to the immense computational effort
connected to the full ab-initio calculations containing multiple atomic types and substituents.

k⊗ [ΓZ] ε⊗ [eV] ∆σD [eV] ∆σF2 [eV]
FeSe0.5Te0.5 0.285 0.1586 0.0156 0.0057

I concentration
5% 0.25 0.1272 0.0226 0.0064
10% 0.21 0.0973 0.0253 0.0089
15% 0.16 0.0686 0.0261 0.0098
17.5% 0.13 0.0541 0.0263 0.0100

Table 3.5: Table containing the k⊗-point and energy ε⊗ of the crossing point between bands D
and F2 and the corresponding half-widths for FeSe0.5Te0.5, and iodine cosubstitution.
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3.7 Electron doping via chemical substitution - shifting the Fermi level

We shall, however, include it for the substitutional degree we deem optimal. Before going into detail
on the band broadening effects, we first turn to the intended effect of raising the Fermi level. This
effect can clearly be observed in the DOS. In Fig. 3.15, we compare the DOS of FeSe, FeSe0.5Te0.5 and
our cosubstitution with the highest iodine content - FeSe0.325I0.175Te0.5. The inset in Fig. 3.15 shows
a small region about the Fermi level for all three systems. For the isoelectronic substitution of Se with
Te, no shift in the DOS states is found. In contrast, the DOS for Fe(Se,I,Te) appears shifted to lower
energies. This clearly indicates that more charges have the be accommodated for.

Substituent optimal conc. ∆σD [eV] ∆σF2 [eV] ε⊗ [eV]
Ni 20% 0.0667 0.1292 -0.0152
Cu 20% 0.0998 0.4236 -0.0390
Co 40% 0.0492 0.0529 -0.0220
Br 10% 0.1281 0.0214 0.0796
I 17.5% 0.0263 0.0100 0.0541

Table 3.6: Comparison of half-widths for all cosubstitution candidates at their optimal doping
without SOC.

We can now turn to the discussion of the results presented in Tab. 3.5 where we give the position
of the crossing point in both k-space (k⊗) and energy (ε⊗), together with the half-widths of bands D
and F2 for multiple substitutional degrees y.

(a) (b)

Figure 3.16: Bloch spectral function A(k, ω) of (a) FeSe0.5Te0.5, and (b) FeSe0.325I0.175Te0.5 along
high symmetry line ΓZ with SOC.
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3 Band engineering of Dirac cones in iron chalcogenides

From Tab. 3.5, we clearly find the desired effect of the band crossing point being shifted downward
closer to the Fermi level. Overall the band broadening effects to both band F2 and D are minimal,
leading only to a small increase of ∆σ with increasing iodine content.
As the magnitude of the spectral broadening is vital to the survival of the SOC gap, we compare
the spectral half-widths of all candidates considered for cosubstitution in this work at their optimal
concentrations in Tab. 3.6. These results verify that iodine cosubstitution induces the least broadening
to the relevant bands and provides the best chances of not concealing the SOC gap.
With the lowest ∆σ (for both D and F2) among our candidates we can expect iodine cosubstitution to
be the least likely to conceal the SOC gap. Although the crossing point resides just above the Fermi
level (ε⊗ = 0.0524 eV) for the proclaimed optimal concentration y = 17.5%, we can expect it to be
shifted downward in energy upon including SOC. As we have discussed in Sec. 3.3, SOC will lift the
degeneracy of F2 and the resulting bands F+

2 and F−2 will be pushed above and below the former band
position, respectively. This obviously leads to a lowered crossing point between D and F−2 (at which
the SOC gap opens). From the comparison of FeSe0.5Te0.5 with and without SOC, we can estimate
the magnitude of the energy shift connected to bands F+

2 and F−2 . The latter band is shifted by
∆ε ' 0.055 eV compared to the position of F2 without SOC. Thus, it is reasonable to assume that
y = 17.5% suffices to bring the crossing point below EF (ε⊗ < ∆ε).

Figure 3.17: Projected Bloch spectral function A(k, ω) of FeSe0.375I0.175Te0.5 at the crossing point
of D and F−2 at k⊗ = 0.185ΓZ.

Now that we have identified our most promising candidate and an optimal substitutional degree we
can turn to the inclusion of spin-orbit coupling. In Fig. 3.16, we compare the Bloch spectral function
of FeSe0.5Te0.5 to that of FeSe0.325I0.175Te0.5 with SOC.
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3.8 Conclusion and outlook

As we have discussed above, the shift of the crossing point closer to the Fermi level can clearly be
observed. We are thus left with answering the question whether the SOC gap has survived the enhanced
disorder due to the additional iodine. While indiscernible in Fig. 3.16 (b), we can clearly identify the
gap in Fig. 3.17. At the crossing point (k⊗ = 0.185ΓZ) of band D and F−2 , the respective projected
spectral functions show two well discernible peaks each. The gap is now centered at ε ' 5 meV with
a magnitude of ∆SOC ' 10 meV, such that the Fermi level would now cross a SDC arising within the
SOC gap. Additionally, we can observe strong mixing of bands F1 and F+

2 in Fig. 3.17, as theoretically
predicted in Sec. 3.3. Both peaks exhibit contributions from the respective other band.
In conclusion, we have shown that iodine is the most promising candidate for chemical substitution
with the goal of raising the Fermi level and making the surface Dirac cone accessible to experiment.
We have furthermore virtually designed a specific hypothetical crystal with the optimal iodine content
in which the SOC gap survives the enhanced disorder. Thus, FeSe0.325I0.175Te0.5 is a highly promising
candidate for the solid state realization of Majorana zero modes.

3.8 Conclusion and outlook

In this chapter we have applied the coherent potential approximation (CPA) in the context of materials
design by band engineering the iron-chalcogenide Fe(Se,Te) via chemical substitution with the goal
of providing a strategy to bring the surface Dirac cone closer to the Fermi level, and thus making
it accessible to surface transport measurements without disrupting the pristineness of the crystal’s
surface. As theory predicts the SDC to host topologically nontrivial Majorana surface states inside
vortices in the superconducting phase [19], such experiments can yield vital information about these
exotic states.
In our inquiry we have considered multiple routes, such as transition metal substitution on the Fe site
as well as cosubstitution at the Se site with halogens. Using the CPA, we were able to exclude the
former strategy due to the substantial disorder scattering introduced by the considered candidates.
Not only would their introduction to the system lead to substantial band broadening, which could
conceal the spin-orbit coupling gap necessary for the emergence of the SDC, but superconductivity
would even be suppressed. All in all, this exempts the approach from realizing a platform in which to
find Majorana zero modes.
More promising results are yielded by our second strategy: we have shown that among the two
contenders explored within this work, bromine and iodine, the latter is a highly promising candidate.
Not only does iodine substitution introduce the necessary additional charges into our bulk system
to raise the Fermi level to the SDC cone, but the induced band broadening in the relevant bands is
sufficiently small to allow for the SOC gap to survive the increased disorder. We thus conclude, that
this substitutional strategy provides a viable foundation for the single crystal realization of Majorana
zero modes and lends a valuable tool for their study.
As we have discussed in Sec. 3.7.2, the choice of iodine as a substituent was in part motivated by its
close similarity to Te with respect to ionic radii. We had argued it to be a reasonable assumption that
this similarity might result in only minor alteration of the lattice parameters. Given the fact that our
CPA calculations pertaining to the substituted crystal are based on the experimentally determined
lattice parameters of the parent compound FeSe0.5Te0.5, and that the effect of minor variations can be
substantial (see Sec. 3.4.1), the reliability of our results is strongly coupled to the de facto structure of
the theoretically predicted compound. Consequently, the crystal growth of a sample of the proposed
compound is not only indispensable to the experimental search of Majorana zero modes but is indeed
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3 Band engineering of Dirac cones in iron chalcogenides

an inevitable step in the refinement of our method and model. The full characterization of such a
sample would yield the true lattice parameters on which the next iteration of calculations must be
based. Only by taking into account these parameters can we confirm - or refute - our predictions.
It should be noted here, that due to the substitutional effects on the lattice parameters we should not
fully exclude bromine from further investigations. Rather, the growth and characterization of such a
sample could yield lattice parameters which might allow a band crossing point close to the Fermi level.
This calls for further collaboration between theory and experiment in the endeavor towards the solid
state realization of Majorana zero modes.
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4 Chapter 4

Interstitial iron in Fe1+ySe0.5Te0.5 and its
possible impact on superconductivity

In this chapter we will investigate the effect of interstitial iron on the band structure and Fermi surface
of Fe1+ySe0.5Te0.5 and possible connections to the suppression of superconductivity with increasing
interstitial content y.

4.1 Superconductivity in FeSe and Fe(Se,Te)

Among the iron-based superconductors, FeSe is unique in that it does not exhibit a magnetically
ordered phase in close proximity to superconductivity, providing us with a highly fascinating platform
to study the underlying unconventional pairing mechanism.
While FeSe shows a modest transition temperature of Tc = 8− 9K, it can be tuned in numerous ways:
via external pressure [15], chemical substitution, and even monolayer FeSe on SrTiO3 bringing Tc above
60 K[13, 14]. Although no magnetic long-range order has been found down to low temperatures, strong
magnetic fluctuations with complex temperature and momentum dependence have been observed [140–
142].
The specific origin of superconductivity in FeSe is still subject to debate with numerous scenarios
being considered. Some experimental finding point toward spin-fluctuation-mediated pairing with a
gap that changes sign between electron and hole Fermi surfaces [142, 143], while strong electron-phonon
interactions could also be of importance [144]. Furthermore, due to the relatively small magnitude of
the superconducting gap ∆ ∼ 2 − 3 meV and the resulting large ratio ∆/EF ∼ 0.1 − 1 it could even
fall into the regime of a BCS-BEC crossover [145, 146].
The same holds for Fe(Se,Te)[147, 148], for which spectroscopic-imaging scanning tunneling microscopy
(SI-STM) measurements suggest unconventional s±-wave superconductivity [149], i.e., the supercon-
ducting gap function undergoes a relative sign change between the hole and electron Fermi surface
pockets . Inter-band nesting between these disconnected pockets is proposed to generate spin fluctua-
tions responsible for the pairing mechanism [149]. It should be noted that different paring symmetries,
such as d-wave and nodal s±-wave (sign change within a single electron-like Fermi surface) have been
suggested for the Fe-pnictides [150, 151].
Superconductivity in this system, however, strongly depends on the occurrence of interstitial iron.
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4 Interstitial iron in Fe1+ySe0.5Te0.5 and its possible impact on superconductivity

4.2 Iron interstitial in Fe(Se,Te)

As we have briefly discussed in Sec. 3.2, grown samples of FeSe1−xTex almost always host an interstitial
site between the iron planes that is occupied by excess iron to varying degree. The unit cell of the
corresponding crystal structure can be seen in Fig. 4.1. The interstitial iron site is depicted by semi
filled brown balls, where the colored wedges indicate the low occupational degree. It is situated above
and below the chalcogen site and strong hybridization with both the chalcogens and the in-plane iron
can be expected.

Figure 4.1: Unit cell of Fe1+ySe1−xTex. Filled brown balls indicate Fe, semi filled brown balls
indicate interstitial Fe, and filled green balls indicate Se and Te.

This interstitial site, and the degree to which it is occupied by excess iron, has significant effect on
the magnetic and superconducting properties of the system [63–65].
We shall here concentrate on superconductivity in light of our inquiry presented in the previous
chapter. While at low interstitial content superconductivity can persist [64], for higher concentrations
no transition temperature is found. This would be a hindrance to the strategy proposed in Chap. 3
to realize a platform for the search for Majorana zero modes. However, annealing strategies have
been suggested [119] to reduce excess iron from as-grown samples - enhancing superconductivity and
allowing for Majorana zero modes. Nevertheless, a thorough study of the effects on the band structure
and Fermi surface of Fe(Se,Te) might shed light onto the intricate connection between interstitial iron
and superconductivity - which is still a topic of ongoing debate.
With our CPA method, making use of the vacancy extension described in Sec. 2.2, we are able to
treat the partial occupation of the interstitial site and study the disorder effects induced on both band
structure and Fermi surface.
The crystal structure of Fe1+ySe0.5Te0.5 was obtained via x-ray diffraction (XRD)1 from a sample with
y ' 0.084. The measured lattice parameters were used in all subsequent calculations irrespective of
interstitial iron content (for details on XRD measurements and calculations, see App. J.6). This will
certainly lead to some inaccuracy of the obtained results, as excess iron has significant effects on the
real lattice parameters of the compound. Yet for the qualitative discussion presented here it suffices.

1Private communication with Michael Merz
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4.3 Impact of excess iron on DOS, band structure, and Fermi surface

4.3 Impact of excess iron on DOS, band structure, and Fermi surface

We begin our investigation into interstitial iron in Fe(Se,Te) by considering its effects on the DOS and
the band structure, before focusing on their implications on superconductivity. We can naively expect
two distinct effects: on the one hand, interstitial iron introduces additional electrons into the system,
thus raising the Fermi level with respect to Fe(Se,Te). On the other hand, we can expect bands close to
the Fermi level to be subject to strong alterations. This is due to the fact that the main contributions
to these bands stem from the 3d-orbitals of the in-plane iron atoms. Due to their close proximity to
the interstitial site we can expect strong hybridization with d-orbitals of the excess iron.
From the comparison of the DOS in Fig. 4.2, we can clearly identify the doping effect which manifests
itself in the shift of the low lying peaks towards lower energies with increasing content y = {0.01, 0.04,
0.084}. This is a clear indication of EF being shifted to accommodate the additional electrons.

Figure 4.2: Comparision of the DOS of Fe1+ySe0.5Te0.5 for different degrees y of interstitial iron
occupation. Inset highlights region around EF .

However, the most significant changes to the DOS occur close to the Fermi level. As can be seen
in the inset of Fig. 4.2, compared to "pure" FeSe0.5Te0.5, the DOS acquires additional structure as the
interstitial content is increased. This is especially prominent in the first two large peaks below EF : as
the occupation of the interstitial site is increased, a clear double peak structure evolves. This indicates
additional states emerging close to the Fermi level.
This observation is reflected in the corresponding band structures presented in Figs. 4.3, 4.4, and 4.5.
Apart from the expected band broadening induced by the additional disorder, some remarkable effects
on the band structure can be observed around Γ, and along ΓZ and ΓM. Firstly, hole band β appears
to separate and is pushed below EF . For y = 0.084, there is only little spectral weight associated with
this band close to the Fermi level, which will be reflected in the corresponding hole pocket of the Fermi
surface.
This can be observed in Fig. 4.6, where we have plotted the respective Fermi surfaces for all y
considered. While the hole pocket corresponding to band β can still clearly be observed for y = 0.01,
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4 Interstitial iron in Fe1+ySe0.5Te0.5 and its possible impact on superconductivity

for higher concentrations it is smeared out severely.

Figure 4.3: Band structure of Fe1+0.01Se0.5Te0.5 along high symmetry lines.

The second change to the band structure could have severe implications on the proposal made in
the previous chapter. The highly dispersive pz-character band D in the ΓZ line also separates and is
strongly shifted down in energy. This drastically affects the crossing point between D and F2, which
was a necessary condition for the emergence of the SDC discussed in Chap. 3.
For high excess iron content (y = 0.084), it is impossible to identify this crossing point, which would
clearly hinder our attempts to make the SDC accessible to transport measurements in the topologically
nontrivial superconducting phase and prevent the realization of Majorana zero modes.

Figure 4.4: Band structure of Fe1+0.04Se0.5Te0.5 along high symmetry lines.
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4.3 Impact of excess iron on DOS, band structure, and Fermi surface

Thus, it is vital to the realization of these exotic surface states to grow crystals with an interstitial
content as low as possible, or to reduce the excess iron from as-grown samples via annealing techniques
described in Ref. [119].

Figure 4.5: Band structure of Fe1+0.084Se0.5Te0.5 along high symmetry lines.

The last significant effect on the band structure, and subsequently on the Fermi surface, can be
observed along ΓM. Here, one the of the electron-like bands crossing the Fermi level close to M is
strongly broadened due to the excess iron. This effect can be observed most clearly in the corresponding
electron pocket of the Fermi surface cross sections at kz = 0 in Fig. 4.7. While both electron pockets
are well discernible for y = 0.01, for higher content they are significantly broadened. This effect is
most pronounced for the outer electron pocket, which is gradually suppressed with increasing y, and
barely visible for the highest concentration considered here.

(a) (b) (c)

Figure 4.6: Fermi surfaces of Fe1+ySe0.5Te0.5 for (a) y = 0.01, (b) y = 0.04, and (c) y = 0.084.
Transparency for certain sections has been increased for better visibility.
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4 Interstitial iron in Fe1+ySe0.5Te0.5 and its possible impact on superconductivity

4.4 Impurity scattering and the suppression of superconductivity

Without a comprehensive theory of the pairing mechanism in Fe(Se,Te) it is difficult to establish a
connection between these disorder effects and superconductivity. However, we have already encountered
a class of compounds related to FeSe0.5Te0.5 in Chap. 3 for which superconductivity is suppressed due
to impurity scattering: 3d transition metal substituted FeSe0.5Te0.5, i.e., Fe1−yTM ySe0.5Te0.5 with
TM= {Co,Ni,Cu}.

(a) (b) (c)

Figure 4.7: Fermi surface cross sections at kz = 0 of Fe1+ySe0.5Te0.5 for (a) y = 0.01, (b) y = 0.04,
and (c) y = 0.084. Boundaries of first Brillouin zone indicated by white lines.

Thus, we resort to a qualitative comparison of interstitial iron to these system for TM concentrations
for which superconductivity is known to have vanished [136–139]. To this end, we have performed CPA
calculations for Co (y = 0.2), Ni (y = 0.1), and Cu (= 0.05) substitutions.

(a) (b) (c)

Figure 4.8: Fermi surface cross sections at kz = 0 for (a) Fe0.8Co0.2Se0.5Te0.5, (b)
Fe0.9Ni0.1Se0.5Te0.5, and (c) Fe0.95Cu0.05Se0.5Te0.5. Boundaries of first Brillouin zone indicated
by white lines.

From the resulting Fermi surface cross sections in Fig. 4.8, we can identify similar effects on the
respective Fermi surfaces compared to a high interstitial content (see Fig. 4.7 (c)). On the one hand,
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4.4 Impurity scattering and the suppression of superconductivity

we find substantial broadening of the hole pockets centered around Γ, although the broadening is more
pronounced for transition metal substitution.
On the other hand, while the outer electron pocket at M is strongly suppressed for interstitial iron,
for all three transition metal candidates it has disappeared entirely. Additionally, the remaining
electron pocket exhibits enhanced broadening as we found for excess iron. The pronounced broadening
in all compounds considered implies strong impurity scattering - which is the cause of suppressed
superconductivity for Co, Ni, and Cu.
In order to compare the strength of impurity scattering for the transition metal compounds to that of
high interstitial iron content (y = 0.084), we present cuts through the diagonal of the Fermi surface
cross sections, i.e., along ΓM, in Fig. 4.9. Apart from differing locations of the individual Fermi
surfaces, we can clearly identify the broadening of the respective electron pockets to be of comparable
magnitude.
Consequently, we can estimate conjecture the excess iron to posses scattering strength similar to 3d
transition metal substitution. Thus, it is reasonable to assume that the suppression of superconductivity
in Fe1+ySe0.5Te0.5 is closely linked to impurity scattering.

Figure 4.9: Comparison of diagonal cut of Fermi surface cross sections along ΓM
for Fe1+0.084Se0.5Te0.5 (black), Fe0.8Co0.2Se0.5Te0.5 (green), Fe0.9Ni0.1Se0.5Te0.5 (blue), and
Fe0.95Cu0.05Se0.5Te0.5 (red).

The results presented in this chapter allow for another - although highly speculative - conjecture
concerning the suppression of superconductivity due to interstitial iron. As we have mentioned above,
a possible candidate for superconductivity in Fe(Se,Te) is an s± gap function where the pairing
mechanism is induced by spin fluctuations due to nesting between hole and electron pockets [149].
Thus, the gradual disappearance of the outer electron pocket could strongly reduce the phase space
for such nesting.
However, we must emphasize the highly speculative nature of this proposal. In order to investigate
this possibility, a comprehensive theory is needed to determine the influence of the broadening effects
on the nesting properties.
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4 Interstitial iron in Fe1+ySe0.5Te0.5 and its possible impact on superconductivity

4.5 Conclusion and outlook

This chapter has served as a preliminary investigation into the connection between interstitial iron
in Fe(Se,Te) and the suppression of superconductivity. To this end, we have applied the coherent
potential approximation in combination with the vacancy extension presented in Sec. 2.2 for various
interstitial concentrations. We were able to identify two main effects: a minor doping effect, due to
the additional electrons introduced by the excess iron, and significant changes to the band structure -
and hence the Fermi surfaces.
Our calculations showed two bands to be most prominently affected: on the one hand, the pz-character
band D in the ΓZ line separates and is shifted below the Fermi level. This would severely hinder the
strategy presented in Chap. 3 to bring the surface Dirac cone in FeSe0.5Te0.5 towards the Fermi level
and consequently realize Majorana zero modes. Consequently, it is of paramount importance to grow
samples with low interstitial content or reduce excess iron via annealing techniques as described in
Ref. [119]. On the other hand, hole band β exhibits a similar behavior, reflected in the gradual
disappearance of the corresponding hole pocket of the Fermi surface with increasing interstitial iron
content.
In order to make a connection between interstitial iron and the suppression of superconductivity, we
have used 3d transition metal substitution in Fe1−yTM ySe0.5Te0.5 (TM= {Co,Ni,Cu}) as a comparison.
By examining these compounds for TM concentrations for which superconductivity is known to
be suppressed [136–139], we have established a qualitative link to impurity scattering induced by
interstitial iron. This was achieved by identifying multiple similarities with respect to Fermi surfaces.
For all systems considered, significant broadening of the hole pockets centered around Γ was observed.
Most notably, however, are the effects on the electron pockets around M. While the outer electron
pocket is already absent in all transition metal compounds, it seems to gradually disappear with
increasing interstitial content.
From the broadening of the respective Fermi surfaces we find interstitial iron to result in impurity
scattering of comparable strength as in the transition metal compounds for which it leads to a
suppression of superconductivity. We thus conclude that the impurity scattering potential is responsible
for the suppression of superconductivity with increasing interstitial iron content.
We have further hinted at the possibility of connecting the gradual disappearance of the outer electron
pocket to the nesting induced, spin fluctuation driven pairing mechanism proposed by Ref. [149].
However, at this point a possible connection remains highly speculative and further investigation
would require a comprehensive theory of the pairing mechanism in Fe(Se,Te). This presents a possible
subject for future works to gain further insight into the superconducting mechanism in Fe(Se,Te).
As we have mentioned in the beginning of this chapter, all CPA calculations pertaining to interstitial
iron were performed using lattice parameters determined from a sample with y = 0.084. Given
the strong influence of the actual crystal structure on the electronic properties of Fe(Se,Te) (see
Sec. 3.4.1), further investigations into the nature of interstitial iron should make use of the correct
lattice parameters determined experimentally from respective samples.
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Summary and Conclusion

In this thesis we have analyzed the effects of chemical substitution in the iron-based superconductors
with special emphasis on the iron chalcogenide Fe(Se,Te). This chapter serves to summarize the
main results and discuss possible future research projects in the context of substitutional disorder and
materials design.

