
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Analysis of the Matrix Event Graph
Replicated Data Type
FLORIAN JACOB1, CAROLIN BEER2, NORBERT HENZE3, AND HANNES HARTENSTEIN4,
(Member, IEEE)
1KASTEL – Institute of Information Security and Dependability, Karlsruhe Institute of Technology, Karlsruhe, Germany (e-mail: florian.jacob@kit.edu)
2KASTEL – Institute of Information Security and Dependability, Karlsruhe Institute of Technology, Karlsruhe, Germany (e-mail: carolin.beer@student.kit.edu)
3Institute of Stochastics, Karlsruhe Institute of Technology, Karlsruhe, Germany (e-mail: henze@kit.edu)
4KASTEL – Institute of Information Security and Dependability, Karlsruhe Institute of Technology, Karlsruhe, Germany (e-mail: hannes.hartenstein@kit.edu)

Corresponding author: Florian Jacob (e-mail: florian.jacob@kit.edu).

ABSTRACT Matrix is a new kind of decentralized, topic-based publish-subscribe middleware for
communication and data storage that is getting particularly popular as a basis for secure instant messaging.
By comparison with traditional decentralized communication systems, Matrix replaces pure message
passing with a replicated data structure. This data structure, which we extract and call the Matrix Event
Graph (MEG), depicts the causal history of messages. We show that this MEG represents an interesting and
important replicated data type for decentralized applications that are based on causal histories of publish-
subscribe events: First, we prove that the MEG is a Conflict-Free Replicated Data Type for causal histories
and, thus, provides Strong Eventual Consistency (SEC). With SEC being among the best known achievable
trade-offs in the scope of the well-known CAP theorem, the MEG provides a powerful consistency guarantee
while being available during network partition. Second, we discuss the implications of byzantine attackers
on the data type’s properties. We note that the MEG, as it does not strive for consensus or strong consistency,
can cope with n > f environments with n participants, of which f are byzantine. Furthermore, we analyze
scalability: Using Markov chains, we study the number of forward extremities of the MEG over time and
observe an almost optimal evolution. We conjecture that this property is inherent to the underlying spatially
inhomogeneous random walk. With the properties shown, a MEG represents a promising element in the
set of data structures for decentralized applications, but with distinct trade-offs compared to traditional
blockchains and distributed ledger technologies.

INDEX TERMS Conflict-Free Replicated Data Type, Decentralized Systems, Distributed Computing,
Eventual Consistency, Instant Messaging, Middleware, Publish-Subscribe, Scalability

I. INTRODUCTION

MATRIX1 is a public specification of protocols for a
middleware that provides communication and data

services for decentralized applications. Matrix implements
topic-based publish-subscribe services based on a federated
architecture. On the one hand, it is particularly popular as
a basis for decentralized instant messaging since the Matrix
servers of an organization are fully under the control of
the organization, but can still federate with servers of other
organizations. Prominent examples for private federations
are the French government and public administration, and
the Federal Defense Forces of Germany. On the other hand,
the Matrix public federation has a fast-growing user base,

1https://matrix.org/, https:/matrix.org/spec/

currently with more than 25 million accounts. A prominent
example of an organization that uses the public federation is
the Mozilla foundation.

Similar to e-mail or XMPP, clients attach themselves to a
Matrix server, their so-called homeserver, by which they are
represented in the Matrix network. Servers with clients sub-
scribed to a specific topic (called room in Matrix parlance)
form a federation to exchange published events that are inde-
pendent of other topics. Events can be either communication
events or state update events on the stored data. In the instant
messaging use case, topics are employed for group or one-to-
one communication rooms, communication events are used
for instant messages, and stored data is used for persistent
information like room description or membership.

VOLUME 99, 2016 1

https://matrix.org/
https:/matrix.org/spec/


Jacob et al.: Analysis of the Matrix Event Graph Replicated Data Type

In contrast to e-mail or XMPP, Matrix replaces pure mes-
sage passing with a replicated, per-topic data structure that
stores the history of events in causal order. As Matrix servers
can thereby synchronize their room’s full causal histories, the
Matrix approach promises increased system resilience in a
decentralized setup: After a network partition, a server has
significantly stronger means to recover the complete state of
the room, i.e., to avoid loss of events. While this increased
level of system resilience has been observed by practitioners,
the underlying replicated data type has not yet been analyzed
thoroughly.

In this paper, we analyze the replicated data type of the
Matrix approach and show that its properties make it a
distinct member in the family of blockchain and distributed
ledger data structures and of interest for researchers and prac-
titioners alike. We first extract and abstract the replicated data
type from the Matrix specification and denote it by Matrix
Event Graph (MEG) in the following. A MEG is a Directed,
Acyclic Graph (DAG) made up of vertices which represent
communication and state update events, and directed edges
which stand for potential causal relations between events.
Because the graph represents the potential causal order of
events, a correct graph is inherently acyclic. Adding new
events is the only write operation supported by the MEG,
which makes it an append-only data structure. Thus, the
MEG can be considered as a fundamental concept for various
applications that are based on causal histories, ranging from
decentralized crowdsensing databases in Internet of Things
scenarios through decentralized collaboration applications to
decentralized push notification systems.

Since, for distributed ledger technologies, it has been
conjectured that consistency, decentralization, and scalability
in their ‘strongest forms’ cannot be achieved simultane-
ously [1], [2], our analysis focuses on these aspects and
the distinct trade-offs made by a MEG: in brief, we show
that the MEG achieves decentralization and scalability, but
does not strive for consensus or strong consistency. As the
main contribution, we therefore provide an analysis of the
degree to which the MEG fulfills consistency, deployability
in decentralized scenarios, and scalability:

CONSISTENCY: Since Matrix provides availability and
partition tolerance, in accordance with the CAP theorem [3],
the MEG necessarily has to sacrifice strong consistency. We
show that the MEG provides Strong Eventual Consistency
(SEC) by proving that the MEG is a Conflict-Free Replicated
Data Type (CRDT) [4] for causal histories. We compare SEC
to Eventual Consistency and Strong Consistency in Subsec-
tion IV-A.

DECENTRALIZATION: We discuss the implications of
byzantine attackers on the specific type of CRDT that the
MEG represents. The avoidance of consensus is the primary
reason that allows the MEG CRDT to facilitate n > f
environments with n total participants, of which f exhibit
byzantine faults.

SCALABILITY: The probabilism of uncoordinated, con-
current append updates represents the main challenge for

the analysis of the MEG with respect to scalability. We are
interested in the width of the MEG, which is represented
by the number of forward extremities, i.e. ‘vertices without
children’, over time. We study the width of the MEG using
Markov chains. We observe that the MEG does not degener-
ate and conjecture that this non-degeneracy is inherent to the
underlying spatially inhomogeneous random walk.

Thus, as outlined above, the aspects of this analysis are
a theoretical model (the MEG) for a real-world system of
relevance (Matrix), and proofs of properties of this model
based on precise assumptions. To transfer these theoretical
results back to a real-world system, we also clarify which
assumptions currently hold in the Matrix system and how
missing elements can be dealt with.

This paper is structured as follows: We begin with a note
on Matrix (Section II) and an overview of how the MEG
works and the statement of the problem in Section III. Sec-
tion IV presents related work and background on replicated
data types. Assumptions and architecture are given in Sec-
tion V. In Section VI, we prove that a MEG is a Conflict-Free
Replicated Data Type. In Section VII, we show the MEG can
be made byzantine fault tolerant. We also perform a reality
check by comparing Matrix and the utilized assumptions of
the proofs. Section VIII formalizes the stochastic behavior of
the width of the MEG and provides evidence that the width
always evolves to a near-optimal value, and does so fast.
We summarize limitations and open issues of our analysis
in Section IX and conclude the paper in Section X.

II. A NOTE ON MATRIX
The Matrix project started in September 2014, and it is
governed by The Matrix.org Foundation C.I.C. A core team
guides the evolution of Matrix by developing the open
standard and the reference homeserver [5]. Matrix is the
protocol employed by the Element instant messenger, a
chat application for human communication in competition
to, e.g., Slack, Microsoft Teams, Signal, and WhatsApp.
While it features end-to-end encryption similar to Signal, it
is mainly advertised for its fully decentralized group chats,
which protocol-level contestants like XMPP or IRC do not
provide. Today, Matrix is designed for a single dedicated
server per user: For each topic, Matrix employs an instance of
a resource-intensive full-mesh broadcast protocol, and, in ad-
dition, Matrix requires a valid Domain Name System record
and matching X.509 certificate per server. Even with end-
to-end encryption, sensitive metadata accumulating on the
dedicated server is among the reasons why Matrix currently
develops into the direction of a peer-to-peer protocol with
Matrix servers on every device [6].

However, Matrix is not a chat protocol, but an extensible
topic-based publish-subscribe system for the exchange of
structured data that can also be used for human-machine
and machine-machine communication. Matrix is designed
with eventual synchronization of event histories as primary
operation. While this matches the use case of instant mes-
saging with reliable history synchronization, it might be

2 VOLUME 99, 2016



Jacob et al.: Analysis of the Matrix Event Graph Replicated Data Type

DSN Research Group

Institute of Telematics, Faculty of Informatics

1

𝜂

replica 1

𝛼

add 𝛽 → 𝛼

add 𝛿 → 𝛼

replica 2

𝛼 𝛼 𝛿

add 𝛾 → 𝛽

𝛼 𝛽 𝛾

add 𝜁 → {𝛽, 𝛿}

𝛽
𝛼

𝛿
𝜁

𝛽
𝛼

𝛿 𝜁

𝛾𝛽
𝛼

𝛿

𝛽
𝛼

𝛿 𝜁

𝛾𝛽
𝛼

𝛿

𝛾
𝛼 𝛽

add 𝜂 → {𝛾, 𝜁}

𝛽
𝛼

𝛿 𝜁

𝛾

𝜂
𝛽

𝛼
𝛿 𝜁

𝛾
How are you?Hi!

Hello! How are you? I‘m fine, and you?

FIGURE 1. Basic example of the state evolution of two Matrix Event Graph
(MEG) replicas over time, from left to right. Two MEG replicas start with an
initial state, i.e. a root vertex α. Both replicas concurrently append new vertices
to the current state, as indicated by add new vertex→ parent vertices. While the
operation is immediately applied to the local state, the arrows between
replicas represent the delay until the operation is applied on the remote
replica. In the chat use case, every new vertex corresponds to a text message,
depicted by chat bubbles. The timeline is presented in detail in Section III.

inefficient or problematic when a history is not needed or
allowed. Matrix prioritizes best-effort, opportunistic progress
of individual servers over coordination with all servers, and
it might therefore be less suited for applications that require
consensus or strong real-time guarantees.

III. MEG: OVERVIEW & PROBLEM STATEMENT
In the following, we give an overview of the MEG concept
as a replicated data type for append-only causal histories of
events. A sample MEG with two replicas concurrently adding
to the graph is illustrated in Fig. 1. For illustration purposes,
we typically utilize the instant messaging use case of Matrix.
We also typically focus our studies on a single MEG instance,
and, therefore, on a single broadcast domain associated with
that MEG. However, several independent MEGs can coexist,
e.g., one per publish-subscribe topic.

