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ABSTRACT Matrix is a new kind of decentralized, topic-based publish-subscribe middleware for com-
munication and data storage that is getting particularly popular as a basis for secure instant messaging.
By comparisonwith traditional decentralized communication systems,Matrix replaces puremessage passing
with a replicated data structure. This data structure, whichwe extract and call theMatrix Event Graph (MEG),
depicts the causal history of messages. We show that this MEG represents an interesting and important
replicated data type for decentralized applications that are based on causal histories of publish-subscribe
events: First, we prove that the MEG is a Conflict-Free Replicated Data Type for causal histories and, thus,
provides Strong Eventual Consistency (SEC). With SEC being among the best known achievable trade-offs
in the scope of the well-known CAP theorem, the MEG provides a powerful consistency guarantee while
being available during network partition. Second, we discuss the implications of byzantine attackers on the
data type’s properties. We note that the MEG, as it does not strive for consensus or strong consistency, can
cope with n > f environments with n participants, of which f are byzantine. Furthermore, we analyze
scalability: Using Markov chains, we study the number of forward extremities of the MEG over time and
observe an almost optimal evolution. We conjecture that this property is inherent to the underlying spatially
inhomogeneous randomwalk.With the properties shown, aMEG represents a promising element in the set of
data structures for decentralized applications, but with distinct trade-offs compared to traditional blockchains
and distributed ledger technologies.

INDEX TERMS Conflict-free replicated data type, decentralized systems, distributed computing, eventual
consistency, instant messaging, middleware, publish-subscribe, scalability.

I. INTRODUCTION
Matrix1 is a public specification of protocols for a mid-
dleware that provides communication and data services for
decentralized applications. Matrix implements topic-based
publish-subscribe services based on a federated architecture.
On the one hand, it is particularly popular as a basis for decen-
tralized instant messaging since theMatrix servers of an orga-
nization are fully under the control of the organization, but
can still federate with servers of other organizations. Promi-
nent examples for private federations are the French gov-
ernment and public administration, and the Federal Defense
Forces of Germany. On the other hand, the Matrix public fed-
eration has a fast-growing user base, currently with more than

The associate editor coordinating the review of this manuscript and
approving it for publication was Laurence T. Yang.

1https://matrix.org/, https:/matrix.org/spec/

25 million accounts. A prominent example of an organization
that uses the public federation is the Mozilla foundation.

Similar to e-mail or XMPP, clients attach themselves to
a Matrix server, their so-called homeserver, by which they
are represented in the Matrix network. Servers with clients
subscribed to a specific topic (called room inMatrix parlance)
form a federation to exchange published events that are inde-
pendent of other topics. Events can be either communication
events or state update events on the stored data. In the instant
messaging use case, topics are employed for group or one-to-
one communication rooms, communication events are used
for instant messages, and stored data is used for persistent
information like room description or membership.

In contrast to e-mail or XMPP, Matrix replaces pure mes-
sage passing with a replicated, per-topic data structure that
stores the history of events in causal order. As Matrix servers
can thereby synchronize their room’s full causal histories,
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the Matrix approach promises increased system resilience in
a decentralized setup: After a network partition, a server has
significantly stronger means to recover the complete state of
the room, i.e., to avoid loss of events. While this increased
level of system resilience has been observed by practitioners,
the underlying replicated data type has not yet been analyzed
thoroughly.

In this paper, we analyze the replicated data type of the
Matrix approach and show that its properties make it a distinct
member in the family of blockchain and distributed ledger
data structures and of interest for researchers and practition-
ers alike. We first extract and abstract the replicated data
type from the Matrix specification and denote it by Matrix
Event Graph (MEG) in the following. A MEG is a Directed,
Acyclic Graph (DAG) made up of vertices which represent
communication and state update events, and directed edges
which stand for potential causal relations between events.
Because the graph represents the potential causal order of
events, a correct graph is inherently acyclic. Adding new
events is the only write operation supported by the MEG,
whichmakes it an append-only data structure. Thus, theMEG
can be considered as a fundamental concept for various
applications that are based on causal histories, ranging from
decentralized crowdsensing databases in Internet of Things
scenarios through decentralized collaboration applications to
decentralized push notification systems.

Since, for distributed ledger technologies, it has been con-
jectured that consistency, decentralization, and scalability in
their ‘strongest forms’ cannot be achieved simultaneously [1],
[2], our analysis focuses on these aspects and the distinct
trade-offs made by a MEG: in brief, we show that the MEG
achieves decentralization and scalability, but does not strive
for consensus or strong consistency. As themain contribution,
we therefore provide an analysis of the degree to which
the MEG fulfills consistency, deployability in decentralized
scenarios, and scalability:

Consistency: Since Matrix provides availability and par-
tition tolerance, in accordance with the CAP theorem [3],
the MEG necessarily has to sacrifice strong consistency.
We show that theMEGprovides Strong Eventual Consistency
(SEC) by proving that the MEG is a Conflict-Free Repli-
cated Data Type (CRDT) [4] for causal histories. We com-
pare SEC to Eventual Consistency and Strong Consistency
in Subsection IV-A.

Decentralization: We discuss the implications of byzantine
attackers on the specific type of CRDT that the MEG repre-
sents. The avoidance of consensus is the primary reason that
allows the MEG CRDT to facilitate n > f environments with
n total participants, of which f exhibit byzantine faults.
Scalability: The probabilism of uncoordinated, concurrent

append updates represents the main challenge for the analysis
of the MEG with respect to scalability. We are interested in
the width of the MEG, which is represented by the number
of forward extremities, i.e. ‘vertices without children’, over
time. We study the width of the MEG using Markov chains.
We observe that the MEG does not degenerate and conjecture

that this non-degeneracy is inherent to the underlying spa-
tially inhomogeneous random walk.

Thus, as outlined above, the aspects of this analysis are
a theoretical model (the MEG) for a real-world system of
relevance (Matrix), and proofs of properties of this model
based on precise assumptions. To transfer these theoretical
results back to a real-world system, we also clarify which
assumptions currently hold in the Matrix system and how
missing elements can be dealt with.

This paper is structured as follows:We begin with a note on
Matrix (Section II) and an overview of how the MEG works
and the statement of the problem in Section III. Section IV
presents related work and background on replicated data
types. Assumptions and architecture are given in Section V.
In Section VI, we prove that a MEG is a Conflict-Free
Replicated Data Type. In Section VII, we show the MEG can
be made byzantine fault tolerant. We also perform a reality
check by comparing Matrix and the utilized assumptions of
the proofs. Section VIII formalizes the stochastic behavior of
the width of the MEG and provides evidence that the width
always evolves to a near-optimal value, and does so fast.
We summarize limitations and open issues of our analysis in
Section IX and conclude the paper in Section X.

II. A NOTE ON MATRIX
The Matrix project started in September 2014, and it is
governed by The Matrix.org Foundation C.I.C. A core team
guides the evolution of Matrix by developing the open stan-
dard and the reference homeserver [5]. Matrix is the pro-
tocol employed by the Element instant messenger, a chat
application for human communication in competition to, e.g.,
Slack, Microsoft Teams, Signal, and WhatsApp. While it
features end-to-end encryption similar to Signal, it is mainly
advertised for its fully decentralized group chats, which
protocol-level contestants like XMPP or IRC do not pro-
vide. Today, Matrix is designed for a single dedicated server
per user: For each topic, Matrix employs an instance of a
resource-intensive full-mesh broadcast protocol, and, in addi-
tion, Matrix requires a valid Domain Name System record
and matching X.509 certificate per server. Even with end-
to-end encryption, sensitive metadata accumulating on the
dedicated server is among the reasons why Matrix currently
develops into the direction of a peer-to-peer protocol with
Matrix servers on every device [6].

However, Matrix is not a chat protocol, but an extensible
topic-based publish-subscribe system for the exchange of
structured data that can also be used for human-machine
and machine-machine communication. Matrix is designed
with eventual synchronization of event histories as primary
operation. While this matches the use case of instant messag-
ing with reliable history synchronization, it might be ineffi-
cient or problematic when a history is not needed or allowed.
Matrix prioritizes best-effort, opportunistic progress of indi-
vidual servers over coordination with all servers, and it might
therefore be less suited for applications that require consen-
sus or strong real-time guarantees.
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FIGURE 1. Basic example of the state evolution of two Matrix Event
Graph (MEG) replicas over time, from left to right. Two MEG replicas start
with an initial state, i.e. a root vertex α. Both replicas concurrently append
new vertices to the current state, as indicated by add new vertex →
parent vertices. While the operation is immediately applied to the local
state, the arrows between replicas represent the delay until the operation
is applied on the remote replica. In the chat use case, every new vertex
corresponds to a text message, depicted by chat bubbles. The timeline is
presented in detail in Section III.

