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Abstract—Intermittent generation and load demand are one of
the major challenges for grid operators. Caused for example by
renewables power variability or electric vehicle charging, it can
create mismatches between the realtime and forecasted demand,
affecting frequency regulation. To alleviate this mismatch, opera-
tors have to resort either on the balancing market or on extensive
use of energy storage systems, which increases operation costs.
This paper introduces a load levelling approach exploiting the
voltage dependency of the loads. With a controlled reactive power
injection, the converters of fast charging stations can influence
the voltage profile, and consequently the power consumption
of voltage-dependent loads. The approach has two main goals:
minimizing the mismatch with respect to the demand forecast
and reducing grid losses. Fast charging stations are particularly
suited for this approach. Being employed with full capacity for
charging only for short-time, their spare capacity can be exploited
to apply the load levelling approach. This proposed approach is
discussed theoretically and analyzed in a modified distribution
network in Northern Germany. Parameters variation analysis has
been performed to thoroughly demonstrate the effectiveness of
the approach under different load/grid conditions. Its feasibility
has been evaluated by means of power-hardware-in-the-loop tests.

Index Terms—Fast charging station, load levelling, losses
minimization, power-voltage sensitivity, reactive power control.

I. INTRODUCTION

THE increasing integration of renewable energy sources
(RES) and the electrification of the transportation sector

are transforming the electrical system. From scheduled pro-
duction and easily foreseeable demand, it is moving towards
intermittent production, depending on the natural resource
availability (e.g. solar irradiation) and non-predictable demand
(e.g. customer-dependent charging of the electric vehicles). As
a consequence, the net-load demand (load minus generation
from RES) becomes strongly variable and not easily pre-
dictable [1]. Of particular concern for operators, large power
mismatch between realtime demand and the demand forecast
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can cause large frequency deviations, endangering the system
stability.

To mitigate the power mismatch, energy storage systems
(ESS) are being installed, acting as primary energy reserves. In
the literature, several ESS-based methods have been proposed
to mitigate the demand volatility. A dual-layer control strategy
has been proposed, which consists of a fluctuation mitigation
layer and a power allocation layer [2]. The control schemes
of renewable power/ESS hybrid systems have been analyzed,
which are used to smooth the power generation of different
intermittent sources [3], [4]. A concurrent redispatch scheme
has been proposed to help a distribution grid track the dispatch
plan and its performance has been assessed with field tests [5].
Despite all the aforementioned ESS-based methods have been
proven to effectively mitigate the demand mismatch, it is well-
known that the deployment of the ESS increases system costs
(initial investment plus maintenance). As a consequence, the
installation of ESS must be limited to some strategic points
in the grid. In addition, repetitive power cycling can affect
the lifetime of commonly used storage technologies, such as
batteries [6], suggesting rapid reduction of cycling operations.

As an alternative to the energy storage for mitigating
the demand mismatch, the load power consumption can be
exploited. By adjusting the demand of controllable loads (e.g.
heat, ventilation, and air conditioning systems), the forecast
load baseline can be tracked [7]. Using aggregated deferrable
loads has been proved effective to control the demand [8].
Electric vehicles (EVs) have also been exploited as control-
lable loads, offering services such as congestion management,
primary frequency control, and RES integration services [9]–
[15]. However, the demand response methods have two main
drawbacks. Firstly, it requires an extensive communication
infrastructure, in order to estimate the grid status. Secondly, it
requires the permission of customers for participating into the
service. Furthermore, their performance can be affected by the
customer’s will to modify existing daily patterns, e.g. charging
the EV during the night instead in the day.

To compensate the limitations of ESS-based and demand
response-based solutions, this paper introduces a load levelling
approach, implemented by fast charging stations (FCSs). The
approach regulates the voltage profile in the medium voltage
(MV) grid by means of controlled reactive power injection
from the FCSs. The novelty of this approach lies in the ex-
ploitation of the voltage-dependent load’s characteristic to vary
the power consumption by regulating the voltage magnitude.
This offers the possibility to shape the load demand without
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the need of additional hardware such as batteries. FCS is the
perfect candidate as actuator due to its aggregated high power
rating and limited full utilization over time. While the FCS
meets the charging power demand of any connected EVs,
its converters can use the large spare capability for reactive
power injection. This approach makes fully use of the FCSs
to provide grid control service, benefiting the grid operation
especially under high penetration of FCSs.

The paper is structured as follows: Section II introduces
the basic principle and actuators for the proposed approach.
Section III describes the algorithm to implement the approach.
Section IV presents the MV network used as benchmark
and the investigated scenarios, while Section V depicts the
obtained results and analyzes the performance of the proposed
approach in steady state. The results of power-hardware-in-
the-loop (PHIL) tests, which demonstrates the practicality and
feasibility of this approach with hardware, are presented in
section VI. Finally, the conclusions are drawn in Section VII.

