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Abstract We consider effective Lagrangians which, after
electroweak- and family-symmetry breaking, yield fermionic
mass matrices and/or other flavoured couplings exhibiting
residual family symmetries (RFS). Thinking from the bot-
tom up, these RFS intimately link ultraviolet (UV) Beyond-
the-Standard Model (BSM) physics to infrared flavour phe-
nomenology without direct reference to any (potentially
unfalsifiable) UV dynamics. While this discussion is typi-
cally performed at the level of RFS group generators and
the UV flavour groups they can close, we now also focus
on the RFS-implied shape of the low-energy mass/coupling
matrices. We then show how this information can be used
to algorithmically guide the reconstruction of an effective
Lagrangian, thereby forming top-down models realizing the
typical bottom-up phenomenological conclusions. As a first
application we take results from scans of finite groups capa-
ble of controlling (through their RFS) CKM or PMNS mix-
ing within the SM alone. We then extend this to recently
studied scenarios where RFS also control special patterns
of leptoquark couplings, thus providing proof-in-principle
completions for such ‘Simplified Models of Flavourful Lep-
toquarks.’
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1 Introduction

The unexplained 20–22 free and physical parameters asso-
ciated to the masses, mixings, and CP-violating phases of
the Standard Model’s (SM) flavour sector (the so-called
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Flavour Puzzle) represents an open challenge for theo-
retical constructions Beyond the SM (BSM). While these
parameters are technically natural, their appearance in the
quark sector is associated to an explicit breaking of the
U(3)5 global flavour symmetry otherwise present in the
SM Lagrangian [1,2], while the observation of neutrino
masses is already a definitive new physics phenomenon.
Furthermore, the actual values of fermionic masses and
mixings exhibit tantalizing hierarchies, including dramat-
ically different patterns between quark and lepton sec-
tors. These observations beg for a dynamical origin for
flavour, and countless BSM models based on family sym-
metries have been devised to that end, with some even
attempting explanations for the presence of the other-
wise arbitrary flavour index (i = 1, 2, 3) in the first
place.

However, the model space is underdetermined – mul-
tiple models based on different symmetries can predict
the same phenomenology, and often models based on
the same family symmetry can yield different infrared
(IR) predictions when (unfalsifiable) tweaks to ultravi-
olet (UV) Lagrangian parameters are made. Indeed, it
may be impossible to determine a true theory of flavour
in the absence of any convincing observation of new
physics that distinguishes SM fermion generations, espe-
cially since reliable experimental constraints already exist
for all but the leptonic (Dirac) CP-violating phase, abso-
lute neutrino masses, and additional parameters depend-
ing on whether neutrinos are Majorana particles. Therefore
most model predictions should actually be considered ‘post-
dictions.’

One might then pursue a formalism for describing BSM
flavour in more model-independent ways, focusing only on
connecting patterns of family-symmetry breaking (which can
themselves be generically motivated, perhaps in stringy the-
ories – see [3,4], e.g.) to the relevant IR phenomenology,
and not on unfalsifiable Lagrangians based on new heavy
states or dynamics that may be associated to that symme-
try breaking. Residual Family Symmetries (RFS) provide
just such a formalism, as they promote accidental Abelian
symmetries of the SM mass sector to the residual subgroups
of a UV flavour symmetry GF . In bases where the physi-
cal mixing parameters appear in the SM Yukawa Lagrangian
(any basis other than the mass-eigenstate basis), one then
notes that the Abelian generators associated to RFS are them-
selves functions of the physical mixing parameters. Clos-
ing flavour groups with these generators then provides the
desired, model-independent link between UV symmetries
and IR mixing phenomenology, and multiple analytic and
computational studies have been performed to uncover viable
GF [5–30].

Of course, if a particular ‘simplified model’ (or class
of simplified models) based on the RFS formalism is sin-

gled out due to new measurements in the flavour sector, a
more complete description of the physics will be desired.
In this paper we provide a method to (re)construct effec-
tive Lagrangians that recover the symmetry breaking dis-
tilled in RFS scenarios. That is, we show how to con-
struct a top-down model from a bottom-up phenomeno-
logical observation/conclusion. We do so by focusing on
the intimate link between RFS generators and the implied
shape of an RFS-invariant mass/coupling matrix. After all,
RFS are symmetries of mass matrices and not the full
SM Lagrangian and so, up to possible ambiguities associ-
ated to the group-theoretical properties of RFS generators,
a specific symmetry-breaking pattern from the UV GF to
a given RFS implies a specific IR mass/coupling matrix.
This shape then hints at relevant multiplet charge assign-
ments under the parent GF , which when combined with
RFS-implied vacuum expectation values (VEV) for family-
symmetry breaking scalar flavons, can be used to algorithmi-
cally construct an effective Lagrangian. We first apply this
method to models addressing SM mixing structures alone,
i.e. the UPMNS or UCKM matrices, and then also to a class
of ‘Simplified Models of Flavourful Leptoquarks’ developed
in [31,32]. These models include a new Yukawa-like cou-
pling between the leptoquark and SM quark and lepton dou-
blets which is, in addition to the SM mixing, controlled by
RFS. They therefore generate rich, flavour-dependent phe-
nomenology at the Large Hadron Collier (LHC) and other
precision experiments which can be used to probe their pre-
dictions.

The paper develops as follows: in Sect. 2 we give a ped-
agogical review of the RFS formalism, making explicit the
intimate connection between RFS generators and implied
mass shapes, while also describing bottom-up techniques to
close UV flavour groups. We then discuss how to take those
results and build an effective UV Lagrangian. In Sect. 3 we
apply this recipe to models reproducing UPMNS or UCKM

before moving to leptoquark applications in Sect. 4. We con-
clude in Sect. 5, give relevant information for the finite groups
we employ in Appendix A, and also give further details on
our core RFS-preserving flavon condition in Appendix B.

2 RFS: bottom-up formalism for top-down models

The core assumption of the RFS paradigm is that a parent
flavour symmetry GF is broken in such a way that, after
subsequent EWSB, RFS mediated by subgroups of GF are
preserved in some or all of the SM mass matrices, or indeed
any other term controlled by the original flavour symmetry.
For example, a natural symmetry breaking pattern through
intermediate groups controlling the lepton and quark sectors
of the SM is schematically illustrated by
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GF →

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

GL →
{
Gν

Gl

GQ →
{
Gu

Gd.

(1)

Of course other patterns beyond (1), perhaps without the
intermediate GL,Q or which only address either the quark or
lepton sector individually, are also conceivable. GF ,L,Q can
in principle be Abelian or non-Abelian, continuous or dis-
crete, although for the remainder of this paper we will assume
thatGF ,L,Q are non-Abelian, such that irreducible multiplets
of dimension greater than one can be arranged in flavour
space. Furthermore, we will only work with non-Abelian dis-
crete symmetries (NADS) when constructing explicit mod-
els in Sects. 3 and 4, although our general approach and
analysis in this section is equally applicable to non-Abelian
continuous flavour groups as well. Also, the RFS Ga with
a ∈ {u, d, l, ν} must be Abelian, and when considering
they reconstruct NADS we have in particular Abelian cyclic
groups of order n,

Ga ∼= Zna , (2)

when GF ,L,Q are themselves discrete. Discrete product
groups of the formGa ∼ Zna ,1×Zna ,2×· · · are also possible.
Finally, we note that the complete flavour symmetry present
in the effective Lagrangians to be considered in the upcoming
sections is actually GF × Gshape, where Gshape is an Abelian
shaping symmetry that forbids unwanted scalar interactions.
However, as will become clear, unlike Ga we do not need
to explicitly specify Gshape ab initio, as our bottom-up RFS
approach depends only on the fact that Gshape can be found
to exist after realizing all of the desired phenomenology.

2.1 The infrared Lagrangian

To review how the RFS chain in (1) is naturally motivated,
we follow prior discussions (see e.g. [5,10]) and first write
down the SM Yukawa Lagrangian, after EWSB, in the mass-
eigenstate basis:

LSM
mass ⊃ 1

2
ν̄cL mν νL + ĒR ml lL + d̄R md dL + ū R mu uL

+ h.c., (3)

where ma are diagonal matrices of mass eigenvalues and
where we have assumed a Majorana neutrino mass term
to illustrate our point, although our RFS approach applies
straightforwardly to a Dirac mass ∝ ν̄R mν νL as well. From
(3) we observe that the Lagrangian is invariant under Abelian

transformations on the fermion fields:1

νL → Tνi νL , with Tν1 = diag (1,−1,−1) and

Tν2 = diag (−1, 1,−1) ,

f → T f f, with T f = diag
(
eiα f , eiβ f , eiγ f

)
for

f ∈ {ER, lL , dR, dL , uR, uL}. (4)

Hence we promote these accidental symmetries to RFS, and
note that, for the case of Majorana neutrinos, the (maximal)
RFS generated by Tνi is a Klein four-group [5],

Gν
∼= Z

ν
2 × Z

ν
2. (5)

Similarly, the generatorsT f simply represent re-phasing free-
doms of the three fermion generations in each family’s Dirac
mass term,

Gf ∼= U (1)3, (6)

and of course a Dirac neutrino mass term would be generi-
cally invariant under (6) instead of (5). When (2) is realized
the otherwise continuous phases in T f are quantized as

{α, β, γ } f != 2π

m
{a, b, c} f . (7)

Finally, from (3) one also finds thatT fL
!= T fR for the terms to

be invariant. Of course, left- and right-chiral fermions can be
charged differently in the complete flavour theory invariant
under GF ,L,Q.

However, (3)–(4) tell us nothing about the physical pre-
dictions associated to the family symmetry breaking in (1).
It is only when we rotate to a basis where the Yukawa terms
contain information about fermionic mixing that the RFS is
useful as a bottom-up tool. Take the standard ‘flavour basis’
of the SM, where charged-current (CC) interactions are diag-
onal, as an example. Here (3) is transformed to

LSM
f lav ⊃ 1

2
ν̄cL U

�
νmνU

†
ν︸ ︷︷ ︸

mνU

νL + ĒR UEmlU
†
l︸ ︷︷ ︸

mlU

lL

+ d̄R UDmdU
†
d︸ ︷︷ ︸

mdU

dL + ū R UUmuU
†
u︸ ︷︷ ︸

muU

uL + h.c.,

(8)

where the left-handed unitary matrices U have physical
effects in the CC through the presence of the CKM and PMNS
overlap matrices:

UCKM ≡ U †
u Ud , UPMNS ≡ U †

l Uν. (9)

1 Other basis choices can be made for the Klein generators Tνi .

123



   65 Page 4 of 28 Eur. Phys. J. C            (2021) 81:65 

BothUCKM,PMNS are 3×3 matrices in flavour space and are
parameterized by three mixing angles θ

q,l
12,23,13 and one Dirac

CP-violating phase δq,l . If neutrinos are Majorana particles,
the PMNS also encodes two additional phases α1,2. Hence
it is clear that the redefined mass matrices maU (where a
denotes all fermions) in (8) are themselves 3 × 3 matrices in
flavour space, and are of course related to the SM Yukawa
couplings Ya through the Higgs VEV v,

maU ≡ v√
2
Ya . (10)

Obviously (10) does not hold for the Majorana neutrino mass
term written explicitly above.

Let us now examine the RFS of (8). Here one observes
that the Lagrangian is invariant under transformations of the
form

a → TaU a, with TaU = Ua Ta U
†
a , (11)

as opposed to those of (4). Indeed, the RFS generator TaU
now knows about the physical mixing matrices Ua , which
means that any parent group GF ,L,Q with subgroup Ga gen-
erated by TaU can be connected to a physical mixing predic-
tion embedded inUa . In this way the RFS intimately links the
IR phenomenology to the UV symmetry without reference to
any of the dynamics associated to realizing (1). RFS there-
fore provide a powerful, bottom-up means of understand-
ing observed patterns of flavour mixing in a rather model-
independent way, as the only assumption made thus far is
that the accidental flavour symmetries of the SM mass sector
encoded in (4) are in fact the global RFS of a complete flavour
theory broken as in (1) or its analogues.2 In this way the RFS
formalism defines a set of ‘simplified flavour models,’ which
can easily be extended to BSM constructions as well – see
[35] for a recent application of RFS to the Yukawa sector
of multi-Higgs doublet models, where they were shown to
be capable of controlling dangerous flavour-changing neutral
currents alongside of fermionic mixing, and [31,32] where it
is demonstrated that they can also structure the flavour pat-
terns of leptoquark couplings (we also address some of these
models in Sect. 4 below).

However, (8) is but one of an infinite number of bases that
the Yukawa sector can be written in. In the presence of BSM
couplings that introduce new (physical) mixings, one may
want to work in a different one in order to preserve diagonal
CC (see the ‘leptoflavour basis’ discussed in Sect. 4). Or one

2 The RFS formalism therefore characterizes a class of flavour models,
sometimes referred to as ‘direct’ or ‘semi-direct’ in the literature [33],
but it is of course not entirely generic. It is plausible that (4) instead
represent truly accidental symmetries, and that Ta do not generate the
subgroups of GF,L,Q. These types of models are sometimes called
‘indirect’ – see [34] for a successful GUT-inspired example.

may be motivated to change basis due to the ease of use of
certain (basis-dependent) group product rules. Regardless,
the trend as regards the associated RFS symmetry transfor-
mation is trivially clear; a rotation on a mass-eigenstate field
a with unitary matrix V †

a equivalently implies a basis-change
on the corresponding RFS mass-basis generator Ta through
the same matrix:

a → V †
a a ⇐⇒ Ta → Va Ta V

†
a . (12)

The statement holds vice versa as well, since otherwise Ta
would no longer be an RFS generator, as it would not leave the
associated mass/Yukawa term invariant. In Sect. 2.3 we will
apply the logically equivalent statement to (12) to study the
RFS-invariant mass matrices themselves, in an effort to guide
the reconstruction of an effective Lagrangian with manifest
GF ,L,Q.

Before doing so, it is important to address a couple of
subtleties in the approach, for clarity. First, the RFS are not
symmetries of the full IR Lagrangian. CC interactions do not
respect them without additional assumptions relating RFS
within the quark and/or lepton sector. This is realized nat-
urally in most flavour models, however, since the breaking
of GF ,L,Q is typically only communicated to the Yukawa
sector, perhaps through scalar flavons developing VEV. This
is the approach we will take in what follows, although it is
worth noting that family-symmetry breaking can also occur
through other mechanisms, e.g. orbifold compactifications.