III. MEG: OVERVIEW & PROBLEM STATEMENT
In the following, we give an overview of the MEG concept
as a replicated data type for append-only causal histories of
events. A sampleMEGwith two replicas concurrently adding
to the graph is illustrated in Fig. 1. For illustration purposes,
we typically utilize the instant messaging use case of Matrix.
We also typically focus our studies on a singleMEG instance,
and, therefore, on a single broadcast domain associated with
that MEG. However, several independent MEGs can coexist,
e.g., one per publish-subscribe topic.

A replicated data type is a data structure that is replicated
across the peers of a network (in Matrix: the homeservers for
a specific topic) and consists of a) a structure, b) a procedure
to add an event, and c) a procedure to update all replicas, i.e. a
way to deal with concurrency. Before we describe the general
MEG concepts, we first give an example by describing the
evolution of MEG replica states, as shown in Fig. 1.
MEG Example Timeline (as given in Fig. 1): Replica

1 starts by adding vertices β and γ , before receiving anything
from replica 2. Replica 2 adds vertex δ concurrently to the
addition of β. In contrast, vertex ζ is added after β is received,
and therefore vertex ζ gets both β and δ as parent. After
vertices γ and ζ have been eventually received, convergence
is reached momentarily. Due to the concurrent additions,
the number of forward extremities has increased to two. Then,
replica 2 adds vertex η without concurrent additions from
replica 1, which reduces the number of forward extremities
to one, and again convergence is reached.

General MEG structure: As mentioned before, a MEG is
a Directed, Acyclic Graph (DAG). One MEG represents the
message history and attributes of a group or 1:1 chat, and it
is replicated independently by all participating servers. Upon
creation, the DAG consists of only a single vertex, the root
vertex (cf. α in Fig. 1). Each vertex in the DAG corresponds
to an application-defined publish-subscribe event, e.g., to a
text message or temperature reading. Edges represent poten-
tial causal relationships between events: When a new

vertex is added, it is connected to the existing DAG through
one or more outgoing edges. These edges point towards
vertices that had no incoming edges before, i.e., the newest
events in causal history, which we from now on call the
forward extremities of the DAG. The selection of forward
extremities is done according to the current state of the adding
replica. This potential causal relationship is known as the
happened before relationship2, as defined by Lamport [7]:
For α ← β, we say that α happened before β. The edges
thereby form a partial order that is consistent with the causal
order in which events took place.

In addition to being directed, acyclic, and representing the
causal order of events, the MEG is also weakly connected,
since all newly added vertices have at least one outgoing
edge. The root vertex, being the only vertex without outgoing
edges, is therefore the unique minimal element of the partial
order represented by the DAG. DAGs with this specific struc-
ture are also called rooted DAG [8].
Adding a new vertex to the source replica: The replica that

creates an event on behalf of a client and appends it as a vertex
is called source replica. When it adds a vertex, the corre-
sponding event could be causally related to previous events.
Thus, all forward extremities should be included as edges:
As shown in Fig. 1, replica 2 includes both forward extremi-
ties β and δ as parents for the new vertex ζ . In practice, how-
ever, there are some issues: Replicas can experience a high
number of forward extremities caused by latencies or parti-
tions, and malicious replicas could forge events with a high
number of parents. Certain algorithms executed on the MEG
do not scale well with the number of parent events, i.e., they
can become very resource intensive, especially when old parts
of theMEG are referenced as parents [9]. Therefore, the max-
imum number of parent events is typically restricted to a finite
value d . If there are more than d forward extremities, a replica
selects a subset of size d for the new event. For the potential
causal order relation in the MEG still to be consistent with
the actual causal order, clients have to inform the replica
about actual causal dependencies so that those are included
as parents.

Updating all replicas: Beyond appending the new vertex to
the local DAG, the source replica also needs to synchronize
with the other replicas. The replica sends a DAG update that
consists of the new vertex and edges to all replicas using a
broadcast protocol. On receiving an update, replicas append
the new vertex to their DAG via the new edges selected by the
source replica, as soon as all required parent vertices exist
in the local replica. In case the parent vertices are not (yet)
available, the update is buffered until they are.

Dealing with concurrent updates: When clients at two
different replicas concurrently invoke updates, each replica
considers their vertex as the single next step in causal his-
tory represented by their local DAGs. In case of continuous

2Note that Lamport defines α happened before β as α → β.
In this paper, we actually use the converse relation β → α, as common for
distributed ledger technologies. It follows that for β → α, we say α is the
parent of β.
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synchronization failure, e.g., due to a network partition, addi-
tional client updates will enlarge the inconsistency between
the replicas’ DAGs and will lead to two causally independent
chains of events, built from the last synchronized event. Both
replicas will continue to try to synchronize their state with
other replicas. When the partition heals, all replicas will
eventually receive all updates. As depicted in Fig. 1, instead
of trying to find a linear order of updates and to solve conflicts
with rollbacks, the concurrent DAG states are merged by
attaching both causally independent chains of events to the
last synchronized event, i.e., by forking the DAG. Accepting
concurrency in the data type itself by providing only a partial
order on events is the core idea of the MEG. It is also
the basis for our proof of conflict-freedom in Section VI.
A fork in the DAG introduced by concurrency will lead to
two causally independent forward extremities. Following the
attachment rules for new vertices, a replica that has received
and appended both causally independent chains to its DAG
selects both as parents for a new vertex. In terms of graphs,
this means that the new vertex will join both chains again,
which indicates the end of the period of concurrency and
causal independence, and reduces the number of forward
extremities by one.

Problem statement. The way in which concurrency is
handled in a MEG, as well as the use of various parameters
as outlined above, give rise to the key research questions
addressed in this paper:
• Which consistency guarantees can application develop-
ers expect from a MEG?

• Under which assumptions do these guarantees hold?
• Can the width of the MEG degenerate?

The preceding explanations describe how the MEG main-
tains availability under partition, and how it tries to achieve
Eventual Consistency, as conjectured by the Matrix develop-
ers [10]. In this paper, we provide a proof of Strong Even-
tual Consistency in Section VI. In Section VII, we relax
the adopted assumptions, particularly on the communication
primitive. In addition, the overview above showed that if
the number of vertex parents is restricted to d and selected
randomly, the evolution of the number of forward extrem-
ities u, i.e., the width of the DAG, is non-trivial in con-
current environments. In Section VIII, we explore whether
the width of the DAG converges within a sufficiently small
number of iterations for arbitrary start values of the initial
number of forward extremities u, if k replicas continuously
select d parents independently and then synchronize the
new vertices. In particular, we investigate how the choice of
the number of parent vertices d and k affects the speed of
convergence.

Not in the scope of this paper: While we make assump-
tions on and deal with the underlying broadcast primitive, we
consider the topic of broadcast communication per se beyond
the scope of this paper. Moreover, Matrix employs an access
control concept, which we assume to be present in MEGs.
The access control aspects were examined in [11] and are not
the object of this analysis.

IV. RELATED WORK & BACKGROUND
Jacob et al. investigated quantitative aspects of the pub-
lic Matrix federation and found scalability problems
with the broadcast communication currently employed by
Matrix [12]. However, they did not investigate the scalability
and other properties of the replicated data structure itself.
The access control system of Matrix, which builds on top of
the MEG, was recently studied in [11]. Privacy and usability
aspects of Matrix, along with a CRDT-based vision on how
to improve this situation in federated networks in general, are
the topic of [13].

In the field of replicated data types, Shapiro et al. intro-
duced the category of Conflict-Free Replicated Data Types
(CRDTs), together with a new consistency model provided
by this category, namely Strong Eventual Consistency [4].
Following the initial definition, new papers mostly focused
on implementations of the data type, like the JSON-CRDT
by Kleppmann et al. [14], or extended the base concept of
CRDTs [15]. The initial CRDT concept was overhauled in
cooperation with the original authors in [16]. We will mainly
use the new CRDT terminology introduced there.

In contrast to traditional distributed databases that aim for
strong consistency or to consistency models for distributed
ledger technologies that aim for consensus, SEC does pro-
vide neither a global total order nor finality. However, SEC
improves over Eventual Consistency, common in Internet-
scale distributed databases, as it does not require conflict
arbitration or rollbacks [4], [17].

A. CONSISTENCY MODELS
The inherent trade-off between Consistency and Availability
in the presence of network partitions in distributed systems
led to the definition of a variety of consistency models.
A well-known consistency model is Eventual Consistency,
which provides the following guarantees [4]:

• Eventual Delivery: An update applied by some correct
replica is eventually applied by every correct replica.

• Termination: Every invoked method terminates.
• Convergence: Correct replicas that applied the same set
of updates eventually reach equivalent states.

Strong Eventual Consistency (SEC) builds on Eventual
Consistency, and strengthens Convergence [4]:

• Strong Convergence: Correct replicas that applied the
same set of updates have equivalent states.