II. VOLTAGE-DEPENDENT LOAD LEVELLING CONTROL

This section aims to understand the full potential in con-
trolling the load consumption by means of voltage control
from the FCSs. In order to understand how much the load
consumption can be influenced by varying the voltage, this
section explains how to estimate in realtime the load’s power-
voltage sensitivity with existing methods in the literature [16],
[17]. In the following, the main idea of voltage-dependent
load levelling approach is introduced, and an analysis on
the controllability extension of this approach is performed
under different grid parameters and sensitivity conditions.
Lastly, a common application, the conservation voltage re-
duction (CVR), is described to demonstrate the feasibility of
approaches that influence the load consumption by controlling
the voltage.

A. Power-voltage sensitivity

A mathematical representation of the power to voltage char-
acteristic of loads (among several proposed in the literature,
such as ZIP and composite models) can be expressed with the
following exponential relation:

P (t) = P0(t) (V (t)/V0)
kp

Q(t) = Q0(t) (V (t)/V0)
kq

(1)

where kp and kq are power-voltage sensitivity coefficients for
the active and reactive power, V (t) and V0 are the measured
and nominal voltage amplitude, and P (t), P0(t), Q(t), and
Q0(t) are the measured and nominal active and reactive
demand power of the load, respectively.

Traditionally, the initial assumption in applying the ex-
ponential model is that the nominal power is known. In a
complex grid, it is not easy to define the nominal power,
due to voltage conditions that are different from the nominal
ones. For this reason, an online load identification method
has been developed and its accuracy has been tested in [16],
[17]. The concept of the online load identification method lies
in injecting a small controlled voltage perturbation into the
grid to measure the load power response. This method can be

Fig. 1. Load levelling in MV grid by means of reactive power from FCSs.
(a) Reactive power injection of FCSs. (b) Voltage response of each bus. (c)
Load active power reaction to voltage response. (d) Grid power with respect
to demand forecast.

applied for any grid, because it exploits a controlled injection
of reactive power to influence the voltage profile, and thus the
load consumption.

As can be seen from the control strategy described in
Fig. 1, the FCSs inject reactive power QFCS in order to
create a controlled ’disturbance’ of the voltage Vload. The
power response Pload at the corresponding bus is measured.
Discretizing (1), the load power-voltage sensitivity kp can then
be estimated for any considered time step sk as:

kp(sk) =

Pload(sk)−Pload(sk−1)
Pload(sk−1)

Vload(sk)−Vload(sk−1)
Vload(sk−1)

(2)

where kp(sk) is the estimation of kp, Pload(sk) and Vload(sk)
are the active power and voltage measurements during each
control time step.

The power-voltage sensitivity does not remain constant.
Different grid conditions, weather, and aggregated load com-
position change the sensitivity coefficients [18]–[20], creating
the need for a periodical update within a time frame of
tens of minutes [21]. The advantage of the online sensitivity
identification method is the repeatability in time. It can be
applied upon request, allowing a continuous update of the
sensitivity coefficients.

B. Voltage-dependent load levelling approach: main concept

This section introduces the main idea of the voltage-
dependent load levelling approach, showing the interaction be-
tween distributed units (i.e., the FCSs), the voltage-dependent
loads, and the load levelling control center.

As initial assumption, a centralized control strategy has been
chosen in this work, due to its capability to perform a global
optimization of the grid. All measurements are collected by
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Fig. 2. Framework of load levelling approach in MV grid with control center.

the control center, as shown in Fig. 2. Measurement Loady(t)
of each controlled bus y, which contains the power-voltage
sensitivity kpy(t), kqy(t), voltage V

′

loady(t), and load demand
P
′

loady(t), Q
′

loady(t) of this bus (here the prime sign on
symbols implies without load levelling), is sent to the control
center. It receives also the tap position of the on-load tap
changer (OLTC) used as further support actuator for the load
levelling. The grid demand forecast profile P ∗

grid(t) is derived
based on historical data. However, a mismatch between the
forecast and realtime power demand may occur. The role of
the control center is to determine the needed reactive power
injection QFCSx(t) (x = 1, 2, ...m) of FCS x, based on the
measured and forecasted power demand. As shown in Fig. 1
(a), all FCSs involved in the approach inject reactive power
according to setpoints formulated by the control center, which
regulates the voltage of each bus from V

′

loady(t) to V
′′

loady(t)
(double prime sign represents with load levelling) as shown in
Fig. 1 (b). Accordingly to the power-voltage sensitivity, each
load varies its power consumption P

′′

load,y(t) following the
new voltage profile V

′′

loady(t) (Fig. 1 (c)). The power of the
entire grid P

′′

grid(t), i.e. the power of the HV/MV substation,
is controlled to track the grid forecast power P ∗

grid(t) with a
reduced mismatch, as shown in Fig. 1 (d).

The charging power supply to the EVs is the first priority for
the load levelling approach. As mentioned in the introduction,
it exploits only the spare capacity of FCS to inject reactive
power into the grid, without affecting the active power demand
of the EVs. As a consequence, the EV batteries state of charge
are not affected by the proposed approach [22].

C. Performance analysis under different grid conditions

To evaluate the effectiveness in controlling the power con-
sumption of voltage-dependent load by means of reactive
power, the feeder shown in Fig. 3 (a) is used under different
short circuit capacity (SCC). The analysis has been carried out
assuming that the feeder R/X ratio is equal to 4/3 p.u., and
each grid impedance is equal to Zgrid = Zload = ZFCS =

TABLE I
PARAMETERS OF THE SIMPLIFIED FEEDER SHOWN IN FIG. 3.

