
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Automatic Context-Based Policy
Generation fromUsage- and

Misusage-Diagrams

Master’s Thesis of

Thomas Lieb

at the Department of Informatics

Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr. Ralf H. Reussner

Second reviewer: Prof. Dr.-Ing. Anne Koziolek

Advisor: M.Sc. Maximilian Walter

Second advisor: Dr. rer. nat. Robert Heinrich

15. June 2020 – 14. December 2020

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Stuttgart, 14.12.2020

. .

(Thomas Lieb)

Abstract

In systems with a very dynamic process like Industry 4.0, contexts of all participating

entities often change and a lot of data exchange happens with external organizations such

as suppliers or producers which brings concern about unauthorized data access. This

creates the need for access control systems able to handle such a combination of a highly

dynamic system and the arising concern about the security of data. In many situations

the decision for access control depends on the context information of the requester. One

concept to support the systematic development of secure systems for these dynamic

environments is the context meta-model. It is a model-driven security approach which

applies the concepts of model-driven software development to the �eld of software security

with the help of context-based access policies. Another problem of dynamic system is

that the manual development of access policies can be time consuming and expensive.

Approaches using automated policy generation have shown to reduce this e�ort. In this

master thesis we introduce a concept which combines the context based model-driven

security with automated policy generation and evaluate if it is a suitable option for the

creation of access control systems and if it can reduce the e�ort in policy generation. The

approach makes use of usage and misusage diagrams which are on a high architectural

abstraction level to derive and combine access policies for data elements which are located

on a lower abstraction level. The approach was evaluated using four case studies and it

was shown that it is an accurate method for creating policies and an e�ort reduction can

be achieved in some cases.

i

Zusammenfassung

In Systemen mit sehr dynamischen Prozessen wie in der Industrie 4.0 ändern sich häu�g

die Kontexte aller beteiligten Teilnehmer und es �ndet ein großer Datenaustausch mit

externen Organisationen wie Lieferanten oder Herstellern statt, was Bedenken hinsichtlich

nicht autorisierter Datenzugri�e hervorruft. Dies scha�t die Notwendigkeit für Zugangs-

kontrollsysteme, die diese Kombination aus hochdynamischem System mit gleichzeitiger

Sicherheit der Daten bewältigen können. In vielen Situationen hängt die Entscheidung für

die Zugri�skontrolle von den Kontextinformationen des Anforderers ab. Ein Konzept zur

Unterstützung der systematischen Entwicklung sicherer Systeme für diese dynamischen

Umgebungen ist das Kontext-Metamodell. Es handelt sich um einen modellgetriebenen

Sicherheitsansatz, bei dem die Konzepte der modellgetriebenen Softwareentwicklung

mithilfe kontextbasierter Zugri�srichtlinien auf den Bereich der Software-Sicherheit ange-

wendet werden. Ein weiteres Problem der dynamischen Systeme besteht darin, dass die

manuelle Entwicklung von Zugri�srichtlinien zeitaufwändig und teuer sein kann. Ansätze

mit automatisierter Richtlinienerstellung haben gezeigt, dass sich dadurch der Aufwand

verringeren lässt. In dieser Masterarbeit stellen wir ein Konzept vor, das die kontextbasierte

modellgetriebene Sicherheit mit der automatisierten Richtlinienerstellung kombiniert und

bewertet, ob dies eine geeignete Option für die Erstellung von Zugri�srichtlinien ist und

ob es den Aufwand bei der Richtlinienerstellung verringern kann. Der Ansatz verwendet

Usage- und Misusage-Diagramme, die sich auf einer hohen Architekturabstraktionsebene

be�nden, um Zugri�srichtlinien für Datenelemente abzuleiten und zu kombinieren, die

sich auf einer niedrigeren Abstraktionsebene be�nden. Der Ansatz wurde anhand von

vier Fallstudien bewertet und es wurde gezeigt, dass es sich um eine genaue Methode zur

Erstellung von Richtlinien handelt und in einigen Fällen eine Reduzierung des Aufwands

erreicht werden kann.

iii

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1
1.1 Motivation . 1

1.2 Contribution of the Thesis . 2

1.3 Outline of the Thesis . 2

2 Running Example 3

3 Foundation 7
3.1 Model-Driven Software Development . 7

3.2 Palladio Component Model . 7

3.2.1 Roles . 7

3.2.2 Models . 8

3.2.3 Quality attributes . 11

3.3 Data-Driven Software Architecture . 12

3.4 Model-Driven Security . 12

3.5 Access Control Strategies . 13

3.5.1 Mandatory access control . 13

3.5.2 Discretionary access control . 14

3.5.3 Role Based Access Control . 14

3.5.4 Attribute Based Access Control 14

3.6 Context Meta Model . 14

4 Related work 19
4.1 Automatic Policy Generation . 19

4.2 Model Driven Development of Secure Systems 21

4.3 Security by Design . 22

5 Deriving Policies 25
5.1 Concept . 25

5.2 Usage Model Context Set . 27

5.3 Finding a�ected Service E�ect Speci�cations 27

5.4 Creating policies . 28

6 Combining Policies 29
6.1 Rules Combining Concept . 29

v

Contents

6.2 Rule De�nitions . 31

6.2.1 Same Context Set . 31

6.2.2 Simpler Context Set . 31

6.2.3 Parent Child Relation . 31

6.2.4 Substituting Parent . 33

6.2.5 Negative Rule a�ecting same context set 34

6.2.6 Negative Rule for simpler context set 34

6.2.7 Negative Rule a�ecting hierarchical contexts 34

6.2.8 Merging Policies a�ecting the same SEFF 35

6.2.9 Removing temporary negative context sets 35

6.3 Order of Rules . 36

7 Implementation 37
7.1 Architecture . 37

7.2 Common Functionalities . 38

7.3 Deriving Policies . 38

7.4 Calculate context set to apply . 40

7.5 Applying Rules . 42

7.6 Executing the program . 45

7.7 Test Setup . 45

8 Evaluation 47
8.1 QGM Plan . 47

8.2 Case studies . 50

8.2.1 ContactSMSManager . 51

8.2.2 Distance Tracker . 52

8.2.3 Travelplanner . 55

8.2.4 Energy Scenario . 57

8.3 Accuracy . 59

8.4 E�ort reduction . 62

8.5 Scalability . 66

8.6 Threats to Validity . 69

8.7 Summary of the validation . 70

9 Assumptions and Limitations 73
9.1 Assumptions . 73

9.2 Limitations . 73

10 Future Work 77
10.1 Adding Heuristics . 77

10.2 Increase Scope of Approach . 77

10.3 Adding more Rule Implementations . 78

10.4 Move from SEFFs to Instances . 79

11 Conclusion 81

vi

Contents

Bibliography 83

vii

List of Figures

2.1 Running example illustration . 3

3.1 Palladio component model . 8

3.2 Repository model . 9

3.3 Service E�ect Speci�cation . 10

3.4 Composed structure . 10

3.5 Usage model . 11

3.7 Example of HierarchicalContexts . 15

3.8 Class diagram of the ContextModel . 16

4.1 Basic concept of mining policies . 20

4.2 Scenario-driven role engineering process 22

5.1 Basic concept of the derivation process 25

5.2 View of the di�erent models used in the derivation 26

5.3 System model with nested components 28

6.1 Parent child rule . 32

6.2 Substitute parent rule . 33

6.3 Hierarchical context set with negative - allowed case 34

6.4 Hierarchical context set with negative - error case 35

7.1 Plugin structure . 37

7.2 DeriverRecord class . 42

7.3 Class structure for rules . 44

7.4 Setting the parameters for the program in the GUI 45

8.1 Main sequence diagram of the ContactSMSManager app 51

8.2 Main sequence diagram of the DistanceTracker app 54

8.3 Sequence diagram for �ight booking . 56

8.4 Sequence diagram for the EnergyScenario case study 58

8.5 E�ort reduction in relation to number of SEFFs 64

8.6 E�ort reduction in relation to number of usage models 65

8.7 E�ort reduction in relation to the amount of SEFFs per usage diagram . . 65

8.8 Graph plotting the runtime results . 68

10.1 Simplifying hierarchical context set with heuristics 78

10.2 Possible rule for positive parent context with negative child context . . . 79

10.3 Possible context model change . 80

ix

List of Tables

2.1 Textual description of allowed and forbidden usage of the example system 4

6.1 Example for multiple context sets . 29

6.2 Example for combining rules . 30

6.3 Example for multiple context sets with negative context set 30

6.4 Example for error case . 31

6.5 Same context set . 31

6.6 Simpler context set . 31

6.7 Hierarchical context set . 32

6.8 Parent child both directions . 33

6.9 Substituting child nodes with parent node 33

6.10 Same context error . 34

6.11 Simpler context error . 34

6.12 Hierarchical context set error . 35

8.1 Goals de�ned for our approach . 47

8.2 Goals, questions and metrics used for the GQM-method 48

8.3 Comparison of case studies regarding PCM elements 50

8.4 Context model for case study ContactSMSManager 52

8.5 Context model of Distrance Tracker case study 53

8.6 Context model of travelplanner . 55

8.7 Context model of energyscenario . 57

8.8 Accuracy for deriving policies . 60

8.9 Accuracy for reducing policies . 60

8.10 Accuracy for detecting errors . 61

8.11 Comparison with only usage diagrams 63

8.12 Comparison with misusage diagrams . 63

8.13 Parameters which are varied during the runtime analysis 66

8.14 Runtime results for PCM parameters . 67

8.15 Runtime results for context parameters 69

8.16 Hardware speci�cation . 69

xi

1 Introduction

1.1 Motivation

The ongoing automation of traditional manufacturing processes with the help of smart

technology is known as the fourth industrial revolution, or Industry 4.0 [13]. In the global

production of goods, far reaching digital networks and the fundamental restructuring of

production can lead to improved product and service delivery, a boost in overall productiv-

ity, reduced labor cost and energy consumption, resulting in more cost-e�cient products

[6]. Massive networking leads to a large amount of data exchange which also occurs with

outside organizations such as suppliers or producers, bringing concern about unauthorized

access to each other’s data [37]. "The protection objectives here are availability, integrity,

con�dentiality and legally compliant use (e.g. privacy) of the resources or data" [13]. This

creates the need for access control systems able to handle this combination of a highly

complex and dynamic system and the arising concern about the security of data.

A concept created to support the systematic development of secure systems is model-

driven security [34]. It applies the concepts of model-driven software development to the

�eld of software security. Compared to manual assessment with inspections, which are

time consuming and error-prone, the automation of techniques during the realization of

secure software systems could guide security analysts towards a more complete inspection

of their software design [43].

One approach combining model-driven security with access control is proposed by Bolz

et al. [5]. Their approach introduces a context meta-model, which allows the representation

of context-based con�dentiality properties for a data�ow analysis on the architectural

level.

The problem that manual development and maintenance of access policies for these

highly dynamic systems is time consuming and expensive [18][19] still remains. Automatic

generation of access policies can reduce this e�ort [46][10], while simultaneously allowing

the modeling of more dynamic and contextual systems [44].

In their paper, Fernandez and Hawkins [15] propose the use of use cases as a convenient

way of creating access control policies. According to them this has multiple bene�ts.

Firstly, it does not violate the principle of de�ning authorization at the highest possible

level, at which their semantics are still explicit [17]. Secondly, use cases are needed anyway

during the development of new systems and for the creation of new architectures during

the restructuring of legacy systems. They assume that the security administration of such

a system should be much easier compared to current systems.

In this thesis we want to combine the concept of utilizing usage descriptions of system

for the de�nition of access policies with the concept of automated policy generation in

order to derive context-based access policies from usage and misusage diagrams.

1

1 Introduction

1.2 Contribution of the Thesis

In this master thesis we introduce a concept which combines the context based model-

driven security with automated policy generation. The approach uses usage and misusage

diagrams which are on a high architectural abstraction to derive and combine access

policies for data elements which are located on a lower abstraction level. Since multiple

use cases a�ect the same data elements with di�erent policies, we also introduce a concept

with which the derivied policies on the data element level can be combined and reduced.

With this concept, we try to minimize the number of policies while keeping the system

policy the same. The derived policies can also contradict each other, either through an

error in the con�guration or unplanned interaction in the design, which can be checked

and validated with the introduced approach.

1.3 Outline of the Thesis

The following brie�y describes the structure of the thesis. In Chapter 2, the running

example is introduced which is set in the context of this thesis and will be used in later

chapters to illustrate how certain concepts work. Chapter 3 describes the foundation of

the approach which is needed for the rest of this thesis. In Chapter 4, the state of the art

of the used concepts is presented. It summarizes them and describes their relevance while

also showing how they di�er to our work. Chapter 5 and 6 describe how the automated

derivation and combination of policies works and how the di�erent parts of the solution

are designed. In Chapter 7, the architecture and implementation of the created software

is explained. In Chapter 8, the thesis is evaluated using di�erent case studies and their

results. Finally, in Chapter 11, the master thesis is summarized and an outlook regarding

future work is given.

2

2 Running Example

In this section, a running example is described. It introduces an example environment

which is going to be used throughout this paper to illustrate the concepts of the thesis,

to show how it can be modelled with the tools used and to describe how the designed

approach is going to work. The running example describes a company which produces

goods and has di�erent security aspects which need to be considered. Figure 2.1 illustrates

the running example.

External contractor

Machine Machine

Team Leader

WorkerManager

Worker

Office

Assembly

Warehouse

Factory Site

Technican
Worker

Figure 2.1: Running example illustration

The company’s factory site has one main building, which is split into two areas: the o�ce

and the assembly, where the machines producing the goods are located. The warehouse

is located in a second, smaller building. Workers inside the assembly are able to check

the status of all machines, schedule new tasks or abort running operations. An employee

3

2 Running Example

inside the warehouse should be able to check the status of all machines and their scheduled

tasks, so he is able to prepare the neccessary parts for the upcoming tasks and free space

for the incoming produced goods. Workers can have shifts assigned to them in which they

work. Workers can change possible shifts themselves in advance up to a certain date, but

only the manager or the team leader can change shifts for other employees. The company

hired an external contractor to maintain their machines and �x them in case of failure. The

technician employed by the contractor should not be able to access the machines of the

company during normal operation. However, in case a failure should arise, the technician

should be able to access the machine remotely and run di�erent diagnostics on it, so he

is able to prepare his equipment before visiting the company or in best case �x the issue

from his desk. If the technician needs to �x the problem on-site, he needs to have access

to the factory site. Here, only the manager or the team leader should have the rights to

grant this access. The described use cases are listed in table 2.1.

ID Use case description Actor

1

The workers in the assembly should have

full access to the machines

Worker

2

The workers in the warehouse should be able to

see the current and the scheduled tasks

Worker

3

The workers in the o�ce should be able to

see the current and the scheduled tasks

Worker

4

The start of a new task should only be allowed

if the person is in the assembly

All

5

An employee should be able to adjust his

upcoming shifts up to a certain date

All

6

Only employees with a leading role should be

able to adjust or assign shifts to employees

Manager, Team Leader

7

Only the manager should have access

to the �nancial data of the company

Manager

8

The external technician should

not have access to the machines

during normal operation

Technician

9

In case of an error the technician

should have access to the diagnostic function

Technician

10

The technician should never be able

to start or stop tasks on the machine

Technician

11

The external worker needs to be granted

temporary access to the factory site

Manager, Team Leader

Table 2.1: Textual description of allowed and forbidden usage of the example system

In the use case descriptions each actor has di�erent contexts for which they should

be allowed to execute the described behaviour or, for the negative case, should denied.

A context for a worker is, for example, the role in the company, the currently assigned

4

shift, the position or location inside the company site, the type of task and if a remote

or on-site access is needed. With our approach, the contexts which are assigned to the

use cases descriptions should be derived to the data element they a�ect. Each task in the

use case can a�ect multiple data elements. The derived access policies are speci�ed with

contexts from the usage diagram. Since a data element can be a�ected by multiple use

cases and multiple allowed and forbidden context sets, the derived policies are combined

and reduced to a minimal set and simultaneously validated for possible con�icts.

5

3 Foundation

This chapter describes the foundation of the thesis. A context based approach for access

control is used which is based on Data-Driven Software Architecture. They use the

Palladio Component Model as a modeling framework which is a model-driven software

development approach. Additionally, a brief overview of access control strategies is given.

3.1 Model-Driven So�ware Development

Model-Based Software Development (MBSD) is an approach for which models are used as

secondary artifacts for documentation and communication purposes. This use of models

has several disadvantages [41]. Changes in the code have to be transferred to the model

manually or the model and the code become inconsistent. Depending on the degree of the

model’s accuracy, these adaptions can be complex and time-consuming tasks.

Model-Driven Software Development (MDSD) removes these disadvantages by using

models as primary artifacts, which means that they are treated equally to the code. By

�nding domain-speci�c abstractions and making them accessible through formal modeling,

they have great potential for automatic code generation. This can lead to an increase in

the productivity of the software developing process and in the quality and maintainability

of the software system. To describe the rules on which these models are built, models of

these models are needed: the so-called meta-models[41].

3.2 Palladio Component Model

Palladio is a tool-supported simulator for software architecture. It can be used for the

prediction of several quality properties of software. It was initially developed by the Karl-

sruhe Institute of Technology (KIT), the FZI Research Center for Information Technology

and the University of Paderborn. The Palladio Component Model (PCM) is a detailed

meta-model for component-based software architecture which is based on the Eclipse

Modeling Framework (EMF) [3].

Figure 3.1 shows a PCM instance with the di�erent models contained in the PCM and

the roles which are responsible for them. In the following sections, the di�erent parts of

the PCM are brie�y explained.

3.2.1 Roles

In model-driven software development and in Palladio various roles work on di�erent

parts of the architecture where they contribute their speci�c knowledge.

