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Abstract Plant invasions can have major impacts on

ecosystems and influence global species diversity. In

Central Europe, Himalayan balsam (Impatiens glan-

dulifera) and American goldenrods (Solidago

canadensis and S. gigantea) are important invaders

often establishing dense and homogeneous stands,

especially in urban and other disturbed habitats. We

investigated their impacts on plant-dwelling spiders

(abundance, family structure, guild structure) and

potential spider prey items during flowering season

within an urbanized landscape using a paired design

comparing invaded and native reference vegetation

plots. In general, flowering American goldenrods and

Himalayan balsam had no significant impacts on the

spider family composition. Invasion of American

goldenrods further had no effect on total spider

abundance and potential prey item abundance. In

contrast, goldenrods showed a significantly increased

crab spider (Thomisidae) abundance while being less

inhabited by web builders. Himalayan balsam nega-

tively influenced free hunters and running crab spider

(Philodromidae) abundance, while we found no

effects on other groups and total spider abundance.

For Himalayan balsam, potential prey item abundance

was higher than in native vegetation stands. Notwith-

standing that our results only represent a snapshot of

the system, they suggest that large-scale removal of

urban goldenrod stands during flowering season might

negatively influence local spider abundance, espe-

cially of crab spiders. Management efforts should

therefore be accompanied by compensation measures

to avoid disruptive effects on local plant-dwelling

spider communities.

Keywords Impatiens glandulifera � Novel
ecosystems � Philodromidae � Solidago canadensis �
Solidago gigantea � Thomisidae � Urban management

Introduction

Biological invasions can have tremendous ecological

and socio-economic consequences (Sala et al. 2000;

Nentwig et al. 2018). Invasive alien plant species are
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one of the major drivers of current global biodiversity

erosion (Bellard et al. 2016; Simberloff et al. 2013),

yet their eradication can result in enormous costs

(Hoffmann and Broadhurst 2016; Pimentel et al.

2005).

In general, invasive plants have negative effects on

animal diversity, fitness and abundance (Schirmel

et al. 2016). However, the consequences and severity

of invasions can vary over time and among different

spatial scales, ecosystems and taxa (Dostál et al. 2013;

Hulme et al. 2013; Schirmel et al. 2016). Herbivore

communities are often directly affected by alien plant

invasions due to loss of indigenous vegetation (Gerber

et al. 2008; Procheş et al. 2008) and respond with a

significant reduction of biomass and species diversity

(Schirmel et al. 2016). Invasive plants can also

negatively affect predator communities by altering

habitat conditions (e.g., Balkenhol et al. 2018; Gerber

et al. 2008) and might lower foraging success of some

predators (Maerz et al. 2005).

On the other hand, there are well-known examples

where invasive plants can facilitate some native

species (Rodriguez 2006). Invasive plants may offer

suitable resources and habitat requisites for native

animals, such as web attachments for spiders (Pearson

2009), habitat analogues for small mammals (Packer

et al. 2016) or pollen and nectar supplies for pollina-

tors (Davis et al. 2018; Russo et al. 2016). Especially

in landscapes with large proportions of urban and

novel habitats, alien plant species are abundant

(Kowarik 1995) and can contribute to local biodiver-

sity conservation by facilitation of native animal

species (Buchholz et al. 2015; Hausmann et al. 2016;

Packer et al. 2016; Rodriguez 2006). Urban green-

spaces, gardens, wasteland and parks might even be

important habitat analogues for rare or endangered

arthropod species (e.g., Buchholz et al. 2018; Eckert

et al. 2017) as well as apex predators like birds of prey

(Boal and Dykstra 2018).

In Europe, both Himalayan balsam (Impatiens

glandulifera Royle) and American goldenrods (Sol-

idago canadensis L., Solidago gigantea Ait.) have

been actively introduced during the last few centuries

as ornamental and nectar plants (Beerling and Perrins

1993; Weber 2000); nowadays, these species are very

widespread and common in a wide variety of habitats

in many regions of Germany (Nehring et al. 2013).

