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Abstract

The freeze casting process is a novel manufacturing method for both near net-

shape parts as well as directed porous structures as employed by filters and

implants. Depending on the choice of liquid and processing conditions a very

wide range of pore shapes and sizes can be achieved. In order to predict the re-

sulting microstructure, a phase-field model is developed on the basis of the grand

potential formalism. The model and its parametrization approximate the freeze-

casting process of water by linking its thermodynamics with established theory.

Directional solidification simulations with varying suspension concentrations,

velocities and temperature gradients are carried out. From these, microstruc-

tural lengths are determined and linked with the processing parameters, so as

to derive linkages between the microstructure and the processing conditions.
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1. Introduction

Freeze casting is a novel manufacturing approach with applications includ-

ing near net-shape casting [1] and generation of directed porous structures for

filters [2] and implants [3–5]. The process is based on the freezing of a col-

loidal suspension, i.e. insoluble particles are suspended in a liquid, which is
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then frozen directionally. Depending on the liquid and its composition, many

different microstructures can be obtained, ranging from lamellar structures for

water [6] to faceted matrix-rod structures for tert-butyl alcohol [7]. Besides the

morphology of the microstructure, its lengths in terms of e.g. lamellar distances

or widths, can be adjusted by varying process parameters such as the solidifica-

tion velocity, the temperature gradient or the solids loading of the suspension.

Since material properties are linked to the microstructure morphology and its

lengths, this allows the production of materials with tailored properties, given

that one can predict the microstructure based on given processing conditions.

The phase-field method has garnered much attention in the last decades in

determining such linkages between processing conditions and the resulting mi-

crostructure. In the context of solidification, it was shown to quantitatively

model dendritic growth [8, 9] as well as eutectic growth [10]. Specifically for

freeze casting, Huang et al. [11] have published a phase-field model based on

the free-energy formulation of Echebarria et al. [12] coupled with a particle

concentration field and an analytical temperature field to describe the freeze-

casting process. In the work of Huang et al., the individual particles within

the suspension have already been coarse-grained over by employing a particle

concentration field instead of tracking individual particles. Besides the reasons

stated in their work, one must consider the computational expense: Typical

freeze-cast structures show wavelengths from a few microns to hundreds of mi-

crons, whereas the particles which form these structures may be on the order

of hundreds of nanometers. Resolving these particles within the structures they

form is prohibitively expensive — but if the particles are coarse grained over,

only the structure itself needs to be resolved.

Prior research by Peppin et al. [13] described the freeze casting process as

a kind of osmosis, in which the suspended particles are entirely rejected by the

advancing ice front. By doing so Peppin et al. were able to find an expression

for the chemical potential of the suspension as well as the liquidus curve as a

function of solids loading and temperature. In this paper, the expressions de-

rived by Peppin et al. are used to construct free energies representing the freeze
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casting process. Furthermore, qualitative expressions for the interfacial as well

as kinetic anisotropy of the ice-water interface are presented. Finally, directional

solidification simulations employing the above are conducted and a linkage be-

tween processing condition and resulting microstructure is established.

2. Phase-field model

The employed phase-field model is based on the work of Choudhury [14].

A grand potential type of formalism is chosen since it decouples interfacial

properties from the bulk energies as described in [15]. The original model is

composed for multicomponent and multiphase systems. In the present paper

the model is restricted to two phases (N = 2) and two components (K = 2)

which simplifies the mathematical equations.

The phase-field equation is based on a variational derivative of a functional

describing the contributions of interfacial and bulk energies. Performing the

variational derivative and using the Allen-Cahn Ansatz for the time evolution

yields

τ(φ,∇φ)ε
∂φα
∂t

=−
(
ε

(
∂a(φ,∇φ)

∂φα
−∇ · ∂a(φ,∇φ)

∂∇φα

)
+

1

ε

∂w(φ)

∂φα
+
∂ψ(T, µ, φ)

∂φα
− Λ

)
, (1)

with a,w describing the contribution of interfacial energy and ψ that of the

bulk energy. τ(φ,∇φ) is the kinetic coefficient, which fixes a timescale for the

phase-field evolution. ε is related to the interface width W by W ≈ 2.5ε.

The term Λ is a Lagrange multiplier ensuring the constraint
∑N
α=1

∂φα
∂t = 0.

The grand potential density ψ =
∑N
α=1 hα(φ)ψα is the driving force for phase

transformation. It is related to the phase-specific Gibbs free energy density by

ψα = Gα−µc. Close to equilibrium, the Gibbs free energy can be approximated

as a parabolic function of concentration, or volumetric solids loading, c

Gα(c, T ) = Aα(T )c2 +Bα(T )c+ Cα(T ) (2)
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with functions Aα, Bα, Cα which are parabolic functions of temperature. In

the next section, the Gibbs energies will be determined in such a way that the

freeze-casting process is approximated. The interpolation function for the grand

potential density is formulated as hα(φ) =
φ2
α∑N

β=1 φ
2
β

following [16].