The first part of this thesis was concerned with the extension of the coherent potential approxi-
mation (CPA) formalism in a pseudopotential density functional theory (DFT) framework derived in
earlier work Ref. [6], to include the description of vacancies, spin polarization, and spin-orbit coupling
(SOC). Chap. 2 served to establish these extensions and test our theoretical approaches. Furthermore,
a method for the computation of the Fermi surface and individual Fermi surface cross sections was
devised and implemented. Each of the aforementioned extensions was validated with an appropriate
study.
We were able to reproduce the experimentally measured Fermi surface of fcc Cu [60]. Additionally, we
have shown our Fermi surface method to work in a substitutional context by demonstrating a gradual
transformation of the Fermi surface from fcc Cu to the fcc Ni by studying Cu1−xNix for increasing
substitutional degree x.
The vacancy extension was tested by almost completely removing the central atom in body centered

cubic Fe, thus resulting in a hypothetical simple cubic structure. A substitution of this atomic site
with a vacancy of concentration 99.9% reproduced the band structure and DOS of hypothetical simple
cubic Fe to a high degree of accordance. Furthermore, the vacancy extension was shown to be well
behaved in the intermediate substitutional regime. Here, both band structure and DOS of bcc Fe with
a 50% vacancy at the central site were shown to exhibits features of both bcc and sc Fe - indicating a
gradual transition from one system to the other.
The spin polarization extension was shown to reproduce the magnetic moments of bcc Fe and Co

to a reasonable degree and yield Fermi surfaces in accordance with the literature [70]. To verify its
applicability in a substitutional context, the well established evolution of the magnetic moment in
Fe1−xCox [37, 71, 72] was studied. Our spin polarized calculations were able to reproduce the overall
trend of the averaged magnetic moment with increasing Co content with reasonable accuracy. We were
able to replicate the initial increase of the averaged magnetic moment, followed by a gradual decrease
towards that of pure Co. Hereby, our results coincided well with TB-LMTO-CPA calculations of
Ref. [71], but slightly underestimated experimental results presented in Ref. [37]. Furthermore, charge
transfer data and the DOS supplied by our CPA were in good agreement with theoretical explanations
of the aforementioned phenomenon [72]. In future works the spin polarized CPA, in combination with
the vacancy extension, could be applied to the study of layered magnetic materials which deviate from
stoichiometry. A possible system of interest is the 2-dimensional ferromagnet Fe3−xGeTe2, in which
the magnetic properties strongly depend on the exact Fe composition [152].
Finally, our SOC extension was benchmarked against MBPP-DFT calculations of bcc Fe. We were

able to achieve overall good agreement with respect to the effects of SOC on the band structure -
replicating avoided band crossings and lifted degeneracies. The same holds for the calculated Fermi
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surface cross section in the (110) plane.
In the second part of this thesis we have applied the CPA to members of the iron-based supercon-

ductors. The central topic of this thesis was concerned with band engineering the surface Dirac cone
(SDC) in the iron chalcogenide FeSe0.5Te0.5 (Chap. 3) so as to bring it into the vicinity of the Fermi
level via chemical substitution. This is believed to realize a topological superconducting phase [22] in
which Majorana zero modes emerge in vortex cores [19, 85] and furthermore allows access of the SDC
to experimental techniques such as transport measurements. These exotic surface states have drawn
immense scientific attention over the last two decades, as they constitute promising candidates for the
fault-tolerant realization of scalable quantum computers [21, 74–76]
We have first considered the band structure and Fermi surface of FeSe, one of the substitutional end
members. Via MBPP-DFT study we have shown the significant impact of the underlying crystal
structure on the prerequisites for the formation of a SDC. By varying the interlayer distance c and
the chalcogen height z, independently, we have determined a lattice parameter subspace in which
these requirements are fulfilled - emphasizing the importance of experimentally determined lattice
parameters for our CPA calculations. We have further applied the CPA to study the effect of Te
substitution on the band structure and revealing the existence of the SOC gap.

The main goal was to devise a substitutional strategy which lowers the SDC towards the Fermi level
while sustaining the SOC gap, despite additional disorder broadening. To this end, we have considered
two distinct strategies: 3d transition metal substitution at the Fe site, and halogen substitution at
the Se site. Both strategies rely on two effects: primarily, an electron doping effect aimed at raising
of Fermi level, and secondly a downward shift in energy of the bands connected to the SOC gap. All
substitution candidates were chosen taking into account the impact of the lattice parameters on the
electronic band structure. Consequently, elements were selected that possess more valence electrons
and exhibit similar ionic radii compared to the to-be-substituted types.
The main results are the following: we have shown the transition metal strategy (doping with Co,

Ni, and Cu) to be effective in terms of electron doping, i.e., raising the Fermi level in the desired
way (see Sec. 3.7.1). However, this strategy was discarded due to strong impurity scattering of the
considered candidates. On the one hand, all candidates introduce substantial disorder band broadening
potentially concealing the SOC gap and consequently preventing a SDC cone. One the other hand, for
the necessary substitutional degrees superconductivity is suppressed [136–139], due to strong impurity
scattering, preventing the emergence of Majorana zero modes.
For the second strategy we considered substitution with bromine and iodine at the Se site (see

Sec. 3.7.2). For the former candidate an electron doping effect was observed. However, our CPA
calculations revealed an excessive relative shift of the relevant bands such that the crossing point
vanished before reaching the Fermi level. While these preliminary results exclude Br from our pursuit
further investigations employing more realistic lattice parameters might be fruitful, as we have shown
the actual lattice parameters to have significant impact on the electronic structure (see Sec. 3.4.1). To
this end, attempts to grow an appropriately substituted crystal should be undertaken and calculations
repeated with lattice parameters gained from a full characterization.
Our last candidate, iodine, shows great promise in the attempt to realize a single-crystal platform for
the emergence of Majorana zero modes. Not only does iodine substitution introduce the additional
electrons necessary to raise the Fermi level appropriately, but also the induced disorder band broadening
is the smallest among all candidates considered. Our CPA calculations clearly show the SOC gap
to survive the additional disorder and to be aligned with the Fermi level. In conclusion, we have
theoretically designed a crystal of the form FeSe0.325I0.175Te0.5 which exhibits a spin-orbit coupling
gap at the Fermi level, thus possessing a topologically nontrivial superconducting phase. The effort
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presented in this work has laid the groundwork for a promising route to the realization of a single-
crystal platform for the emergence and study of Majorana zero modes.
Future work along this route should be aimed at the growth and full characterization of the proposed
compound. Not only is this indispensable for further experimental investigations, but would serve to
validate - or refute - the predictions made. Here, the preceding calculations should be repeated with
the true lattice parameters to further refine our method and model.
The last chapter of this thesis serves to conclude our investigations into FeSe0.5Te0.5. In Chap. 4,

we explored the suppression of superconductivity due to interstitial iron content y in Fe1+ySe0.5Te0.5
[63–65]. Aside from being of great interest in its own right, the suppression of superconductivity has
great baring on the success of the substitution strategy devised in the central part of this work. A loss
of superconductivity would exclude the emergence of Majorana zero modes.
The description of excess iron was made possible by the vacancy extension outlined above which allows
the treatment of partial occupation. Our CPA calculations revealed two main effects on the electronic
properties of the system: a minor electron doping effect due to the occupation of the interstitial site,
and significant alterations to the band structure. Of the latter, the effects on the pz character band
along the ΓZ line (connected to the formation of the SDC) were the most relevant to our main goal.
A high interstitial content proved detrimental to the existence of the band crossing point at which the
SOC gap opens.
The second prominent alteration of the band structure is connected to the electron bands forming the
two electron Fermi surface pockets around the high symmetry point M. We were able to show that
increasing interstitial content entails significant broadening of the outer electron pocket, culminating
in its disappearance.
In order to gain a qualitative estimate of the impurity scattering strength and to draw a possible
connection to the suppression of superconductivity, we have compared the Fermi surfaces for varying
interstitial content in Fe1+ySe0.5Te0.5 to that of transition metal substituted FeSe0.5Te0.5. As mentioned
above, Co, Ni and Cu are known to destroy the superconducting state, due to their impurity scattering
strength. We were able to identify close similarities between the doping effects on the respective Fermi
surfaces. Aside from substantial broadening of the hole pockets centered at Γ, the most dominant effects
were observed for the outer electron pocket. For all three transition metal candidates, at concentrations
for which the superconducting state is known to be destroyed [136–139], only the inner electron pocket
at M could be observed. This closely resembles the situation observed for high interstitial content. The
comparable extent of Fermi surface broadening in these systems supports the assumption that impurity
scattering, due to interstitial iron, plays an important role in the suppression of superconductivity.
The results outlined above emphasize the importance of growing crystals with minimal interstitial iron
content, so as to preserve superconductivity [64] and not destroy the SDC.
The intricate connection between interstitial iron in Fe(Se,Te) and the suppression of superconductivity
warrant further systematic investigations. Future works should focus on the gradual disappearance of
the outer Fermi surface electron pocket and strive for a more quantitative description of the observed
phenomena. One possible field of research in this context could be the proclaimed s± superconducting
state and underlying nesting induced pairing mechanism [149] in Fe(Se,Te). In order to estimate the
impact of the vanishing electron pocket on the nesting properties, a comprehensive theory of the pairing
mechanism is needed. Furthermore, the spin polarized CPA could be applied to study the effects of
excess iron on the magnetic properties of Fe1+ySe1−xTex [63, 64].

Beyond its relevance for fundamental research, we have seen that a first-principles based theory for
chemical substitution in electronic materials can serve as a helping hand in guiding experiment in the
search for new and fascinating materials.
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Summary and Conclusion

On a more general level, this thesis has accomplished the following central achievements. This
thesis has extensively increased the versatility of the CPA formalism and its implementation in a
pseudopotential density functional theory framework. The developed functionalities grant access to
the study of a multitude of fascinating physical phenomena, such as magnetic order and systems with
relevant spin-orbit interactions. Conceptually, this thesis has shown the applicability of the CPA in
the context of virtual materials design. It has employed design principles to tailor specific electronic
properties of solid states systems. However, the hallmark of science is its aspiration to scrutinize its
predictions, and the same holds for the results presented in this work. It is of paramount importance to
validate the statements made in close cooperation with experiment and to further refine the underlying
models and methods. In conclusion, this thesis shows that an ab-initio treatment of substitutional
disorder can provide an efficient and versatile tool in the search for new and exotic states of matter.
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A Appendix A

Ab-initio CPA program

This chapter serves as an introduction to the ab-inito LCAO-CPA program which implements the
scheme outlined in Sec. 1.2.3. The original code was implemented by Dr. Alexander Herbig (see
Ref. [6]) and further developed in this work.

A.1 Code extensions

We begin with a brief overview of the major extensions added to the pre-existing code:

1. Fermi sheet and surface extension to calculate single or multiple cross sections of the Fermi
surface Sec. 2.1.

2. Vacancy extension allowing for the treatment of vacancies and interstitial site occupation.
Herein, a vacancy is treated as an independent ’species’ with the basis functions of the type to
be substituted and zero initial density. For a detailed description see Sec. 2.2.

3. Non-relativistic spin polarization for the treatment of magnetic phases and properties. For
a detailed description see Sec. 2.3

4. Full ab-initio spin-orbit coupling according to the spin-orbit potentials calculated from the
MBBP for each species (App. E). For a detailed description see Sec. 2.4.

It should be noted, that here spin polarization and spin-orbit coupling are mutually exclusive and can
only be applied separately. Apart from these extensions, a number of optimizations were implemented
to further increase the code stability and reduce computational and memory cost. Consequently,
systems with unit cells containing multiple atomic species and substitutions can be treated with feasible
effort.

A.2 Program file structure

The program code was implemented in Fortran90 (apart from the Broyden mixing scheme implemented
in Fortran77) and currently contains ca. 23000 lines of code, among which roughly 10000 lines were
written in this work. The rest is made up of pre-existing CPA code and routine libraries taken over from
MBPP. A summary of the source code files and the respective authors is given in Tab. A.1 below. The

93



CPA program code
File Developed Description
broyd.f77 H. Winter Broyden mixing for charge self-consistency
excorr.f90 MBPP Routines for exchange-correlation (XC) potential
funkt.f90 MBPP Mathematical functions, in particular

cubic harmonics, Gaunt coefficients,
Legendre polynomials, Wigner matrices

geo.f90 MBPP Characterization of bonds between neighboring sites
specialpar.f90 MBPP Parameters and fundamental constants
cpa.f90 A. Herbig & this work Main program
cpaSolver.f90 A. Herbig & this work BEB-CPA impurity solver, band structure

calculations, Fermi level, DOS
and charge self-consistency

density.f90 A. Herbig & this work Calculations concerning electronic density
hamilton.f90 A. Herbig & this work Hamilton matrix elements
hloc.f90 R. Heid & this work Calculation of mixing potential

and spin-orbit potential
hmatloc.f90 R. Heid & this work Calculates Hamilton and overlap matrix elements

via local and nonlocal parts of the basis functions
locmat.f90 R. Heid & this work see above
hsomat.f90 R. Heid & this work Main calculation of SOC matrix elements
input.f90 A. Herbig & this work Processing input from MBPP
overlap.f90 A. Herbig & this work Overlap matrix elements
potential.f90 A. Herbig & this work Local potentials including VXC decomposition
symmetry.f90 A. Herbig & this work Symmetrization routines
tools.f90 A. Herbig Useful routines such as scalar

product, Fourier transformations, etc.

Table A.1: Source code files of the CPA-program. Table taken from Ref. [6] and by contributions
from this thesis.

analytic expressions of the matrix elements implemented in the code are derived in Apps. D and E and
references to the subroutines performing the calculations are made in the respective texts. Demanding
calculations were parellelized using OpenMP, which allows for multi-core calculations on a single node of
a cluster machine. Furthermore, the open-source libraries Basic Linear Algebra subprograms (BLAS)
[153] and Linear Algebra Package (LAPACK) [154] need to be linked in the compilation of the CPA-
program that mainly deal with matrix operations such as diagonalization and inversion. In order to
make the CPA program accessible to a broader scientific audience, a graphical user interface (GUI)
was implemented using the Tkinter package of phyton. A detailed introduction thereof is presented
in App. I.
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A.3 Mode of operation

All CPA calculations require input files generated by the MBPP program for each substitutional end
member. Furthermore, the CPA formalism demands each substitutional end member to have the same
crystal structure and lattice parameters. Aside from the radial basis functions delivered by the LCAO
fit a number of relevant quantities is output to ASCII files with the prefix CPA_*, containing information
on crystal structure and symmetry, pseudopotentials and expansion coefficients. Internally, the parent
compound is called "master", while all corresponding substituents are called "slaves". The CPA program
expects a symbolic link to the directory in which the respective MBPP calculations were performed for
all end members. The symbolic link to the master must be named CM, while the substituents are labeled
as CSi (i ∈ [1, . . . , #slaves] being the substituent index). The only exception to the use of symbolic
links are substituents of vacancy type: here, all relevant information is copied from the atomic type
which is to be substituted (for a detailed discussion of the vacancy extension see Sec. 2.2). Aside from
this input, the CPA program relies on a number of additional parameters, such as the number of overall
types, substituents, cutoff radii and numerical parameters for integration methods and intervals. This
mandatory information is encoded in a formatted input file named CPA_INP of which a generic example
is provided in Listing A.1. While the MBPP makes use of identifiers, rendering the order of calculation
parameters irrelevant, the CPA program does not come with this feature and as such the order of lines
and placement of newline characters are important.

1 outdebug
2 c a l c R e s t a r t
3 calcOvlp
4 ca lcHami l ton ian
5 readOldRadDen
6 chargeConverged
7 plotDenR
8 a l l o c Po t
9 symm

10 calcFS
11 nTypes
12 nSlaveCalc
13 kmax qcutar lcutpw lmcutExt lmcutInt
14 shpFuncType shpFuncPar
15 co incTol
16 nameHostAtom1 hostTypeIndex1 nameImpurityAtom1 impurityTypeIndex1
17 . . .
18 . . .
19 . . .
20 nameHostAtomN hostTypeIndexN nameImpurityAtomN impurityTypeIndexN
21 concType1Atom1 . . . concType1AtomN shpFuncCutOffRadius Type1ValQ
22 . . . .
23 . . . .
24 . . . .
25 concTypeNAtom1 . . . concTypeNAtomN shpFuncCutOffRadius TypeNValQ
26 l e f t e n numLeft f e r m i l e f t e n numFermi f e r m i r i g h t e n numRight r i gh t en numImag topen
27 maxCpaIter cpaTol numFermiIter fermiTol cpaNtemp csItemp
28 cpaTemp1 cpaTemp2
29 d o s l e f t d o s r i g h t numDos dosSmear
30 c s S t a r t I t e r csMaxIter l inMix denUpdtBound chargeScfLim
31 nDir
32 bandSmear
33 FSk_start
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34 k_scandir1
35 k_scandir2 nkmesh
36 k_scandir3 nkz_scan
37 s ta r t_d i r1 end_dir1 nk Dir1Name
38 . . . .
39 . . . .
40 . . . .
41 start_dirN end_dirN nk DirNName
42 ibandProjMin ibandProjMax ps f1 ps f2 bandIntLeft bandIntRight bandnum

Listing A.1: Generic example of a CPA input file CPA_INP

The parameters presented above have the following meaning:

L1-L10. Logical flags to set calculation status:
• outdebug (logical): If True produces a huge amount of debugging output, otherwise it is
suppressed.

• calcRestart (logical): If False calculation is started from scratch, otherwise an old
calculation is restarted.

• calcOvlp (logical): If True overlap is calculated, otherwise it is read from file (must have
been calculated in previous calculation).

• calcHamiltonian (logical): If True Hamiltonian is calculated, otherwise it is read from
file (must have been calculated in previous calculation).

• readOldRadDen (logical): If True radial densities are calculated, otherwise they are read
from file (must have been calculated in previous calculation).

• chargeConverged (logical): If False CPA calculation is performed completely, otherwise
only subroutines are run once which are needed for post processing (e.g. bandstructure
calculation).

• plotDenR (logical): If True calculate full real-space densities.
• allocPot (logical): Logical variable that determines, whether potential arrays must be
allocated. Must be set depending on mode of operation [new/old calculation].

• symm (logical): If True calculation makes use of symmetrization routines. Must be consistent
with MBPP calculations.

• calcFS (logical): If True Fermi sheets or surface will be calculated. Additional scan
parameters needed below.

L11. nTypes (integer): Total number of atomic types, including substituents.

L12. nSlaveCalc (integer): Number of slave calculations, i.e. number of substitutions.

L13. Cutoff for summations and Fourier transformations:
• kmax (float): Cutoff radius in atomic units up to which the radial Fourier transformation
of wave functions will be calculated. Additionally, used for evaluation of matrix elements
(two times this cutoff is used for the local pseudopotentials).

• qcutar(float): Cutoff for plane wave expansion of delocalized wave functions.
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• lcutpw (integer): Cuttoff for angular expansion of plane waves.
• lmCutExtern (integer): Cutoff for internal summations over orbital quantum numbers l,
m. Individual quantum numbers can be found from this combined lm index via l(lm) =
0, 1, 1, 1, 2, 2, 2, 2, 2, ... = (l + 1)2 and m(lm) = 0, 0, 1,−1, 0, 1,−1, 2,−2, .... These fields are
defined in specialpar.f90. For a maximum angular momentum l = 2 and lm = 9 would
be required.

• lmCutIntern (integer): A separated cutoff for internal summations over l, m quantum
numbers in the calculation of B-coefficients Eq. (C.6). This is a historical remnant that no
longer serves a purpose and lmCutExtern=lmCutIntern should be used.

L14. Shape function specifications :
• shpFuncType (integer): Functional type of shape functions used according to (D.23). Is
the same for all types and sites.

• shpFuncPar (float): Parameter γ of shape functions in (D.23).

L15. coincTol (float): Threshold used in consistency check of atomic coordinated for all types
involved (usually set to 10−6).

L16-L20. This line is read nSlaveCalc times (i = 1,...,nSlaveCalc):
• nameHostAtom<i> (char[2]): Name of atomic type of the host that is to be replaced for
i-th substitution.

• hostTypeIndex<i> (integer): Index of atomic type of the host atom in the parent compound
(equivalent to the order of types chosen in MBPP) for i-th substitution.

• nameImpurityAtom<i> (char[2]): Name of atomic type of the substituent species for i-th
substitution.

• impurityTypeIndex<i> (integer): Index of atomic type of the impurity atom in the substi-
tutional end-member (equivalent to the order of types chosen in MBPP) for i-th substitution.
Typically impurityTypeIndex<i>=hostTypeIndex and must never exceed the number of
types in either parent compound or substitutional end member.

L21-L25. This line will be read nTypes times:
• concType<i>Atom<j> (float): Atomic concentration of type i at atomic position j. With
i = 1, ..., nTypes and j = 1, natomax. natomax (used in MBPP and CPA) is the maximum
number of sites occupied by a single type in the unit cell. For each type, concentrations
must be specified for natomax sites, even if considered type occurs less often in the unit cell.
In this case, the concentration must be set to 0 for all superfluous sites.

• shpFuncCutOffRadius (float): Cutoff radius of the shape function associated with the
considered type.