Whether two states are equivalent depends on the specific
application. In our case, the state of two replicas is equivalent
if their graphs consist of identical vertices and edges. Note
that ‘‘the same set of updates’’ means that, while the updates
are identical, they might be received or applied in different
order. The key difference between Convergence and Strong
Convergence is that with Convergence, replicas may coor-
dinate with other replicas to reach agreement on their state
even after having applied updates. Especially, if the ordering
of updates matters, this can lead to rollbacks. With Strong
Convergence, the agreement has to be immanent and implicit.
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B. CONFLICT-FREE REPLICATED DATA TYPES
Conflict-Free Replicated Data Types (CRDTs) were first
formalized in [4]. CRDTs are an abstract data structure
that allows for optimistic update execution (cf. [18]), while
guaranteeing conflict-freedom upon network synchroniza-
tion. The system model of CRDTs is based on a fail-silent
abstraction with a Causal Order Reliable Broadcast commu-
nication protocol (see Section V). For objects that implement
a CRDT in a system with n replicas, Shapiro et al. show that
SEC is ensured for up to n− 1 replica failures [4].

Two conceptually different, but equally expressive types of
CRDTs are the operation-based and the state-based CRDT.
Replicas implement functions that can be invoked by clients
to access or modify the state. The key difference between
operation-based and state-based CRDTs lies in the way of
synchronization: In state-based CRDTs, all replicas peri-
odically send their full state to all other replicas, which
then merge states. In contrast, operation-based CRDTs only
synchronize upon changes. Source replicas transmit state
changes resulting from a client invocation as operations.
In this paper, we focus on operation-based CRDTs and show
in Section VI that the MEG is an operation-based CRDT.
Operation-based CRDTs implement functions that can

be classified as either update or query function.
A query function returns information on the current state
of the replica, whereas an update function modifies the
state. An update function consists of two parts: At first,
a generator3 part is executed by the source replica.
It is side-effect-free and returns an operation, i. e., an encap-
sulation of the state changes. The second part is called
effector4, it must be executed at every replica. The source
replica transmits the generated operation to all replicas using
broadcast. Upon reception of an operation, each replica exe-
cutes the effector part locally and applies the resulting
changes to their state [19].

In general, the data structure of a CRDT cannot main-
tain a specific shape or topology, such as a DAG, as con-
current updates could violate shape or topology invariants.
However, specific implementations of CRDTs can overcome
this restriction, for example as shown by theOperation-based
Add-only monotonic DAG described in [20]. Their implemen-
tation allows clients to collaboratively edit a DAG, by adding
vertices and edges in separate updates. Topology preservation
is enforced by rejection of new edges that violate the current
partial order of the DAG. In a similar vein, the MEG is
designed in a way that preserves its topology as rooted DAG
inherently, which we will show in Subsection VI-B.

V. ASSUMPTIONS AND ARCHITECTURE
Assumptions.We study a single replica group, consisting of a
static and known set of replicas, for a single publish-subscribe
topic. Furthermore, we make use of two failure models, both
based on the asynchronous timing assumption, which means

3Originally introduced as prepare-update
4Originally introduced as effect-update

that no upper bounds on computation or network transmission
times are given.

The fail-silent model [21, p. 63] implies that faulty replicas
can crash-stop at any time, while the remaining replicas
have no means to reliably distinguish failure from com-
munication or processing delays, i.e., the fault is ‘silent’.
The fail-silent-arbitrary model [21, p. 64] allows for arbi-
trary, i.e. byzantine, behavior of faulty replicas. This feature
includes intentionally malicious behavior and protocol non-
adherence. In this model, ‘silent’ also means that replicas
cannot detect whether another replica currently adheres to the
protocol or not. We call a replica correct if it is non-faulty.
Correct replicas strive to achieve consistency on the fullMEG
state, and interact with each other to reach consistency and
provide failure tolerance.

The formal CRDT-proof that we give in Section VI is
based on the stricter assumption of a fail-silent model.
In Section VII, we extend the claims to the fail-silent-
arbitrary model.
We assume that replicas are connected by direct links

with an arbitrarily varying but finite delay, i.e., faulty repli-
cas cannot prevent any two correct replicas from eventually
communicating. Furthermore, we make use of two broadcast
abstractions in this work. Firstly, we use Reliable Broad-
cast. Informally, this abstraction provides a set of properties
which guarantee that, eventually, the same set of messages
is received by all correct replicas, even if the sending replica
fails [21]. Formally, Reliable Broadcast provides the follow-
ing properties:
• Validity: If a correct replica sends a message m, then it
eventually receives m.

• No duplication: Correct processes do not receive mes-
sages more than once.

• No creation: If a correct replica receives a message m
with sender p, then m was previously sent by p if p is
correct.

• Agreement: If a message m is received by some correct
replica,m is eventually received by every correct replica.

The other, more powerful, abstraction is called Causal
Order Reliable Broadcast. It extends the guarantees of Reli-
able Broadcast by additionally preserving the causal order of
messages [21]:
• Causal Delivery: For anymessagesm1 andm2 where the
broadcast of message m1 happened before (cf. [7]), the
broadcast of messagem2,m2 is only received by replicas
that have already received m1.

The formal CRDT-proof in Section VI is based on the
Causal Order Reliable Broadcast abstraction. In Section VII,
we relax the required primitive to Reliable Broadcast —
even in byzantine scenarios — while maintaining the CRDT
properties.
Architecture. As we can see in Fig. 2, each client is

attached to a single trusted replica. The client can request
functions of class query or update at their replica,
as defined in Subsection IV-B. As part of executing an
update function, the source replica distributes operations,
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FIGURE 2. An update request by a client invokes the generator of an
update function at the replica, which creates an update operation. This
update operation is then transmitted to all replicas, including the calling
replica itself, through the communication abstraction. The
communication abstraction enforces guarantees about incoming
operations, e.g. on their ordering. The system boundary indicates the
components of a single participant.

FIGURE 3. Inner workings of the source replica and communication
abstraction when receiving an update request or an incoming operation.
After entering the replica through the Reference Monitor, a valid update
request or a valid incoming operation is passed to the CRDT. In case of an
update request, the CRDT encodes the state changes as an operation
which is then broadcast to all replicas using the communication
abstraction. An incoming update operation is processed at the CRDT
component, which then applies the operation to the local state of the
replica.

i.e., encoded state changes, to all replicas using a broadcast
communication abstraction.

A more granular architectural view is provided by Fig. 3.
Inside a replica, the Reference Monitor is the entry point for
incoming requests from clients and operations from remote
replicas. It serves as a gate keeper to prevent further pro-
cessing of operations or requests that violate the protocol or,
in a byzantine setting, originate from unauthorized or unau-
thenticated parties. Operations and requests that pass the
Reference Monitor are handed to the CRDT. The CRDT
can read and modify the state of the replica and is thus

the core logic module of the replica. In case of a query
request, it accesses the state and returns the desired value.
For update requests, the generator of the update function
encapsulates state changes into an operation that is passed
to the communication abstraction. The CRDT then returns to
the client to indicate success. The communication abstraction
sends the update operation to all replicas, including the call-
ing replica itself.5 These update operations then trigger the
local update effector, which applies the changes to the state
of the replica.

VI. THE MEG AS CRDT
Building upon the overview given in Section III, we formalize
the MEG as an operation-based replicated object. We then
show Theorem 1 in accordance with the assumptions used by
Preguiça et al. for CRDTs (cf. Subsection IV-B) [19].
Theorem 1: Under the assumption of a fail-silent n > f

environment with n total and f faulty participants, and a
Causal Order Reliable Broadcast primitive, the MEG is an
operation-based CRDT and thereby provides Strong Eventual
Consistency (SEC).

A. FORMALIZATION OF THE MEG
To define the MEG as a CRDT, we adopt the formal defini-
tion introduced with the concept of operation-based CRDTs
in [4], [19] and use the pseudo code notation by Preguiça [22].

An object is formally defined as a tuple (S, s0, q, t, u,P):
the space of possible per-replica states is denoted by S, and
s0 ∈ S is the initial state of every replica. The set
of query functions is given by q. update functions are
composed of a generator step t and an effector step u.
The effector u may contain a delivery precondition P,
which must be fulfilled before an operation is processed
further. Notably, the delivery precondition P only delays the
execution, but it does not abort the effector step. When a
replica with state s ∈ S executes a step u, we denote this as
s•u, which yields a new state. As shorthand for the state
at replica i, we write si ∈ S.
We provide a pseudo code implementation of the MEG as

an operation-based CRDT in Listing 1. A vertex is a tuple
(e,w) that represents an event in the MEG, where w is a
unique identifier for the event and e contains the actual event.
Edges represent a potential causal relationship between child
and parent vertex. Thestate is a DAG, defined through a set
of vertices and a set of edges. In the inital state s0, it consists of
a single vertex and no edges. The query functions lookup,
hasChild, getExtremities and getState allow to
access the replica state without modification. The lookup
function checks whether a vertex with a given identifier is
part of the current state. Similarly, the hasChild function
checks for the existence of child vertices for a given vertex.
The getExtremities function returns the current set of

5While, depending on the specific communication abstraction, this is not
required in an actual implementation, it is important on a conceptual level to
ensure that the guarantees hold.
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Listing. 1. Pseudo code implementation of the Matrix CRDT. The type of
the respective functions is indicated by query and update. The two parts
of the update function are denoted by generator and effector. The
delivery precondition P is denoted by pre. The function unique returns a
unique identifier.

forward extremities, whereasgetState returns thestate.
The update function add is used to append new events to
the MEG. Its generator part t takes the event e as an input
argument. Based on the state of the source replica at that
time, a set L of forward extremities is created. Lastly, a unique
identifier w is chosen. The parameters w, e and L, and a
reference to the update function add are returned together.
The effector u is invoked by the operation that was

created in the generator step. Once the delivery precon-
dition P is fulfilled, the new vertex (e,w) and the new edges
((e,w), (ep,wp)) for each (ep,wp) ∈ L are added to the
state, i.e., to the set of vertices and edges, respectively. The
delivery precondition P states that all ‘parents’ in the set L are
required to be part of the current state before the new vertex
can be added.