7

3 Foundation

Figure 3.1: Palladio component model [3, Fig. 1]

• The architecture and the relationship between the individual components are de-

signed by the Software Architect. He is responsible for passing on further instructions

to the other roles. At the same time, he is responsible for the system model that

de�nes the composition of the components characterized.

• Knowledge of how the user interacts with the system and which parameters are used

in the control �ow come from the Domain Expert. The modeling of this information

is done in the usage model.

• The Component Developer is responsible for implementing and specifying the individ-

ual components. He models these in the repository model. It contains the individual

components and interfaces.

• The Software Distribution Expert composes the system environment for the software.

This is done in the execution environment model. Also, the software distribution

expert instructs resources to the components. This is modeled in the allocation

model.

The models that are developed and maintained by the various roles together form a

Palladio model instance.

3.2.2 Models

The individual roles are responsible for certain sub-models which, as a whole, make up

the complete architecture description. In the following, the �ve sub-models in PCM are

described in more detail. For our approach, the �rst three are relevant, but the case studies

used in the evaluation have a complete PCM model with all �ve parts.

8

3.2 Palladio Component Model

3.2.2.1 Repository model

The repository model (Fig. 3.2) contains data types, interfaces and components. A com-

ponent can o�er its functionality to the outside via an interface. This is modeled with

a ProvidedRole. It can also request a speci�c interface must be provided to it in order to

use the functionality of other components. This will be modeled with a RequiredRole.
Interfaces contain a collection of signatures, which represent an operation.

Figure 3.2: Repository model [3, Fig. 3]

With the help of a Service E�ect Speci�cation (SEFF) the behaviour within and between

the components can be described (Fig. 3.3). A SEFF adds a behaviour description to a

signature in the component. The behaviour can be modeled with an InternalCallAction
and an ExternalCallAction. An InternalCallAction represents internal behaviour within the

component. An ExternalCallAction calls an operation in another component. Branches in

the behaviour can be modeled with a BranchAction. Either a probability or a condition

can be speci�ed which decides which branch is taken. Using a UsageVariable, a parameter

assignment for the call can be speci�ed. In addition, the SEFF resource requirements can

be speci�ed in regards to certain resources, such as CPU. The resource requirements are

speci�ed as abstract work packages. In a concrete execution environment, in which the

resources are speci�ed, the time values can be derived from the abstract work packages.

With this behaviour speci�ed in the SEFF, the model can be analyzed.

9

3 Foundation

Figure 3.3: Service E�ect Speci�cation [3, Fig. 6]

3.2.2.2 Systemmodel

Figure 3.4: Composed structure in system model [3, Fig. 12]

The system model (Fig. 3.4) represents the software system that consists of a compo-

sition of the components de�ned in the repository model. Instances of components are

represented in the system model with AssemblyContext. These can be connected with an

AssemblyConnector. The RequiredRole of a component is linked to the ProvidedRole of a

component. The system model must also provide at least one external interface so it is

possible to interact with the system.

3.2.2.3 Usagemodel

The usage model describes the interaction of the user or external systems with the system

(Fig. 3.5). With aUsageScenario the behaviour of a user can be speci�ed. For aUsageScenario
a workload can be set, which can be either an open or closed workload. A OpenWorkload
models an in�nite stream of users which arrive in speci�ed time intervals (ArrivalTime) at

the system and execute the scenario. A ClosedWorkload models a �xed number of users

(Population) which execute the scenario, wait a speci�ed amount of time (ThinkTime), and

then execute it again. A scenario can call the operations which are provided by the system

10

3.2 Palladio Component Model

via interfaces with an EntryLevelSystemCall. Therefore, the parameter assignments can

also be speci�ed using a UsageVariable.

Figure 3.5: Usage model [3, Fig. 17]

3.2.2.4 Execution environment model

The execution environment model describes the used hardware and the network of the

modeled software system. The elements ResourceContainer and LinkingResourceContainer
are used. The ResourceContainer is a hardware resource, a LinkingResource is a channel

between two ResourceContainer. For a ResourceContainer, di�erent hardware resources

can be speci�ed. A CPU can be used as a processor, an HDD can be used as a hard disk

and a Delay can model the delay between two actions.

3.2.2.5 Component-Allocation-Model

The allocation model describes how the individual component instances are distributed on

the hardware described in the execution environment model. For this an AllocationContext
is used.

3.2.3 Quality attributes

The Palladio bench can determine quality attributes for a system. They will be calculated

from the components, their connections and the execution environment.

• Performance: Performance is one of the most important quality criteria of a system

in regards to the timing constraints of the system. This applies to both time-critical

and less critical systems. Performance includes the timing and resource usage of a

system. This is measured using three metrics. The response time is the time between

a request to a system and the received response. The throughput describes the

number of requests processed per unit of time. The utilization relates to the active

use of a resource and indicates the percentage it works per unit of time.

• Reliability: A system that o�ers a service as expected and with no side e�ects is called

reliable. Any deviation from expected behaviour is considered an error. The overall

reliability of a system is therefore expressed as the probability that the system is

11

3 Foundation

working properly. Di�erent errors can occur, for example software errors, hardware

errors or network errors.

• Cost: Having many requirements usually leads to high costs. Therefore, between cost

and performance or reliability must be weighed. Palladio enables the annotation of

the cost of components and resources to estimate total costs and to make a trade-o�

with the quality attributes.

• Maintainability: Often during the development of software, there is more then one

viable design possible. Palladio allows the calculation of the maintenance of the

di�erent alternatives on the system level by assigning maintenance e�orts per design

alternative and maintenance costs per design alternative.

While these four quality attributes are the main focus in normal software development,

for the development of secure systems an additional attribute is added with the security

aspect. There has been some development to bring extensions to the Palladio framework to

enable it to perform analysis of this quality aspect of the system [5][40]. The contribution

of our thesis will be in this area.

3.3 Data-Driven So�ware Architecture

Data-Driven Palladio is an extension of the PCM which integrates the concept of data�ow.

This extension together with an analysis process for con�dentiality create the development

process of Data-Driven Software Architectures (DDSA) [40]. The Data-Driven Extension

introduces data and data processing operators as �rst-class entities and Data-Driven Palla-

dio supplies the meta-model, which de�nes how data is represented and which operations

are to be performed on them. These data elements can have sets of characteristics which

represent their abstract meta-data [39]. Access right mismatches are detected with the

con�dentiality analysis by comparing access rights assigned to data with roles assigned

to the processing operations on this data. The fact that the access rights can be changed

during the data processing steps is considered in this analysis. The con�dentiality analysis

is realized as a Prolog program and uses a Role-Based Access Control (RBAC) strategy to

detect access right mismatches. The context meta-model introduced in section 3.6 is based

on this modeling approach and extends it for the use of context-dependent access control

policies [40].

3.4 Model-Driven Security

Firstly, software security is de�ned. The de�nition used in this thesis is derived from “A

Reference Model of Information Assurance Security” [9] and splits software security in

three parts:

• Con�dentiality: "A system should ensure that only authorised users access informa-

tion"

12

3.5 Access Control Strategies

• Integrity: "A system should ensure completeness, accuracy and absence of unautho-

rised modi�cations in all its components"

• Availability: "A system should ensure that all the system’s components are available

and operational when they are required by authorised users"

Since our approach wishes to derive access control policies, we mainly focus on Con-
�dentiality. A de�nition of how access control systems try to ensure Con�dentiality is

given in section 3.5.

Model-driven security (MDS) applies the model-driven approaches and the concepts

of model-driven software development to security in order to solve software security

problems. The security of software depends on a wide variety of factors and details. These

vary from high-level aspects such as the design of policies to low-level aspects like avoiding

insecure software patterns or avoiding bu�er over�ows. Many of these security concepts,

goals or techniques can be described formally and validated or veri�ed [1].

Since not each software developer has deep knowledge and comprehension of security

related topics [22], model-driven approaches can help with the development of secure

systems in multiple ways. Security-speci�c knowledge can be built into a part of the

meta-model and the developers only have to use it. The automatic generation of source

code can help prevent low-level security issues by preventing errors on the implementation

level. Verifying models which were annotated by the role responsible for security could

reveal issues in the system a developer of a single component might not be aware of.

3.5 Access Control Strategies

Access control mechanisms ensure the following properties of the system [4]:

(a) access rights to resources are granted only to authorized entities.

(b) access rights to resources are not denied to authorized entities.

There are four common techniques used for access control systems: mandatory access

control (MAC) [26], discretionary access control (DAC) [25], role-based access control

(RBAC) [16] and attributed-based access control (ABAC) [19]. These techniques are brie�y

de�ned with a focus on the core concepts. For all of them, several variations have been

published.

3.5.1 Mandatory access control

In access control systems which use mandatory access control [26], labels are are assigned

to resources and users. A label consists of a security level and a category. Security levels

are de�ned in an ordered fashion, e.g. unrestricted, secret, top-secret. Users can access a

resource if the category of their label matches the one on the resource and their security

level is at least as high as the one of the resource. Managing such a system takes a high

amount of work.

13

3 Foundation

3.5.2 Discretionary access control

The discretionary access control [25] grants each user access to his own resources and the

user can grant other users access to his resources. The access granted can vary in di�erent

ways from read-only to write, or even if the new users can grant access to the resource

to other users. While this technique takes little managing e�ort it places the complete

security management in the hands of the individual users.

3.5.3 Role Based Access Control

Role-based access control [16] consists of �ve di�erent entities: users, roles, permissions,

operations and objects. Users are grouped in roles which can be structured hierarchically.

Permissions are assigned to each role. A permission is an operation like read, write or

delete on a certain object. Access to an object is only granted if the role assigned the user

is authorized to access the object. Users can have multiple roles assigned to them. It is

currently the most used access control strategy [14].

3.5.4 Attribute Based Access Control

Attribute-based access control [19] (also known as policy-based access control or rule-

based access control) grants or denies access to resources based on attributes provided by

the request. Depending on the scenario, everything can be an attribute, e.g. names, roles,

job titles, the time of the request, the nature of the requested access like read or write

or the type of the requested resource. Attribute-based policies are stored in permission

assignment constraints (PACs) and can be expressed positively or negatively. Even though

RBAC is currently the most used access control strategy, ABAC is predicted to be the

future state of the art [14].

3.6 Context Meta Model

TheContextModel was introduced by Boltz et al. in “Context-Based Con�dentiality Analysis

for Industrial IoT” [5]. It is a model-driven security approach which extends the DDSA.

With this meta model, it is possible to give elements in the PCM model certain contexts.

Contexts serve two purposes: They can represent properties of the element, like a state,

or they can be understood as an access rule if they are de�ned for data elements. The

ContextModel de�nes three types of context classes, which are used to represent di�erent

properties. The class structure of the ContextModel and these di�erent subclasses are

shown in �gure 3.8.

• SimpleContext: A SimpleContext represents a �xed global value. An example is the

current status of a machine or the assigned shift of an employee. The machine status

in this case would be an unique ContextType, since a machine can only have one

status at a time. The shift context is not unique; it could be possible for an employee

to be assigned a double shift like evening and night shift, or a day shift and on

stand-by the rest of the time.

14

3.6 Context Meta Model

Warehouse

Factory Site

AssemblyOffice

Building BBuiling A

(a) Top Down

Worker

Manager

Team Leader

(b) Bottom Up

Figure 3.7: Examples of HierarchicalContexts

• HierarchicalContext: HierarchicalContext can be used to represent the hierarchical

dependencies of a property. In the running example, this would be applicable to

the location of a worker inside the production plant or the rank of an employee.

These hierarchical contexts are represented in �gure 3.7. The location context in this

case is a top-down context, meaning a context further down in the tree structure

could have has more rights since it inherits all the access rights of the higher up

contexts. For example, if a worker inside "Building A" is allowed to access a machine,

it implies that workers from "Assembly" as well as workers from the "O�ce" have

these rights. But if workers from "Assembly" are allowed to access the machines, it

doesn’t imply that all workers inside "Building A" have access rights. On the contrary,

workers inside "O�ce" don’t have access to the machines, unless explicitly stated in

a di�erent policy.

As a notation in the shown graphs, the arrow indicates that the context set is a child

of the other node, e.g. "Assembly" is a child node of "Building A". The inheritance

direction de�nes if the child inherits from the parent or the other way round.

• RelatedContext: A RelatedContext can be used to refer to a di�erent ContextSet which

needs to be ful�lled in order for this context to be true.

To group di�erent contexts of the same type, the ContextType can be used. As an

example, the di�erent shifts a worker can have, like day or night shift, are contexts of the

same type. Here it should be ensured that two contexts of the same type are also of the

same context class, otherwise the comparison of contexts of the same type might not work

as expected. This contraint also ensures that the contexts of HierarchicalContext are all of

the same type.

A ContextSet is a collection of ContextAttributes. For example, for the use case 3 of the

running example the context set would be {Worker, O�ce, Remote}. The use case 9 could

be described with the context set {Technician, External, Remote, Failure}. The attribute of

the ContextType de�nes if multiple ContextAttributes of the same type are allowed or not.

15

3 Foundation

P
olicyS

pecification

-resourcedem
andingbehaviour:

 R
esourceD

em
andingB

ehaviour
-policy: list<

C
ontextS

et>

C
ontextS

pecification

-entrylevelsystem
call: E

ntryLevelS
ystem

C
all

-usagescenario: U
sageS

cenario
-m

issageU
se:boolean

-contextset: C
ontextS

et

IncludeD
irection

T
O

P
_D

O
W

N
B

O
T

T
O

M
_U

P

H
ierarchicalC

ontext

including: H
ierarchicalC

ontext
direction: IncludeD

irection

R
elatedC

ontextS
et

-contexttype: C
ontextT

ype

S
ingleA

ttributeC
ontext

C
onfidentialA

ccessS
pecification

typeC
ontainer: T

ypeC
ontainer

pcm
specificationcontainer: P

C
M

S
pecificationC

ontainer
setC

ontainer: list<
C

ontextS
etC

ontainer>
contextC

ontainer: list<
C

ontextC
ontainer>

«abstract» C
ontextA

ttribute

-contexttype: C
ontextT

ype

checkA
ccessR

ight(C
ontextA

ttribute): boolean

C
ontextS

et

-contexts: list<
C

ontextA
ttribute>

checkA
ccessR

ight(C
ontextS

et): boolean

C
ontextT

ype

-unique. boolean

C
ontextS

etC
ontainer

-policies: list<
C

ontextS
et>

C
ontextC

ontainer

-contexts: list<
C

ontextA
ttribute>

T
ypeC

ontainer

types: list<
C

ontextT
ype>

P
C

M
S

pecificationC
ontainer

-policyspecification: list<
P

olicyS
pecification>

-contextspecification: list<
C

ontextS
pecification>

F
i
g
u

r
e

3
.8

:
C

l
a
s
s

d
i
a
g
r
a
m

o
f

t
h

e
C
ontextM

odel

16

3.6 Context Meta Model

These ContextSet can be assigned to SEFFs with a PolicySpeci�cation, which describes

the access policy for this data element. If the ContextSet is part of a ContextSpeci�cation, it

describes the context for which the related usage scenario should be able to be executed.

17

4 Related work

In this chapter similar concepts to that of this thesis are listed. Our approach has three

di�erent areas which have an in�uence, namely the automatic generation of access control

policies, the model driven development of secure systems and the concept of security

by design. The current state of the art is shown, the similarities and di�erences to our

approach described and our contributions presented.

4.1 Automatic Policy Generation

In “On the Impact of Generative Policies on Security Metrics” [45] Verma et al. describe

the impact of generated policies on the security metrics of a system. Since modern systems

tend to gets more dynamic and complex and manual creation of policies becomes more

and more di�cult, they introduce concepts to determine if generating security policies is

bene�cial in improving the security of the system. We use this concept of establishing

equivalence between a generated and a manual system for our evaluation setup in section

8.4.

In “Generative policy model for autonomic management” [44] an approach is presented

with which managed devices are able to generate policies for their own operations. In the

introduced management system an interaction graph contains all the allowed activities for

each device. The policies for each device are then generated according to this interaction

graph. This enables the architectures to achieve some form of self-management. The

authors claim that their approach provides several bene�ts over the state of the art role

based concepts and allows the modeling of more dynamic and contextual systems. Their

paper illustrates the need for the automatic generation of policies in large scale modern

systems. Compared to their approach we do not want to introduce new design artifacts

like the interaction graph but want to use already existing artifacts. Additionally, we do

not want to generate the policies during runtime as done with the managed devices but

instead want to derive the context based access policies for the data elements during the

design phase.

One concept for generating policies is Policy Mining. The survey “A Survey of Role

Mining” [32] categorizes the di�erences of various RBAC mining concepts. The basic

concept of role mining is that most organizations concerned with secure systems already

have user-permission assignments de�ned in some form. This information is then used to

identify new roles in the system. The survey was conducted since in recent years several

role mining techniques have been developed. This fact shows again the need for automatic

policy generation. Since the survey was conducted on RBAC systems we instead focus

on approaches which use ABAC access control systems, as these are predicted to be the

future state of the art [19]. A concept for role mining in ABAC systems is introduced in

19

4 Related work

“Mining Attribute-Based Access Control Policies from Logs” [46] and “Mining ABAC Rules

from Sparse Logs” [10]. In �gure 4.1 the basic concept of this policy mining concept is

illustrated. In (a) the user-permissions of the current system are shown, in this case they

are present in the form of log entries. (b) shows the system described by the organisational

security policy and (c) the actual implemented ABAC policy. (d) shows the mined policy

created by the ABAC mining algorithm.