And secondly, we recall that a bottom-up RFS analysis
alone cannot recover the exact mixing prediction associated
to the model sketched by (1) unless Ga distinguishes all three
fermion generations, i.e. the associated RFS generator(s) Ta
needs to have three distinct eigenvalues (or multiple Tai need
to be present when Ta has fewer than three distinct eigenval-
ues). This point becomes clear in the following flavour-basis
equality:

TaU = Ua T
ii= j j
a U †

a = Ua R
i j
a T ii= j j

a R ji�
a U †

a ,

with Ri j ≡
(

cos θi j sin θi j e−iδi j

− sin θi j eiδi j cos θi j

)

. (13)

That is, the RFS generator cannot distinguish between the
mixing matrix Ua and Ua · Ra , with the latter having free
parameters in the degenerate (i, j) sector of Ta . In complete
models these free parameters can either be fit to data or quan-
tized as a result of other mechanisms, like further auxiliary
or accidental symmetries of the Lagrangian. We will discuss
the top-down implications of (13) in upcoming sections.

2.2 Closing ultraviolet flavour groups

Given (12), one must then have a procedure for recovering
the associated parent groups GF ,L,Q, as the Abelian Ga alone
are insufficient to model patterns of physical mixing. Many
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groups have attempted this by performing either analytic or
computational studies of the classes ofGF ,L,Q that can break
to desired subgroups Ga, given that specific (phenomenolog-
ically viable) shapes for Ua must be achieved in a realistic
model. On the other hand, the GAP language for computa-
tional finite algebra [36,37] has been indispensable when
searching for NADS with automated techniques, as it has
a large library of small groups catalogued along with vast
amounts of associated group-theoretical information (conju-
gacy classes, order, irreducible representations, etc.).

In what follows we will use the bottom-up approach
to ‘reconstructing’ NADS first discussed in [20,23], but
recently applied to a class of BSM leptoquark models in
[31,32]. Here one assumes that the RFS generators form the
complete generating set for GF ,L,Q, such that the latter are
recovered upon usingGAP to close all elements of the former:

GF ∼= {T̂d , T̂l , T̂u, T̂ν}, (14)

GF ∼= {T̂d , T̂u}︸ ︷︷ ︸
GQ

×{T̂l , T̂ν}︸ ︷︷ ︸
GL

, (15)

GL ∼= {T̂l , T̂ν}, (16)

GQ ∼= {T̂u, T̂d}, (17)

where (14) reconstructs a parent group generated by all fam-
ily sectors, (15) forms a direct product parent group of lep-
ton and quark symmetries, and (16)–(17) assume that the
NADS only controls either lepton or quark mixing, but not
both. Other scenarios could also be envisaged, e.g. one where
GL,Q are formed as in (16)–(17), but where GF is not their
direct product group as in (15), but instead any larger group
containingGL,Q. Regardless, the hatted (T̂ ) notation in (14)–
(17) simply indicates any basis where the generators know
about physical mixing parameters,

T̂a ≡ T̂a(θ
a
i j , δ

a
i j , . . .). (18)

Of course, when searching for NADS in the bottom-up
approach one must also apply a discretization scheme to all
of these mixing parameters, and details on this procedure and
other cuts made regarding group order, etc., can be found on
case-by-case bases in [20,23,32].

However, it does not matter how one finds the parent sym-
metry with associated RFS for our present purposes. Any
procedure is appropriate, as long as all relevant information
about the RFS can be extracted, which we now discuss in
detail.

2.3 Guided reconstruction for effective Lagrangians

As demonstrated above, the implied shape of the genera-
tors T̂a given an RFS-invariant Lagrangian is the information

required for connecting the IR Ga to the UV GF ,L,Q. But is
there a systematic way of using the recovered non-Abelian
parent group to build an effective Lagrangian LY (a model,
that is) that exhibits, upon family- and electroweak- symme-
try breaking, the simplified construction of (1)? A straight-
forward approach3 is based on the implied RFS invariances
of (a) the IR mass matrix and (b) new scalar favons whose
VEV implement the breaking patterns of (1).

Concerning (a), we note that a generic rotation V †
a on the

mass-eigenstate terms in (3) yields new mass matrices of the
form

m̂a ≡ VaR ma V
†
aL

⇐⇒ T̂ †
a m̂†

am̂a T̂a = m̂†
am̂a = VaL m

†
ama V

†
aL , (19)

where we observed that, by construction, the Hermitian com-
bination of this term is invariant under T̂a given in (12).
Hence, as ma can always be written as a diagonal matrix
of mass eigenvalues, the RFS-invariant quantity m̂†

am̂a can
always be written out in model space, once the rotations
Va are specified. In the class of simplified models we have
reviewed above,Va can always be extracted from the (known)
IR phenomenology that is predicted. In this way (19) provides
the rubric for completing the simplified model, as a LY that
reproduces it will, by construction, embed the desired RFS.

Then flavons (point (b)) provide a candidate mechanism
for breaking GF ,L,Q down to the desired RFS-invariant mass
shapes. The T̂a invariant mass matrices are then obtained,
after the flavon expands around its VEV, from Lagrangian
terms of the form

LY ⊃ ŷa
�

[
ĀR φaH AL

]

1 , (20)

where AL denotes the associated SU(2)L doublet for the fam-
ily sector, AR is the SU(2)L singlet, H is a Higgs doublet, and
ŷa is the effective coupling suppressed by the new physics
scale � integrated out of the effective operator. To enforce T̂a
invariant masses, we can use the following condition regard-
ing the VEV direction of the flavon field [5]

T̂ †
a 〈φa〉 = e�

a〈φa〉 ⇐⇒ T̂a〈φa〉 = ea〈φa〉 with e�
aea = 1,

(21)

where ea is a (scalar) eigenvalue, and the ⇔ is due to the
fact that Ta is assumed without loss of generality (since we
work with finite groups) to be unitary. From the group theory
perspective, it is of course obvious that 〈φa〉 (or indeed 〈φa〉 ·
〈φa〉) should preserve Ga ∼= T̂a when (21) holds. However,
in Appendix B we provide our own derivation of the known
condition in (21), starting from the GF -invariant Lagrangian

3 We do not claim that this is the unique prescription, but rather a simple
and economical one.
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term in (20). This then provides more clarity as to why (21)
provides a sufficient condition on operators of the form (20)
which yields mass matrices of the form in (19), and thereby
realizes the simplified construction in (1).

Summary of effective Lagrangian reconstruction

In summary, once a flavour group GF ,L,Q is determined with
RFS generated by {T̂a}, which are assumed to know about
the physical mixings the RFS mechanism (and therefore the
reconstructed model) controls, the following procedure can
be followed to yield LY :

1. Write out the explicit representations of {T̂a} in a basis
amenable to manipulating the group product rules of
GF ,L,Q. This is typically determined by identifying {T̂a}
with specific group elements in a given irreducible rep-
resentation. If this basis differs from the one in which
GF ,L,Q was originally recovered, take account of the
additional transformations in the IR Lagrangian. This
determines the model basis.

2. For each family sector a with an active RFS, write down
Na ≥ 1 new flavon(s) φa whose VEV respect (21) in the
model basis, hence deriving the model-space orientation
of 〈φa〉. The flavon(s) φa are taken to be charged under
the irreducible representation that T̂a was identified with
in step 1, and the number of flavon(s) Na is determined
by steps 3–4, i.e. one needs as many flavons as can suc-
cessfully yield the desired mass matrix in family sector
a.

3. Derive the expected form of the model-basis mass/
coupling matrix in each family sector, which is given by
(19) for a generic set of model-basis transformation(s)
Va away from the mass-eigenstate basis, and form the
Hermitian combination which preserves the information
from the physical mixings in the theory.

4. For each family sector a with an active RFS, create an
effective Yukawa-like operator with φa and build invari-
ants of the form in (20), or a similar invariant of the
form ∝ [LL LLφνφν]1 for Majorana neutrinos. Multi-
ple such invariants may be required in a given family
sector, depending on the kinds of irreducible represen-
tations implied in steps 1–3. The goal is to recover the
RFS-invariant mass/coupling shapes from step 3, with a
one-to-one mapping between physical and model param-
eters, and of course the shapes of {T̂a} and m̂†

am̂a already
hint at appropriate generations charges under GF ,L,Q.

5. Construct the Hermitian Yukawa coupling Ŷ †
a Ŷa from

(20),4 such that a comparison with the quantities in

4 It is often preferred to instead construct terms in the LR basis, with
operators ∝ ĀLφa H AR . In this case, simply identify the predicted
Yukawa coupling from this term as Ŷ †

a , and then proceed to build Ŷ †
a Ŷa .

step 3 can be made. Map the model parameters (e.g.
{ŷai , v, . . .}) to physical parameters (e.g. {mai , θ

a
i j , . . .}).

If this mapping is not one-to-one, the model may appear
to require some fine-tuning of parameters, although we
will show that this could be a misleading conclusion if
the expected RFS-invariant mass matrices have not been
generalized with the free parameters permitted through
the relationships in (13). Also be sure to check that the
implied mass eigenvalues are physical. If not, additional
operators may need to be added.

If steps 1–5 are successful, the resulting model will exhibit
the RFS symmetry-breaking patterns and desired phe-
nomenology embedded in the original simplified models,
thereby providing an Effective Field Theory (EFT) comple-
tion.

3 Application to models of SM flavour

In this section we apply the strategy outlined in Sect. 2.3
to flavour models reproducing SM mixing matrices, i.e. the
PMNS or CKM matrices defined in (9).

3.1 A4 Altarelli–Feruglio model for UPMNS

As a first application of the algorithm described in Sect. 2,
we now show how the famous Altarelli–Feruglio model of
leptonic flavour [38,39] can be reconstructed with only min-
imal knowledge of its low-energy predictions. In particular,
its IR phenomenology is characterized by the breaking of the
tetrahedral A4 group to Z3 and Z2 RFS in the charged lepton
and neutrino sectors,

GL ∼= A4 →
{
Gν

∼= Z2

Gl ∼= Z3,
(22)

which are respectively generated by

Tν = diag (−1, 1,−1) , Tl = diag
(

1, ω2, ω
)

,

ω ≡ e2π i/3. (23)

The model assumes Majorana neutrino masses, and its LO
mixing prediction is the tribimaximal (TBM) matrix defined

Footnote 4 continued
We will do this in some of the models below. Also, it is obvious that
Majorana neutrinos do no require the construction of the Hermitian
object m̂†

νm̂ν .
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as follows5

UPMNS ≡
⎛

⎝

√
2/3 1/

√
3 0

−1/
√

6 1/
√

3 −1/
√

2
−1/

√
6 1/

√
3 1/

√
2

⎞

⎠ , (24)

which is realized in a special flavour basis, whereUl = � and
Uν ≡ UPMNS .6 Given knowledge of (23)–(24), we now have
all of the information necessary to apply our reconstruction
algorithm.

We first use these equations to infer that, in the model
basis we will construct our effective Lagrangian, the relevant
generators are given by

TνU = 1

3

⎛

⎝
−1 2 2
2 −1 2
2 2 −1

⎞

⎠ , TlU =
⎛

⎝
1 0 0
0 ω2 0
0 0 ω

⎞

⎠ , (25)

which we immediately identify as triplet 3 representations
from the A4 review in [38], and which we can use to solve
for flavon VEV in each family sector,

TνU,lU 〈φν,l〉 = 〈φν,l〉 �⇒ 〈φν〉 =
⎛

⎝
vν

vν

vν

⎞

⎠ ,

〈φl〉 =
⎛

⎝
vl
0
0

⎞

⎠ , (26)

and to conclude that the model-basis mass matrices invariant
under them are characterized by

mνU
!= 1

3

⎛

⎜
⎝

(
2mν1 + mν2

) (
mν2 − mν1

) (
mν2 − mν1

)

(
mν2 − mν1

) 1
2
(
3mν3 + 2mν2 + mν1

) 1
2
(
mν1 + 2mν2 − 3mν3

)

(
mν2 − mν1

) 1
2
(
mν1 + 2mν2 − 3mν3

) 1
2
(
3mν3 + 2mν2 + mν1

)

⎞

⎟
⎠ ,

(27)

m†
lU mlU

!=
⎛

⎜
⎝

m2
e 0 0

0 m2
μ 0

0 0 m2
τ

⎞

⎟
⎠ , (28)

which we can further use to infer charge assignments under
A4 for SM fields and the new flavons in (26). We recall that
A4 isO(12) and has four irreducible representations: a triplet
3 and three singlets 1, 1′ and 1′′, with 1 denoting the trivial
representation. While A4 is an exceptionally well studied
finite group, we repeat the relevant product rules in this basis
for completeness in Appendix A.1, where it is clear that in
order to build up non-trivial Yukawa matrices, the SM SU(2)

5 In this particular example, our convention for the PMNS mixing is
different than that adopted later in the paper, cf. (76), in order to better
reproduce those of [39].
6 Note that one is always free to move to this basis, and so knowledge of
this fact about the Altarelli–Feruglio model does not bias our approach
in what follows.

doublet LL and corresponding flavons (from (26)) will need
to be assigned to the triplet representation:

LL ∼ 3, φν ∼ 3, φl ∼ 3. (29)

Given this, we then consider the charged lepton mass term
and observe from (25) and (28) that SM generations do not
‘talk’ to one another through the A4 symmetry, and so we
assign a different singlet to each RH SM field:

ecR ∼ 1, μc
R ∼ 1′′, τ cR ∼ 1′, (30)

where lcR are transforming as left-handed fields. Because
these fields transforms as A4 singlets we need combina-
tions of [φl LL ] as in (20) to themselves transform as one-
dimensional representations of A4. Noting this, one quickly
deduces the LO effective Yukawa Lagrangian for this sector:

Ll ⊃ ae e
c
R [φl LL ]1 + be μc

R [φl LL ]1′ + ce τ cR [φl LL ]1′′

+ h.c. + · · · , (31)

where we omit the necessary insertions of the Higgs field
that make each term invariant and the [. . . ]1′ notation indi-
cates that the bracketed fields contract to the indicated sin-
glet under the A4 product rules given in (127). Each individ-
ual term in (31) is then an A4 and SM gauge singlet, once
contracted with the corresponding RH isospin singlets. The
additional terms implied in (31) correspond to higher-order
operators in the Effective Field Theory (EFT) allowed by suc-
cessive flavon and SM field insertions, given their associated
symmetry assignments. We will discuss these below, along
with additional symmetries irrelevant to the RFS formalism.
Regardless, one immediately finds that (31) generates the
desired mass matrix from (28), with the relations between
masses and Lagrangian parameters easily found to be

me = ae v
vl

�
, mμ = be v

vl

�
, mτ = ce v

vl

�
, (32)

with v the Higgs VEV realizing EWSB.
Moving now to the neutrino masses, the mνU implied in

(27) has non-trivial structure in all matrix sectors, a fact con-
current with (1) our observation that φν and LL should be
charged as A4 triplets, and (2) the fact the Altarelli–Feruglio
Model predicts a Majorana neutrino mass matrix, which is
itself implied (or at least consistent with) the Z2 neutrino
RFS. In the low-energy EFT, a Majorana neutrino mass is
necessarily ∝ LL LL . We therefore conclude that an opera-
tor of the form7

Lν ⊃ aν [φνLL LL ]1 + h.c. + · · · , (33)

7 Note that a see-saw realization of this IR Majorana term is also pos-
sible – see [39].
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Table 1 Relevant field and A4 symmetry content from [39]