Case R/X Z SCC Pload Power
No. ratio (p.u.) (p.u.) (p.u.) factor

1 4/3 0.005 10 2 1
2 4/3 0.005 20 2 1
3 4/3 0.005 50 2 1

0.005 p.u. The base values of voltage and power are 11 kV
and 1 MVA, respectively. All parameters are summarized in
Table I. To simplify this initial analysis, without lacking in
generality, it has been assumed that the FCS does not absorb
any active power, injecting only reactive power.

Figs 3 (b)-(d) show the impact on the power consumption
Pload from the FCS reactive power injection under different
sensitivity coefficients. As can be noted in Fig. 3 (b), in the
case of a weak grid (SCC= 10 p.u.) and constant impedance
load, an active power variation up to 4% can be achieved with
limited (0.2 p.u.) reactive power injection. If a higher SCC is
considered (SCC= 20 p.u.), the control margin is reduced to
about 2% power variation, as shown in Fig. 3 (c). Although
the impact on the power variation is lower than the previous
case, a 2% power control can still offer load levelling services
to the grid. However, as shown in Fig. 3 (d), with an SCC of
50 p.u., the power deviation can reach at maximum 1%, also
under high reactive power injection. In the case of a strong
grid, more FCSs have to be considered for providing higher
power controllability.

D. OLTC-based conservation voltage reduction

The CVR represents a well-known example to use the
transformers’ OLTC as actuator in varying the consumption of
voltage-dependent loads, by adjusting the OLTC ratio within
the operator’s defined permissible range [23], [24]. Having
been tested in different countries such as USA, Australia, and
Ireland, the CVR has proven effective in different load control
applications [23]. Its only hard constraint is to respect the
voltage safe limits (e.g., ±10% of the nominal voltage) in
the whole grid. However, in comparison with the FCSs based
load levelling approach, the CVR can offer only slow control
actions due to the limited mechanical switching frequency,
which affects the dynamic behavior. Furthermore, frequent
operation of OLTC results in fast mechanical wear, reducing
significantly the lifetime of the tap-changer.

In this paper, the use of CVR has been included within the
load levelling approach, considering the tap change position
of any value within the interval:

tOLTC(t) ∈ [tOLTC,min, tOLTC,max] (3)

where tOLTC(t) is the current tap position of OLTC, tOLTC,min

and tOLTC,max are the lowest and highest position of the
OLTC, respectively. tOLTC = 0 means that the voltage
conversion rate of the transformer is 1:1 p.u.

The overall timeline to implement the proposed load lev-
elling approach is presented in Fig. 4. The power-voltage
sensitivity is periodically estimated. After the activation of
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Fig. 3. Change of power consumption with different reactive power injection and power-voltage sensitivity in a simplified MV feeder. (a) Structure of
simplified feeder. (b) SCC of Grid 10 p.u. (c) SCC of Grid 20 p.u. (d) SCC of Grid 50 p.u.

Fig. 4. Timeline for the actions and the related actuators of the proposed load levelling approach.

the load levelling approach, it takes approximately 10-15 s
to set the new reactive power setpoints of FCSs. This delay
takes into account the measurement communication delay, the
execution time of the algorithm in the control center, and the
transmission of the new setpoint to each FCS. A communi-
cation delay in the order of seconds has been estimated in
this case, considering a communication infrastructure based
on industrial protocols such as ModBus, which typically has a
communication delay of about 0.5-1 s. The signal to activate
the OLTC for load levelling is held by the control center at
least one minute after the FCSs have adjusted the new reactive
power setpoints. Then, if the detected power mismatch is still
higher than a threshold value, the control center sends an ac-
tion signal to the OLTC. Since the sensitivity of the aggregated
load changes much slower than the approach implementation,
the update of sensitivity is considerably much less frequent
than the implementation of the proposed approach.

III. OPTIMIZATION ALGORITHM OF CENTRALIZED LOAD
LEVELLING APPROACH

This section gives a detailed description of the imple-
mentation algorithm for the voltage-dependent load levelling
approach.

In order to determine the actuators’ setpoints, a multi-
objective optimization algorithm is formulated. Every sched-
uled time (e.g. 15 minutes), based on the grid demand forecast
P ∗
grid(t), the collected measurements including the power,

voltage, and load sensitivity coefficients from every bus of
the grid, the control center computes the new reactive power

setpoints of FCSs and the new OTLC position by means
of a nonlinear programming based optimization to mitigate
the power mismatch of Pgrid(t) in relation to the forecast
P ∗
grid(t). The optimization is implemented with the software

GAMS (General Algebraic Modeling System). It is a high-
level modeling software for mathematical optimization with
solvers for different linear, nonlinear, and mixed-integer opti-
mization problems.