Figure 4.1: Basic concept of mining policies [10, Fig.1]

The similarity to our approach is that the usage and misusage diagrams represent a

certain scenario which should be allowed or forbidden which is similar to the information

in the log entries containing allowed or denied user requests. The di�erence is that in order

for the log entries to be created the system has to be already implemented and running.

These approaches are therefore more suitable to be used to migrate an existing system. Our

approach uses the information in the usage and misusage diagrams to derive the access

policies during the design phase. This also allows for the possible detection of security

issues in the con�guration of the system during this early phase in the development. The

policy mining algorithms use generalization. An algorithm that generalizes well creates

policies which not only �t the logged entries but also include non-logged requests for

which a signi�cant number of similar requests have been authorized. This concept was

excluded from the scope of this thesis since it would have been too time consuming to

develop in the given time frame. Instead it is outlined as future work in chapter 10.

The paper “Access control policy combining: Theory meets practice” [27] introduces a

policy combining language which can express a variety of policy combining algorithms.

This addresses the issue that many policy languages only have �xed policy combining

strategies which makes it hard to extend them with possible new rules. In the paper the

concepts of the currently existing policy combining algorithms were also brie�y explained.

These concepts were used to create the rules we de�ned for combining and reducing the

derived context sets. We didn’t use an existing policy combining language in our approach.

Although this brings some disadvantages the advantage of our approach is that both the

usage diagram context descriptions and the policy speci�cations are part of the context

meta model. Therefore, we don’t need to use transformations between di�erent models

and are not concerned about consistency between them.

20

4.2 Model Driven Development of Secure Systems

4.2 Model Driven Development of Secure Systems

Our approach will be based on a model driven concept for developing secure systems.

In this section we compare the available concepts and explain why we think the chosen

concept best �ts for our approach. In their survey An Extensive Systematic Review on Model-
Driven Development of Secure Systems [34] Nguyen et al. grouped the signi�cant MDS

approaches. For the purpose of this thesis we focus on approaches which use structured

system descriptions.

SecureUML [29] aims at modeling access control policies for RBAC and then uses

these policies to transform them into a complete access control infrastructure. It extends

UML diagrams with annotations for roles, permissions, users and access control policies.

Although it can be applied to a wide range of scenarios, the fact that it is based on a RBAC

strategy makes it di�cult to extend for a context-based con�dentiality.

UMLSec [21] is an approach for modeling secure software systems applicable to di�erent

platforms. It is extending UML with features to model systems and analyze their security.

Its modeling process is use case driven which assigns every use case diagram a goal tree

which can have three states: undetermined, satis�ed or denied. Although the use case

driven nature would suit our approach, UMLSec only supports RBAC access policies.

The SecDFD approach [42] allows to analyze security-centric information �ow policies

on the design model. It used a graphical notation similar to Data Flow Diagrams which

has additional security concepts and helps in the early discovery of design �aws. Here the

disadvantages are that a possible already existing architecture description of the system

needs to be transferred into the graph notation and that having a single SecDFD graph for

the complete system might be di�cult for large architectures.

With the iFlow approach [23] a UML model of an application can used to automatically

generate the code of the app as well as the formal models for it. TheMODELFLOW language

can be used to model systems including their behaviour and security requirements. The

problem with this approach is setting up the complete security domain with transitions

on the granularity level of methods can be di�cult.

The context meta-model presented by Boltz et al. in “Context-Based Con�dentiality

Analysis for Industrial IoT” [5] introduces an approach to model context-based con�den-

tiality properties on the architectural level. The context based nature of this approach

adds the possibility to model the dynamic elements of the systems and make is similar to

the concepts of ABAC access control systems.

The problem that all of these approaches have in common is that the manual creation and

maintenance of policies is taking a lot of e�ort. In our approach we therefore introduce the

possibility to derive policies from usage diagrams with the intention to reduce this e�ort.

We use the context model for the modeling of the access policies since it allows both the

context speci�cations for the usage and misusage diagrams and the policy speci�cations

for the data elements to be modelled in the same meta model.

21

4 Related work

4.3 Security by Design

In their paper “A Scenario-Driven Role Engineering Process for Functional RBAC Roles”

[33] Neumann and Strembeck present a scenario-driven role engineering process for RBAC

roles which uses scenario as the main concept for creating policies. They see a scenario

as a collection of permissions that are applied in a particular order to reach a prede�ned

goal. The subject trying to execute this goal needs to own all permissions that are needed

to complete every step of the particular scenario. Figure 4.2 shows the basic model they

use in their approach. Permissions and constraints are de�ned in catalogs, tasks and work

pro�les are created in accordance to these permissions. A scenario is seen a series of tasks,

and the work pro�les which are equal to a role of a user consist of one or more tasks. From

these de�nitions, a RBAC-model is derived. One bene�t they see with their approach is

that changes in functionality of the system can be easily added by adapting the scenario

model from which the new RBAC-model is then derived.

Figure 4.2: Scenario-driven role engineering process [33, Fig.4]

The similarity to this concept is the use of scenario models as the point of de�nition of

permissions. Also the use of a permission and constrain catalog is similar to our concept

of de�ning usage and misusage scenarios. Deriving the RBAC-model from the scenarios is

similar to the derivation process we use in our approach. The di�erence to their approach

is that they use roles for the de�nition of the access rights of an entity which is a role-based

approach. By using context attributes we use a concepts which is more similar to the

ABAC technique, since the contexts of an entity can be seen as attributes. The di�erence

to a pure ABAC approach is that contexts can also speci�c the access policies of a data

element. So a context ful�lls two purposes, while an policy in ABAC is speci�ed based on

the relations of attributes.

Tuma et al. describe in their paper “Automating the Early Detection of Security Design

Flaws” [43] an approach for the automatic detection of security �aws during the design

phase of secure systems. Compared to manual assessment with design inspections, which

22

4.3 Security by Design

are time consuming and error-prone, their paper analyses the potential of automating the

rules performed during an inspection in order to speed up the security analysis. They

suggest that automated techniques during the realization of secure software systems could

guide security analysts towards a more complete inspection of their software design. Our

approach is similar in that by evaluating the derived policies from the usage and misusage

diagrams potential design �aws in the software can be found. The di�erence is that their

approach tries to �nd these security issues by comparing the models to design anti-pattern.

In our approach the found issues are either within the context con�guration of the system

which indicates a user error, or the composition of the system leads to contradicting access

policies which indicates a composition error.

23

5 Deriving Policies

The �rst part of this thesis derives policies from the use case descriptions to the data

elements. The basic concept is explained in the �rst section, illustrating how the di�erent

models are used in our approach and describing the fundamental steps of the latter. Each

step is then described in detail in the following sections.

5.1 Concept

Fernandez and Hawkins suggest the utilization of use case descriptions as a way of creating

access right policies [15]. In the PCM the use case descriptions are modeled in the usage

model as operations executed on the system. These system operations manipulate data

elements in the components of the system. The access control of these single data elements

is abstracted in this approach to operations. Operation are provided within the PCM by

SEFFs in the repository model. The advantage of system models is that the domain expert,

who is responsible for it, does not need to know the details of the system composition

or how each component is implemented, only the interaction with the system needs to

be speci�ed. On the other hand, from the modeled information in the usage model it is

not obvious which components and functions are called inside the system. Figure 5.2

illustrates this situation with the use case 1 of the running example. In the usage model,

only the system call to start a new task is called. As a context for this action, the context

set {Worker, Assembly, NightShift} is assigned. In the called system the call is connected to

the MachineController. For each change in the current task the machine updates a central

database in the system modelled as TaskServer. This allows for workers in the o�ce to

request the status of di�erent machines. In this scenario, the derived context policy not

only needs to be applied to the SEFF startTask of the machine, but also to the updateTask
SEFF of the server.

The process of deriving policies can be grouped into three main steps as shown in �gure

5.1.

Create policiesFind affected data
elements

Find context set
to derive

Figure 5.1: Basic concept of the derivation process

25

5 Deriving Policies

The �rst step is to determine by what contexts a call to the system is a�ected. For each

system call, all the a�ected components and the therein a�ected SEFFs have to be found.

Lastly, the context of the system call has to be applied to the SEFF as an access policy

speci�cation.

Additionally, the designed approach should be backwards compatible. This means that

it should still be possible to create manual access policy speci�cation on the SEFF level.

These manually created policies have then to be considered during the execution of the

approach.

Assigned Context

Create policy:

SEFF: updateTaskSEFF: startTask

Context

{Worker,Assembly,NightShift}

TaskServer

taskDB: database

requestStatus()
updateStatus(task)

MachineController

-currentTask: Task

startTask()
-stopTask()

Class Diagram : Repository Model

TaskServerMachineController

System : Assembly Model

Use Case : Usage Model

System

Context

{Worker,Assembly,NightShift}
Start new task
on a machine

Worker

Figure 5.2: View of the di�erent models used in the derivation

26

5.2 Usage Model Context Set

5.2 Usage Model Context Set

The usage model is where the contexts which should be derived are de�ned. Each En-
tryLevelSystemCall represents a call to the system for which the allowed permissions and

forbidden constraints can be de�ned in the form of context sets. The ContextSpeci�cation
in the context model allows the context set to either be de�ned for the complete Scenari-
oBehaviour or a single EntryLevelSystemCall. This allows for di�erent options by which

context sets the system call and, therefore, all the a�ected SEFFs are a�ected.

• Only the system call is a�ected: Here, the context sets are de�ned directly for the

speci�c system call. Since there is no default de�ned for the scenario, the context

sets are directly derived to the SEFFs

• Only the usage scenario is a�ected: In this case, the context is speci�ed for the

complete scenario and, therefore, the default for each system call. Since the system

call does not specify a derivation, only these context sets are applied to the a�ected

SEFFs

• Both are a�ected: In this case, multiple methods are possible. The scenario context

could be seen as a default, and the system call overrides this default context. The

scenario context could be seen as the base context, and the system call only speci�es

an extension of this base context. Alternately, both contexts could be seen as two

separate cases which should both be derived.

• No context speci�ed: Since neither the system call has a speci�c nor the scenario a

default context which should be derived, this is treated as unde�ned context.

5.3 Finding a�ected Service E�ect Specifications

To �nd the a�ected SEFFs, the chain of function calls has to be followed. The start is the

EntryLevelSystemCall in the usage diagram. It de�nes the called interface and method. In

the AssemblyContext of the system model, the matching OperationProvidedRole has to be

found. This allows the selection of the �rst a�ected component. The corresponding SEFF
can be selected using the method signature. Each SEFF can call other components with a

ExternalSystemCall.
Figure 5.3 shows this in an example. Here, component A is the �rst a�ected component

of the system call. The component itself calls two other components, so if one of its SEFFs
calls an external component, this call could go to either component B or component C.

They are both in the same AssemblyContext as component A. Component C shows the

issues with CompositeComponents. Externally, they appear to be like normal components,

but contain an assembly context themselves; in this case, component D. An external call

for component D does not go to the same assembly, instead the match has to be made

with a component in a di�erent assembly, component E.

27

5 Deriving Policies

BasicComponent E

BasicComponent B

BasicComponent D

CompositeComponent C

BasicComponent A

System

Figure 5.3: System model with nested components

5.4 Creating policies

With the �rst two steps from the previous sections two lists are generated. The �rst

contains the a�ected data elements of the user action and the second the context sets

which are currently assigned to the user for this request. With this information, the new

policies for the data elements are created.

There were two design options for how the new policies should be created. Either a new

policy is created for each permutation of the elements in the list, or it is checked if a policy

already exists for the current a�ected data element, and the new context set is added to

that policy. The �rst option has the advantage that it keeps the creation process simple,

but on the other hand more policies are created. The second option keeps the number of

policies small, but makes the creation of them more complex. For example, since multiple

policies could already exist for the a�ected data element, it must then be decided to which

the new context set is added.

The �rst option was chosen. The creation of multiple PolicySpeci�cation makes it easier

for the user to see which policies were created, and by which usage diagram. This simpli�es

debugging. Additionally, it keeps a clear separation between the manually created policies

and the policies which are derived and created by the algorithm. The second reason for

this option was that it creates a clear separation of concerns between the two parts of this

thesis. In the deriving process, only the policies are derived and no combining of any sort

should occur. The second part then combines the policies in the context model a�ecting

the same data elements.

28

6 Combining Policies

The second part of this thesis focuses on the combination and reduction of the derived

policies. In the �rst section the basic concept is explained. The second second explains the

di�erent rules de�ned which can be applied to the context model.

6.1 Rules Combining Concept

During the derivation process it is possible that multiple access policies are derived for the

same SEFF. These can happen in two possible ways: multiple usage diagrams a�ect the

same system function, or a component is called by multiple other components. If multiple

PolicySpeci�cations exist for the same SEFF, all of the assigned ContextSets grant access to

the data element represented by this SEFF. The same is true for PolicySpeci�cations which

contain multiple context sets. Table 6.1 shows how the resulting access policy is de�ned

in this case.

Assigned:

Set1 = {Worker, Remote}

Set2 = {Worker, Assembly}

Access Policy: Set1 ∨ Set2

Table 6.1: Example for multiple context sets

The �rst context set grants access to workers who request remote access, the second to

workers in the assembly. To be granted access to this object, an employee must ful�ll at

least one of these conditions. The context set can, therefore, seen as a logical disjunction.

Additionally, a less speci�c policy grants access to a more speci�c context set, as long as

all the contexts are included in in. For the example, the context set {Worker, Assembly,
NightShift} would also be granted access, since it is included in Set2. The same is true

for hierarchical contexts. Here, the less speci�c context set does not have to contain the

exact same context, but must only contain a hierarchical element which passes it on to the

more speci�c one. For example, the context set {Team Leader, Remote, DayShift} would also

be granted access, since all the contexts are contained ("Team Leader" inherits his access

rights from "Worker", since it is bottom up).

Since the policies speci�ed in the context model are later used by the access control

system to decide if access should be granted or not, the design in our approach is to create

a minimal set of policy speci�cations by combining context sets. The reason for this is that

the combination of policies can be done during the development phase of the system. Not

combining policies can lead to more policies which need to be checked during runtime.

29

6 Combining Policies

The table 6.2 shows an example for the combination of rules. Here, Set1 and Set2 do not

need to be saved, since they are already included in the third context set.

Assigned:

Set1 = {Worker, Assembly, Remote}

Set2 = {Worker, Assembly}

Set3 = {Worker}

Access Policy: (Set3)

Table 6.2: Example for combining rules

Since negative contexts from the misusage diagrams are also derived, the priority of the

di�erent possible context sets is de�ned. P (Permit), D (Deny) and IN (Indeterminate) are

the possible values a certain context set request can have for a specifc SEFF. P is the case if

the policy matches the requested context set, D if the requested context set is explicitly

forbidden by a negative context set, and IN if the context set does not match the assigned

context sets. We de�ne that all unde�ned access policies should be denied, therefore IN

results in a denied request. The priority order we de�ne is: D > P > IN. This means a

negative context set, derived from a misusage diagram, overrides aa assigned positive

context set. And a positive context set overrides the implicit denil of unde�ned behaviour.

Table 6.3 shows an example for this.

Assigned:

Set1 = {Worker, Remote}

Set2 = {Worker, Assembly}

Set3 = negative, {Technician}

Access Policy: (Set1 ∨ Set2) ∧ ¬ Set3

Table 6.3: Example for multiple context sets with negative context set

The third context set is derived from a misusage diagram, forbidding the "Technician"

access to this SEFF. To be granted access to the object, the user has to ful�ll either one

of the positive context sets, and he must not ful�ll the negative context set. Since the

context meta-model does not allow the storage of the negative information of context sets,

this information is only available during the execution of the approach. As the IN state is

de�ned as "access denied", the information of Set3 does not have to be saved in the �nal

context model. This assumption holds true as long as there are no con�icting context sets.

Table 6.4 shows this case.

Here, a worker in the o�ce should not have remote access to this data element. At

the same time, the context set Set1 grants access to workers in the o�ce. If here the

information of Set2 would simply be omitted, the created context model would grant

access to the contex set {Worker, O�ce, Remote}. This would result in an access rights

violation, since the explicit forbidden case is now allowed. For Set3 and Set4, there is no

issue, since after omitting the information of set3, set4 would still have access, and set3
would be denied access.

30

6.2 Rule De�nitions

Assigned:

Set1 = {Worker, O�ce}

Set2 = negative, {Worker, O�ce, Remote}

Set3 = negative, {Technician}

Set4 = {Technician, Remote, Failure}

Access Policy: error

Table 6.4: Example for error case

6.2 Rule Definitions

For this approach, multiple combination rules have been de�ned. Since the development

process was iterative, rules were implemented consecutively. The next sections give an

overview of the de�ned rules which are present in the current approach.

6.2.1 Same Context Set

Assigned:

Set1 = {Worker, Assembly}

Set2 = {Worker, Assembly}

Access Policy: Set1

Table 6.5: Same context set

This rule is used to combine two context sets which contain the exact same elements.

This rule is also needed as a basis for some of the other rules, which, by being applied,

result in duplicate context sets.

6.2.2 Simpler Context Set

Assigned:

Set1 = {Worker, Assembly}

Set2 = {Worker, Assembly, Remote}

Access Policy: Set1

Table 6.6: Simpler context set

This rule combines two contexts, for which one includes the other. This rule does not

consider inheritance of hierarchical contexts.

6.2.3 Parent Child Relation

This rule combines context sets which are hierarchically included in the other. Here, the

inheritance is considered as shown in �gure 6.1. With the direction BOTTOM_UP, the child

31

6 Combining Policies

Assigned:

Set1 = {Worker, Assembly}

Set2 = {Worker, Building A}

Set3 = {Manager, Warehouse}

Set4 = {Worker, Warehouse}

Access Policy: Set2 ∨ Set4

Table 6.7: Hierarchical context set

node is the less speci�c context and therefore includes the parent node. For TOP_DOWN,

the parent includes the child node, and therefore is less speci�c than it. As seen with Set3
in table 6.7, the rule also works for inheritance over multiple hierarchy levels. Here, the

manager is inheriting access from the worker context, which is two layers.