Himalayan balsam is a tall, annual herb with a height

of up to 2.5 m that flowers in late summer and reacts

with fast dieback after initial frost events in autumn

(Beerling and Perrins 1993). Its relatively large seeds

are released by ballistochory and are able to germinate

synchronously in spring. Today, the conspicuous

purple or pink flowers are a typical aspect of many

riparian and forest edge habitats in Central Europe. In

the European Union, Himalayan balsam is considered

an invasive plant species (Reg. 1143/2014; European

Union 2014). However, reported effects of Himalayan

balsam on local plant diversity are partly contradic-

tory. While Hulme and Bremner (2006) showed a

reduction in local plant diversity due to the replace-

ment of widespread, but native ruderal species by

Himalayan balsam, no significant effects on plant

diversity were found by Hejda and Pyšek (2006) and

Čuda et al. (2017). American goldenrods are rhizoma-

tous perennial plants with a shoot height of up to 2 m,

typically invading disturbed sites where they form

dense stands with rich, yellow flowers in late summer

and autumn (Weber 2000). American goldenrod

species are considered invasive in Central Europe

(Nehring et al. 2013) due to their known negative

effects on local plant diversity (Hejda et al. 2009;

Weber 2000).

Impacts of both Himalayan balsam and American

goldenrods on native animal diversity are still not fully

understood, and past research mainly focused on their

effects on pollinators and ground-dwelling arthropods.

Himalayan balsam offers extensive floral resources for

pollinators and can facilitate native pollinators to some

extent (Davis et al. 2018; Lopezaraiza-Mikel et al.

2007). On the other hand, Tanner et al. (2013)

demonstrated strong negative effects on foliage-

dwelling arthropod diversity and abundance. The

invasion of American goldenrods can negatively

affect pollinator communities in protected areas and

in abandoned arable fields due to its dense stands,

competitive advantage and subsequent simplification

of floral resources (Fenesi et al. 2015; Morón et al.

2009). In contrast, it was shown that a relatively high

number of native pollinator insects, such as wild bees

(Weber 2000; Westrich 2019), visit flowering Amer-

ican goldenrods. However, there is a clear research

gap in analyzing the impact of these major plant

invaders on higher trophic levels (White et al. 2006),

such as plant-dwelling predatory arthropods like

spiders (Araneae). Especially during flowering season,

invasion by Himalayan balsam and goldenrods may
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affect spiders via influences on phytophagous and

flower-visiting insect prey items.

Crab spiders (Thomisidae) are particularly well

known ambush hunters, as they lurk on flowers for

visiting pollinators. Because both plant invaders

produce very conspicuous flowers or inflorescences,

they provide potential hunting grounds especially for

crab spiders. Many spiders are habitat specialists with

a fast reaction to environmental changes and stress

(Hänggi et al. 1995; Buchholz et al. 2015, 2018;

Entling et al. 2007). Additionally, spider diversity is

usually not related to plant species numbers (Buchholz

2010; Buchholz et al. 2018; Harry et al. 2019), but

rather to the structure and microclimate of the habitat

(Clausen 1986). There is also evidence that spiders can

react to higher prey availability with increased

production of offspring (Wise 1979) and survival

rates (Bradley 1993), which makes them excellent

indicator species for a comparison of (indirect) local

effects caused by plant invasions.

In this study, we aimed to analyze the effect of

Himalayan balsam and American goldenrods on the

abundance, family composition and guild structure of

plant-dwelling spiders during the flowering season.

We collected spiders and potential prey organisms

with sweeping nets and used a paired design (for both

Himalayan balsam and American goldenrods) by

comparing invaded and uninvaded plots within the

city of Karlsruhe in southwest Germany.

We hypothesized that flowering Himalayan balsam

and American goldenrods with their rich and simul-

taneously developed floral presence in late summer

(i) positively affect the abundance of potential spider

prey organisms (insects), and (ii) affect total abun-

dance, guild structure and family composition of

plant-dwelling spiders, whereby flower-dwelling crab

spiders (Thomisidae) show higher abundances in

invaded plots compared to native vegetation because

of a higher presence of floral resources.

Material and methods

Study area and site selection

The study was conducted within the city of Karlsruhe

(Baden-Württemberg, Germany; Fig. 1a). In

Karlsruhe, Himalayan balsam (Impatiens glandulifera

Royle; Balsaminaceae) as well as two American

goldenrod species (Solidago canadensis L., S. gigan-

tea Ait.; Asteraceae) are widespread in numerous

disturbed urban habitats such as parks, areas along

artificial channels and in abandoned industrial waste-

lands. Major areas of Karlsruhe are located in the

Upper Rhine valley on Pleistocene sand and gravel

(Karlsruhe 1999). The urban vegetation in open green

spaces of Karlsruhe is characterized by a mosaic of

extensively managed meadows with 1–2 cuts and

intensively managed lawns (from 3–5 up to 12 cuts per

year). An establishment of goldenrod and Himalayan

balsam on these sites is prevented by a first cut in

spring (intensively managed lawns) or summer (June/

July; extensively managed meadows). Goldenrod and

Himalayan balsam stands are therefore restricted to

ruderalized areas with no regular management, like

anthropogenic riparian habitats, irregular managed

waysides, urban scrub understory or wastelands.

