KIT | KIT-Bibliothek | Impressum | Datenschutz

Nonresonant powering of injectable nanoelectrodes enables wireless deep brain stimulation in freely moving mice

Kozielski, K. L. 1; Jahanshahi, A.; Gilbert, H. B.; Yu, Y.; Erin, Ö.; Francisco, D.; Alosaimi, F.; Temel, Y.; Sitti, M.
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)

Abstract:

Devices that electrically modulate the deep brain have enabled important breakthroughs in the management of neurological and psychiatric disorders. Such devices are typically centimeter-scale, requiring surgical implantation and wired-in powering, which increases the risk of hemorrhage, infection, and damage during daily activity. Using smaller, remotely powered materials could lead to less invasive neuromodulation. Here, we present injectable, magnetoelectric nanoelectrodes that wirelessly transmit electrical signals to the brain in response to an external magnetic field. This mechanism of modulation requires no genetic modification of neural tissue, allows animals to freely move during stimulation, and uses nonresonant carrier frequencies. Using these nanoelectrodes, we demonstrate neuronal modulation in vitro and in deep brain targets in vivo. We also show that local subthalamic modulation promotes modulation in other regions connected via basal ganglia circuitry, leading to behavioral changes in mice. Magnetoelectric materials present a versatile platform technology for less invasive, deep brain neuromodulation.


Verlagsausgabe §
DOI: 10.5445/IR/1000129843
Veröffentlicht am 05.03.2021
Originalveröffentlichung
DOI: 10.1126/sciadv.abc4189
Scopus
Zitationen: 84
Web of Science
Zitationen: 82
Dimensions
Zitationen: 108
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 13.01.2021
Sprache Englisch
Identifikator ISSN: 2375-2548
KITopen-ID: 1000129843
HGF-Programm 43.33.11 (POF IV, LK 01) Adaptive and Bioinstructive Materials Systems
Erschienen in Science advances
Verlag American Association for the Advancement of Science (AAAS)
Band 7
Heft 3
Seiten Art.-Nr.: eabc4189
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page