The gradient energy density a is expressed as

a(φ,∇φ) = γαβa
2
cap(qαβ)|qαβ |2 (3)

with γαβ being the isotropic interface energy for the α-β interface and qαβ =

φα∇φβ−φβ∇φα being the generalized gradient vector. The term acap describes

the anisotropy of the gradient energy density and will be further detailed in the

next section. An equal form is employed for the kinetic coefficient τ

τ(φ,∇φ) = ταβa
2
kin(qαβ)|qαβ |2. (4)

The obstacle potential w is employed and simplified for two phases

w(φ) =
16

π2

N,N∑
α=1,β=1
β 6=α

γαβφαφβ + TPT

=
16

π2
γαβφαφβ (5)

with the three phase term (TPT) vanishing since only two phases are considered.

An obstacle type of potential is chosen for computational efficiency, as the phase-

field need only be updated in the interfacial regions.

The phase-field equation is coupled with the chemical potential evolution

equation

∂µ

∂t
=

[
N∑
α=1

hα(φ)

(
∂cα(µ, T )

∂µ

)]−1
(6)[

(∇ ·
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−
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The first term on the right-hand side is a generalized susceptibility [17]. This is

multiplied by the change of concentration due to Fickian fluxes, an antitrapping

current to prevent artificially enhanced solute trapping [9] as well as the change

of concentration due to a change in the coupled fields of phase-field φ and

temperature T . The mobility M is defined as M =
∑N
α φα

∂cα
∂µ Dα with the

diffusivity Dα of each component in the phase α. ξ(r, t) is a fluctuation term

for inducing instabilities. A small, non-vanishing diffusivity is applied in the

solid in order to smooth out fluctuations in the concentration field after the

phase-field has already passed.

Finally, an external temperature gradient is applied to the system

T (x, t) = Ts +G(x− vt) (7)

with Ts being the starting temperature, G the temperature gradient, v the

velocity thereof, t the simulation time and the coordinate x pointing in the

growth direction.

Equations (1), (6) and (7) are solved with the massive parallel Pace3D

framework (“Parallel Algorithms for Crystal Evolution in 3D”)[18]. Within the

framework the equations are discretized on a uniform grid with finite differences

being used to compute derivatives. The time integration is done with the ex-

plicit Euler method. Parallelization is achieved by using the Message Passing

Interface and spatial domain decomposition. The temperature given by eq. (7)

is calculated for each grid point and timestep.

3. Parametrization of freeze casting

The key in linking the phase-field evolution to a specific material lies in its

parametrization in terms of energies and kinetics. In this paper, the focus will

be on the energetic part, specifically the complex anisotropy of the ice-water in-

terface and the grand potential density of colloidal suspensions. The energetic

contribution consists of the interfacial and the bulk energies. Many experimen-

tal studies ([19–21] and references in [22]) exist for the determination of the
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interfacial energy between ice and water, with values ranging from 25 mJ/m2 to

45 mJ/m2 — for the purpose of simplicity a value of 30 mJ/m2 is assumed, which

is close to the data of Hardy [21]. This value describes the isotropic behavior,

but ice is an anisotropic material. For its capillary anisotropy the function acap

is expanded into a sum of spherical harmonics Ylm:

acap(~qαβ) =
∑
l,m

εlmYlm(~qαβ)

= 1 + εcap4,0 Y4,0(~qαβ) + εcap6,6 Y6,6(~qαβ), (8)

which yields a smooth, weak hexagonal capillary anisotropy with the coefficients

εcap4,0 = −0.045, εcap6,6 = 0.0015. This choice is due to relatively small difference in

interfacial energies according to [23–25][26, p. 440]. Furthermore, [27] showed

that below a critical undercooling the interface is smooth, implying that the

typical hexagonal shape is due to kinetic effects rather than capillary ones,

hence the weak capillary anisotropy. This, together with the different kinetics

along the basal and prismal planes [28], is reproduced via the kinetic anisotropy

function akin:

akin(~qαβ) = 1 + εkin2,0 Y2,0(~qαβ) + εkin4,0 Y4,0(~qαβ) + εkin6,6 Y6,6(~qαβ) (9)

with coefficients εkin2,0 = −0.66, εkin4,0 = −0.34, εkin6,6 = 0.15 yielding a strong hexag-

onal anisotropy in the basal plane with a marked reduction in growth kinetics

normal to the basal plane. The base value ταβ is chosen such that diffusion-

controlled growth is ensured.