During our collection period, patches of ruderalized

herbaceous vegetation were the only type of higher

and flowering herbaceous vegetation in Karlsruhe due

to the cutting of the surrounding lawns and meadows.

We selected 18 American goldenrod and 20

Himalayan balsam plots as ‘‘invaded’’ sites (Fig. 1b,

c). All of these plant stands developed spontaneously

and were not planted. All plots represented dense,

clearly confined and flowering stands with at least 20

single invader plant stems with a very high dominance

([ 80% cover) embedded in a mosaic of various

small-scale land use unities like urban forest and

scrub, meadows and impervious surface. We avoided

sampling very small and highly isolated plots with a

size of\ 3 m2 (e.g., isolated by mowing of adjacent

vegetation).

In direct vicinity to each invaded plot (about 10 to

20 m) a corresponding reference plot (‘‘native’’) of

similar size with comparable vegetation structure

(height and cover) and similar adjacent habitats was

selected (Ntotal = 76 plots; see Fig. 1). The native

plots are characterized by common and tall, native

ruderal plant species such as Urtica dioica L., Cirsium

sp., Artemisia vulgaris L., Lythrum salicaria L. and,

Lapsana communis L. (see supplementary material

Table 1). Native plots further contained several (dry)

grasses such as Dactylis glomerata L. and other

common species of Poaceae. In some native plots,

single alien Erigeron annuus (L.) Pers. plants were

present, but never in high numbers. Total vegetation
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cover was over[ 90% in each plot (native and

invaded).

Data collection

We collected plant-dwelling spiders and potential prey

organisms once per plot with a sweeping net in late

August/beginning of September 2018 on clear, sunny

and windless days. Per plot, twenty sweeps in the

upper part of the vegetation were conducted by a

single collector (FK), each sweep targeting different

plants of the plot. In invaded plots, only plant

individuals of the invasive species (either goldenrods

or Himalayan balsam) were sampled. In order to avoid

killing protected species (by German law) such as wild

bees, sweeping net content was emptied onto a large

white sheet in the field, and spiders were transferred to

80% ethanol with tweezers. To prevent spiders and

prey organisms from escaping, a second person

watched the margin of the white sheet for fleeing

individuals. Additionally, this collection method

allows for instant preservation of juvenile (and often

very fragile) spiders, which are sometimes damaged

beyond identification or morphospecification (e.g.,

loss of all legs or abdomen) when transferred together

with larger and more sclerotized insects (true bugs,

beetles) and plant parts directly into a killing agent and

transported to the laboratory. Because most caught

specimens were juveniles (as typical for this time of

the year; Nentwig et al. 2019) all specimens were

identified only to family level with the help of the

online determination key of Nentwig et al. (2019) by

Fig. 1 Sampling localities in and around the city of Karlsruhe,

Germany. a Map of all sampling plots for Himalayan balsam

Impatiens glandulifera (red rhombs) and American goldenrods

Solidago gigantea/canadensis (blue triangles). Native reference
plots (not shown) were located in direct vicinity of the invaded

plots (Map tiles by Stamen Design, under CC BY 3.0. Data by

OpenStreetMap,under ODbL). b Example of an invaded site by

American goldenrod. c Example of a disturbed riparian habitat

invaded by Himalayan balsam (white arrow). Scale bar = 1 km
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DAB and FK. TB verified the identification of the

specimens. Numbers of prey items were counted up to

5 individuals, and then further assessed by intervals of

five (until 20 individuals) and 10 ([ 20 individuals),

since counting in the field was done on living and

moving prey items of variable size and form, which

prevented an exact count.

Spider nomenclature follows the World Spider

Catalog (2019). To analyze the functional diversity of

spider guilds, all specimens were classified into ‘‘web

builders’’ (spiders that use a silken web to subdue and/

or sense prey; e.g., Araneidae and Theridiidae) and

‘‘free hunters’’ (spiders that hunt prey without a web;

e.g., Salticidae and Thomisidae) based on the deter-

mination to the family level, following the ‘‘No web’’

classification of families/subfamilies in Cardoso et al.