• Type<i>ValQ (float): Number of valence electrons for type i (may be fractional).

L26. Specification of the closed curve integration (see Sec. 1.3) involved in the calculation of the
Fermi level and the charge self-consistency. A finer sampling is needed for the region around the
estimated Fermi level. Due to the special integration method applied, the number of sampling
points must fulfill mod(#sampling points, 6) != 1.
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• leften (float): Lower energy bound (Ry) of the box on the real axis far from Fermi level.
• numLeft (integer): Number of sampling points below Fermi region.
• fermileften (float): Lower energy bound (Ry) of the region the Fermi level is assumed to
lie in.

• numFermi (integer): Number of sampling points in Fermi region.
• fermirighten (float): Upper energy bound (Ry) of the region the Fermi level is assumed
to lie in.

• numRight (integer): Number of sampling points above Fermi region.
• righten (float): Upper energy bound (Ry) of the box on the real axis.
• numImag (integer): Number of sampling points on the positive imaginary axis.
• topen (float): Upper energy bound (Ry) of the box on the imaginary axis.

L27. Parameters for the CPA cycle:
• maxCpaIter (integer): Maximum number of iterations for the inner loop of the CPA cycle
(see Fig. 1.2). Implemented to avoid infinite loops due to bad convergence.

• cpaTol (float): Convergence criterion (Ry) for the change in self-energyin the CPA cycle.
The

• numFermiIter (integer): Maximum number of iterations for the bisection method used to
determine the Fermi level from the number of valence electrons.

• fermiTol (float): Threshold (Ry) for the determination of the Fermi level by the bisection
method.

• cpaNtemp (integer): The number of temperatures the chemical potential is calculated
for. Used to extrapolate to T = 0 for the Fermi level. Currently, cpaNtemp = {1, 2} is
implemented.

• csItemp (integer): Index of the temperature for which the charge self-consistency should
be calculated at. So far no extrapolation to T = 0 is implemented.

L28. cpaTemp (float): The cpaNtemp temperatures used in the Fermi level and charge self-consistency
calculation. Specifically, kBT in Ry must be supplied.

L29. Specification for DOS calculation:
• dosleft (float): Lower energy bound (Ry) of the interval on which the DOS is calculated
on. Here, an absolute scale is used and only for the output file CPA_TOTDOS is the energy
zero shifted to the Fermi level in addition to a conversion to eV.

• dosright (float): Upper energy bound (Ry) of the interval on which the DOS is calculated
on.

• numDos (int): Number of sampling points in the energy interval.
• dosSmear (float): Imaginary part δ of the complex frequency for which the retarded Green’s
function is evaluated in the DOS calculation.

L30. Parameters for the charge self-consistency:
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• csStartIter (integer): Iteration from which to start calculation. If a calculation is set up
from scratch, this will need to be set to 1. This parameter allows to restart a calculation
from a later iteration if the densities have been calculated for said iteration and can be read
from file.

• csMaxIter (integer): Maximum number of charge iterations to avoid endless calculations
in case of bad convergence. Due to the file name structure the constraint csMaxIter≤ 99
must be considered.

• linMix (float): In the first iteration a linear mixing is performed by the Broyden scheme
in order to set up the Jacobi matrix. For parameter values > 0.05 the algorithm becomes
unstable.

• denUpdtBound (float): Threshold below which an orbital density component is considered
to vanish due to symmetry. In the first charge iteration an analysis is performed in
order to determine relevant and vanishing orbital indices. They are stored in the files
CPA_UPDATE_DEN and CPA_ZERO_DEN, respectively. This protects the program against nu-
merical errors which violate symmetry and leads to a more robust convergence.

• chargeScfLim (float): Threshold below which the charge self-consistent cycle is assumed
to have converged. Must be fulfilled for the difference of all orbital contributions between
two consecutive iterations.

L31. nDir (integer): Number of directions in k-space along which the band structure is calculated.

L32. bandSmear (float): Imaginary part δ of the complex frequency for the evaluation of the Bloch
spectral function. In order to resolve all bands it must typically be chosen smaller than dosSmear.

L33-L36. Specifications for Fermi sheet or -surface calculation:
• Fsk_start (float[3]): Starting point in BZ for Fermi sheet or - surface scan in reciprocal
lattice coordinates.

• k_scandir1 (float[3]): First scan direction of Fermi sheet.First and second direction define
plane in which Fermi scan is performed.

• k_scandir2, nkmesh (float[3], integer): Second scan direction of Fermi sheet and number
of sampling points for k-mesh.

• k_scandir3, nkz_scan (float[3], integer): Third scan direction and number of Fermi
sheets to sample along that direction. If nkz_scan = 1 only one sheet will be calculated.

L37-L41. Specification of the direction i = 1, ..., nDir in k-space for the band structure calculation:
• start_dir<i> (float[3]): Starting point of line i in reciprocal lattice coordinates.
• end_dir<i> (float[3]): End point of line i in reciprocal lattice coordinates.
• nk (integer): Number of sampling points along line.
• Dir<i>Name (char[2]): Name of line. Usually letters for starting and end point (e.g. high
symmetry points in BZ).

L42. Parameters for the projection of the Bloch spectral function on the eigenstates of the parent
compound:
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• ibandProjMin (integer): Lower band index for projection.
• ibandProjMax (integer): Upper band index for projection.
• psf1 (float): Lower energy limit (Ry) of the energy interval in which the projection shall
be performed. Here, an absolute scale is used in the calculation and the chemical potential
is not included. This must be considered in setting the energy interval. For the output file
CPA_PROJSPECFUNC_<iband>_<dirName> the energy zero is shifted to the Fermi level.

• psf2 (float): Upper energy limit (Ry) of the energy interval in which the projection shall
be performed.

• bandIntLeft (float): Lower energy integration limit (Ry) for the normalization of the
projected spectral function.

• bandIntRight (float): Upper energy integration limit (Ry) for the normalization of the
projected spectral function.

• bandnum (integer): Number of energy sampling points in the energy interval [psf1,psf2].

In Listing A.2, we provide an exemplary C shell script for a CPA calculation of FeSe1−xTex with
x = 0.5.

1 #! / bin / csh
2 # c−s h e l l s c r i p t f o r the execut ion o f a CPA c a l c u l a t i o n o f Fe ( Se , Te)
3 setenv OMP_NUM_THREADS 16
4

5 # Log i ca l f l a g s
6 s e t outdebug = f a l s e
7 s e t c a l c R e s t a r t = true
8 s e t calcOvlp = f a l s e
9 s e t ca lcHami l ton ian = f a l s e

10 s e t readOldRadDen = true
11 s e t chargeConverged = true
12 s e t plotDenR = f a l s e
13 s e t a l l o c Po t = true
14 s e t symm = true
15

16 # Calcu la t i on parameters
17 s e t nType = 3 #t o t a l number o f atomic types
18 s e t nSlaveCalc = 1 #number o f s u b s t i t u t i o n s
19

20 s e t kmax = 20 .0 #k−c u t o f f
21 s e t qcutar = 8 .0 #q−c u t o f f f o r plane waves
22 s e t lcutpw = 4 #l−c u t o f f f o r plane waves
23 s e t lmcutExt = 49 #lm−c u t o f f
24 s e t lmcutInt = 49 #lm−c u t o f f
25

26 s e t co incTol = 0.000001 #thre sho ld to d i s c e r n atomic p o s i t i o n s
27 # Concentrat ions and va lence e l e c t r o n s f o r a l l atomic types
28 s e t f e1conc = 1 .0
29 s e t f e2conc = 1 .0
30 s e t f eq = 8 .0
31 s e t se1conc = 0 .5
32 s e t se2conc = 0 .5
33 s e t seq = 6 .0
34 s e t te1conc = 0 .5
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35 s e t te2conc = 0 .5
36 s e t teq = 6 .0
37

38 # Shape func t i on parameter
39 s e t shpFuncType = 6 #shape func t i on type
40 s e t shpFuncPar = 90 #shape func t i on parameter
41 s e t feShpCutof f = 5 .9 #shape func t i on c u t o f f
42 s e t seShpCutof f = 5 .9
43 s e t teShpCutof f = 5 .9
44 s e t coShpCutoff = 5 .9
45

46 # Subst i tuent
47 s e t i typeHostS lave1 = 2 #type index o f to be s u b s t i t u t e d type in parent

compound
48 s e t nameatHostSlave1 = Se #name o f to be s u b s t i t u t e d type
49 s e t i typeImpSlave1 = 2 #type index o f s u b s t i t u e n t in end member
50 s e t nameatImpSlave1 = Te #name o f s u b s t i t u e n t
51

52 # Spec i f y the box in upper complex h a l f p lane f o r Green ’ s func t i on i n t e g r a t i o n
53 s e t l e f t e n = −5.0 #l e f t lower boundary
54 s e t numLeft = 61 #number o f sampling po in t s in lower r eg i on
55 s e t f e r m i l e f t e n = −0.9 #l e f t boundary o f f e rmi r eg i on
56 s e t numFermi = 121 #number o f sampling po in t s in f e rmi r eg i on
57 s e t f e r m i r i g h t e n = 0 .0 #r i g h t boundary o f f e rmi r eg i on
58 s e t numRight = 61 #number o f sampling po in t s above fe rmi r eg i on
59 s e t r i gh t en = 10 .0 #r i g h t upper boundary
60 s e t numImag = 121 #number o f sampling po in t s on imaginary a x i s
61 s e t topen = 3 .0 #top energy on imaginary a x i s
62

63 # Spec i f y parameters f o r CPA s o l v e r
64 s e t maxCpaIter = 1000 #maximum number o f i t e r a t i o n s in inner CPA loop
65 s e t cpaTol = 0.00000001 #convergence c r i t e r i o n f o r CPA s e l f −energy (Ry)
66 s e t numFermiIter = 40 #maximum number o f b i s c e t i o n a l search s t e p s f o r

chemica l p o t e n t i a l
67 s e t fermiTol = 0.000000001 #convergence c r i t e r i o n f o r chemica l p o t e n t i a l (Ry)
68 s e t s e t cpaNtemp = 2 #number o f temperatures f o r chemica l p o t e n t i a l
69 s e t csItemp = 2 #temperature index f o r charge s e l f −c o n s i s t e n c y
70

71 # Spec i f y the temperatures (k_B∗T in Ry)
72 s e t cpaTemp1 = 0.005
73 s e t cpaTemp2 = 0.02
74

75 # Parameters f o r d e n s i t i e s o f s t a t e s
76 s e t d o s l e f t = −1.4 #l e f t energy (Ry)
77 s e t d o s r i g h t = 0 .5 #r i g h t energy (Ry)
78 s e t numDos = 2000 #number o f sampling po in t s
79 s e t dosSmear = 0.005 #Smearing o f dens i ty o f s t a t e s
80

81 # Parameters f o r charge s e l f −c o n s i s t e n c y loop
82 s e t c s S t a r t I t e r = 1 #I t e r a t i o n from which to s t a r t
83 s e t csMaxIter = 60 #Maximal number o f charge i t e r a t i o n s
84 s e t l inMix = 0.005 #Linear mixing f o r broyden scheme in f i r s t

i t e r a t i o n
85 s e t denUpdtBound = 0.00000001 #Program assumes o r b i t a l dens i ty component to

vanish f o r symmetry reasons below t h i s l i m i t
86 s e t chargeScfLim = 0.00000001 #Maximal dens i ty change f o r convergence o f charge
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s e l f −c o n s i s t e n c y
87

88 # For the band s t r u c t u r e s eva luate Bloch−S p e c t r a l f unc t i on
89 s e t nDir = 9 #number o f d i r e c t i o n s
90 s e t bandSmear = 0.0001 #energy smearing f o r the s p e c t r a l f unc t i on (Ry)
91

92 #For the p r o j e c t i o n on c l ean bands
93 s e t ibandProjMin = 8 #lowest band index to p r o j e c t on
94 s e t ibandProjMax = 15 #h ighe s t band index to p r o j e c t on
95 s e t bandIntLeft = −0.2 #lower i n t e g r a t i o n l i m i t f o r norma l i za t i on (Ry)
96 s e t bandIntRight = 0 .2 #upper i n t e g r a t i o n l i m i t f o r norma l i za t i on (Ry)
97 s e t ps f1 = −1.4 #lower energy boundary f o r p r o j e c t i o n (Ry)
98 s e t ps f2 = 0 .5 #upper energy boundary f o r p r o j e c t i o n (Ry)
99

100 s e t dummy = 0 # unused r e l i c
101

102 # Set d i r e c t o r i e s
103 s e t cpaMaster = $HOME/cpaprep_FeSe #path to parent compound MBPP f o l d e r
104 s e t cpaSlave1 = $HOME/cpaprep_FeTe #path to s u b s t i t u e n t end member MBPP f o l d e r
105 s e t cpaProg = $HOME/cpa_v36_SO/cpa #path to CPA program
106 s e t pd i r = $HOME/ p r o j e c t / #path to parent d i r e c t o r y
107 s e t wd = $HOME/ p r o j e c t s /FeSeTe #path to c a l c u l a t i o n f o l d e r
108

109 i f ( ! −d $wd) then
110 mkdir −p $wd
111 e n d i f
112

113 cd $wd
114

115 \rm −f CPA_TIME
116

117 # Symbolic l i n k s to MBPP f o l d e r o f end members
118 ln −s f $cpaMaster CM
119 ln −s f $cpaSlave1 CS1
120

121 cat > CPA_INP << END
122 $outdebug
123 $ c a l c R e s t a r t
124 $calcOvlp
125 $ca lcHami l ton ian
126 $readOldRadDen
127 $chargeConverged
128 $plotDenR
129 $a l l o cPot
130 $symm
131 $nType
132 $nSlaveCalc
133 $kmax $qcutar $lcutpw $lmcutExt $lmcutInt
134 $shpFuncType $shpFuncPar
135 $co incTol $co incTol $co incTol
136 $ i typeHostS lave1 $nameatHostSlave1 $itypeImpSlave1 $nameatImpSlave1
137 $ fe1conc $ fe2conc $feShpCutof f $ f eq
138 $se1conc $se2conc $seShpCutof f $seq
139 $te1conc $te2conc $teShpCutof f $teq
140 $ l e f t e n $numLeft $ f e r m i l e f t e n $numFermi $ f e r m i r i g h t e n $numRight $ r i gh ten $numImag

$topen
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141 $maxCpaIter $cpaTol $numFermiIter $ fermiTol $cpaNtemp $csItemp
142 $cpaTemp1 $cpaTemp2
143 $ d o s l e f t $dos r i gh t $numDos $dosSmear
144 $ c s S t a r t I t e r $csMaxIter $l inMix $denUpdtBound $chargeScfLim
145 $nDir
146 $bandSmear
147 0 .5 0 . 5 0 .0 0 .5 0 .5 0 .5 50 MA
148 0 .5 0 . 5 0 .5 0 .0 0 .0 0 .0 50 AG
149 0 .0 0 . 0 0 .0 0 .5 0 .0 0 .0 50 GX
150 0 .5 0 . 0 0 .0 0 .5 0 .5 0 .0 50 XM
151 0 .5 0 . 5 0 .0 0 .0 0 .0 0 .0 50 MG
152 0 .0 0 . 0 0 .0 0 .0 0 .0 0 .5 50 GZ
153 0 .0 0 . 0 0 .5 0 .5 0 .0 0 .5 50 ZR
154 0 .5 0 . 0 0 .5 0 .5 0 .5 0 .5 50 RA
155 0 .5 0 . 5 0 .5 0 .0 0 .0 0 .5 50 AZ
156 $ibandProjMin $ibandProjMax $ps f1 $ps f2 $bandIntLeft $bandIntRight
157 $dummy $dummy
158 END
159 time $cpaProg > DUMP

Listing A.2: Exemplary C shell script for CPA calculation of Fe(Se,Te).

A.4 Output file structure

Given the enormous amount of data produced by the CPA program, we shall give a brief overview over
the most important output files below. Apart from these, a number of formatted files are provided for
debugging purposes, which can be muted via the output=false flag introduced above. This greatly
reduces the number of files output by the program and therefore the amount of memory consumed by
a calculation. Some of the quantities computed within an iteration of the charge self-consistent cycle
(such as Hamilton matrix elements, densities and overlap matrix elements) are written to file. This
allows for a preexisting calculation to be restarted at an arbitrary iteration, given the respective files
exist. In the following listing we mark these files by an asterisk (*).

Progress files

• Progress: Provides a progress log-file containing information on the calculation status, compu-
tational time of each subroutine and further relevant data.

• CPA_OUT: Provides information on geometry, Fermi level calculation, integrals of the orbital charge
densities calculated during the self-consistency cycle, electron numbers and much more.

• DUMP: File to which the output of the program is piped (see end of shell script above). Contains
intermediate results, important data and warning and error messages.

Density files

• CPA_DEN_<type>_l_m_<chargeIter> (*): Species and atom resolved radial components of the
electronic density in real space for angular quantum numbers l and m.

• CPA_UPDATE_DEN: Relevant density components larger than user defined threshold.

• CPA_ZERO_DEN: Density components below threshold, considered symmetry-forbidden.
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Hamiltonian files

• CPA_HTOT_<chargeIter>: Full k-dependent Hamiltonian.

• CPA_HOFFSITE_<chargeIter> (*): Full k-dependent offsite Hamiltonian.

• CPA_HOFFSITE_REAL_<chargeIter>: Respective real part.

• CPA_HOFFSITE_IMAG_<chargeIter>: Respective imaginary part.

• CPA_HONSITE_<chargeIter> (*): Full k-independent onsite Hamiltonian.

• CPA_HONSITE_REAL_<chargeIter>: Respective real part.

• CPA_HONSITE_IMAG_<chargeIter>: Respective imaginary part.

• CPA_MIX_REAL_<chargeIter>: Real part of k dependent mixing Hamiltonian
mixH(k)+ mix,nlH(k)+T (k) according to Eqs. (D.39) and (D.42) plus kinetic term. This reduces
to the crystal Hamiltonian for a clean compound.

• CPA_HMIX_IMAG_<chargeIter>: Respective imaginary part.

• CPA_TOFFSITE_<chargeIter> (*): k-dependent kinetic energy according to Eq. (D.50) without
onsite corrections.

• CPA_TOFFSITE_REAL_<chargeIter>: Respective real part.

• CPA_TOFFSITE_IMAG_<chargeIter>: Respective imaginary part.

• CPA_VOFFSITE_<chargeIter> (*): Full k-dependent potential according to Eq. (D.54) without
onsite corrections.

• CPA_VOFFSITE_REAL_<chargeIter>: Respective real part.

• CPA_VOFFSITE_IMAG_<chargeIter>: Respective imaginary part.

• CPA_VONSITE_<chargeIter>: Full k-independent onsite Hamiltonian.

• CPA_VXC_<type>_<atomNumber>_l_m_<chargeIter>: Species and atom resolved radial compo-
nent of the exchange and correlation potential in real space for angular quantum numbers l and
m.

• CPA_VXCK_<type>_<atomNumber>_l_m_<chargeIter>: Respective reciprocal space representa-
tion.

• CPA_VMIXK_<chargeIter>: Full k-dependent mixing potential mixH(k) + mix,nlH(k).

• CPA_VMIXK_REAL_<chargeIter>: Respective real part.

• CPA_VMIXK_IMAG_<chargeIter>: Respective imaginary part.

• CPA_VMIX_ONSITE_<chargeIter> (*): k-independent onsite mixing potential.

• CPA_VSO_TOT (*): Full k-dependent spin-orbit Hamiltonian according to Eq. (E.31).

• CPA_VSO_OFFSITE (*): Respective k-dependent offsite part.

• CPA_VSO_ONSITE (*): Respective k-independent onsite part.
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Band structure files

• CPA_TOTDOS_<chargeIter>: Total density of states, energy in eV with respect to the Fermi level,
DOS in 1/(eV unit cell).

• CPA_TYPEDOS_<chargeIter>: Total density of states decomposed according to atomic type,
energy in eV with respect to the Fermi level, DOS in 1/(eV unit cell).

• CPA_BDOS_<bandIndex>_<chargeIter>: Density of states of a given band. Similar to a band
projected spectral function, but summed over a regular k-mesh.

• CPA_ORBDOS_<type><atomNumber>_l_m_<chargeIter>: Orbital decomposition of density of
states. Units equal to CPA_TOTDOS.

• CPA_CLEANDBSTRUC_<bandIndex>_<direction>: Band structure of the parent compound, i.e.
eigenvalues of the mixing Hamiltonian. This is only calculated if nSlaveCalc= 0.

• CPA_CLEANEIGEN_<direction>: All eigenvectors of the crystal Hamiltonian of the parent com-
pound. This is only calculated if nSlaveCalc= 0. Needed as input for the projection onto clean
bands.

• CPA_CLEANEIGEN_REG: Respective eigenvectors on a regular k-mesh.

• CPA_KDOS_<direction>: Total Bloch spectral function. First column: k, second column: energy
with respect to the Fermi level in eV, third column: spectral function in 1/(eV unit cell). For
the length of the path in k-space the same conventions as in the MBPP are chosen: length of
first direction is normalized to unity and all further direction lengths are rescaled accordingly.

• CPA_KDOS_<direction>_<type>_l: Respective species and l-decomposition.

• CPA_PROJSPECFUNC_<bandIndex>_<direction>: Bloch spectral function projected onto clean
band of parent compound.

• CPA_SPROJSPEC_<bandIndex>_<direction>: Respective quantity for perturbative spin-orbit
coupling calculation.

• CPA_PSFFWHM2_<bandIndex>_<direction>: Properties of band-projected spectral function: first
column: k, second column: energy of peak, third column: spectral half width, fourth column:
spectral broadening (half width minus band smearing), fifth column: norm (integration over
energy).

Spin polarization

For spin polarized calculations the following files are appended by a spin index:

• CPA_CLEANBDSTRUC_<bandIndex>_<direction>_<spin>:
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Fermi-sheets and surfaces

Some additional output files are produced if calcFS=true.

• CPA_FERMISURFACE_<sheetindex>: Bloch spectral function at Fermi level for sheet=sheetindex.
First column kx, second column ky, third column kz, forth column A(k, EF ).

• CPA_FERMISURFACE_<spinprojection>_<sheetindex>: Bloch spectral function at Fermi level
for spinprojection=UP, DOWN and sheet=sheetindex. First column kx, second column ky,
third column kz, forth column A(k, EF ).