The bulk energetic contribution enters the phase-field model from the pre-

vious section by the grand potential differences, which are related to differences

in Gibbs free energy. For pure ice and water, the International Association for

the Properties of Water and Steam (IAPWS) formulations [29] provide extensive

thermodynamic information, including the enthalpy and Gibbs energy as a func-

tion of temperature. These allow the fitting of the concentration-independent

term Cα(T ) in eq. (2) for ice and water. The enthalpy of each phase α can be
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derived from the Gibbs energy by

Hα = Gα − (
∂Gα
∂T

)P,c. (10)

Both the enthalpy and Gibbs free energy are fitted against data provided by

the IAPWS formulations with the LSSolve function of Maple. Back-calculating

from the fitted enthalpy for the latent heat showed excellent agreement with a

relative error of 1.3 %.

However, to the authors’ knowledge there is no experimental data for the

enthalpy or Gibbs free energy in aqueous colloidal suspensions. Hence the model

of Peppin et al. [13, 30] is utilized in order to extend the description from

pure water and ice to aqueous suspensions, specifically aqueous suspensions of

bentonite. The liquidus curve

Tl(c) = Tm(1 +mc
1 + a1c+ a2c

2 + a3c
3 + a4c

4

1− c/cp
)−1, (11)

with the coefficients of [30] and cp = 0.64 being the random dense-packing den-

sity (RDP), describes the temperature below which a coarse-grained suspension

begins to separate into a solid ice phase and the remaining suspension. The

factor m = kbTm
VpρfLf

with the Boltzmann constant kb, the melting temperature of

the pure substance Tm, the volume of an individual particle Vp, the fluid density

ρf and its melting enthalpy Lf incorporates the effect of differently sized parti-

cles. The origin of the dependence on the particle volume is its inclusion in the

osmotic pressure of a suspension of hard spheres, which is employed by Peppin

et al. [13] to derive eq. (11). The particles are assumed to be spherical and thus

Vp = 4
3πr

3 with r being the radius of an individual particle. From this it can

be seen that the liquidus curve in the model of Peppin et al. depends signifi-

cantly on the radius of the suspended particles, with smaller particles resulting

in steeper liquidus curves.

The connection between the liquidus curve and the chemical equilibrium

conditions is exploited in order to establish a least-squares problem for the

functions Aα(T ), Bα(T ) in eq. (2) for both phases. For the temperature range
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Table 1: Employed physical and numerical parameters for the simulations.

parameter simulation value physical value

Numerical parameters

grid spacing ∆x 1 1× 10−6 m

time step ∆t 0.025 2.5× 10−4 s

interface width W 2.5 · 5 ·∆x 12.5× 10−6 m

Physical parameters

surface energy γαβ 0.097879 0.03 J/m2

diffusivity in suspension 1 1× 10−10 m2/s

diffusivity in ice 1× 10−3 1× 10−13 m2/s

kinetic coefficient ταβ 33 1.01 Js/m4

melting temperature Tm 1 273.15 K

of interest, the equilibrium conditions

Gs(cs, T ) + µs(cs, T )(ci − cs)−Gi(ci, T ) = 0 (12)

µs(cs, T )− µi(ci, T ) = 0 (13)

are evaluated on the liquidus curve points (cs, T ) and the solidus curve points

(ci, T ) for the suspension phase’s Gibbs energy Gs and the ice phase’s Gibbs

energy Gi respectively. This yields a matrix of squared residuals whose mini-

mization gives the functions Gs(c, T ), Gi(c, T ) which generate a phase diagram

with the minimal distance from the given phase boundaries. Again the LSSolve

function of Maple is employed, this time with an additional constraint that the

curvatures of the Gibbs energy curves are to be positive for the employed tem-

perature ranges. The solid ice phase is assumed to be largely stoichiometric,

with its solidus curve given by ci = (Tm − T
5 )/100 in non-dimensional tem-

perature T and melting temperature Tm. This slight dependence of the ice

composition on the temperature is included for numerical stability.

This procedure can be executed for any desired particle radius, yielding

Gibbs energy curves approximating a binary phase diagram according to the
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theory of Peppin et al. In contrast, the prior work of Huang [11] does not con-

sider the particle size at any time during model formulation or parametrization.

Three particle radii r (250 nm, 375 nm and 500 nm) are studied in this paper,

with the free energy parameters of each tabulated in the employed precision

in the Supplementary Material. The resulting phase diagrams for all particle

sizes are shown in one plot in fig. 1. As the solidus curve does not differ much

between the particle sizes, only a single one was drawn. Generally the liquidus

curve becomes flatter and moves towards the RDP with increasing particle size.

Furthermore, table 1 shows the remaining numerical and physical param-

eters necessary to conduct the simulation. The parameters were nondimen-

sionalized by choosing the length scale l0 = 1µm, the diffusion scale D0 =

1× 10−10 m2/s, the temperature scale T0 = 273.15 K, the energy density scale

E0 = 3.065× 105 J/m3 and the molar volume scale Vm,0 = 2× 10−5 m3/mol.