(2011; supplementary material table S1). The family

Cheiracanthiidae, which was part of Miturgidae until

recently (World Spider Catalog 2019) was classified

by us as ‘‘free hunters’’ (‘‘no web’’, like Miturgidae in

Cardoso et al. 2011). For the classification into guilds,

the Linyphiidae were determined to subfamily level

(Erigoninae/Linyphiinae/Micronetinae; see Tanase-

vitch 2020). All material is deposited at the State

Museum of Natural History Karlsruhe (SMNK).

Statistical analysis

All analyses were carried out in the R environment (R

Core Team 2019). We applied separate models for

each plant invader because both plant invaders are

dominant in different habitat types in and around the

city of Karlsruhe.

The total abundance of prey organisms, total spider

abundance, abundance of guild types (web builders,

free hunters) and the abundance of the two most

dominant spider families (Philodromidae and Thomi-

sidae) were correlated to plant stand type (factor:

invaded vs. native) by using generalized linear mixed

models (GLMM’s) with a Poisson distribution for

count data (R package ‘lme4’; Bates et al. 2019).

(Paired) locations were used as random factor. The p-

values are based on subsequent ANOVA (chisquare)-

testing (R package ‘car’; Fox and Weisberg 2011). In

the case of overdispersion, a negative binomial

distribution was applied; in case of underdispersion,

a Conway-Maxwell-Poisson (Lynch et al. 2014)

distribution was used to fit the model (Magnusson

et al. 2019). In cases of slight overdispersion in

poisson models (sum of squared Pearson residuals/

residual degrees of freedom between 1.0 and 1.2) we

used a function (Overdisp_fun) provided by Ben

Bolker on the GLMM FAQ (Bolker 2020) for testing

of overdispersion impact, but no significant impacts

were found. This is also in accordance with Payne

et al. (2018), who determined a general threshold of

SSQP residuals/rdf of 1.2 under which a Poisson

GLMM usually still performs well. We also tested for

potential zero-inflation with ‘testZeroInflation’ in

package DHARMa (Hartig 2020), which compares

the number of zeros present in the dataset against the

distribution of expected zeros in the model.

Spider family composition was related to plant

stand type by using partial redundancy analysis (RDA)

using the R package ‘vegan’ (Oksanen et al. 2017). To

emphasize the influence of dominant families, a

Hellinger transformation was performed. Because of

our paired study design, we used partial RDA where

we removed this effect (using the term Condition

(pair) in the formula). The significance of the effect of

plant stand type was tested using an ANOVA-like

permutation test based on 999 permutations.

The map (Fig. 1) was created with package

‘ggmap’ (Kahle et al. 2019) and the ‘terrain’-map of

maps.stamen.com.

Results

Effect of American goldenrods and Himalayan

balsam on potential spider prey items

American goldenrods had no significant effect on the

number of potential spider prey item individuals

(Table 1, Fig. 2a). In contrast, the presence of

Himalayan balsam significantly affected the number

of prey organisms (Table 1), which was on average

almost two times higher in invaded than in native plots

(Fig. 2b).

American goldenrods

We sampled 409 spider specimens from 12 spider

families (supplementary material Table 2). We

recorded 194 specimens from 10 families in plots

invaded by American goldenrods and 215 specimens

from 12 families in native plots. Only singletons

represented exclusive families in native plots. The

123

Differing impacts of two major plant invaders on urban plant-dwelling spiders (Araneae)



most abundant spider family were the crab spiders

(Thomisidae; n = 208).

The total number of spider individuals showed no

significant difference and little variation between

American goldenrod and native plots (Table 1,

Fig. 3a). On the family scale, the abundance of crab

spiders (Thomisidae) was significantly higher in plots

invaded by American goldenrods than in native plots

(Table 1, Fig. 3c). On the other hand, for the second

most abundant spider family, the running crab spiders

(Philodromidae), no significant effect on the abun-

dance was found (Table 1, Fig. 3e). American

Table 1 Effect of Himalayan balsam (Impatiens glandulifera)
and American goldenrods (Solidago canadensis/gigantea) on