• CPA_FERMISURFACE_<typename>_<typeindex>_<l>: Bloch spectral function at Fermi level de-
composed according to typename, typeindex, and angular momentum l. First column kx,
second column ky, third column kz, forth column A(k, EF ).

• CPA_FERMISURFACE_<typename>_<typeindex>_<l>_<sheetindex>: Same as above for multiple
sheets (sheetindex).

• CPA_FERMISURFACE_<typename>_<typeindex>_<l>_<spinprojection>: Same as above for
spinprojection in spin polarized calculations.

• CPA_FERMISURFACE_<typename>_<typeindex>_<l>_<spinprojection>_<sheetindex>: Same
as above for spinprojection in spin polarized calculations and multiple sheets (sheetindex).
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B Appendix B

Basis set and overlap matrix elements

This chapter is devoted to the linear combination of atomic orbitals (LCAO) basis set employed in this
work for the calculation of matrix elements. Such an LCAO basis is not necessarily orthonormal and
may exhibit a non-trivial overlap matrix S. In the description of the basis set and the derivation of
the overlap matrix elements we closely lean on Ref. [6] in which the base CPA-code was implemented.

B.1 Orbital representations

B.1.1 Localized orbitals in real space

We define the basis functions in three dimensional real space for a given set of quantum numbers in
the following form

φQsLslm(r) =
〈
r
∣∣LsP lm〉 = φQslm(r −RL −Rs) (B.1)

with the quantum numbers:

• L : index of unit cell in Bravais lattice

• s: index of atomic site within the unit cell

• Q : index of atomic species, which is connected to an atomic index in the unit cell via BEB-
variables ηQs

• l: orbital angular momentum

• m: magnetic quantum number m = {−l, ...,+l}

Within the pseudopotential framework, following the MBPP, a single orbital per orbital momentum
suffices to accurately describe the valence electrons, for which reason we omit a principal quantum
number n. We can make use of the cubic harmonics Klm(r̂) to express the angular momentum
dependence of our basis functions:

φQlm(r) = ilfQl (r)Klm(r̂) (B.2)

where r̂ = r/r is the unit vector pointing along r and r = |r| is the magnitude of r. The radial
functions fQl (r) are the only quantities relevant for the treatment of disorder. They are generated by
the LCAO-fit numerically on an equidistant radial grid with a finite cutoff radius Rc. This cutoff has
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to be chosen by the user in the LCAO-fit of the MBPP so as to best suit the problem at hand.
The use of cubic harmonics over spherical harmonics stems from a computational advantage. Cubic
harmonics are real functions in contrast to the complex spherical harmonics. The lack of an imaginary
part reduces computational effort in summations, multiplications and matrix operations as well as
memory consumption.

B.1.2 Localized orbitals in reciprocal space

The connection between the real space representation introduced above and the reciprocal representa-
tion is given by a Fourier transformation

φQlm(k) = 1√
ΩC

∫
d3r φQlm(r)e−ikr (B.3a)

φQlm(r) =
√

ΩC

(2π)3

∫
d3k φQlm(k)eikr (B.3b)

where ΩC denotes the unit cell volume and we have made use of
∫
d3re−ikr = (2π)3δ(r). Furthermore,

we introduce a radial Fourier transformation (rFT)

fQl (k) ≡ 4π
∫

dr r2fQl (r) jl(kr) (B.4a)

fQl (r) ≡ 1
2π2

∫
dk k2fQl (k) jl(kr) (B.4b)

where jl are spherical Bessel functions. The radial Fourier transformations in Eqs. (B.4a) and (B.4b)
are implemented in subroutine rft_rToK and subroutine rft_kToR in the module tools.f90.
Some care has to be taken, as the historically chosen conventions here do not match those in the
MBPP. With the rFT we may express the angular dependence of the basis functions in reciprocal
space in a similar fashion as in real space. We thus find

φQlm(r) = ilfQl (r)Klm(r̂) (B.5)

and
φQlm(k) = 1√

ΩC
fQl (k)Klm(k̂) (B.6)

for the two representations. In contrast to φQlm(r), φQlm(k) is a real quantity.

B.1.3 Translation of localized orbitals

In order to calculate matrix elements that involve multi-center integrals, we must gain knowledge about
the transformation properties of the basis functions in Eqs. (B.5) and (B.6) under a translation in real
space. With the definitions given above we may write

φQLslm(r) =
√

ΩC

(2π)3

∫
d3k e−ik(RL+Rs) eikr φQlm(k) (B.7)

= 1
(2π)3

∫
d3k e−ik(RL+Rs) eikr fQl (k)Klm(k̂) (B.8)

= 1
(2π)3

∫
d3k d3r′ e−ik(RL+Rs) eikr φQlm(r′)e−ikr′ (B.9)
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where we always pay the price of additional integrations for the advantage of evaluating Klm and fQl
only with respect to an unshifted origin.

B.2 Useful properties of cubic harmonics and other relations

We shall briefly discuss some properties of the cubic harmonics, which will come in useful in the
evaluation of matrix elements. For one, they fulfill an orthonormality relation∫

dΩKlm(r̂)Kl′m′(r̂) = δll′δmm′ (B.10)

where the integration runs over an element of solid angle dΩ. Similarly, the so-called Gaunt coefficients
(calculated by the subroutine clgd in file tools.f90) are given by the integral of three distinct cubic
harmonics

C(lm, l′m′, l′′m′′) =
∫

dΩKlm(r̂)Kl′m′(r̂)Kl′′m′′(r̂). (B.11)

Below, we list a number of further relations that we will make use of regularly in deriving the matrix
elements in App. D:

1. The expansion of the phase factor in cubic harmonics Klm and spherical Bessel functions jl

eikr =
∑
l,m

4π il jl(kr)Klm(r̂)Klm(k̂). (B.12)

2. We will often encounter multi-center integrals which are most efficiently evaluated in reciprocal
space according to the discrete Fourier transformation

As,t(k) = e−ik(Rs−Rt)
∑
L

e−ikRLALs,0t (B.13)

of an arbitrary quantity A. This transformation is justified as long as the system exhibits
translational symmetry.

3. In this context we will often use the relation

∑
L

e−ikRL = Nk
∑
G

δkG = (2π)3

ΩC

∑
G

δ(G− k) (B.14)

with RL ∈ Bravais-lattice, G ∈ reciprocal lattice and Nk the number of k-points in the first
Brillouin zone.

B.3 Overlap matrix elements

As the LCAO basis set that we have chosen is a non-orthonormal one, the overlap between different
orbitals is non-trivial and will consist of onsite and offsite terms. Here, we will restrict our discussion
to the spinless case, i.e. neglecting spin indices that would formally appear if we consider spin-orbit
coupling or spin polarization. This is justified, as the overlap matrix is diagonal in spin-space and
therefore only an increase in matrix dimensionality must be taken into account for these special cases.
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B.3.1 Onsite overlap

The onsite terms of the overlap matrix may well serve as an illustrative example of how to apply some
of the relations introduced in the last section. Within the BEB-formalism they can be expressed as

ṠPQslm,l′m′ =
〈
sP lm

∣∣∣sP l′m′〉 δPQ =
∫

d3r
[
φPlm(r −Rs)

]∗
φPl′m′(r −Rs)δPQ (B.15)

where δPQ is a consequence of the BEB-rule Eq. (1.27). Shifting r → r +Rs we find

ṠPQslm,l′m′ = i(l
′−l)

∫
dΩdr r2fPl (r)fQl′ (r)Klm(r̂)Kl′m′(r̂)δPQ (B.16)

= δll′δmm′

∫
dr r2

(
fPl (r)

)2
δPQ (B.17)

where we have used the angular momentum decomposition of φPlm and the orthonormality of the cubic
harmonics. As the orbitals of the same species are normalized in our basis set the onsite overlap
becomes unity

Ṡ = 1, (B.18)
For the given basis, the unit operator takes the form

1 =
∑

iP lm,jl′m′

|iP lm〉
(
S−1

)PQ
ilm,jl′m′

〈jQl′m′| (B.19)

where i(j) denotes a site index, species are labelled by P (Q), and l(′) and m(′) are angular momentum
and magnetic quantum numbers, respectively. As a consistency check, Eq. (B.17) has been implemented
in subroutine calcOverlapOnsite in the file overlap.f90.

B.3.2 Offsite overlap

To receive the offsite terms of the overlap matrix it is more convenient to compute the total overlap in
reciprocal space and then subtract the onsite terms, accordingly. Due to the translational invariance
of the underlined quantities in extended Hilbert space of the BEB-formalism we can write

SPQslm,tl′m′ =
∑
L

e−ikRLe−ik(Rs−Rt)
∫

d3r
[
φPlm(r −RL −Rs)

]∗
φQl′m′(r −Rt) (B.20)

Inserting the Fourier transform of the basis functions yields

SPQslm,tl′m′ = ΩC

(2π)6

∑
L

e−ikRLe−ik(Rs−Rt)
∫

d3k′d3k′′φP∗lm(k′)φQl′m′(k
′′)
(∫

d3re−i(k
′−k′′)r

)
︸ ︷︷ ︸

=(2π)3δ(k′−k′′)

(B.21)

× eik′(RL+Rs)e−ik
′Rt (B.22)

= ΩC

(2π)3

∫
d3k′φP∗lm(k′)φQl′m′(k

′)

∑
L

e−i(k−k
′)RL


︸ ︷︷ ︸

=((2π)3/ΩC)
∑

G δ(G−k+k′)

e−i(k−k
′)(Rs−Rt) (B.23)

= 1
ΩC

∑
G

e−iG(Rs−Rt)fPl (k −G)Klm(k̂ −G)fQl′ (k −G)Kl′m′(k̂ −G) (B.24)
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were we have made use of the relations introduced in Sec. B. Thus, we have arrived at an expression
for the total overlap matrix elements. Subtracting the trivial result from Eq. (B.18) we find the offsite
terms to be

S̆PQslm,tl′m′(k) = SPQslm,tl′m′ − δs,tṠ
PQ
slm,tl′m′ = SPQslm,tl′m′ − δs,t − δPQδstδll′δmm′ . (B.25)

Within the CPA program the full overlap is calculated by the subroutine calcOverlapOffsite in
file overlap.f90 and stored in the complex array ovlp_k(irk,iao1,iao2) for each k-point irk and
orbital indices iao1 and iao2, respectively.

Spin-orbit coupling and spin-polarization

As we have already briefly mentioned above, all considerations so far remain correct if we include
spin-orbit coupling or spin polarization. As the overlap matrix is independent of spin, the only effect
of an inclusion would be an increase in dimensionality of the overlap matrix such that

S =
(
S↑↑ 0
0 S↓↓

)
(B.26)

with S↑↑ = S↓↓. Thus, in the actual implementation the overlap matrix is calculated in the same way
for all three cases and only extended to spin space for spin-orbit coupling and spin polarization.
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C Appendix C

The electronic density

As we have discussed in Sec. 1.2.3, the BEB-CPA formalism utilizes the electronic density in the locally
decomposed form

n(r) =
∑
LsP

ηPLs n
P
Ls(r). (C.1)

Here a brief remark is in order: if we include spin polarization or spin-orbit coupling the nLs become
matrices in spin space and an additional spin trace would appear in Eq. (C.1). In the following we
omit spin indices for sake of brevity and shall point out differences to the spinfull cases where need be.
In practical calculations the expression in Eq. (C.1) is not explicitly evaluated, but rather all internal
calculations, including the charge self-consistency, are performed with the local species resolved density
components

nPLs(r) = − 1
π

1
cPs

∑
MtQ
lml′m′

φPLslm(r)
∫ EF

0
Im ΓPQLslm,Mtl′m′(ω

+)dω
(
φQMtl′m′(r)

)∗
(C.2)

≡ − 1
π

∑
MtQ
lml′m′

APQLslm,Mtl′m′

(
φQMtl′m′(r)

)∗
φPLslm(r). (C.3)

As we have mentioned multiple times, a great advantage of the BEB-CPA is the preservation of
translational symmetry of quantities in extended Hilbert space. Thus, the effective medium Green’s
function ΓPQLslm,Mtl′m′ only depends of the difference L −M and the same follows for the coefficients
APQLslm,Mtl′m′ . If we now expand the density components in cubic harmonic

nPLs(r) =
∑
lm

nPLslm(r)Klm(r̂) (C.4)

and follow Sec. B.1.3, we can readily compute the translation of an orbital at (M, t) to the origin of
the reference orbital at (L, s). After numerous manipulations Eq. (C.4) can be expressed as

nPLslm(r) =− 1
π

∑
MtQ

il
′
APQLsl′m′,Mtl′′m′′C(lm, l′m′, l′′′m′′′)

×
[
BQ
l′′m′′,l′′′m′′′(r,RM −RL +Rt −Rs)

]∗
fPsl′ (r) (C.5)
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where we have dropped the explicit summation over (l′, l′′, l′′′) and (m′,m′′,m′′′) for better readability.
The coefficients B in Eq. (C.5) are given by

BQ
lml′m′(r,R) = 2

π

∑
l′′m′′

il
′−l′′C(lm, l′m′, l′′m′′)Kl′′m′′(R̂)

∫
dk k2jl′(kr)jl′′(kR)fQl (k) (C.6)

and depend on the actual translation vector. Both Eqs. (C.6) and (C.5) are computed within the
subroutine init_density found in file density.f90. The former is calculated by subroutine
denCalcB and the B-coefficients are stored in the array coeffs_B.
The latter is calculated within subroutine denSpecOrb and its symmetrized form in real space is
stored in the array orb_rad_den_r(ir,ilm,iat,itype). Each density component is stored according
to its species itype, atomic index iat and combined (l,m)-index ilm on an equidistant r-grid with
radial index ir.
In the first iteration of the CPA we do not yet have access to a Green’s function and so we must
calculate the densities, or more directly the A-coefficients, via the input supplied by the MBBP, i.e.,
orbitals, potentials and crystal structure. To be precise, they are calculated from the respective DFT
bandstructure for the parent compound and substitutional end members according to Ref. [6] as

APQLslm,Mtl′m′ = − 2π
Nk

∑
kj

occup(k, j)eik(RL+Rs−RM−Rt)cPkjlms

(
cQkjl′m′t

)∗
(C.7)

where the summation runs over all bands j with fractional occupation numbers occup(k, j) at k. Here
cPkjlms are the LCAO expansion coefficients for the Bloch-basis with respect to the original DFT Kohn-
Sham bands. The calculation is performed by subroutine denCalcA_first in density.f90.
After the first iteration the new electronic densities are obtained from the Green’s function as

APQLslm,Mtl′m′ = 1
cPs

1
Nk

Im
∑
k

eik(RL+Rs−RM−Rt)

×

∮
box

ΓPQslm,tl′m′(ω)f(ω, T )dω −
∑
n

2nπi
β

ΓPQslm,tl′m′(µ+ iωn)

 (C.8)

where the integration runs along a rectangular path in the upper complex half plane at finite tem-
perature T (see Sec. 1.3). In Eq. (C.8) f(ω, T ) is the fermi distribution function and we correct the
integral for poles at fermionic Matsubara frequencies ωn = (2n+1)πkBT . For better numerical stability
a Broyden mixing is performed by subroutine broyd in broyd.f, where the new charge density is
mixed with that of the previous iteration.

Spin-orbit coupling

For systems with spin-orbit coupling the Broyden mixing is identical to the unpolarized case, as the
electronic density does not split into spin-dependent components.

Spin polarization

In contrast, for spin-polarized calculations we have adopted a more sophisticated approach: instead
of mixing the spin-up and spin-down components separately, we mix the full density n = n↑ + n↓
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and magnetization m = n↑ − n↓ of two consecutive iterations and afterwards recover the two spin
components according to

n↑ = 1
2(n+m) and n↓ = 1

2(n−m).

This approach leads to a better convergence for small differences in the respective spin components
between consecutive iterations. Finally, the maximal density difference, which serves as a convergence
criterion of the CPA, is calculated in subroutine denSpecOrb.
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D Appendix D

CPA matrix elements of the Hamiltonian

Before we turn to the computation of the Hamiltonian matrix elements, a general remark needs to be
made concerning the storage of the potentials within the CPA code: following the convention used in the
MBPP, the radial components of the potentials in real and reciprocal space are actually calculated and
stored as r ·V (r) and k2 ·V (k), respectively. This has the numerical advantage of avoiding divergences.
All potentials are treated in this way, expect for the exchange-correlation potential VXC(k) which is
meaningful for k = 0. As the analytic expressions for the matrix elements were derived by Ref. [6] in
building the base CPA-code which was further developed within this work, we closely follow the outline
presented there. As the matrix elements of spin-orbit coupling present one of the major extensions
derived within this work, we shall treat them separately in App. E.

D.1 Potential contributions

We begin our considerations by dividing the full DFT potential into its distinguishable contributions
V (r) = VPseudo(r) + VHartree(r) + VXC(r). (D.1)

The screened interaction between electrons and the positively charged ions is modeled by the pseudo-
potential VPseudo. As we restrict ourselves to the treatment of valence electrons, the pseudopotential
includes screening effects due to the core electrons. The Hartree term VHartree describes the interaction
of a single electron with the background of the total electronic density. Finally, the exchange-correlation
potential VXC incorporates in principle all remaining many-body effects and corrections to the kinetic
term and is here treated approximately within the LDA. In the following we shall drop spin indices
relevant for spin-orbit coupling and spin polarization for simplicity and shall make note to quantitative
changes were need be.

D.1.1 The Pseudopotential

Following the MBPP the pseudopotential is divided into a local and nonlocal part according to

VPseudo(r) = V PS
loc (r) +

∑
lm

[
V PS
l (r)− V PS

loc (r)
] ∣∣lm〉〈lm∣∣

= V PS
loc (r) +

∑
lm

V PS,nl
l (r)

∣∣lm〉〈lm∣∣ (D.2)

in order to construct the full ionic pseudopotential [30].
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The local pseudopotential

The local term V PS
loc (r) is characterized by a long range behavior ∼ Ze2

r , which is exhibited by all
angular momentum components outside the core region. In the CPA code, the local part is always
chose to be the l = 0 component, even though the MBPP allows for a free choice via the array vidx.
Even though it is transported into the CPA, as of now it serves no functionality there and would have
to be extended to grant access to the full functionality.

The nonlocal pseudopotential

The remaining nonlocal parts V PS,nl
l (r) describe the angular momentum dependent contributions

relevant only inside the core region. In contrast to the local contributions they depend on two sets of
coordinates r and r′

nlV Qs
Ls (r, r′) = nlV Qs(r −RL −Rs, r′ −RL −Rs) (D.3)

which increases the complexity of the problem. Being a nonlocal operator that is evaluated between
two orbitals, we need to obtain knowledge about its action on a wavefunction. Following Refs. [30]
and [6], this action is given by

nlV Q
00

∣∣∣00Ql′m′
〉

=
∫

d3r′ nlV Q(r, r′)φQl′m′(r
′) =

∑
lm

∫
d3r′

1
r2 δ(r− r

′) nlV Q
l (r)Klm(r̂)Klm(r̂′)φQl′m′(r

′).

(D.4)
From this the reciprocal representation is found to be

nlV Q(k,k′) = 4π
ΩC

∑
l

(2l + 1)Pl(k̂ · k̂′)
∫

dr r2jl(kr) nlV Q
l (r)jl(k′r) (D.5)

with the Legendre polynomials Pl and spherical Bessel functions jl.

D.1.2 The full local potential

The full local potential, which we will need to decompose into angular momentum contributions, is
comprised not only of the local part of the pseudopotential but in addition contains the Hartree und
exchange-correlation terms:

V Qs(r) = VHartree(r) + V PS
loc (r) + VXC(r). (D.6)

We must then find a decomposition of the form

V Qs
Ls (r) = V Qs(r −RL −Rs) (D.7)

for the CPA scheme. The analysis of the local potentials works analogous to that of the local orbitals
in Sec. B. However, the definition of the Fourier transformation

V Qs(k) = 1
ΩC

∫
d3r V Qs(r)e−ikr (D.8)

V Qs(r) = ΩC

(2π)3

∫
d3k V Qs(k)eikr (D.9)
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for the local potentials differs from that of the local basis functions in two ways: firstly, the convention
has been chosen such that we find a factor ΩC instead of its square root. Secondly, the angular
momentum decomposition does not include the factor il and is given by

V Qs(r) =
∑
lm

V Qs
lm (r)Klm(r̂) (D.10)

Using this definition the reciprocal representation of V Qs may be written as

V Qs(k) = 4π
ΩC

∫
dr r2

∑
lm

(−i)ljl(kr)Klm(k̂)V Qs
lm (r) (D.11)

and further simplified to
V Qs(k) = 1

ΩC

∑
lm

(−i)lV Qs
lm (k)Klm(k̂) (D.12)

by introducing the radial Fourier transformation

V Qs
lm (k) = 4π

∫
dr r2jl(kr)V Qs

lm (r). (D.13)

This definition is equivalent to that of the basis orbitals in Eq. (B.4a). As this definition differs from
that used within the MBPP, imported k-dependent potentials need to be rescaled by a factor of 1

4π
within the CPA. A translation of the origin in real space is treated analogous to that of the basis
orbitals and yields

V Qs
Ls (r) = ΩC

(2π)3

∫
d2k d3r′e−ik(RL)−RseikrV Qs(k) (D.14)

= 1
(2π)3

∫
d3k d3r′e−ik(RL−Rs)eikrV Qs(r′)e−ikr′

. (D.15)

D.1.3 The Hartree potential

As the Hartree potential describes the interaction of a single electron with the total electronic density
its real space representation is given by

VHartree(r) = e2
∫

n(r′)
|r − r′|

. (D.16)

A much simpler evaluation is possible in reciprocal space, as we can Fourier transform the electronic
density

n(k) = 1
ΩC

∫
d3r n(r)e−ikr

= 1
ΩC

∑
Ps

ηPs
∑
lm

(−i)lKlm(k̂)nPslm(k)

≡
∑
Ps

ηPs n
P
s (k) (D.17)
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with the radial Fourier transformation nPslm(k). With this we find the reciprocal representation of the
Hartree potential to be

VHartree(k) = 4πe2n(k)
k2 = e2 4π

k2

∑
Ps

ηPs n
P
s (k) ≡

∑
Ps

ηP (H)
s V P

s (k). (D.18)

We have thus found a site and species resolved decomposition of VHartree in the sense of the BEB-CPA
which is directly calculated from the densities via

(H)V P
s = 1

ΩC

4πe2

k2

∑
lm

(−i)l nPslm(k)Klm(k̂)

≡ 1
ΩC

∑
lm

(−i)l (H)V Ps
lm (k)Klm(k̂). (D.19)

Here
(H)V Ps

lm (k) ≡ 4πe2

k2 ηPs n
Ps
lm(k) (D.20)

is the species and radial angular resolved local contribution to the Hartree potential. Within the MBBP
and the CPA program a unit convention has been chosen such that e2 = 2. As already mentioned at
the beginning of this chapter the implemented code actually computes potentials in the form k · V (k),
so that we avoid the divergence of Eq. (D.20) as k → 0. We finally come to the real space components
of the Hartree potential by a radial Fourier transformation

(H)V Ps
lm (r) = 1

2π2

∫
dk k2jl(kr) (H)V Ps

lm (k) = 4πe2

2π2 η
P
s

∫
dk jl(kr)nPslm(k) (D.21)

which is implemented in subroutine calcHartree in potential.f90.