B. PRESERVATION OF THE DAG TOPOLOGY
As mentioned in Subsection IV-B, the preservation of a spe-
cific shape, such as a DAG, is not possible in a generic way
for CRDTs.We now show that theMEG always preserves the
desired data structure of a rooted DAG by design as Lemma 2.
Lemma 1: There is at least one forward extremity at any

time after initialization of the MEG.
Proof: Can easily be seen by induction.

Lemma 2: The MEG maintains the properties of a rooted
DAG at all times: (i) single root, (ii) acyclicity, and (iii) weak
connectedness.

Proof: By induction.
Base case: The initial state s0 contains a single vertex and no
edges. This MEG therefore is a rooted DAG.
Induction step: Given replicas i with state si = (Vi,Ei),
where si is a rooted DAG, an arbitrary source replica r is
selected. As part of the generator t , the set of forward

extremities is determined as L, and a unique identifier w is
created. By Lemma 1, the set of forward extremities |L| is
non-empty. Since generator t is side-effect-free, the MEG
remains unchanged.

Consequently, the execution of the effector u is trig-
gered at each replica i. Effector u awaits the fulfillment of
the delivery precondition P, which ensures that si contains all
parents that are referenced by L. Finally, applying u yields the
new replica states s′i:

s′i = (Vi ∪ {(e,w)},Ei
⋃

(ep,wp)∈L{(e,w), (ep,wp))}).

Since all new edges are outgoing from the new vertex (e,w),
no new cycles can be formed, and existing roots remain roots.
No new roots or isolated vertices have been added, as the new
vertex has outgoing edges. Because all si were assumed to be
rooted DAGs, all s′i must be rooted DAGs.

C. PROOF OF CRDT PROPERTIES
We now show Theorem 1, i.e., that MEGs implement an
operation-based CRDT and, thus, guarantee SEC. We make
use of the Theorem on Commutative Replicated Data
Types [4], which states that ‘‘assuming causal delivery
of updates and method termination, any op[eration]-based
object that satisfies the commutativity property for all con-
current updates, and whose delivery precondition is satisfied
by causal delivery, is SEC.’’

We need to show commutativity of concurrent updates
and causal order reception of operations for noncommutative
updates. Commutativity for updates is determined by the
commutativity of their operations. Two updates (t, u) and
(t ′, u′) commute, if and only if for any reachable state s ∈ S in
which the delivery precondition P is satisfied for both u and
u′, the following properties hold: (i) P is still satisfied for u in
state s • u′, and (ii) s • u • u′ ≡ s • u′ • u.
We proceed in the following way: we present three lem-

mata on the preservation of the delivery precondition, on the
commutativity of operations, and on the eventual fulfillment
of the delivery precondition. With these lemmata, Theorem 1
is then easily proved.
Lemma 3: Once an update operation satisfies the delivery

precondition P for some state s, it will continue to satisfy P
for any state s′ following s.

Proof: Consider any update operation u(e,L,w),
i.e., the operation (e,L,w) applied via the effector u, that
satisfies P in some state s = (V ,E). Applying an arbitrary
operation u(e′,L ′,w′) to s yields a new state s′:

s′ = s • u(e′,L ′,w′)

= (V ∪ {(e′,w′)},E ∪
⋃

(ep,wp)∈L ′{(e
′,w′), (ep,wp)})

A delivery precondition P being satisfied in s implies that it
remains satisfied for s′:

∀(ep,wp) ∈ L : (ep,wp) ∈ V

⇒ ∀(ep,wp) ∈ L : (ep,wp) ∈ V ∪ {(e′,w′)}
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Lemma 4: Any two operations u(ei,Li,wi) and u(ej,Lj,wj)
commute with each other.

Proof: We consider any state s = (V ,E) and two update
operations u(ei,Li,wi), u(ej,Lj,wj) that both satisfy delivery
precondition P in s.

As shown in Lemma 3, after applying one operation,
the other operation still satisfies P. It remains to show that
the resulting states are equivalent, regardless of the order in
which the effectors are executed. Since u only performs a
union of the edge and vertex sets, by commutativity of the
union operator, commutativity of u follows:

s • u(ei,Li,wi) • u(ej,Lj,wj)

≡ s • u(ej,Lj,wj) • u(ei,Li,wi)

Lemma 5: Under the assumption of Causal Delivery
broadcast, the CRDT delivery precondition P is immediately
satisfied on message reception.

Proof: The delivery precondition P ensures that all
referenced parents are part of the local state. Since
getExtremities selects all parents from the current
state, P must be satisfied at the source replica after the
generator step. Once satisfied, P remains satisfied since
vertices are never removed. Therefore, receiving all causally
preceding operations is sufficient to satisfy P at every replica.
Consequently, having causal order message reception, P is
immediately satisfied upon reception.

Proof: (Theorem 1) As we have shown, MEG updates
are commutative (Lemma 4), and all essential properties of
the MEG are preserved by design (cf. Lemma 2). Since the
MEG encodes causal relations as edges in the data structure,
the delivery precondition P can ensure that these dependen-
cies are respected without sacrificing commutativity. Thus,
Strong Convergence is guaranteed. Eventual Delivery is guar-
anteed by Lemma 5. Given the implementation in Listing 1,
we can see that there are no loops or recursive calls in either
of the functions, therefore, they will eventually exit. Knowing
that the delivery preconditionP is immediately satisfied given
causal ordermessage reception, as shown in Lemma 5, we can
conclude that Termination holds. Therefore, all properties
of an operation-based CRDT are met by the MEG, and
Theorem 1 holds.

VII. RELAXATION OF ASSUMPTIONS AND REALITY
CHECK FOR BYZANTINE SETTINGS
In this section, we evaluate the assumptions of Theorem 1
that were used in the CRDT proof of the MEG in
Subsection VI-C, and relax them wherever possible with-
out violating previously shown guarantees. We remove
the Causal Order guarantee of the broadcast primitive
in Theorem 2 of Subsection VII-A. In Subsection VII-B,
we switch from a fail-silent n > f environment with n total
and f faulty participants to a fail-silent-arbitrary, i.e. byzan-
tine, n > f environment, which results in Theorem 3.
In Subsection VII-C, we compare Matrix as an implemen-
tation of the MEG concept in the byzantine setting to

the requirements of Theorem 3, and conclude that it cur-
rently does not provide SEC without additional assumptions
because of its unreliable broadcast protocol.

A. RELAXATION OF THE BROADCAST ASSUMPTIONS
In Section VI, we assumed a Causal Order Reliable Broadcast
abstraction, which is commonly used with CRDTs. However,
the causal relationships of events depicted in the MEG hints
that the Causal Order delivery property is not necessary in
addition to Reliable Broadcast6 for the MEG to function,
and can be removed without violating Strong Convergence
for safety as well as Eventual Delivery and Termination for
liveness (cf. Section IV for definition). We formulate this
observation as Theorem 2:
Theorem 2: Under the assumption of a fail-silent n > f

environment with n total and f faulty participants, and a
Reliable Broadcast primitive, the MEG is an operation-based
CRDT and thereby provides Strong Eventual Consistency.

Proof: For the proof, we revisit every property required
for the CRDT proof as in Subsection VI-C, and remove
applications of the Causal Order property of the broadcast
primitive.

Strong Convergence. To provide Strong Convergence,
replicas must receive noncommutative update operations in
their causal order. Since every update operation commutes
with every other, as shown in Lemma 4, Strong Convergence
does not require any ordering guarantees by the communica-
tion abstraction.