LL ecR μc
R τ cR φν φl ξ

A4 3 1 1′′ 1′ 3 3 1

should be included in the Lagrangian. This term generates a
contribution to mνU ,

mνU � v2

�

⎛

⎝
2B/3 −B/3 −B/3
−B/3 2B/3 −B/3
−B/3 −B/3 2B/3

⎞

⎠ , B ≡ 2aν

vν

�
, (34)

which, while invariant under (25) (as it must be by construc-
tion), fails to realize the required neutrino phenomenology,
as it has only two distinct eigenvalues: 0 and B. In other
words, it cannot map to the generic, RFS-invariant form in
(27) that we have deduced, in the absence of (unphysical)
assumptions about the mass eigenvalues embedded in it. The
obvious solution is to introduce a further flavon ξ whose
VEV 〈ξ 〉 = u does not break Gν and which can couple to the
LL LL bilinear. To that end we introduce ξ as an A4 singlet,
which adds an additional contribution to (33)–(34),

Lν ⊃ aν [φνLL LL ]1 + bνξ [LL LL ]1

�⇒ mνU � v2

�

⎛

⎝
A + 2B/3 −B/3 −B/3

−B/3 2B/3 A − B/3
−B/3 A − B/3 2B/3

⎞

⎠ ,

A ≡ 2bν

u

�
, (35)

where we again omit the necessary insertions of the Higgs
field that make each term invariant. This matrix is still invari-
ant under (25), is diagonalized byUT BM , and has mass eigen-
values given by

mν1 = v2

�
(A + B) , mν2 = v2

�
A, mν3 = v2

�
(B − A) ,

(36)

which is fully consistent with the matrix form in (27).
In conclusion, with the knowledge of the parent flavour

symmetry A4, the neutrino and charged lepton RFS in (23),
and the PMNS mixing prediction given in (24), we have eas-
ily inferred the field and symmetry content in Table 1 and the
following LO effective Yukawa Lagrangian:

LY ⊃ ae e
c
R [φl LL ]1 + be μc

R [φl LL ]1′

+ce τ cR [φl LL ]1′′ + aν [φνLL LL ]1
+bνξ [LL LL ]1 + h.c. + · · · . (37)

This is to be compared to eq (12) in [39], where it is found
to be equivalent to the non-SUSY version of the Altarelli–
Feruglio Lagrangian – we have ‘reconstructed’ this model
from the bottom up.

Here we do not concern ourselves with the UV completion
of this model (or indeed other models), which can be achieved
by adding appropriate messenger fields to make the under-
lying model renormalizable, for A4 models see e.g. [40,41].
UV completions exist in general for models and are typically
more predictive than the corresponding non-renormalizable
model if the messenger fields included in the complete model
enable a subset of the contractions that are allowed by the
symmetries at the non-renormalizable level.

However, as is well known, the complete model of [39] is
more involved than just its LO Yukawa terms. Furthermore,
we made choices in the above discussion that, a priori, may
seem ad-hoc. We will now discuss some of these subtleties
for this particular model, as well as their broader implications
for our generic approach, although in forthcoming models we
will typically leave these discussions implicit, unless they
become particularly relevant for the physics at hand.

Mass and mixing prediction ambiguities

We have observed in the preceding section that knowledge
of the IR RFS and mixing prediction is not guaranteed to
tell us everything required to build the LO terms in the EFT.
For one, as became clear between (34)–(35), the RFS has
no control over the quantization of the mass eigenvalues, but
only the mixing associated to them.8 As we saw, (34) exhibits
the required Z2 invariance, but does not map to the (more)
generic RFS-invariant form in (27) without imposing,

mν1 → mν3, mν2 → 0, (38)

which is unphysical (there are two non-zero mass split-
tings measured for low-energy neutrinos). This motivated
the introduction of the singlet ξ whose VEV also breaks GL,
but does not break Gν , and so does not upset the TBM predic-
tion for the PMNS. In general, this is a good strategy when
reconstructing a given Majorana-neutrino-sector Lagrangian
for which one does not have a literature reference, as we did
here – operators ∝ [LL LL ]1 will always preserve a given
RFS if augmented only by a scalar singlet.

And secondly, in the absence of a reference Lagrangian,
one can also reconstruct a mass term associated to a different
mixing prediction, when degenerate eigenvalues exist in RFS
generators. This was highlighted explicitly for the mixing in
(13), but of course this also has implications for the associated
RFS-invariant mass matrix. In the Altarelli–Feruglio case, we
observe that Tl has three distinct eigenvalues, and so Ul is
uniquely predicted as the identity matrix. However, as only

8 This is a well known fact about RFS that are only active in SM mass
terms.
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one Z2 is explicitly preserved in the neutrino sector, the truly
generic RFS-invariant mass matrix is given by

m11
νU = 1

3

(
mν2 + 2mν1 cos2 θ13 + 2mν3e

2iδ13 sin2 θ13

)
,

m12
νU = 1

3

(
mν2 − mν1 cos2 θ13 + √

3e−iδ13
(
mν1 − e2iδ13mν3

)

× cos θ13 sin θ13 − mν3 sin2 θ13e
2iδ13

)
,

m13
νU = 1

3

(
mν2 − mν1 cos2 θ13 − √

3e−iδ13
(
mν1 − e2iδ13mν3

)

× cos θ13 sin θ13 − mν3 sin2 θ13e
2iδ13

)
,

m22
νU = 1

18

(

6mν2 + mν1

(√
3 cos θ13 − 3e−iδ13 sin θ13

)2

+mν3

(
3 cos θ13 + √

3eiδ13 sin θ13

)2
)

,

m23
νU = 1

6

(
2mν2 + (

mν1 − 3mν3

)
cos2 θ13

+e−2iδ13
(
−3mν1 + e4iδ13mν3

)
sin2 θ13

)
,

m33
νU = 1

18

(

6mν2 + e−2iδ13mν1

(√
3eiδ13 cos θ13 + 3 sin θ13

)2

+mν3

(
−3 cos θ13 + √

3eiδ13 sin θ13

)2
)

, (39)

with θ13 and δ13 defined as in (13). This complex symmetric
matrix is diagonalized byUT

T BM−13 ·mνU ·UT BM−13 = mν ,
with

UT BM−13

=

⎛

⎜
⎜
⎝

√
2/3 cos θ13 1/

√
3

√
2/3 e−iδ13 sin θ13

− cos θ13√
6

+ eiδ13 sin θ13√
2

1/
√

3 − cos θ13√
2

− e−iδ13 sin θ13√
6

− cos θ13√
2

− e−iδ13 sin θ13√
6

1/
√

3 cos θ13√
2

− e−iδ13 sin θ13√
6

⎞

⎟
⎟
⎠ ,

(40)

from which θ13 and δ13 can be fit to experimental data, yield-
ing a phenomenologically successful PMNS matrix. The
point here is that knowledge of the RFS alone does not nail
down the mixing or mass matrix prediction that a top-down
EFT can yield, when the generators of said RFS do not distin-
guish all three generations. That the Altarelli–Feruglio model
predicts (24) and not (40) at leading order is due to the acci-
dental invariance of themνU in (35) under the μ−τ operator9

Tμ−τ =
⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ , (41)

9 Note that, using the basis choice for the Klein RFS generating set in
(4), one would instead derive the matrix −Tμ−τ from the bottom-up.
which still leaves mνU invariant but corresponds to a different êν .

which (39) does not respect. This invariance is not associated
to the RFS, as Z2 × Z

μτ
2 is not a subgroup of A4. Rather, the

accidental invariance of (35) under (41) is due to the absence
of additional operators in (37), which is a consequence of
additional symmetries unrelated to the RFS, which we will
now discuss.

Further symmetries and fields

The astute reader will notice that (37) does not contain the
most generic set of operators invariant under the A4 flavour
symmetry and SM gauge symmetries. For example, a term of
the form (briefly restoring Higgs fields to maintain clarity)

O ∼ LL LL HH (42)

is also allowed, as are the four operators corresponding to (37)
but with φν ↔ φl . Indeed, these additional contributions to
the LO Lagrangian are forbidden by a Z3 shaping symmetry,

{e, μ, τ }R ∼ ω2, {H, φl} ∼ 1, {LL , ξ, φν} ∼ ω, (43)

which limits contact interactions between certain fields. As
the RFS have nothing to do with these shaping symmetries,
in what follows we will simply assume that either they are not
needed or, more commonly, that they can always be found
such that only desired operators in the 1/� EFT expansion
are recovered.

We also ignored all of the dynamics required to obtain
the VEV derived in (26). As mentioned in the introduction,
flavon VEV can be realized via the minimization of an appro-
priate scalar potential. SUSY is assumed for the Altarelli–
Feruglio model, such that (37) is understood as one part of
the overall superpotential, whilst yet another flavon ξ̃ that
breaks A4 is introduced alongside additional ‘driving’ super-
fields φl

0, φν
0 and ξ0. All fields are then further charged under

a traditional R symmetry U(1)R that distinguishes matter,
symmetry-breaking, and driving/alignment fields. We again
ignore all such discussion in upcoming models, as we simply
assume that the required VEV alignment can be achieved.

Finally, we mentioned that the RFS do not constrain mass
eigenvalues. That means that mass hierarchies must be under-
stood with some other mechanism. In the case of [39], this is
achieved with an additional Froggatt–Nielsen [42] U(1)FN ,
under which the τR , μR , and eR generations are assigned
0, q and 2q, and additional flavons θ are introduced whose
VEV create hierarchical mass suppressions ∼ λ ≡ 〈θ〉/�:
ce ≈ O(1), be ≈ O(λq), and ae ≈ O(λ2q). Again, such
symmetries can always be imposed in addition to the core
flavour symmetries yielding the RFS of interest. We there-
fore do not mention them further in what follows.
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Higher-order operators

We have only reconstructed the LO Yukawa Lagrangian in
the 1/� EFT expansion. Higher-order terms associated to
more SM or flavon field insertions (but which are still invari-
ant under all assumed symmetries) can of course be found,
and these will generate small corrections to the phenomeno-
logical conclusions of the LO Lagrangian. In the Altarelli–
Feruglio model, the leading such terms are given by

O ∼ [eRLLφlφl ]1 , O ∼ [μRLLφlφl ]1 ,

O ∼ [τRLLφlφl ]1 , (44)

for the charged leptons, and

O ∼ [φlφν]1′ [LL LL ]1′′ , O ∼ [φlφν]1′′ [LL LL ]1′ ,

O ∼ ξ [φl LL LL ]1 , (45)

for the neutrinos. These operators will add small corrections
to the predictions for the associated mixing matrices, which
can bring them closer to experiment. However, in general,
they may softly break the RFS preserved at LO,10 and so
studying them in generality is again beyond our scope in
what follows.

3.2 (Z14 × Z2) � Z2 model for UCKM

We now consider a simple model based on the finite group
(Z14 × Z2)�Z2 that makes predictions for CKM quark mix-
ing. The RFS symmetry-breaking pattern to the down and up
quark sectors is illustrated by

GQ ∼= (Z14 × Z2) � Z2 →
{
Gu ∼= Z2

Gd ∼= Z2,
(46)

with Gu,d generated by

Tu = diag (1,−1,−1) , Td = diag (1,−1,−1) . (47)

The model predicts the LO CKM mixing prediction to be of
the Cabibbo form,

UCKM =
⎛

⎝
cos π

14 sin π
14 0

− sin π
14 cos π

14 0
0 0 1

⎞

⎠ , (48)

which, while insufficient to fully reproduce the known three-
dimensional structure of the CKM, does capture the dominant
mixing in the (1, 2) sector, i.e. the Cabibbo angle θC . Further

10 Combinations of flavons generally give rise to different directions in
flavour space, so-called effective alignments [43,44].

corrections are highly suppressed, ∝ O (
θ2
C , θ3

C

)
, and will be

briefly mentioned below.
As in Sect. 3.1, we can immediately construct the flavour-

basis generators, under the (common) assumption that the
down quarks are already diagonal, such that the entirety of
the CKM mixing is encoded in the up sector. We immediately
find

TuU =
⎛

⎝
cos π

7 sin π
7 0

sin π
7 − cos π

7 0
0 0 −1

⎞

⎠ , TdU =
⎛

⎝
1 0 0
0 −1 0
0 0 −1

⎞

⎠ .

(49)

In principle, we can use (49) to proceed with the algorithm
as described in Sect. 2. However, in what follows we find
it convenient to work in a different basis where the non-
trivial entries of TuU are in the (2, 3) sector.11 To that end, we
consider the following unitary transformation on the weak-
eigenstate generators:

P = 1

2

⎛

⎜
⎝

1 1 + i√
2

1 − i√
2

−1 1 − i√
2

1 + i√
2√

2 −i i

⎞

⎟
⎠ . (50)

Applying P with T ′′
u,d = P†TuU,dU P we get the following

expressions for the RFS-generators in the model basis:12

T ′′
u =

⎛

⎝
−1 0 0
0 0 eiπ/7

0 e−iπ/7 0

⎞

⎠ , T ′′
d =

⎛

⎝
−1 0 0
0 0 1
0 1 0

⎞

⎠ . (51)

The previous expressions (51) indicate the use of a singlet
and doublet representation. Even if the second and third gen-
eration are part of the doublet, we remind the reader that
these generations are not the actual flavor states. In principle
it is possible to build the model in the flavour basis, but the
charge assignments would be rather inconvenient. Finally,
let us emphasize that the actual flavor state charges do not
depend of the group basis choice.

We now want to identify these matrices with (Z14 × Z2)�

Z2 generating elements in certain irreducible representations.
However, we have not found sources available that catalogue
the properties of this group. For this reason we derived the
relevant product rules and group information ourselves, and
have provided them in Appendix A.2. There we see that T ′′

u,d

11 We also attempted a construction with this symmetry that treated
leptons as well as quarks, which we reference at the end of Sect. 4.2,
and where the current basis was required.
12 In what follows, we will always use double-primed (′′) notation when
constructing objects in the basis we intend to build the model, unless
that basis has already been given a specific label (as with the flavour
basis in Sect. 3.1).
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Table 2 Representations of the quarks under (Z14 × Z2) � Z2

Q
′′1
L Q

′′23
L u

′′1
R u

′′2
R u

′′3
R d

′′1
R d

′′2
R d

′′3
R φu φd

(Z14 × Z2) � Z2 1−− 23+− 1++ 1−+ 1−− 1++ 1−+ 1−− 23+− 23+−

can be easily expressed in terms of the group generators a, b
and c:

T ′′
d = bab, T ′′

u = ac for 1−− + 23+−. (52)

Critically, we observe that (51)–(52) indicate that 23+− is the
appropriate (Z14 × Z2)� Z2 charge for the two flavons φu,d

that we introduce according to the algorithm in Sect. 2, and
we can use (51) to work out the expressions for these doublet
VEV, finding

〈φu〉 = vu

(
1

−e−iπ/7

)

, 〈φd〉 = vd

(
1

−1

)

. (53)

Finally, one derives that in the absence of mixing ambiguities,
the model-basis mass matrices are given by

m
′′†
u m

′′
u

!=

⎛

⎜
⎜
⎜
⎜
⎝

m2
u3

0 0

0 1
2

(
m2

u1
+ m2

u2

) 1
2 e

iπ/7
(
m2

u1
− m2

u2

)

0 1
2 e

−iπ/7
(
m2

u1
− m2

u2

) 1
2

(
m2

u1
+ m2

u2

)

⎞

⎟
⎟
⎟
⎟
⎠

,

m
′′†
d m

′′
d

!=

⎛

⎜
⎜
⎜
⎜
⎝

m2
d3

0 0

0 1
2

(
m2

d1
+ m2

d2

)
1
2

(
m2

d1
− m2

d2

)

0 1
2

(
m2

d1
− m2

d2

)
1
2

(
m2

d1
+ m2

d2

)

⎞

⎟
⎟
⎟
⎟
⎠

, (54)

where mAi are the associated mass eigenvalues, and where
we have used dagger combinations for the charged fermions
to remove the dependence on RH transformations. Of course,
in deriving (54), we have been careful to keep track of the
additional basis change implied by operating with P in (50).