A replicated data type is a data structure that is replicated
across the peers of a network (in Matrix: the homeservers for
a specific topic) and consists of a) a structure, b) a procedure
to add an event, and c) a procedure to update all replicas, i.e. a
way to deal with concurrency. Before we describe the general
MEG concepts, we first give an example by describing the
evolution of MEG replica states, as shown in Fig. 1.

MEG EXAMPLE TIMELINE (AS GIVEN IN FIG. 1).
Replica 1 starts by adding vertices β and γ, before receiving
anything from replica 2. Replica 2 adds vertex δ concurrently
to the addition of β. In contrast, vertex ζ is added after
β is received, and therefore vertex ζ gets both β and δ as
parent. After vertices γ and ζ have been eventually received,
convergence is reached momentarily. Due to the concurrent
additions, the number of forward extremities has increased to
two. Then, replica 2 adds vertex η without concurrent addi-
tions from replica 1, which reduces the number of forward
extremities to one, and again convergence is reached.

GENERAL MEG STRUCTURE. As mentioned before, a
MEG is a Directed, Acyclic Graph (DAG). One MEG repre-

sents the message history and attributes of a group or 1:1 chat,
and it is replicated independently by all participating servers.
Upon creation, the DAG consists of only a single vertex, the
root vertex (cf. α in Fig. 1). Each vertex in the DAG cor-
responds to an application-defined publish-subscribe event,
e.g., to a text message or temperature reading. Edges rep-
resent potential causal relationships between events: When
a new vertex is added, it is connected to the existing DAG
through one or more outgoing edges. These edges point
towards vertices that had no incoming edges before, i.e.,
the newest events in causal history, which we from now on
call the forward extremities of the DAG. The selection of
forward extremities is done according to the current state
of the adding replica. This potential causal relationship is
known as the happened before relationship2, as defined by
Lamport [7]: For α ← β, we say that α happened before β.
The edges thereby form a partial order that is consistent with
the causal order in which events took place.

In addition to being directed, acyclic, and representing the
causal order of events, the MEG is also weakly connected,
since all newly added vertices have at least one outgoing
edge. The root vertex, being the only vertex without outgoing
edges, is therefore the unique minimal element of the partial
order represented by the DAG. DAGs with this specific
structure are also called rooted DAG [8].

ADDING A NEW VERTEX TO THE SOURCE REPLICA.
The replica that creates an event on behalf of a client and
appends it as a vertex is called source replica. When it adds
a vertex, the corresponding event could be causally related
to previous events. Thus, all forward extremities should be
included as edges: As shown in Fig. 1, replica 2 includes
both forward extremities β and δ as parents for the new
vertex ζ. In practice, however, there are some issues: Replicas
can experience a high number of forward extremities caused
by latencies or partitions, and malicious replicas could forge
events with a high number of parents. Certain algorithms
executed on the MEG do not scale well with the number of
parent events, i.e., they can become very resource intensive,
especially when old parts of the MEG are referenced as
parents [9]. Therefore, the maximum number of parent events
is typically restricted to a finite value d. If there are more than
d forward extremities, a replica selects a subset of size d for
the new event. For the potential causal order relation in the
MEG still to be consistent with the actual causal order, clients
have to inform the replica about actual causal dependencies
so that those are included as parents.

UPDATING ALL REPLICAS. Beyond appending the new
vertex to the local DAG, the source replica also needs to
synchronize with the other replicas. The replica sends a DAG
update that consists of the new vertex and edges to all replicas
using a broadcast protocol. On receiving an update, replicas
append the new vertex to their DAG via the new edges
selected by the source replica, as soon as all required parent

2Note that Lamport defines α happened before β as α→ β. In this paper,
we actually use the converse relation β → α, as common for distributed
ledger technologies. It follows that for β → α, we say α is the parent of β.

VOLUME 99, 2016 3



Jacob et al.: Analysis of the Matrix Event Graph Replicated Data Type

vertices exist in the local replica. In case the parent vertices
are not (yet) available, the update is buffered until they are.

DEALING WITH CONCURRENT UPDATES. When clients
at two different replicas concurrently invoke updates, each
replica considers their vertex as the single next step in causal
history represented by their local DAGs. In case of contin-
uous synchronization failure, e.g., due to a network parti-
tion, additional client updates will enlarge the inconsistency
between the replicas’ DAGs and will lead to two causally
independent chains of events, built from the last synchronized
event. Both replicas will continue to try to synchronize their
state with other replicas. When the partition heals, all replicas
will eventually receive all updates. As depicted in Fig. 1,
instead of trying to find a linear order of updates and to
solve conflicts with rollbacks, the concurrent DAG states
are merged by attaching both causally independent chains
of events to the last synchronized event, i.e., by forking
the DAG. Accepting concurrency in the data type itself by
providing only a partial order on events is the core idea of the
MEG. It is also the basis for our proof of conflict-freedom
in Section VI. A fork in the DAG introduced by concurrency
will lead to two causally independent forward extremities.
Following the attachment rules for new vertices, a replica that
has received and appended both causally independent chains
to its DAG selects both as parents for a new vertex. In terms
of graphs, this means that the new vertex will join both chains
again, which indicates the end of the period of concurrency
and causal independence, and reduces the number of forward
extremities by one.

Problem statement. The way in which concurrency is
handled in a MEG, as well as the use of various parameters
as outlined above, give rise to the key research questions
addressed in this paper:
• Which consistency guarantees can application develop-

ers expect from a MEG?
• Under which assumptions do these guarantees hold?
• Can the width of the MEG degenerate?

The preceding explanations describe how the MEG main-
tains availability under partition, and how it tries to achieve
Eventual Consistency, as conjectured by the Matrix devel-
opers [10]. In this paper, we provide a proof of Strong
Eventual Consistency in Section VI. In Section VII, we relax
the adopted assumptions, particularly on the communication
primitive. In addition, the overview above showed that if
the number of vertex parents is restricted to d and selected
randomly, the evolution of the number of forward extremities
u, i.e., the width of the DAG, is non-trivial in concurrent
environments. In Section VIII, we explore whether the width
of the DAG converges within a sufficiently small number
of iterations for arbitrary start values of the initial number
of forward extremities u, if k replicas continuously select d
parents independently and then synchronize the new vertices.
In particular, we investigate how the choice of the number of
parent vertices d and k affects the speed of convergence.

Not in the scope of this paper: While we make assump-
tions on and deal with the underlying broadcast primitive, we

consider the topic of broadcast communication per se beyond
the scope of this paper. Moreover, Matrix employs an access
control concept, which we assume to be present in MEGs.
The access control aspects were examined in [11] and are not
the object of this analysis.

IV. RELATED WORK & BACKGROUND
Jacob et al. investigated quantitative aspects of the pub-
lic Matrix federation and found scalability problems with
the broadcast communication currently employed by Ma-
trix [12]. However, they did not investigate the scalability
and other properties of the replicated data structure itself.
The access control system of Matrix, which builds on top of
the MEG, was recently studied in [11]. Privacy and usability
aspects of Matrix, along with a CRDT-based vision on how
to improve this situation in federated networks in general, are
the topic of [13].

In the field of replicated data types, Shapiro et al. intro-
duced the category of Conflict-Free Replicated Data Types
(CRDTs), together with a new consistency model provided
by this category, namely Strong Eventual Consistency [4].
Following the initial definition, new papers mostly focused
on implementations of the data type, like the JSON-CRDT
by Kleppmann et al. [14], or extended the base concept of
CRDTs [15]. The initial CRDT concept was overhauled in
cooperation with the original authors in [16]. We will mainly
use the new CRDT terminology introduced there.

In contrast to traditional distributed databases that aim for
strong consistency or to consistency models for distributed
ledger technologies that aim for consensus, SEC does pro-
vide neither a global total order nor finality. However, SEC
improves over Eventual Consistency, common in Internet-
scale distributed databases, as it does not require conflict
arbitration or rollbacks [4], [17].

A. CONSISTENCY MODELS
The inherent trade-off between Consistency and Availability
in the presence of network partitions in distributed systems
led to the definition of a variety of consistency models.
A well-known consistency model is Eventual Consistency,
which provides the following guarantees [4]:
• Eventual Delivery: An update applied by some correct

replica is eventually applied by every correct replica.
• Termination: Every invoked method terminates.
• Convergence: Correct replicas that applied the same set

of updates eventually reach equivalent states.
Strong Eventual Consistency (SEC) builds on Eventual

Consistency, and strengthens Convergence [4]:
• Strong Convergence: Correct replicas that applied the

same set of updates have equivalent states.
Whether two states are equivalent depends on the specific

application. In our case, the state of two replicas is equivalent
if their graphs consist of identical vertices and edges. Note
that “the same set of updates” means that, while the updates
are identical, they might be received or applied in different

4 VOLUME 99, 2016



Jacob et al.: Analysis of the Matrix Event Graph Replicated Data Type

order. The key difference between Convergence and Strong
Convergence is that with Convergence, replicas may coor-
dinate with other replicas to reach agreement on their state
even after having applied updates. Especially, if the ordering
of updates matters, this can lead to rollbacks. With Strong
Convergence, the agreement has to be immanent and implicit.

B. CONFLICT-FREE REPLICATED DATA TYPES

Conflict-Free Replicated Data Types (CRDTs) were first
formalized in [4]. CRDTs are an abstract data structure
that allows for optimistic update execution (cf. [18]), while
guaranteeing conflict-freedom upon network synchroniza-
tion. The system model of CRDTs is based on a fail-silent
abstraction with a Causal Order Reliable Broadcast commu-
nication protocol (see Section V). For objects that implement
a CRDT in a system with n replicas, Shapiro et al. show that
SEC is ensured for up to n− 1 replica failures [4].

Two conceptually different, but equally expressive types of
CRDTs are the operation-based and the state-based CRDT.
Replicas implement functions that can be invoked by clients
to access or modify the state. The key difference between
operation-based and state-based CRDTs lies in the way of
synchronization: In state-based CRDTs, all replicas peri-
odically send their full state to all other replicas, which
then merge states. In contrast, operation-based CRDTs only
synchronize upon changes. Source replicas transmit state
changes resulting from a client invocation as operations. In
this paper, we focus on operation-based CRDTs and show in
Section VI that the MEG is an operation-based CRDT.

Operation-based CRDTs implement functions that can be
classified as either update or query function. A query
function returns information on the current state of the
replica, whereas an update function modifies the state.
An update function consists of two parts: At first, a
generator3 part is executed by the source replica. It is
side-effect-free and returns an operation, i. e., an encap-
sulation of the state changes. The second part is called
effector4, it must be executed at every replica. The source
replica transmits the generated operation to all replicas using
broadcast. Upon reception of an operation, each replica ex-
ecutes the effector part locally and applies the resulting
changes to their state [19].