Eventual Delivery. In Lemma 5, we used the Causal
Delivery property to show that the delivery precondition P
is immediately satisfied on reception. For Eventual Delivery,
we now need to show that the delivery precondition P is still
eventually satisfied without Causal Delivery.
Given an update operation, P is satisfied if all referenced

parents are part of the state of a replica. If an operation
satisfies P at some point in time, it continues to satisfy P
thereafter, because theMEG is an append-only data structure.
As per Lemma 5, P is satisfied for any given operation after
the generator step at the source replica finishes. There-
fore, all referenced parents must have been previously added
to the state and therefore be part of some update operation.
If an update operation does not satisfy P at some replica
due to reordering of operations by the broadcast abstraction,
replicas can delay and buffer the update operation until P is
satisfied. Owing to the Validity and Agreement properties of
the broadcast abstraction (cf. Section V), all missing update
operations are eventually received by all correct replicas.
As correct replicas apply all operations that they received and
that eventually satisfy P, all parents must eventually be part
of their state. Consequently, for correct replicas, P must
eventually be satisfied for every update operation.

6The No Duplication property of Reliable Broadcast is also not necessary:
because each vertex has a unique identifier w, and because outgoing edges
cannot be added afterwards, it suffices to make the effector conditional on
the presence of the vertex in the replica state to gain idempotent effectors
that can cope with multiple receptions of identical operations.
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Termination. Since all method executions terminate, and
since we have shown that in the new setting, P is eventually
satisfied for all operations, the Termination property still
holds.

Thus, the MEG only requires Reliable Broadcast, and does
not depend on Causal Delivery.

B. TOLERATING BYZANTINE FAILURES
We now switch from a fail-silent n > f environment with
n total and f faulty participants to a fail-silent-arbitrary,
i.e. byzantine, n > f environment. A fail-silent-arbitrary
n > f environment means that a client’s trusted replica might
be the only non-malicious replica in the system.

It is intuitively reasonable that the MEG is able to cope
with such a hostile environment, as it does not strive for
consensus: a secure implementation of the ReferenceMonitor
component can identify and filter invalid update operations
before they are applied by the effector. Neither the CRDT
properties, nor the Reference Monitor, nor the implemen-
tation of Validity and Agreement in the broadcast protocol
require a quorum or majority vote. Therefore, a majority in
the system results in no advantage for the attacker. Based
on this intuition, we formulate and prove an analogy of
Theorem 2 for a fail-silent-arbitrary n > f environment.
However, we first have to clarify assumptions on the attacker
and the system.

The main difference in the byzantine environment to pre-
vious settings is that attackers can arbitrarily influence those
parts of the decentralized system that they control. Consid-
ering the system architecture shown in Fig. 3, the attackers
control thegenerator part and the sending of the broadcast
of their replicas. Through the generator and the broadcast,
they can try to influence the receiving part, namely the Refer-
ence Monitor and the effector of correct replicas, which
process attacker-defined input.

From the system architecture, we derive that the attacker
is limited to two basic attack capabilities: First, they can
violate the broadcast protocol by performing equivocation,
i.e., broadcasting different update operations to different
replica subsets, or not broadcasting an update operation to all
replicas [23]. Second, they can generate and send malicious
update operations. This attacker model is based on the threat
model [24] for CRDTs by Zhao et al., but simplified as we
assume a static, known set of replicas.

Note that ‘‘byzantine reliable broadcast’’, as it is
commonly understood [21, p. 120], requires that all correct
replicas deliver the same single message, even in face of
equivocation. This requirement leads to a quorum or other
form of majority vote, with correct replicas in two-thirds
majority over faulty replicas, i.e. f < n

3 . However, the MEG
is equivocation-tolerant, which means that on sender equiv-
ocation, correct MEG replicas can cope with receiving two
messages in arbitrary order from the broadcast abstraction,
as long as every correct replica receives both. Due to the
MEG’s conflict-free nature and commutative operations,

this is sufficient to provide SEC, as we will show later in
Theorem 3.
Lemma 6: Under the assumption of transferable authen-

tication, there exists a broadcast algorithm that provides
Validity and Agreement for equivocation-tolerant algorithms
in a fail-silent-arbitrary n > f environment with n total and
f faulty participants.

Proof: We show that the classical Eager Reliable Broad-
cast algorithm [21, p. 80] provides Validity and Agreement,
as defined in Section V, for equivocation-tolerant algorithms
under the employed assumptions. The algorithm works as
follows: A correct sender best-effort-broadcasts the message
to all replicas, including itself. Best-effort broadcast works
by sending the message to all receivers via reliable unicast,
which ensures Agreement as long as the sender is correct.
A correct replica immediately delivers the message on recep-
tion, which ensures Validity. To ensure Agreement if the
sender fails during best-effort broadcast, receiving replicas
best-effort-broadcast the message to every replica again, if
they have not yet broadcast that message.

We assume that transferable authentication [25] is avail-
able, e.g., in the form of digital signatures. Due to transferable
authentication, faulty replicas cannot forgemessages by other
replicas, or manipulate relayed messages. A faulty replica
is therefore left with attacking Agreement of the underlying
best-effort broadcast via other forms of equivocation [25],
either as a sender or a receiver:

If receiving replicas are faulty and perform no or a faulty
re-broadcast, a correct sender will still contact all correct
replicas directly, which ensures Agreement.

A byzantine sender can broadcast a message to only a
subset of replicas. If the subset contains a correct replica,
the replica will deliver the message. Then, it will re-broadcast
the message to all replicas, which includes all other correct
ones, and will thereby ensure Agreement. If the subset con-
tains no correct replica, the message is not delivered by any
correct replica, and Agreement is therefore not violated.

A byzantine sender can also broadcast two different mes-
sages to different subsets of replicas. Correct replicas will
immediately deliver any of the received messages. Due to the
re-broadcasts, both messages will eventually be delivered by
all correct replicas, ensuring Agreement.

To further describe the attacker capabilities, we have to
introduce a distinction between valid and invalid opera-
tions. An operation is valid if it cannot be distinguished by
the receiving replica from operations that originate from a
protocol-abiding generator. Valid operations, therefore,
include operations from correct replicas as well as from faulty
replicas that abide by or deviate from the protocol in indistin-
guishable ways. An operation is invalid if it does not possess
authenticity, integrity, or otherwise violates assumptions of
the protocol that can be distinguished from valid operations
by the receiving replica. While this notion of invalid events
can directly be extended to unauthorized events, we consider
that out of scope for this paper, and reference publication [11]
for a discussion on how aMEGReferenceMonitor can ensure
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authorization based on policy information embedded in the
MEG state itself.

As long as invalid operations are applied in the same way
by all correct replicas, a CRDT in a state derived from invalid
operations would technically still achieve Strong Eventual
Consistency, as that would neither violate Eventual Deliv-
ery nor Strong Convergence. However, to make the SEC
guarantee more meaningful for applications in the fail-silent-
arbitrary setting, we define an additional security property
that prevents invalid operations from being applied:
• Protocol Observance: A correct replica does not apply
an invalid operation to its state.

Lemma 7: Under the assumption of a fail-silent-arbitrary
n > f environment with n total and f faulty participants,
transferable authentication, and a broadcast primitive that
provides Validity and Agreement for equivocation-tolerant
algorithms, the Reference Monitor component of a MEG can
provide Protocol Observance.

Proof: The main task of the Reference Monitor com-
ponent is to shield the CRDT from invalid operations, i.e., to
provide Protocol Observance. To achieve this task, the Refer-
ence Monitor is the endpoint for all external interfaces of the
replica.
Authenticity and integrity prevent impersonation and unob-

trusive alteration of operations that are not directly received
from the source replica. Both properties can be achieved by
the assumed transferable authentication.

Faulty replicas can violate the forward extremity selection
mechanism and include non-concurrent forward extremities
as parents. If the parents are received by any correct replica,
they will eventually be received by all due to Validity and
Agreement, and the Reference Monitor can verify that none
of the parents is an ancestor of any others before the effector
applies the operation. However, an operation with forged,
e.g., random event identifiers for which no operation exists,
is indistinguishable from a valid operation for which the
parents were not received yet. Therefore, such an operation
is valid by definition, and is not part of Protocol Observance.
This is a potential denial-of-service attack, and it will be
discussed for Theorem 3.
Faulty replicas can generate operations with non-unique

event identifiers, in order to violate the uniqueness assump-
tion used in the MEG. If applied to the state, such operations
would have disastrous consequences for Strong Convergence,
as they tamper with the very definition of what the same
events are. However, (probabilistically) unique identifiers
can be ensured in a byzantine environment, by generating
identifiers from the event data and metadata using a collision-
resistant hash function. In this way, Reference Monitors can
verify whether an identifier is valid by recomputing the hash
themselves, which is necessary to ensure Strong Convergence
in an equivocation-tolerant way.

We conclude that operations that pass the Reference Mon-
itor are valid. Thereby, Protocol Observance is provided.

We continue to assume a static, known set of replicas
in the following proof. Still, we want to note that dynamic

replica sets introduce additional attack surfaces in byzantine
environments: such attacks may prevent replicas from receiv-
ing some or all update operations, which could affect Even-
tual Delivery. We consider this an important, but separate
topic.