(a) Initial applied contexts

(b) Applying rule, direction BOTTOM_UP

(c) Applying rule, direction TOP_DOWN

Figure 6.1: Parent child rule

This rule also considers a combination of both directions. Table 6.8 shows an example.

Here, Set1 includes Set2, because both of its hierarchical contexts are less speci�c.

32

6.2 Rule De�nitions

Assigned:

Set1 = {Worker, Building A}

Set2 = {Manager, Assembly}

Access Policy: Set1

Table 6.8: Parent child both directions

6.2.4 Substituting Parent

The concept of this rule is shown in �gure 6.2. If all child elements are allowed to access

an SEFF, the child elements are replaced and a new context set is created with the parent

node.

(a) Initial applied contexts

(b) After applying substitute parent rule

Figure 6.2: Substitute parent rule

Assigned:

Set1 = {Worker, O�ce}

Set2 = {Worker, Assembly}

Created Set: Set3 = {Worker, Building A}

Access Policy: Set3

Table 6.9: Substituting child nodes with parent node

This rule is only de�ned for the direction TOP_DOWN. The reason for this is that

hierarchical contexts are usually tree graphs. In this case, this rule would always be true,

since each node only has a parent node.

For this rule, an additional constraint is in place. If this rule is enabled, it should be

ensured that the actual instances of the hierarchical contexts during runtime only contain

leaf nodes. Otherwise, for this rule, the de�nition of IN is not valid anymore, since the

context set {Worker, Building A} would now have access without explicitly being allowed.

This must be considered when enabling this rule in a project.

33

6 Combining Policies

6.2.5 Negative Rule a�ecting same context set

Assigned:

Set1 = {Worker, Assembly}

Set2 = negative, {Worker, Assembly}

Access Policy: error

Table 6.10: Same context error

This rule is similar to the same context rule except that one of the two context sets

needs to be a negative context.

6.2.6 Negative Rule for simpler context set

Assigned:

Set1 = {Worker, Assembly}

Set2 = negative, {Worker, Assembly, Remote}

Access Policy: error

Table 6.11: Simpler context error

This rule is similar to the simpler context rule except that the more speci�c context

needs to be the negative policy.

6.2.7 Negative Rule a�ecting hierarchical contexts

(a) Initial applied contexts

(b) After applying rules

Figure 6.3: Hierarchical context set with negative - allowed case

This rule is similar to the parent child rule, the more speci�c context needs to be the

negative policy.

34

6.2 Rule De�nitions

(a) Initial applied contexts

Error

(b) After applying substitute parent rule

Figure 6.4: Hierarchical context set with negative - error case

Assigned:

Set1 = {Worker, Assembly}

Set2 = negative, {Worker, Building A}

Set3 = {Worker, Building B}

Set4 = negative, {Worker, Warehouse}

Access Policy: error (Set3 & Set4)

Table 6.12: Hierarchical context set error

6.2.8 Merging Policies a�ecting the same SEFF

This rule does not combine context sets, it just restructures the existing PolicySpeci�cations.
Since a PolicySpeci�cations can have multiple ContextSets, this rule merges all context sets

to one policy speci�cation. This is mostly a cosmetic rule, since the number of context

sets a�ecting the SEFF stays the same but the context model becomes more readable.

6.2.9 Removing temporary negative context sets

As mentioned earlier, the context meta-model does not allow the storage of negative

context sets. This rule removes all the temporarily created negative policies from the

context model.

35

6 Combining Policies

6.3 Order of Rules

In this section, the order in which the rules are executed is brie�y explained. The resulting

policy of an SEFF can be seen as the following form:

((4C1 ∨ (4C2 ∨ (4C3 ∨ ...) ∧ ¬#460C8E4(4C ∧ ¬#460C8E4(4C2 ∧ ...

All the positive context sets of the SEFF build a disjunction, which is in a conjunction

with all the negative context sets. Therefore, it was decided to see the disjunction as a

separate term and resolve it �rst. For the implementation this meant that the positive rule

de�nitions are executed �rst. Combining context sets always leads to the less speci�c

context set remaining. If rules would resolve multiple times, the least speci�c or in other

words, most inclusive context set would remain. Therefore, the design decision was made

to execute the rules in a loop. This also meant that the actual order of the individual rules

did not matter.

For the conjunction part of the term, a loop of all negative rule de�nitions is executed.

This was also the reason for splitting the rules and their negative counter parts into two

separate rule de�nitions.

There are some rules which have a special purpose and are not executed with the other

rules, but at the end of the loop process. These are the cleanup rule (section 6.2.9) and the

merge rule (section 6.2.8).

36

7 Implementation

In this chapter the actual implementation of the introduced concepts is described. At �rst,

the architecture of the created software is shown, which consists of four parts. Then the

separate parts are illustrated using pseudo code and class diagrams. In the last section, the

test setup is brie�y explained. The repository with the code can be found here: [28].

7.1 Architecture

The approach was implemented using Java as Eclipse Plugins. The architecture of the

complete approach can be seen in �gure 7.1.

PolicyExtractorCommon

Model Abstraction

Model Load/Store

PolicyReducer

Policy Combination

Rules Implementation

PolicyDeriver

Policy Deriving

PolicyExtractor

ControlFlow

GUI

«includes»

«includes»

«includes»

«includes»

«includes»

Figure 7.1: Plugin structure

In order to have a separation of concerns [30] between the two parts of the approach, they

have been implemented as two separate projects. PolicyDeriver implements the deriving

part of the approach and in PolicyReducer the combination process and the di�erent rules

are implemented. The fact that the two parts are split into separate plugins allows them to

37

7 Implementation

be used in possible future work independently of each other in case only one functionality

is needed. As input parameters both receive the needed models and the settings a�ecting

certain parts of the behaviour, and they both return the adapted context model.

The loading and saving of the di�erent used models was put into the separate project

PolicyExtractorCommon. It also provides other basic functions needed in the other plugins

and introduces abstraction classes which help encapsulate often needed functions which

are performed on the models. To be able to execute the approach as a whole the additional

plugin PolicyExtractor was created. It controls the interaction between the PolicyDeriver
and PolicyReducer and contains the classes needed to provide a rudimentary GUI for user

interaction. For the design of the complete approach the model–view–controller (MVC)

[7] software design pattern was used as a guideline.

7.2 Common Functionalities

The component PolicyExtractorCommon provides four packages.

• model: In this package the functions to load and store the data of the models from

�les is provided.

• modelabstraction: Here the abstraction classes for the di�erent models are provided.

An example is getting the EntryLevelSystemCall contained in a ScenarioBehaviour or

creating or removing context sets from the context model. For the context model

additional classes are provided. HierarchicalContextAbstraction contains all the func-

tions needed for the handling of hierarchical contexts, and ContextSetRecord and

ContextSetRecordCompare can be used for the comparison of context sets in the

implementation of the rules.

• settings: The settings package provides a class to store the parameters provided by

the user via the GUI and pass it on to the other plugins. Additionally, the settings

class can be used in the test cases to adjust the behaviour which needs to be tested.

• util: This package provides basic helper functions and utility classes such as a logger

class.

7.3 Deriving Policies

The PolicyDeriver provides the plugin for deriving the context sets. The constructor takes

PCM models, context model and user settings as input parameters. The interface for this

plugin allows for the execution of the algorithm and to get the new context model with

the derived policies. Algorithm 1 describes the implementation of the concepts described

in 5.2. All logic impacting the PCM models was again encapsulated in a separate class

PalladioAbstraction. This allowed the function to be keep as simple as possible and as

close as possible to the activity diagram de�ned in the concept. It could also help to easily

extend the approach to other meta models than the PCM in the future.

38

7.3 Deriving Policies

Algorithm 1 Deriving Contexts in PCM

1: for B24=0A8> = 1, 2, . . . do
2: for B~BC4<20;; = 1, 2, . . . , # do
3: Calculate a�ected se�s by this systemcall

4: for B4 5 5 = 1, 2, . . . , # do
5: Calculate the contextsets which need to be applied

6: for 34A8E4A'42>A3 = 1, 2, . . . , # do
7: Label: Apply context to se�
8: Create policy speci�cation

9: Set values accordingly

10: Add policy to model

11: end for
12: end for
13: end for
14: end for

Algorithm 2 Find a�ected se�s for the current systemcall

1: Initialize list of a�ected se�s

2:

3: Label: FindMatchingComponent
4: Find match between interface and component in assembly

5: Label: ComponentMatch
6: if BasicComponent then
7: Apply context

8: if exists ExternalCall then
9: for 4GC4A=0;�2C8>= = 1, 2, . . . , # do

10: Label: FindExternalComponent
11: if Find matching component in current assembly then
12: Goto ComponentMatch

13: else
14: Search for match 1 recursion level higher

15: Goto FindExternalComponent

16: end if
17: end for
18: end if
19: end if
20: if Composed Structure then
21: Recursive call, but with new interface and assembly

22: Goto FindMatchingComponent

23: end if
24:

25: return list

39

7 Implementation

Algorithm 2 describes the implementation of how the a�ected SEFFs are found, beginning

from the EntryLevelSystemCall. At �rst, the matching component is attempted to be found

in the current assembly. For the initial call of this function the assembly is the system. If

the matching component is found, two cases are possible.

If it is a BasicComponent the SEFF matching the called operation signature has to be

found and it can be added to the list of a�ected SEFF. If in the SEFF calls to other components

are made, the matching component has to be found for that call. Here parameters like

signature of the called function and the current components are used to �nd the matching

component in the current assembly. If there is no matching component, the call goes to

a component outside of the current assembly. Either outside of the complete system or,

if the current assembly is inside a ComposedStructure, the call could go to a component

in the assembly one level higher. The parameters are then updated and the function is

called recursively for the assembly a level higher. Here the recursive depth is limited to

the depth of nested AssemblyContexts.

If a matching component is a ComposedStructure for the current assembly, the matching

component has been found. But since the ComposedStructure has an assembly inside it,

the a�ected components in that assembly have to be found. This is done with a recursive

call to the function. In each recursive call the hierarchy of nested assemblies is updated

and passed as a parameter. Therefore, if external calls in nested components have to be

found, the nested levels can be returned correctly. ComposedStructure themselves can not

have SEFF, only BasicComponents.

7.4 Calculate context set to apply

Algorithm 3 describes the way the context sets a�ecting a system call are calculated from

its assigned context sets as designed in section 5.2. The cases for which either only the

EntryLevelSystemCall or the UsageScenario are a�ected are fairly straight forward as is

the case for which the context is unde�ned. In the case for which both have context sets

assigned, the behaviour is switched with the settings introduced in section 7.6.

For the case that the context sets should be combined, a new context set is created

which contains the contexts of both context sets. A ContextSpeci�cation can only have one

ContextSet assigned to it, but since multiple speci�cations can a�ect the same system call

or scenario, the combined contexts have to be generated as permutations. Each system

call context set has to be combined with all scenario context sets and vice versa.

40

7.4 Calculate context set to apply

Algorithm 3 Calculating the context set which needs to be applied

1: Initialize recordlist as list of DeriverRecords

2: Set calllist = list of contextsets from systemcall

3: Set behaviourlist = of contextsets from behaviour

4:

5: if calllist is empty then
6: Create records from behaviourlist

7: Return recordlist

8: end if
9: if behaviourlist is empty then

10: Create records from calllist

11: Return recordlist

12: end if
13: if Settings.combineContextSets is enabled then
14: Create records from calllist

15: Return recordlist

16: else
17: SystemCall contexts have priority, use them

18: if systemcall is misusage then
19: Still use behaviour context

20: end if
21: end if
22:

23: Return recordlist

In case of no combination, there are again two options. Either the context sets have the

same priority or the system call context set overrides the default context of the scenario.

In case of same priority, the context sets lists can simply be merged. In case the system

calls have higher priority, two scenarios have to be considered. In case all the system call

context sets are misusage cases, the default context of the scenario must still be applied.

Possible misusage cases de�ned for the complete scenario have to applied as well even

though the system calls have priority.

For each calculated context set which a�ects the system call a DeriverRecord is created.

The record is needed since for the PolicySpeci�cations created for the a�ected SEFFs, not

only the information of the context set is needed, but also the information whether the

created policy is negative. Additionally, the information about which system call and

scenario a�ect this SEFF with this context set is saved. This information is required if an

error case is detected during the combination process in order to generate a detailed error

description. For the name generation of the generated policy this information is also used.

41

7 Implementation

DeriverRecord

-setToApply: ContextSet
-systemCall: EntryLevelSystemCall
-scenarioBehaviour: ScenarioBehaviour
-negative: boolean

Figure 7.2: DeriverRecord class

7.5 Applying Rules

The implementation of the concepts illustrated in chapter 6 is shown here. As described

above, this part was implemented as a stand alone plugin to have a strong separation of

concerns. The main class of the plugin is PolicyReducer, shown in the class diagram 7.3.

For the initialization, the context model and the user settings are needed. The context

model is not passed directly to it; instead the abstraction class introduced in section 7.2 is

used. This is needed since it contains the information about the negative policies, which

cannot be stored in the native context model. The PolicyReducer contains a list of rules

which can be applied to the model. With the settings passed to it, di�erent rules can be

enabled or disabled. The class has a main function called execute which will run the plugin.

The pseudo code for this function is given in algorithm 4. The function iterates over the

enabled rules and tries to apply them to the context model. The function contains a while

loop which will be exited if one iteration doesn’t result in any changes to the context

model. This concept is similar to a �xed-point iteration. Since each rule could change the

existing context model and create or remove policies, only one iteration over all rules

would not be su�cient. Here it is necessary to ensure that two policies do not create a

pattern which results in an endless loop. This could happen if the output of the �rst rule

would match as input of the second and vice versa. This was attempted by designing the

rules properly and by testing for this behaviour. Nevertheless, a hard coded condition to

end the loop was added to ensure the program does not crash. In this case, an error is

thrown.

The bene�t is that the actual order of the rules does not impact the result of the generated

context model. Also, the rules could be designed in a way to keep each rule relatively

simple, relying instead on the other rules applied in the next iteration. If this weren’t

the case, each rule would need to be aware of the order of all rules and which steps have

already happened before its execution. This would have been hard to coordinate with the

option of disabling certain rules.

42

7.5 Applying Rules

Algorithm 4 Apply rules to context model

while 2ℎ0=643 do
Initialize the rules which should be applied

Label: Apply rules to model
for AD;4B = 1, 2, . . . , # do

for B4 5 5 = 1, 2, . . . , # do
Label: Apply speci�c rule
Compare each context with others a�ecting this se�

for 2>=C4GC(4C_10B4 = 1, 2, . . . , # do
for 2>=C4GC(4C_2><?0A4 = 1, 2, . . . , # do

if rule can be applied then
Create rules record with all needed information

end if
end for

end for
end for

end for
Label: Execute Rules
for AD;4B = 1, 2, . . . , # do

for AD;4B'42>A3 = 1, 2, . . . , # do
if new context created needs to be created then

Create context set according to record

Add context set to model

Add context set to policy

end if
Remove context set from policy

end for
end for
if No rule was applied then

Exit while

end if
end while
Cleanup context model

The class diagram 7.3 also shows this general setup of the rules. The PolicyReducer only

has a list of IRulesDe�nitions, which provides two methods: one for applying the rule to

the model, and the second to execute the rule. These two methods are represented in

algorithm 4 by the labels "Apply rules to model" and "Execute Rules". In the �rst method,

the rule will iterate over the context model and try to apply itself to it. A rule works on

all context sets for one SEFF and compares them to each other. If the rule can be applied

to a context set, the model will not be changed immediately but instead a RulesRecord is

created which contains all relevant information. For example, which rule was applied,

43

7 Implementation

which SEFF was a�ected, if a context set will be removed or a new one created. The second

method will then execute the rule for each record set created.

more rule definitions
...

SubstituteParent

applyRule(ResourceDemandingBehaviour): boolean

ParentChild

applyRule(ResourceDemandingBehaviour): boolean

AbstractRule
{abstract}

-errorList: EList<ErrorRecord>
-appliedList: EList<RulesRecord>
-contextModelAbs: ContextModelAbstraction

+applyRule(ResourceDemandingBehaviour): boolean
applyRuleToModel()
executeRule(): boolean
getNumberOfRecords(): int
getErrors(): Collection<ErrorRecord>

«Interface»
IRulesDefinition

applyRuleToModel()
executeRule(): boolean
getNumberOfRecords(): int
getErrors(): Collection<ErrorRecord>

PolicyReducer

-contextModelAbstraction:
 ContextModelAbstraction
- settings:Settings
- rules:list<IRulesDefinition>

-initializeRules()
execute()
getErrors()

extends
extends

1..n

implements

Figure 7.3: Class structure for rules

The separation of these functions was done for multiple reasons. The �rst was that

some rules delete context sets which would lead to a change in the list over which is

iterated, which is not supported by the implementation language. Another reason was

during the design phase, it was assumed that if two rules a�ected the same context sets

during the same iteration, the resulting RulesRecords have to be resolved of a possible

con�ict before the execution. This was not the case. The third reason was that since

the executeRule method works on records which contain all the required information,

this method only needed to be implemented once. This was done in the AbstractRule. It

contains all functions which are the same for all rules and only leaves the abstract function

applyRule(ResourceDemandingBehaviour) for the speci�c rule classes to be implemented,

which is done according to the described rules in section 6.2. In order to reduce code

44

7.6 Executing the program

duplication the classes ContextSetRecord and ContextSetCompare were created to capsulate

common functionality.