D.1.4 The exchange and correlation potential

As we have already discussed in Sec. 1.2.4, the most complicated contribution to the full electronic
potential is the exchange and correlation term - the main difficulty being the fact that it is a nonlinear
functional of the electronic density and it cannot be expressed in a closed analytic form. We must
thus always resort to approximative schemes in determining its contribution. A sophisticated shape
function approach was implemented for the treatment of the XC potential in the CPA code by Ref. [6]
and shall be described in detail in the following. We begin by defining a radially symmetric shape
function Si

Si(|r|) = Si(r) = S

(
r

Ri

)
with S(1) = 0 (D.22)

for every site i in the medium. Each of these shape functions is then characterized by a cutoff radius
Ri and two parameters n ∈ N and γ ∈ R such that

S(x) =


1 for n = 0

e−γx
2 for n = 1

1− e−γ(1−x)n for n ≥ 2
. (D.23)

120



In principle, the functional forms of the shape functions may differ for each site, however, they actual
implementation of the CPA code demands the same functional form for all types. We may now
introduce a norm

N (r) =
∑
i

Si(r −Ri) (D.24)

as the sum over all site centered shape functions evaluated at an arbitrary point r. With this norm
we may perform a local decomposition of the XC potential according to

XCVi(r −Ri) = VXC[n(r)]Si(r −Ri)
N (r) . (D.25)

If we consider the clean case, i.e. no random site occupation, we find

VXC[n(r)] !=
∑
i

XCVi(r −Ri) =
∑
i

VXC[n(r)]Si(r −Ri)
N (r)

= VXC[n(r)]N (r)
N (r) . (D.26)

Thus, without disorder our decomposition becomes exact. In contrast, for a disordered system the
site and species indices are no longer uniquely connected and so for the substituted system Eq. (D.25)
becomes approximative. As we have discussed in Sec. 1.2.4, the introduction of the shape function
scheme was made necessary due to some drawbacks of the simpler ASA. An important distinction from
the ASA is the required overlap of the shape function to ensure that each and every point in space is
covered by some shape function. The problem of double counting due to this overlap is circumvented
by employing the norm in Eq. (D.25). The quality of a decomposition may be determined in two
different ways: (i) via N (r) which should exhibit the lowest possible spatial fluctuations if evaluated
at several points in the unit cell and (ii) via a comparison of the CPA band structure of the clean
compound with that of the respective DFT calculation.
Now that we have found a sensible local decomposition of the XC potential, we must further decompose
it in terms of angular momentum:

XCV P
s (r) =

∑
lm

XCV P
s,lm(r)Klm(r̂). (D.27)

Making use of the orthonormality Eq. (B.10) of the cubic harmonics we can find the radial angular
components

XCV P
s,lm(r) =

∫
dΩ XCV P

s (r)Klm(r̂). (D.28)

In contrast to the other potential contributions, for which we could find analytic expressions, the
XCV P

s,lm(r) can only be determined numerically (a consequence of the nonlinear dependence of VXC
on the electronic density). With the solid angle in Eq. (D.28) expressed in spherical coordinates
dΩ = dϕd cos θ the integration is carried out in two steps. First, the integration over ϕ from 0 to 2π
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is divided into N equidistant points and performed via the trapezoidal rule [49, 50]

∫ 2π

0
dϕf(ϕ) =

∫ 2π
N

0
dϕf(ϕ) +

∫ 2 2π
N

2π
N

dϕf(ϕ) + · · ·+
∫ N 2π

N

(N−1) 2π
N

dϕf(ϕ)

= 2π
N

f0 + f1
2 + 2π

N

f1 + f2
2 + · · ·+ 2π

N

fN−1 + fN
2

= 2π
N

f0 + fN
2 +

N−1∑
n=1

fn

 , (D.29)

where fn = f(n2π
N ). If we make use of the periodicity of the spherical coordinates, i.e. f0 = fn, we

come to ∫ 2π

0
dϕf(ϕ) = 2π

N

N−1∑
n=0

fn. (D.30)

Second, the integration over d cos θ is performed via a Gauß-Legendre quadrature [48–50, 155]∫
d cos θ f(θ) =

n∑
i=1

wif(xi) (D.31)

with weight factors

wi = 2
(1− x2

i )[P ′n(xi)]2
. (D.32)

Here, P ′i denotes the first derivative of the Legendre polynomials and the tabulated optimal xi for
n sampling points were taken from Ref. [155]. Bringing both integration schemes together, we can
reformulate Eq. (D.28) and come to an expression for the site and species resolved orbital decomposition
of the XC potential:

XCV P
slm(r) =

n∑
i=1

wi
2π
N

N∑
j=1

XCV P
s (ri,j)Klm(ϕj , xi) (D.33)

with xi = (cos θ)i. Due to bench marking by Ref. [6], N = 17 and n = 10 are implemented in the CPA
code. The full decomposition is carried out by subroutine calcVxc in file potential.f90, where the
total configurationally averaged electronic density

n(r) =
∑
LsP
lm

cPs n
P
lm(|r −RLs|)Klm( ̂r −RLs) (D.34)

needed for the calculation of the total XC potential is performed by the double precision function
calcXCDen_spec.

Spin-orbit coupling

The above computational scheme holds for systems with spin-orbit coupling, as the electronic density
- and thus the XC potential - is not separated into spin components.
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Spin polarization

The case of spin-polarization is treated differently: here, a separation of the electronic density according
to spin components is and meaningful. Consequently, the XC potential must be calculated for each
spin component separately by subroutine calcVxc.

D.1.5 The mixing potential

As we evaluate the potential contributions of the LCAO-CPA Hamiltonian we come across terms of
the form 〈

iP lm
∣∣∣ ∑
k 6=(i,j),R

cRk V
R
k

∣∣∣jQl′m′〉 (D.35)

containing restricted sums such as in Eqs. (1.55) and (1.56). Instead of evaluating these sums directly,
we take a different route: we first evaluate the unrestricted sum and later on subtract the excluded
contributions. This approach not only serves as an efficient computation scheme but furthermore lends
a tool to verify the proper functionality of the CPA code. As the unrestricted sum yields the crystal
potential for a clean compound, i.e. a system without disorder and concentrations equal to one, the
Hamiltonian matrix elements may here be compared to those of the underlying MBPP calculation of the
parent compound. Additionally, the diagonalized crystal Hamiltonian may be applied in the analysis
of self-energy effects in the disordered system. Following Ref. [6], the so called "mixing-potential" is
given by

Vmix(r) =
∑
NuR

cRu V
Ru
Nu (r) = ΩC

(2π)3

∑
NuR

cRu

∫
d3k e−ik(RN +Ru)eikrV Ru(k)

=
∑
GuR

cRu e
−iGRueiGrV Ru(G) ≡

∑
G

eiGrVmix(G), (D.36)

with the lattice index N , atomic index u within the unit cell, species index R and reciprocal lattice
vector G. In the last step of Eq. (D.36) we have written the mixing potential in form of a Fourier
series by introducing

Vmix(G) =
∑
uR

cRu e
−iGRuV Ru(G)

= 1
ΩC

∑
uRlm

cRu e
−iGRu(−i)lV Ru

lm (G)Klm(Ĝ). (D.37)

In the case of a clean compound Vmix is obviously lattice periodic, as it reduces to the crystal potential.
For a disordered system the lattice periodicity follows directly from Eq. (D.36). Making use of relations
and definitions discussed in App. B, it is straightforward to derive the onsite matrix elements which
take the form 〈

sP lm
∣∣∣Vmix

∣∣∣sP l′m′〉 = 4π
∑
G

eiGRsVmix(G)
∑
l′′m′′

il
′+l′′−lKl′′m′′(Ĝ)

× C(lm, l′m′, l′′m′′)
∫

dr r2jl′′(Gr)fPsl (r)fPsl′ (r). (D.38)
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Due to the lattice periodicity we may evaluate matrix elements between arbitrary site in k-space:

mixHPQ
slm,tl′m′(k) =

∑
L

〈
LsP lm

∣∣∣Vmix

∣∣∣0tQl′m′〉 e−ikRLe−ik(Rs−Rt)

= 1
ΩC

∑
GG′

e−iGRseiG
′RtfPl (k −G)Klm(k̂ −G)

× Vmix(G′ −G)fQl′ (k −G′)Kl′m′(k̂ −G′). (D.39)

As we have discussed in App. D.1.1, we must discern between local and nonlocal contributions to the
potential. In this context we must note that the above expression is only valid for the local potential
and the nonlocal contribution must be treated separately. With the nonlocal pseudopotential being a
nonlocal operator we find

〈
sP lm

∣∣∣V nl
mix

∣∣∣sP l′m′〉 = ΩC

(2π)3

∑
GuR

cRu

∫
d3k e−G(Rs−Ru)

(
φPlm(k)

)∗
nlV Ru(k,k −G)φPl′m′(k −G)

(D.40)
with

V nl
mix =

∑
NuR

cRu
nlV Ru

Nu . (D.41)

Due to the three dimensional integration, the derivation of matrix elements from expression Eq. (D.40)
becomes quite tedious and due to the lack of further simplification must be performed in k-space. The
final expression for mix,nlH(k) is found to be

mix,nlHPQ
slm,tl′m′(k) =

∑
L

〈
LsP lm

∣∣∣V nl
mix

∣∣∣0tQl′m′〉 e−ikRLe−ik(Rs−Rt)

=
∑

GG′uR

cRu e
−iGRseiG

′Rtei(G−G
′)Ru

×
(
φPlm(k −G)

)∗
nlV Ru(k −G,k −G′)φQl′m′(k −G

′). (D.42)

Both the local and nonlocal contributions are calculated by subroutine calcVmix2_k and joined into
the full k-dependent mixing potential. The subroutine may be found in file hloc.f90 and is stored
in the complex array vmix_k(irk,iao1,iao2). In contrast to the original implementation of Ref. [6],
the subroutine was improved to make use of local part of the radial basis functions which lead to a
drastic speed up in calculations. From the full mixing potential the onsite terms are obtained via
Fourier transformation of Eqs. (D.39) and (D.42) performed by subroutine calcMixOnsite in file
hamilton.f90

D.2 The Hamiltonian matrix elements

We are now in a position to evaluate the full Hamiltonian matrix elements and present them in an
analytical form. As it is often convenient to have the matrix elements for both onsite and offsite terms,
we shall discuss the respective contributions separately.
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D.2.1 Onsite matrix elements of the Hamiltonian

We begin with the onsite Hamilton matrix elements which contain the following contributions

ḢPP
slm,l′m′ =ṪPPslm,l′m′ + ẆPPP

slm,l′m′

+
∑
R

(N,u)6=(0,s)

〈
sP lm

∣∣∣cRu (V Ru
Nu + nlV Ru

Nu

)∣∣∣sP l′m′〉
︸ ︷︷ ︸

≡Σres

. (D.43)

The first term in Eq. (D.43) denotes the kinetic contributions which are given by

ṪPQslm,l′m′ ≡
〈
sP lm

∣∣∣ T̂ ∣∣∣sQl′m′〉 = δll′δmm′
~2

2m
1

(2π)3

∫
dk k4fPl (k)fQl (k). (D.44)

Here, we have adapted the conventions chosen in MBPP, i.e., we have set h̄2

2m = 1. The pseudopotential
contributions to the onsite matrix elements must once again be separated into local and nonlocal parts:

ẆPRQ
slm,l′m′ ≡

〈
sP lm

∣∣∣V Rs
s

∣∣∣sQl′m′〉+
〈
sP lm

∣∣∣nlV Rs
s

∣∣∣sQl′m′〉 , (D.45)

where

〈
sP lm

∣∣∣V Rs
s

∣∣∣sQl′m′〉 =
∑
l′′m′′

il
′−lC(lm, l′m′, l′′m′′)

∫
dr r2fPsl (r)V Rs

l′′m′′(r)f
Qs
l′ (r) (D.46)

and

〈
sP lm

∣∣∣ nlV Rs
s

∣∣∣sQl′m′〉 = δll′δmm′θ(l − 1)θ(lmax − l)
∫

dr r2fPsl (r) nlV Rs
l (r)fQsl (r). (D.47)

Here, the potentials carry an additional species index R which will become necessary in calculating
offsite matrix elements. The last term we are left with in Eq. (D.43) contains a restricted sum which
can be evaluated via

Σres =
〈
sP lm

∣∣∣Vmix + V nl
mix

∣∣∣sP l′m′〉−∑
R

cRs Ẇ
PRP
slm,l′m′ . (D.48)

The calculation of all onsite matrix elements for the Hamiltonian are carried out by the subroutine
calcHOnsite in file hamilton.f90. Each contribution is stored in a separate complex array. In the code
vOnsite(iao1,itype,iao2) stands for Ẇ , tOnsite(iao1,iao2) for Ṫ and hOnsite(iao1,iao2) for
Ḣ.
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D.2.2 Offsite matrix elements of the Hamiltonian

The expressions for the offsite matrix elements of the Hamiltonian

H̆PQ
slm,tl′m′(k) =TPQslm,tl′m′(k) +WPPQ

slm,tl′m′(k) +
[
WQQP
tl′m′,slm(k)

]∗
+

∑
(N,u)6=(0,s),(0,t)

〈
sP lm

∣∣∣cRu (V Ru
Nu + nlV Ru

Nu

)∣∣∣tQl′m′〉 (k)

︸ ︷︷ ︸
≡Σres

− δst
[
ṪPQslm,l′m′ + ẆPPQ

slm,l′m′ +
(
ẆQQP
sl′m′,lm

)∗]
− δst

〈
sP lm

∣∣∣Vmix + V nl
mix

∣∣∣sQl′m′〉
+ δst

∑
R

cRs

[
ẆPRQ
slm,l′m′ +

(
ẆQRP
sl′m′,lm

)∗]
(D.49)

are similar to those of the onsite Hamiltonian in Eq. (D.43), however, there are a number of additional
contributions to consider. The last three lines of Eq. (D.49) comprise corrections ensuring the 1− δij
property of offsite quantities. As already mentioned above, an additional species index enters the onsite
potential matrix elements Ẇ which is motivated by the corrections necessary in the offsite terms. We
find the offsite kinetic contribution to be given by

TPQslm,tl′m′(k) = ~2

2mΩC

∑
G

(k −G)2e−ik(Rs−Rt)fPl (k −G)Klm(k̂ −G)fQl′ (k −G)Kl′m′(k̂ −G). (D.50)

A note about the last term in the first line of Eq. (D.49) is in order: here, we have made use of the
hermiticity of the Hamiltonian and thus〈

sP lm
∣∣∣V Q
t

∣∣∣tQl′m′〉 =
〈
tQl′m′

∣∣∣V Q
t

∣∣∣sP lm〉∗ . (D.51)

Originally being a term with the potential centered at the right terminal site we may now consider
only terms centered at the left terminal site in following. After a tedious calculation these left centered
matrix elements in reciprocal space are found to be〈

sP lm
∣∣∣V Rs
s

∣∣∣tQl′m′〉 (k) = 4π
ΩC

∑
l′′m′′
l′′′m′′′

il
′′′−lC(lm, l′′m′′, l′′′m′′′)

×
∑
G

e−iG(Rs−Rt)Kl′m′(k̂ −G)Kl′′′m′′′(k̂ −G)

× fQl′ (k −G)
∫

dr r2jl′′′((k −G)r)fPl (r)V Rs
l′′m′′(r) (D.52)

for the local part and〈
sP lm

∣∣∣ nlV Rs
s

∣∣∣tQl′m′〉 (k) = 4π
ΩC

∑
k

e−iG(Rs−Rt)fQl′ (k −G)Klm(k̂ −G)

×Kl′m′(k̂ −G)
∫

dr r2jl((k −G)r)fPl (r) nlV Rs
l (r) (D.53)
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for the nonlocal part, respectively. Thus, the total pseudopotential contribution is given by

WPRQ
slm,tl′m′(k) ≡

〈
sP lm

∣∣∣V Rs
s

∣∣∣tQl′m′〉 (k) +
〈
sP lm

∣∣∣ nlV Rs
s

∣∣∣tQl′m′〉 (k). (D.54)

We may now turn to the restricted sum Σres in Eq. (D.49) which can be written as

Σres = mixHPQ
slm,tl′m′(k) + mix,nlHPQ

slm,tl′m′(k)−
∑
R

(
cRsW

PRQ
slm,tl′m′(k) + cRt

[
WQRP
tl′m′,slm(k)

]∗)
. (D.55)

Within the CPA program the above equations are evaluated by the subroutine calcHOffsite_lr
in file hamilton.f90. The matrix elements for the potential W are stored in the complex array
vOffsite(irk,iao1,itype,iao2), while the kinetic contribution T is stored in
tOffsite(irk,iao1,iao2) and the offsite Hamiltonian H̆ in hOffsite(irk,iao1,iao2). When
considering spin-orbit coupling or spin polarization, formally spinor states must be introduced leading
to additional spin indices, i.e. an increase in dimensionality of the involved matrices. However, most
contributions to the Hamiltonian are independent of spin. In the practical implementation this allows
us to keep most calculations involved in the evaluation of the Hamiltonian largely unmodified.
Generalizing to spin-space, the Hamiltonian will take the form

H =
(
H↑↑ H↑↓
H↓↑ H↓↓,

)
=
(
H0 0
0 H0

)
+
(
H̃↑↑ H̃↑↓
H̃↓↑ H̃↓↓

)
, (D.56)

where we have separated the Hamiltonian into a spin independent part H0 and a spin dependent part
H̃σσ′ with spin indices σ(′ ) in the last step. The first term consists of all contributions which need
only be calculated in the "reduced dimensionality" without spin indices and are later on placed on
the diagonal of the spinfull Hamiltonian. The second term denotes those contributions which directly
depend on spin and can, in principal, have non-zero mixing terms H̃↑↓ and H̃↓↑.

Spin polarization

For the spin polarized case this contribution consists only of the XC potential, which is a functional of
the spin components of the electronic density and was already discussed in App. D.1.4. Furthermore,
for pure spin polarization (no additional spin-orbit coupling) no mixing terms occur and H̃↑↓ = H̃↓↑ = 0.

Spin-orbit coupling

For spin-orbit coupling mixing terms will in general be nonzero, i.e. H̃σσ̄ 6= 0, where σ̄ denotes the
opposite of σ. Here, the spin dependent contribution stems from the spin-orbit coupling potential
VSO which we shall discuss in great detail in the next chapter. The spin-orbit coupling part of the
Hamiltonian in reciprocal space takes the form

SOHPQσσ
′

slm,tl′m′(k) =
∑
GG′κu

cκue
−iGRseiG

′Rtei(G−G
′)RuφP∗lm(k −G)φQl′m′(k −G

′)

×
∑
l′′≥1

vSOσσ
′

κl′′ (k −G, k −G′), (D.57)
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with angular momentum resolved spin-orbit potential vSOσσ′κl (k, k′) of species κ and atomic concentra-
tion cκu at lattice position u.
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E Appendix E

Spin-orbit matrix elements

One of the main extensions added to the CPA program within this work is the development of a
full SOC treatment of substitutionally disordered systems. Therefore, a detailed derivation of the
appropriate CPA matrix elements of the SOC potential shall be given here.

E.1 Relativistic norm-conserving pseudopotentials

We begin our derivation with a general consideration of the spin-orbit potential in the context of
norm-conserving pseudopotentials, as developed by Refs. [156], [157] and [158]. To this end, the major
components of a relativistic pseudopotential are expanded in spinor eigenstates to J and L

V̂ PS =
∑
lm

∣∣∣∣l + 1
2 ,m+ 1

2

〉
V ion
l,l+ 1

2
(r)
〈
l + 1

2 ,m+ 1
2

∣∣∣∣+
∣∣∣∣l − 1

2 ,m−
1
2

〉
V ion
l,l− 1

2
(r)
〈
l − 1

2 ,m−
1
2

∣∣∣∣
with the spinor eigenstates

∣∣J,mJ

〉
∣∣∣∣l + 1

2 ,m+ 1
2

〉
=


(
l+m+1

2l+1

) 1
2 ∣∣lm〉(

l−m
2l+1

) 1
2 ∣∣lm+ 1

〉
 J = l + 1

2 ,mJ = m+ 1
2 (E.1)

∣∣∣∣l − 1
2 ,m−

1
2

〉
=

−
(
l−m+1

2l+1

) 1
2 ∣∣lm− 1

〉(
l+m
2l+1

) 1
2 ∣∣lm〉

 J = l − 1
2 ,mJ = m− 1

2 (E.2)

With the standard angular momentum eigenfunctions
∣∣lm〉 and the vector living in spin-space

(
↑, ↓
)
.