The results in (51)–(54) strongly indicate that the second
and third generations of LH quarks should transform as a
(Z14 × Z2) � Z2 doublet, while the first generation trans-
forms as a non-trivial singlet. Similarly, the second and third
generations of RH up and down quarks should transform as
a non-trivial singlet, while the first generation of both types
of quark transforms trivially. Furthermore, (52) already indi-
cated that the flavons φd,u associated to these sectors should
transform as a 23+−, a fact that helped us derive (53). This
information is summarized in Table 2.

Assuming a shaping symmetry to prevent φi from cou-
pling to undesirable sectors, one can straightforwardly build

up the Yukawa sector for the quarks in the model basis using
Table 2,

LY ⊃ au Q̄
′′1
L u

′′3
R + bu

[
Q̄

′′23
L φu

]

1++
u

′′1
R + cu

[
Q̄

′′23
L φu

]

1−+
u

′′2
R

+ ad Q̄
′′1
L d

′′3
R + bd

[
Q̄

′′23
L φd

]

1++
d

′′1
R + cd

[
Q̄

′′23
L φd

]

1−+
d

′′2
R ,

(55)

where we have omitted Higgs fields and scale suppres-
sions. Using the vevs from (53) and product rules from
Appendix A.2, we get the following Yukawa matrices:

Y
′′†
u = vu

⎛

⎝
0 0 au/vu
bu −cu 0

−bue−iπ/7 −cue−iπ/7 0

⎞

⎠ ,

Y
′′†
d = vd

⎛

⎝
0 0 ad/vd
bd −cd 0

−bd −cd 0

⎞

⎠ . (56)

Assembling these into their Hermitian combinations, one
immediately finds

Y ′′†
u Y ′′

u = v2
u

⎛

⎝
|au |2/v2

u 0 0
0 |bu |2 + |cu |2 eiπ/7(|cu |2 − |bu |2)
0 −e−iπ/7(|bu |2 − |cu |2) |bu |2 + |cu |2

⎞

⎠ ,

Y ′′†
d Y ′′

d = v2
d

⎛

⎝
|ad |2/v2

d 0 0
0 |bd |2 + |cd |2 |bd |2 − |cd |2
0 |bd |2 − |cd |2 |bd |2 + |cd |2

⎞

⎠ , (57)

which directly map to (54) with

|au |2 ↔ |mu3 |2, |bu |2 ↔ |mu2 |2, |cu |2 ↔ |mu1 |2,

and analogous relations for the mapping ofYd , up to VEV fac-
tors and multiplicative constants. We have therefore recon-
structed a successful top-down model, as it exhibits the
required symmetry breaking in (46) and recovers the CKM
mixing prediction in (48).

4 Application to models of flavourful leptoquarks

As a particularly relevant extension of the field content of
the SM, we now apply our algorithm to a class of flavoured
leptoquark models defined in [31,32], which we will briefly
review for completeness. Leptoquarks have been become
popular in the recent literature due to their ability to resolve
(potential) anomalies in heavy meson decay observables like
RK � observed by LHCb [45,46], as well as other potentially
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anomalous measurements sensitive to muon physics (see e.g.
[47–50]). Here we allow the SM to be augmented by one of
the following bosons, denoted the ‘scalar triplet,’ ‘vector sin-
glet,’ and ‘vector triplet,’ whose charge assignments under
the SM gauge group are respectively given by (in the form
GSM ≡ SU (3)C × SU (2)L ×U (1)Y ),

�3 ∼ (
3̄, 3, 1/3

)
, �

μ
1 ∼ (3, 1, 2/3) , �

μ
3 ∼ (3, 3, 2/3) .

(58)

These leptoquarks are easily motivated in the UV by Grand
Unified constructions, or in models with new gauge inter-
actions (see e.g. [51,52]), and all can successfully account
for RK (∗) < 1 [53]. The SM-gauge invariant operators they
source are given by

�3 : L ⊃ yLL3,i j Q̄
C i,a
L εab(τ k�k

3)
bcL j,c

L

+ zLL3,i j Q̄
C i,a
L εab((τ k�k

3)
†)bcQ j,c

L + h.c.

�
μ
1 : L ⊃ x LL1,i j Q̄

i,a
L γ μ�1,μL

j,a
L + x RR1,i j d̄

i
Rγ μ�1,μE

j
R

+ x RR1,i j ū
i
Rγ μ�1,μν

j
R + h.c.

�
μ
3 : L ⊃ x LL3,i j Q̄

i,a
L γ μ

(
τ k�k

3,μ

)ab
L j,b
L + h.c. (59)

with {i, j} denoting flavour indices, {a, b} denoting SU(2)
indices, and k = 1, 2, 3 for the Pauli matrices.13 Following
[54] and redefining the components of the scalar triplet state
according to,14

�
4/3
3 =

(
�1

3 − i�2
3

)
/
√

2, �
−2/3
3 =

(
�1

3 + i�2
3

)
/
√

2,

�
1/3
3 = �3

3, (60)

contracting the SU(2) indices of (59), and ignoring the
diquark operator of �3 (for simplicity, although RFS can
control it – see [31], and it can also be controlled with other
symmetries [55,56]) , one then finds that the Yukawa/mass
sector of the SM is enhanced to

Lmass ⊃ 1

2
ν̄cL mν νL + ĒR ml lL + d̄R md dL + ū R mu uL

+ d̄CL λdl lL �
4/3
3 + d̄CL λdν νL �

1/3
3

+ ūCL λul lL �
1/3
3 + ūCL λuν νL �

−2/3
3

+ h.c. (61)

with the novel leptoquark couplings λQL normalized to the
first term, λdl , which in the mass-eigenstate basis of the SM

13 The physics of leptoquarks is thoroughly reviewed in [54].
14 We will write the following equations explicitly for the scalar triplet,
although analogous expressions are easily derived for the other two lep-
toquark states of (58). Superscripts on the LHS denote electric charges.

fermions is generically parameterized by

−√
2
(
UT
d yLL3 Ul

)
≡ λdl =

⎛

⎝
λde λdμ λdτ

λse λsμ λsτ
λbe λbμ λbτ

⎞

⎠ . (62)

The other couplings in (61) are related to λdl via SU(2) rela-
tions, and are given by

λdν = 1√
2
λdl UPMNS, λul = 1√

2
U �
CKM λdl ,

λuν = −U �
CKM λdl UPMNS . (63)

Given these new flavoured couplings, we defined multiple
classes of simplified models based on the RFS formalism in
[31,32] . In particular, we assumed that the natural RFS of
the SM (cf. (4)) also hold in the new leptoquark terms of
(61). This allowed us to constrain the λQL couplings via
RFS invariances of the form

∃ {Q, L}, T (T,†)
Q λQL TL

!= λQL , (64)

with Q, L respectively representing arbitrary quark (d, u)
and lepton (l, ν) families, and the transposed ‘T ’ (daggered
‘†’) TQ corresponding to scalar (vector) leptoquark(s). Crit-
ically, different phase relationships amongst RFS generators
TQ,L correspond to different textures in λQL , and the extent
to which free parameters remain in (62)–(63) is a function
of the amount of symmetry present in any given term. Preci-
sion flavour data from (e.g.) B − B mixing, lepton-flavour-
violating (LFV) observables like μ → eγ , and the anoma-
lous R ratios also constrain the viable textures (and hence
also the phenomenologically viable RFS relationships) in
(62).

For example, in [31] we insisted that RFS hold in all lep-
ton and quark sectors of the SM and leptoquark couplings,
and this led to only O(10) viable textures for λdl with only
a single real parameter, once all experimental and symme-
try constraints were made.15 Then, in [32], we relaxed the
symmetry assumptions and enforced an RFS invariance in
some or all of the SM mass terms, but only in the d − l lep-
toquark coupling, where either or both Td,l were allowed to
act; in this symmetry environment, invariance in λdν,ul,uν is
inherited via SU(2) relationships as in (63). These two types
of simplified models were labeled ‘SE1’ and ‘SE2’ respec-
tively, with the former likely requiring more intricate model
building to account for the fact the RFS distinguishes mem-
bers of SU(2) doublets in individual leptoquark terms after
EWSB. The SE2 models, on the other hand, represent highly

15 We also insisted that at least two generations be distinguished by the
eigenvalues of TQ,L , so that the action of the RFS was not trivial in a
given family sector.
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natural relaxations of the SE1 constructions, and can easily
be realized with single flavon EFTs as per our algorithm in
Sect. 2, which we will now show.

The leptoflavour basis

Viable NADS that can realize the SE2 symmetry predictions
for UPMNS,CKM and λQL must be uncovered in order to
apply our algorithm (cf. Sect. 2.2), and to that end aGAP scan
was performed in [32]. We performed that scan in the ‘lep-
toflavour basis’, where information about all relevant physi-
cal mixings could be extracted, and which we now review.

Recall that, in the mass-eigenstate basis, the RFS genera-
tors (and thereforeGF ,L,Q) do not know aboutUPMNS,CKM ,
even in the case of only SM field content. However, we can
go to a special form of the ‘flavour basis’ (cf. (8)) by doing
no change of basis (or trivial change of basis with the iden-
tity matrix) on the LH d, l, and a change of basis via the
CKM for the LH u and the PMNS for the LH ν. With lepto-
quarks present, we simultaneously want to encode the addi-
tional information present in λQL together with the SM mix-
ing matrices, so we choose the leptoflavour basis to be the
one where the SM mixing is all in the mixing matrices, and
therefore the charged current should be diagonal – similarly
to what we have in the flavour basis – but additionally, we
choose to have λdl diagonal. To diagonalize λdl , we require
a further non-trivial change of basis in the LH d, l, which
must be cancelled with rotations in the u and ν respectively,
to have the CC diagonal. So, starting from the mass basis
(where λdl is defined as in (62)), d changes by �d , l by
�l and u changes by both CKM and by �d (canceling the
presence of �d in the CC and making it diagonal), while ν

changes by both PMNS and by �l (canceling the presence
of the �l in the CC, and making it diagonal). Finally, the
case without leptoquarks appears correctly as the limit with
�d = �l = 1.

To see this explicitly, we apply the following ‘leptoflavour’
basis transformations on the mass eigenstates:

lL → �
†
l l

′
L , dL → �

†
dd

′
L , νL → U †

PMNS�
†
l ν

′
L ,

uL → UCKM�
†
du

′
L ,

ER → �
†
E E

′
R, dR → �

†
Dd

′
R, νR → �

†
Rν′

R,

uR → �
†
Uu

′
R . (65)

This yielded the leptoflavour basis Lagrangian,

L ⊃ g√
2
l̄ ′Lγ μν′

LW
−
μ + g√

2
d̄ ′
Lγ μu′

LW
−
μ

+ 1

2
ν̄

′c
L �∗

l U
∗
PMNSmνU

†
PMNS�

†
l ν

′
L + Ē

′
R�Eml�

†
l l

′
L

+ d̄
′
R�Dmd�

†
dd

′
L + ū

′
R�UmuUCKM�

†
du

′
L

+ 1√
2
d̄

′c
L �∗

dλdl�
†
l ν

′
L�

1/3
3 + d̄

′c
L �∗

dλdl�
†
l l

′
L�

4/3
3

+ ū
′c
L�∗

dλdl�
†
l ν

′
L�

−2/3
3 + 1√

2
ū

′c
L�∗

dλdl�
†
l l

′
L�

1/3
3

+ h.c., (66)

which is invariant under the following LH RFS generators:

T
′
l = �l Tl�

†
l , T

′
ν = �lUPMNSTνU

†
PMNS�

†
l ,

T
′
d = �dTd�

†
d , T

′
u = �dU

†
CKMTuUCKM�

†
d , (67)

and the following RH RFS generators:

T
′
E = �ETl�

†
E , T

′
R = �RTν�

†
R,

T
′
D = �DTd�

†
D, T

′
U = �UTu�

†
U , (68)

where T ′
R holds only in the case of Dirac neutrinos. As men-

tioned above, in the limit where �l,d → �, (67) reduces to
the SM-only flavour-basis generating set! We also point out
that, in the absence of a RH leptoquark coupling as present
in (e.g.) the vector singlet case, one has some freedom to
choose the RH �E,R,D,U transformations since their shapes
are not dictated by the requirement of diagonalizing a partic-
ular coupling (we can always form totally LH combinations
of the SM mass matrices, e.g.). Given the leptoflavour basis,
bottom-up scans as described in Sect. 2.2 were then per-
formed in [32] with (67), so that parent family groups were
closed according to (14)–(17). As it turns out, many NADS
were discovered, including members of the popular SN , AN ,
�(3N 2), �(6N 2), �(3N 2), �(3N 3), and DN finite group
series.