For the following discussion of SEC in byzantine envi-
ronments, we need an additional way to classify operations:
An operation generated by a faulty replica is malicious if
the operation would not have been sent if a correct replica
was in the faulty replica’s place. While all invalid operations
are malicious, valid operations can be malicious as well:
For example, faulty replicas can send operations that were
not generated by using all forward extremities available to
the faulty replica. However, for correct replicas, such an
operation is indistinguishable from an operation generated
by a correct replica that just has not applied those forward
extremities yet.
Theorem 3: Under the assumption of a fail-silent-

arbitrary n > f environment with n total and f faulty partici-
pants, transferable authentication, and a broadcast primitive
that provides Validity and Agreement for equivocation-
tolerant algorithms, the MEG is an operation-based CRDT
and thereby provides Strong Eventual Consistency.

Proof: We revisit every property required for the CRDT
proof as in Subsection VI-C, and we check how byzantine
replicas can try to break those properties for correct replicas.

Strong Convergence. As we can assert Protocol Obser-
vance as given by Lemma 7, Strong Convergence is only
concerned with the state resulting from the application of
valid operations by correct replicas.

As given by Lemma 6, the broadcast abstraction ensures
Agreement in byzantine n > f environments. Nevertheless,
by using equivocation, byzantine replicas can influence the
order in which their operations are applied. However, this fact
does not impair Strong Convergence, as shown in Subsec-
tion VII-A.

Byzantine replicas can send malicious but valid opera-
tions that are applied to the state. Still, under unique event
identifiers, which we can assert due to Lemma 7, any two
valid operations commute as of Subsection VII-A, and Strong
Convergence holds. The application of a malicious but valid
operation can only lead to different outcomes on different
replicas if one or multiple replicas deviate from the protocol,
e.g. due to an implementation error. In this case, the deviating
replicas are faulty and, thus, do not require further consider-
ation for Strong Convergence.

Eventual Delivery. Lemma 6 shows that we can assert
Validity and Agreement by the broadcast abstraction even
in a byzantine n > f environment. By Lemma 7, we can
assert that only valid operations reach the effector of a correct
replica. We will now show that for a given valid operation,
the delivery precondition P is either eventually fulfilled on
all correct replicas, or never fulfilled on any correct replica.
Be reminded that the MEG’s delivery precondition states that
all ‘parents’ referenced by an operation have to be part of the
replica state before the operation is applied.
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A byzantine replica has two ways to target Eventual Deliv-
ery: It can equivocate and provide only a subset of replicas
with the update operation, or it can create malicious but valid
updates that will never fulfill the delivery precondition.

For any form of equivocation, the broadcast abstrac-
tion will still ensure Agreement, and Protocol Observance
will ensure unique identifiers for non-identical opera-
tions. Thereby, every correct replica will receive all valid
update operations received by any correct replica. Therefore,
the attacker cannot hinder eventual satisfaction of the delivery
precondition through equivocation.

An attacker can target Eventual Delivery by the creation of
valid but malicious operations that include forged identifiers
as parents for which no forward extremities exist. In an asyn-
chronous system, those operations are indistinguishable from
operations for which the parents have not yet been received,
but will be eventually. Therefore, operations that refer to
non-existing parents stay forever in the delivery precondition
fulfillment buffer. Consequently, the malicious operations
will never be delivered at any correct replica. If a single
correct replica could apply the operation eventually, it must
have received its parents. Then, due to Agreement, all other
correct replicas would eventually receive and therefore apply
all parent operations as well.

As byzantine replicas cannot lead to an inconsistent fulfill-
ment of the delivery precondition on different correct repli-
cas, Eventual Delivery holds.

Termination. As we can assert Protocol Observance as
given by Lemma 7, the Termination property in the byzantine
setting is about the effector applyingmalicious but valid oper-
ations. Those operations can take two main forms relevant for
Termination:
Not including all forward extremities does not prevent

operation application from terminating. We still want to note
that this behavior can slow down the convergence of the
MEG width (cf. Section VIII for discussion of MEG width
behavior).

As noted with Eventual Delivery, operations that refer to
non-existing parents stay in the delivery precondition fulfill-
ment buffer forever, as the parents will never be received.
To stop an attacker from filling the receiver’s buffer, a heuris-
tic approach to detection could be applied by monitoring
the buffer sizes, and enforcing a depletion if it grows to
unreasonable levels for a specific replica. In case of a correct
sender for which the missing parent operations will still be
eventually received after depletion, the dropped operations
can be re-requested by following the DAG relations as soon
as newer operations arrive.

In conclusion, valid but malicious operations can incur
load on performance and slow the MEG width shrinkage,
but do not threaten Termination for valid, non-malicious
operations.

Conclusion. While byzantine attackers can try to per-
form denial-of-service attacks to incur load on performance,
neither malicious updates nor equivocation can threaten
Strong Convergence, Eventual Delivery, or the Termination

property under the employed assumptions. Therefore,
Theorem 3 holds.

C. REALITY CHECK
In the Matrix system, replicas currently employ best-effort
broadcast [26], [27], instead of a reliable broadcast protocol
like it was described in Lemma 6. As replicas immediately
apply update operations to their local state, best-effort broad-
cast provides Validity. However, best-effort broadcast does
not provide Agreement even in fail-silent systems without
byzantine attackers, as a faulty replica could only provide
a limited number of correct replicas with the update opera-
tion. To mitigate this issue, Matrix uses a backfilling mech-
anism which allows replicas to specifically request missing
operations from other replicas. It is used when a replica
receives an update operation for which the parents are not part
of the replica state. With this mechanism, Matrix achieves
Agreement under the assumption of constant MEG progress,
i.e., a never-ending stream of (arbitrary low-frequency) new
update operations from each correct replica. However, if the
progress comes to a halt, Agreement is violated. There-
fore, Matrix only satisfies the requirements of Theorem 3
and thereby provides SEC under the assumption of constant
progress.

While Matrix could use the reliable broadcast protocol
described in Lemma 6 to provide SEC without constant
progress, the scalability of the Matrix best-effort broadcast
protocol is already an issue if it is used by the sender
alone [12]. For increased scalability, [12] suggests to replace
the Matrix broadcast implementation with a gossip-based
broadcast protocol that is scalable and robust. However, gos-
siping introduces a likelihood that correct receivers do not
receive a message from a correct sender, and therefore still
requires constant progress to ensure Agreement. To increase
reliability, replicas could periodically broadcast their cur-
rent set of forward extremities to all other replicas, which
then could trigger backfilling. This addition would guarantee
probabilistic Agreement, and therefore (probabilistic) SEC
for the MEG implementation of Matrix.

VIII. SCALABILITY: WIDTH OF THE MEG OVER TIME
An assessment of the scalability of the MEG replicated data
type needs to consider various aspects. While the previous
two sections focused on the safety and liveness properties
of Strong Eventual Consistency, topics concerning scalability
came up repeatedly, which will be collected now. Due to the
conflict-free nature of the MEG that allows the application of
updates without further coordination, the scalability in terms
of the number of replicas is first of all determined by the
employed Reliable Broadcast protocol and its implementa-
tion of the Validity and Agreement properties. Probabilistic
agreement, in particular, offers the opportunity for perfor-
mance tuning. Second, as an append-only data structure,
a strategy is required for compression or garbage collection to
avoid a monotonically growing height of the MEG. This sec-
ond aspect is addressed in the Matrix implementation, but
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not considered in this paper. Third, the width of the MEG,
i.e., the number of forward extremities, needs to be analyzed.
The evolution of the width of the MEG over time is the focus
of this section. We follow an analytical approach to deliver a
precise mathematical definition and treatment of the problem.

In contrast to Sections VI and VII, where we assumed that
all forward extremities known to a replica are used as parents
for new vertices created by the replica, in the following the
number of parents of a new vertex is restricted to a finite
value d . If there are more than d forward extremities, a replica
randomly (uniformly distributed) selects a subset of size d of
forward extremities as parents for the new vertex. The reason
for a fixed value d is based on considerations of performance:
correct replicas can experience a high number of forward
extremities after a partition, and malicious replicas could
deliberately create events with a high number of parents.
This is problematic from a performance perspective because
checks, particularly of the Reference Monitor, are resource
intensive graph algorithms, but needed for every parent [9].
Please note that the proofs of the previous sections are not
affected by this relaxation of assumptions.

In this section, we provide evidence that the width of
the MEG still converges7 to the number k of participating
replicas times a small factor when all k replica repeatedly and
concurrently add a new vertex.

Wemodel the evolution of the width of theMEG by assum-
ing that vertices are added in rounds, and a round consists of
two steps:

• Step 1: each of the k replicas concurrently adds a new
vertex. It thereby ‘eliminates’ the d forward extremi-
ties that were chosen as parents, while the new vertex
becomes a forward extremity itself.

• Step 2: all replicas synchronize their new extremities and
reach a consistent state.

The overall number of eliminated extremities depends on
the overlap between the chosen parents of different replicas.
As we are interested in scaling k while keeping d low, we
assume k > d . As the number of forward extremities never
decreases if new forward extremities have only one parent,
we assume d > 1. The model also accepts an arbitrarily
high number of forward extremities u0 as a starting condition.
We analyze the sequence of numbers ui of forward extremities
after round i by a mean value analysis.