In general, the data structure of a CRDT cannot maintain
a specific shape or topology, such as a DAG, as concurrent
updates could violate shape or topology invariants. However,
specific implementations of CRDTs can overcome this re-
striction, for example as shown by the Operation-based Add-
only monotonic DAG described in [20]. Their implementation
allows clients to collaboratively edit a DAG, by adding ver-
tices and edges in separate updates. Topology preservation is
enforced by rejection of new edges that violate the current
partial order of the DAG. In a similar vein, the MEG is

3Originally introduced as prepare-update
4Originally introduced as effect-update

designed in a way that preserves its topology as rooted DAG
inherently, which we will show in Subsection VI-B.

V. ASSUMPTIONS AND ARCHITECTURE
Assumptions. We study a single replica group, consisting
of a static and known set of replicas, for a single publish-
subscribe topic. Furthermore, we make use of two failure
models, both based on the asynchronous timing assumption,
which means that no upper bounds on computation or net-
work transmission times are given.

The fail-silent model [21, p. 63] implies that faulty replicas
can crash-stop at any time, while the remaining replicas have
no means to reliably distinguish failure from communication
or processing delays, i.e., the fault is ‘silent’. The fail-silent-
arbitrary model [21, p. 64] allows for arbitrary, i.e. byzan-
tine, behavior of faulty replicas. This feature includes inten-
tionally malicious behavior and protocol non-adherence. In
this model, ‘silent’ also means that replicas cannot detect
whether another replica currently adheres to the protocol
or not. We call a replica correct if it is non-faulty. Correct
replicas strive to achieve consistency on the full MEG state,
and interact with each other to reach consistency and provide
failure tolerance.

The formal CRDT-proof that we give in Section VI is
based on the stricter assumption of a fail-silent model. In
Section VII, we extend the claims to the fail-silent-arbitrary
model.

We assume that replicas are connected by direct links with
an arbitrarily varying but finite delay, i.e., faulty replicas
cannot prevent any two correct replicas from eventually
communicating. Furthermore, we make use of two broadcast
abstractions in this work. Firstly, we use Reliable Broad-
cast. Informally, this abstraction provides a set of properties
which guarantee that, eventually, the same set of messages
is received by all correct replicas, even if the sending replica
fails [21]. Formally, Reliable Broadcast provides the follow-
ing properties:
• Validity: If a correct replica sends a message m, then it

eventually receives m.
• No duplication: Correct processes do not receive mes-

sages more than once.
• No creation: If a correct replica receives a message m

with sender p, then m was previously sent by p if p is
correct.

• Agreement: If a message m is received by some cor-
rect replica, m is eventually received by every correct
replica.

The other, more powerful, abstraction is called Causal
Order Reliable Broadcast. It extends the guarantees of Re-
liable Broadcast by additionally preserving the causal order
of messages [21]:
• Causal Delivery: For any messages m1 and m2 where

the broadcast of message m1 happened before (cf. [7]),
the broadcast of message m2, m2 is only received by
replicas that have already received m1.

VOLUME 99, 2016 5



Jacob et al.: Analysis of the Matrix Event Graph Replicated Data Type

update request incoming operationoutgoing operation

transmit

pass

Client

Replica

Communication
abstraction

Communication
abstraction

Replica

update
request return

broadcast

transmit

System boundary

FIGURE 2. An update request by a client invokes the generator of an update
function at the replica, which creates an update operation. This update
operation is then transmitted to all replicas, including the calling replica itself,
through the communication abstraction. The communication abstraction
enforces guarantees about incoming operations, e.g. on their ordering. The
system boundary indicates the components of a single participant.

apply

pass

pass

Reference
Monitor CRDT State

Receiving
abstraction

Sending
abstraction

pass

transmit

broadcast

update
request return

Communication abstracion

Replica

System boundary

update request incoming operationoutgoing operation

FIGURE 3. Inner workings of the source replica and communication
abstraction when receiving an update request or an incoming operation. After
entering the replica through the Reference Monitor, a valid update request or a
valid incoming operation is passed to the CRDT. In case of an update request,
the CRDT encodes the state changes as an operation which is then broadcast
to all replicas using the communication abstraction. An incoming update
operation is processed at the CRDT component, which then applies the
operation to the local state of the replica.

The formal CRDT-proof in Section VI is based on the
Causal Order Reliable Broadcast abstraction. In Section VII,
we relax the required primitive to Reliable Broadcast —
even in byzantine scenarios — while maintaining the CRDT
properties.

Architecture. As we can see in Fig. 2, each client is
attached to a single trusted replica. The client can request
functions of class query or update at their replica, as
defined in Subsection IV-B. As part of executing an update
function, the source replica distributes operations, i.e., en-
coded state changes, to all replicas using a broadcast com-
munication abstraction.

A more granular architectural view is provided by Fig. 3.

Inside a replica, the Reference Monitor is the entry point for
incoming requests from clients and operations from remote
replicas. It serves as a gate keeper to prevent further pro-
cessing of operations or requests that violate the protocol
or, in a byzantine setting, originate from unauthorized or
unauthenticated parties. Operations and requests that pass the
Reference Monitor are handed to the CRDT. The CRDT can
read and modify the state of the replica and is thus the core
logic module of the replica. In case of a query request, it
accesses the state and returns the desired value. For update
requests, the generator of the update function encapsulates
state changes into an operation that is passed to the commu-
nication abstraction. The CRDT then returns to the client to
indicate success. The communication abstraction sends the
update operation to all replicas, including the calling replica
itself.5 These update operations then trigger the local update
effector, which applies the changes to the state of the replica.

VI. THE MEG AS CRDT
Building upon the overview given in Section III, we formal-
ize the MEG as an operation-based replicated object. We then
show Theorem 1 in accordance with the assumptions used by
Shapiro et al. for CRDTs (cf. Subsection IV-B) [19].

Theorem 1. Under the assumption of a fail-silent n > f
environment with n total and f faulty participants, and a
Causal Order Reliable Broadcast primitive, the MEG is an
operation-based CRDT and thereby provides Strong Eventual
Consistency (SEC).

A. FORMALIZATION OF THE MEG
To define the MEG as a CRDT, we adopt the formal
definition introduced with the concept of operation-based
CRDTs in [4], [19] and use the pseudo code notation by
Preguiça [22].

An object is formally defined as a tuple (S, s0, q, t, u, P ):
the space of possible per-replica states is denoted by S, and
s0 ∈ S is the initial state of every replica. The set
of query functions is given by q. update functions are
composed of a generator step t and an effector step
u. The effector u may contain a delivery precondition
P , which must be fulfilled before an operation is processed
further. Notably, the delivery precondition P only delays the
execution, but it does not abort the effector step. When a
replica with state s ∈ S executes a step u, we denote this
as s • u, which yields a new state. As shorthand for the
state at replica i, we write si ∈ S.

We provide a pseudo code implementation of the MEG as
an operation-based CRDT in Listing 1. A vertex is a tuple
(e, w) that represents an event in the MEG, where w is a
unique identifier for the event and e contains the actual event.
Edges represent a potential causal relationship between child
and parent vertex. The state is a DAG, defined through

5While, depending on the specific communication abstraction, this is not
required in an actual implementation, it is important on a conceptual level to
ensure that the guarantees hold.

6 VOLUME 99, 2016



Jacob et al.: Analysis of the Matrix Event Graph Replicated Data Type

Listing 1. Pseudo code implementation of the Matrix CRDT. The type of the
respective functions is indicated by query and update. The two parts of the
update function are denoted by generator and effector. The delivery
precondition P is denoted by pre. The function unique returns a unique
identifier.
state set S = (V,E) // vertices V are of the form

(event e, uid w), E represents the edges:
E ⊆ V × V

initial ({(e0, w0)}, ∅)
query lookup (uid w) : boolean

return ∃((e′, w′) ∈ V ) : w′ == w
query hasChild (vertex (e, w)) : boolean

return ∃((e′, w′) ∈ V ) : ((e′, w′), (e, w)) ∈ E
query getExtremities () : list of vertices

return L =
⋃

(e,w)∈V : not hasChild((e,w)){(e, w)}
query getState () : set

return S
update add
generator (event e)

let L = getExtremities()
let w = unique()
return add, (e, L,w)

effector (event e, list of vertices L, uid w)
pre: ∀(ep, wp) ∈ L: lookup(wp)
V = V ∪ {(e, w)}
E = E ∪

⋃
(ep,wp)∈L{((e, w), (ep, wp))}

a set of vertices and a set of edges. In the inital state s0,
it consists of a single vertex and no edges. The query
functions lookup, hasChild, getExtremities and
getState allow to access the replica state without mod-
ification. The lookup function checks whether a vertex
with a given identifier is part of the current state. Similarly,
the hasChild function checks for the existence of child
vertices for a given vertex. The getExtremities func-
tion returns the current set of forward extremities, whereas
getState returns the state. The update function add
is used to append new events to the MEG. Its generator
part t takes the event e as an input argument. Based on the
state of the source replica at that time, a set L of forward
extremities is created. Lastly, a unique identifier w is chosen.
The parameters w, e and L, and a reference to the update
function add are returned together.

The effector u is invoked by the operation that was
created in the generator step. Once the delivery precon-
dition P is fulfilled, the new vertex (e, w) and the new edges
((e, w), (ep, wp)) for each (ep, wp) ∈ L are added to the
state, i.e., to the set of vertices and edges, respectively.
The delivery precondition P states that all ‘parents’ in the set
L are required to be part of the current state before the new
vertex can be added.

B. PRESERVATION OF THE DAG TOPOLOGY
As mentioned in Subsection IV-B, the preservation of a spe-
cific shape, such as a DAG, is not possible in a generic way
for CRDTs. We now show that the MEG always preserves
the desired data structure of a rooted DAG by design as
Lemma 2.

Lemma 1. There is at least one forward extremity at any time
after initialization of the MEG.

Proof. Can easily be seen by induction.

Lemma 2. The MEG maintains the properties of a rooted
DAG at all times: (i) single root, (ii) acyclicity, and (iii) weak
connectedness.

Proof. By induction.
Base case: The initial state s0 contains a single vertex and no
edges. This MEG therefore is a rooted DAG.
Induction step: Given replicas i with state si = (Vi, Ei),
where si is a rooted DAG, an arbitrary source replica r is
selected. As part of the generator t, the set of forward
extremities is determined as L, and a unique identifier w is
created. By Lemma 1, the set of forward extremities |L| is
non-empty. Since generator t is side-effect-free, the MEG
remains unchanged.

Consequently, the execution of the effector u is trig-
gered at each replica i. Effector u awaits the fulfillment of
the delivery precondition P , which ensures that si contains
all parents that are referenced byL. Finally, applying u yields
the new replica states s′i:

s′i = (Vi ∪ {(e, w)}, Ei
⋃

(ep,wp)∈L{(e, w), (ep, wp))}).

Since all new edges are outgoing from the new vertex (e, w),
no new cycles can be formed, and existing roots remain roots.
No new roots or isolated vertices have been added, as the new
vertex has outgoing edges. Because all si were assumed to be
rooted DAGs, all s′i must be rooted DAGs.