As a final preparation for the reconstruction of the RFS-
invariant Lagrangian in these extended leptoquark scenarios,
we allow for the possibility that an additional basis change
will be amenable for manipulating the group product rules of
the NADS discovered in [32]. Hence we rotate via a generic
matrix P (which can be set to the identity matrix in the event
it is unnecessary),

a′ → Pa′′, (69)

and so the effective mass terms are now given by

L ⊃ 1

2
ν̄

′′c
L PT�∗

l U
∗
PMNSmνU

†
PMNS�

†
l P︸ ︷︷ ︸

m′′
ν

ν
′′
L

+ ū
′′
R P†�UmuUCKM�

†
d P︸ ︷︷ ︸

m′′
u

u
′′
L

+ Ē
′′
R P†�Eml�

†
l P︸ ︷︷ ︸

m
′′
l

l
′′
L + d̄

′′
R P†�Dmd�

†
d P︸ ︷︷ ︸

m
′′
d

d
′′
L , (70)
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Table 3 The RFS generators associated with a given basis change away from the original mass-eigenstate νL

Basis-dependent RFS quantities
Basis Transform νL → Mass matrix RFS generator

Mass νL mν Tν

Flavour U†
ν νL U �

ν mν U†
ν Uν Tν U†

ν

Leptoflavour U†
PMNS�

†
l ν

′
L �∗

l U
∗
PMNSmνU

†
PMNS�

†
l �lUPMNSTνU

†
PMNS�

†
l

Model U†
PMNS�

†
l Pν′′

L PT�∗
l U

∗
PMNSmνU

†
PMNS�

†
l P P†�lUPMNSTνU

†
PMNS�

†
l P

where we have assumed that AR also transforms with P . The
mass matrices in this basis are labeled by m

′′
, and are clearly

non-diagonal. The remaining leptoquark terms of (61) are
similarly given in this basis by

L ⊃ 1√
2
d̄ ′′c
L PT�∗

dλdl�
†
l P︸ ︷︷ ︸

λ′′
dν

ν′′
L�

1/3
3

+ d̄ ′′c
L PT�∗

dλdl�
†
l P︸ ︷︷ ︸

λ′′
dl

l ′′L�
4/3
3

+ ū′′c
L PT�∗

dλdl�
†
l P︸ ︷︷ ︸

λ′′
uν

ν′′
L�

−2/3
3

+ 1√
2
ū′′c
L PT�∗

dλdl�
†
l P︸ ︷︷ ︸

λ′′
ul

l ′′L�
1/3
3 . (71)

These operators already reveal the natural form of their
respective RFS generators. A summary of all basis changes
on (e.g.) the neutrino field and associated changes in mν and
Tν are given in Table 3, tracking all the way from the mass-
eigenstate basis to the model basis of (70)–(71).

Hence, given a specific NADS, its RFS, and the associated
predictions for UCKM,PMNS and λdl , one can use (70)–(71)
to reconstruct the UV EFT. We will now consider two such
models, one based on the �(96) group and one based on the
D15 member of the Dihedral series DN . All of the relevant
bottom-up information for these groups is given in Table 4,
and the parameters xe,μ are defined in the following textures:

λ
[e0]
dl = λbe

⎛

⎝
0 0 0
xe 0 0
1 0 0

⎞

⎠ , λ
[μ0]
dl = λbμ

⎛

⎝
0 0 0
0 xμ 0
0 1 0

⎞

⎠ ,

with xX = λsX

λbX
, (72)

which are the consequence of special relationships amongst
RFS generators – λ

[e0]
dl corresponds to −αl = βd = γd while

λ
[μ0]
dl corresponds to −βl = βd = γd .16 By construction

16 These are the relationships for the scalar triplet, while for the vector
singlet and triplet the minus signs do not appear. See [32] for details,
where other couplings are also controlled.

these couplings are diagonalized with �d,l in the combina-
tion ��

dλdl�
†
l , with

�d(xe/μ) =

⎛

⎜
⎜
⎜
⎝

0 xe,μ√
1+x2

e,μ

1√
1+x2

e,μ

0 − 1√
1+x2

e,μ

1√
1+1/x2

e,μ

1 0 0

⎞

⎟
⎟
⎟
⎠

, �e
l =

⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ ,

�
μ
l =

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ . (73)

The quark matrix �d in (73) left-diagonalizes both patterns
in (72), whereas �e

l right-diagonalizes λ
[e0]
dl and �

μ
l right-

diagonalizes λ
[μ0]
dl .

On the other hand, the parameters tθμτ ≡ tan θμτ and θC
are defined in the following LO PMNS and CKM textures:

UPMNS � Uμτ ≡ 1√
2

⎛

⎝

√
2 cos θμτ

√
2 sin θμτ 0

− sin θμτ cos θμτ 1
sin θμτ − cos θμτ 1

⎞

⎠

+ O
(
θ l13

)
, (74)

UCKM � UC ≡
⎛

⎝
cos θC sin θC 0

− sin θC cos θC 0
0 0 1

⎞

⎠+ O
(
θ2
C , θ3

C

)
,

(75)

which were specified as the SM mixing to be recovered in
[32].17 While the exact forms of (74) and (75) are excluded
by current global fits to experiment [57], they nevertheless
provide excellent approximations to the data. The μ−τ sym-
metric matrix in (74), for example, reproduces global fits
to the PMNS matrix up to corrections on the order of the
smallest ‘reactor angle,’ θ l13, and its free parameter θμτ can
be fit to many well-studied textures like the tri-bimaximal
[58], bi-maximal [59], golden ratio [60,61], and hexagonal
forms[62,63]:

17 After all, ours is a bottom-up approach, and therefore closing finite
groups via (14)–(17) requires that some textures for UPMNS,CKM are
fed to the algorithm.
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Table 4 The scan results from [32] that we will use to reconstruct models in Sects. 4.1 and 4.2. Note that we have relabeled D30 → D15 from [32]
in order to reflect the conventions of [72]

Finite groups, RFS, and mixing predictions
{xe/μ, tθμτ , θC } T ii

d T ii
l T ii

u T ii
ν GAP-ID GF

{N.A., 1√
2
, N.A.} N.A. [1, ω3, ω

2
3] N.A. [ω4, 1,−ω4] [96, 64] �(96)

{1, 1√
3
, π

15 } [1,−1,−1] [1,−1,−1] [1,−1,−1] [−1, 1,−1] [30, 3] D15

{1, 1, π
14 } [1,−1,−1] [1,−1,−1] [1,−1,−1] [ω4,−ω4, 1] [56, 7] (Z14 × Z2) � Z2

Uμτ

(
θμτ

) →

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

UT BM � tan θμτ = 1√
2

UBM � tan θμτ = 1 or θμτ = π
4

UGR1 � tan θμτ = 2
(1+√

5)

UGR2 � θμτ = π
5

UHM � tan θμτ = 1√
3

or θμτ = π
6 .

(76)

Furthermore, corrections to (74) can naturally be realized by
higher-order terms in the EFT expansion beyond (20), which
can softly break the RFS embedded in the LO contribution,
or also through renormalization group flow (RGE) [64–71]
between the scale at which GF is broken and the IR, where
global fits are performed.

Similarly, (75) provides an excellent description of the
dominant Cabibbo mixing of the CKM matrix. Unlike the
PMNS, the CKM is extremely hierarchical, with mixings in
the (2,3) and (1,3) sectors suppressed by one to two orders of
magnitude with respect to the Cabibbo sector. This suppres-
sion again hints at further contributions to (75) from higher-
order terms in (20) and/or RGE corrections.

Of course, precisely calculating the corrections expected
to (74)–(75) depends on the complete UV flavour model,
including not only the full field and symmetry content, but
also the presence or lack thereof of supersymmetry. Speci-
fying this is well beyond the scope of our present paper, and
so we consider (74)–(75) sufficiently accurate to develop our
approach to reconstructing effective Lagrangians from RFS.

4.1 �(96) model for UPMNS and leptoquarks

As a first example incorporating leptoquarks we construct
a �(96) flavour model from the scan results in [32], which
are repeated in the first row of Table 4. This model predicts
tri-bimaximal mixing UPMNS = Uμτ (arctan 1/

√
2) and the

electron isolation pattern λ
[e0]
dl for the leptoquark coupling.

While the muon isolation pattern is phenomenologically pre-
ferred over the electron one, as it explains further the differ-
ent muon anomalous observables while the electron isolation
pattern could only explain the deviation in R(∗)

K , we focus
here on the electron isolation as this rather simple group can
predict it unambiguously. We highlight the fact that other

symmetries, such A4 or �(75), obtained using the proce-
dure described in [32] are capable of reproducing the muon
isolation pattern.

The symmetry breaking to RFS is illustrated in

GL ∼= �(96) →
{
Gν

∼= Z4

Gl ∼= Z3.
(77)

As evident from the fact that Tν generates Gν
∼= Z4, this

model features Dirac rather than Majorana neutrino masses.
In Table 4 one can read off the specific charges of the mass-
eigenstate RFS generators Tl and Tν . We note their basis-
independent Traces are respectively 0 and 1, which will soon
help us identify the conjugacy class to which they belong
within �(96).

Table 4 gives all the information required to move to the
leptoflavour basis, where the RFS generators take the forms

T
′
l =

⎛

⎝
1 0 0
0 ω3 0
0 0 ω2

3

⎞

⎠ , T
′
ν = 1

3

⎛

⎝
1 + 2i −1 + i 1 − i
−1 + i 1 − i −1 − 2i
1 − i −1 − 2i 1 − i

⎞

⎠ ,

(78)

where ω4 = ei2π/4 = i . We want to identify these gener-
ators with group elements of �(96), and to do so we use
the catalogue in [73], repeating the relevant product rules in
Appendix A.3. As before, we find it convenient to perform a
P transformation on the leptoflavour basis, so that we go to a
basis where the combination of �(96) generators a231c31d31
for the 31 representation, found in [73], is diagonal. We note
that we use the same naming of the generators as in [73],
only differentiating them with the boldface to further avoid
confusion with our naming for the coefficients (in this and in
other sections). The P matrix we use is

P =
⎛

⎝
0 0 1
0 −1 0
1 0 0

⎞

⎠ , (79)

which leads to
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T
′′
l =

⎛

⎝
ω3 0 0
0 ω2

3 0
0 0 1

⎞

⎠ , T
′′
ν = 1

3

⎛

⎝
1 − i 1 + 2i 1 − i

1 + 2i 1 − i 1 − i
1 − i 1 − i 1 + 2i

⎞

⎠ .

(80)

With this change of basis, we are able to match T
′′
l with the

diagonal a2cd element of the 3̄1 representation of �(96), the
conjugate representation to 31, which as expected has zero
trace and lies within conjugacy class C6 [73]. According to
the character of T

′′
ν , it could be within C5 or C9 in the same 3̄1

representation, and indeed we found it to match the element
a2bc2d3. With this information we introduce two flavons
φl,ν , for which we use (80) to derive candidate VEV in the
triplet directions

〈φl〉 =
⎛

⎝
0
0
vl

⎞

⎠ , 〈φν〉 =
⎛

⎝
vν

vν

vν

⎞

⎠ , (81)

which are invariant under T
′′
l for 3̄1 (and for 3̄′

1) and T
′′
ν for 3̄1,

respectively. Finally, the RFS-invariant mass combinations in
this basis are given by

m
′′†
ν m

′′
ν

!= 1

3

⎛

⎝

1
2

(
m2

ν1
+ 2m2

ν2
+ 3m2

ν3

) 1
2

(
m2

ν1
+ 2m2

ν2
− 3m2

ν3

) (
m2

ν2
− m2

ν1

)

1
2

(
m2

ν1
+ 2m2

ν2
− 3m2

ν3

) 1
2

(
m2

ν1
+ 2m2

ν2
+ 3m2

ν3

) (
m2

ν2
− m2

ν1

)

(
m2

ν2
− m2

ν1

) (
m2

ν2
− m2

ν1

) (
2m2

ν1
− m2

ν2

)

⎞

⎠ ,

m
′′†
l m

′′
l

!=
⎛

⎝

m2
l2

0 0
0 m2

l3
0

0 0 m2
l1

⎞

⎠ , (82)

which we will build below. Note that there are no mixing
ambiguities associated to these matrices.

The lepton sector

We now build the model by assigning LL as a 3̄1, and the
RH leptons as combinations of a �(96) trivial singlet and a
doublet, which we designate as 1 + 2 e.g. E

′′3
R ∼ 1, E

′′12
R ≡

(
E

′′1
R , E

′′2
R

)
∼ 2 and similarly for ν

′′3
R ∼ 1 and ν

′′12
R ∼ 2.

In this case the �(96) invariant Yukawa terms for charged
leptons and for neutrinos are very similar, of the type

LY ⊃ aν,e

[
L̄

′′
Lφ f

]

1
f

′′3
R + bν,e

[
L̄

′′
Lφ f

]

2
f

′′12
R , (83)

where f stands for either charged leptons or neutrinos and the
Higgs field is omitted for simplicity. For the neutrino sector
we find that the (1, 1, 1) direction gives rise to

Y
′′†
ν = aνvν

⎛

⎝
0 0 1
0 0 1
0 0 1

⎞

⎠+ bνvν

⎛

⎝
ω3 1 0
ω3 1 0
ω3 1 0

⎞

⎠ , (84)

which combines into

Y
′′†
ν Y

′′
ν = (2|bν |2 + |aν |2) v2

ν

⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠ . (85)

A simplified version of this could be obtained through a shap-
ing symmetry removing the coupling either to ν12

R (bν = 0)
or to ν3

R (aν = 0). This matrix embeds the correct PMNS
matrix predicted by the RFS framework, but with two mass-
less neutrinos. Given that the charged lepton invariants are
very similar, we can quickly construct the respective Yukawa
matrix for this sector as well:

Y
′′†
l = aevl

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠+ bevl

⎛

⎝
0 1 0
ω3 0 0
0 0 0

⎞

⎠ , (86)

leading to

Y
′′†
l Y

′′
l = v2

l

⎛

⎝
|be|2 0 0

0 |be|2 0
0 0 |ae|2

⎞

⎠ . (87)

Hence the invariant operators give rise to a diagonal Yukawa
coupling but with two degenerate charged lepton masses,
which is clearly unphysical.