In chapter 6 the order of positive and negative rules was explained. The implementation

of this lead to two loops of the while loop shown in algorithm 4: the �rst for the positive

rules and the second for the negative rules. As the �nal step, a cleanup step is executed.

Here, the rules NegativeCleanup and MergeSEFF are run. They are removed from the

normal iteration loop and run once since they only have to be applied once per design.

7.6 Executing the program

The two parts were implemented as separate plugins as mentioned at the beginning of

this chapter. The fourth plugin developed as part of this thesis uses these two parts and

executes them in an ordered manner. Additionally, a rudimentary GUI is provided. It is

not state of the art, as it was not the focus of this thesis, and rather only enables the user

to vary the input parameters for the software.

Figure 7.4: Setting the parameters for the program in the GUI

With these settings, the behaviour of di�erent parts of the implementation can be

adapted to the user’s needs. These settings also enable the test setup mentioned in the

next section since it allows the parameters for the test execution to be adapted accordingly.

Figure 7.4 shows the settings which can be adjusted by the user.

7.7 Test Setup

During the development of the software, the tests were developed in parallel. For the

creation of the tests JUnit was used. JUnit is a unit testing framework for the Java pro-

gramming language. The development was done with Java version 11.0.8.

45

7 Implementation

Similar to the architecture of the four implemented software plugins, four test projects

were implemented. Each of the test projects uses unit-tests to test the individual classes

of the component under test. For the PolicyDeriver and the PolicyReducer additional

system-tests have been created in which the functionality of the component as a whole

is tested. In the test project of the PolicyExtractor, tests for the interaction between the

two components are placed. Additionally, the functionality for the measurements of the

metrics used in the evaluation have been implemented as test classes. This allows for

reproducible measurements and results.

During the development process, continuous integration (CI) [12] was used. This

helped to identify software regressions introduced by changes in the source code, and the

generation of test coverage of the code ensured that the code had been su�ciently tested.

With 62 test cases a line coverage of 84% is achieved. Some of the uncovered lines are part

of the GUI, which is not executed during the test phase.

46

8 Evaluation

In this chapter, the proposed solution and the designed approach are evaluated with four

case studies. The �rst section describes the method which was used to evaluate this thesis.

The used case studies are then introduced. Each of the three de�ned goals which have been

evaluated has a separate section explaining the test setup and the results. Subsequently,

the threads to validity are explained and limitations and assumptions are shown. Finally,

the di�erent results are summarized in a short recap.

8.1 QGM Plan

To evaluate this thesis we used the Goal-Question-Metric (GQM) [2] method which is a goal

oriented approach. For the QGM-method, speci�c goals are de�ned which the designed

approach should ful�ll. Specifying these goals helps to collect relevant data during the

evaluation. After establishing the goals, they are used to develop several questions which

should be answered by the case study. In general, a goal will result in the generation

of multiple questions. Finally, the metrics are de�ned with which the questions can be

examined on a quantitative basis. In table 8.1, the goals we de�ned for this thesis can be

found.

Goal 1 : Accuracy

Purpose Evaluate

Focus the correctness

Process for deriving policies

Stakeholder from the security point of view

Goal 2 : E�ort reduction

Purpose Improve

Focus the e�ciency

Process of policy creation

Stakeholder from the developer point of view

Goal 3 : Scalability

Purpose Analyze the

Focus performance

Process of deriving policies

Stakeholder from the developer point of view

Table 8.1: Goals de�ned for our approach

47

8 Evaluation

The �rst thing which we wanted to achieve with our approach was the possibility of

deriving the correct access control policies from the usage and misusage diagrams. In

section 3.5, the two main premises of access control systems are described which should not

be violated by the created approach. Therefore, this goal can be summarized as wanting to

achieve high accuracy while applying the proposed solution. The second goal we wanted

to accomplish was an improvement in e�ciency for a developer when creating policies

for an access control system during the design phase. A developer creating access control

policies should have a reduced e�ort with the proposed solution compared to manual

creation. The third goal is to analyze the performance of this new approach. This goal is

less important than the �rst two goals, since for the theoretical evaluation of the approach

as a whole, the performance of the program is secondary. But in case the approach is

going to be used in a real environment, it is useful to know how the performance is since

it has a big impact on usability [20].

Goal 1 Accuracy

Question 1.1 Are the correct elements a�ected while

deriving the policies?

Question 1.2 Are the correct elements a�ected while

combining the policies?

Question 1.3 Are all erroneous elements found?

Metric 1.1 Precision

Metric 1.2 Recall

Goal 2 E�ort reduction

Question 2.1 How high is the e�ort using this ap-

proach?

Metric 2.1 Ratio of number of policies between

both approaches

Goal 3 Scalability

Question 3.1 How does the runtime scale with cer-

tain parameters?

Metric 3.1 Runtime

Table 8.2: Goals, questions and metrics used for the GQM-method

The de�ned goals and the questions and measurements derived from them are shown

in table 8.2. For goal G1 three questions arise. The �rst is how accurate is the algorithm

regarding the derivation of the policies from the usage diagrams to the SEFFs. The second

is how accurate is the combination and reduction of the context sets in the second step.

The third is that if, in case there is an erroneous con�guration as described in chapter 6, to

see if all possible error cases are detected. All these questions are a�ected by the quality

aspect Accuracy. The two metrics M1.1 and M1.2 are Precision and Recall.

48

8.1 QGM Plan

De�nition 1
% =

)%

)% + �%

De�nition 2
' =

)%

)% + �#

For Precision P, true positives (TP) and false positives (FP) are used. For Recall R, true

positives (TP) and false negatives (FN) are used. The de�nitions of TP, FP and FN depend

on the question being answered. The evaluation and the results for this goal are shown in

section 8.3.

The second goal aims at increasing the e�ciency. The question derived from this goal is

to evaluate if there is an improvement in e�ciency in regards to time and, if so, how great

is the improvement. Additionally, an insight into which parameters might in�uence the

e�ort for access policy creation could be helpful for future research projects. The metric

used for answering this question is the number of policies which need to be created with

the help of the new approach compared to the basic approach of using only the context

model.

De�nition 3

�5 5 >AC'43D2C8>= = 1 − number of policies new approach
number of policies base approach

Section 8.4 analyses this question and shows the results regarding it. With the third

goal, the performance of the developed approach is inspected. The question derived is

how well the program scales in regard to speci�c parameters. The metric used to answer

this question is the runtime needed to execute the program with the input varied at the

speci�c parameter. In section 8.5, this aspect of the developed approach is evaluated.

49

8 Evaluation

8.2 Case studies

For the evaluation of the de�ned goals di�erent case studies are used. Each of the case

studies has been used in one or more evaluations for new approaches regarding access

control systems and security rules [24] [40] [11]. To the knowledge of the author of this

thesis, no case study which contains both a security description based on contexts, and

a system architecture, which can be used to model the system inside PCM, is available.

Therefore, these case studies have been selected so that at least one aspect, the PCM

models, is available and some information about the intended security aspects, although

not as a context model, is available. Their description of the expected use cases of the

system was used to create a context model based on their security aspects. The created

context models were made to be as �tting as possible to the described use cases of the case

studies. The di�erent studies were chosen to cover di�erent aspects in regards to their

PCM-models.

SMSApp DistanceTracker TravelPlanner EnergyScenario

Interfaces 2 2 8 6

RepositoryComponents 3 2 4 6

AssemblyContexts 3 2 4 8

SEFFs 6 6 10 11

Usagemodels 4 1 1 6

Table 8.3: Comparison of case studies regarding PCM elements

Table 8.3 shows these di�erent aspects. For example, the DistanceTracker and the

TravelPlanner case study only contain one usage diagram, the TravelPlanner being the

more complex one in regards to repository and system. The SMSApp represents a well

rounded project, and the EnergyScenario case study describes the most complex system of

these four with a use case in Industry 4.0. In the following, the four case studies are shortly

introduced and the usage scenarios and security model for each is brie�y explained. The

used models can be found here: [28].

50

8.2 Case studies

8.2.1 ContactSMSManager

The application ContactSMSManager [24] consists of two mobile apps: The ContactManager
for managing contact data, which can be used to create new contacts, view existing contacts

or delete them. Additionally, an SMS can be sent to a selected contact. For this functionality

the SMSManager is used, which provides the function to send the message to a selected

number. The security concern with this case study is that only the user should be able

to access the contact information from the ContactManager, and that the SMSManager
tasked with sending the SMS should only have access to the number of the receiver, but

not the other information connected with that contact. The purpose is to show that the

ContactSMSManager doesn’t leak the personal contacts of the user. For this purpose, the

removeName is provided inside the ContactManager to ensure that only the information

which is allowed to be declassi�ed from a contact is provided to the SMSManager.

executeSendSMS(receiver, body.text)

receiver := recNumber;

receiver := removeName(contact)

 GetSMSReceiver(contact)

 RetSMSReceiverNumber
:= receiver.number

 GetInput<SMSBody>()

 BodyToSend(body := input)

 RetSendSMS()

 SendSMS()

GUI SMSManager ContactManager User

Figure 8.1: Main sequence diagram of the ContactSMSManager app [24]

51

8 Evaluation

The case study contains four UsageModels. Three of them model the di�erent actions

the user can do to edit his contacts : AddContact, DeleteContact and ListContacts. The

fourth is the usage diagram for the sending of an SMS. This behaviour is shown in �gure

8.1. It describes the interaction between the di�erent components in this scenario. The

GUI is the view component in the application, coordinating the interactions between the

di�erent modules and the user. The action to send an SMS has happened before the start

of this sequence diagram and the contact to which the SMS should be sent is selected.

This triggers the GUI to receive the information for this contact from the ContactManager.
Before passing the receiver information to the SMSManager, the name of the contact is

removed with the help of the function mentioned above. The user is then asked for the

input which will be the content of the SMS. Afterwards, the SMS will be sent by the

SMSManager to the receiver.

ContextName Type ContextValues

Actor Single User, GUI

Contact Information Access Level Hierarchical (down)

complete

↓
declassi�ed

Table 8.4: Context model for case study ContactSMSManager

For the evaluation, these scenarios were used to create the context model shown in table

8.4. The context Actor is indicating which entity is executing the system function. The two

possible values are the User, or the ContactSMSManager itself, represented by the context

GUI. The Context Information context represents the amount of information a certain

request wants to access. It is a hierarchical context, since the context with the higher level

of access rights Complete should also be able to access the lower ones, in this case the

declassi�ed ones. For this case study, four scenarios are created. S1 contains the normal,

good use case of the system while the second also contains misusage parameters explicitly

forbidding the access to not declassi�ed information for all requests not coming from the

user. In addition to these two positive cases, two negative scenarios are de�ned which

should result in errors being found during the execution of the program. The �rst is a a

result of the fact that both the user and the GUI need access to the getContactList function.

If the misusage scenario for the sendSMS only forbids access to a context complete instead

of the context set {complete,GUI}, the access will also be blocked for the user, who wants to

access it with the context set {complete,user}. The second represents a miscon�guration by

the GUI trying to call the deleteContact function, which should not be allowed.

8.2.2 Distance Tracker

The DistanceTracker is a jogging app developed with the IFlow approach [24]. The user

can use the mobile application DistanceTracker to start GPS tracking prior to running and

the app will record the current position periodically during the run. Once the user stops

tracking, the list of recorded GPS positions will be used to calculate a route which will then

52

8.2 Case studies

be sent to the web service TrackerService. The web service can be used to communicate

with other users and compare the tracked distances. From a security perspective, the app

shall only be allowed to track the current position if started, the web service shall not

receive the position of the user, only the calculated distance, and the app shall only have

access to the current location of the current run and not store GPS-positions from earlier

runs.

The main use case of this system is described in the sequence diagram 8.2. The User
is greeted by a welcome message at the start of the app. Then the user is able to start

the tracking of the run with StartTracking and stop it with StopTracking. Internally, the

DistanceTracker stores the information if a tracking is currently in progress or not in a

state �ag. After the user stops the current run, the run distance is calculated. The user

then has the option to release the information to the TrackerService. Only if he con�rms

the release should the information be sent to the server, otherwise the information should

be deleted.

The context model for this case study is shown table 8.5. The context Actor distinguishes

between the user of the app and the app itself. The Distance Data is a hierarchical context

with a depth of 3. It describes in which format the data is requested. raw contains

the complete GPS information, calcualted is the distance contained internally by the

DistanceTracker, and declassi�ed is the distance data after being released by the user to

the TrackerService. For this case study again two positive scenarios are created, one with

(S2) and one without (S1) the misusage information. The scenario S3 describes a wrong

con�guration of the system for which the app tries to declassify the distance data by itself,

which is forbidden by a misusage diagram. S4 is a scenario in which the data which should

be sent to the TrackerService is the raw data and not the distance which was released by the

user. The last scenario describes a misusage in which the data which should be released

by the user is not the calculated distance but instead still the raw data.

ContextName Type ContextValues

Actor Single User, App

Distance Data Hierarchical (up)

raw

↑
calculated

↑
declassi�ed

Table 8.5: Context model of Distrance Tracker case study

53

8 Evaluation

dist_decl: Distance =
 releaseDist(dist)

dist: calcDist(act)

act: Activity = createActivity(
 name,gpsPositions)

state.tracking = false:
stopGPSTracking():

startGPSTracking():
state.tracking = true

 Confirm()

 WelcomeMsg()

 Confirm()

 StartTracking()

 Confirm()

 StopTracking()

 ConfirmRelease(dist,
TrackerService)

 Ok()

 SendDistance(dist_decl)

 Done()

alt

User

[state.tracking == false]

[else]

DistanceTracker TrackerService

Figure 8.2: Main sequence diagram of the DistanceTracker app [24]

54

8.2 Case studies

8.2.3 Travelplanner

The case study TravelPlanner [40] is a distributed application which allows a user to �nd

relevant �ight o�ers for his trip and book them. The TravelPlanner app can be run on

mobile devices which allows the users to check the TravelAgency web service for available

and suitable �ight o�ers. If the user wants to book one of the proposed o�ers, he can

select the chosen o�er and book it directly over the web service of the Airline. All the

payments carried out in this scenario are done with the help of a CreditCardCenter app.

This app contains the user’s credit card information, for which the user has to verify

himself. Additionally, he can release his credit card data to the airline in order for them

to collect the money if a �ight is booked. In this case, the airline also informs the travel

agency about the successful booking and pays them a commission.

The sequence diagram in �gure 8.3 shows the main use case of this case study. All the

actions are triggered by the user. The initial action is requesting the current �ight o�ers

according to the search parameters. This request is started by the user and then propagated

from the user to the TravelPlanner, TravelAgency and then the Airline. To book a selected

�ight, the credit card data has to be released to the TravelAgency �rst. This is one of the

misusage scenarios for this case study. In order to release the credit card data, the user

has to be authorized �rst. This is a second misusage scenario. The two policies needed

to model the access rights are that releasing the credit card information is only allowed

after the user has authorized himself and that booking the �ight is only allowed to users

who have released their credit card information. From the description of this use case the

context model is de�ned. Table 8.6 shows the created context model. CreditCard-Status is

a HierarchicalContext, which inherits its access rights bottom up. The two values for this

context are either authorized or non-authorized. Both the context TravelAgency-CreditCard-
Status and App-Status are SingleContexts. The �rst one indicates if the user has already

released his credit card information, the second contains the information about whether

the user has already requested the current �ight o�ers or if he has already booked a �ight

and received a con�rmation.

ContextName Type ContextValues

CreditCard-Status Hierarchical (up)

authorized

↑
non-authorized

TravelAgency-Status Hierarchical (down)

locked

↓
declassi�ed

App-Status Single not requested, requested, con�rmed

Table 8.6: Context model of travelplanner

For this case study, �ve scenarios are created. S1 is the normal use case, described

in sequence diagram 8.3. The second also describes the positive use of the system, but

explicitly contains the described forbidden use cases as misusage diagrams. In addition

to the two positive cases, three negative scenarios are de�ned which should result in

55

8 Evaluation

 G
etF

ligtO
ffers(requestD

ata)
 G

etF
ligtO

ffers(requestD
ata)

 G
etF

ligtO
ffers(requestD

ata)

 flightO
ffers

 flightO
ffers

 flightO
ffers

 getC
C

D
()

 ccd

 releaseC
C

D
F

orA
irline(ccd)

 ccd

 bookF
light(flightO

ffer,ccd)
 bookF

light(flightO
ffer,ccd)

 payC
om

m
ission()

 confirm
ation

 confirm
ation

 confirm
ation

U
ser

T
ravelP

lanner
C

reditC
ardC

enter
T

ravelA
gency

A
irline

F
i
g
u

r
e

8
.3

:
S
e
q

u
e
n

c
e

d
i
a
g
r
a
m

f
o

r
�

i
g
h

t
b

o
o

k
i
n

g
[
4
0
]

56

8.2 Case studies

errors being found during the execution of the program. The �rst misusage scenario

handles the case of the user de�ning the initial context set for the complete usage scenario

as a default value, and not specifying a more detailed context set for the operations

which need to be secured. The default value clashes with the forbidden context sets of

the misusage diagrams. The second and third misusage scenarios handle the di�erent

cases of hierarchical misusage. The �rst ensures that the inherited access rights from the

CreditCard-Status do not lead to the access for unwanted context sets, and the second one

for the TravelAgency-Status.