C. PROOF OF CRDT PROPERTIES
We now show Theorem 1, i.e., that MEGs implement
an operation-based CRDT and, thus, guarantee SEC. We
make use of the Theorem on Commutative Replicated Data
Types [4], which states that “assuming causal delivery of up-
dates and method termination, any op[eration]-based object
that satisfies the commutativity property for all concurrent
updates, and whose delivery precondition is satisfied by
causal delivery, is SEC.”

We need to show commutativity of concurrent updates
and causal order reception of operations for noncommutative
updates. Commutativity for updates is determined by the
commutativity of their operations. Two updates (t, u) and
(t′, u′) commute, if and only if for any reachable state s ∈ S
in which the delivery precondition P is satisfied for both u
and u′, the following properties hold: (i) P is still satisfied
for u in state s • u′, and (ii) s • u • u′ ≡ s • u′ • u.

We proceed in the following way: we present three lem-
mata on the preservation of the delivery precondition, on the
commutativity of operations, and on the eventual fulfillment
of the delivery precondition. With these lemmata, Theorem 1
is then easily proved.

Lemma 3. Once an update operation satisfies the delivery
precondition P for some state s, it will continue to satisfy P
for any state s′ following s.

Proof. Consider any update operation u(e, L,w), i.e., the
operation (e, L,w) applied via the effector u, that satisfies

VOLUME 99, 2016 7



Jacob et al.: Analysis of the Matrix Event Graph Replicated Data Type

P in some state s = (V,E). Applying an arbitrary operation
u(e′, L′, w′) to s yields a new state s′:

s′ = s • u(e′, L′, w′)
= (V ∪ {(e′, w′)}, E ∪

⋃
(ep,wp)∈L′{(e′, w′), (ep, wp)})

A delivery precondition P being satisfied in s implies that it
remains satisfied for s′:

∀(ep, wp) ∈ L : (ep, wp) ∈ V
⇒∀(ep, wp) ∈ L : (ep, wp) ∈ V ∪ {(e′, w′)}

Lemma 4. Any two operations u(ei, Li, wi) and u(ej , Lj , wj)
commute with each other.

Proof. We consider any state s = (V,E) and two update op-
erations u(ei, Li, wi), u(ej , Lj , wj) that both satisfy delivery
precondition P in s.

As shown in Lemma 3, after applying one operation, the
other operation still satisfies P . It remains to show that the
resulting states are equivalent, regardless of the order in
which the effectors are executed. Since u only performs a
union of the edge and vertex sets, by commutativity of the
union operator, commutativity of u follows:

s • u(ei, Li, wi) • u(ej , Lj , wj)
≡ s • u(ej , Lj , wj) • u(ei, Li, wi)

Lemma 5. Under the assumption of Causal Delivery broad-
cast, the CRDT delivery precondition P is immediately satis-
fied on message reception.

Proof. The delivery precondition P ensures that all ref-
erenced parents are part of the local state. Since
getExtremities selects all parents from the current
state, P must be satisfied at the source replica after the
generator step. Once satisfied, P remains satisfied since
vertices are never removed. Therefore, receiving all causally
preceding operations is sufficient to satisfy P at every replica.
Consequently, having causal order message reception, P is
immediately satisfied upon reception.

Proof. (Theorem 1) As we have shown, MEG updates are
commutative (Lemma 4), and all essential properties of the
MEG are preserved by design (cf. Lemma 2). Since the MEG
encodes causal relations as edges in the data structure, the de-
livery precondition P can ensure that these dependencies are
respected without sacrificing commutativity. Thus, Strong
Convergence is guaranteed. Eventual Delivery is guaranteed
by Lemma 5. Given the implementation in Listing 1, we can
see that there are no loops or recursive calls in either of the
functions, therefore, they will eventually exit. Knowing that
the delivery precondition P is immediately satisfied given
causal order message reception, as shown in Lemma 5, we

can conclude that Termination holds. Therefore, all proper-
ties of an operation-based CRDT are met by the MEG, and
Theorem 1 holds.

VII. RELAXATION OF ASSUMPTIONS AND REALITY
CHECK FOR BYZANTINE SETTINGS
In this section, we evaluate the assumptions of Theorem 1
that were used in the CRDT proof of the MEG in Subsec-
tion VI-C, and relax them wherever possible without vio-
lating previously shown guarantees. We remove the Causal
Order guarantee of the broadcast primitive in Theorem 2 of
Subsection VII-A. In Subsection VII-B, we switch from a
fail-silent n > f environment with n total and f faulty partic-
ipants to a fail-silent-arbitrary, i.e. byzantine, n > f environ-
ment, which results in Theorem 3. In Subsection VII-C, we
compare Matrix as an implementation of the MEG concept
in the byzantine setting to the requirements of Theorem 3,
and conclude that it currently does not provide SEC without
additional assumptions because of its unreliable broadcast
protocol.

A. RELAXATION OF THE BROADCAST ASSUMPTIONS
In Section VI, we assumed a Causal Order Reliable Broad-
cast abstraction, which is commonly used with CRDTs.
However, the causal relationships of events depicted in the
MEG hints that the Causal Order delivery property is not
necessary in addition to Reliable Broadcast6 for the MEG
to function, and can be removed without violating Strong
Convergence for safety as well as Eventual Delivery and
Termination for liveness (cf. Section IV for definition). We
formulate this observation as Theorem 2:

Theorem 2. Under the assumption of a fail-silent n > f
environment with n total and f faulty participants, and a
Reliable Broadcast primitive, the MEG is an operation-based
CRDT and thereby provides Strong Eventual Consistency.

Proof. For the proof, we revisit every property required for
the CRDT proof as in Subsection VI-C, and remove applica-
tions of the Causal Order property of the broadcast primitive.

Strong Convergence. To provide Strong Convergence,
replicas must receive noncommutative update operations in
their causal order. Since every update operation commutes
with every other, as shown in Lemma 4, Strong Convergence
does not require any ordering guarantees by the communica-
tion abstraction.

Eventual Delivery. In Lemma 5, we used the Causal
Delivery property to show that the delivery precondition P
is immediately satisfied on reception. For Eventual Delivery,
we now need to show that the delivery precondition P is still
eventually satisfied without Causal Delivery.

6The No Duplication property of Reliable Broadcast is also not necessary:
because each vertex has a unique identifier w, and because outgoing edges
cannot be added afterwards, it suffices to make the effector conditional on
the presence of the vertex in the replica state to gain idempotent effectors
that can cope with multiple receptions of identical operations.

8 VOLUME 99, 2016



Jacob et al.: Analysis of the Matrix Event Graph Replicated Data Type

Given an update operation, P is satisfied if all referenced
parents are part of the state of a replica. If an operation
satisfies P at some point in time, it continues to satisfy P
thereafter, because the MEG is an append-only data structure.
As per Lemma 5, P is satisfied for any given operation after
the generator step at the source replica finishes. There-
fore, all referenced parents must have been previously added
to the state and therefore be part of some update operation.
If an update operation does not satisfy P at some replica
due to reordering of operations by the broadcast abstraction,
replicas can delay and buffer the update operation until P is
satisfied. Owing to the Validity and Agreement properties of
the broadcast abstraction (cf. Section V), all missing update
operations are eventually received by all correct replicas. As
correct replicas apply all operations that they received and
that eventually satisfy P , all parents must eventually be part
of their state. Consequently, for correct replicas, P must
eventually be satisfied for every update operation.

Termination. Since all method executions terminate, and
since we have shown that in the new setting, P is eventually
satisfied for all operations, the Termination property still
holds.

Thus, the MEG only requires Reliable Broadcast, and does
not depend on Causal Delivery.

B. TOLERATING BYZANTINE FAILURES
We now switch from a fail-silent n > f environment with
n total and f faulty participants to a fail-silent-arbitrary,
i.e. byzantine, n > f environment. A fail-silent-arbitrary
n > f environment means that a client’s trusted replica might
be the only non-malicious replica in the system.

It is intuitively reasonable that the MEG is able to cope
with such a hostile environment, as it does not strive for con-
sensus: a secure implementation of the Reference Monitor
component can identify and filter invalid update operations
before they are applied by the effector. Neither the CRDT
properties, nor the Reference Monitor, nor the implemen-
tation of Validity and Agreement in the broadcast protocol
require a quorum or majority vote. Therefore, a majority in
the system results in no advantage for the attacker. Based
on this intuition, we formulate and prove an analogy of
Theorem 2 for a fail-silent-arbitrary n > f environment.
However, we first have to clarify assumptions on the attacker
and the system.

The main difference in the byzantine environment to
previous settings is that attackers can arbitrarily influence
those parts of the decentralized system that they control.
Considering the system architecture shown in Fig. 3, the
attackers control the generator part and the sending of
the broadcast of their replicas. Through the generator and
the broadcast, they can try to influence the receiving part,
namely the Reference Monitor and the effector of correct
replicas, which process attacker-defined input.

From the system architecture, we derive that the attacker
is limited to two basic attack capabilities: First, they can
violate the broadcast protocol by performing equivocation,

i.e., broadcasting different update operations to different
replica subsets, or not broadcasting an update operation to all
replicas [23]. Second, they can generate and send malicious
update operations. This attacker model is based on the threat
model [24] for CRDTs by Zhao et al., but simplified as we
assume a static, known set of replicas.

Note that “byzantine reliable broadcast”, as it is commonly
understood [21, p. 120], requires that all correct replicas
deliver the same single message, even in face of equivocation.
This requirement leads to a quorum or other form of majority
vote, with correct replicas in two-thirds majority over faulty
replicas, i.e. f < n

3 . However, the MEG is equivocation-
tolerant, which means that on sender equivocation, correct
MEG replicas can cope with receiving two messages in arbi-
trary order from the broadcast abstraction, as long as every
correct replica receives both. Due to the MEG’s conflict-
free nature and commutative operations, this is sufficient to
provide SEC, as we will show later in Theorem 3.

Lemma 6. Under the assumption of transferable authentica-
tion, there exists a broadcast algorithm that provides Validity
and Agreement for equivocation-tolerant algorithms in a fail-
silent-arbitrary n > f environment with n total and f faulty
participants.

Proof. We show that the classical Eager Reliable Broadcast
algorithm [21, p. 80] provides Validity and Agreement, as
defined in Section V, for equivocation-tolerant algorithms
under the employed assumptions. The algorithm works as
follows: A correct sender best-effort-broadcasts the message
to all replicas, including itself. Best-effort broadcast works
by sending the message to all receivers via reliable unicast,
which ensures Agreement as long as the sender is correct.
A correct replica immediately delivers the message on re-
ception, which ensures Validity. To ensure Agreement if the
sender fails during best-effort broadcast, receiving replicas
best-effort-broadcast the message to every replica again, if
they have not yet broadcast that message.

We assume that transferable authentication [25] is avail-
able, e.g., in the form of digital signatures. Due to trans-
ferable authentication, faulty replicas cannot forge messages
by other replicas, or manipulate relayed messages. A faulty
replica is therefore left with attacking Agreement of the
underlying best-effort broadcast via other forms of equivo-
cation [25], either as a sender or a receiver:

If receiving replicas are faulty and perform no or a faulty
re-broadcast, a correct sender will still contact all correct
replicas directly, which ensures Agreement.