Based on these the remaining scales of time, surface energy and kinetic coef-

ficient can be derived. For each physical parameter, its dimensionless value is

determined by dividing it by its corresponding scaling parameter.

4. Simulation conditions

The simulations are conducted as follows: A planar ice front is put in the

left part of the domain and the rest of the domain is filled with the suspension

at the investigated solids loading c0. Periodic boundary conditions are applied

on the top and bottom sides, whereas zero flux conditions are applied on the

left (solid) side. On the right (liquid) side of the domain the phase-field has zero

flux conditions and the solids loading is fixed to c0 with a Dirichlet boundary

condition. A moving window technique is applied in order to simulate a quasi-

infinite domain in the growth direction. The planar ice front is set such that

this moving window starts immediately. A graphical overview of the simulation

setup can be seen in fig. 2a. Within this and following figures, yellow indicates

the ice crystal and blue the suspension with the red-orange part indicating the

diffuse interface. Additionally in fig. 2b the considered microstructural lengths
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Figure 1: Back-calculated phase diagrams of freeze casting for three different particle sizes

with the parameters from the Supplementary Material. Since the solidus curves are very close

together only a single line is drawn. However, the liquidus curves differ significantly for each

particle size. The larger the particle radius, the flatter the liquidus curve becomes.
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are shown: The tip distance, or wavelength, λ, the ice trunk diameter dice and

the suspension channel diameter dsus. For the trunk and channel diameters

the straight regions of pure ice and pure suspension are determined. Hence

the region of side branches is excluded from the measurement which leads to

λ > dice + dsus.
n
o
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φ
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periodic

n
o
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u
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D
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c
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c
0

v
G
x

T

(a) Simulation setup for the direc-

tional solidification of the suspen-

sion.

λ

d
ice

d
su
s

(b) Exemplary part of a steady-state

simulation. λ is the tip distance, dice

the ice trunk diameter and dsus the

suspension channel diameter.

Figure 2: Initial and boundary conditions of the simulation as well a subregion of an exemplary

steady-state simulation. Yellow indicates the ice crystal and blue the suspension, with the

red-orange part being the diffuse interface.

5. Results

Simulations are conducted with the following solidification conditions: Solids

loading c0 ∈ {0.075, 0.1, 0.15}, pulling velocity v ∈ {3.2, 6.4, 12.8}µm/s and tem-

perature gradient G ∈ {1.5, 24}K/mm for the parameter sets for 250 nm, 375 nm

as well as 500 nm particle suspensions, resulting in 54 simulations. The first tem-

perature gradient is similar to the one found in experiments [31] with the second

one chosen for quicker convergence of the microstructure. The simulations are

continued until no dendrite is moving significantly out of the moving window.

Figure 3 gives an overview of the final simulated microstructure for various pa-

rameters. Several observations are evident: The microstructure is refined by
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higher pulling velocities v and dendritic side branches are less developed. The

latter effect is likely caused by the distance between dendritic trunks decreasing

which causes diffusion-mediated suppression of the side branches. In contrast

the solids loading directly changes the mass fraction of ice to suspension, with

an increase of the solids loading causing a widening of the suspension channels

and a narrowing of the ice trunks. Furthermore, dendritic side branches become

more prominent for higher solids loading as the trunk distance grows. Finally,

increasing the particle size generally lessens side branching by decreasing the

trunk distance. Simulation snapshots of all conducted simulations in their final

state are available in the Supplementary Material.

6. Discussion

The tip distance λ, the ice trunk diameter dice and the suspension channel

diameter dsus are measured as the microstructural length parameters in each

simulation. In order to build a relationship between the processing parameter

set {c0, v,G} and the output microstructural length, it is assumed that a power

law relationship holds for each parameter and that the parameters’ effect can be

separated, i.e. their product yields the microstructural length up to a constant

multiplier. Hence the results will be fitted to the model

L = Acn0 v
mGo (14)

with L being any of the microstructural lengths. This model is similar to an-

alytical models for dendritic growth in alloy solidification [32], except that the

solids loading c0 takes the place of the solidification range ∆T0. In the following,

the model is fitted to the different simulated microstructural lengths and the

results discussed. The main thrust of this discussion will be on the scaling laws

and hence the prefactor A will not be discussed, but reported for completeness’

sake. Table 2 provides an overview of the predicted, observed and fitted results

for scaling laws from literature as well as this work. In the following, the fitting

results will be discussed and compared to theoretical and experimental results.
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Figure 3: Overview of simulation results for suspensions of 250 nm and 500 nm particles being

directionally solidified in a 1.5 K/mm temperature gradient. Increasing the pulling velocity

refines the structure in general. Increasing the solids loading roughens the side structure of the

ice dendrite and decreases the fraction of ice trunk diameter to suspension channel diameter.