8.2.4 Energy Scenario

The case study Energy Scenario describes an energy management system (EnMS) in the

TRUST 4.0 environment [11]. Information about the �ow of energy contains a high level

of information about business activities which allow conclusions about expenses and

work�ow of the business. Therefore, this information has to be protected by some kind of

access control. Figure 8.4 shows the main scenario of this case study. The system has two

di�erent kinds of sensor. The PushingSensor periodically pushes its data to the server, the

data of the PullingSensor has to requested. The EnerChart collects the data and periodically

sends it to the OPCUAServer. The di�erent users have access to the data through interfaces

provided by the Trust40 platform, which periodically polls the server. Each of the parts

of the system which need to store data have a separate instance of a time series database

(TimeSeriesDB) to save the data. The system has 3 de�ned use cases. The energy o�cer

should always be allowed to request the data of the EnMS. For company internal expense

calculations the EnMS should allow the request for the aggregated information for a

de�ned time period. In the third use case, an external service company should be granted

temporary access to the data of the EnMS to conduct maintenance.

ContextName Type ContextValues

Employment Hierarchical (up)

internal

↑
external

Role Hierarchical (up)

expert

↑
normal

Location Hierarchical (down)

remote

↓
on site

Reading method Single manual, periodic

Table 8.7: Context model of energyscenario

The derived context model for this case study can be found in the table 8.7. The context

Employment describes if the user is employed by the company or is from a hired external

service company. The context Role is used to distinguish between a normal employee

57

8 Evaluation

aggregateData(data)

 receiveReading(data)

 storeData(data)

Periodic

 PullData()

 data

 storeData(data)

 data = readData()

 receiveData(data)

 storeData(data)

Periodic

 sendData()

 data = readData()

 data

 storeData(data)

Periodic

 getMonthlyData()

 data: TimeSeries =
read()

 getFineGrainedData()

 data: TimeSeries =
read()

Manual

User

[monthly]

[else]

Trust40 TimeSeriesDB
(Multiple Instances) OPCUAServer EnerChartLogic Sensor

Figure 8.4: Sequence diagram for the EnergyScenario case study

58

8.3 Accuracy

or for an employee who has more access rights in regards to the EnMS. The context set

{normal, internal} should be allowed to access the monthly data by calling the function

getMonthlyData() while the external employee shouldn’t. The energy o�cer is described

by {expert, internal} and the external technician by {expert, external}. The context Location
is used to describe if the user has access to the information while being on the company

site or if he is able to request the information remotely. The last context distinguishes

between manual access by the user or periodic access from the system and the sensors.

For this case study, �ve scenarios are de�ned. S1 describes the positive use of the system

as described in �gure 8.4, and S2 describes the same usage but additionally contains the

forbidden use cases modelled as misusage diagrams. S3 describes a wrong con�guration in

which the periodic functions are manually requested by the user. S4 describes a scenario

in which an external employee tries to request the monthly data from the EnMS which is

a functionality only provided to internal users. In scenario S5 the external technician tries

to request the energy data without having the access rights granted.

8.3 Accuracy

For the goal G1 Accuracy three questions were de�ned. The �rst is regarding the accuracy

of deriving the policies, the second regarding the combination process of the context

sets and the third is in regard to error detection. However, the metrics derived for these

three questions are the same: Precision and Recall, as suggested by Metz.[31] Only the

de�nition of the parameters used to evaluate these metrics is going to di�er from question

to question.

The �rst metric is Precision. For this metric, the true positives (TP) and false positives

(FP) are used to calulate the precision % =)%
)%+�% . The de�nition of TP and FP depends on

the question being answered. For the accuracy of deriving policies, TP is going to be the

number of SEFFs which are a�ected by an EntryLevelSystemCall and, after the execution,

have a policy assigned to them. FP, in this case, is the number of SEFFs which have a policy

assigned to them for the corresponding EntryLevelSystemCall even though they are not

a�ected by it.

For the question of how accurate the PolicyReducer is, TP is de�ned as the number of

context sets for which the reducer has found elements which can be reduced. FP are the

context sets which are a�ected by the reducer even though they are not a�ected by the

corresponding EntryLevelSystemCall.
In regards to errors, TP are the errors found while executing the algorithm. FP, in this

case, are all errors which have been detected but which are not actual errors.

The second metric used is Recall. For this metric the true positives (TP) and false

negatives (FN) are used to calulate the recall ' =)%
)%+�# . Again, the de�nition of TP and

FN depends on the question. TP is going to be the same for the calculation of R as it has

been for P. For deriving policies, FN is the number of SEFFs which do not have a policy

assigned to them for the corresponding EntryLevelSystemCall after the execution of the

Deriver. FN in regards to the PolicyReducer is the number of context sets which should be

a�ected by the reducer but haven’t been a�ected be the execution. For the detection of

errors, FN are all the possible error cases not detected by the algorithm.

59

8 Evaluation

TP TF FN Precision in % Recall in %

SMSApp

S1 7 0 0 100 100

S2 7 0 0 100 100

DistanceTracker

S1 6 0 0 100 100

S2 6 0 0 100 100

Travelplanner

S1 8 0 0 100 100

S2 8 0 0 100 100

EnergyScenario

S1 19 0 0 100 100

S2 19 0 0 100 100

Table 8.8: Accuracy for deriving policies

The results for the accuracy measurement in regards to deriving policies are shown in

table 8.8. For all the scenarios in all the case studies we achieve a precision and a recall of

100%. This is an expected result, since the classes have been tested as described in chapter

7.7 and that no predictions or heuristics are used during the deriving process. The use of

these could be a topic for future works as described in section 10.1. An observation that

can be made is that both the scenario with only the use of usage diagrams and the scenario

with misusage diagrams have the same amount of expected derived policies (TP). This is

explained by the fact that the derived misusage policies do not lead to policies in the �nal

context model, since the model is not able to represent negative policies as described in

section 3.6. Instead, they are only used during the combination process to evaluate the

correctness of the context model. A derivation between the TP-value between scenario 1

and 2 of a case study would rather indicate a wrong setup of the evaluation scenarios.

TP TF FN Precision in % Recall in %

SMSApp

S1 7 0 0 100 100

S2 10 0 0 100 100

DistanceTracker

S1 6 0 0 100 100

S2 9 0 0 100 100

Travelplanner

S1 8 0 0 100 100

S2 12 0 0 100 100

EnergyScenario

S1 15 0 0 100 100

S2 22 0 0 100 100

Table 8.9: Accuracy for reducing policies

60

8.3 Accuracy

The results for the accuracy measurement in regards to the policy reduction and com-

bination are shown in table 8.9. For all the scenarios in all the case studies we achieve a

precision and a recall of 100%. This is again an expected result in the same manner that the

modules have been tested by unit tests as described in chapter 7.7 and that no predictions

or heuristics are used during the combination process. The di�erence between the above

results is that in these measurements we expect to see a di�erence between the scenarios

with and without misusage diagrams. Since the misusage diagrams result in temporary

policies used for validation there exist more policies for which rules can be applied. This

is the explanation for the increase in TP-value between the scenarios 1 and 2 in each case

study.

TP TF FN Precision in % Recall in %

SMSApp

S2 0 0 0 100 100

S3 1 0 0 100 100

S4 1 0 0 100 100

DistanceTracker

S2 0 0 0 100 100

S3 1 0 0 100 100

S4 1 0 0 100 100

S5 1 0 0 100 100

Travelplanner

S2 0 0 0 100 100

S3 4 0 0 100 100

S4 1 0 0 100 100

S5 3 0 0 100 100

EnergyScenario

S2 0 0 0 100 100

S3 8 0 0 100 100

S4 2 0 0 100 100

S5 4 0 0 100 100

Table 8.10: Accuracy for detecting errors

Table 8.10 shows the results of the measurement of error accuracy. Again, the same

reasons apply which result in the precision and a recall of 100% being the expected values.

The scenarios 1 were excluded in this evaluation since they do not contain misusage

diagrams and therefore no contradicting policies can exist. The scenario 2 for each case

study shows a TP of 0, which means no errors are expected to be found. These scenarios

are used to show that with a correct con�guration with both usage and misusage diagrams,

no errors are expected and no errors are mistakenly thrown. The rest of the scenarios

have errors according to the expected miscon�guration.

61

8 Evaluation

8.4 E�ort reduction

For the second goal G2 E�ort Reduction, the improvement of e�ciency of the developer

while creating an access policy system should be measured. Therefore, the two approaches

should be compared with each other in regards to the e�ort needed to create the complete

system access policy speci�cation. For the measurement, not the actual e�ort for creating

the access policy description is measured, since for this evaluation, no experiment was

conducted. Instead, the e�ort for creating the system speci�cation is approximated by the

number of policies needed to specify the complete system.

The assumption in this evaluation is that the developer creating the speci�cation is

trained in the used environment and knows the tools used for modeling the system and

for the creation of the policies, in this case Palladio. Additionally, we assume that during

the normal development process the process artifacts are already created. This means the

e�ort for creating usage diagrams, repository and system models is not measured as part of

this evaluation. Another assumption made for the evaluation of this measurement is that

the e�ort for creating policies takes the same amount of time with both approaches. This

assumption is based on the fact that both the Policy Speci�cation, used for modeling policies

of the data element on the SEFF level, and the Context Speci�cation, used for modeling

policies on usage diagram level, take the same number of elements to create, only deviating

in the link to the PCM-element connected to them. Since the developer creating the policies

knows the environment, we assume �nding the corresponding elements inside the PCM

model takes roughly the same amount of time for both the approach using SEFFs and the

approach using usage diagrams.

With these assumptions made, the analysis for the improvement in e�ciency is done by

comparing the number of policies needed to be created by the developer. The base value

for the comparison is the manual creation of policies with the context model. The policies

have to be created for each SEFF individually. The second value is the number of policy

speci�cations needed to be created with the new approach. For system calls in the usage

models, the policy speci�cations have to be created. Additionally, the unwanted usage

scenarios can be speci�ed with the help of misusage diagrams. For the measurement, these

two cases where split into two separate measurements since the complete system can

theoretically be described with only the usage diagrams and no misusage diagrams. To

ensure that both approaches cover the same access policy speci�cation of the system we

use the results from chapter 8.3. Since the approach has shown to have high precision and

recall we assume that the derived policies matched the polices created for the comparison.

The scenarios used for the di�erent measurements of each case study are described in

section 8.2. For the measurement without the use of misusage diagrams, scenario 1 of each

case study is used, and for measurements with the speci�cation of misusage diagrams,

scenario 2 is used. Both scenarios cover the same use of the system, with scenario 2 also

explicitly ensuring the unwanted access of certain elements is guaranteed.

The results of the measurement without the use of misusage diagrams is shown in table

8.11. The SMSApp case study has the least amount of reduction with an e�ort reduction

of 33%. The case studies DistanceTracker and Travelplanner have a reduction of 50% or

more. This shows that with the new approach a clear reduction of e�ort can be achieved.

This conclusion was made with a limitation for the base approach. It was ensured that the

62

8.4 E�ort reduction

Number of policies

% Reduction in %

New Base

CS1: SMSApp 4 6 67 33

CS2: DistanceTracker 3 6 50 50

CS3: Travelplanner 3 8 38 62

CS4: EnergyScenario 6 11 55 45

Table 8.11: Comparison with only usage diagrams

number of policies in the base approach was limited to only 1 policy per SEFF. So with this

assumption, the minimal subset of policies needed to describe the system was used. In a

real environment it might be the case that the user does not work in the optimal way and

instead creates multiple policies a�ecting the same SEFF (for example for better human

readable context policies), which would therefore increase the number of total policies.

This would lead to an even lower ratio between the two approaches meaning an even

higher e�ort reduction percentage.

Number of policies

% Reduction in %

New Base

CS1: SMSApp 6 6 100 0

CS2: DistanceTracker 5 6 84 16

CS3: Travelplanner 5 8 63 37

CS4: EnergyScenario 9 11 82 18

Table 8.12: Comparison with misusage diagrams

The results of the measurement with the access right violations explicitly modeled as

misusage diagrams are shown in table 8.12. Compared to the results without the use of

misusage diagrams, it is observed that each case study has a lower e�ort reduction. In

the case of case study 1, the ContactSMSManager, there is no e�ort reduction at all. This

result was expected, since the number of policies in each case study increased by adding

the misusage diagrams, but the number of data elements represented by the SEFFs stayed

the same. So in regards to the e�ort reduction, the use of misusage diagrams seems to be

counterproductive. But with the use of the misuage diagrams, the bene�t of the additional

veri�cation of the access policies is added. So in a productive use of this new approach, a

certain compromise between veri�cation and e�ort reduction has to be made.

To analyse which parameters have an in�uence on the e�ort reduction we use the PCM

parameters shown in table 8.3. Since the number of Interfaces, RepositoryComponents and

AssemblyContexts indirectly in�uence the number of SEFFs, we only analyze the e�ort

reduction in relation to the number of SEFFs and Usagemodels. The two graphs in �gures

8.5 and 8.6 show the e�ort reduction in regards to these two parameters of the case studies.

The �rst shows the relation between the number of SEFFs and the e�ort reduction, the

second between the number of usage diagrams and the amount of e�ort reduction. In both

diagrams no clear relation between these parameters and the amount of e�ort reduction

can be seen. By looking more closely at the case study with the highest e�ort reduction,

63

8 Evaluation

the Travelplanner case study, which has only one usage diagram, but the second highest

amount of SEFFs, the assumption can be made that the e�ort reduction might depend on

the relation between these two parameters. This relation is shown in �gure 8.7. The graph

indicates that this assumption might be correct, but the data size is too small to come to

a clear conclusion. This could be a topic for further research. In all three graphs it can

be clearly seen that the amount of e�ort reduction is directly in�uenced by the use of

misusage diagrams.

0 5 10 15

0

20

40

60

80

100

Number of SEFFs

E
�

o
r
t

r
e
d

u
c
t
i
o

n
i
n

%

E�ort reduction in relation to number of SEFFs

usage

misusage

Figure 8.5: E�ort reduction in relation to number of SEFFs

64

8.4 E�ort reduction

0 2 4 6 8 10

0

20

40

60

80

100

Number of usage diagrams

E
�

o
r
t

r
e
d

u
c
t
i
o

n
i
n

%

E�ort reduction in relation to number of UsageModels

usage

misusage

Figure 8.6: E�ort reduction in relation to number of usage models

0 2 4 6 8 10

0

20

40

60

80

100

SEFFs per usage diagram

E
�

o
r
t

r
e
d

u
c
t
i
o

n
i
n

%

E�ort reduction in relation to number of UsageModels

usage

misusage

Figure 8.7: E�ort reduction in relation to the amount of SEFFs per usage diagram

65

8 Evaluation

8.5 Scalability

For the goal of scalability the case studies are not used for the evaluation; instead a model

is generated according to certain parameters. Each parameter is varied in a range while the

other parameters are kept the same to see the e�ect of this parameter. Both PCM-model

as well as context-model parameters are varied. For the test setup, a model generator was

implemented which would create the di�erent models accordingly. The models generated

are the usage model, the system model, the repository model and the context model. The

generated models are created consistent to each other. To account for variance in execution

time due to side e�ects each measurement for one parameter variation was run multiple

times and the average of the measurements was taken. Also during the �rst runtime

analysis, it was observed that the �rst few runtime measurements highly di�er from the

rest of the measurements. A warmup phase was introduced in which the measurements

were run a few additional times and the results of the earliest measurements were ignored.

Id Parameter

PCM

1 # interfaces

2 # methods per interface

3 # assembly composition depth

4 # assembly composition with

5 # usage diagrams

6 # system calls

ContextModel

7 # context sets

8 # contexts per context set

9 # hierarchical context depth

10 # hierarchical context width

11 # policies

12 # contexts per policy

Table 8.13: Parameters which are varied during the runtime analysis

The list of parameters which are varied are shown in table 8.13. Parameter 1 describes

the number of interfaces existing in the repository model. Increasing this parameter results

in more interfaces per component and therefore in an increase in the total number of

SEFFs. Additionally, this parameter also a�ects the total number of AssemblyConnectors in

the system model. Parameter 2 in�uences the number of operations each interface has.

This also increases the total number of SEFFs the same way parameter 1 does, but does not

a�ect the number of AssemblyConnectors present in the assembly.

Parameters 3 and 4 both a�ect the composite components inside the system model. With

parameter 3, the depth of nested composite components is varied. A value of 10 means

that beginning on the highest level, the system composition, each assembly context on this

level will be a composite composition containing themselves composite components with

a depth of 9. Parameter 4 varies the width of each composite component. A value of 10

66

8.5 Scalability

means each composite component contains a chain of 10 assembly context with, beginning

with the �rst, each of them being connected to the next in chain over an AssemblyConnector
and having an ExternalCall on the repository level. Even though parameter 3 increases

the number of composite components on the assembly level, the total number of basic

components is not a�ected, and therefore the number of SEFFs stays the same as well.

Parameter 4 on the other hand increases the number of basic components and therefore

the number of SEFFs.
Parameters 5 and 6 vary the parameter of the usage model. Increasing parameter 5 leads

to more usage diagrams and therefore more scenario behaviours respectively. Parameter

6 a�ects how often each operation of the provided system interfaces is called. Both

parameters lead to an increase in EntryLevelSystemCalls and therefore an increase in the

numbers of policy speci�cations a�ecting each SEFF, but the number SEFFs stays the same

when varying them.

Parameter 7 changes how many context sets are available and parameter 8 increases the

amount of context each context set has assigned to it. These parameters don’t a�ect the

amount of SEFFs present. Parameter 9 and 10 change the hierarchical contexts inside the

context model. With the hierarchical context depth, the amount of layers in a hierarchical

context is increased, meaning the longest path from root to the furthest child gets longer.

The hierarchical context width changes how many child nodes each hierarchical context

has in one layer. Parameter 11 changes how many policies are present in the model when

the reducer is applied, and parameter 12 increases the number of context sets each policy

speci�cation has assigned to it.