A byzantine sender can broadcast a message to only a
subset of replicas. If the subset contains a correct replica, the
replica will deliver the message. Then, it will re-broadcast the
message to all replicas, which includes all other correct ones,
and will thereby ensure Agreement. If the subset contains no
correct replica, the message is not delivered by any correct
replica, and Agreement is therefore not violated.

A byzantine sender can also broadcast two different mes-
sages to different subsets of replicas. Correct replicas will

VOLUME 99, 2016 9



Jacob et al.: Analysis of the Matrix Event Graph Replicated Data Type

immediately deliver any of the received messages. Due to the
re-broadcasts, both messages will eventually be delivered by
all correct replicas, ensuring Agreement.

To further describe the attacker capabilities, we have to
introduce a distinction between valid and invalid opera-
tions. An operation is valid if it cannot be distinguished by
the receiving replica from operations that originate from a
protocol-abiding generator. Valid operations, therefore,
include operations from correct replicas as well as from
faulty replicas that abide by or deviate from the protocol
in indistinguishable ways. An operation is invalid if it does
not possess authenticity, integrity, or otherwise violates as-
sumptions of the protocol that can be distinguished from
valid operations by the receiving replica. While this notion
of invalid events can directly be extended to unauthorized
events, we consider that out of scope for this paper, and
reference publication [11] for a discussion on how a MEG
Reference Monitor can ensure authorization based on policy
information embedded in the MEG state itself.

As long as invalid operations are applied in the same
way by all correct replicas, a CRDT in a state derived
from invalid operations would technically still achieve Strong
Eventual Consistency, as that would neither violate Eventual
Delivery nor Strong Convergence. However, to make the SEC
guarantee more meaningful for applications in the fail-silent-
arbitrary setting, we define an additional security property
that prevents invalid operations from being applied:
• Protocol Observance: A correct replica does not apply

an invalid operation to its state.

Lemma 7. Under the assumption of a fail-silent-arbitrary
n > f environment with n total and f faulty participants,
transferable authentication, and a broadcast primitive that
provides Validity and Agreement for equivocation-tolerant
algorithms, the Reference Monitor component of a MEG can
provide Protocol Observance.

Proof. The main task of the Reference Monitor component is
to shield the CRDT from invalid operations, i.e., to provide
Protocol Observance. To achieve this task, the Reference
Monitor is the endpoint for all external interfaces of the
replica.

Authenticity and integrity prevent impersonation and unob-
trusive alteration of operations that are not directly received
from the source replica. Both properties can be achieved by
the assumed transferable authentication.

Faulty replicas can violate the forward extremity selection
mechanism and include non-concurrent forward extremities
as parents. If the parents are received by any correct replica,
they will eventually be received by all due to Validity and
Agreement, and the Reference Monitor can verify that none
of the parents is an ancestor of any others before the effector
applies the operation. However, an operation with forged,
e.g., random event identifiers for which no operation exists, is
indistinguishable from a valid operation for which the parents
were not received yet. Therefore, such an operation is valid

by definition, and is not part of Protocol Observance. This is
a potential denial-of-service attack, and it will be discussed
for Theorem 3.

Faulty replicas can generate operations with non-unique
event identifiers, in order to violate the uniqueness assump-
tion used in the MEG. If applied to the state, such operations
would have disastrous consequences for Strong Convergence,
as they tamper with the very definition of what the same
events are. However, (probabilistically) unique identifiers
can be ensured in a byzantine environment, by generating
identifiers from the event data and metadata using a collision-
resistant hash function. In this way, Reference Monitors can
verify whether an identifier is valid by recomputing the hash
themselves, which is necessary to ensure Strong Convergence
in an equivocation-tolerant way.

We conclude that operations that pass the Reference Mon-
itor are valid. Thereby, Protocol Observance is provided.

We continue to assume a static, known set of replicas in the
following proof. Still, we want to note that dynamic replica
sets introduce additional attack surfaces in byzantine envi-
ronments: such attacks may prevent replicas from receiving
some or all update operations, which could affect Eventual
Delivery. We consider this an important, but separate topic.

For the following discussion of SEC in byzantine envi-
ronments, we need an additional way to classify operations:
An operation generated by a faulty replica is malicious if
the operation would not have been sent if a correct replica
was in the faulty replica’s place. While all invalid operations
are malicious, valid operations can be malicious as well:
For example, faulty replicas can send operations that were
not generated by using all forward extremities available to
the faulty replica. However, for correct replicas, such an
operation is indistinguishable from an operation generated
by a correct replica that just has not applied those forward
extremities yet.

Theorem 3. Under the assumption of a fail-silent-arbitrary
n > f environment with n total and f faulty participants,
transferable authentication, and a broadcast primitive that
provides Validity and Agreement for equivocation-tolerant
algorithms, the MEG is an operation-based CRDT and
thereby provides Strong Eventual Consistency.

Proof. We revisit every property required for the CRDT
proof as in Subsection VI-C, and we check how byzantine
replicas can try to break those properties for correct replicas.

Strong Convergence. As we can assert Protocol Obser-
vance as given by Lemma 7, Strong Convergence is only
concerned with the state resulting from the application of
valid operations by correct replicas.

As given by Lemma 6, the broadcast abstraction ensures
Agreement in byzantine n > f environments. Nevertheless,
by using equivocation, byzantine replicas can influence the
order in which their operations are applied. However, this
fact does not impair Strong Convergence, as shown in Sub-
section VII-A.

10 VOLUME 99, 2016



Jacob et al.: Analysis of the Matrix Event Graph Replicated Data Type

Byzantine replicas can send malicious but valid opera-
tions that are applied to the state. Still, under unique event
identifiers, which we can assert due to Lemma 7, any two
valid operations commute as of Subsection VII-A, and Strong
Convergence holds. The application of a malicious but valid
operation can only lead to different outcomes on different
replicas if one or multiple replicas deviate from the protocol,
e.g. due to an implementation error. In this case, the deviating
replicas are faulty and, thus, do not require further consider-
ation for Strong Convergence.

Eventual Delivery. Lemma 6 shows that we can assert
Validity and Agreement by the broadcast abstraction even
in a byzantine n > f environment. By Lemma 7, we can
assert that only valid operations reach the effector of a correct
replica. We will now show that for a given valid operation,
the delivery precondition P is either eventually fulfilled on
all correct replicas, or never fulfilled on any correct replica.
Be reminded that the MEG’s delivery precondition states that
all ‘parents’ referenced by an operation have to be part of the
replica state before the operation is applied.

A byzantine replica has two ways to target Eventual De-
livery: It can equivocate and provide only a subset of replicas
with the update operation, or it can create malicious but valid
updates that will never fulfill the delivery precondition.

For any form of equivocation, the broadcast abstraction
will still ensure Agreement, and Protocol Observance will en-
sure unique identifiers for non-identical operations. Thereby,
every correct replica will receive all valid update operations
received by any correct replica. Therefore, the attacker can-
not hinder eventual satisfaction of the delivery precondition
through equivocation.

An attacker can target Eventual Delivery by the creation of
valid but malicious operations that include forged identifiers
as parents for which no forward extremities exist. In an
asynchronous system, those operations are indistinguishable
from operations for which the parents have not yet been
received, but will be eventually. Therefore, operations that
refer to non-existing parents stay forever in the delivery
precondition fulfillment buffer. Consequently, the malicious
operations will never be delivered at any correct replica. If a
single correct replica could apply the operation eventually, it
must have received its parents. Then, due to Agreement, all
other correct replicas would eventually receive and therefore
apply all parent operations as well.

As byzantine replicas cannot lead to an inconsistent ful-
fillment of the delivery precondition on different correct
replicas, Eventual Delivery holds.

Termination. As we can assert Protocol Observance as
given by Lemma 7, the Termination property in the byzantine
setting is about the effector applying malicious but valid op-
erations. Those operations can take two main forms relevant
for Termination:

Not including all forward extremities does not prevent
operation application from terminating. We still want to note
that this behavior can slow down the convergence of the

MEG width (cf. Section VIII for discussion of MEG width
behavior).

As noted with Eventual Delivery, operations that refer to
non-existing parents stay in the delivery precondition fulfill-
ment buffer forever, as the parents will never be received. To
stop an attacker from filling the receiver’s buffer, a heuristic
approach to detection could be applied by monitoring the
buffer sizes, and enforcing a depletion if it grows to unreason-
able levels for a specific replica. In case of a correct sender for
which the missing parent operations will still be eventually
received after depletion, the dropped operations can be re-
requested by following the DAG relations as soon as newer
operations arrive.

In conclusion, valid but malicious operations can incur
load on performance and slow the MEG width shrinkage,
but do not threaten Termination for valid, non-malicious
operations.

Conclusion. While byzantine attackers can try to perform
denial-of-service attacks to incur load on performance, nei-
ther malicious updates nor equivocation can threaten Strong
Convergence, Eventual Delivery, or the Termination prop-
erty under the employed assumptions. Therefore, Theorem 3
holds.

C. REALITY CHECK
In the Matrix system, replicas currently employ best-effort
broadcast [26], [27], instead of a reliable broadcast protocol
like it was described in Lemma 6. As replicas immediately
apply update operations to their local state, best-effort broad-
cast provides Validity. However, best-effort broadcast does
not provide Agreement even in fail-silent systems without
byzantine attackers, as a faulty replica could only provide a
limited number of correct replicas with the update operation.
To mitigate this issue, Matrix uses a backfilling mechanism
which allows replicas to specifically request missing opera-
tions from other replicas. It is used when a replica receives
an update operation for which the parents are not part of the
replica state. With this mechanism, Matrix achieves Agree-
ment under the assumption of constant MEG progress, i.e., a
never-ending stream of (arbitrary low-frequency) new update
operations from each correct replica. However, if the progress
comes to a halt, Agreement is violated. Therefore, Matrix
only satisfies the requirements of Theorem 3 and thereby
provides SEC under the assumption of constant progress.

While Matrix could use the reliable broadcast protocol
described in Lemma 6 to provide SEC without constant
progress, the scalability of the Matrix best-effort broadcast
protocol is already an issue if it is used by the sender
alone [12]. For increased scalability, [12] suggests to replace
the Matrix broadcast implementation with a gossip-based
broadcast protocol that is scalable and robust. However,
gossiping introduces a likelihood that correct receivers do
not receive a message from a correct sender, and therefore
still requires constant progress to ensure Agreement. To
increase reliability, replicas could periodically broadcast their
current set of forward extremities to all other replicas, which

VOLUME 99, 2016 11



Jacob et al.: Analysis of the Matrix Event Graph Replicated Data Type

then could trigger backfilling. This addition would guarantee
probabilistic Agreement, and therefore (probabilistic) SEC
for the MEG implementation of Matrix.