In order to make the model realistic, we first note that
the directions 〈φν〉 ∼ {(1, 1, 1), (−1, 1, 0), (−1,−1, 2)}T
are the eigenvectors of T

′′
ν with eigenvalues êν = {1,−i, i},

respectively. While we initially selected the first eigensystem
in (81) with êν = 1, according to (21) we are free to choose
any of them, noting that while this doesn’t actually preserve
T

′′
ν as a residual symmetry, the resulting mass matrices will

still lead to a successful Y
′′†
ν Y

′′
ν in the sense that we obtain

UPMNS = Uμτ (arctan 1/
√

2) as intended. More details on
this type of situation can be found in Appendix B. Taking
either (−1, 1, 0) or (−1,−1, 2) for an additional flavon φν2’s
orientation allows one to generate further non-zero masses
in m

′′
ν .
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Table 5 Relevant field and �(96) symmetry content

L̄
′′
L (E

′′1
R , E

′′2
R ) E

′′3
R (ν

′′1
R , ν

′′2
R ) ν

′′3
R φν φν2 φl φl2

�(96) 31 2 1 2 1 3̄1 3̄1 3̄1 3̄′
1

At the same time, for the charged leptons, it is possible
to break the mass degeneracy by having an additional triplet
flavon φl2 in the 3̄]

1 representation, aligned in the same direc-
tion as φl . In summary, with the invariant terms

LY ⊃ ae
[
L̄

′′
Lφl

]

1
E

′′3
R + be

[
L̄

′′
Lφl

]

2
E

′′12
R

+ ce
[
L̄

′′
Lφl2

]

2
E

′′12
R + aν

[
L̄

′′
Lφν

]

2
ν

′′12
R

+ bν

[
L̄

′′
Lφν2

]

1
ν

′′3
R , (88)

the degeneracy of the eigenvalues is lifted as
[
L̄ Lφl

]

2 ∝
(L̄1

L , ω3 L̄2
L) whereas

[
L̄ Lφl2

]

2 ∝ (L̄1
L ,−ω3 L̄2

L). Explicitly,
we aim for a normal mass hierarchy by picking (−1, 1, 0)

as the additional direction, with a shaping symmetry which
distinguishes the neutrino flavons such that each only couples
to one of the right-handed neutrino fields. Taking vν = vν2,
the Yukawa term in the neutrino sector then corresponds to

Y
′′†
ν = aνvν

⎛

⎝
ω3 1 0
ω3 1 0
ω3 1 0

⎞

⎠+ bνvν

⎛

⎝
0 0 −1
0 0 1
0 0 0

⎞

⎠ ,

and therefore we have

Y
′′†
ν Y

′′
ν = v2

ν

⎛

⎝
2a2

ν + b2
ν 2a2

ν − b2
ν 2a2

ν

2a2
ν − b2

ν 2a2
ν + b2

ν 2a2
ν

2a2
ν 2a2

ν 2a2
ν

⎞

⎠ ,

Y
′′†
l Y

′′
l = v2

l

⎛

⎝
|be − ce|2 0 0

0 |be + ce|2 0
0 0 |ae|2

⎞

⎠ ,

with aν from the contraction of (1, 1, 1) with the �(96) dou-
blet and bν from the contraction of (−1, 1, 0) with the singlet
right-handed neutrino, respectively. These map to (82) with

m2
l2 ↔ |be − ce|2, m2

l3 ↔ |be + ce|2, m2
l1 ↔ |ae|2,

m2
ν2

↔ |aν |2, m2
ν3

↔ |bν |2, m2
ν1

= 0, (89)

again up to constant prefactors and VEV, thereby realizing
the desired shapes.

The leptoquark sector

As seen in Table 4, from the bottom-up perspective of the
scans in [32], one does not have control over the coupling
xe in (72) when only lepton symmetries are active. The Tl

symmetry controls the overall shape of the term (electron iso-
lation), but not the quantization of the ratio of λse/λbe. This
can be seen practically by observing that �(96) is generated
by �(96) ∼= {T ′

l , T
′
ν}, and neither of these RFS generators

knows about xe. Hence, one derives that in the model basis
the generic RFS-invariant leptoquark coupling is given by

λ
′′†
dl λ

′′
dl

!= (1 + |xe|2) |λbe|2
⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ , (90)

where we observe that, thanks to the Hermitian combination
we have constructed, the appearance of xe in this relationship
is not due to the mixing matrix �d , but instead the mass-
eigenstate isolation pattern itself (cf. (72)).

This term can now be easily built using one of the charged
lepton flavons, taking the leptoquark field to transform either
as 1 (selects φl ) or 1′ (selects φl2). For simplicity we consider
the trivial singlet option:

L ⊃ ai� Q̄
′′i
L [L ′′

Lφl1]1�. (91)

As in the A4 models described in [74], contracting [LLφl1]1
gives one of the lepton isolation cases ensuring the leptoquark
couples only to one lepton flavour. In this case the VEV in
the model building basis is (0, 0, 1), leading to

λ
′′
dl = a�

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ . (92)

This is written in an unknown quark basis where the third row
corresponds to the specific combination of the three compo-
nents of Q̄

′′
L and a� which is the appropriate function of

the three ai� coefficients. In the mass-eigenstate basis, the
model yields the electron isolation pattern as expected from
the results in our previous paper [32]. To be more precise, we
can sum over the uncertainty of the quark sector that we are
not controlling with the symmetry. As λ

′′
dl only has entries

in the third column, the resulting λ
′′†
dl λ

′′
dl combination only

has a non-zero (3,3) entry proportional to the modulus of the
third column vector, therefore the model is indeed predicting
the structure in (90).
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4.2 D15 model for UCKM , UPMNS , and leptoquarks

We now consider a D15 model18 that makes predictions for
both CKM and PMNS mixing alongside of the ratio of lepto-
quark couplings denoted by xμ. The scan result from [32] is
repeated in Table 4, whose first column reveals that a hexag-
onal PMNS matrix UHM is predicted alongside of Cabibbo
mixing with θC = π/15 for the CKM matrix, while the sec-
ond through fourth columns reveal the following symmetry-
breaking pattern:

GF ∼= D15 → Gν,l,u,d ∼= Z2. (93)

From Table 4 we can immediately construct the leptoflavour-
basis RFS generators with (67), finding that the neutrino and
up-quark matrix have non-trivial structure in all three matrix
sectors.

As above, we attempt to find a basis within which its easy
to manipulate the relevant D15 group product rules. To that
end, we consider the following unitary transformation that
block diagonalizes the leptoflavour-basis generators:

P =
⎛

⎜
⎝

1√
2

1√
2

0
1√
2

− 1√
2

0

0 0 1

⎞

⎟
⎠

⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ =
⎛

⎜
⎝

1√
2

0 1√
2

1√
2

0 − 1√
2

0 1 0

⎞

⎟
⎠ . (94)

Applying P with T ′′
f = P†T ′

f P we get the following expres-
sions for the RFS-generators in the model basis:

18 Dihedral groups and their double-valued cousins have been favored
in the model-building community for some time, see e.g. [75] for an
early example of the latter. In fact, the quark sector of the current model
we consider can also be mapped to a scan result from [23].

T ′′
ν =

⎛

⎜
⎝

−1 0 0

0 1
2

√
3

2

0
√

3
2 − 1

2

⎞

⎟
⎠ , T ′′

u =
⎛

⎜
⎝

−1 0 0
0 cos 2π

15 sin 2π
15

0 sin 2π
15 − cos 2π

15

⎞

⎟
⎠ ,

T ′′
l,d =

⎛

⎝
−1 0 0
0 1 0
0 0 −1

⎞

⎠ . (95)

We now want to identify these matrices with D15 generating
elements in certain irreducible representations, and multiple
sources are available that catalogue properties of the dihedral
series DN . We have distilled the relevant information specific
to D15 in Appendix A.4, from which we see that T ′′

u,d,l,ν can
be easily expressed in terms of the group elements a and b
for the combination 1− + 21 and 1− + 25:

T ′′
d = b, T ′′

u = ab for 1− + 21,

T ′′
l = b, T ′′

ν = ab for 1− + 25. (96)

Here 1− is the lone non-trivial D15 singlet, and 21,5 denote
two of the seven doublets of the group. Critically, we observe
that (95)–(96) indicate that 21 (25) is the appropriate D15

charge for the two flavons φu,d (φl,ν) that we introduce
according to the algorithm in Sect. 2, and we can use (95) to
work out the expressions for these doublet VEV, finding

〈φν〉 = vν

(
1,

√
3
)T

, 〈φu〉 = vu

(
cos

π

15
, sin

π

15

)T
,

〈φd,l〉 = vd,l (1, 0)T . (97)

Finally, one derives that in the absence of mixing ambiguities,
the model-basis mass matrices are given by

m
′′
ν

!=
⎛

⎜
⎝

mν3 0 0

0 1
4

(
3mν1 + mν2

) √
3

4

(
mν2 − mν1

)

0
√

3
4

(
mν2 − mν1

) 1
4

(
mν1 + 3mν2

)

⎞

⎟
⎠ ,

m
′′†
l m

′′
l

!=

⎛

⎜
⎜
⎝

1
2

(
m2

l2
+ m2

l3

)
0 1

2

(
ml2 − ml3

) (
ml2 + ml3

)

0 m2
l1

0
1
2

(
ml2 − ml3

) (
ml2 + ml3

)
0 1

2

(
m2

l2
+ m2

l3

)

⎞

⎟
⎟
⎠ ,

m
′′†
u m

′′
u

!=
⎛

⎝
m2

u3
0 0

0 m2
u1

cos2 π
15 + m2

u2
sin2 π

15
1
2

(
mu1 − mu2

) (
mu1 + mu2

)
sin 2π

15
0 1

2

(
mu1 − mu2

) (
mu1 + mu2

)
sin 2π

15 m2
u2

cos2 π
15 + m2

u1
sin2 π

15

⎞

⎠ ,

m
′′†
d m

′′
d

!=
⎛

⎝

m2
d3

0 0
0 m2

d1
0

f o f 0 0 m2
d2

⎞

⎠ , (98)

where mAi are the associated mass eigenvalues, and where
we have used dagger combinations for the charged fermions
to remove the dependence on RH transformations. However,
unlike the �(96) model of Sect. 4.1, we see from Table 4 that
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Table 6 Representations of the quarks under D15

Q
′′1 Q

′′23 u
′′1
R u

′′2
R u

′′3
R d

′′1
R d

′′2
R d

′′3
R φu φd

D15 1− 21 1− 1 1− 1− 1 1− 21 21

all of the RFS generators have degenerate eigenvalues, and
hence there are again freedoms in the associated mass and
mixing matrices thanks to (13). We will discuss these when
they become relevant below.

The quark sector

The results in (95)–(98) strongly indicate that the second
and third generations of LH quarks should transform as a
D15 doublet, while the first generation of up quarks trans-
forms as a non-trivial singlet. Similarly, the first and third
generations of RH up and down quarks should transform
as a non-trivial singlet, while the second generation of both

families transforms trivially. Furthermore, (96) indicates that
the flavons φd,u associated to these sectors should transform
as a 21 under D15, a fact that helped us derive (97). This
information is summarized in Table 6.

With an appropriate shaping symmetry preventing φd,u

from coupling to undesirable sectors as well as distinguishing
u

′′1
R from u

′′3
R and d

′′1
R from d

′′3
R ,19 one can quickly obtain the

model-basis Yukawa sector for the quarks using Table 6,

LY ⊃ au Q̄
′′1
L u

′′1
R + bu

[
Q̄

′′23
L φu

]

1
u

′′2
R + cu

[
Q̄

′′23
L φu

]

1−
u

′′3
R

+ ad Q̄
′′1
L d

′′1
R + bd

[
Q̄

′′23
L φd

]

1
d

′′2
R

+ cd
[
Q̄

′′23
L φd

]

1−
d

′′3
R , (99)

19 However, we will soon see that off-diagonal entries in Y
′′†
d will

become desirable once we begin to discuss the leptoquark sector below,
and therefore the implied shaping symmetry present in (99) will be
modified to allow such additional operators.

Table 7 Representations of the leptons under D15

L
′′1 L

′′23 E
′′1
R E

′′2
R E

′′3
R φν φl

D15 1− 25 1− 1 1− 25 25

where Higgs fields and scale suppressions are again omitted.
Using the VEV from (97) and product rules from Appendix
A.4, we get the following Yukawa matrices

Y
′′†
u = vu

⎛

⎝
au/vu 0 0

0 bu cos π
15 −cu sin π

15
0 bu sin π

15 cu cos π
15

⎞

⎠ ,

Y
′′†
d = vd

⎛

⎝
ad/vd 0 0

0 bd 0
0 0 cd

⎞

⎠ . (100)

Assembling these into their Hermitian combinations, one
arrives at

Y ′′†
u Y ′′

u = v2
u

⎛

⎝
|au |2/v2

u 0 0
0 |bu |2 cos2 π

15 + |cu |2 sin2 π
15

1
2

(|bu |2 − |cu |2
)

sin 2π
15

0 1
2

(|bu |2 − |cu |2
)

sin 2π
15 |cu |2 cos2 π

15 + |bu |2 sin2 π
15

⎞

⎠ ,

Y ′′†
d Y ′′

d = v2
d

⎛

⎝
|ad |2/v2

d 0 0
0 |bd |2 0
0 0 |cd |2

⎞

⎠ , (101)

which maps, up to prefactors and VEV, to (98) with

|au |2 ↔ |mu3 |2, |bu |2 ↔ |mu1 |2, |cu |2 ↔ |mu2 |2,

and analogous relations for the mapping of Yd .

The lepton sector

Similarly, the matrices in (95)–(98) suggest that the second
and third LH generations of SU(2) doublet leptons trans-
form as a 25 D15 doublet, along with the associated flavons
φν,l . The L

′′1
L and first and third generations of E

′′
R are to be

charged as non-trivial singlets, while E
′′2
R transforms trivially.

Using this information, assembled in Table 7, one recon-
structs the LO Lagrangian as

LY ⊃ ae L̄
′′1
L E

′′1
R + be

[
L̄

′′23
L φl

]

1
E

′′2
R + ce

[
L̄

′′23
L φl

]

1−
E

′′3
R

+ de L̄
′′1
L E3

R + εe

[
L̄

′′23
L φl

]

1−
E

′′1
R

+ aν L̄
c ′′1
L L

′′1
L + bν

[
L̄c ′′23
L φν

]

1

[
L̄

′′23
L φν

]

1

+ cν

[
L̄c ′′23
L φν

]

1−

[
L̄

′′23
L φν

]

1−
. (102)
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We quickly derive the following terms for neutrino masses
and charged lepton Yukawas

m
′′
ν = v2

ν

⎛

⎝
aν/v

2
ν 0 0

0 bν + 3cν

√
3(bν − cν)

0
√

3(bν − cν) 3bν + cν

⎞

⎠ ,

Y
′′†
l = vl

⎛

⎝
ae/vl 0 de/vl

0 be 0
εe 0 ce

⎞

⎠ , (103)

which gives

Y ′′†
l Y ′′

l = v2
l

⎛

⎝
(|ae|2 + |de|2)/v2

l 0 (dec�
e + ε�

eae)/vl
0 |be|2 0

(εea�
e + d�

e ce)/vl 0 |ce|2 + |εe|2

⎞

⎠ .

(104)

While the neutrino mass maps directly to (98), the charged
lepton term apparently does not without additional fine tuning
of the parameters. For example, setting de = εe and ce = ae,
one can recover the corresponding term in (98), and only
then will a diagonal matrix of eigenvalues be returned for
Y †
l Yl upon (un)rotating (104) to the mass-eigenstate basis

with �l and P . However, we simultaneously observe that the
coupling Y ′′†

l Y ′′
l still respects the required RFS invariance,

T ′′†
l Y ′′†

l Y ′′
l T ′′

l = Y ′′†
l Y ′′

l . (105)

Are these claims contradictory? After all, we argued that suc-
cessfully mapping to (98) is a sufficient condition for ensur-
ing that the EFT yields the desired IR phenomenology and
RFS symmetry-breaking patterns, and while it appears that
(104) cannot do so without unappealing assumptions, the
RFS invariance still holds in (105).

The solution to this puzzle resides in the fact that, as in
the A4 Altarelli–Feruglio case, (98) does not, in fact, rep-
resent the most generic set of RFS-invariant mass matrices,
and we will now show that the apparent fine-tuning required
in mapping (104) to (98) can be understood as a top-down
manifestation of (13).