The SOC pseudopotential takes the simplified block form

V̂ PS =
∑
lm

1
2l + 1

(
V PS
↑↑ V PS

↑↓
V PS
↓↑ V PS

↓↓

)
. (E.3)
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Using the abbreviation V± = V ion
l,l± 1

2
, the respective spin blocks are

V PS
↑↑ = (l +m+ 1)

∣∣lm〉V+
〈
lm
∣∣+ (l −m+ 1)

∣∣lm− 1
〉
V−
〈
lm− 1

∣∣︸ ︷︷ ︸
m→m+1

V PS
↑↓ = [(l +m+ 1)(l −m)]

1
2
∣∣lm〉V+

〈
lm+ 1

∣∣︸ ︷︷ ︸
m→m−1

−[(l −m+ 1)(l +m)]
1
2
∣∣lm− 1

〉
V−
〈
lm
∣∣

V PS
↓↑ = [(l +m+ 1)(l −m)]

1
2
∣∣lm+ 1

〉
V+
〈
lm
∣∣− [(l −m+ 1)(l +m)]

1
2
∣∣lm〉V− 〈lm− 1

∣∣︸ ︷︷ ︸
m→m+1

V PS
↓↓ = (l −m)

∣∣lm+ 1
〉
V+
〈
lm+ 1

∣∣︸ ︷︷ ︸
m→m−1

+(l +m)
∣∣lm〉V− 〈lm∣∣ .

Performing the indicated index shifts yields

V PS
↑↑ = (l +m+ 1)

∣∣lm〉V+
〈
lm
∣∣+ (l −m)

∣∣lm〉V− 〈lm∣∣
V PS
↑↓ = [(l +m)(l −m+ 1)]

1
2
∣∣lm− 1

〉
V+
〈
lm
∣∣− [(l −m+ 1)(l +m)]

1
2
∣∣lm− 1

〉
V−
〈
lm
∣∣

V PS
↓↑ = [(l +m+ 1)(l −m)]

1
2
∣∣lm+ 1

〉
V+
〈
lm
∣∣− [(l −m)(l +m+ 1)]

1
2
∣∣lm+ 1

〉
V−
〈
lm
∣∣

V PS
↓↓ = (l −m+ 1)

∣∣lm〉V+
〈
lm
∣∣+ (l +m)

∣∣lm〉V− 〈lm∣∣
and we can rearrange Eq. (E.3) to give

V̂ PS =
∑
l,m

1
2l + 1

 m[V+ − V−]
∣∣lm〉 〈lm∣∣ [(l +m)(l −m+ 1)] 1

2 [V+ − V−]
∣∣lm− 1

〉 〈
lm
∣∣

[(l +m+ 1)(l −m)] 1
2 [V+ − V−]

∣∣lm+ 1
〉 〈
lm
∣∣ −m[V+ − V−]

∣∣lm〉 〈lm∣∣


+
∑
l,m

1
2l + 1

(
[(l + 1)V+ + lV−]

∣∣lm〉 〈lm∣∣ 0
0 [(l + 1)V+ + lV−]

∣∣lm〉 〈lm∣∣
)
. (E.4)

With the help of

V l(r) = 1
2l + 1[(l + 1)V+ + lV−] (E.5)

and
V SO
l (r) = 2

2l + 1[V+ − V−] (E.6)

we can separate the spin-orbital contribution to the pseudopotential

V̂ PS =
∑
lm

[V l(r)1 + V SO
l (r)L̂ · Ŝ]

∣∣lm〉 〈lm∣∣ . (E.7)

To see that this, in fact, gives the spin-orbit contribution we consider the action of the spin-orbit
coupling operator ∑

m

L̂ · Ŝ
∣∣lm〉 〈lm∣∣ . (E.8)
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For each l-component of the projection in spin space we find

∑
m

L̂ · Ŝ
∣∣lm〉 〈lm∣∣ = 1

2
∑
m

(
Lz L−
L+ −Lz

)∣∣lm〉 〈lm∣∣
= 1

2
∑
m

(
m
∣∣lm〉 〈lm∣∣ √

l(l + 1)−m(m− 1)
∣∣lm− 1

〉 〈
lm
∣∣√

l(l + 1)−m(m+ 1)
∣∣lm+ 1

〉 〈
lm
∣∣ −m

∣∣lm〉 〈lm∣∣
)

= 1
2
∑
m

(
m
∣∣lm〉 〈lm∣∣ √

l(l + 1)−m(m+ 1)
∣∣lm〉 〈lm+ 1

∣∣√
l(l + 1)−m(m+ 1)

∣∣lm+ 1
〉 〈
lm
∣∣ −m

∣∣lm〉 〈lm∣∣
)

and compare to Eq. (E.4). As already discussed in Sec. B, within this work we express the basis
functions in terms of cubic harmonics. However, the angular momentum eigenfunctions above are
spherical harmonics Ylm. Thus, we must make the connection from one to the other via a unitary
transformation

Ylm(r̂) =
∑
m1

U lmm1Klm1(r̂) (E.9)

with non-vanishing elements for m = ±m1 only and a transformation matrix U l ∈ C. A projector then
transforms as ∑

mm′

xlmm′
∣∣∣lm〉〈lm′∣∣∣ =

∑
mm′

xlmm′
∑
m1m2

U lmm1

(
U lm′m2

)∗ ∣∣∣lm1

〉〈
lm2

∣∣∣ (E.10)

=
∑
m1m2

∑
mm′

xlmm′U
l
mm1

(
U lm′m2

)∗
︸ ︷︷ ︸

=xlm1m2

∣∣∣lm1

〉〈
lm2

∣∣∣ (E.11)

=
∑
mm′

xlmm′
∣∣∣lm1

〉〈
lm2

∣∣∣ (E.12)

where
∣∣∣lm〉 are the cubic harmonics. Under these considerations, the SOC potential becomes

V̂ SO =
∑
lm

V SO
l (r)L̂Ŝ

∣∣lm〉 〈lm∣∣ (E.13)

=
∑
l

V SO
l (r)

∑
mm′

(
[C lmm′ ]↑↑ [C lmm′ ]↑↓
[C lmm′ ]↓↑ [C lmm′ ]↓↓

)∣∣∣lm〉〈lm′∣∣∣ (E.14)

with

[C lmm′ ]↑↑ =
∑
m1

m1
2 U lm1m

(
U lm1m′

)∗
= 1

2 L̂z
∣∣∣lm〉〈lm′∣∣∣ (E.15)

[C lmm′ ]↓↓ = −[C lmm′ ]↑↑ (E.16)

[C lmm′ ]↑↓ =
∑
m1

√
(l +m1 + 1)(l −m1)

2 U lm1m

(
U lm1+1m′

)∗
= L̂−

∣∣∣lm〉〈lm′∣∣∣ (E.17)

[C lmm′ ]↓↑ =
(

[C lm′m]↑↓
)∗

= L̂+

∣∣∣lm〉〈lm′∣∣∣. (E.18)
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E.2 Matrix elements of spin-orbit interaction

With the help of Sec. E.1, we may now evaluate the matrix elements of the spin-orbit potential within
the CPA formalism. The real space representation for the spin-orbit coupling potential in a solid is
given by 〈

r
∣∣∣V̂ SO

∣∣∣r′〉 =
∑
Nκ

vSOκ (r −RNκ, r′ −RNκ) (E.19)

where for each species κ

vSOκ (r, r′) =
〈
r
∣∣∣V̂ SO
κ

∣∣∣r′〉 =
∑
lm

δ(r − r′)
r2 vSOκ,l (r)L̂rŜKlm(r̂)Klm(r̂′). (E.20)

Here, L̂r acts on the r-coordinate. For each component in spin-space, this is expressed in terms of
cubic harmonics as

[vSOκ (r, r′)]σσ′ =
∑
l

δ(r − r′)
r2 vSOκ,l (r)

∑
mm′

[C lmm′ ]σσ′Klm(r̂)Klm(r̂′) (E.21)

The CPA matrix-elements we wish to compute is

SOHPQσσ
′

slm,tl′m′(k) =
∑
L

e−ikRLe−ik(Rs−Rt)
〈
LsP lm

∣∣∣V SO
σσ′

∣∣∣0tQl′m′〉 (E.22)

with
V SO
σσ′ =

∑
Nuκ

cκuv
SOσσ′
κ (r −RN −Ru, r′ −RN −Ru). (E.23)

A short comment should be made about the notation used within this section: As the expressions in
deriving the SOC matrix elements become quite long and tedious, we abbreviate multiple integrations
in the following way ∫

d3r d3r′ d3k d3k′ −→
∫

d3(r, r′, k, k′). (E.24)

Applying the definitions and relations given in Sec. B yields

SOHPQσσ
′

slm,tl′m′(k) =
∑
L

e−ikRLe−ik(Rs−Rt)
〈
LsP lm

∣∣∣V SO
σσ′

∣∣∣0tQl′m′〉
=
∑
L

e−ikRLe−ik(Rs−Rt)
∫

d3(r, r′)φP∗lm(r −RL −Rs) (E.25)

×
∑
Nuκ

cκuv
SOσσ′
κ (r −RN −Ru, r′ −RN −Ru)φQl′m′(r

′ −Rt)

= ΩC

(2π)6

∑
LNuκ

e−ikRLe−ik(Rs−Rt)
∫

d3(r, r′, k′, k′′)φP∗lm(k′)e−ik′(r−RL−Rs+RN +Ru)

× cκuvSOσσ
′

κ (r, r′)φQl′m′(k
′′)eik′′(r′−Rt+RN +Ru). (E.26)
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We now compute the reciprocal representation of the spin components of vSOκ (r, r′) in Eq. (E.20)

vSOσσ
′

κ (k′,k′′) = 1
ΩC

∫
d3(r, r′)e−ik′rvSOσσ′κ (r, r′)eik′′r′

= 1
ΩC

∑
lmm′

∫
d3(r, r′)δ(r − r

′)
r2 vSOκl (r)[C lmm′ ]σσ′Klm(r̂)Klm′(r̂′)e−ik

′reik
′′r′

= 1
ΩC

∑
lmm′

∫
d3(r, r′)δ(r − r

′)
r2 vSOκl (r)[C lmm′ ]σσ′Klm(r̂)Klm′(r̂′)(4π)2

×
∑
l′′m′′
l′′′m′′′

il
′′′−l′′jl′′(k′r)jl′′′(k′′r′)Kl′′m′′(k̂′)Kl′′m′′(r̂)Kl′′′m′′′(k̂′′)Kl′′′m′′′(r̂′). (E.27)

Making use of Eqs. (B.10)-(B.12) we find

vSOκ (k′,k′′) =
∑
lmm′

(4π)2

ΩC

∫
d(r, r′)r2r′2

δ(r − r′)
r2 vSOκl (r)[C lmm′ ]σσ′Klm(k̂′)Klm′(k̂′′)jl(k′r)jl(k′′r′)

=
∑
lmm′

(4π)2

ΩC

∫
dr′r′2vSOκl (r′)[C lmm′ ]σσ′Klm(k̂′)Klm′(k̂′′)jl(k′r′)jl(k′′r′)

=
∑
l

∑
mm′

[C lmm′ ]σσ′Klm(k̂′)Klm′(k̂′′)
(4π)2

ΩC

∫
drr2jl(k′r)vSOκl (r)jl(k′′r)︸ ︷︷ ︸

=vSOκl (k′,k′′)

=
∑
l

∑
mm′

[C lmm′ ]σσ′Klm(k̂′)Klm′(k̂′′)vSOκl (k′, k′′) =
∑
l

vSOσσ
′

κl (k′, k′′) (E.28)

. Inserting Eq. (E.28) into Eq. (E.25) we arrive at

SOHPQσσ
′

slm,tl′m′(k) = Ω2
C

(2π)6

∑
LNuκ

cκue
−ikRLe−ik(Rs−Rt)

∫
d3(k′, k′′)φP∗lm(k′)φQl′m′(k

′′)

× e−ik
′(RN +Ru−RL−Rs)eik

′′(RN +Ru−Rt)
∑
l′′

vSOσσ
′

κl′′ (k′, k′′).

This may be manipulated to give

SOHPQσσ
′

slm,tl′m′(k) =
∑
GG′κu

cκue
−ik(Rs−Rt)e−ik(Ru−Rs)e−iG(Rs−Rt)e−iG

′(Ru−Rt)

× φP∗lm(k −G)φQl′m′(k −G−G
′)
∑
l′′

vSOσσ
′

κl′′ (k −G, k −G−G′) (E.29)
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by making multiple use of Eq. (B.14). We may furthermore shift G′ → G′ −G, which gives

SOHPQσσ
′

slm,tl′m′(k) =
∑
GG′κu

cκue
−iGRseiG

′Rtei(G−G
′)RuφP∗lm(k −G)φQl′m′(k −G

′)

×
∑
l′′

vSOσσ
′

κl′′ (k −G, k −G′)︸ ︷︷ ︸
=vSOσσ′κ (k−G,k−G′)

=
∑
GG′κu

cκue
−iGRseiG

′Rtei(G−G
′)RuφP∗lm(k −G)φQl′m′(k −G

′)

× vSOσσ′κ (k −G,k −G′) (E.30)

If we look at the C lmm′ in Eqs. (E.15) - (E.18), it becomes obvious that there is no spin-orbit contribution
from the l = 0 component. As a result, the l′′-summation in Eq. (E.30) reduces to one over l′′ ≥ 1 and
we arrive at the final result for the SOC matrix elements in reciprocal space

SOHPQσσ
′

slm,tl′m′(k) =
∑
GG′κu

cκue
−iGRseiG

′Rtei(G−G
′)RuφP∗lm(k −G)φQl′m′(k −G

′)

×
∑
l′′≥1

vSOσσ
′

κl′′ (k −G, k −G′). (E.31)

E.3 Implementation of the spin-orbit coupling Hamiltonian

Some remarks as to the implementation to Eq. (E.31) within the CPA program are in order: following
the internal logic, the dimensionality of the Hamiltonian generally depends on the total number of
atomic orbitals nao of the system under consideration.
Now, if we are to include spin-orbit coupling we must account for additional spin-degrees of freedom.
As a result, the number of atomic orbitals is doubled reflecting the fact that we must now describe our
system using spinors. This is implemented in such way that the range of atomic indices iao=1,..,2*nao
is split such that iao=1,...,nao represent spin-up indices, while iao=nao+1,...,2*nao represent
spin-down indices.
The calculation of the full spin-orbit coupling Hamiltonian from Eq. (E.31) is implemented in the
subroutine calcVmix2_k and stored in the complex array hso_k(irk,iao1,iao2,sig) with sig ∈
{1, 2, 3} ≡ {↑↑, ↑↓, ↓↓} and iao=1,...,nao. Here, the symmetry SOH↑↑ = − SOH↓↓ was exploited to
reduce computation time and memory cost. From this array subroutine calcVso in file hamilton.f90
builds the array vTotSO(irk,iao1,iao2) with iao=1,...,2*nao, in contrast to hso_k above. This
represents the full matrix form including spin-space - hence the increased orbital index dimensionality.
In a simplified representation this corresponds to

SOH =
(
H↑↑ H↑↓
H↓↑ H↓↓

)
. (E.32)

From this, the onsite term (which is k-independent) is extracted and stored in array vOnsiteSO(iao1,-
iao2) with iao=1,...,2*nao. Subtracting the onsite terms from the full spin-orbit potential for iao1
and iao2 corresponding to the same crystal site then yields the offsite terms. These are stored in
vOffsiteSO(irk,iao1,iao2) with iao=1,...,2*nao.
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The SOC Hamiltonian is fully incorporated into the relevant quantities used in suborutine cpaCycle-
Energy to determine the effective medium Green’s function and self-energy. Both quantities must be
expanded in dimensionality to accommodate for the spin degrees of freedom introduced by SOC.
While the SOC Hamiltonian need only be computed once for the main CPA charge self-consistent
calculation, it must be recomputed for each line in the band structure calculation performed by
subroutine cpaBandAlongLine and the Fermi surface calculations in subroutine CalcFermiSurface.
Here, only the onsite term is kept from the main calculation, as it is independent of k.
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F Appendix F

Symmetrization

As electronic structure calculations can become quite cumbersome and computationally expensive, we
should make use of the mathematical properties that characterize a crystal to reduce the operational
expense as best we can. A very powerful tool that we can make use of here is symmetry.

The Bravais lattice

A Bravais lattice is defined as an infinite array of discrete lattice points that can be generated by
discrete spatial translations such that the position of a generic point in three-dimensional (3D) space

R =
3∑
i=1

niai (F.1)

is described via the linear combination of linearly independent primitive vectors ai with integer co-
efficients ni ∈ N. Thus, the Bravais lattice describes the translational symmetry of a crystal. In
three dimension there are 14 possible Bravais lattices grouped into seven lattice systems: triclinic,
monoclinic, orthorombic, tetragonal, rhombohedral, hexagonal and cubic.

The point group

Aside from translational symmetry, a generic crystal may exhibit other symmetries such as rotational,
inversion and mirror symmetries. In contrast to a translation, they leave at least one point of the
crystal unmoved. These symmetries make up the crystallographic point group of which 32 exist in 3D.

The space group

Combining the translational and the point group symmetries we find the space groups. The space
groups also contain screw axes (rotation about an axes and translation parallel to the axis) and glide
planes (reflection of a point through a plane and translation parallel to the plane). There are 230
distinct space groups.

As we have already discussed in Sec. 1.2.3, a great advantage of the BEB-CPA formalism is the
fact that all quantities in the extended Hilbert space preserve the symmetries of the underlying
crystal structure. These symmetries can be exploited especially well when calculating k-dependent
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quantities. To calculate such quantities we must map the first Brillouin zone onto a regular k-mesh.
But instead of performing a calculation for all points on this mesh we can restrict ourselves to the
irreducible part of the BZ, i.e., to the set of k-points from which all other k-points can be generated
by applying the symmetry operations. The same hold for BZ integrations, for which the sum only
runs over the irreducible part and a symmetrization is afterwards applied. Depending on the number
of symmetries present for a specific crystal structure this exploitation can lead to a drastic speed-up.
The MBBP makes extensive use of this and generates a list of all symmetries which is then imported
into the CPA program. These operations are stored in the form of an atomic transformation table
iatrans(isym,iat,itype) that contains the transformed atomic index corresponding to the action
of a symmetry operation isym on an atomic index iat of the species itype.
To benefit from the symmetrization we must derive an analytic expression that we can apply to those
quantities which involve a BZ integration, such as the electronic density or the effective medium Green’s
function. For the time being, we restrict ourselves to the spinless case where the derivation closely
follows that given in Ref. [6] and shall discuss the symmetrization for a spinfull system in the cases of
spin-polarization and spin-orbit coupling separately. Let us consider a generic symmetry operation

g = (D, τ ) g[(r)] = Dr + τ (F.2)

which can always be written as the combination of a rotation D and a translation τ . If g describes an
inherent symmetry of the crystal it will map an atom located at site s onto another atom at site s′
according to

g[s] = s′ g[Rs] = DRs + τ = Rs′ +RL (F.3)

with a lattice vector RL. Next, let us consider the application of a symmetry operator to a local basis
function

φLslm(g[r]) = φLslm(Dr + τ ) = φlm(Dr + τ −Rs −RL)

= φlm

D(r +D−1τ −D−1Rs︸ ︷︷ ︸
=−g−1(Rs)+R′

L

−D−1RL)


= φlm

(
D(r −Rg−1(s) −RL′′)

)
. (F.4)

Recognizing that a symmetry operation only connects atoms of the same type (in general they must
not be equivalent), we have dropped the species index. As

φlm(r) = ilfl(r)Klm(r̂) (F.5)

we need to consider the effect of a rotation on the cubic harmonics Klm(r). With the help of the
Wigner matrices

W l
mm′(g) =

∫
dΩKlm(Dr̂)Klm′(r̂) (F.6)

it can be shown that they transform as

Klm(Dr̂) =
∑
m′

W l
mm′(g)Klm′(r′) (F.7)
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and so Eq. (F.4) becomes

φLslm(g[r]) =
∑
m′

W l
mm′(g)φlm′(r −Rg−1(s) −RL′′) =

∑
m′

W l
mm′(g)φL′′g−1(s)lm′(r) (F.8)

From these considerations we can derive the symmetrization of a generic matrix element of an operator
O to be

Os1l1m1,s2l2m2(Dgk) =
∑
m′1m

′
2

W l1
m1m′1

(g)Og−1(s1)l1m′1,g−1(s2)l2m′2(k)W l2
m2,m′2

(g)

× eiDgk(Rs1−Rs2 )e
−ik(Rg−1(s1)−Rg−1(s2))

. (F.9)

Written in a compact matrix product form this can be expressed as

O(Dgk) = SgO(k)S†g (F.10)

with the matrix elements

Sg,slm,s′l′m′ = δll′δs′g−1(s)W
l
mm′(g)eiDgkRse

−ikRg−1(s) (F.11)

of the transformation matrix. From this we find the relation between a sum of these matrix elements
over all k-points and those κ of the irreducible part of the BZ

M =
∑
k

O(k) =
∑
κ

∑
g(κ)

O(Dgκ) =
∑
κ

∑
g

1
ninv(κ)SgO(κ)S†g. (F.12)

The subset of k-points that can be generated by symmetry operations g(κ) from κ are called the
star of κ. The sum over these operations in Eq. (F.12) can be replaced by a sum over all symmetry
operations g if we account for the number of symmetry operations ninv(κ) that map κ onto itself, as
was done in the last step of Eq. (F.12).
We now consider the special case of onsite matrix elements for which further simplifications are justified.
As the onsite terms inherently have no κ-dependency the phase factors in the transformation matrix
Sg become trivial, we may perform the sum over symmetry operations independently from the sum
over κ

M =
∑
g

Sg

∑
κ

1
ninv(κ)O(κ)

S†g ≡
1
Ng

∑
g

Sg

∑
κ

w(κ)O(κ)

S†g (F.13)

with the number of symmetry operation Ng and symmetry dependent weight factors w(κ). In the
CPA code they correspond to nsymop and weight_irk, respectively, and are supplied as input by the
MBBP. Eq. (F.13) corresponds to reducing the calculation of all k-dependent matrix elements to the
irreducible subset κ weighted by w(κ) and afterwards accounting for all other k-points by symmetrizing
the inner sum. This results in the implementation of the onsite symmetrization according to

symMsl1m1l2m2 = 1
Ng

∑
g

∑
m′1m

′
2

W l1
m1m′1

(g)Mg−1(s)l1m′1l2m′2W
l2
m2m′2

(g) (F.14)

with the unsymmetrized sum M . As some of the onsite quantities are defined with respect to different
index structures, i.e., orbital-indices iao or special site-indices ilm two distinct subroutines have been
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implemented for the respective cases. The subroutine symmetrizeOnsiteGmat is applied to the
onsite mixing terms and the onsite effective medium Green’s function, corresponding to the former
case. The latter case of a generic complex onsite matrix in iao-space is treated by subroutine
symmetrizeOnsiteCmat. Both symmetrization routines can be found in file symmetry.f90 of the CPA
code.
A note shall be made here about the symmetrization of the electronic density, which is performed
different from the approach outlined above, as the BZ summation only occurs in the calculation of
the A-coefficients (see Eq. (C.8)). These summations only run over the irreducible subset κ and are
weighted by w(κ), which reduce to 1

Nk
in the absence of symmetries. We then symmetrize the orbital

radial densities nLslm(r) according to

symnLslm(r) = 1
Ng

∑
g

∑
m′

W l
mm′(g)nLg−1(s)lm′(r). (F.15)

This symmetrization is performed in subroutine denSpecOrb in the file density.f90.