Id

ParameterValue

1 10 25 50 100 150 200

1 0.0064 0.0361 0.2128 0.4145 9.932 - -

2 0.0004 0.0053 0.0208 0.0684 0.2646 0.5387 0.9406

3 0.0004 0.0012 0.0021 0.0043 0.01 0.0153 0.0326

4 0.0004 0.008 0.0237 0.0796 0.2691 - -

5 0.0005 0.0047 0.0198 0.0658 0.2283 0.5478 0.87

6 0.0005 0.0052 0.015 0.0629 0.2369 0.5019 0.8953

Table 8.14: Runtime results for PCM parameters

The results of the runtime analysis by varying the PCM-model parameters (Parameters

1-6) can be found in table 8.14. Additionally, the results are shown as a graph in �gure 8.8.

In general, the results can be grouped into 3 categories. The �rst group is the parameters

which not not to in�uence the runtime at all in a signi�cant way. In our case this is

parameter 3, the depth of the hierarchical context. The second group is the parameters

a�ecting the runtime in a linear way. These are the parameters 2,4,5,6. The last group seems

to cause an exponential e�ect on the runtime. This seems to be the case for parameter

1. One observation is that the number of a�ected SEFFs seems not to be the in�uential

factor for this exponential increase in runtime, since not all parameters which increase

the amount of a�ected SEFFs are in this third group.

67

8 Evaluation

0 1 2 3 4 5 6

0

0.25

0.5

0.75

1

Measurement [#]

R
u

n
t
i
m

e
[
s
e
c
o

n
d

s
]

Runtime scaling depending on the speci�c parameter

1

2

3

4

5

6

Figure 8.8: Graph plotting the runtime results

There are two incomplete measurements in the table 8.14. One is for the parameter 1

for values higher than 100. Here, the problem was that the measurement did not seem

to be able to be completed in a reasonable time frame and was manually aborted. This

observation aligns with the rest of the measurements for this parameter indicating an

exponential e�ect in runtime. One possible explanation could be that the number of

Assembly Connectors causes this issue. For real use cases, this high number of Assembly
Connectors for a single Assembly Context seems not to be realistic and can therefore be

ignored. The second incomplete measurement is for parameter 4, also for values over

100. Here, the issue was a stack-over�ow exception caused by the recursive handling of

external calls described in chapter 7.3. Since the issue was found during the evaluation

step, the time frame of this thesis didn’t allow for a bigger functional change inside this

handling of the algorithm. Similar to the �rst parameter, the issue seems not to be relevant

for realistic use cases, since the issue was caused by a long chain of components (more

than 1000 components chained after each other). For the impact of this parameter on the

runtime, we take the trend of the �rst measurements to assume a linear runtime e�ect.

Table 8.15 displays the results for the parameters 7-12, which a�ect the context model.

These parameters are not plotted since only one of them seems to have a signi�cant e�ect

on the runtime of the program. Parameter 11, which increases the number of policy

speci�cations, seems to have a linear e�ect on the runtime. The results for this section

were computed on laptop, the speci�cations can be found in table 8.16.

68

8.6 Threats to Validity

Id

ParameterValue

1 10 25 50 100 150 200

7 0.0042 0.0443 0.0348 0.0193 0.0225 0.0211 0.0186

8 0.0013 0.0014 0.001 0.0012 0.0014 0.002 0.0012

9 0.0004 0.0006 0.0005 0.0009 0.0005 0.0005 0.0006

10 0.0007 0.0005 0.0004 0.0004 0.0005 0.0009 0.0005

11 0.0001 0.0005 0.0093 0.0234 0.108 0.3202 0.7865

12 0.0003 0.0005 0.0005 0.0003 0.0005 0.0006 0.0004

Table 8.15: Runtime results for context parameters

Parameter Value

System Manufacturer LENOVO

System Model 20ARS2V900

Processor Intel(R) Core(TM) i7-4600U CPU

@ 2.10GHz, 2694 Mhz, 2 Core(s),

4 Logical Processor(s)

Installed Physical Memory (RAM) 12.0 GB

OS Name Microsoft Windows 10 Pro

Table 8.16: Hardware speci�cation

8.6 Threats to Validity

The threats to validity are structured into four categories, according to the guidelines

for case study research of Runeson and Höst[38]. The categories are described in the

following.

• Internal validity: Internal validity ensures that only the factors we expect to have

an in�uence are the in�uencing factors and therefore our assumption about cause

and e�ect is correct. We assume that the in�uencing factors for this evaluation are

the used scenarios and models. This factor was reduced by not creating new models

and instead using models which are already existing and have been used in other

evaluations. Additionally, the case studies had descriptions of their use case and their

security constraints. This information was used to create the used context models

and the additional scenarios for the misusage cases. A possible invalidity might have

been introduced with this step. This risk we tried to minimize by using four case

studies. For the performance evaluation, only one parameter was changed at a time

to ensure the e�ect of it can be measured without the in�uence of other e�ects.

• External validity: External validity allows the application of the �ndings of this evalu-

ation to other contexts and therefore to generalize them in respect to other situations

and use cases. Runeson and Höst [38] describe that case study based evaluations

are good for understanding a phenomenon instead of yielding a result which has

a great representativeness. According to them, results conducted with case studies

can help understand cases with similar characteristics. The results of this evaluation,

69

8 Evaluation

therefore, may be applicable to cases which both have a dynamic environment which

can be modelled with contexts and for which a security description on the usage

model level, meaning on the interface level to the system, is possible. This belief is

a�rmed by the fact that multiple external case studies were used which all indicated

the same behaviour of our approach.

• Construct validity: This category ensures that the metrics used to answer the ques-

tions de�ned in section 8.1 are correct and that the measurements can be explained

according to how the system should behave. The accuracy metrics we de�ned ac-

cording to Metz[31]. The resulting measurements of precision and recall were as we

expected. For the performance measurement the runtime seems to be the perfect

�t. Here, the results of the measurements could also be explained with the used

algorithm. For the e�ort reduction, we used a metric for which we had to make

some assumptions. Here, a conducted experiment might have yielded more accurate

results but we think that the results in some cases of more than 50% reduction give

some indication that the new approach can have an e�ort reduction compared to

the normal context based approach. Additionally, we gained some insights into how

the use of misusage diagrams in�uence this metric. In general, there is less room

for interpretation of the results with the use of metrics than, for example, a survey

where the answers have to be further interpreted.

• Reliability: Reliability means that the results are reproducible and do not depend on

the researcher executing the evaluation. For the accuracy measurements, the values

needed to calculate precision and recall do not vary for di�erent executions since

the program does not depend on heuristics or randomness. For the e�ort reduction,

no experiment was conducted which is good in regards to reliability. In the case

studies, di�erent policies could be used for the evaluation, but here the limitation

we made to limit the number of policies to 1 per SEFF ensures the value may only

vary in a bene�cial direction. The results of the performance measurements may

vary depending on the hardware on which it is executed but the general in�uence

of the di�erent parameters and their e�ect on the runtime should be the same. For

all three goals, the measurements of the metrics were done using an automated test

setup as described in chapter 7.7. This ensures that all the results are reproducible

and do not depend on the executing researcher.

8.7 Summary of the validation

With the GQM-method and the four used case studies, the conducted evaluation showed

that the new approach is able to accurately derive and combine policies from usage and

misusage diagrams and that, in most cases, the e�ort for the creation of policies can be

reduced. Accuracy was chosen as the most important goal, since the correct handling

of access policies is fundamental to each access system, and the evaluation concluded

that both parts, derivation and reduction, had a precision and recall of 100 %. The results

suggest a high accuracy of our approach. Additionally, the accuracy of detecting errors

showed that possible errors in the con�guration of the system done by the user can be

70

8.7 Summary of the validation

detected with the help of misusage diagrams. This validation of the context model impacts

the e�ort reduction since the e�ort of creating the misusage diagrams is added. The

evaluation of e�ort reduction concluded that even with the assumption of having only 1

policy per SEFF the new approach is able to reduce the e�ort in creating policies in regards

to using the context based access system. Additionally, it was analyzed which parameters

had an e�ect on the runtime and to what extent. This analysis can be helpful for future

works which use this thesis as a foundation.

71

9 Assumptions and Limitations

For this thesis we made some assumptions and limitations during the development of the

approach to make it feasible for the given time frame. In this chapter, these assumptions

and limitations are summarized and in the next chapter we describe how some of them

can be removed in future.

9.1 Assumptions

One of the assumptions made was that all the models used during the derivation and

reduction process are valid. This means the underlying Ecore models have been checked

for any violations, for example, in regards to multiplicities of elements, required �elds

or upper and lower bounds of elements. Additionally, we assume that the models are

"logically" correct. This means that, for example, in the ComposedComponent there is no

instance of itself which would lead to an endless depth of nested components, or that the

AssemblyContexts are not connected in a circular way with themselves and without system

interfaces. We added checks at possible problematic locations and tested accordingly, but

we cannot guarantee that all possible miscon�gurations were found [8].

For the evaluation we made the assumption that the e�ort for creating the PolicySpeci�-
cation on the SEFF level takes the same amount of time as the creation of the ContextSpeci-
�cation in the usage diagrams. This was due to the fact that both speci�cations contain

roughly the same number of elements to create. This was based on another assumption that

the developer creating the policies knows both the PCM models and the context models

equally well. These assumptions were made to be able to make an observation in regards

to the e�ort reduction properties of the approach without conducting an actual experiment.

Since multiple case studies were used which all indicate some e�ort reduction we feel

con�dent in our belief that this new approach can reduce the e�ort for creating policies.

However, a real experiment might need to be conducted to con�rm these assumptions.

Since access control per de�nition grants access to resources, we made the assumption

that SEFFs can be used as an abstraction for data elements. Additionally we restricted this

further in that each data element is only represented by one SEFF and vice versa. This

assumption also includes the expectation that the complete security description can be

done with the information of the SEFFs.

9.2 Limitations

One limitation of the current approach is that the policy speci�cations in the context model

are assigned to SEFFs instead of AssemblyContext. This leads to the fact that di�erent

73

9 Assumptions and Limitations

instances of the component cannot be di�erentiated and are treated as one in regards to

the security aspects. For the evaluation, this didn’t have an e�ect since, as a workaround,

multiple versions of a component can be created in the repository for each used instance.

For the use of our approach this might need to be kept in mind, since it could lead to

wrong con�gurations. A solution to this would be to change the context model, which is

outlined in section 10.4.

Another limitation is that the instance of the di�erent model types is currently limited

to one for each model type. This didn’t have an impact on the evaluation since the four

case studies already ful�lled this limitation. In a real life setting, this might not be the case.

The changes needed to adapt the software for multiple �les are described in section 10.2.

With the current implementation it is not possible to store the context derived from the

misusage diagrams. This means they are only created temporarily and removed after the

execution of the program. The reason for this is that the context model does not allow

the storage of negative contexts or policies. While it might be helpful to be able to store

these negative contexts, there are also some negative aspects connected to it. For example,

the evaluation of a policy miscon�guration might be moved from the design phase to the

runtime phase if con�icts are not resolved. If no con�icts are present there is currently no

need to store the negative information about context. In the end, this limitation is part of

the context model and cannot be resolved within this thesis.

The current approach only works well for systems where the security description is

available in the form of system usage. For example, the information forbids the use of a

certain function of a component, but the use of this component inside the system is not

clear. This is due to the fact that, in the derivation process, it is not possible to assign

context speci�cations to internal calls directly, only on system calls. However, since the

approach is backwards compatible to the normal context model, it is still possible to

manually create PolicySpeci�cations which will then be considered during the combination

process. Since it is not possible to save negative context speci�cation in the context model,

it only allows the addition of positive access policies. It is therefore not possible to, for

example, explicitly forbid access for one particular function, instead the complete chain of

functions is always a�ected.

Another limitation is that the role responsible for the creation of the usage diagrams

has to know the security aspects of the system. In this case, this role is the domain expert.

If the security expert of the system is a di�erent person than the domain expert, the

responsibility for the usage models is shared between two roles, which con�icts with the

idea of having separation of concerns between the roles.

During the evaluation, two limitations of the current software implementation were

also found. The �rst is the limit for maximum length of the chain of external calls. The

second, the number of interfaces of each component. We assume that both of these limits

are greater than the realistic values present in projects, therefore they should not be

problematic for the use of the software.

The design decision not to use a policy combining language but instead implement

the rules as classes working directly on the context model is also a limitation. With this

approach, if new policies should be added, as suggested in section 10.3, the code of the

software needs to be changed. With the use of a policy combining language the changes

can be made directly in the language by adding a new policy combining algorithm. The

74

9.2 Limitations

advantage of the chosen design is that no additional model in the form of the policy

combining language was needed, otherwise the speci�ed contexts would have to be

transformed from the context model into the language model after the derivation process,

and back after the combination process. With the current approach, both parts can be

done using only the context model. This also reduced the risk of possible complications

during the development process.

Another limitation is that the current rules do not include any heuristics or any form

of generalization. So for a rule to be applied to the context set, the exact criteria of its

de�nition have to be met. A possible way to extend this behaviour is illustrated in section

10.1.

With the approach it is also not possible to resolve possible errors found during the

combination process. In the case of an error, additional knowledge of the security expert

is needed since it could arise for two di�erent reasons: Either the con�guration of the

context is wrong and needs to be adapted, or if the assigned context for the usage scenario

seems to be valid, the reason is that it is not realisable with the current system assembly

and component composition.

75

10 Future Work

In future work, several topics can be further investigated. The use of heuristics might be

helpful in removing some of the limitations of the current approach, more implementation

of rule-sets might give a higher e�ort reduction and the extension to include multiple �les

and systems might increase the applicable use cases. These topics are brie�y described in

this chapter.

10.1 Adding Heuristics

Some of the approaches mentioned in chapter 4 use heuristics to merge and simplify

policies. An example for this is shown in �gure 10.1. The element in the example is

a�ected by all but one child context of a hierarchical context set (direction down). With

the current design decision to treat contexts which are not explicitly allowed as forbidden

contexts no combination is possible. Instead of this hard limitation, a di�erent approach

would be to have them as an uncertain state. Then a heuristic could be "if 75% of child

contexts are allowed, and no negative child contexts are present" the child contexts get

substituted for the parent context. This would extend the implementation of the rule

mentioned in section 6.2.4.

The problem with optimization based policy creation is that the simpli�ed policies might

over-�t the input data if it does not generalize well and therefore would not be robust [46].

To generate good heuristics a lot of test data is needed in order to have an accurate and

robust prediction model [36]. These were reasons why this feature was not included as

part of this master thesis.

10.2 Increase Scope of Approach

The current implementation only allows one �le for each model type like the repository

model or the context model. For the scope of this thesis this limitation had no impact

on the functionality. For a real usage in an environment with multiple developers this

might be di�erent. For example, di�erent developers could work on separate components

and describe the context model for the parts they are responsible for. To add this feature

the modelloader class needs to be extended to be able to handle multiple �les per model

type and in the algorithms, another loop iterating the models needs to be added. A more

di�culty aspect to handle is how possible changes to the models need to be saved, for

example to which �le new created policies should be added.

Another aspect is the system boundaries. Currently, the created approach works on

one system and the usage models begin on the interface level of the system. A future

77

10 Future Work

?

(a) Initial applied contexts

(b) After applying rule using heuristics

Figure 10.1: Simplifying hierarchical context set with heuristics

work could increase this scope to allow multiple systems. Here, the chain started at

one EntryLevelSystemCall might not only a�ect components inside the system but also

components in di�erent systems. Additionally, the validation done with the misusage

diagrams could be extended to multiple systems. For example, multiple systems might have

no access violations in the context model con�guration on their own, but the interaction

between di�erent systems could lead to possible access violations.

10.3 Addingmore Rule Implementations

The iterative process used during development meant rules were created in succession

after the previous rule was added to the policyreducer and tested. For some of the rules

which were created in the design step of the thesis the time frame didn’t allow for them

to be implemented and tested in a su�cient manner. These rules can be implemented in

future to add more functionality to the plugin.

Figure 10.2 shows an example in which the parent element of a hierarchical context

(direction down) is part of a context set as well as a negative child element. Currently, this

con�guration would result in an error as described in 6.2.7, since the child element should

not have access, but inherits it from the parent node. One possible way to resolve this

situation is seen in b). The parent node is removed from the context set, and instead all the

child elements are added to it. Therefore these child elements would not inherit the access

policy indirectly, but would have explicit allowed access. For the negative child element

no access policy is created. The side e�ect would be that policies with context sets only

referencing the parent context would not be allowed anymore. But for an access control

system where only the policy de�nition contains the parent context and where the actual

instances will contain only the leaf nodes, this rule would work without this side e�ect.

This rule would, therefore, depend on the actual implementation of the access control

system using the context based approach. Additionally, other researchers might come up

78

10.4 Move from SEFFs to Instances

(a) Initial applied contexts

(b) After applying new rule

Figure 10.2: Possible rule for positive parent context with negative child context

with ideas for new rules and more possible use cases in the future. With the current design

of the PolicyReducer, new rules can be easily added to the current algorithm.

10.4 Move from SEFFs to Instances

With the current approach, the policies which are derived from the usage model are being

applied to the SEFFs of components in the repository model. The problem with this is that if

a component is instantiated multiple times at di�erent places in the assembly model, all of

the policies a�ecting these AssemblyContexts will be mapped to the same BasicComponent
in the repository model. Therefore, no di�erentiation between the instances is possible

anymore in the context model. This can lead to errors for miscon�guration being thrown

even though the usage diagram and the misusage diagram would a�ect di�erent Assembly-
Contexts and therefore would not cause an error. On the other hand, possible combinations

of policies on one SEFFs might lead to the accidental allowance of unwanted contexts since

the combined context sets actually a�ect di�erent elements. For the evaluation of this

thesis this was not a problem since it was possible to create duplicated components in the

repository model if it was needed. For a real use of this approach this workaround cannot

be used since duplicated code is one of the major indicators of poor maintainability of

software [35].