Freeze-cast suspensions with larger particles tend to show less dendritic features.
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Table 2: Predicted, observed and fitted parameters to eq. (14).

L predicted/fitted/observed n in cn0 m in vm o in Go

λ predicted by Kurz et al. [32] - -0.5 (cells), -0.25 (dendrites) -0.5

λ observed by Waschkies et al. [31] - -0.8 to -1.3 -

λ observed by Deville et al. [33] - -0.67 to -1 -

λ fitted in this work, 250 nm particles −0.07088± 0.06306 −0.6058± 0.03714 −0.2675± 0.01658

λ fitted in this work, 375 nm particles +0.04561± 0.03953 −0.5699± 0.02304 −0.2317± 0.009860

λ fitted in this work, 500 nm particles +0.08709± 0.04294 −0.5847± 0.02525 −0.2037± 0.01029

dsus fitted in this work, 250 nm particles +0.3733± 0.1037 −0.6995± 0.06473 −0.4193± 0.03747

dsus fitted in this work, 375 nm particles +0.5611± 0.05328 −0.7520± 0.03389 −0.1699± 0.01207

dsus fitted in this work, 500 nm particles +0.6485± 0.09631 −0.7754± 0.06159 −0.05052± 0.01963

dice fitted in this work, 250 nm particles −0.7147± 0.09337 −0.3119± 0.04442 −0.1488± 0.01882

dice fitted in this work, 375 nm particles −0.4091± 0.07633 −0.4488± 0.04028 −0.2590± 0.01902

dice fitted in this work, 500 nm particles −0.1987± 0.05944 −0.3877± 0.03151 −0.2134± 0.01415
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First, the results for particles of 250 nm radius are used for parametriz-

ing this model. Fitting the simulation data for the wavelength λ against this

model yields the parameters plus-minus the standard deviation A = 4729µm±

956.0µm, n = −0.07088 ± 0.06306, m = −0.6058 ± 0.03714, o = −0.2675 ±

0.01658, with v in µm/s and G in K/m. The velocity exponent m is close to

the range of experimentally reported values [−0.67,−1.3][31, 33, 34]. Note that

as [33] mentions the velocity exponent depends on the particle size, the effect

of which will be shown shortly. However, none of the experimental studies sys-

tematically studied the influence of the temperature gradient on the structural

wavelength. The aforementioned model by Kurz et al. [32] predicts an exponent

of −0.5, whereas here a temperature gradient exponent o of roughly half this

value is observed. While this difference remains to be investigated, it does im-

ply that care should be taken to control the temperature gradient during freeze

casting, as it has a significant influence on the wavelength of the microstructure.

The exponent n for the solids loading c0 is harder to compare with existing mod-

els as these typically employ the solidification range ∆T0. However, drawing a

scatter plot of the solids loading and the observed wavelength for several veloc-

ities, as shown in fig. 4, helps to interpret the result: The wavelength is mainly

determined by the pulling velocity v and the temperature gradient G, with the

solids loading showing only a minor effect. The direction of this effect even

changes for the higher gradient, hence the small value for n and its comparably

large standard deviation can be interpreted as the solids loading having close to

no correlation to the structural wavelength for this particle size.
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Figure 4: Scatter plot of the solids loading and observed wavelength with 250 nm particles. The

triangular symbols indicate the observations for G = 1.5 K/mm and the rest for G = 24 K/mm.

The solids loading only has a minor effect on the observed wavelength compared to the pulling

velocity and temperature gradient. Furthermore, its effect apparently reverses direction for

the higher gradient.

Fitting the model with measured suspension channel diameter dsus yields the

parameters A = 10.48 mm ± 3.953 mm, n = 0.3733 ± 0.10364, m = −0.6995 ±

0.06473, o = −0.4193 ± 0.03747. The velocity exponent now crosses into the

range of experimentally observed exponents and the temperature gradient ex-

ponent is closer to the model by Kurz et al. [32]. However, the exponent for

the solids loading has changed appreciably. In order to interpret this, consider

that the suspension channels are closely related to the dense part of the struc-

ture after the freeze-casting process is finished. The density, or equivalently

porosity, has been experimentally shown [34] to depend linearly on the solids

loading of the suspension, which would correspond to a solids loading expo-

nent of n = 1 for the dense part of the structure. However, the suspension

channels in the simulation do not correspond exactly to the solid walls within

the freeze-cast structure, as the solidification is not finished and the channel

diameter disregards the ambiguous region of side branches. Furthermore, the

suspension channel diameter itself is modulated by the wavelength λ. In order
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to show the linear relationship between density and solids loading, the observed

mass fraction of the suspension below the dendrite tips is plotted over the solids

loading in fig. 5 along with a linear fit to the data for a velocity of 12.8µm/s.