Spin-polarization

The case of pure, non-relativistic spin-polarization can be treated analogously to the case of the spinless
system. If we introduce an additional spin index into the formalism the main effect concerning the
matrices of our observables will be an increase of the dimensionality such that a generic operator
matrix Ô takes the block form

Ô =
(
O↑↑ 0

0 O↓↓

)
(F.16)

and we solely need to symmetrize each of the diagonal spin blocks independently. Thus, the symmet-
rization routine depicted for the spinless case is applied to each block individually.

Spin-orbit coupling

If we allow for spin-orbit coupling we must consider two separate cases for the form of a generic matrix
operator Ô: firstly, all operators that are not affected by the SOC interaction will take the form

Ô =
(
O↑↑ 0

0 O↓↓

)
. (F.17)

However, since O↑↑ = O↓↓, the dimensionality of these matrix operators is only formally increased to
account for the spin variable, as there is no effective spin-dependency. The symmetrization is thus
only performed for the matrix of ’reduced’ dimensionality. Within the CPA code, all spin-independent
quantities are treated as in the spinless case and are symmetrized according to Eq. (F.9).
Secondly, for those matrix operators that truly become spin-dependent due to the SOC, a generic
matrix will have nontrivial off-diagonal blocks, in contrast to the cases treated beforehand, i.e.,

Ô =
(
O↑↑ O↑↓
O↓↑ O↓↓

)
. (F.18)

When symmetrizing the matrix elements of a quantity that includes SOC we must not only consider
real space rotations but also rotations in spin space. Thus, for every symmetry operation g of the
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point group we must introduce a corresponding spin-rotation matrix χ̂(g).
In deriving these spin-rotation matrices1 we will make use of the properties of the Pauli-matrices:

σiσj =δijσ0 + i
3∑

k=1
εijkσk (F.19)

[σi, σj ] =2i
3∑

k=1
εijkσk (F.20)

{σi, σj} =2δijσ0. (F.21)

We begin by considering an arbitrary rotation, for which the corresponding operator can be expressed
as

R ≡ eix·σ, (F.22)

where α denotes the rotational axis and σ is the vector of Pauli-matrices. We can then expand the
exponential function according to

R =
∞∑
n=0

1
n! (x · σ)n . (F.23)

Separating the sum in Eq. (F.23) into even (n = 2k + 2) and odd (n = 2k + 1) contributions yields
(after some simple algebra)

R = cos |x|+ i sin |x|(x̂ · σ) (F.24)

with x̂ = x
|x| . The rotation operator R is unitary, i.e.,

R†R =
[
cos |x| − i sin |x|(x̂ · σ)

] [
cos |x|+ i sin |x|(x̂ · σ)

]
(F.25)

= cos2|x|+ sin2|x| (x̂ · σ)2︸ ︷︷ ︸
=|x|2=1

= 1. (F.26)

Thus, under a rotation the Pauli-matrices transform as

σ̃i = R†σiR = e−ix·σσie
ix·σ = −σi + e−ix·σ

{
σi, e

ix·σ
}
. (F.27)

With the help of Eqs. (F.19) and (F.24), after some manipulation, we finally find the transformation
property

σ̃i = cos(2|x|)σi + (1− 2 cos(2|x|))x̂i(x̂ · σ) + sin(2|x|)(x̂× σ)i. (F.28)

This corresponds to a spatial rotation about α = 2|x| and we can write

R(α) = ei
α
2 (x̂·σ) = eiα(x̂·S), (F.29)

with spin vector S = σ
2 .

We can express Eq. (F.28) in terms of a matrix product

σ̃i =
∑
j

χijσj , (F.30)

1private communications with Rolf Heid
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with
χij = δij cosα+ x̂ix̂j(1− cosα)) + εijkx̂k sinα. (F.31)

Finally, given these spin-rotation matrices we can symmetrize a given matrix element with spin degrees
of freedom according to

Os1l1m1σ1,s2l2m2σ2(Dgk) =
∑

m′1m
′
2σ
′
1σ
′
2

χσ1σ′1
(g)W l1

m1m′1
(g)Og−1(s1)l1m′1σ′1,g−1(s2)l2m′2σ′2(k)

× χ∗σ′2σ2
(g)W l2

m2,m′2
(g)eiDgk(Rs1−Rs2 )e

−ik(Rg−1(s1)−Rg−1(s2))
. (F.32)

The generation of the spin-rotation matrices is performed by subroutine gen_spinrot in file sym-
metry.f90. It is based on the corresponding subroutine written by Rolf Heid for the MBPP and
adjusted to function within the CPA implementation.
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G Appendix G

Green’s function for a nonorthogonal basis

As we have already discussed in Sec. B, the BEB-CPA formalism used in this work employs a non-
orthogonal LCAO basis set. Here, we shall give a brief overview of the consequences for the Green’s
function formalism, closely following Ref. [6].

G.1 Field operators in a local basis

For the nonorthogonal basis set introduced in Sec. B the overlap between orbitals is given by

Sij =
〈
i
∣∣j〉 =

∫
d3r φ∗i (r)φj(r) (G.1)

and is nontrivial. The compound indices i and j denote both orbital and site indices. Expressed in a
nonorthogonal basis the unit operator takes the form

1 =
∑
ij

∣∣i〉 (S−1
)
ij

〈
j
∣∣ (G.2)

and we shall henceforth abbreviate the (i, j)th matrix element of the inverse of the overlap matrix as
S−1
ij . We may define fermionic field operators ψ†(r) and ψ(r) that create and annihilate, respectively,

an electron at position r as

ψ†(r) =
∑
i

φ∗i (r)c†i ψ(r) =
∑
i

φi(r)ci. (G.3)

Some care must be taken here as the hermitian second quantized operators c† = (c)† cannot be seen
as creation and annihilation operators. For the fermionic fields we find anticommutation relations
equivalent to those for the orthogonal case, i.e,

{ψ(r), ψ†(r′)} = δ(r − r′). (G.4)

For this to be true it must hold that
{ci, c†j} = S−1

ij , (G.5)
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which may be confirmed by inserting Eq. (G.3) into Eq. (G.4). From this we find

{ψi(r), ψ†j(r
′)} =

∑
ij

φ∗j (r′)φi(r){ci, c†j}
!= δ(r − r′) (G.6)

=
∑
ij

〈
j
∣∣∣r′〉 〈r∣∣i〉 {ci, c†j} != δ(r − r′) (G.7)

=
〈
r
∣∣∣
∑

ij

∣∣i〉 {ci, c†j} 〈j∣∣


︸ ︷︷ ︸
(∗)

∣∣∣r′〉 != δ(r − r′). (G.8)

Recognizing that (∗) must equate to 1 and comparing to Eq. (G.2), we readily find the sought-after
relation. We can make the connection from the operators c(†) to another set of hermitian operators
a(†) that do in fact act as creation and annihilation operators such that

a†i |0〉 =
∣∣i〉 and ai |0〉 = 0 (G.9)

with the vacuum state |0〉. Evaluating the vacuum expectation value of their anticommutator

〈0|{ai, a†j}|0〉 = 〈0|aia†j |0〉+ 〈0|a†jai|0〉︸ ︷︷ ︸
=0

=
〈
i
∣∣j〉 (G.10)

we find the commutation relation
{ai, a†j} = Sij (G.11)

which reduces to δij for an orthonormal basis. From these new operators we can no longer define field
operators as they would violate Eq. (G.4), yet we can relate them to c(†) via

ci =
∑
j

S−1
ij aj . (G.12)

G.2 Field operators in the Bloch basis

The matrix elements in k-space

Aij(k) = e−ik(Ri−Rj)
∑
L

e−ikRLALij (G.13)

that posses the translational symmetry of the underlying lattice can be conveniently computed if we
introduce Bloch orbitals of the form

φik(r) = 1
(2π)3/2

∑
L

eik(RL+Ri)φi(r −RL) = 1
(2π)3/2

∑
L

eik(RL+Ri)φiL(r). (G.14)

They then take the form 〈
ik
∣∣Â∣∣j〉 = 1

(2π)3/2 e
−ikRjAij(k) (G.15)
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with ∣∣ik〉 = 1
(2π)3/2

∑
L

eik(RL+Ri)
∣∣iL〉 . (G.16)

The field operators for the Bloch orbitals may be defined as

ψk(r) = 1
(2π)3/2

∑
L

e−ikRLψ(r −RL) ≡
∑
i

φik(r)cik (G.17)

with the commutation relation

{ψk(r), ψ†
k′

(r′)} = δkk′δ(r − r′) (G.18)

and
{cik, c†jk′} = δkk′S

−1
ij (k). (G.19)

Analogous to Sec. G.1 we find a set of creation and annihilation operators

a†ik |0〉 =
∣∣ik〉 {aik, a†jk′} = δkk′Sij(k) (G.20)

and the operator transformation relation

cik =
∑
j

S−1
ij (k)ajk. (G.21)

G.3 The retarded Green’s function

Here we shall give a brief introduction to the Green’s function formalism in condensed matter physics
and refer the interested reader to standard textbooks [53, 54, 159] for a more elaborate overview. A
number of different definition for the retarded, time dependent Green’s function may be found, here,
we use the convention

Gij(t) = −iθ(t) 〈0|{ai(t), a†j(0)}|0〉 (G.22)

with the Heaviside step function θ(t) and the annihilation (creation) operators a(†). As we confine
ourselves to noninteracting electronic Green’s functions it is sufficient to evaluate the vacuum expec-
tation value. In the Heisenberg representation a generic time dependent operator Ô may be expressed
through the full Hamiltonian operator according to

Ôi(t) = eiĤtÔie−iĤt Ôi = Ôi(t = 0) Ô†j = Ô†j(t = 0). (G.23)

We assume the eigenvalue problem of Ĥ to be solved and we can always find an orthogonal eigenbasis
|n〉 such that

Ĥ |n〉 = εn |n〉
∑
n

|n〉〈n| = 1. (G.24)
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Under these circumstances, the retarded Green’s function yields

Gij(t) =− iθ(t) 〈0|{ai(t), a†j(0)}|0〉 (G.25)

=− iθ(t)
∑
n

〈0|eiĤtaie−iĤt|n〉 〈n|a†j + a†je
iĤt|n〉 〈n|aie−iĤt|0〉 (G.26)

=− iθ(t)

∑
n

e−iεnt 〈0|ai|n〉 〈n|a†j |0〉+
∑
n

eiεnt 〈0|a†j |n〉 〈n|ai|0〉

 (G.27)

=− iθ(t)
∑
n

e−iεnt 〈0|ai|n〉 〈n|a†j |0〉 (G.28)

where we have inserted two identities 1 and made use of the action of a on the vacuum state. We can
now find the spectral representation G(ω) through a Fourier transformation

Gij(ω) =
∫

dt eiωtGij(t) (G.29)

=
∑
n

〈0|ai
|n〉〈n|

ω + iδ − εn
a†j |0〉 (G.30)

= 〈0|aiĜ(ω)a†j |0〉 =
〈
i
∣∣Ĝ(ω)

∣∣j〉 (G.31)

with the resolvent operator
Ĝ(ω) =

(
ω + iδ − Ĥ

)−1
. (G.32)

Inspecting the matrix elements of the inverse resolvent operator〈
i
∣∣Ĝ−1(ω)

∣∣j〉 =
〈
i
∣∣ω + iδ − Ĥ

∣∣j〉 = Sij(ω + iδ)−Hij (G.33)

we directly find 〈
i
∣∣Ĝ−1(ω)Ĝ(ω)

∣∣j〉 = Sij . (G.34)
Inserting 1 =

∑
ij

∣∣i〉S−1
ij

〈
j
∣∣ yields∑

i′j′

[(ω + iδ)S −H]ii′S−1
i′j′Gj′j(ω) = Sij (G.35)

which can be solved explicitly as a matrix equation for G and finally yields the Green’s function matrix
elements

Gij(ω) = S [(ω + iδ)S −H]−1S
∣∣∣
ij
≡ SG(ω)S

∣∣
ij

(G.36)

Within this work we express quantities of interest either through G or G, depending on which is more
handy in the given context. Thus, if we evaluate an observable from the nonorthogonal-basis Green’s
function we must always be cautious of how this quantity is expressed in terms of the second quantized
operators. In real space we can write the Green’s function as

G(r, r′, ω) =
∫

dt eiωtG(r, r′, t) =
∫

dt eiωt 〈0|{ψ(r, t), ψ†(r′, 0)}|0〉 (G.37)

and following the same line of evaluation as before we arrive at

G(r, r′, ω) = 〈0|ψ(r)Ĝ(ω)ψ†(r′)|0〉 =
∑
ij

φi(r)Gij(ω)φ∗j (r′) (G.38)

with the initially defined field operators. This is the expression used within the charge self-consistency.
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G.4 The Bloch spectral function

One of the most important quantities for the study of substitutionally disordered systems is the Bloch
spectral function A(ω,k). It provides a tool to investigate the momentum resolved effects due to
disorder and contains information about the band structure such as energy shifts and band broadening.
For a clean compound, the band structure is essentially obtained by solving Eq. (1.5) along a path in k-
space, i.e. obtaining the energy eigenvalues along that path. The ω-dependence of the associated Bloch
spectral function is directly connected to said eigenvalues: it is just a set of δ-peaks centered at those
eigenvalues. Since δ-peaks present a numerical fall pit, in practical implementation such δ-peaks must
typically be replaced by Lorentz-peaks with a finite spectral width. This spectral width stems from
the necessity of evaluating the Green’s function at frequencies ω+ iδ, i.e., introducing an infinitesimal
imaginary part. While this width is trivially independent of k in the clean compound, the ω-dependence
of A(ω,k) will generally be more complex and can be k-dependent. Thus, a comparison of the Block
spectral function for clean and disordered system provides level shifts and band broadening - resulting
from the real and imaginary part of the self-energy due to disorder. These spectral broadenings are
inversely proportional to the lifetimes of the corresponding electronic states. While they are infinite
in the clean case, they become finite due to disorder and the entailed scattering of electrons from
impurities.
Starting from

A(k, ω) = − 1
π

ImG(k, ω) (G.39)

and the definition of the discrete Fourier transformation

G(k, ω) =
∑
L

e−ikRL

∫
d3r G(r −RL, ω) (G.40)

and using Eqs. (G.38) and (G.17) we find

G(k, ω) =
∑
L

∫
d3r e−ikRL 〈0|ψ(r −RL)Ĝ(ω)ψ†(r)|0〉 (G.41)

=(2π)3/2
∫

d3r 〈0|ψk(r)Ĝ(ω)ψ†(r)|0〉 (G.42)

where we have once again used the field operators. Inserting the field operator definitions and using
Eq. (G.15), this can further be simplified to

G(k, ω) =(2π)3/2
∫

d3r
∑
ij

φik(r)φ∗j (r) 〈0|cikĜ(ω)c†j |0〉 (G.43)

=
∑
ij

eikRjSji(k) 〈0|cikĜ(ω)c†j |0〉 . (G.44)

We now make the transformation from c(†) operators to a(†) operators via Eqs. (G.21) and (G.12) and
find

G(k, ω) =
∑
iji′j′

eikRjSji(k)S−1
ji′ (k)S−1

ij′

〈
j′k
∣∣∣Ĝ(ω)

∣∣∣i′〉 (G.45)

=
∑
ij

eikRi
〈
ik
∣∣Ĝ(ω)

∣∣j〉︸ ︷︷ ︸
=(2π)−3/2e−ikRjGij(k,ω)

S−1
ij (G.46)
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where we have made use of
∑

i Sji(k)S−1
ij′ (k) = (S(k)S−1(k))jj′ = δjj′ and relabelled the indices.

Following the same route for
〈
ik
∣∣Ĝ−1Ĝ

∣∣j〉 leads to
Gij(k, ω) = S(k)[(ω + iδ)S(k)−H(k)]−1S(k)

∣∣∣
ij

= S(k)G(k, ω)S(k)
∣∣
ij

(G.47)

which, inserted into Eq. (G.46), brings us to

G(k, ω) =
∑
i

[
S(k)G(k, ω)

]
ii

= Tr
[
S(k)G(k, ω)

]
. (G.48)

This expression is used in calculating the Block spectral function throughout this work.

G.5 Projected spectral function

With the full information contained within the spectral function A(k, ω), we can ask ourselves whether
we can disentangle these peaks to gain more insight into the disorder effects on individual bands. To
this end, we can make use of the fact that the bands of the clean parent compound have well-defined
eigenvectors onto which we can project the k-dependent Green’s function S(k)Γ(k, ω)S(k). This ansatz
can be formulated mathematically by

Gn(k, ω) =
∑

i,j∈parent
c∗n,i(k)

[
S(k)Γ(k)S(k)

]
i,j
cn,j(k). (G.49)

Here, cn,j is the jth orbital component of the eigenvector connected to band n. Keeping in mind that
the parent compound eigenvectors only span a subspace of the extended Hilbert space, the sum over
orbital indices in Eq. (G.49) is restricted. We can expect this projection technique from the extended
Hilbert space down to a smaller subspace to be sufficiently accurate as long as the disorder induced
band changes are not too large. Use of this projection technique is made throughout this work and
has proven to be a beneficial tool in the treatment of substitutionally disordered systems.

G.5.1 Green’s function integrations

In Eqs. (1.79) and (1.81) we encounter frequency integrations of the effective medium Green’s function
which require some special attention: the evaluation of Green’s functions requires the introduction of
an infinitesimal imaginary part δ to the frequency ω+ = ω+ iδ as discussed in Sec. 1.2.4. The specific
choice of δ has direct and strong influence on the fine structure of our results. We can circumvent this
problem and remove the dependency via the following scheme: first, we bring these integrals into a
different form, making use of the Heaviside step function θ. They may then be written as∫ ∞

−∞
dωΓ(ω)θ(EF − ω) (G.50)

and we can convert them into integral over a close contour C in the complex plane via the residue
theorem. This removes the dependency of our results from the specific choice of parameters like δ.
However, in doing so we have introduced another technical problem along the way: step functions are
particularly difficult to handle numerically and often results in instabilities. It is common practice to
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replace step functions such as θ by a smooth cutoff function. As we are dealing with particle numbers
and electronic densities, a physically meaningful choice in this context is the Fermi distribution function

f(ω, T ) = 1
eβ(ω−µ) + 1

. (G.51)

Here, µ is the chemical potential which depends on temperature T and obeys µ(T = 0) = EF .
Furthermore, β = (kBT )−1 is the reciprocal temperature with Boltzmann constant kB. With this
replacement we have introduced an artificial temperature scale which cannot be compared to that of
experiment as it is the temperature scale of a system of noninteracting electrons.
In the CPA implementation the chemical potential is calculated for two different temperatures and
then extrapolated down to T = 0, while the charge self-consistency is only computed at the higher
temperature to minimize computational time. Having removed the problem introduced by the step
function θ, we encounter yet another difficulty: f(ω, T ) has singularities in the complex plane at
fermionic Matsubara frequencies ωn = (2n+ 1)πkBT for integer n. This particular problem, however,
is solved by the residue theorem which states that the poles must simply be subtracted from the
integral: ∮

C
dωΓ(ω)f(ω, T )−

∑
n

2niπ
β

Γ(µ+ iωn). (G.52)

In Ref. [6] the closed contour was chosen to take the form of a rectangular box far from the real axis to
ensure that all poles of the Green’s function are enclosed. The precise dimensions of this box must be
adjusted for each class of materials considered in practical applications. The numerical integration is
carried out via the so-called Weddle-rule [160] (sixth order Newton-Cotes formula) to ensure reasonable
accuracy beyond the usually applied Simpson integration [161]. This choice leads to a constraint on the
frequency sampling points: they must obey mod(#sampling points, 6) != 1. Further simplification
of the contour integral results from the symmetry of the Green’s function for which (in presence of
inversion symmetry) Gij(ω∗) =

(
Gij(ω)

)∗
. Consequently, we may restrict ourselves to the upper

complex half-plane, i.e., only half of the box.