The approach includes a two-stage optimization, as de-
scribed in Fig. 5. Stage 1 computes the setpoints of the
FCSs’ reactive power injection and the tap position of the
OLTC, targeting a minimization of the power mismatch
(
∣∣∣Pgrid(t)− P ∗

grid(t)
∣∣∣). If the mismatch is completely miti-

gated, stage 2 adjusts the reactive power injection of all FCSs
to minimize the total power transfer losses of the grid. In stage
1, multipole local minima can occur. In stage 2, the objective
is to identify the minimum, in which the minimum losses in
the grid can be achieved. The description of the two stages of
the optimization algorithm are described below.

A. Stage 1: mitigation of demand power mismatch

As mentioned above, the objective of stage 1 is the load
levelling. The objective function is to minimize the difference
between measured and forecast active power demand:

F1 = min(
∣∣Pgrid(t)− P ∗

grid(t)
∣∣) (4)
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Fig. 5. Flow chart for implementation of the two-stage optimization. F1:
mitigation of demand power mismatch. F2: minimization of losses.

subject to:

−Ploadk(t) =Vk(t)

NB∑
j=1

Vj(t)[Gkjcos(δk(t)− δj(t))+

Bkjsin(δk(t)− δj(t))]

−Qloadk(t) =Vk(t)

NB∑
j=1

Vj(t)[Gkjsin(δk(t)− δj(t))−

Bkjcos(δk(t)− δj(t))]

(5)

Ploadk(t) = Ploadk0 (Vk(t)/Vk0)
kpk(t)

Qloadk(t) = Qloadk0 (Vk(t)/Vk0)
kqk(t)

(6)

Vmin ≤ Vk(t) ≤ Vmax k = 1...NB (7)

Q2
FCSx(t) ≤ S2

FCSx − P 2
FCSx(t) x = 1...m (8)

cosϕsub,min ≤ cosϕsub(t) (9)

a · tOLTC,min ≤ tOLTC(t) ≤ a · tOLTC,max (10){
tOLTC(t)− 1 ≤ tOLTC(t+ 1) ≤ tOLTC(t) + 1 a = 0

t∗OLTC(t)− 1 ≤ tOLTC(t) ≤ t∗OLTC(t) + 1 a = 1
(11){

V ∗
OLTC − ε ≤ VOLTC(t) ≤ V ∗

OLTC + ε a = 0

Vmin ≤ VOLTC(t) ≤ Vmax a = 1
(12)

where the grid buses, including FCSs, loads, and substation
are NB = m+ n+ 1, Ploadk(t) and Qloadk(t) are the active
and reactive power of bus k (k = 1...NB), δ(t) is the bus
angle; Gkj and Bkj are the conductance and susceptance of
the admittance matrix Ykj between bus k and bus j, Vmin and
Vmax are the voltage limits, QFCSx(t) is the reactive power
injection, and SFCSx and PFCSx(t) are the power rating and
charging power of FCS at bus x, cosϕsub(t) is the power
factor of the substation, tOLTC is the position of the OLTC
and a is the binary trigger signal for the OLTC, tOLTC(t)
is the potion of OLTC at (t), t∗OLTC is the position which is
derived by the local OLTC controller, VOLTC and V ∗

OLTC are
the measurement and setpoint of the OLTC bus voltage, and ε
represents the voltage deadband of the local OLTC controller.

The restriction of the OLTC actions at the HV/MV substa-
tion must be imposed. In the approach, the OLTC is activated,
i.e. trigger signal a = 1, only if the following criteria are met:

• no voltage in the grid exceeding [Vmin, Vmax].
• a minimal time interval of 15 min has occurred before the

last load levelling action with OLTC.
• the power mismatch is higher than 8 % with respect to

the grid forecast.

B. Stage 2: minimization of losses

If stage 1 is able to fully mitigate the power mismatch, stage
2 is activated to optimize the reactive power output of FCSs.
The optimization function becomes:

F2 = min(

NL∑
l=1

Ploss,l(t)) (13)

where:

Ploss,l(t) = Rkj ·
P 2
kj(t) +Q2

kj(t)

V 2
k (t)

(14)

Pkj(t) =V
2
k (t)Gkj − Vk(t)Vj(t)[Gkjcos(δk(t)− δj(t))+
Bkjsin(δk(t)− δj(t))]

Qkj(t) =V
2
k (t)Gkj − Vk(t)Vj(t)[Gkjcos(δk(t)− δj(t))−
Bkjsin(δk(t)− δj(t))]

(15)
Ploss,l(t) are the losses on line l, NL is the number of lines in
the grid, Rkj is the resistance of the line l impedance Zkj =
1/Ykj between the buses k and j.

The optimization problem remains subject to the same
constraints (5)-(12), with the addition of the further power
equality constraint:∣∣Pgrid(t)− P ∗

grid(t)
∣∣ = 0 (16)

IV. NETWORK UNDER STUDY AND TESTING CASES

In order to evaluate the performance of the proposed load
levelling approach, an MV network is modeled in GAMS, fol-
lowing the indication of a local distribution system operator in
Northern Germany. Different scenarios and cases are designed
for the evaluation. The evaluation is implemented with a base
voltage of 11 kV and a base power of 1 MVA.
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Fig. 6. Structure of testing network with 8 feeders at 11 kV.