The fit is also calculated for the remaining velocites and gradients, all of which

show good correlation (R2 ≥ 0.995), suggesting that the model reproduces the

linear relationship between solids loading and density as found in experiments.
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Figure 5: The mass fraction of the suspension below the dendrite tips vs solids loading for

{G = 1.5 K/mm, v = 12.8µm/s} with 250 nm particles.

Finally, applying the model to the ice dendrite trunk diameter dice yields the

parameters A = 148.5µm ± 41.61 µm, n = −0.7147 ± 0.09337, m = −0.3119 ±

0.04442, o = −0.1488 ± 0.01881. These are very different from the previous

results and indicate that the ice trunk diameter is less sensitive to changes in

the gradient and the solidification velocity but more sensitive to changes in the

solids loading compared to the suspension channel diameter. The sign change of

the solids loading exponent directly follows from the ice phase rejecting particles

and hence when more particles are present, less space is available for the ice to

solidify. Calculating the mass fraction of ice as above also indicates that a linear

relationship, now with negative slope, exists between the ice mass fraction and

the solids loading of the suspension.

Next, the simulation results for particles of 375 nm radius are used for

parametrizing eq. (14). The fitting parameters A = 4471 µm ± 555.0 µm, n =
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0.04561±0.03953, m = −0.5699±0.02304, o = −0.2317±0.009862 are obtained

for the wavelength λ. In contrast to the 250 nm particle results, the concentra-

tion exponent n is now positive. Furthermore its standard deviation relative to

the exponent is smaller, which suggests that there is a small coarsening effect

on the wavelength when increasing the solids loading. The corresponding scat-

ter plot in fig. 6 shows mostly irregular behavior again but with more points

trending upwards for higher solids loading. Both the velocity exponent m and

the temperature gradient exponents o have decreased slightly from the previous

case.
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Figure 6: Scatter plot of the solids loading and observed wavelength with 375 nm particles. The

triangular symbols indicate the observations for G = 1.5 K/mm and the rest for G = 24 K/mm.

The effect of the solids loading on the wavelength is still minor compared to the pulling velocity

and temperature gradient. However more points tend to trend upwards with a higher solids

loading.

Fitting the data for the suspension channel diameter dsus yieldsA = 2387µm±

381.6µm, n = 0.5611±0.05328, m = −0.7520±0.03389, o = −0.1699±0.01207.

The solids loading exponent is now closer to the expected value of 1. As can

be seen in fig. 1, for a given undercooling below the liquidus, the suspensions

with larger particles will have an equilibrium solids loading closer to the ran-

dom dense-packing density of 0.64. The liquidus becomes very steep close to
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this RDP, similar to the stoichiometric solidus line. Hence a suspension region

which achieves this concentration range will stay close to it, even if it is cooled

down further. In combination with the stoichiometric solidus line this implies

that a constant partition coefficient k = xi/xs with the equilibrium solids load-

ing in the ice xi and the suspension xs is achieved. Away from this region the

partition coefficient is a function of temperature. Thus it is likely that more

cells in the growth direction below the moving window point would further move

the solids loading exponent to a value of 1, as a bigger part of the simulation

domain would have an almost constant partition coefficient. The velocity ex-

ponent m increased from the 250 nm particle results whereas the temperature

gradient exponent o decreased.

Employing the data for the ice trunk diameter dice yields A = 1167 µm ±

281.9µm, n = −0.4091 ± 0.07633, m = −0.4488 ± 0.04028, o = −0.2590 ±

0.01902. As with the suspension channel results, the velocity exponent shows

a slight increase. Contrary to those results, the temperature gradient exponent

o increased. The solids loading exponent is still negative but has decreased

substantially.

Finally, the simulations results for particles of 500 nm radius are used for

parametrizing eq. (14). For the structural wavelength λ, the parameters A =

3791 µm ± 504.5 µm, n = 0.08709 ± 0.04294, m = −0.5847 ± 0.02525, o =

−0.2037±0.01029 are obtained. As with the 375 nm results, a slight coarsening

effect of increased solids loading is present, with even more points trending up-

wards in a scatter plot. The effect of the temperature gradient on the wavelength

seems to decrease slightly with increasing particle size. The velocity exponent

is close to that of 375 nm particle suspensions, though slightly larger now. In

[33] the authors observed a velocity exponent of 1 for 400 nm particles and one

of 2
3 for 100 nm particles, both suspended in water. The present study shows

a minor effect in the other direction, that is the velocity exponent increases as

the particle size is reduced. However, the magnitude of this effect relative to

the error in the exponent does not suggest that the effect is significant. An ex-

planation for the dependence of the velocity exponent is the concentration and
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particle size dependent diffusivity [35]. However, the present study assumes a

constant diffusivity of particles in the suspension. Hence the variation of the

velocity exponent is likely to be largely a function of the kinetics represented

by diffusivity, with only minor energetic influences.