149





H Appendix H

Implementation of the CPA cycle

We shall now take some time to discuss the most important part of the CPA implementation: the
CPA self-consistent cycle. All subroutines pertaining to this task are stored in file cpaSolver.f90
and the main job if performed by subroutine cpaCalcMedium. Here, for each complex frequency
the effective medium Green’s function is computed along a rectangular path in the upper half of the
complex frequency plane for two distinct temperatures.
As depicted in Fig. 1.2, for each complex frequency (energy in the code), the effective Medium Green’s
function Γ(ω) is calculated from the offsite Hamiltonian H̆ and the self-energy Σ(ω). This is done
by subroutine cpaCycleEnergy, which provides a self-consistent, fully symmetrized onsite medium
Green’s function stored in the complex array greenSite(tlm1,tlm2,isite). Additionally, it provides
the k-dependent kernel of

ΓPQii =
∫

1.BZ
d3
[
ω1− H̆(k)− Σi

]
(H.1)

in the irreducible part of the first Brillouin zone. This quantity is used extensively throughout
the program for the computation of physical observables and stored in the complex array green-
OrbK(iao1,iao2,irk) with orbital indices iao<i>.
The full effective medium Green’s function in Eq. (H.1) is then evaluated back in subroutine cpaCalc-
Medium by summation over all irreducible k-points and symmetrized. Further applications of sub-
routine cpaCycleEnergy occur in the determination the Fermi level in subroutine cpaCalcFermi
and the A-coefficients in subroutine cpa_calcDenA for the evaluation of the charge self-consistent
densities (see Sec. C).
Both these subroutines require a complex frequency integration of the Green’s function and the
evaluation of the latter at the fermionic Matsubara frequencies. This integration is performed nu-
merically, and in contrast to most other integrations performed in this work, a Newton-Cotes formula
of higher order than the Simpson rule [161] is necessary to achieve sufficient accuracy. To this end, an
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integration according to the so-called Weddle rule [160] was implemented by A. Herbig [6]:

∫ b

a
dx f(x) ' h

840

41f(x0) + 216f
(
x0 + h

6

)
+ 27f

(
x0 + 2h

6

)
+ 272f

(
x0 + 3h

6

)

+ 27f
(
x0 + 4h

6

)
+ 216f

(
x0 + 5h

6

)
+ 41f(x1)

+41f(x1) + 216f
(
x1 + h

6

)
+ ...+ 4f(xN )

 , (H.2)

where h = (b − a)/N). A peculiarity of the Weddle rule is the condition imposed on the number of
sampling points N : division of N by 6 must yield a rest of 1, i.e., mod(N ,6) != 1. This integration
method is implemented in subroutine cpaComplexIntegrateBox.
Further use of subroutine cpaCycleEnergy is made in calculating the density of states and all
orbitally projected quantities provided by subroutine cpaDosPlot. For a converged CPA calculation
this subroutine additionally computes the self-energy later used in band structure and Fermi surface
calculations. It should be noted, that this particular instance of the self-energy is calculated with a
smaller infinitesimal smearing of the complex frequency that those used throughout the main program.
Additionally, if the Fermi surface calculation is to be performed, the self-energy is computed at the
Fermi level.
For the band structure calculations performed by subroutine cpaBandsAlongLine and the Fermi
surface calculations performed by subroutine CalcFermiSurface, the CPA cycle is performed under
different circumstances: while the calculations in the charge self-consistent cycle are performed on
a regular k-mesh, we here evaluate the Bloch spectral function A(k, ω) along a specific direction in
k-space. Consequently, a new k-mesh has to be generated for the discretized direction. This ensures
that all k-dependent quantities (such as the offsite Hamiltonian, mixing potential and offsite overlap)
can be recomputed for a given direction. All non-k-dependent quantities that have been calculated
beforehand can be reused.
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I Appendix I

CPA GUI documentation

In order to provide the CPA program to a broader audience not familiar with the source code a GUI
has been implemented using the Tkinter-package of python. Here, we shall give a brief overview of
the supplied functionalities and the mode of operation.

Figure I.1: Main window of the CPA GUI.

Computational parameters

In order to run a CPA calculation through the GUI a number of computational parameters must be set
by the user. Aside from the specification of the number of threads to be employed in multi-threaded
calculations, a path must be set to the executable cpa. The selection is then checked and an error
message displayed in case of a faulty selection. The user must further provide the name of the folder
in which to run a calculation and set the path to the parent directory via the PD-button. As described
in App. A, a set of boolean values must be provided for the CPA program to determine the status of a
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given calculation, such as a calculation restart. To this end, a set of two buttons is provided for each
boolean labeled T (true) and F (false), respectively.

Setting master and slave

The CPA program makes use of so called master and slave calculations, i.e., parent compound and
substituents, respectively. These are MBPP calculations which serve as input to the CPA. In order
to set the appropriate paths, two variables must be given: the total number of atomic types involved
(including the substituent species) and the maximum number of sites occupied by a single species.
Failure to provide these will result in an error message being displayed when trying to set the paths to
MBPP calculations. The path to the MBPP calculation containing the parent compound may be set
via the button Master. The presence of substitutions must be indicated via a check-box marked Slave
Calc.? and the number of said substitutions must be entered into the specified field. Upon correct
entry, the button labeled Slave allows to specify paths to the MBPP folders for all Slaves. Here, a box
may be checked to indicate that a certain substitution represents a vacancy, in which case no folder
can be specified following the internal logic (see Sec. 2.2). Via the CHECK button the user may verify
that all necessary paths have been set. The button Substitions provides an interface in which to set
the actual substitutions according to L15. in App. A and Set CQ allows to set concentrations,valence
electron numbers and cutoff radius for each substitution.

Parameter setting

The GUI allows the user to specify all parameters connected to internal routines of the CPA, such
as cutoff parameters and energy intervals (see App. A) via the Set Param button. Aside from preset
default values, the interface provides brief information about each parameter via the respective Info
button and requires a consistency check before allowing the user to continue.

Running and exporting input files

The user is given the choice to run a calculation directly from the GUI via the RUN button, in which
case all input is intensively checked for consistency. Additionally, under Tools → Export Bash a
bash-file in style of that presented in App. A may be exported from for later use.
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J Appendix J

Crystal structures and calculational details

This chapter contains all information on the crystal structures and calculational details pertaining to
both MBPP and CPA calculations for all system studied in this work. Some general remarks can be
made on all calculations presented within this work, while more specific details will be presented below.
The MBPP calculations were carried out on a regular kx×ky×kz Monckhorst-Pack [162] k−mesh for
Brillouin-zone integrations, where the ki were chosen depending on the specific problem at hand and
are given below for each case. The norm-conserving pseudopotentials were constructed after Vanderbilt
[32] by Rolf Heid1. To construct the basis sets, for each type the appropriate local orbital-type function
was chosen and plane waves up to a cutoff energy of 22 Ry was used. Using a parameterization after
Perdew and Wang [163], the XC-potential was treated within the LDA.
In the CPA program, an angular momentum up to l = 2 was chosen, resulting in nine local basis
functions per atomic type. The corresponding radial functions were generated by the LCAO-fit routine
of the MBPP from the bare localized functions MBPPfPl (r) where we have made use of the cutoff
function

fPl (r) =
[

1− e−γ
P
l

(
RPC,l−λ

P
l r
)2
]

MBPPfPl (r), (J.1)

with cutoff radius RPC,l and function parameters λPl and γPl .
Within the CPA, the XC-potential was treated with the shape function approach described in App. D.1.4.
The specific shape functions were chosen as

S(x) = 1− e−γ(1−x)n x = |r|
RPC

(J.2)

with n = 6 and γ = 90 for all sites, and the cutoff radii RPC are chosen individually for each calculation.
Analogous to the MBPP calculations, the LDA functional after Ref. [163] was used.
As we discuss in App. G.5.1, an artificial temperature must be introduced in the computation of the
chemical potential to avoid numerical instabilities in Green’s function integrations. The Fermi level is
found by calculating the chemical potential at two distinct temperatures T1 = 800 K and T2 = 300 K,
and extrapolating from these values to T = 0 K.

1Private communication with Rolf Heid

155



J.1 Fermi surface calculations for fcc Cu, Ni, and Cu1−xNix
For both Cu and Ni in the fcc structure a lattice constant of a = 6.8 a0 was chosen (a0 being atomic
units) in Sec. 2.1.

Atomic type P l λPl γPl RPC,l

Cu 0 0.9495 0.2763 6.0
Cu 1 0.9054 0.1456 6.0
Cu 2 0.9973 0.4599 6.0

Ni 0 0.9329 0.2033 6.0
Ni 1 0.8914 0.1142 6.0
Ni 2 1.0164 0.4707 6.0

Table J.1: LCAO-fit parameters for Cu (top) and Ni (bottom).

The MBPP calculations were carried out on a regular 8× 8× 8 Monckhorst-Pack [162] k-mesh for
Brillouin-zone integrations and the LCAO-fit parameters supplied by the MBPP are listed in Tab. J.1.
With these, Eq. (J.1) was used to gain the radial basis functions for the CPA calculations. They are
presented in Fig. J.1.
Following the notation presented in Sec. 2.1, all Fermi sheets used in the construction of the Fermi
surfaces were computed for kscan1 = (3

8 ,
3
8 ,

3
4), kscan2 = (3

8 ,−
3
8 , 0). The Fermi surfaces were constructed

from multiple Fermi sheets, computed for 50 discrete sampling points along kscan3 = (1
2 ,

1
2 , 0). For each

sheet, the Bloch spectral function was calculated on a regular 100× 100 k-mesh grid.

(a) (b)

Figure J.1: Radial basis functions fPl (r) for (a) fcc Cu, and (b) fcc Ni.
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J.2 Vacancy calculations - turning bcc Fe into sc Fe

A comparison of the two structures considered in Sec. 2.2 can be found in Fig. 2.7, where for both the
lattice constant a = 5.4 a0 (a0 being atomic units) was chosen. In Fig. 2.7 (b) we find the hypothetical
simple cubic structure with one atom per unit cell located at (0, 0, 0), while Fig. 2.7 (a) shows the
actual fcc crystal structure with atoms located at (0, 0, 0) and a

2 (1, 1, 1). The bcc lattice is equivalent
to an sc structure with two atoms per unit cell.

Atomic type P l λPl γPl RPC,l (Bohr)

Fe 0 0.9672 0.2244 6.0
Fe 1 1.1437 1.3206 6.0
Fe 2 0.9806 1.6200 6.0

Fe1 0 0.8990 0.1841 6.0
Fe1 1 0.8418 0.1247 6.0
Fe1 2 0.9950 0.4611 6.0
Fe2 0 0.8990 0.1841 6.0
Fe2 1 0.8420 0.1248 6.0
Fe2 2 0.9950 0.4611 6.0

Table J.2: LCAO-fit parameters for sc Fe (top) and bcc Fe (bottom).

The MBPP DFT calculations for both compounds were performed on a regular 8×8×8 Monckhorst-
Pack [162] k-mesh for Brillouin-zone integration. The basis set was constructed using one local d-type
function and plane waves up to a cutoff energy of 22 Ry.

(a) (b)

Figure J.2: Radial basis functions fPl (r) used in the CPA calculation for angular momenta
l = 0, 1, 2 of (a) sc Fe and (b) bcc Fe.

The radial basis functions for the CPA calculations were calculated from Eq. (J.1) with the cutoff
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radii RPC,l and function parameters λPl and γPl given in Tab. J.2. The respective radial functions
resulting from the LCAO-fit are presented in Fig. J.2.
In the substitution of the central atomic site of bcc Fe (see Sec. 2.2) a finite concentration of Fe was left,
i.e., the vacancy substitution was performed with c = 99.9%. This is due to an internal concentration
threshold δc = 10−6 which must be met for the symmetry properties of a site to be kept. As the
vacancy receives the symmetry properties of the to-be-substituted site, a complete substitution is not
possible in practice.

J.3 Spin polarized calculations in bcc Fe, Co, and Fe1−xCox
In Sec. 2.3 we have considered both Fe and Co to be in a bcc structure with a lattice constant a = 5.4 a0,
i.e., with a unit cell as in Fig. 2.7 (a).

Atomic type P l λPl γPl RPC,l (Bohr) µ (µB)

Fe 0 0.8929 0.1963 6.0 2.223
Fe 1 0.8190 0.1366 6.0
Fe 2 0.9977 0.5051 6.0

Co 0 0.9020 0.2101 6.0 1.709
Co 1 0.8520 0.1579 6.0
Co 2 1.0020 0.5138 6.0

Table J.3: LCAO-fit parameters and magnetic moment for Fe (top) and Co (bottom).

(a) (b)

Figure J.3: Radial basis functions fPl (r) used in the CPA calculation for angular momenta
l = 0, 1, 2 as produced from the LCAO-fit of the MBPP of (a) Fe and (b) Co.

The MBPP calculations were carried out using the same parameters as in Sec. 2.2 with the exception
of the regular Monckhorst-Pack k-mesh for Brillouin-zone integration which, in this instance, was
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increased to 12× 12× 12. For the construction of the basis set a local d-type function and plane waves
up to a cutoff energy of 22 Ry were used for each end member. The LCAO-fit parameters for both
atomic type used in Eq. (J.1) to compute the CPA radial basis functions are presented in Tab. J.3,
along with the respective magnetic moments µFe = 2.223µB and µCo = 1.709µB. The resulting
functions are depicted in Figs. J.3 (a) and J.3 (b)

J.4 Spin-orbit coupling in bcc Fe

In Sec. 2.4 we have considered Fe in a body centered cubic (bcc) structure with a lattice constant
a = 5.4 a0. A schematic drawing of the corresponding unit cell may be found in Fig. 2.7 (a).

Atomic type P l λPl γPl RPC,l

Fe 0 0.8987 (0.8989) 0.1841 (0.1840) 6.0
Fe 1 0.8406 (0.8411) 0.1244 (0.1243) 6.0
Fe 2 0.9946 (0.9948) 0.4614 (0.4609) 6.0

Table J.4: LCAO-fit parameters for bcc Fe with (without) spin-orbit coupling.

The MBPP calculations were performed on a regular 12 × 12 × 12 Monckhorst-Pack [162] k-mesh
for Brillouin-zone integration and the basis set was constructed from one local d-type function and
plane waves up to a cutoff energy of 22 Ry. The LCAO-fit parameters supplied by the MBPP are
listed in Tab. J.4. The radial basis function for the CPA were calculated according to Eq. (J.1) and
are presented in Fig. J.4.

(a) (b)

Figure J.4: Radial basis function fPl (r) used in the CPA calculations for angular momenta
l = 0, 1, 2 as supplied by the LCAO-fit of the MBPP (a) without, and (b) with spin-orbit coupling.

159



J.5 FeSe0.5Te0.5 and substitutions

The unit cell of the iron chalcogenides in tetragonal structure is depicted in Fig. 3.2. The corresponding
lattice vectors are given by

a1 =

a0
0

 a2 =

0
a
0

 a3 =

0
0
c

 (J.3)

and atomic positions are

RFe1 =

a/4a/4
0

 RFe2 =

−a/4−a/4
0

 R(Se/Te)1
=

 a/4
−a/4
z

 R(Se/Te)2
=

−a/4a/4
−z

 . (J.4)

Here, a is the lattice constant, c denotes the interlayer distance, and z is the chalcogen height.
As we have shown in Sec. 3.4.1, the choice of lattice parameters has a significant impact on the band
structure of FeSe. It is reasonable to assume that this will also be the case for the substituted crystal
FeSe1−xTex, and so it is of paramount importance to be as close to the real system as possible when
we perform our CPA calculations. To this end, we rely on experimental data.

FeSe1−xTex x = 0 x = 0.483(9) x = 0.516(8)
a (Å) 3.7688(7) 3.7913(7) 3.7948(2)
c (Å) 5.520(1) 5.945(3) 5.986(1)

Fe1 U11 (Å2) 0.0108(5) 0.0096(2) 0.0106(1)
U33 (Å2) 0.0226(6) 0.0184(5) 0.0187(2)

Se/Te z 0.26680(9) 0.27794(9) 0.27984(7)
U11 (Å2) 0.0138(4) 0.0126(1) 0.0129(1)
U33 (Å2) 0.0184(4) 0.0365(4) 0.0368(2)

Fe2 z − 0.6969(16) 0.6991(9)
Uiso (Å2) − 0.0111(21) 0.0134(12)
SOF − 0.080(4) 0.105(3)
wR2 (%) 4.67 2.70 3.56
R1 (%) 1.92 1.49 1.53

Table J.5: Structural parameters of FeSe1−xTex determined from single-crystal x-ray diffraction.

The structural parameters for FeSe0.5Te0.5 were determined from several single crystals with a subs-
titutional level close to x = 0.5 via XRD2 using a STOE imaging plate diffraction system (IPDS-
2T) equipped with Mo Kα radiation (see Tab. J.5). At room temperature, all accessible symmetry-
equivalent reflections were measured up to a maximum angle 2θ = 65° and resulting data was

2Private communication with Michael Merz
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corrected for Lorentz, polarization, extinction, and absorption effects. For the respective refinements
in space group P4/nmm, using SHELXL [164] and JANA2006 [165], around 155 averaged symmetry-
independent reflections (I > 2σ) were included. All refinements converged quite well, showing excellent
reliability factors (see Tab. J.5).

Compound Atomic type P l λPl γPl RPC,l (Bohr)

FeSe Fe 0 0.8840 (0.8996) 0.1918 (0.2016) 6.0
Fe 1 0.9380 (0.9423) 0.3084 (0.3251) 6.0
Fe 2 0.9892 (0.9900) 0.5589 (0.5344) 6.0
Se 0 0.9876 (0.9888) 1.3351 (0.9000) 6.0
Se 1 0.9842 (0.9872) 2.5000 (0.9000) 6.0
Se 2 1.3672 (1.3184) 0.1936 (0.2291) 6.0

FeTe Te 0 0.9881 (0.9904) 2.2896 (0.9000) 6.0
Te 1 1.0024 (1.0051) 2.1381 (0.9000) 6.0
Te 2 1.2815 (1.2374) 0.3026 (0.3239) 6.0

FeI I 0 0.9939 (0.9957) 2.3415 (0.9000) 6.0
I 1 0.9945 (0.9991) 2.5000 (0.9000) 6.0
I 2 1.2429 (1.2231) 0.2921 (0.3234) 6.0

FeBr Br 0 0.9858 (-) 0.8270 (-) 6.0
Br 1 0.9687 (-) 0.9000 (-) 6.0
Br 2 1.1913 (-) 0.3357 (-) 6.0

NiSe Ni 0 0.9219 (-) 0.1881 (-) 6.0
Ni 1 1.0328 (-) 0.2753 (-) 6.0
Ni 2 1.0078 (-) 0.5502 (-) 6.0

CuSe Cu 0 0.9022 (-) 0.1507 (-) 6.0
Cu 1 1.0327 (-) 0.2545 (-) 6.0
Cu 2 0.9940 (-) 0.5555 (-) 6.0

CoSe Co 0 0.8959 (-) 0.1957 (-) 6.0
Co 1 0.9806 (-) 0.3141 (-) 6.0
Co 2 0.9965 (-) 0.5590 (-) 6.0

Table J.6: LCAO-fit parameters without (with) SOC for FeSe, FeTe, FeI, FeBr, NiSe, CuSe, and
CoSe.

From the refinement of the site occupancy factor (SOF) we can clearly identify a significant amount
of interstitial Fe (Fe2) in the substituted compound. The amount of interstitial iron has significant
impact on the magnetic and superconducting properties of the studied system and has been grounds
for extensive research [63–65]. It is known to lead to the suppression of superconductivity, which would
render the system unfit for the search for Majorana zero modes. However, as was shown by Ref. [64],
superconductivity can persist at low interstitial content and excess iron may even be reduced from
as-grown samples via annealing [119] - enhancing superconductivity. An investigation into the effects
of interstitial iron on the band structure of Fe(Se,Te) was conducted in Chap. 4. Se/Te and interstitial
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Fe2 sit on 2c Wyckoff positions with coordinates (1
2 , 0, z) whereas Fe1 sits on a special position 2a

with coordinates (0, 0, 0). The Uii denote the anisotropic atomic displacement parameters (for Fe1 and
Se/Te U11 = U22 and U12 = U13 = U23 = 0); for interstitial Fe2 only Uiso is given.
The lattice parameters for the idealized x = 0.5 crystal, used in our electronic structure calculations,
were obtained from refinement of the XRD data and are the result of averaging two FeSe1−xTex samples
with x = 0.483 and x = 0.516, respectively (a = 3.793 Å, c = 5.9656 Å, and z = 0.27885).
For Brillouin-zone integration we have chosen a regular Monckhorst-Pack [162] k-mesh of 14×14×18.
The basis set was constructed using one local d-type function for Fe and plane waves up to a cutoff
energy of 22 Ry. We have treated the XC-potential within the LDA using a parameterization after
Perdew and Wang [163].
In Tab. J.6, we have listed the LCAO-fit parameters γPl and λPl , and the corresponding cutoff radii
RPC,l for all substitutional end members used within this work. The radial functions for all end members
are given in Figs. J.5 and J.6 and calculated from Eq. (J.1).

(a) (b)

(c) (d)

Figure J.5: Radial basis functions fPl (r) used in the CPA calculations for angular momenta
l = 0, 1, 2 for (a) NiSe, (b) CuSe, (c) CoSe, and (d) FeBr without SOC.
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Figure J.6: Radial basis functions fPl (r) used in the CPA calculations for angular momenta
l = 0, 1, 2 for FeSe (top), and FeTe (middle), and FeI (bottom) without (left), and with SOC
(right).
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J.6 Interstitial iron in Fe1+ySe0.5Te0.5

The crystal structure of Fe1+ySe0.5Te0.5 was obtained via XRD3 from a sample with y ' 0.084
interstitial iron content (a = 3.7920 Å, c = 5.9430 Å, and z = 0.2772). All calculations in Chap. 4
make use of this, regardless of interstitial iron content y.

Compound Atomic type P l λPl γPl RPC,l (Bohr)

FeFeSe(Te) Fe 0 0.8932 0.2041 6.0
Fe 1 0.8113 0.1399 6.0
Fe 2 0.9887 0.4330 6.0
Fe2 0 0.9372 0.2214 6.0
Fe2 1 0.9819 0.2619 6.0
Fe2 2 0.9865 0.4953 6.0
Se (Te) 0 0.9912 (0.9917) 0.4162 (0.3436) 6.0
Se (Te) 1 0.9988 (1.0005) 0.3981 (0.2788) 6.0
Se (Te) 2 1.1895 (1.0776) 0.1441 (0.1758) 6.0

Table J.7: LCAO-fit parameters for FeFeSe and FeFeTe (those for Te are shown in parenthesis).

The MBPP calculations were carried out with a regular Monckhorst-Pack [162] k-mesh of 12×12×12
for Brillouin zone integration. The basis set was constructed with one local d-type function for each
Fe and plane waves up to a cutoff energy of 22 Ry.

(a) (b)

Figure J.7: Radial basis functions fPl (r) used in the CPA calculations for angular momenta
l = 0, 1, 2 for (a) FeFeSe, and (b) FeFeTe.

The radial basis functions for the CPA are calculated according to Eq. (J.1) with the corresponding
cutoff radii RPc,l and function parameters λPl and γPl yielded by the LCAO-fit routine (parameters are

3Private communication with Michael Merz
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given in Tab. J.7).
As described in Sec. 2.2, the basis functions for the vacancies are chosen to be equal to the to-be-
substituted type, i.e., Fe2. The radial basis function for both end members are presented in Fig. J.7.
The Fermi surface calculations were performed on regular 50 × 50 k-mesh grids for up to 10 discrete
sampling points along kscan3 (for notation see Sec. 2.1). Only one quadrant of the Brillouin zone was
scanned and symmetry arguments used to complete the Fermi surfaces.
The individual Fermi surface cross sections at kz = 0 for all vacancy and transition metal substitutions
were computed on regular 150× 150 k-mesh grids.
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