Please note that this model maximizes uncoordinated con-
currency in Step 1 and, thus, models a worst case scenario:
More new vertices per replica, i.e., a higher frequency of
updates by clients or prolonged periods of network parti-
tion, would eliminate more than d non-overlapping forward
extremities, but not create additional ones. Also, if replicas
would be aware of the eliminations of other replicas, their
forward extremity choices could be done more overlap-free.

7Convergence in this section refers to the number of forward extremities.
In the previous CRDT-related section, convergence is related to propagation
of states.

A. STOCHASTIC PROCESS
In order to determine the width of the MEG over time, we are
interested in the number of parents selected in Step 1 of the
above evolution model. The concurrent updates in Step 1 of
each round can be nicely modeled by a stochastic urn prob-
lem. The initial number of forward extremities ui in round
i is described by ui initial red balls, while the number of
newly linked parent vertices d is the number of balls taken
out during a drawing by a single replica. The update gener-
ator executions of the k replicas lead to the conduction of
k independent drawings that can be modeled by sequential
drawings with the use of black balls: the balls drawn by a
replica are replaced by black balls and put back to the urn.
Therefore, after k replicas have performed Step 1, the black
balls indicate the number of selected parent vertices. After
each round, the black balls are replaced by red ones again
and the next round starts with the current number ui+1 of red
balls.

We let the random variable Rd,k (u) denote the total number
of removed forward extremities, while u − Rd,k (u) denotes
the number of forward extremities that remain for the subse-
quent urn experiment. With this urn experiment, we model a
stochastic process for the behavior of the number of forward
extremities. We derive the expectation and the variance of
Rd,k (u), and we provide a recursion formula for the distri-
bution of Rd,k (u). We discuss the implications on MEGs in
Subsection VIII-B.

Let the random variableUn describe the number of balls in
the urn after n ∈ N0 rounds. Let u0 be the initial number of
balls in the urn, then U0 = u0 and

Un+1 = Un + k − Rd,k (Un).

As (Un)n∈N0 is a sequence of random variables, it is a stochas-
tic process (cf., e.g., [28]). We are interested in whether con-
vergence can be expected, and, if yes, how fast convergence
is reached. The process is a spatially inhomogeneous ran-
dom walk, specifically a time-homogeneous Markov chain
(cf., e.g., [29]) with state spaceMU = N+:

∀n ∈ N0 ∀u0, . . . , un+1 ∈ MU :

P(Un+1 = un+1|U0 = u0, . . . ,Un = un)
= P(Un+1|Un = un)

Thus, the process is memoryless with transition matrix Pi,j =
P(Un = j|Un−1 = i) = P(Rd,k (i) = k− (j− i)) and transition
probability ∀n ∈ N0∀i, j ∈ MU : P(Un = j|Un−1 = i) =
P(U1 = j|U0 = i). Thus, the process is time-homogeneous.

We now provide the expectation (a) and the variance (b)
of Rd,k (u), and a recursion formula (c) for the distribution of
Rd,k (u). For the proof, see Appendix.
Theorem 4: For the random variable Rd,k (u), we have:

a) E(Rd,k (u)) = d ·
1− pk

1− p
, k ≥ 1,

where

p =
u− d
u

(1)

is the retention probability.
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b)

V(Rd,k (u))

=
vud
1− p

(
1− wk−1

1− w
− pk−1 ·

1− (w/p)k−1

1− w/p

)
−

vd2

(1− p)2

(
1−wk−1

1− w
− 2pk−1

1−(w/p)k−1

1− w/p

+p2(k−1)
1−(w/p2)k−1

1− w/p2

)
,

where

v =
d(u− d)
u2(u− 1)

, w =
(u− d)(u− d − 1)

u(u− 1)
. (2)

c) If k ≥ 2 then

P(Rd,k (u) = j)

=

d∑
`=0

(u−(j−`)
`

)( j−`
d−`

)(u
d

) · P(Rd,k−1(u) = j− `).

B. IMPLICATIONS FOR THE MEG AND REALITY CHECK
In this subsection wemake use of the results for the stochastic
process model to gain insights into convergence and conver-
gence speed of the width of the MEG, and we check how the
real-world Matrix implementation compares to our findings.

The formula for the expectation of Rd,k (u) allows for state-
ments on the expected convergence behavior of the MEG
in the presence of concurrent updates by different replicas.
In addition, the formula for the variance of Rd,k (u) shows the
deviation from expected convergent behavior. We use these
formulas to calculate the expected development and deviation
of forward extremities Un over the number of rounds for
varying k but fixed d . To plot the calculations in Fig. 4, we
put different realizations of Un against the expected value of
Un+1, via E(Un+1) = Un + k − E(Rd,k (Un). The dashed
line is Un+1 = Un, its intersection with the colored lines
marks their fixed points. In the area below the dashed line,
E(Un+1) < Un, the urn contents are expected to decrease,
in accordance with the plotted standard deviation. The change
from linear to constant curves (for decreasing Un, i.e. from
right to left) shows the shift from likely overlap-free choices
to overlapping choices, which decrease the urn contents to a
lesser extent. It shows that for any plotted realization of Un,
we either expect a decreasing urn value (below the dashed
line), or a transition to the fixed point. Therefore, the plotted
configurations show convergence. In addition, the variance is
very low. We observe that the convergence of the width of
the graph appears to be almost optimal, i.e., the fixed point is
near the number of replicas k .
Synapse, the reference implementation of a Matrix replica,

recently released a feature to force the depletion of forward
extremities by sending empty ‘dummy’ events using the same
parent selection rules as regular events8 with d = 10, as soon

8Note that Synapse actually takes 5 random forward extremities and 5 of
the newest forward extremities, which are not independent between replicas.

FIGURE 4. Expectation for the next urn content E(Un+1) for different
realizations of Un, d = 5, and varying k . Points below the dashed line of
Un = E(Un+1) mean that the urn content is expected to decrease, points
above mean that an increase is expected. For visibility, the plotted
standard deviation is increased by the factor 5. Please note that when the
curves are followed from right to left, they change from a linear slope to a
constant value close to k .

FIGURE 5. Expected number of rounds until convergence for varying d
and k , starting at u0 = 100 · k . While convergence speed increases with d ,
the returns in the number of rounds to reach convergence diminish.

as there are more than 10 forward extremities present [30].
This fact allows to take advantage of the convergence in
periods of missing update operations, and it brings reality
closer to our model.

To gain insights into the influence of the number d of
parents of a new vertex, we use the expectation of Un via
E(Un+1) = E(Un)+k−E(Rd,k (Un)), and calculate the num-
ber of rounds n until E(Un)−E(Un+1) < 1. Fig. 5 shows that
the number of rounds until convergence is reached directly
depends on the choice of d . However, there are diminishing
returns: the highest gain in time until convergence is between
d = 2 and d = 3, while there is much less difference between
d = 6 and d = 10. When u� k ·d , the speed of convergence
is nearly k · (1− d), and therefore the number of rounds until
convergence is nearly proportional to 1

1−d . Synapse employs
d = 5 with k / 103, which we can confirm as a good
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compromise in convergence speed and performance using our
formulas in Figs. 4 and 5.

With small u, bad choices, i.e. overlapping choices for
parents, are made, but because u is small, they do not per-
manently impair convergence. With large u, the probability
for overlapping choices becomes smaller and smaller, and
convergence speed is linear.

C. CONJECTURE
We conjecture that the above stochastic process represents
a positive recurrent Markov chain and, since the process is
aperiodic and irreducible, it has a stationary distribution, i.e.,
a fixed point of the transition function in which the probabil-
ities for the next state do not change with state transitions.

The properties of being aperiodic and irreducible can be
easily seen as follows. If we assume u0 ∈ [0, k − 1], then
u1 ≥ k , as no more than u0 balls can be drawn, but k balls
are added. Therefore, states [0, k−1] are transient and can be
removed from the chain. The remaining states are irreducible
and aperiodic: As the next state increment in one round is
in [k − k · d, k − d], every other state can be reached in a
finite number of iterations. However, it is unclear whether
the remaining states are transient, i.e., visited only once, or
positively recurrent, i.e., have a finite expected time until they
are visited again. This question represents an open problem
and is left for future work.

In practice, this means that if the conjecture holds,
the MEG possesses a self-stabilization property [31] in the
sense that if transient faults lead to a high number of forward
extremities (a high u), a correct system converges to a stable
state with a number of forward extremities above but near k in
a finite number of rounds, and remains stable as if the faults
had never occurred.

IX. LIMITATIONS AND OPEN ISSUES
The theorems of the previous sections as well as their inter-
pretation in the context of the Matrix implementation show
that the MEG represents a distinct and interesting replicated
data type of practical relevance. Therefore, the open issues
we identified in the previous sections represent challenges for
further research, and they are summarized in this section.