the individual number of prey items, total spider abundance,

abundance of the two most dominant spider families and of

web builders and free hunters

Dependent variable Predictor Estimate SE z p GLMM family

Prey items American goldenrod - 0.281 0.208 - 1.352 0.176 n. binom

Himalayan balsam 0.636 0.171 3.713 < 0.001 n. binom

Spider abundance American goldenrod - 0.056 0.173 - 0.322 0.748 n. binom

Himalayan balsam - 0.286 0.218 - 1.308 0.191 n. binom

Thomisidae abundance American goldenrod 0.350 0.139 2.523 0.012 poisson

Himalayan balsam - 0.238 0.26 - 0.916 0.356 compois

Philodromidae abundance American goldenrod 0.032 0.252 0.126 0.900 poisson

Himalayan balsam - 0.623 0.264 - 2.356 0.018 poisson

Web builders American goldenrod - 0.962 0.151 - 6.384 < 0.001 compois

Himalayan balsam - 0.289 0.300 - 0.964 0.335 n. binom

Free hunters American goldenrod 0.250 0.214 1.169 0.242 n. binom

Himalayan balsam - 0.334 0.163 - 2.047 0.041 poisson

Effects were tested with generalized linear mixed models (n.binom = negative binomial distribution) and subsequent ANOVA

(chisquare)-testing. Significant effects are shown in bold

Fig. 2 Paired comparisons of the number of potential spider

prey organism individuals between a American goldenrods

(‘‘Solidago’’) and native vegetation and b Himalayan balsam

(‘‘Impatiens’’) and native vegetation. Lines connect paired

locations, whereby red lines indicate higher individual numbers

in the invaded plots, blue lines indicate higher individual

numbers in the native plots and grey lines indicate similar

individual numbers. Stars illustrate significant differences with

***p\ 0.001 (ns not significant). For statistics see Table 1
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goldenrod had a significantly negative influence on the

abundance of web builders, while, in contrast free

hunters were not affected (Fig. 4a, b, Table 1).

Although we found more exclusive spider families

occurring in native stands (see Venn diagrams in

Fig. 5a), the family composition was highly similar

between goldenrod and native vegetation stands.

Compositions between both plant stand types showed

large overlaps and did not differ significantly

(F = 1.076, P = 0.347; Fig. 5a).

Himalayan balsam

We sampled 275 spider individuals from 12 families

(supplementary material Table 2). 118 spider speci-

mens were caught in plots invaded by Himalayan

balsam and 157 specimens in native plots. Invaded and

native plots were inhabited by members of 11 spider

families (10 shared), respectively. The most dominant

spider families were the Thomisidae (n = 72) and

Philodromidae (n = 63).

The total spider abundance was not significantly

affected by plant stand type (Table 1, Fig. 3b). The

two most dominant spider families showed different

responses (Table 1, Fig. 3d, f). While abundances of

Thomisidae showed high variability and were not

significantly affected by plant stand type, Philodro-

midae abundances were significantly lower in invaded

plots (Table 1). The abundance of free hunters was

also significantly fewer in invaded plots, while web

builders were not affected by the presence of

Himalayan balsam (Fig. 4c, d, Table 1).

Fig. 3 Paired comparisons of abundances of total spiders a,b,
Thomisidae c,d and Philodromidae e,f between American

goldenrod (Solidago gigantea/canadensis) (left) and Himalayan

balsam (Impatiens glandulifera) (right) with native vegetation.

Lines connect paired locations, whereby red lines indicate

higher individual numbers in the invaded plots, blue lines

indicate higher individual numbers in the native plots and grey

lines indicate equal individual numbers. Stars illustrate signif-

icant differences with *p\ 0.05 (ns not significant). For

statistics see Table 1
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The spider family composition was not signifi-

cantly affected by the plant stand type (F = 1.4,

P = 0.2; Fig. 5b). This is also reflected by the high

number of families shared in both stand types (see

Venn diagram in Fig. 5b).

Discussion

In general, flowering plant stands of alien American

goldenrods and Himalayan balsam had only minor and

statistically insignificant impacts on total spider

abundances and family compositions. However, we

could show that both plant invaders can affect

abundances of the two dominant spider families as

well as web builders and free hunters in contrasting

ways. Even though we did not determine spiders to

species level, all found effects affect mostly native

spider species, since only very few alien spider species

(and no alien thomisids or philodromids) occur in

outdoor habitats in Germany (Blick et al. 2016,

Nentwig et al. 2019).