VIII. SCALABILITY: WIDTH OF THE MEG OVER TIME
An assessment of the scalability of the MEG replicated data
type needs to consider various aspects. While the previous
two sections focused on the safety and liveness properties
of Strong Eventual Consistency, topics concerning scalability
came up repeatedly, which will be collected now. Due to the
conflict-free nature of the MEG that allows the application of
updates without further coordination, the scalability in terms
of the number of replicas is first of all determined by the
employed Reliable Broadcast protocol and its implementa-
tion of the Validity and Agreement properties. Probabilistic
agreement, in particular, offers the opportunity for perfor-
mance tuning. Second, as an append-only data structure, a
strategy is required for compression or garbage collection
to avoid a monotonically growing height of the MEG. This
second aspect is addressed in the Matrix implementation, but
not considered in this paper. Third, the width of the MEG,
i.e., the number of forward extremities, needs to be analyzed.
The evolution of the width of the MEG over time is the focus
of this section. We follow an analytical approach to deliver a
precise mathematical definition and treatment of the problem.

In contrast to Sections VI and VII, where we assumed that
all forward extremities known to a replica are used as parents
for new vertices created by the replica, in the following the
number of parents of a new vertex is restricted to a finite
value d. If there are more than d forward extremities, a replica
randomly (uniformly distributed) selects a subset of size d of
forward extremities as parents for the new vertex. The reason
for a fixed value d is based on considerations of performance:
correct replicas can experience a high number of forward
extremities after a partition, and malicious replicas could
deliberately create events with a high number of parents.
This is problematic from a performance perspective because
checks, particularly of the Reference Monitor, are resource
intensive graph algorithms, but needed for every parent [9].
Please note that the proofs of the previous sections are not
affected by this relaxation of assumptions.

In this section, we provide evidence that the width of the
MEG still converges7 to the the number k of participating
replicas times a small factor when all k replica repeatedly
and concurrently add a new vertex.

We model the evolution of the width of the MEG by
assuming that vertices are added in rounds, and a round
consists of two steps:

• Step 1: each of the k replicas concurrently adds a new
vertex. It thereby ‘eliminates’ the d forward extremities
that were chosen as parents, while the new vertex be-
comes a forward extremity itself.

7Convergence in this section refers to the number of forward extremities.
In the previous CRDT-related section, convergence is related to propagation
of states.

• Step 2: all replicas synchronize their new extremities
and reach a consistent state.

The overall number of eliminated extremities depends on the
overlap between the chosen parents of different replicas. As
we are interested in scaling k while keeping d low, we assume
k > d. As the number of forward extremities never decreases
if new forward extremities have only one parent, we assume
d > 1. The model also accepts an arbitrarily high number of
forward extremities u0 as a starting condition. We analyze the
sequence of numbers ui of forward extremities after round i
by a mean value analysis.

Please note that this model maximizes uncoordinated con-
currency in Step 1 and, thus, models a worst case scenario:
More new vertices per replica, i.e., a higher frequency of
updates by clients or prolonged periods of network parti-
tion, would eliminate more than d non-overlapping forward
extremities, but not create additional ones. Also, if replicas
would be aware of the eliminations of other replicas, their
forward extremity choices could be done more overlap-free.

A. STOCHASTIC PROCESS
In order to determine the width of the MEG over time, we
are interested in the number of parents selected in Step 1
of the above evolution model. The concurrent updates in
Step 1 of each round can be nicely modeled by a stochastic
urn problem. The initial number of forward extremities ui in
round i is described by ui initial red balls, while the number
of newly linked parent vertices d is the number of balls
taken out during a drawing by a single replica. The update
generator executions of the k replicas lead to the conduction
of k independent drawings that can be modeled by sequential
drawings with the use of black balls: the balls drawn by a
replica are replaced by black balls and put back to the urn.
Therefore, after k replicas have performed Step 1, the black
balls indicate the number of selected parent vertices. After
each round, the black balls are replaced by red ones again
and the next round starts with the current number ui+1 of red
balls.

We let the random variable Rd,k(u) denote the total
number of removed forward extremities, while u − Rd,k(u)
denotes the number of forward extremities that remain for
the subsequent urn experiment. With this urn experiment, we
model a stochastic process for the behavior of the number
of forward extremities. We derive the expectation and the
variance of Rd,k(u), and we provide a recursion formula for
the distribution of Rd,k(u). We discuss the implications on
MEGs in Subsection VIII-B.

Let the random variable Un describe the number of balls
in the urn after n ∈ N0 rounds. Let u0 be the initial number
of balls in the urn, then U0 = u0 and

Un+1 = Un + k −Rd,k(Un).

As (Un)n∈N0
is a sequence of random variables, it is a

stochastic process (cf., e.g., [28]). We are interested in
whether convergence can be expected, and, if yes, how fast

12 VOLUME 99, 2016



Jacob et al.: Analysis of the Matrix Event Graph Replicated Data Type

convergence is reached. The process is a spatially inho-
mogeneous random walk, specifically a time-homogeneous
Markov chain (cf., e.g., [29]) with state space MU = N+:

∀n ∈ N0 ∀u0, . . . , un+1 ∈MU :

P(Un+1 = un+1|U0 = u0, . . . , Un = un)

= P(Un+1|Un = un)

Thus, the process is memoryless with transition matrix
Pi,j = P(Un = j|Un−1 = i) = P(Rd,k(i) = k − (j − i))
and transition probability ∀n ∈ N0∀i, j ∈ MU : P(Un =
j|Un−1 = i) = P(U1 = j|U0 = i). Thus, the process is
time-homogeneous.

We now provide the expectation (a) and the variance (b) of
Rd,k(u), and a recursion formula (c) for the distribution of
Rd,k(u). For the proof, see Appendix .

Theorem 4. For the random variable Rd,k(u), we have:

a) E(Rd,k(u)) = d · 1− p
k

1− p
, k ≥ 1,

where
p =

u− d
u

(1)

is the retention probability.
b)

V(Rd,k(u)) =
vud

1− p

(
1− wk−1

1− w
− pk−1 · 1− (w/p)k−1

1− w/p

)
− vd2

(1− p)2

(
1−wk−1

1− w
− 2pk−1

1−(w/p)k−1

1− w/p

+p2(k−1)
1−(w/p2)k−1

1− w/p2

)
,

where

v =
d(u− d)
u2(u− 1)

, w =
(u− d)(u− d− 1)

u(u− 1)
. (2)

c) If k ≥ 2 then

P(Rd,k(u) = j) =
d∑
`=0

(
u−(j−`)

`

)(
j−`
d−`
)(

u
d

) · P(Rd,k−1(u) = j − `).

B. IMPLICATIONS FOR THE MEG AND REALITY CHECK
In this subsection we make use of the results for the stochastic
process model to gain insights into convergence and conver-
gence speed of the width of the MEG, and we check how the
real-world Matrix implementation compares to our findings.

The formula for the expectation of Rd,k(u) allows for
statements on the expected convergence behavior of the MEG
in the presence of concurrent updates by different replicas. In
addition, the formula for the variance of Rd,k(u) shows the
deviation from expected convergent behavior. We use these
formulas to calculate the expected development and deviation
of forward extremities Un over the number of rounds for

FIGURE 4. Expectation for the next urn content E(Un+1) for different
realizations of Un, d = 5, and varying k. Points below the dashed line of
Un = E(Un+1) mean that the urn content is expected to decrease, points
above mean that an increase is expected. For visibility, the plotted standard
deviation is increased by the factor 5. Please note that when the curves are
followed from right to left, they change from a linear slope to a constant value
close to k.

varying k but fixed d. To plot the calculations in Figure 4,
we put different realizations of Un against the expected value
of Un+1, via E(Un+1) = Un+ k−E(Rd,k(Un). The dashed
line is Un+1 = Un, its intersection with the colored lines
marks their fixed points. In the area below the dashed line,
E(Un+1) < Un, the urn contents are expected to decrease, in
accordance with the plotted standard deviation. The change
from linear to constant curves (for decreasing Un, i.e. from
right to left) shows the shift from likely overlap-free choices
to overlapping choices, which decrease the urn contents to a
lesser extent. It shows that for any plotted realization of Un,
we either expect a decreasing urn value (below the dashed
line), or a transition to the fixed point. Therefore, the plotted
configurations show convergence. In addition, the variance is
very low. We observe that the convergence of the width of
the graph appears to be almost optimal, i.e., the fixed point is
near the number of replicas k.

Synapse, the reference implementation of a Matrix replica,
recently released a feature to force the depletion of forward
extremities by sending empty ‘dummy’ events using the same
parent selection rules as regular events8 with d = 10, as soon
as there are more than 10 forward extremities present [30].
This fact allows to take advantage of the convergence in
periods of missing update operations, and it brings reality
closer to our model.

To gain insights into the influence of the number d of
parents of a new vertex, we use the expectation of Un via
E(Un+1) = E(Un) + k − E(Rd,k(Un)), and calculate the
number of rounds n until E(Un) − E(Un+1) < 1. Fig. 5
shows that the number of rounds until convergence is reached
directly depends on the choice of d. However, there are di-

8Note that Synapse actually takes 5 random forward extremities and 5 of
the newest forward extremities, which are not independent between replicas.

VOLUME 99, 2016 13



Jacob et al.: Analysis of the Matrix Event Graph Replicated Data Type

FIGURE 5. Expected number of rounds until convergence for varying d and k,
starting at u0 = 100 · k. While convergence speed increases with d, the
returns in the number of rounds to reach convergence diminish.

minishing returns: the highest gain in time until convergence
is between d = 2 and d = 3, while there is much less
difference between d = 6 and d = 10. When u � k · d, the
speed of convergence is nearly k · (1 − d), and therefore the
number of rounds until convergence is nearly proportional
to 1

1−d . Synapse employs d = 5 with k / 103, which we
can confirm as a good compromise in convergence speed and
performance using our formulas in Figs. 4 and 5.

With small u, bad choices, i.e. overlapping choices for
parents, are made, but because u is small, they do not per-
manently impair convergence. With large u, the probability
for overlapping choices becomes smaller and smaller, and
convergence speed is linear.

C. CONJECTURE
We conjecture that the above stochastic process represents
a positive recurrent Markov chain and, since the process
is aperiodic and irreducible, it has a stationary distribution,
i.e., a fixed point of the transition function in which the
probabilities for the next state do not change with state
transitions.

The properties of being aperiodic and irreducible can be
easily seen as follows. If we assume u0 ∈ [0, k − 1], then
u1 ≥ k, as no more than u0 balls can be drawn, but k balls
are added. Therefore, states [0, k−1] are transient and can be
removed from the chain. The remaining states are irreducible
and aperiodic: As the next state increment in one round is
in [k − k · d, k − d], every other state can be reached in a
finite number of iterations. However, it is unclear whether
the remaining states are transient, i.e., visited only once, or
positively recurrent, i.e., have a finite expected time until they
are visited again. This question represents an open problem
and is left for future work.

In practice, this means that if the conjecture holds, the
MEG possesses a self-stabilization property [31] in the sense
that if transient faults lead to a high number of forward
extremities (a high u), a correct system converges to a stable
state with a number of forward extremities above but near

k in a finite number of rounds, and remains stable as if the
faults had never occurred.