First of all, for an MEG to represent a CRDT, a reliable
broadcast primitive is required. When an MEG is used for
a topic in a publish-subscribe system, there is no need for
a ‘one-size-fits-all’ solution. Instead, an appropriate broad-
cast primitive could be selected on a per-topic basis. When
probabilistic broadcast is used, tuning the parameters to
meet the demands of the application is required. Since there
are a plethora of existing reliable broadcast and multicast
approaches, the selection process and/or auto-tuning appears
the more important problem than devising new approaches.

Second, as an append-only structure, the MEG needs
strategies for compression and/or garbage collection to ensure
scalability. Somewhat related is the issue of resistance to
denial-of-service attacks: how should one handle the situation
when a replica tries to add an excessive number of new

vertices? We want to emphasize again that such an ‘attack’
would not compromise the fundamental properties of the
replicated data structure. However, it could keep a replica
busy or buffers full. Related to the garbage collection strategy,
we note that in Matrix, replicas are allowed to garbage-
collect old, irrelevant events to conserve space in accordance
with individual policies. New replicas are not required to
sync the full MEG state, from the dawn of a topic’s cre-
ation, but can store multiple discontinuous components of
the full MEG state instead. Using the backfilling mechanism
described in Subsection VII-C, replicas can retrieve events
on demand, as long as any other live replica still has them in
its state. In addition, replicas could only store specific types
of publish-subscribe messages that their users are subscribed
to, or even employ a way of sharing so that just a subset of
the participating replicas is responsible to maintain specific
graph partitions. Therefore, the extension of the proofs to
non-uniform replicas with different synchronization policies
is another relevant open issue.

Third, we presented evidence that a high number of for-
ward extremities will quickly collapse to only a few forward
extremities. However, while we were able to show this behav-
ior for expected values, the proof of positive recurrence of the
underlying Markov chain represents an open problem.

In terms of limitations, we showed the MEG properties
in form of manual proofs. However, especially in the world
of CRDTs, machine-checked proofs and formal verification
are well-established techniques [32]. While we currently
look at formal verification methods in the context of MEG-
based access control, we deem formal verification of the
properties required for SEC as well as specific correctness
properties of the MEG an important step to strengthen our
results.

MEG replicas detect their own errors and the errors of
remote replicas based on the local state of the causal struc-
ture, but the correction of local or remote errors requires
communication with other correct replicas. While we assume
a static replica group and direct eventual communication
between all correct replicas, in practice, churn is present and
an indirect communication is preferable to arbitrarily long
waiting times for direct communication. Even with churn
and indirect communication, we conjecture that, as long as
correct replicas form a connected component in the network,
performance can suffer, but fault tolerance and consistency
properties of the MEG are still valid.

X. CONCLUSION
We extracted and abstracted the replicated data type
employed by the Matrix specification, and we proved that
this Matrix Event Graph (MEG) represents a Conflict-Free
Replicated Data Type. Therefore, the MEG provides Strong
Eventual Consistency, a fact that in particular implies that
all correct replicas that applied the same set of updates are
in an equivalent state – immediately and without additional
coordination. This proof explains why the Matrix system,
in practice, shows good resilience and scalability in the
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number of replicas. Hence, it makes the MEG an attractive
candidate as a basis for other decentralized applications.

In addition, we analyzed the challenges for systems with
byzantine actors and demonstrated that the properties of
the MEG facilitate a byzantine-tolerant design, especially
due to equivocation-tolerance. We showed that in practice,
those properties are not guaranteed by the Matrix reference
implementation yet and provided ideas for possible solutions.
Design and analysis of an underlying broadcast protocol with
the identified properties remain topics for future research.

Furthermore, we formalized and studied the evolution of
the width of the graph as a spatially inhomogeneous random
walk. Our observations let us conjecture that the width of
the graph always converges independently of the specific
system parameters, and does so fast. If the conjecture can
be confirmed, the convergence translates to a self-stabilizing
property that allows a real-world system to cope with tran-
sient faults in a scalable way.

In summary, we believe that the MEG represents a highly
relevant data structure for real-world scenarios that require
decentralization, scalability, and Strong Eventual Consis-
tency. When compared to traditional blockchains and dis-
tributed ledger technologies, the MEG strengthens political
independence of participants, as it does not require global
coordination. However, the commutativity requirement for
updates is the price to pay for its equivocation-tolerance.
We hope that our results advance the understanding as well
as the appropriate real-world deployment of those systems,
and can serve as a basis for further research into the Matrix
Event Graph replicated data type.

APPENDIX
PROOF OF PROPERTIES OF THE TOTAL NUMBER OF
REMOVED FORWARD EXTREMITIES R
For a series of drawings Rd,k (u), we write Zk for the number
of red balls that show up in the kth drawing, so that Rd,k (u) =
Z1 + . . .+ Zk .

a) In what follows, let k ≥ 2. Under the condition
Rd,k−1(u) = r , the urn contains u − r red and r black balls.
Thus, the conditional distribution of Zk given Rk−1 = r is the
hypergeometric distribution Hyp(d, u− r, r), which implies

E(Zk |Rd,k−1(u) = r) = d ·
u− r
u

.

Since Rd,k (u) = Rd,k−1(u)+ Zk , we have
E(Rd,k (u)) = E(Rd,k−1(u))+ E(Zk ). Moreover,

E(Zk ) = E
[
E(Zk |Rd,k−1(u))

]
= E

[
d ·

u− Zk−1
u

]
= d −

d
u
· E(Rd,k−1).

It follows that

E(Rd,k (u)) = E(Rd,k−1(u))+ d −
d
u
· E(Rd,k−1(u))

= d + pE(Rd,k−1(u)).

Together with E(Rd,1(u)) = d , we now obtain by induction
over k

E(Rd,k (u)) = d
k−1∑
j=0

pj = d ·
1− pk

1− p
,

as was to be shown. Notice that

lim
k→∞

E(Rd,k (u)) =
d

1− p
= u.

This result is not surprising, since in the long run each of the
red balls will have shown up.

b) The proof uses the general fact that, for random variables
X and Y , the variance of X can be calculated according to the
formula V(X ) = E [V(X |Y )]+ V(E[X |Y ]), i.e., the variance
of X is the sum of the expectation of the conditional variance
of X given Y and the variance of the conditional expectation
of X given Y . In our case, we put X = Rd,k (u) and Y = Zk−1,
where k ≥ 2, and obtain

V(Rd,k (u)) = V(Rd,k−1(u)+ Zk )
= E

[
V(Rd,k−1(u)+ Zk |Rd,k−1(u))

]
(3)

+V
(
E[Rd,k−1(u)+ Zk |Rd,k−1(u)]

)
.

Since V(Rd,k−1(u) + Zk |Rd,k−1(u)) = V(Zk |Rd,k−1(u)) and
the conditional distribution of Zk givenRd,k−1(u) is the hyper-
geometric distribution Hyp(d, u − Rd,k−1(u),Rd,k−1(u)), it
follows that

V(Zk |Rd,k−1(u))

= d ·
u− Rd,k−1(u)

u
·

(
1−

u− Rd,k−1(u)
u

)
·

(
1−

d − 1
u− 1

)
=

d
u2

(
1−

d − 1
u− 1

)
(4)

·(u− Rd,k−1(u))Rd,k−1(u).

Moreover, we have

E[Rd,k−1(u)+ Zk |Rd,k−1(u)]
= Rd,k−1(u)+ E[Zk |Rd,k−1(u)]

= Zk−1 + d ·
u− Rd,k−1(u)

u

= d +
(
1−

d
u

)
Rd,k−1(u).

Therefore, the second summand figuring in (3) equals(
1−

d
u

)2

V(Rd,k−1(u)).

SinceV(Rd,k−1(u)) = E
[
R2d,k−1(u)

]
− (ERd,k−1(u))2, Equa-

tion (4) yields

E[V(Zk |Rd,k−1(u))]

=
d
u2

(
1−

d − 1
u− 1

)
·
(
uE(Rd,k−1(u))

−V(Rd,k−1(u))− (ERd,k−1(u))2
)
.
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We thus obtain the recursion formula
V(Rd,k (u)) = v · V(Rd,k−1(u))

+
d
u2
·

(
1−

d − 1
u− 1

)
·

(
uE(Rd,k−1(u))− (ERd,k−1(u))2

)
with v given in (2), from which the result follows by straight-
forward calculations. Notice that V(Rd,1(u)) = 0, (Rd,1(u) is
the constant d), and that limk→∞V(Rd,k (u)) = 0. The latter
convergence is clear from the fact that, in the long run, all red
balls will have been drawn.

c) The result follows from the fact that the event {Rd,k = j}
is the union of the pairwise disjoint events {Rd,k−1(u) =
j − `,Zk = `}, ` = 0, 1, . . . , d , and the fact that
the conditional distribution of Rd,k (u)(= Rd,k−1(u) + Zk )
given Rd,k−1(u) = j − ` is the hypergeometric distribution
Hyp(d, u− (j− `), j− `).
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