American goldenrod

In American goldenrod stands, significantly fewer

web builders and more crab spiders were found than in

native vegetation stands. This contrasts findings of

Dudek et al. (2016), who showed that, in spring, dry

stems of goldenrod stands are a preferred habitat of

web-building araneids compared with native grass

stands, probably due to the availability of more

structures for orb-web building (Lubin 1978). The

native plots in our study consisted of a dense mixture

of grass and herbaceous plants, which may facilitate

web building in contrast to the more homogeneous

upper part of American goldenrod stands. The signif-

icant increased abundance of crab spiders on golden-

rods might be explained by their preference for flowers

as places to hide while preying on pollinating insects.

Several crab spider genera from all continents are

known to wait for prey directly on or beneath flowers,

where they often catch pollinators larger than their

own body size (Foelix 2011; Heiling et al. 2004;

Huseynov 2007b; Morse 1983; Romero and Vascon-

cellos-Neto 2004a, b). Hence, the dense stands and the

massive blooms of American goldenrod in late

summer very likely attract crab spiders irrespectively

Fig. 4 Paired comparisons of the abundance of free hunters

b,d and web builders a,c between American goldenrod

(Solidago gigantea/canadensis) (top) and Himalayan balsam

(Impatiens glandulifera) (bottom) with native vegetation. Lines

connect paired locations, whereby red lines indicate higher

individual numbers in the invaded plots, blue lines indicate

higher individual numbers in the native plots and grey lines

indicate equal individual numbers. Stars illustrate significant

differences with *p\ 0.05 and ***p\ 0.001 (ns not signifi-

cant). For statistics see Table 1
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of the plants’ non-native origin, but may also reduce

the habitat of web-building spiders at the same time.

The value of goldenrods for crab spiders is also

reflected by Misumena vatia (Clerck, 1757), a species

with a Holarctic distribution (World Spider Catalog

2019) which is sometimes called ‘‘goldenrod crab

spider’’ in North America (Bradley 2013). North

American specimens of this species are known for

their preference of goldenrod flowers when given the

choice between green parts and blooms of goldenrod

plants in the laboratory (Morse 2000). However, many

European crab spiders also prey on leaves and grassy

vegetation (Gawryszewski et al. 2017), hence, the

observed effect of American goldenrod on crab spiders

might also be related to other, unknown factors.

Interestingly, there was no effect of goldenrod on

potential prey items. It is known that alien goldenrod

stands can be inhabited by a large number of

polyphagous heteropterans, while specialized species

are mostly absent (Roháčová and Drozd 2009).

Although specialized herbivores might be missing,

alien goldenrod still provides habitat for polyphagous

insect species, which in turn serve as potential prey for

spiders, as most species are opportunistic predators

with a wide food niche (e.g., Foelix 2011; Huseynov

2007a, b, 2008; Nentwig 1986).

Himalayan balsam

In contrast to American goldenrods, flowering Hima-

layan balsam had no positive effects, but a negative

effect on philodromid spiders as well as free hunters.

In contrast to our hypothesis, no effects on crab spiders

and web builders were found.

Himalayan balsam stands, when compared to native

vegetation and American goldenrods (Weber 2000),

promote erosion along riverbanks due to fast and

synchronized diebacks after frost followed by a

subsequent lack of vegetation cover and exposure of

the underlying bare ground (Greenwood and Kuhn

2014). Bare ground is generally a less preferred

overwintering habitat for spiders (Mestre et al. 2018)

and possibly leads to a reduced abundance of certain

spiders in dense stands of Himalayan balsam. In

riparian habitats, this invader also negatively influ-

ences epigeic arthropod diversity and abundance in

general, with heavily invaded regions differing from

less-invaded sites (Seeney et al. 2019). Another reason

for the reduced spider abundance, despite increased

numbers of prey items, may be trophobiosis between

ants and aphids on Himalayan balsam, which was

incidentally observed in several plots during the study

(FK and DAB pers. obs. during the field survey).

Although some opportunistic spiders (including crab

spiders) feed on ants (e.g., Huseynov 2007a, b), ants

are known to be a difficult prey with some specialized

spiders showing a very sophisticated predatory behav-

ior (Heller 1976; Pekár 2004; Pekár et al. 2008).