IX. LIMITATIONS AND OPEN ISSUES
The theorems of the previous sections as well as their inter-
pretation in the context of the Matrix implementation show
that the MEG represents a distinct and interesting replicated
data type of practical relevance. Therefore, the open issues
we identified in the previous sections represent challenges
for further research, and they are summarized in this section.

First of all, for an MEG to represent a CRDT, a reliable
broadcast primitive is required. When an MEG is used for
a topic in a publish-subscribe system, there is no need for
a ‘one-size-fits-all’ solution. Instead, an appropriate broad-
cast primitive could be selected on a per-topic basis. When
probabilistic broadcast is used, tuning the parameters to
meet the demands of the application is required. Since there
are a plethora of existing reliable broadcast and multicast
approaches, the selection process and/or auto-tuning appears
the more important problem than devising new approaches.

Second, as an append-only structure, the MEG needs
strategies for compression and/or garbage collection to en-
sure scalability. Somewhat related is the issue of resistance
to denial-of-service attacks: how should one handle the sit-
uation when a replica tries to add an excessive number of
new vertices? We want to emphasize again that such an
‘attack’ would not compromise the fundamental properties
of the replicated data structure. However, it could keep a
replica busy or buffers full. Related to the garbage collection
strategy, we note that in Matrix, replicas are allowed to
garbage-collect old, irrelevant events to conserve space in
accordance with individual policies. New replicas are not re-
quired to sync the full MEG state, from the dawn of a topic’s
creation, but can store multiple discontiguous components of
the full MEG state instead. Using the backfilling mechanism
described in Subsection VII-C, replicas can retrieve events
on demand, as long as any other live replica still has them in
its state. In addition, replicas could only store specific types
of publish-subscribe messages that their users are subscribed
to, or even employ a way of sharding so that just a subset of
the participating replicas is responsible to maintain specific
graph partitions. Therefore, the extension of the proofs to
non-uniform replicas with different synchronization policies
is another relevant open issue.

Third, we presented evidence that a high number of for-
ward extremities will quickly collapse to only a few forward
extremities. However, while we were able to show this be-
havior for expected values, the proof of positive recurrence
of the underlying Markov chain represents an open problem.

In terms of limitations, we showed the MEG properties
in form of manual proofs. However, especially in the world
of CRDTs, machine-checked proofs and formal verification
are well-established techniques [32]. While we currently look
at formal verification methods in the context of MEG-based
access control, we deem formal verification of the properties

14 VOLUME 99, 2016



Jacob et al.: Analysis of the Matrix Event Graph Replicated Data Type

required for SEC as well as specific correctness properties of
the MEG an important step to strengthen our results.

MEG replicas detect their own errors and the errors of
remote replicas based on the local state of the causal struc-
ture, but the correction of local or remote errors requires
communication with other correct replicas. While we assume
a static replica group and direct eventual communication
between all correct replicas, in practice, churn is present and
an indirect communication is preferable to arbitrarily long
waiting times for direct communication. Even with churn
and indirect communication, we conjecture that, as long as
correct replicas form a connected component in the network,
performance can suffer, but fault tolerance and consistency
properties of the MEG are still valid.

X. CONCLUSION
We extracted and abstracted the replicated data type em-
ployed by the Matrix specification, and we proved that
this Matrix Event Graph (MEG) represents a Conflict-Free
Replicated Data Type. Therefore, the MEG provides Strong
Eventual Consistency, a fact that in particular implies that
all correct replicas that applied the same set of updates are
in an equivalent state – immediately and without additional
coordination. This proof explains why the Matrix system, in
practice, shows good resilience and scalability in the number
of replicas. Hence, it makes the MEG an attractive candidate
as a basis for other decentralized applications.

In addition, we analyzed the challenges for systems with
byzantine actors and demonstrated that the properties of
the MEG facilitate a byzantine-tolerant design, especially
due to equivocation-tolerance. We showed that in practice,
those properties are not guaranteed by the Matrix reference
implementation yet and provided ideas for possible solutions.
Design and analysis of an underlying broadcast protocol with
the identified properties remain topics for future research.

Furthermore, we formalized and studied the evolution of
the width of the graph as a spatially inhomogeneous random
walk. Our observations let us conjecture that the width of
the graph always converges independently of the specific
system parameters, and does so fast. If the conjecture can
be confirmed, the convergence translates to a self-stabilizing
property that allows a real-world system to cope with tran-
sient faults in a scalable way.

In summary, we believe that the MEG represents a highly
relevant data structure for real-world scenarios that require
decentralization, scalability, and Strong Eventual Consis-
tency. When compared to traditional blockchains and dis-
tributed ledger technologies, the MEG strengthens political
independence of participants, as it does not require global
coordination. However, the commutativity requirement for
updates is the price to pay for its equivocation-tolerance. We
hope that our results advance the understanding as well as
the appropriate real-world deployment of those systems, and
can serve as a basis for further research into the Matrix Event
Graph replicated data type.

APPENDIX. PROOF OF PROPERTIES OF THE TOTAL
NUMBER OF REMOVED FORWARD EXTREMITIES R

For a series of drawings Rd,k(u), we write Zk for the
number of red balls that show up in the kth drawing, so that
Rd,k(u) = Z1 + . . .+ Zk.

a) In what follows, let k ≥ 2. Under the condition
Rd,k−1(u) = r, the urn contains u− r red and r black balls.
Thus, the conditional distribution of Zk given Rk−1 = r
is the hypergeometric distribution Hyp(d, u − r, r), which
implies

E(Zk|Rd,k−1(u) = r) = d · u− r
u

.

Since Rd,k(u) = Rd,k−1(u) + Zk, we have
E(Rd,k(u)) = E(Rd,k−1(u)) + E(Zk). Moreover,

E(Zk) = E
[
E(Zk|Rd,k−1(u))

]
= E

[
d · u− Zk−1

u

]
= d− d

u
· E(Rd,k−1).

It follows that

E(Rd,k(u)) = E(Rd,k−1(u)) + d− d

u
· E(Rd,k−1(u))

= d+ pE(Rd,k−1(u)).

Together with E(Rd,1(u)) = d, we now obtain by induction
over k

E(Rd,k(u)) = d

k−1∑
j=0

pj = d · 1− p
k

1− p
,

as was to be shown. Notice that

lim
k→∞

E(Rd,k(u)) =
d

1− p
= u.

This result is not surprising, since in the long run each of the
red balls will have shown up.

b) The proof uses the general fact that, for random variables
X and Y , the variance of X can be calculated according to
the formula V(X) = E [V(X|Y )] + V(E[X|Y ]), i.e., the
variance ofX is the sum of the expectation of the conditional
variance of X given Y and the variance of the conditional
expectation of X given Y . In our case, we put X = Rd,k(u)
and Y = Zk−1, where k ≥ 2, and obtain

V(Rd,k(u)) = V(Rd,k−1(u) + Zk)

= E
[
V(Rd,k−1(u) + Zk|Rd,k−1(u))

]
(3)

+V (E[Rd,k−1(u) + Zk|Rd,k−1(u)]) .

Since V(Rd,k−1(u) + Zk|Rd,k−1(u)) = V(Zk|Rd,k−1(u))
and the conditional distribution of Zk given Rd,k−1(u) is the

VOLUME 99, 2016 15



Jacob et al.: Analysis of the Matrix Event Graph Replicated Data Type

hypergeometric distribution Hyp(d, u−Rd,k−1(u), Rd,k−1(u)),
it follows that

V(Zk|Rd,k−1(u)) =

d · u−Rd,k−1(u)
u

·
(
1− u−Rd,k−1(u)

u

)
·
(
1− d− 1

u− 1

)
=

d

u2

(
1− d− 1

u− 1

)
(4)

·(u−Rd,k−1(u))Rd,k−1(u).

Moreover, we have

E[Rd,k−1(u) + Zk|Rd,k−1(u)] =
Rd,k−1(u) + E[Zk|Rd,k−1(u)]

= Zk−1 + d · u−Rd,k−1(u)
u

= d+

(
1− d

u

)
Rd,k−1(u).

Therefore, the second summand figuring in (3) equals(
1− d

u

)2

V(Rd,k−1(u)).

Since V(Rd,k−1(u)) = E
[
R2
d,k−1(u)

]
− (ERd,k−1(u))2,

Equation (4) yields

E[V(Zk|Rd,k−1(u))] =
d

u2

(
1− d− 1

u− 1

)
· (uE(Rd,k−1(u))

−V(Rd,k−1(u))− (ERd,k−1(u))2
)
.

We thus obtain the recursion formula

V(Rd,k(u)) = v · V(Rd,k−1(u))

+
d

u2
·
(
1− d− 1

u− 1

)
·
(
uE(Rd,k−1(u))− (ERd,k−1(u))2

)
with v given in (2), from which the result follows by straight-
forward calculations. Notice that V(Rd,1(u)) = 0, (Rd,1(u)
is the constant d), and that limk→∞ V(Rd,k(u)) = 0. The
latter convergence is clear from the fact that, in the long run,
all red balls will have been drawn.

c) The result follows from the fact that the event {Rd,k = j}
is the union of the pairwise disjoint events {Rd,k−1(u) =
j − `, Zk = `}, ` = 0, 1, . . . , d, and the fact that the
conditional distribution of Rd,k(u)(= Rd,k−1(u) + Zk)
given Rd,k−1(u) = j − ` is the hypergeometric distribution
Hyp(d, u− (j − `), j − `).

ACKNOWLEDGMENT
We thank the Matrix developers for their ingenious sys-
tem design. Hannes Hartenstein acknowledges funding of
the Helmholtz Association (HGF) through the Competence

Center for Applied Security Technology (KASTEL). Florian
Jacob thanks Alexander Marsteller for many hours of differ-
ential equation analysis and mathematical brainstorming. We
thank our peer reviewers for their valuable comments and
improvements, and all who gave us feedback on preliminary
drafts of this paper.

References
[1] K. Zhang and H. Jacobsen, “Towards dependable, scalable,

and pervasive distributed ledgers with blockchains,” in 2018
IEEE 38th International Conference on Distributed Comput-
ing Systems (ICDCS), 2018, pp. 1337–1346.

[2] M. Raikwar, D. Gligoroski, and G. Velinov, “Trends in
development of databases and blockchain,” arXiv preprint
arXiv:2003.05687, 2020.

[3] S. Gilbert and N. Lynch, “Brewer’s conjecture and the fea-
sibility of consistent, available, partition-tolerant web ser-
vices,” SIGACT News, vol. 33, no. 2, pp. 51–59, Jun. 2002,
ISSN: 0163-5700. DOI: 10.1145/564585.564601.

[4] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski,
“Conflict-free replicated data types,” in Symposium on Self-
Stabilizing Systems, Springer, 2011, pp. 386–400.

[5] (2020). “Matrix.org: Frequently asked questions,” The Ma-
trix.org Foundation C.I.C., [Online]. Available: https : / /
matrix.org/docs/guides/faq.html (visited on 01/27/2021).