For the suspension channel diameter dsus the parameters A = 965.7 µm ±

272.5 µm, n = 0.6485±0.09631, m = −0.7754±0.06159, o = −0.05052±0.01963

are obtained. The velocity exponent is now higher than for the suspension with

smaller particles, but the ranges including the error overlap again. The trend

of increasing solids loading exponent with increasing particle size continues, al-

though in a less significant way as the ranges including the error overlap now.

Furthermore, the dependence of the suspension channel diameter on the tem-

perature gradient is significantly smaller than for the suspensions with smaller

particles. Scatter plots of the suspension channel diameter against the temper-

ature gradient generally show a refinement effect, with two outliers. One shows

almost no refinement and the other a coarsening effect on the suspension chan-

nel, whereas both the wavelength and ice trunk exhibit refinement. Excluding

those two outliers roughly doubles the exponent, but even at −0.1 there is still

a significant difference to the results for suspension with smaller particle sizes

which remains to be investigated further.

Lastly, fitting against the results for the ice trunk diameter dice yields the

parameters A = 1122 µm ± 207.6 µm, n = −0.1987 ± 0.05944, m = −0.3878 ±

0.03151, o = −0.2134± 0.01415. The solids loading exponent has become even

smaller at this particle size, continuing the trend of previous particle size vari-

ations. In contrast, both the velocity and temperature gradient do not follow

the previous trends.

7. Conclusions and outlook

A new parametrization of the freeze-casting process with the phase-field

grand potential approach was presented. Within this, the complex capillary

and kinetic anisotropy of the ice-water interface was qualitatively approximated
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with sums of spherical harmonics. The as-of-yet experimentally undetermined

thermodynamics of an aqueous colloidal suspension were approximated by rely-

ing on a previously calculated phase boundary by Peppin et al. [13, 30]. Based

on these approximations, simulations in the dendritic morphology regime were

conducted for suspensions with particles of radius 250 nm, 375 nm and 500 nm.

The wavelength, the suspension channel diameter and the ice trunk diameter

were measured in the steady-state regime and connected to the input processing

parameters of velocity, temperature gradient and solids loading of the suspen-

sion. Qualitatively, observations showed that higher velocities and temperature

gradients refined the microstructure for all three considered microstructural

lengths. Increasing the solids loading yielded larger suspension channels and

narrower ice trunks with the dendritic features becoming less prominent. A

simple power law model was fitted to the simulated data in order to determine

scaling relationships between the processing parameters and the microstructural

lengths.

The wavelength was shown to depend mostly on the pulling velocity and the

temperature gradient, with an increase of either leading to a smaller wavelength.

This suggests that temperature gradients should be controlled in experiments

in order to make them more comparable. In contrast to e.g. [33], an increase

in particle size in the results shows a small reduction of the velocity exponent.

Since in this study only the energetic and not the kinetic effects of changing the

particle size was considered, the experimental behavior is likely to be largely at-

tributable to kinetic effects such as the concentration and particle size dependent

diffusivity. There was little influence of the solids loading on the wavelength for

the smallest particle size. For the two bigger particle sizes, increasing the solids

loading slightly increased the wavelength.

The suspension channel diameter, which roughly corresponds to the width of

the solid walls within the final freeze-cast structure, showed a bigger dependence

on the employed pulling velocity with the exponent also being closer to the

experimentally observed range. This dependence slightly grew with increasing

particle size similar to [33]. While an increase of the temperature gradient also
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led to smaller suspension channel diameters, the magnitude of the influence

seems to strongly depend on the particle size. At the largest investigated particle

size, the influence of the temperature gradient was minor compared to both the

pulling velocity and solids loading. An increase in the solids loading showed

larger suspension channel diameters with its exponent getting larger and closer

to 1 with increasing particle size. It was shown that the mass fraction of the

suspension phase below the dendrite tips is a linear function of the solids loading

with positive slope, as is commonly found in experiments.

Finally, the ice trunk diameter, which roughly corresponds to the pore width

within the final freeze-cast structure, showed a smaller dependence on the em-

ployed pulling velocity. The magnitude of the pulling velocity dependence

changed with the particle size but without an obvious trend. Similar results

are found for the temperature gradient. An increase in solids loading showed

smaller ice trunk diameters with its dependence becoming smaller for larger

particles.

In total the results suggest that coarse-graining the individual particles into

a concentration field is a viable approach for simulating freeze-casting. A fu-

ture study investigating the effect of concentration and particle size dependent

diffusivity should be conducted in order to test whether this kinetic effect re-

produces the experimentally observed dependence of the velocity scaling law on

the particle size.
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1 Gibbs free energy parameters

This section details the numerical values employed to describe the Gibbs free
energy of aqueous bentonite suspensions with particles of size 250 nm, 375 nm
and 500 nm. All values are nondimensionalized based on the scales noted in the
main text, with Gdim = G ·E0. For each particle size, the Gibbs free energy of
both the solid ice phase Gi(c, T ) and the liquid suspension phase Gs(c, T ) are
reported. Both are of the form

Gα(c, T ) = Aα(T )c2 + Bα(T )c + Cα(T )

with Aα(T ), Bα(T ), Cα(T ) being parabolic functions of temperature T . The
functions Ci(T ), Cs(T ) for the ice and suspension phases are independent of
the particle size since they are based on the pure phase description following
IAPWS.