79

10 Future Work

MethodSpecification

-signature: Signature
-connector: Connector

SystemPolicySpecification

-assemblyContext: AssemblyContext
-resourceContainer: ResouceContainer
-methodspecification: MethodSpecification
-contextset: ContextSet

Figure 10.3: Possible context model change

Figure 10.3 shows the changes made in the context model for it to handle this feature.

Instead of the PolicySpeci�cation being applied to a SEFF in has a AssemblyContext as a

reference and the a�ected method. This functionality was not implemented in this thesis

since the realization of this problem came during the later stage of the development. A

change in one of the basic functionalities could have had possible major impacts which

might have not been feasible to �x in the given time frame. To implement this in future

work the algorithm �nding the a�ected data elements needs to be adapted from SEFF to

the AssemblyContext and the according signature and interface.

80

11 Conclusion

In this thesis we introduced an approach for the automatic generation of policies on the

data element level by deriving context speci�cations from the usage description of the

system. This approach combines the idea of generating policies from existing artifacts

with the context based access control which is a model driven security approach. The goal

was to analyze if this approach can lead to an e�ort reduction in the creation of access

policies while simultaneously deriving a correct model without violating the fundamentals

of access control systems.

In the main part we described the two parts of the approach. The deriving of policies

from usage and misusage diagrams depends on the PCM models. The calls to the system’s

interfaces are the entry point from which all a�ected data elements have to be found. For

our approach, these data elements are SEFFs. The second functionality is the application of

de�ned rules on the resulting context model. Here, the di�erent rules are introduced and

the concepts behind them are explained. For both parts, the implementations is brie�y

explained with the help of pseudo code.

In the evaluation we used four case studies to analyze the three goals we de�ned for our

approach. We showed that the derivation of the policies, as well as the reduction and the

combination of them can be achieved with great accuracy. The case studies also indicate

that with the new approach an e�ort reduction can be achieved. The measurement of

this metric was done with some assumptions and an experiment might need to be done

in further work to con�rm the assumed e�ort reduction. Additionally, a performance

analysis was carried out to see the impact of di�erent model parameters on the runtime.

Since the two parts of the approach, the derivation of policies from usage and misusage

diagrams, and the combination of context sets according to the de�ned rule set, have been

implemented as separate stand-alone plugins with clear interfaces we are con�dent that

they can be used in future work.

In summary, we introduced an approach which allows the automatic generation of

access policies based on the context information assigned to usage diagrams. Additionally,

the approach can detect possible security �aws in the development of secure systems

during the design phase by using the information modelled in the misusage diagrams.

81

Bibliography

[1] M. M. Alam, R. Breu, and M. Breu. “Model driven security for Web services (MDS4WS)”.

In: 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004. 2004,

pp. 498–505. doi: 10.1109/INMIC.2004.1492930.

[2] V. R. Basili and D. M. Weiss. “A Methodology for Collecting Valid Software Engineer-

ing Data”. In: IEEE Transactions on Software Engineering SE-10.6 (1984), pp. 728–738.

doi: 10.1109/TSE.1984.5010301.

[3] Ste�en Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio component model

for model-driven performance prediction”. In: Journal of Systems and Software 82.1

(2009). Special Issue: Software Performance - Modeling and Analysis, pp. 3–22.

issn: 0164-1212. doi: https : / / doi . org / 10 . 1016 / j . jss . 2008 . 03 . 066. url:

http://www.sciencedirect.com/science/article/pii/S0164121208001015.

[4] Matthias Beckerle and Leonardo Martucci. “Formal de�nitions for usable access

control rule sets from goals to metrics”. In: (July 2013). doi: 10.1145/2501604.

2501606.

[5] Nicolas Boltz, Maximilian Walter, and Robert Heinrich. “Context-Based Con�den-

tiality Analysis for Industrial IoT”. In: 2020 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). accepted, to appear. IEEE, 2020.

[6] Hugh Boyes et al. “The industrial internet of things (IIoT): An analysis framework”.

In: Computers in Industry 101 (Oct. 2018), pp. 1–12. doi: 10.1016/j.compind.2018.

04.015.

[7] F. Buschmann et al. Pattern-Oriented Software Architecture, A System of Patterns.
EBL-Schweitzer. Wiley, 1996. isbn: 9780471958697. url: https://books.google.

de/books?id=gJjgAAAAMAAJ.

[8] J.N. Buxton, B. Randell, and NATO Science Committee. Software Engineering Tech-
niques: Report on a Conference Sponsored by the NATO Science Committee, Rome, Italy,
27th to 31st October 1969. NATO Science Committee, 1970. url: https://books.

google.de/books?id=O7kmAAAAMAAJ.

[9] Y. Cherdantseva and J. Hilton. “A Reference Model of Information Assurance Secu-

rity”. In: 2013 International Conference on Availability, Reliability and Security. 2013,

pp. 546–555. doi: 10.1109/ARES.2013.72.

[10] C. Cotrini, T. Weghorn, and D. Basin. “Mining ABAC Rules from Sparse Logs”. In:

2018 IEEE European Symposium on Security and Privacy (EuroS P). 2018, pp. 31–46.

[11] “Daten�uss-basierte Modellierung und Analyse von Privatheit und Vertraulichkeit

in Industrie 4.0-Systemen”. In: Schlussbericht des Verbundprojekts Trust 4.0. to be

released.

83

https://doi.org/10.1109/INMIC.2004.1492930
https://doi.org/10.1109/TSE.1984.5010301
https://doi.org/https://doi.org/10.1016/j.jss.2008.03.066
http://www.sciencedirect.com/science/article/pii/S0164121208001015
https://doi.org/10.1145/2501604.2501606
https://doi.org/10.1145/2501604.2501606
https://doi.org/10.1016/j.compind.2018.04.015
https://doi.org/10.1016/j.compind.2018.04.015
https://books.google.de/books?id=gJjgAAAAMAAJ
https://books.google.de/books?id=gJjgAAAAMAAJ
https://books.google.de/books?id=O7kmAAAAMAAJ
https://books.google.de/books?id=O7kmAAAAMAAJ
https://doi.org/10.1109/ARES.2013.72

Bibliography

[12] P.M. Duvall et al. Continuous Integration: Improving Software Quality and Reducing
Risk. A Martin Fowler signature book. Addison-Wesley, 2007. isbn: 9780321336385.

url: https://books.google.de/books?id=MA8QmAEACAAJ.

[13] Federal Ministry for Economic A�airs and Energy (BMWi). “IT Security in Industrie

4.0 - Action �elds for operators”. In: (2016). url: https://www.plattform-i40.

de/PI40/Redaktion/EN/Downloads/Publikation/guideline-it-security-i40-

action-fields.html.

[14] National Cybersecurity Center of Excellence. Attribute Based Access Control. https:
//www.nccoe.nist.gov/projects/building-blocks/attribute-based-access-

control. 2017.

[15] Eduardo Fernández and J. Hawkins. “Determining Role Rights from Use Cases”. In:

Jan. 1997, pp. 121–125. doi: 10.1145/266741.266767.

[16] David F. Ferraiolo and D. Richard Kuhn. Role-Based Access Controls. 2009. arXiv:

0903.2171 [cs.CR].

[17] Nurit Gal-Oz and Eduardo Fernández. “A Model of Methods Access Authorization

in Object-oriented Databases.” In: Jan. 1993, pp. 52–61.

[18] Safaa Hachana, Nora CUPPENS-BOULAHIA, and Frédéric Cuppens. “Role Mining

to Assist Authorization Governance: How Far Have We Gone?” In: (Oct. 2012).

[19] Vincent Hu et al. “Guide to attribute based access control (ABAC) de�nition and

considerations”. In: National Institute of Standards and Technology Special Publication
(Jan. 2014), pp. 162–800.

[20] P. Jain, S. Dubey, and A. Rana. “Analysis and Performance Evaluation of Software

System Usability”. In: International Journal of Computer Applications 43 (2012),

pp. 24–29.

[21] Jan Jürjens. “UMLsec: Extending UML for secure systems development”. In: vol. 2460.

Jan. 2002, pp. 412–425. isbn: 978-3-540-44254-7. doi: 10.1007/3-540-45800-X_32.

[22] Jan Jürjens. “Using UMLsec and Goal Trees for Secure Systems Development”. In:

Proceedings of the 2002 ACM Symposium on Applied Computing. SAC ’02. Madrid,

Spain: Association for Computing Machinery, 2002, pp. 1026–1030. isbn: 1581134452.

doi: 10.1145/508791.508990. url: https://doi.org/10.1145/508791.508990.

[23] K. Katkalov et al. “Model-Driven Development of Information Flow-Secure Systems

with IFlow”. In: 2013 International Conference on Social Computing. 2013, pp. 51–56.

doi: 10.1109/SocialCom.2013.14.

[24] Kuzman Katkalov. “Ein modellgetriebener Ansatz zur Entwicklung informations-

�usssicherer Systeme”. PhD thesis. University of Augsburg, Germany, 2017. url:

http://opus.bibliothek.uni- augsburg.de/opus4/frontdoor/index/index/

docId/4339.

[25] Butler Lampson. “Protection”. In: ACM SIGOPS Operating Systems Review 8 (Jan.

1974), pp. 18–24. doi: 10.1145/775265.775268.

84

https://books.google.de/books?id=MA8QmAEACAAJ
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/guideline-it-security-i40-action-fields.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/guideline-it-security-i40-action-fields.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/guideline-it-security-i40-action-fields.html
https://www.nccoe.nist.gov/projects/building-blocks/attribute-based-access-control
https://www.nccoe.nist.gov/projects/building-blocks/attribute-based-access-control
https://www.nccoe.nist.gov/projects/building-blocks/attribute-based-access-control
https://doi.org/10.1145/266741.266767
https://arxiv.org/abs/0903.2171
https://doi.org/10.1007/3-540-45800-X_32
https://doi.org/10.1145/508791.508990
https://doi.org/10.1145/508791.508990
https://doi.org/10.1109/SocialCom.2013.14
http://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/4339
http://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/4339
https://doi.org/10.1145/775265.775268

[26] Leonard Lapadula and D. Bell. “Secure Computer Systems: A Mathematical Model”.

In: 4 (Jan. 1997).

[27] Ninghui Li et al. “Access control policy combining: Theory meets practice”. In: Jan.

2009, pp. 135–144. doi: 10.1145/1542207.1542229.

[28] Thomas Lieb. org.palladiosimulator.pcm.con�dentiality.context.policyextractor. https:
//github.com/Trust40- Project/Palladio- Addons- ContextConfidentiality-

BehaviorPolicyExtractor. 2020.

[29] Torsten Lodderstedt, David Basin, and Jürgen Doser. “SecureUML: A UML-based

modeling language for model-driven security”. In: vol. 2460. Jan. 2002, pp. 426–441.

isbn: 978-3-540-44254-7. doi: 10.1007/3-540-45800-X_33.

[30] Robert Martin. “Agile Software Development: Principles, Patterns, and Practices”.

In: (Jan. 2003).

[31] Charles E. Metz. “CE: Basic principles of ROC analysis”. In: Seminars in Nuclear
Medicine. 1978, pp. 8–283.

[32] Barsha Mitra et al. “A Survey of Role Mining”. In: ACM Comput. Surv. 48.4 (Feb. 2016).

issn: 0360-0300. doi: 10.1145/2871148. url: https://doi.org/10.1145/2871148.

[33] Gustaf Neumann and Mark Strembeck. “A Scenario-Driven Role Engineering Process

for Functional RBAC Roles”. In: Proceedings of the Seventh ACM Symposium on
Access Control Models and Technologies. SACMAT ’02. Monterey, California, USA:

Association for Computing Machinery, 2002, pp. 33–42. isbn: 1581134967. doi:

10.1145/507711.507717. url: https://doi.org/10.1145/507711.507717.

[34] Phu H. Nguyen et al. An Extensive Systematic Review on Model-Driven Development
of Secure Systems. 2015. arXiv: 1505.06557 [cs.SE].

[35] Refactoring: Improving the Design of Existing Code. USA: Addison-Wesley Longman

Publishing Co., Inc., 1999. isbn: 0201485672.

[36] Marco Túlio Ribeiro et al. “Beyond Accuracy: Behavioral Testing of NLP models

with CheckList”. In: ACL. 2020.

[37] Vasja Roblek, Maja Meško, and Alojz Krapež. “A complexity view of Industry 4.0”.

In: SAGE Open 6 (June 2016). doi: 10.1177/2158244016653987.

[38] Per Runeson and Martin Höst. “Guidelines for conducting and reporting case study

research in software engineering”. In: Empirical Software Engineering 14.2 (2009),

pp. 131–164. url: http://dx.doi.org/10.1007/s10664-008-9102-8.

[39] Stephan Seifermann. “Architectural Data Flow Analysis”. In: Apr. 2016, pp. 270–271.

doi: 10.1109/WICSA.2016.49.

[40] Stephan Seifermann, Robert Heinrich, and Ralf Reussner. “Data-driven software

architecture for analyzing con�dentiality”. In: 2019 IEEE International Conference on
Software Architecture (ICSA 2019), Hamburg, 25.-29. März 2019. IEEE International

Conference on Software Architecture. ICSA 2019 (Hamburg, Deutschland, Mar. 25–

29, 2019). IEEE, New York, NY, 2019, Art. Nr.: 8703910. isbn: 978-1-72810-528-4. doi:

10.1109/ICSA.2019.00009.

85

https://doi.org/10.1145/1542207.1542229
https://github.com/Trust40-Project/Palladio-Addons-ContextConfidentiality-BehaviorPolicyExtractor
https://github.com/Trust40-Project/Palladio-Addons-ContextConfidentiality-BehaviorPolicyExtractor
https://github.com/Trust40-Project/Palladio-Addons-ContextConfidentiality-BehaviorPolicyExtractor
https://doi.org/10.1007/3-540-45800-X_33
https://doi.org/10.1145/2871148
https://doi.org/10.1145/2871148
https://doi.org/10.1145/507711.507717
https://doi.org/10.1145/507711.507717
https://arxiv.org/abs/1505.06557
https://doi.org/10.1177/2158244016653987
http://dx.doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1109/WICSA.2016.49
https://doi.org/10.1109/ICSA.2019.00009

Bibliography

[41] Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven Software
Development: Technology, Engineering, Management. Hoboken, NJ, USA: John Wiley

& Sons, Inc., 2006. isbn: 0470025700.

[42] K. Tuma, R. Scandariato, and M. Balliu. “Flaws in Flows: Unveiling Design Flaws

via Information Flow Analysis”. In: 2019 IEEE International Conference on Software
Architecture (ICSA). 2019, pp. 191–200. doi: 10.1109/ICSA.2019.00028.

[43] Katja Tuma et al. “Automating the Early Detection of Security Design Flaws”.

In: Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems. MODELS ’20. Virtual Event, Canada: Asso-

ciation for Computing Machinery, 2020, pp. 332–342. isbn: 9781450370196. doi:

10.1145/3365438.3410954. url: https://doi.org/10.1145/3365438.3410954.

[44] D. Verma et al. “Generative policy model for autonomic management”. In: Aug. 2017,

pp. 1–6. doi: 10.1109/UIC-ATC.2017.8397410.

[45] Darshika Verma et al. “On the Impact of Generative Policies on Security Metrics”.

In: June 2019, pp. 104–109. doi: 10.1109/SMARTCOMP.2019.00037.

[46] Zhongyuan Xu and Scott D. Stoller. “Mining Attribute-Based Access Control Policies

from Logs”. In: Data and Applications Security and Privacy XXVIII. Ed. by Vijay Atluri

and Günther Pernul. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 276–

291. isbn: 978-3-662-43936-4.

86

https://doi.org/10.1109/ICSA.2019.00028
https://doi.org/10.1145/3365438.3410954
https://doi.org/10.1145/3365438.3410954
https://doi.org/10.1109/UIC-ATC.2017.8397410
https://doi.org/10.1109/SMARTCOMP.2019.00037

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Contribution of the Thesis
	Outline of the Thesis

	Running Example
	Foundation
	Model-Driven Software Development
	Palladio Component Model
	Roles
	Models
	Quality attributes

	Data-Driven Software Architecture
	Model-Driven Security
	Access Control Strategies
	Mandatory access control
	Discretionary access control
	Role Based Access Control
	Attribute Based Access Control

	Context Meta Model

	Related work
	Automatic Policy Generation
	Model Driven Development of Secure Systems
	Security by Design

	Deriving Policies
	Concept
	Usage Model Context Set
	Finding affected Service Effect Specifications
	Creating policies

	Combining Policies
	Rules Combining Concept
	Rule Definitions
	Same Context Set
	Simpler Context Set
	Parent Child Relation
	Substituting Parent
	Negative Rule affecting same context set
	Negative Rule for simpler context set
	Negative Rule affecting hierarchical contexts
	Merging Policies affecting the same SEFF
	Removing temporary negative context sets

	Order of Rules

	Implementation
	Architecture
	Common Functionalities
	Deriving Policies
	Calculate context set to apply
	Applying Rules
	Executing the program
	Test Setup

	Evaluation
	QGM Plan
	Case studies
	ContactSMSManager
	Distance Tracker
	Travelplanner
	Energy Scenario

	Accuracy
	Effort reduction
	Scalability
	Threats to Validity
	Summary of the validation

	Assumptions and Limitations
	Assumptions
	Limitations

	Future Work
	Adding Heuristics
	Increase Scope of Approach
	Adding more Rule Implementations
	Move from SEFFs to Instances

	Conclusion
	Bibliography