[6] M. Hodgson, “The path to peer-to-peer matrix,” FOSDEM
2020. [Online]. Available: https://archive.fosdem.org/2020/
schedule/event/dip_p2p_matrix/.

[7] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Communications of the ACM, vol. 21,
no. 7, pp. 558–565, 1978, ISSN: 15577317. DOI: 10.1145/
359545.359563.

[8] J. C. Platt, N. Cristianini, and J. Shawe-Taylor, “Large
margin DAGs for multiclass classification,” in Advances in
Neural Information Processing Systems 12, MIT Press, 2000,
pp. 547–553.

[9] M. Hodgson. (2017). “Forward extremities accumulate and
lead to poor performance,” [Online]. Available: https : / /
github . com / matrix - org / synapse / issues / 1760 (visited on
05/31/2020).

[10] (2019). “Matrix specification: Architecture,” The Matrix.org
Foundation C.I.C., [Online]. Available: https: / /matrix .org/
docs/spec/#architecture.

[11] F. Jacob, L. Becker, J. Grashöfer, and H. Hartenstein, “Ma-
trix decomposition: Analysis of an access control approach
on transaction-based DAGs without finality,” in Proceedings
of the 25th ACM Symposium on Access Control Models and
Technologies, ser. SACMAT, 2020, pp. 81–92. DOI: 10.1145/
3381991.3395399.

[12] F. Jacob, J. Grashöfer, and H. Hartenstein, “A glimpse of
the Matrix: Scalability issues of a new message-oriented
data synchronization middleware,” in Proc. ACM 20th Int.
Middleware Conference Demos and Posters, 2019, pp. 5–6.

[13] A. Auvolat, “Making federated networks more distributed,”
in 2019 38th Symposium on Reliable Distributed Systems
(SRDS), 2019, pp. 383–384.

[14] M. Kleppmann and A. R. Beresford, “A conflict-free repli-
cated JSON datatype,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 10, pp. 2733–2746, 2017.

[15] K. De Porre, C. Scholliers, F. Myter, W. De Meuter, C.
De Troyer, and E. G. Boix, “A generic replicated data
type for strong eventual consistency,” Proceedings of the
6th Workshop on Principles and Practice of Consistency
for Distributed Data, PaPoC 2019, 2019. DOI: 10 . 1145 /
3301419.3323974.

16 VOLUME 99, 2016

https://doi.org/10.1145/564585.564601
https://matrix.org/docs/guides/faq.html
https://matrix.org/docs/guides/faq.html
https://archive.fosdem.org/2020/schedule/event/dip_p2p_matrix/
https://archive.fosdem.org/2020/schedule/event/dip_p2p_matrix/
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://github.com/matrix-org/synapse/issues/1760
https://github.com/matrix-org/synapse/issues/1760
https://matrix.org/docs/spec/#architecture
https://matrix.org/docs/spec/#architecture
https://doi.org/10.1145/3381991.3395399
https://doi.org/10.1145/3381991.3395399
https://doi.org/10.1145/3301419.3323974
https://doi.org/10.1145/3301419.3323974


Jacob et al.: Analysis of the Matrix Event Graph Replicated Data Type

[16] N. Preguiça, C. Baquero, and M. Shapiro, “Conflict-free
replicated data types CRDTs,” Encyclopedia of Big Data
Technologies, pp. 491–500, 2019. DOI: 10 . 1007 / 978 - 3 -
319-77525-8_185.

[17] W. Vogels, “Eventually consistent,” Commun. ACM, vol. 52,
no. 1, pp. 40–44, Jan. 2009, ISSN: 0001-0782. DOI: 10.1145/
1435417.1435432.

[18] Y. Saito and M. Shapiro, “Optimistic replication,” ACM
Computing Surveys, vol. 37, no. 1, pp. 42–81, 2005, ISSN:
03600300. DOI: 10.1145/1057977.1057980.

[19] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski,
“Conflict-free replicated data types,” Tech. Rep., 2011. [On-
line]. Available: https://hal.inria.fr/inria-00609399v1.

[20] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski,
“A comprehensive study of convergent and commutative
replicated data types,” Tech. Rep. RR-7506, 2011. [Online].
Available: https://hal.inria.fr/inria-00555588.

[21] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction
to Reliable and Secure Distributed Programming, 2nd.
Springer Publishing Company, Incorporated, 2011, ISBN:
9783642152597. DOI: 10.1007/978-3-642-15260-3.

[22] N. Preguiça, “Conflict-free replicated data types: An
overview,” arXiv preprint arXiv:1806.10254, 2018. [Online].
Available: http://arxiv.org/abs/1806.10254.

[23] M. F. Madsen and S. Debois, “On the subject of non-
equivocation: Defining non-equivocation in synchronous
agreement systems,” in Proceedings of the 39th Symposium
on Principles of Distributed Computing, ser. PODC ’20,
Virtual Event, Italy: Association for Computing Machinery,
2020, pp. 159–168, ISBN: 9781450375825. DOI: 10.1145/
3382734.3405731.

[24] W. Zhao, M. Babi, Y. William, X. Luo, Y. Zhu, Y. Jack,
L. Chaomin, and M. Yang, “Byzantine fault tolerance for
collaborative editing with commutative operations,” IEEE In-
ternational Conference on Electro Information Technology,
pp. 246–251, 2016, ISSN: 21540373. DOI: 10 . 1109 / EIT.
2016.7535248.

[25] A. Clement, F. Junqueira, A. Kate, and R. Rodrigues, “On
the (limited) power of non-equivocation,” in Proceedings
of the 2012 ACM Symposium on Principles of Distributed
Computing, ser. PODC ’12, Madeira, Portugal: Associa-
tion for Computing Machinery, 2012, pp. 301–308, ISBN:
9781450314503. DOI: 10.1145/2332432.2332490.

[26] O. Wilkinson. (2020). “Catch-up after federation outage,”
[Online]. Available: https://github.com/matrix-org/synapse/
pull/8272 (visited on 10/30/2020).

[27] R. van der Hoff. (2017). “Homeservers don’t catch up with
missed traffic until someone sends another event,” [Online].
Available: https : / /github.com/matrix- org/synapse/ issues/
2528 (visited on 04/02/2020).

[28] R. G. Gallager, Discrete stochastic processes. Springer Sci-
ence & Business Media, 2012, vol. 321.

[29] M. Mitzenmacher and E. Upfal, Probability and computing:
randomization and probabilistic techniques in algorithms
and data analysis. Cambridge University Press, 2017.

[30] E. Johnston. (Jun. 19, 2019). “Synapse: Add experimental
option to reduce extremities,” [Online]. Available: https : / /
github . com / matrix - org / synapse / pull / 5480 (visited on
06/01/2020).

[31] B. Awerbuch, B. Patt-Shamir, G. Varghese, and S. Dolev,
“Self-stabilization by local checking and global reset,” in
Distributed Algorithms, G. Tel and P. Vitányi, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 1994, pp. 326–339,
ISBN: 978-3-540-48799-9.

[32] V. B. F. Gomes, M. Kleppmann, D. P. Mulligan, and
A. R. Beresford, “Verifying strong eventual consistency in

distributed systems,” Proc. ACM Program. Lang., vol. 1,
no. OOPSLA, Oct. 2017. DOI: 10.1145/3133933.

FLORIAN JACOB graduated in informatics at
the Karlsruhe Institute of Technology in 2019, and
has since worked as a staff member in the Decen-
tralized Systems and Network Services research
group. His research interests are in the investi-
gation of decentralized, federated communication
networks like Matrix, focussing on scalability and
security. Within this context, he also deals with
end-to-end encryption, usable security, distributed
data structures, and access control mechanisms.

CAROLIN BEER received a B. Sc. degree in in-
dustrial engineering and management from Karls-
ruhe Institute of Technology (KIT), Germany, in
2018 and is currently pursuing a M. Sc. in com-
puter science at the same university.

She worked as Student Research Assistant in
the Decentralized Systems and Network Services
and the Smart Grids and Energy Markets research
groups at KIT. In addition, she gained industry
experience as Intern with Google, IBM, and Ama-

zon. Her research interests are in the area of distributed and decentralized
systems, particularly concerning fault-tolerance, consistency models, and
scalability. Ms. Beer holds a scholarship of the Friedrich Ebert Foundation
for her bachelor’s and master’s studies.

NORBERT HENZE received the doctoral degree
in mathematics and the Dr.Sc. degree from the
University of Hannover. He held visiting positions
at the University of Göttingen and the University
of Gießen. Since 1991 he has been a professor at
the Karlsruhe Institute of Technology. His main re-
search interests are in goodness-of-fit tests, nearest
neighbor methods, and geometric extreme value
theory.

HANNES HARTENSTEIN (M’97) received a
diploma in mathematics and a doctoral de-
gree in computer science from Albert-Ludwigs-
Universität, Freiburg, Germany. He was a Senior
Research Staff Member with NEC Europe. He was
appointed to the chair of "Decentralized Systems
and Network Services" (DSN) in October 2003
and has directed the DSN research group at the
Karlsruhe Institute of Technology since then. His
research interests include decentralized and dis-

tributed systems, information security, and information technology manage-
ment. He is a Principal Investigator in the Competence Center for Applied
Security Technology KASTEL.

VOLUME 99, 2016 17

https://doi.org/10.1007/978-3-319-77525-8_185
https://doi.org/10.1007/978-3-319-77525-8_185
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/1057977.1057980
https://hal.inria.fr/inria-00609399v1
https://hal.inria.fr/inria-00555588
https://doi.org/10.1007/978-3-642-15260-3
http://arxiv.org/abs/1806.10254
https://doi.org/10.1145/3382734.3405731
https://doi.org/10.1145/3382734.3405731
https://doi.org/10.1109/EIT.2016.7535248
https://doi.org/10.1109/EIT.2016.7535248
https://doi.org/10.1145/2332432.2332490
https://github.com/matrix-org/synapse/pull/8272
https://github.com/matrix-org/synapse/pull/8272
https://github.com/matrix-org/synapse/issues/2528
https://github.com/matrix-org/synapse/issues/2528
https://github.com/matrix-org/synapse/pull/5480
https://github.com/matrix-org/synapse/pull/5480
https://doi.org/10.1145/3133933

	Introduction
	A Note on Matrix
	MEG: Overview & Problem Statement
	Related Work & Background
	Consistency Models
	Conflict-Free Replicated Data Types

	Assumptions and Architecture
	The MEG as CRDT
	Formalization of the MEG
	Preservation of the DAG topology
	Proof of CRDT properties

	Relaxation of Assumptions and Reality Check for Byzantine Settings
	Relaxation of the Broadcast Assumptions
	Tolerating Byzantine Failures
	Reality Check

	Scalability: Width of the MEG over Time
	Stochastic Process
	Implications for the MEG and Reality Check
	Conjecture

	Limitations and Open Issues
	Conclusion
	Proof of Properties of the total number of removed forward extremities R
	Florian Jacob
	Carolin Beer
	Norbert Henze
	Hannes Hartenstein