Table 1: particle size independent functions
Ci(T ) −843.987154950033T 2 + 2668.14452736135T − 1823.8679855496
Cs(T ) −1862.28940047943T 2 + 3718.19539783286T − 1855.56475865368

The functions Aα(T ), Bα(T ) for the ice and suspensions phases are tabulated
below for each particle size:

Table 2: functions for 250 nm particles
Ai(T ) −363.813052701955T 2 + 1038.42737506969 ∗ T − 661.07371316661
As(T ) +624.781729505937T 2 − 2001.5373528048 ∗ T + 1603.02054720731
Bi(T ) −14305.5893356235T 2 + 26721.0370280905 ∗ T − 12534.9375540961
Bs(T ) −363.813052701955T 2 + 1038.42737506969 ∗ T − 661.07371316661
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Table 3: functions for 375 nm particles
Ai(T ) 8696450.19594392T 2 − 16499259.5809074T + 7827020.0745525
As(T ) +4419.53212429992T 2 − 9890.27278224592T + 5533.24950362982
Bi(T ) −130214.073750852T 2 + 245337.628150446T − 115442.978896433
Bs(T ) 12514.870762504T 2 − 23252.2358392643T + 10773.1205717657

Table 4: functions for 500 nm particles
Ai(T ) +995906.442526578T 2 − 2106381.19059346T + 1113015.48143482
As(T ) +10047.1312993791T 2 − 21246.3527768701T + 11224.7417646649
Bi(T ) −5645.19688672837T 2 + 11679.3939071022T − 6046.24602532013
Bs(T ) +2941.69029612794T 2 − 5300.34949864201T + 2371.22834220704

Finally, the full Gibbs energy functions for the different particle sizes are
also given:

Gi,250 nm =(750591.374527449 ∗ T 2 − 1.47463039577804 ∗ 106 ∗ T + 743122.943915487) ∗ c2

+ (−14305.5893356235 ∗ T 2 + 26721.0370280905 ∗ T − 12534.9375540961) ∗ c
− 843.987154950033 ∗ T 2 + 2668.14452736135 ∗ T − 1823.8679855496

Gs,250 nm =(1603.02054720731 − 2001.5373528048 ∗ T + 624.781729505937 ∗ T 2) ∗ c2

+ (−363.813052701955 ∗ T 2 + 1038.42737506969 ∗ T − 661.07371316661) ∗ c
− 1862.28940047943 ∗ T 2 + 3718.19539783286 ∗ T − 1855.56475865368

Gi,375 nm =(8.69645019594392 ∗ 106 ∗ T 2 − 1.64992595809074 ∗ 107 ∗ T + 7.82702007455250 ∗ 106) ∗ c2

+ (−130214.073750852 ∗ T 2 + 245337.628150446 ∗ T − 115442.978896433) ∗ c
− 843.987154950033 ∗ T 2 + 2668.14452736135 ∗ T − 1823.86798554960

Gs,375 nm =(5533.24950362982 − 9890.27278224592 ∗ T + 4419.53212429992 ∗ T 2) ∗ c2

+ (12514.8707625040 ∗ T 2 − 23252.2358392643 ∗ T + 10773.1205717657) ∗ c
− 1862.28940047943 ∗ T 2 + 3718.19539783286 ∗ T − 1855.56475865368

Gi,500 nm =(703345.204001284 ∗ T 2 − 1.51219218860276 ∗ 106 ∗ T + 812645.048703083) ∗ c2

+ (−6458.38650416161 ∗ T 2 + 13153.8099858636 ∗ T − 6713.44791450838) ∗ c
− 843.987154950033 ∗ T 2 + 2668.14452736135 ∗ T − 1823.86798554960
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Gs,500 nm =(7984.99647865678 − 14858.7003887071 ∗ T + 6911.02343660797 ∗ T 2) ∗ c2

+ (3754.87978653526 ∗ T 2 − 6774.76533796470 ∗ T + 3038.43011872479) ∗ c
− 1862.28940047943 ∗ T 2 + 3718.19539783286 ∗ T − 1855.56475865368

2 Simulation snapshots

The following images show simulation snapshots of all conducted simulations in
their final state. The field shown is the phase-field of the ice phase, with yellow
indicating ice and blue indicating suspension. The red-orange part in between
is the diffuse interface.
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