A. Network under study and scenarios of analysis

The topology of the network under study is shown in Fig. 6.
The HV/MV substation is equipped with an 11-position OLTC,
covering a voltage range between 0.95–1.05 p.u. The original
position of the OLTC is 0, i.e. 1 p.u. The MV network is
composed of eight feeders with different lengths (from 3 km
to 10 km) and 75 buses. The data of network is suggested
by the German system operator. In every feeder, one FCS is
assumed. The idea for only one FCS per feeder is similar to
the petrol stations concept. As there is normally one (or few)
petrol station per small urban district, there will be one FCS
for each electrical feeder. The power rating of FCS is 0.60 p.u.

Fig. 7 (a) shows the 24 h demand forecast profiles for
single residential or commercial loads and single FCS. The
base power Pload0 + jQload0, which is depicted as 100 %
in Fig. 7 (a), is (0.35+j0.05) p.u. of the residential load and
(0.36+j0.09) p.u. of the commercial one, respectively. The
24 h demand forecast profile of FCS (base power 0.60 p.u.) is
presented in Fig. 7 (a). It is well-known that predicting the EV
charging profile is extremely important for load management
[25]. The forecasting methods can refer to previous researches
such as [26]–[28]. The grid demand forecast, seen from the
HV/MV substation, is the summary of power demand of all
loads, FCSs together with the losses, which has a peak active
power demand of approximately 25 p.u., as shown in Fig. 7
(b).

The realtime load or FCS consumption does not perfectly
follow the forecast due to the variable consumption patterns of
the users, resulting in the power mismatch in relation to fore-
cast profiles in Fig. 7 (a). Previous works have demonstrated
that the deviations from forecast profile can be presented
by Gaussian distribution. The derived profiles in Fig. 7 (a)
can represent the mean profiles. The variation of realtime
demand follows the mean profile with a standard deviation
(SD) of 5 % [29]. Taking into consideration the variable
consumption patterns, 1000 scenarios of 24 h profiles for single

Fig. 7. 24 h power profiles. (a) Profiles of single residential or commercial
load and singe FCS. (b) Grid demand forecast profile.

residential or commercial load and single FCS have been
generated. Fig. 8 shows the probability density (PD) of 1000
deviation scenarios in relation to the forecast load demand of
0.35 p.u. The Latin hypercube sampling method is applied to
ensure that every scenario can be clearly distinguished from
other scenarios, reducing the computation burden. With each
scenario, mismatch can arise between the grid demand seen
from the HV/MV substation and grid demand forecast in Fig. 7
(b), which should be mitigated by the load levelling.

Despite power electronics-based loads and resources not
being voltage-dependent, previous studies have confirmed with
field experiments that a large amount of voltage dependent
loads are still present in the power system [23], [30], [31]. The
sensitivity coefficient is variable. As demonstrated in recent
field trials, the load sensitivity varies in the range 1–2 p.u.,
meaning that the load varies its power linearly to quadratic
with the voltage variation. In order to include some variability
due to the stochastic operation of loads in the distribution grid
[18]–[21], [31], the sensitivity coefficients for residential and
commercial load types are selected within the following range:

• Residential load: kpr (0.5–2.0 ); kqr (2.0–3.5 )
• Commercial load: kpc (0.5–2.0 ); kqc (1.0–2.5 )

1000 groups of sensitivity coefficients have been developed.
The values of sensitivity in each group are randomly selected
within the range above. It is noted that low sensitivity co-
efficients, such as kp is only 0.5, are also included in the
evaluation, ensuring the generality of the analysis. Each group
has a significant difference to others thanks to the Latin
hypercube sampling method. The 1000 scenarios are evaluated
by means of the Monte-Carlo analysis.

The FCS uses the power electronics converter as interface
to the AC grid. Consequently, the grid is decoupled from
the EV charging facilities inside the FCS. The proposed load
levelling approach regulates the voltage of the AC grid within
the operation constraints. It is expected that only a few percent
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Fig. 8. Probability density of 1000 deviation scenarios for forecast load
demand of 0.35 p.u.

TABLE II
SUMMARY OF ACTIVATED ACTUATORS IN EACH CASE

Case FCSs OLTC

O - -
1 -

√

2
√

-
3

√ √

of AC voltage variation can be introduced within a time frame
of over tens of seconds. As a consequence, the effect on the
DC voltage from the AC voltage variation can be neglected.
The FCS is considered as constant power load and not sensitive
to AC voltage variations.

B. Test cases and constraints

A common grid condition, suggested by the German distri-
bution system operator, is applied that the SCC is 400 p.u. In
order to include all possible grid conditions, different cases for
analysis have been defined to include different control actua-
tors. Case O represents the case without any load levelling. It
is used as the benchmark to compare the performance of other
cases. In case 1, only the OLTC shown in Fig. 6 is used as the
actuator. In case 2, the FCSs distributed in different feeders
are involved in the load levelling, but the control center does
not activate the OLTC, allowing it to be operated under a local
voltage control (i.e. a = 0). Case 3 denotes the condition, in
which the complete load levelling approach with FCSs and
OLTC is implemented. A summary of control actuators in the
above mentioned cases is listed in Table II.