However, some spiders might avoid feeding on ants

(e.g., the philodromid Tibellus macellus Simon, 1875;

Huseynov 2008) and the abundance of web-building

spiders can be reduced by these insects (Sanders and

Platner 2007). Ants are known to protect aphids and

act aggressively against potential aphid predators

(Novgorodova and Gavryliuk 2012). A high ant

density may therefore suppress the presence of some

spiders which might especially be true for little-

sclerotized species such as many members of Philo-

dromidae, of which a significantly lower abundance

was found on Himalayan balsam. Ant-spider

Fig. 5 RDA-ordination showing family composition in Amer-

ican goldenrod (‘‘Solidago’’) and native vegetation stands a and
in Himalayan balsam (‘‘Impatiens’’) and native vegetation

stands b. Inlets of Venn diagrams indicate the number of

exclusive and shared spider families (red = plots invaded by

Solidago/Impatiens, blue = plots consisting of native vegeta-

tion). Dots represent the spider families (Thomisidae and

Philodromidae are additionally labelled with text). For statistics

see text
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interactions, including non-consumptive effects (Mes-

tre et al. 2020), should therefore be targeted by future

research.

That we found no differences in total spider

abundance between Himalayan balsam and native

reference vegetation might be related to the one-time

sampling in late summer, in which a large number of

juvenile spiders is present. Negative effects are

potentially more pronounced when sampled over the

complete vegetation period, as demonstrated for

spiders in general by Tanner et al (2013). In addition,

it has to be kept in mind that our results only present a

‘‘snapshot’’ of the system due to the limited sampling

period. The damaging impact of the sweep net on

flowering plants prevented a second as well as an

earlier sampling (especially for the fragile Himalayan

balsam stands).

Conclusions

In our studied urban environments, we found con-

trasting impacts of flowering American goldenrods

and Himalayan balsam on plant-dwelling spiders.

While both invasive plants had only minor impacts on

total spider abundances and family compositions, they

influenced the two most common families as well as

the guild structure. Himalayan balsam negatively

affected numbers of Philodromidae and free hunting

spiders, with no positive effects on other groups.

Removal of Himalayan balsammight therefore restore

native spider communities (see also Tanner et al.

2013), but might also eliminate an important food

resource for some pollinators in late summer (Davis

et al. 2018).

Presence of American goldenrods had a positive

influence on crab spider abundance, but a negative

impact on web-builder abundance. Furthermore, total

spider abundance was not negatively affected by this

plant invader in our study. For American goldenrods,

we therefore corroborate the hypothesis that some

animal groups (in this case crab spiders) use non-

native plant species as a habitat analogue and might be

facilitated by the presence of the alien plant to some

extent (Davis et al. 2018; Rodriguez 2006; Russo et al.

2016). Based on our results, conservationists and

administration should consider that a large-scale

removal of invasive American goldenrod stands

(Fenesi et al. 2015; Morón et al. 2009) during

flowering season could negatively influence local

spider abundances due to habitat loss. Additionally,

mechanical mulching of goldenrod stands probably

increases mortality of juvenile crab spiders dwelling

on this plant invader. Compensation measures like

sowing of native wildflower seeds with regional origin

near the focal area or exclusion of ruderalized native

vegetation from management activities like mowing

might help to maintain local resources for those groups

during and after the removal of this invasive plant

invader.

It has to be kept in mind that our results are limited

due to the single sampling event, and, more impor-

tantly, the impact of both invaders might strongly vary

depending on the ‘‘novelty’’ of the ecosystem and the

extent of habitat domination (see also Packer et al.

2016). For example, if American goldenrod species or

Himalayan balsam invade protected conservation

areas and replace diverse and structurally rich native

plant communities, negative effects on insects and

other arthropods can be assumed (Fenesi et al. 2015;

Moroń et al. 2009).

In conclusion, we call for an integrated approach in

the management of non-native plant invaders that

keeps in mind the potential of plant invaders to

facilitate some native arthropod groups, especially in

urban and other novel habitats.
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Harry I, Höfer H, Schielzeth H, Assmann T (2019) Protected

habitats of natura 2000 do not coincide with important

diversity hotspots of arthropods in mountain grasslands.

Insect Conserv Divers 12:329–338

Hartig F (2020) DHARMa: Residual Diagnostics for Hierar-

chical (Multi-Level / Mixed) Regression Models. R pack-

age version 0.3.0. http://florianhartig.github.io/DHARMa

Hausmann SL, Petermann JS, Rolff J (2016) Wild bees as pol-

linators of city trees. Insect Conserv Divers 9:97–107

Heiling AM, Cheng K, Herberstein ME (2004) Exploitation of

floral signals by crab spiders (Thomisus spectabilis, Tho-
misidae). Behav Ecol 15:321–326
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