We begin by recalling that the T ′′
l generator cannot distin-

guish between �l and �l · R23,

T ′′
l = T̃l = P†�l R23Tl R

†
23�

†
l P, (106)

where our tilde notation indicates that this can be understood
a basis change on the charged lepton field, such that (starting
from the mass-eigenstate basis), we are now operating with

lL → R†
23 �

†
l P l̃L , (107)

and so the most generic mass matrix invariant under the T̃l =
T ′′
l generator that our algorithm to find D15 knows about is

given by

m̃†
l m̃l = P†�L R23 m

†
l ml R

†
23�

†
l P

⇐⇒ T̃ †
l m̃

†
l m̃l T̃l = m̃†

l m̃l = T ′′†
l m̃†

l m̃l T
′′
l (108)

with the mass matrix elements given by

(m̃†
l m̃l)

11 = 1

2
(m2

l2 + m2
l3 + (m2

l3 − m2
l2) cos δ23 sin 2θ23),

(m̃†
l m̃l)

13 = 1

2
(m2

l2 − m2
l3)(cos 2θ23 − i sin 2θ23 sin δ23),

(m̃†
l m̃l)

22 = m2
l1,

(m̃†
l m̃l)

31 = 1

2
(m2

l2 − m2
l3)(cos 2θ23 + i sin 2θ23 sin δ23),

(m̃†
l m̃l)

33 = 1

2
(m2

l2 + m2
l3 + (m2

l2 − m2
l3) cos δ23 sin 2θ23),

(m̃†
l m̃l)

12 = (m̃†
l m̃l)

21 = (m̃†
l m̃l)

23 = (m̃†
l m̃l)

32 = 0,

(109)

and where {δ, θ}23 denote the free parameters our formalism
has no control over.

However, (107) also implies that a diagonal charged cur-
rent in this basis (we have not applied a change on any other
field) implies a modified PMNS matrix in the (physical)
mass-eigenstate basis:

l̃ Lγμν̃LW
−
μ ←→

mass basis
l Lγμ R†

23 UHM
︸ ︷︷ ︸
UPMNS

νLW
−
μ . (110)

This is consistent with the well-known fact that, in a more
generic flavour basis, a degeneracy in Tl should translate to
a free parameter in Ul and therefore also UPMNS .

Now, one might be tempted to conclude that we should
also translate νL with a compensating factor of R23, so that
the definition of the PMNS is preserved a la

νL → U †
HM R†

23�
†
l P ν̃L

�⇒ l̃ Lγμν̃LW
−
μ ←→

mass basis
l Lγμ UHM︸ ︷︷ ︸

UPMNS

νLW
−
μ .

(111)

However, this corresponds to a generic neutrino mass matrix
given by

m̃ν = PT�∗
l R

�
23U

∗
HMmνU

†
HM R†

23�
†
l P, (112)

which is left invariant under

T̃ν = P†�l R23UHMTνU
†
HM R†

23�
†
l P �= T ′′

ν . (113)

That is, the neutrino generator knows about this basis change,
which differs from our original observation that D15 doesn’t
know the difference between T ′′

l and T̃l . Indeed, we have

123



Eur. Phys. J. C            (2021) 81:65 Page 21 of 28    65 

checked that (at least at certain values of δ23 and θ23) the
group generated by GF ∼= {T̃l , T̃ν, T̃u, T̃d} is not D15, and
may not even be finite!20 So making this compensating
change in (111) is inconsistent with the starting point of our
analysis, and cannot be done.

In conclusion, moving to the tilde basis requires no more
work from the model building side, but implies a generalized
RFS-invariant charged lepton mass matrix, and therefore a
generalized prediction for the physical PMNS matrix given
by UPMNS = R†

23 · UHM . The parameters of R23 are there-
fore functions of the (unspecified) coupling strengths of the
EFT operators, since when solving the system of equations
implied by mapping (109) to (104), one easily sees that

m2
l1 ↔ |be|2,

m2
l2 ↔ (|de|2 + |εe|2 + |ae|2 + |ce|2

+ (|εe|2 + |ce|2 − |ae|2 − |de|2) csc 2θ23 sec δ23),

m2
l3 ↔ (|de|2 + |εe|2 + |ae|2 + |ce|2

+ (|de|2 + |ae|2 − |ce|2 − |εe|2) csc 2θ23 sec δ23),

(114)

up to VEV and prefactors, with

δ23 = arctan

(

Im

[
2(dec∗

e + ε∗
e ae)

|ae|2 + |de|2 − |ce|2 − |εe|2
])

,

2θ23 = arctan

(

−Re

[
2(dec∗

e + ε∗
e ae) cos δ23

|ae|2 + |de|2 − |ce|2 − |εe|2
]−1

)

.

(115)

Hence, while no fine-tuning is required in achieving this map,
the model’s prediction for UPMNS is ambiguous up to the
quantization of the couplings {ae, . . . , εe}, which may result
from a higher UV symmetry (e.g. a GUT) that relates the
otherwise independent operators of the EFT. Such an attempt
is obviously well beyond our scope in this paper. However,
thinking from a more phenomenological perspective, one can
instead fit the parameters {θ23, δ23} to available experimen-
tal data for the PMNS matrix, which then implies relation-
ships amongst the top-down model’s parameters, according
to (114)–(115). Regardless, we see clearly that the ignorance
of R23 in the bottom-up RFS generation of GF has consis-
tently manifested itself in a certain lack of predictivity in the
top-down EFT.

20 Note that our tilde notation here does not imply that we have per-
formed a similarity transformation on all four elements of the ′′ generat-
ing set, but rather that upon making the basis transformations in (107)–
(111) we then derive a set of RFS generators from the Lagrangian where
T̃u,d,l = T ′′

u,d,l but T̃ν �= T ′′
ν . Hence the tilde set can easily generate a

different group, as we have seen.

The leptoquark sector

The naive RFS-invariant leptoquark coupling for the d − l
operator expected in the model basis is given by

λ′′
dl

!= λbμ√
2

⎛

⎝
1 0 1
0 0 0
1 0 1

⎞

⎠ , (116)

This can be achieved using the following Lagrangian

L ⊃ a� Q̄
′′1
L L

′′1
L + b� Q̄

′′1
L

[
L

′′23
L φl

]

1−

+c�

[
Q̄

′′23
L φd

]

1−

[
L

′′23
L φl

]

1−

+d�

[
Q̄

′′23
L φd

]

1−
L

′′1
L , (117)

but again only with an additional tuning of the parameters,

a� = b� = c� = d� �⇒ λ′′
dl =

⎛

⎝
a� 0 a�

0 0 0
a� 0 a�

⎞

⎠ . (118)

However, following the above discussion for charged leptons,
(116) is modified when we consider the R23 free rotation
yielding (109), and results in the matrix

λ̃dl
!= λbμ√

2

⎛

⎝
E l−− 0 E l+−

0 0 0
E l−− 0 E l+−

⎞

⎠ ,

E l±± ≡
(

cos θ l23 ± e± i δl23 sin θ l23

)
, (119)

whose first and third columns, corresponding to lepton gener-
ations, are now distinguished.21 Hence the need to fine-tune
parameters between them disappears, although the otherwise
independent couplings {a�, b�, c�, d�} and {ae, be, ce, de}
are linked through (115) – they need to be simultaneously
fit to functions of the same physical PMNS parameters, and
hence are quite correlated.

Continuing, we also now note that the symmetry struc-
ture exposed in [32] (cf. Table 4) also permits a rotation in
the (2,3) sector of Td , and the conversation above as regards
the corresponding basis change on the charged-lepton field
can be had equally for the down quark, resulting in a further
modified (119) which also distinguishes rows (quark gener-
ations),

˜̃
λdl

!= λbμ√
2

⎛

⎝
Ed−− E l−− 0 Ed−− E l+−

0 0 0
Ed++ E l−− 0 Ed++ E l+−

⎞

⎠ , (120)

21 Note that in the definition of E l±±, the two ± labels correspond to
the first and second ± appearing on the RHS, respectively, while the l, d
superscript denotes parameters from the lepton and down quark sectors.
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with Ed±± defined analogously to E l±±. Then no fine-tuning
of the model’s couplings in (117) will be required since the
mapping

a� ↔ λbμ Ed−− E l−−, b� ↔ λbμ Ed−− E l+−,

c� ↔ λbμ Ed++ E l−−, d� ↔ λbμ Ed++ E l+− (121)

is achieved, although again at the expense of the phenomenol-
ogy not being uniquely nailed down. But we must also then
account for the fact that the R23 rotation in the quark sec-
tor simultaneously changes the prediction for the associated
RFS-invariant mass matrix to

˜̃m†
d

˜̃md
!=

⎛

⎜
⎜
⎝

m2
d3

cos2 θ
q
23 + m2

d2
sin2 θ

q
23 0 −eiδ

q
23

(
m2

d2
− m2

d3

)
cos θ

q
23 sin θ

q
23

0 m2
d1

0

e−iδq23

(
m2

d3
− m2

d2

)
cos θ

q
23 sin θ

q
23 0 m2

d2
cos2 θ

q
23 + m2

d3
sin2 θ

q
23

⎞

⎟
⎟
⎠ , (122)

which further corresponds to an altered CKM prediction,

UCKM →
⎛

⎜
⎝

cos π
15 cos θ

q
23 sin π

15 e−iδq23 sin θ
q
23 sin π

15

− sin π
15 cos θ

q
23 cos π

15 e−iδq23 sin θ
q
23 cos π

15

0 −eiδ
q
23 sin θ

q
23 cos θ

q
23

⎞

⎟
⎠ .

(123)

These changes appear problematic at first sight, since we
have already successfully achieved the desired mapping from
(101) to (98), i.e. the CKM prediction with no mixing ambi-
guity. Indeed, the Lagrangian in (99) does not have operators
that can map to the additional contributions in the (1, 3) sector
of (122). However, we recall that the implicit assumption in
building (99) (and all other effective LY in this paper) is that
unspecified shaping symmetries forbid undesirable operators
from contributing to the Yukawa. So, once (122) is the appro-
priate term to be recovered in the Lagrangian of (99), one can
then assume a different shaping symmetry, such that further
operators contribute in a way that allows for a one-to-one
mapping. For example, one can easily obtain the modified
quark Lagrangian as the one in (99) with additional down
quark terms which are in fact invariant under D15 (given that
d

′′1
R and d

′′3
R are not in fact distinguished by D15). The down

sector would then be

LY ⊃ ad Q̄
′′1
L d

′′1
R + bd

[
Q̄

′′23
L φd

]

1
d

′′2
R

+cd
[
Q̄

′′23
L φd

]

1−
d

′′3
R + a′

d Q̄
′′1
L d

′′3
R + c′

d

[
Q̄

′′23
L φd

]

1−
d

′′1
R ,

(124)

where the a′
d and c′

d terms are clearly the terms with the

unprimed couplings after undergoing a swap of d
′′1
R and d

′′3
R .

It is simple to see they create entries in the mass matrix that
will allow a successful map to (122):

˜̃Y †
d = vd

⎛

⎝
ad/vd 0 a′

d/vd
0 bd 0
c′
d 0 cd

⎞

⎠ . (125)

In this scenario one loses some predictivity over the CKM
mixing, since (123) leaves {θq23, δ

q
23} unquantized – they will

become functions of the free operator couplings in a man-
ner analogous to (115). On the other hand, the fine-tuning
issue in λ̃dl is resolved, and (123) anyway better approxi-
mates global fits to the experimental CKM matrix than the
original Cabibbo form we predicted. Hence θ

q
23 can be fit to

the data, which then leads to more precise EFT predictions

in the (unmeasured) leptoquark coupling of (120).

Further comments on the appearance of free parameters in
effective models

We have seen that the simple equivalence evident in (13) can
be important when building LY realizing family-symmetry
breaking of the form GF ,L,Q → Ga ∼= {T̂a}. While this phe-
nomenological ambiguity was discussed from a bottom-up
perspective in [32] and multiple prior references from other
authors, its consequences from a top-down model-building
perspective have, to our knowledge, not been appreciated. We
now see that, in the absence of a proper accounting of (13),
the implied RFS-invariant mass/coupling shapes are unnec-
essarily restrictive, possibly leading to the erroneous conclu-
sion that fine-tunings of model parameters are required. Upon
considering the full implications of (13) on these shapes,
these fine-tunings are resolved in favor of one-to-one map-
pings between model and physical parameters, albeit at the
expense of the EFT’s predictivity. In short, the bottom-up
mathematical ambiguity of (13) can consistently manifest
itself as a top-down phenomenological ambiguity in a given
model’s IR mass and mixing spectrum.

However, our D15 analysis still leaves some questions
unanswered. For example, why was no tuning required in
the neutrino or up quark mass matrices, where we also only
attempted a map to the naive RFS-invariant mass matrices,
but where Table 4 clearly indicates that free parameters can
be introduced into these sectors as well? While it is beyond
our present scope to answer this question conclusively, we
suspect that the answer lies in the group product rules at hand,
which as a function of the group closure will (at least in the
basis we consider) likely be driven by the CKM and PMNS
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structures entirely embedded in the up and neutrino sectors.
After all, D15 is only armed with a handful of doublets from
which we can form invariants according to (20), whereas a
larger group that contains, e.g., triplet representations might
allow a broader and more diverse set of invariants from which
we can form the naive RFS-invariant shapes of (98). This sus-
picion is at least consistent with the fact that, while studying
D15, we also attempted to build the final model presented
in Table 4, based on the same symmetry (Z14 × Z2) � Z2

that we used for the CKM prediction in Sect. 3.2. There we
again found that no tuning was required until we tried to
model m

′′†
l m

′′
l and the subsequent leptoquark coupling λ

′′
dl ,

where the need became apparent exactly as in D15. As con-
jectured, (Z14 × Z2) � Z2 also only has doublet and singlet
irreducible representations. Unfortunately though, we did not
find a candidate symmetry in [32] that allows us to test to this
hypothesis, and so it may be interesting to perform a simi-
lar group theory scan while allowing for larger finite groups
to pass the self-imposed cuts. On the other hand, the simul-
taneous introduction of the inherently 2D Cabibbo form of
(75) alongside the inherently 3D μ − τ symmetric form of
(74) into the scans may inevitably lead to similar results as
those in [32]. We will leave the resolution of these questions
to future study – our method, as demonstrated in Sects. 2–4,
works regardless of their conclusions.

5 Summary and outlook

We have shown how to use the RFS of the Yukawa sec-
tor of an IR Lagrangian, i.e. one where electroweak- and
family-symmetry breaking has already occurred, to system-
atically reconstruct a UV effective Lagrangian that respects
SM gauge symmetries and non-Abelian flavour symmetries
GF which contain such RFS as subgroups. Our method is
thus complimentary to prior scans of family groups per-
formed in order to identify phenomenologically viable GF
and symmetry-breaking patternswithout specifying concrete
UV Lagrangians – that is, we can use bottom-up, model-
independent information to algorithmically construct top-
down models with an explicit field and symmetry content.
We have shown four such examples, two where only SM
fermionic mixing (CKM or PMNS matrices) is controlled,
and two where SM mixing matrices and flavoured lepto-
quark couplings are structured with the RFS. We thus provide
‘proof-in-principle’ routes to EFT descriptions for the sim-
plified models outlined in [31,32]. Our study has also helped
to clarify commentary in prior literature as regards the role
of eigenvalue degeneracies in RFS generators and associated
mixing ambiguities in top-down flavour models.