The values of constraints for the optimization algorithm,
including the maximum and minimum voltage and power
factor, are listed as follows:

Vmin = 0.9 p.u. Vmax = 1.1 p.u. cosϕsub,min = 0.9 (17)

V. ANALYSIS AND DISCUSSION OF RESULTS

This section describes the results obtained by means of the
Monte-Carlo analysis, where the aforementioned four cases
with 1000 scenarios have been simulated in the MV grid
model.

Fig. 9 (a) plots the power mismatch related to the grid
demand forecast P ∗

grid(t) shown in Fig. 7 (b) in percentage. It

Fig. 9. 24 h demand power mismatch and OLTC positions of the time
dependent scenario. (a) Power mismatch with respect to the grid demand
forecast. (b) Switch of OLTC positions.

Fig. 10. 24 h power and voltage behaviors of last bus in feeder 8. (a) Power
change with respect to power without load levelling. (b) Voltage change with
respect to voltage without load levelling.

is from one of the 1000 time dependent scenarios for Monte-
Carlo analysis. The results show that the mismatch in case
1 has no significant difference with respect to case O, i.e.,
original mismatch; in cases 2 and 3, on average, the power
mismatch can be fully compensated, if it in case O is within
the 2−3% range. However, differences rise if the mismatch is
higher than 8 %, as can be noted in the time-window 14–16 h.
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Fig. 11. Probability density of power mismatch in relation to demand forecast P ∗
grid(t) in 1000 Monte-Carlo scenarios. (a) Case O vs. Case 1 (with only

OLTC). (b) Case O vs. Case 2 (with only FCSs). (c) Case O vs. Case 3 (with both OLTC and FCSs).

Case 3, with a coordinated action of FCSs and OLTC, is able
to further reduce the mismatch with respect to case 2. This
time-dependent scenario demonstrates the effectiveness of the
proposed load levelling approach, which exploits both the fast
dynamics of the load control proposed in [16] and the CVR
performance.

The impact of the proposed approach on the OLTC tap is
shown in Fig. 9 (b). In cases O and 2, the OLTC is regulated
by the local controller, but not considering the load levelling,
limiting daily switching at 8 times. If the OLTC is involved
in the load levelling, the tapping increases to 14 and 12 times
in case 1 and 3, respectively. This is a modest increment of
the OLTC switching, which has only limited impact on its
lifetime.

With the aforementioned scenario, Fig. 10 shows the change
of the load and voltage of the last bus in feeder 8 in Fig. 6.
The power change with respect to the power without load
levelling in percentage is plotted in Fig. 10 (a). It can be
observed that the change within 4 % has a confidence interval
of 98 %. Fig. 10 (b) shows voltage change with the voltage
without load levelling in percentage. Within a confidence
interval of 84 %, the voltage variations are within ±0.02%.
This range of voltage variation has been illustrated by the CVR
application in different countries that the quality of power
supply to the residential and commercial users is not negatively
affected. Furthermore, the voltage constraints are imposed in
the algorithm. As a consequence, the voltage of the entire
network is controlled within the permitted operation range.

To further investigate the load levelling capability, the power
mismatch with respect to the grid demand forecast P ∗

grid(t)
shown in Fig. 7 (b) is computed. The PD of those results
in all scenarios and their corresponding estimated normal
distributions are presented in Fig. 11. As can be observed
in case 2 and case 3, the probability, when mismatch has
large percentage, is significantly reduced. Meanwhile, the
probability, when mismatch is around to 0, reaches over 25%
with respect to the case O. The difference between case O and
case 1 is small.

TABLE III
SUMMARY OF MEAN VALUE AND SD OF POWER MISMATCH DERIVED

FROM MONTE-CARLO ANALYSIS.

Case Mean SD SD with respect OLTC actions
No. µ (%) σ (%) to case O (%) per day

O −0.02 3.30 100% 11.80
1 0.01 3.26 98.8% 13.46
2 0.82 2.47 74.8% 11.80
3 0.80 2.42 73.3% 12.67

Fitting the results into Gaussian Distribution, the standard
deviation (SD) of case O is 3.30 %. Summarized in Table
III, the value is reduced to 3.26 % with the OLTC (case
1), 2.47 % with the reactive power from FCSs (case 2), and
is further reduced to 2.42 % of case 3, respectively. The
relative variations of SD with respect to benchmark (case O)
σx/σO ·100% (x represents O, 1, 2, and 3) are listed in Table
III, in which the SD is reduced by 25 % and 27 % in case 2
and case 3, respectively. The average switching actions in a
day of 1000 scenarios is 11.80 times in case O and case 2. The
actions in case 1 and case 3 are 13.46 and 12.67, respectively.
With the additional actions of the OLTC, the SD in case 3 is
decreased by 1.5 % in respect to case 2.

The cumulative distribution (CD) of absolute power mis-
match

∣∣∣Pgrid(t)− P ∗
grid(t)

∣∣∣ /P ∗
grid(t) in all scenarios is plotted

and presented in Fig. 12. It is noted that the curves of case
O and case 1 have no significant difference, and the curves
of case 2 and case 3 have no significant difference either.
However, comparing the curves of case O and case 3, it can be
observed that the probability of no mismatch in case 3 reaches
20 %, which is doubled to the probability of no mismatch in
case O. Fig. 13 shows the PD of the absolute power mismatch
for case O and case 3. By means of the load levelling approach,
the probability, when power mismatch is more than 0.5 %, is
reduced significantly.

Fig. 14 shows the reactive power of all 8 FCSs at 9 h 15 min
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Fig. 12. Cumulative distribution of the absolute power mismatch in 1000
Monte-Carlo scenarios for all cases.

Fig. 13. Probability density of the absolute power mismatch in 1000 Monte-
Carlo scenarios for case O and case 3.

with scenario No.37 of case 3. Stage 1 requires the FCS in
feeder 5 to inject more than 0.3 p.u. inductive reactive power
and the FCSs in other feeders to inject capacitive reactive
power. Stage 2 optimizes the reactive power of all FCSs. The
FCSs in feeder 1-3 inject a small amount of inductive reactive
power and the injection of capacitive reactive power in feeder
8 is significantly increased. The original grid losses without
the load levelling is 0.233 p.u., the losses after implementing
the stage 1 and after stage 2 are 0.232 p.u. and 0.230 p.u.,
respectively. After stage 2, the losses are reduced by 0.86 %,
compared to the losses after stage 1.

The grid losses for case 3 compared to the grid losses for
case 1 are evaluated. Fig. 15 (a) shows the PD of losses in
all scenarios for case 1 and for stage 1 of case 3. Among
1000 scenarios, in case 1, the probability, if the losses are less
than 0.04 p.u., is 18.6 %. The probability is reduced to 12.7 %
among the same scenarios in stage 1 of case 3. This implies
that the load levelling causes an increase of losses. Fig. 15 (b)

Fig. 14. Reactive power of FCSs, comparison of results of stage 1 and stage
2 in case 3 at 9 h 15 min with scenario No. 37.

Fig. 15. Probability density of losses in 1000 Monte-Carlo scenarios for case
1 and case 3. (a) Losses in case 1 vs. Losses in stage 1 of case 3. (b) Losses
in case 1 vs. Losses in stage 2 of case 3.

Fig. 16. Probability density of the power factor in 1000 Monte-Carlo scenarios
for case 1 and case 3.

shows the PD of losses for case 1 and for stage 2 of case 3. It is
observed that among 1000 scenarios, in stage 2 of case 3, the
probability is 15.2 %, when the losses are less than 0.04 p.u.
The increased losses caused by stage 1 has been improved by
stage 2.

The PD of grid power factor in all scenarios, seen from the
HV/MV substation, is depicted in Fig. 16. It shows that for
case 3, the power factor can be improved with some scenarios
and reduced with other scenarios. The improvement of the
power factor is due to the injection of capacitive reactive
power. The power factor is mostly caused by the injection of
inductive reactive power. However, the power factor constraint
of 0.9 is never violated.

VI. EXPERIMENTAL DEMONSTRATION WITH
POWER-HARDWARE-IN-THE-LOOP TEST

To validate the feasibility and practicality of the pro-
posed approach with realistic grid conditions, an experimental
demonstration has been implemented by means of a PHIL
system. The PHIL, coupling the hardware under test with a
realtime simulated grid, enables to analyze the interaction of
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Fig. 17. Laboratory implementation of PHIL. (a) Schematic presentation of PHIL setup. (b) PHIL setup in laboratory.

Fig. 18. Schematic representation of the selected feeder 4 in Fig. 6 for the
PHIL testing.

the FCS hardware with a realistic grid without the need to
realize physically the grid in the laboratory. The configuration
of the setup is shown in Fig. 17. The network of the grid is
realized in RSCAD, the software of the Digital Real Time
Simulator (DRTS), to emulate the grid behavior under the
reactive power injection from the FCS. The FCS in RSCAD
is modeled as a voltage source with the voltage reference
provided by the terminal voltage of the FCS vFCS, i.e. voltage
of the hardware. A simulated ideal transformer is used to step
up the hardware voltage to the MV level of the grid. A Danfoss
FC-302 converter represents the FCS hardware. This converter
is indirectly connected to the grid in RSCAD by means of a
linear power amplifier (PA) Spitzenberger Spies PAS15000.
The active power and reactive power consumption of the
converter is determined by the load PEV and the reference
Q∗

FCS, respectively. A bidirectional DC power supply is used
to emulate the charging load PEV. The current in the RSCAD
igrid is sampled and sent to the PA controller to reproduce
accurately the grid current, testing the impact on the hardware
from the grid. A scale factor of 137.5 is introduced between the
hardware power and RSCAD to cope with the limited power
capability of the converter in the laboratory. The summary of
the setup parameters is listed in Table IV.

Feeder 4 of the MV network, as shown in Fig. 6, is selected
and simulated in RSCAD. A schematic presentation of the
PHIL test network is shown in Fig. 18. Two sets of experiments
with both short and long time scale are implemented.

TABLE IV
SUMMARY OF PARAMETERS OF PHIL SETUP.