Furthermore, leptoquark extensions of the SM represent
but one of many BSM scenarios with non-trivial flavour struc-

ture that can be studied within the RFS paradigm, which
bypasses potentially unfalsifiable aspects of model building
and offers a mechanism for identifying classes of simplified
models and their phenomenological implications. Our results
in this paper indicate that analogous, model-independent RFS
applications to (e.g.) multi-Higgs-doublet models (cf. [35])
or softly-broken SUSY can also be readily ‘completed’ if
deemed necessary by a particular experimental signature,
and can therefore be confidently studied in the meantime
without reference to UV dynamics. We leave these possible
extensions to future work.
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Appendix A: Details on representation theory

n this Appendix we provide the relevant group product rules
and associated Clebsch–Gordan coefficient structure for the
finite groups employed in the sample models of the main
paper, and in the bases in which they are built.22

22 See e.g. [72] for an exhaustive catalogue of finite group series and
their properties.
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A.1 A4

For two triplets generically parameterized by xi = (x1, x2, x3)

and yi = (y1, y2, y3), the product rule between them gives

3 × 3 ∼ 1 + 1′ + 1′′ + 3S + 3A. (126)

In the basis of the generators given in (25), the singlet
Clebsch–Gordan structure is then given by

1 ∼ (x1y1 + x2y3 + x3y2) ,

1′ ∼ (x3y3 + x1y2 + x2y1) ,

1′′ ∼ (x2y2 + x1y3 + x3y1) , (127)

whilst the symmetric (S) and anti-symmetric (A) triplet com-
binations are given by

3S ∼ 1

3
(2x1y1 − x2y3 − x3y2, 2x3y3 − x1y2 − x2y1,

2x2y2 − x1y3 − x3y1) ,

3A ∼ 1

2
(x2y3 − x3y2, x1y2 − x2y1, x1y3 − x3y1) . (128)

Finally, the singlet product rules are found to be:

1′ × 1′ ∼ 1′′, 1′ × 1′′ ∼ 1, 1′′ × 1′′ ∼ 1′. (129)

5.1 (Z14 × Z2) � Z2

We have not found the associated product rules and Clebsch–
Gordan factors for this group in the literature, and hence have
derived them for ourselves. As such, we provide a touch more
information here than for other groups in this Appendix.

The relevant group information we require for (Z14 × Z2)�

Z2 can be accessed via the GAP package, using its identifica-
tion number [56, 7]. However, GAP is using a four-generator
basis while the minimal generating set, that we will work
with, only has three generators. Making this conversion, we
find that the full list of irreducible representations and asso-
ciated generators is given by

1++ : a = 1, b = 1, c = 1,

1+− : a = 1, b = −1, c = 1,

1−+ : a = −1, b = 1, c = 1,

1−− : a = −1, b = −1, c = 1,

20 : a =
(

0 1
1 0

)

b =
(

1 0
0 −1

)

, c =
(

1 0
0 1

)

,

2n++ : a =
(

0 1
1 0

)

b =
(

1 0
0 1

)

, c =
(

ωn
7 0

0 ω−n
7

)

,

2n+− : a =
(

0 1
1 0

)

b =
(

1 0
0 −1

)

, c =
(

ωn
7 0

0 ω−n
7

)

,

2n−+ : a =
(

0 1
1 0

)

b =
(−1 0

0 1

)

, c =
(

ωn
7 0

0 ω−n
7

)

,

2n−− : a =
(

0 1
1 0

)

b =
(−1 0

0 −1

)

, c =
(

ωn
7 0

0 ω−n
7

)

,

(130)

where n = 1, 2, 3 and ω7 = e
2iπ
14 .

As can be seen, representations are not always real. Taking
the generic doublet to be ∼ (x1, x2), conjugate representa-
tions can be expressed in terms of the original ones following

2̄kρσ ∼ (
x̄2, x̄1

) ∼ 2kσρ, (131)

and similarly for 2̄0, while all the singlets are real.
The product rules for singlets can be obtained trivially by

noting the action of the generators a, b, which is indicated
by the first and second subscript respectively:

1±±×1±± ∼ 1++
1±∓×1±± ∼ 1+−
1∓±×1±± ∼ 1−+
1±∓×1∓± ∼ 1−−. (132)

The full list of product rules can be obtained by explicitly
checking the transformation properties. Assuming the first
doublet is given by (x1, x2) and the second one by (y1, y2),
we obtain the following product rules:

20 × 20 ∼ [x1y1 + x2y2]1++ + [x2y2 − x1y1]1−+
+ [x1y2 + x2y1]1+− + [x2y1 − x1y2]1−− ,

2n++ × 20 ∼
[
x1y1

x2y2

]

2n+−
+
[
x1y2

x2y1

]

2n−+
,

2n++ × 2n++ ∼ [x1y2 + x2y1]1++ + [x2y1 − x1y2]1−+ + 2k++,

2n++ × 2n+− ∼
[
x2y1

x1y2

]

20

+ 2k+−,

2n++ × 2n−+ ∼
[
x1y2

x2y1

]

20

+ 2k−+,

2n++ × 2n−− ∼ [x2y1 + x1y2]1+− + [x2y1 − x1y2]1−− + 2k−−,

2n+− × 20 ∼
[
x1y1

x2y2

]

2n++
+
[
x1y2

x2y1

]

2n−−
,

2n+− × 2n+− ∼ [x2y1 + x1y2]1+− + [x2y1 − x1y2]1−− + 2k++,

2n+− × 2n−+ ∼ [x2y1 + x1y2]1++ + [x2y1 − x1y2]1−+ + 2k−−,

2n+− × 2n−− ∼
[
x2y1

x1y2

]

20

+ 2k−+,

2n−+ × 20 ∼
[
x1y2

x2y1

]

2n++
+
[
x1y1

x2y2

]

2n−−
,
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2n−+ × 2n−+ ∼ [x2y1 + x1y2]1+− + [x2y1 − x1y2]1−− + 2k++,

2n−+ × 2n−− ∼
[
x1y2

x2y1

]

20

+ 2k+−,

2n−− × 20 ∼
[
x1y1

x2y2

]

2n−+
+
[
x1y2

x2y1

]

2n+−
,

2n−− × 2n−− ∼ [x2y1 + x1y2]1++ + [x2y1 − x1y2]1−+ + 2k++,

(133)

where

2kρσ ∼

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
x1y1

x2y2

]

22ρσ

for n = 1

[
x2y2

x1y1

]

23σρ

for n = 2

[
x2y2

x1y1

]

21σρ

for n = 3

. (134)

While we expanded the above doublet product rules in (133)
for simplicity and utility, we will express the other (less use-
ful) doublet product rules in the following compacted for-
mula:

2nρσ × 2n′ρ′σ ′ ∼ 2X + 2Y, (135)

with n �= n′ and

2X ∼

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
x1y1

x2y2

]

2(n+n′)(ρρ′)(σσ ′)

for n + n′ < 7 − (n + n′)
[
x2y2

x1y1

]

2(7−n−n′)(σσ ′)(ρρ′)

for n + n′ > 7 − (n + n′)
,

2Y ∼

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
x1y2

x2y1

]

2(n−n′)(ρσ ′)(σρ′)

for F7(n − n′) < F7(n′ − n)

[
x2y1

x1y2

]

2(n′−n)(σρ′)(ρσ ′)

for F7(n − n′) > F7(n′ − n)

,

(136)

where

F7(k) =
{
k for k > 0

7 + k for k < 0
. (137)

A.3 �(96)

We note that, as indicated above in Sect. 4.1, we follow the
notation of [73] where the generators are identified by small-
case Latin letters, but to help avoid confusion with our nota-
tion for coefficients (also smallcase Latin letters), we refer to
the generators of �(96) in bold. Here we present some of the

product rules for irreducible representations of �(96) in the
basis we used in Sect. 4.1, which matches the basis in [73]
where the element a321

c31d31 is diagonal. This basis has

a31 = 1

3

⎛

⎜
⎜
⎜
⎝

ω 1 + √
3

(
1 − √

3
)

ω2

1 − √
3 ω2

(
1 + √

3
)

ω
(

1 + √
3
)

ω2 (1 − √
3)ω 1

⎞

⎟
⎟
⎟
⎠

,

b31 = 1

3

⎛

⎜
⎜
⎜
⎝

−1 − √
3 −ω

(√
3 − 1

)
ω2

−ω2
√

3 − 1 −
(

1 + √
3
)

ω
(√

3 − 1
)

ω −
(

1 + √
3
)

ω2 −1

⎞

⎟
⎟
⎟
⎠

,

c31 = 1

3

⎛

⎜
⎜
⎜
⎝

1
(

1 − √
3
)

ω2
(

1 + √
3
)

ω
(

1 + √
3
)

ω 1
(

1 − √
3
)

ω2
(

1 − √
3
)

ω2
(

1 + √
3
)

ω 1

⎞

⎟
⎟
⎟
⎠

,

(138)

and d31 = a−1
31

c31a31 . In this basis, the group rules we have

used in our models are all the rules for 31 × 3̄1 ∼ 1 + 2 + 6,
31× 3̄′

1 ∼ 1′ + 2 + 6, and only the rules for the trivial singlet
built from (1′ × 1′) ∼ 1, (2 × 2)1 and (6 × 6)1:

(31 × 3̄1)1 ∼ x1y1 + x2y2 + x3y3,

(31 × 3̄1)2 ∼
(

x1y3 + x2y1 + x3y2

ω (x1y2 + x2y3 + x3y1)

)

,

(31 × 3̄1)6 ∼

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1y3 + ωx2y1 + ω2x3y2

ωx1y2 + ω2x2y3 + x3y1

ω2x1y1 + x2y2 + ωx3y3

x1y3 + ω2x2y1 + ωx3y2

ω2x1y2 + ωx2y3 + x3y1

ωx1y1 + x2y2 + ω2x3y3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(31 × 3̄1)1′ ∼ x1y1 + x2y2 + x3y3,

(31 × 3̄′
1)2 ∼

(
x1y3 + x2y1 + x3y2

−ω (x1y2 + x2y3 + x3y1)

)

,

(31 × 3̄′
1)6 ∼

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1y3 + ωx2y1 + ω2x3y2

ωx1y2 + ω2x2y3 + x3y1

ω2x1y1 + x2y2 + ωx3y3

−x1y3 − ω2x2y1 − ωx3y2

−ω2x1y2 − ωx2y3 − x3y1

−ωx1y1 − x2y2 − ω2x3y3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(2 × 2)1 ∼ x1y2 + x2y1,

(6 × 6)1 ∼ x1y5 + x2y4 + x3y6 + x4y2 + x5y1 + x6y3 .

(139)
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A.4 D15

Following [72], DN has 2+ (N −1)/2 representations when
N is odd: 2 singlets 1+ and 1− (1+ is the trivial singlet) and
(N −1)/2 doublets labeled 2k . In our case we therefore have
7 doublet representations, within which our group generators
take the form

b =
(

1 0
0 −1

)

, a =
⎛

⎝
cos 2kπ

15 − sin 2kπ
15

sin 2kπ
15 cos 2kπ

15

⎞

⎠ .

On the other hand, for the singlet representations we have
that

1+ : a = 1 and b = 1,

1− : a = 1 and b = −1. (140)

One can work out the Kronecker products for these different
representations. In our case, the relevant ones for contracting
two doublets will be given by

((
x1

x2

)

2k

×
(
y1

y2

)

2k

)

1

∼ x1y1 + x2y2,

((
x1

x2

)

2k

×
(
y1

y2

)

2k

)

1′
∼ x2y1 − x1y2, (141)

while two non-trivial singlets contract to a trivial singlet

1′ × 1′ ∼ 1. (142)

Appendix B: Details on flavon VEV condition

In this Appendix we present a derivation of the core RFS-
preserving condition on the flavon VEV we impose in (21).
While this condition has been known since as early as [5], we
now show our own approach for clarity and completeness.

We start with the generic G-invariant term that will lead
to a mass matrix,

L = CAaαFρF
A f

ρ f
a φ

ρφ
α , (143)

where FρF
A and f

ρ f
a are respectively SU (2)L doublets and

singlets with flavour representations ρF and ρ f . φ
ρφ
α is

the flavon field with representation ρφ . Finally, CAaα =
CAaα

ρF×ρ f ×ρφ→1 stands for the Clebsch–Gordan matrix that
pins down the product representation to a specific flavour
singlet.

Let’s act on the term with an element g ∈ G, which leaves
the singlet invariant:

g
(
CAaαFρF

A f
ρ f
a φ

ρφ
α

)
= CCcγ FρF

C f
ρ f
c φ

ρφ
γ , (144)

CAaα T ρF
AB(g) FρF

B T
ρ f
ab (g) f

ρ f
b T

ρφ
αβ (g) φ

ρφ

β

= CCcγ FρF
C f

ρ f
c φ

ρφ
γ . (145)

In the broken phase, where G → H (where H ⊂ G) by 〈φα〉
with the condition

T
ρφ

αβ 〈φβ〉 = 〈φα〉, (146)

the mass matrix mAa = CAaα〈φα〉 exhibits an invariance
under generic elements h ∈ H,

FρF
B T ρF

AB(h)mAa T
ρ f
ab (h) f

ρ f
b = FρF

C mCc f
ρ f
c . (147)

Moreover, when we consider the broken element transfor-
mations T (g′) where g′ /∈ H, the VEV instead transforms
as Tαβ〈φβ〉 = 〈φ′

α〉 ⇒ m → m′. This leads to the following
equality:

FρF
B T ρF

AB(g′)m′Aa T ρ f
ab (g′) f

ρ f
b = FρF

C mCc f
ρ f
c , (148)

which explicitly shows the non-invariance of the mass matrix
under g′.

The invariance relation is also easily extended to the com-
bination mm†, which is the more general framework that we
consider in the paper. Starting from the relation

T ρF
AB(h)mAa T

ρ f
ab (h) = mBb, (149)

we end up with

T ρF
AB(h)mBa(m�)aC T ∗ρF

CD (h) = mAb(m∗)bD. (150)

In that case T ρF
AB(h) → T ρF

AB(h)eiθ leaves the condition
invariant; therefore the VEV preserving combination mm†

condition is simply given by

T
ρφ

αβ eiθ 〈φβ〉 = 〈φα〉. (151)

Here one then clearly sees the origin for the condition ê�
a ·êa !=

1 in (21). Finally, the corresponding constraint for Majorana
mass terms can be easily derived from the same procedure,
and in that case one finds that no additional phases are present.
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