Hardware Parameter Component in RSCAD Parameter

PA power rating 15 kVA Power scaling factor 137.5
Converter power rating 4 kVA FCS power rating 550 kVA
DC power supply rating 15 kVA

A. Testing of the load levelling approach concept

As first experiment, the performance of the voltage-
dependent load levelling approach is demonstrated in a sim-
plified test case. As shown in Fig. 19, the FCS receives the
input to inject 0.3 p.u. of inductive reactive power, targeting a
reduction of the load power consumption. Starting from 1.5 s,
the voltage of bus 4 drops from 0.962 p.u. to 0.946 p.u. (Fig. 19
(b)), with a consequent decrease of the load consumption by
3 % (Fig. 19 (c)). The total feeder power consumption that
includes the contribution from the FCS, drops from 2.54 p.u.
to 2.48 p.u., obtaining an overall 2.4 % power variation.

As second test, the FCS receives the input to inject 0.3 p.u.
of capacitive reactive power with the goal to increase the active
power consumption of voltage-dependent loads, as shown in
Fig. 20. Starting from 1.5 s, as it can be seen in Fig. 20 (b),
the voltage of bus 4 increases from 0.962 p.u. to 0.975 p.u.,
with a consequent increase of the load consumption by 3 %
(Fig. 20 (c)). The total feeder power consumption that includes
the contribution from the FCS, increases from 2.54 p.u. to
2.58 p.u., obtaining an overall 1.6 % power variation.

These two tests have demonstrated the capability of voltage-
dependent load levelling approach to regulate the load power
consumption, both upwards and downwards. This feature
allows a higher controllability of the grid that can be only
compared to energy storage systems, without, however, in-
stalling any additional hardware.

B. Testing the load levelling approach performance in realistic
MV grid conditions

In the second set of PHIL experiments, a 15 min demand
forecast of the feeder (red line in Fig. 21 (a)) is defined, which
is the target of the load levelling approach. The blue and green
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Fig. 19. Voltage and power response to inductive reactive power injection
from FCS. (a) Active/reactive power of FCS seen in RSCAD (blue line for
active power, red line for reactive power). (b) Voltage response of bus 4 to
reactive power injection. (c) Load power of bus 4 to voltage response. (d)
Feeder power variation.

Fig. 20. Voltage and power response to capacitive reactive power injection
from FCS. (a) Active/reactive power of FCS seen in RSCAD (blue line for
active power, red line for reactive power). (b) Voltage response of bus 4 to
reactive power injection. (c) Load behavior of bus 4 to voltage response. (d)
Feeder power variation.
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Fig. 21. Performance of load leveling in a 15 minutes time window for the
feeder shown in Fig. 18 (red line for demand forecast, blue line for power
without load levelling, and green line for power with load leveling). (a) Load
power with respect to the demand forecast of the feeder. (b) Power mismatch
in relation to the demand forecast of the feeder.

lines represent the power of the feeder without and with load
levelling approach, respectively.

As can be noted in Fig. 21 (a), the power of the feeder
P
′′

grid(t) obtained by applying the load levelling approach
is nearer to the demand forecast P ∗

grid(t), showing a clear
improvement with respect to power profile of the feeder
without load levelling P

′

grid(t). This improvement can be seen
in more detail in Fig. 21 (b), where the power deviation in
relation to the forecast of the feeder is plotted. As can be noted,
the maximal deviation is decreased from 0.29 p.u. (appearing
at 700 s when the power demand is below the forecast) to
0.21 p.u. (also at 700 s). The maximal mismatch is reduced by
28 %.

Both experimental validations clearly show that the load
levelling approach can provide an effective control of the load
demand within the 2–3 % range, avoiding a cyclic intervention
of other actuators, such as batteries.

VII. CONCLUSION

A two-stage centralized approach to level the power mis-
match between the demand forecast and the realtime demand
in MV grids by means of electric vehicles fast charging
stations is proposed in this paper. The load levelling approach
exploits the voltage-dependent characteristic of the load by
making use of the FCS converter’s spare power capacity.
The voltage of the grid is regulated with reactive power
injection, shaping as a consequence the voltage-dependent
loads’ power consumption. Combined with classical methods,
such as OLTC conservation voltage reduction, the proposed

approach has been proven effectively in terms of load levelling
in a complex MV distribution grid. A Monte Carlo analysis
has been performed to represent several grid conditions, in-
cluding the statistical deviations of power consumption and
load sensitivity, in order to generalize the effectiveness of
the load levelling approach. With only the OLTC, despite its
negligible impact on the losses and power factor, the power
mismatch in form of standard deviation can vary only up to
2 %. Using only the FCSs, the load levelling approach is able
to reduce the mismatch at least of 25 %. If a FCSs and OLTC
combined control is considered, the power mismatch reduction
reaches more than 27 %. The second stage of the proposed
approach is able to contain the additional losses that are
introduced by the first stage of the approach. The results show
that the probability of having losses smaller than 0.04 p.u.
increases from 12.7 % to 15.2 % in the second stage with
respect to the first one. To demonstrate the effectiveness of
the approach in realistic conditions, two power hardware in the
loop validations have been performed, in a short (15 seconds)
and a long (15 minutes) time windows. The experimental
results confirm the potential of the load levelling approach
to level the power consumption in realtime without the need
for additional hardware.
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