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CHAPTER 1

INTRODUCTION

1.1 RANDOM MOSAICS

Random mosaics in R? form a class of mathematical objects that have been under intensive
investigation in stochastic geometry during the last decades. By a mosaic or tessellation
of R? one understands a system of convex polytopes which cover the whole space and have
non intersecting interior. In addition to intrinsic mathematical curiosity, a major reason for
continuing interest in random tessellations is that they provide highly relevant models for
practical applications, for example, in telecommunication or materials science [34, 84} [85]94].
One of the principal random tessellation models in Fuclidean space is induced by a Poisson
process of hyperplanes. Other famous models are the Voronoi tessellation, Delaunay tessellation
and STIT tessellation.

We emphasize that the present work contributes to a recent and active line of current
mathematical research in stochastic geometry on models in non-Euclidean spaces. The
dissertation [111] deals with aspects of convex geometry in spherical spaces. Further concrete
examples we mention the studies about spherical convex hulls and convex hulls on half-spheres
in [5, 50, 68] and convex cones in [23]. Central limit theorems for the volume of random
convex hulls in spherical space, hyperbolic spaces and Minkowski geometries were obtained
in [8], asymptotic normality of very general so-called stabilizing functionals of Poisson point
processes on manifolds was considered in [90]. Again more specifically, the papers [9} 31} (79, 87]
study various aspects of random geometric graphs in hyperbolic spaces, including central limit
theorems for a number of parameters. The paper [114] deals with visibility in the hyperbolic
plane and [116] treats the Busemann-Petty problem in spaces of constant curvature. Random

tessellations of the unit sphere by great hyperspheres are the content of [2] [42] 46| [75], while
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so-called random splitting tessellations in spherical spaces were introduced and investigated in
[26} [47]. The paper [17] is concerned with properties of the Poisson-Voronoi tessellation on
general Riemannian manifolds. Finally, the geometry of random fields on the sphere is studied
in the monograph [70] and invariant random fields on spaces with a group action are described
in [69]. In a similar vein, it is pointed out in [66] that a systematic study of the invariance
properties of probability distributions under a general group action is missing. The book [66]
therefore explores Markov processes whose distributions are invariant under the action of a
Lie group. It should be pointed out that studying models in non-Euclidean spaces leads to a
deeper understanding of the interplay of probability theory and geometry. So one will see that
in some cases the results of analogue problems in hyperbolic space turn out to be quite similar,

whereas in other cases the outcome is strikingly different.

1.2 OVERVIEW

This dissertation is structured as follows. In Chapter [1| we introduce the main topics which are
dealt with in Chapter and 5l We further sketch the construction of the different mosaics
in hyperbolic or Euclidean space. In a next step we do a first comparison of the outcomes in
different geometries. Chapter|1|also contains some of the results developed in the main chapters
as well as a short mentioning of the background theory needed to develop these results.
Chapter [2| will provide concepts and definitions from different fields of mathematics needed
in this work. We will start with a section containing some basic notations from probability
theory. In Section we introduce hyperbolic space as the d-dimensional complete, simply
connected Riemannian space of constant curvature —1. This introduction involves a short
part containing the history of hyperbolic space as well as a presentation of several of the most
important models of hyperbolic space. Section introduces some concepts from (Euclidean)
stochastic geometry and also the analogues in hyperbolic space needed in this work. Since
we are aiming to subdivide H?, we introduce in a next section the space of k-planes in H¢,
namely the space of totally geodesic k-dimensional subspaces. We also introduce an invariant
measure j, on this space. Here invariance refers to the action of isometries T(H?) of H?. We
investigate this measure and state some properties known from the literature. The following
sections are dedicated to introduce concepts which are exclusively needed in one of the main
Chapters and [5] We start in Section [2.5| with the concepts needed for Chapter [3| This
part of the work is based on the theory of U-statistics as well as literature about normal
approximation bounds for U-statistics. As mentioned in the beginning of this work, the content
of Section is already uploaded as a preprint on arXiv [41] and submitted to a journal. The
subsequent section contains an introduction and an intuitive definition of splitting tessellations
of hyperbolic space, whereas the last section of Chapter [2| deals with some basic definitions
and results needed in Chapter [5, which deals with Kendall’s problem in hyperbolic space.
Chapter 3| contains the results and proofs concerning the investigation of the k-skeleton of
a Poisson hyperplane tessellation in hyperbolic space. As mentioned, this chapter exists as

a preprint on arXiv [41] and is submitted to a journal. Its joint work with Daniel Hug and
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Christoph Théle which was initiated during my one month stay in Bochum. The main question
in Chapter |3|is whether a central limit theorem holds for the k-dimensional Hausdorff measure
of the k-skeleton of the Poisson hyperplane tessellation. Here we investigate two scenarios. In
the first we increase the intensity of the underlying Poisson hyperplane tessellation. In the
second we keep the intensity fixed and increase the observation window. Besides the concern,
whether or not a central limit theorem holds, other objects are investigated. More or less on
the way to the central limit theorem we get explicit results of the expected Hausdorff measure
of the k-skeleton k =0,...,d—1 and an integral representation of the variance of this functional.
Also the limit behaviour of the variance is of interest. Besides this we state the covariance
structure of the vector containing all d values of the k-skeleton, k =0,...,d—1. Further insights
concerning the interplay of these functionals are given by investigating the K- and the pair
correlation-function.

Chapter [4] deals with the introduction and investigation of hyperbolic splitting tessellations.
This model is a hyperbolic version of the so-called STIT-tessellation in the Euclidean space.
We start with the definition of this process. Moreover, results concerning the capacity function
are derived. This allows us to prove the existence of a splitting tessellation on the whole space
H? as well as first moments of the total k-dimensional Hausdorff measure of the k-skeleton.
Also second moments and their limit behaviour are studied in this chapter. In the last part we
turn to show that the introduced splitting tessellations are mixing. A possible application of
these results is showing central limit theorems of functionals based on this process.

In Chapter |5/ the so-called Kendall problem is explored in hyperbolic space. It asks for the
shape of a cell, given that it is in some sense big. We start with some basic results showing the
challenges in hyperbolic space concerning this problem. Later the problem is considered for
the zero cell, i.e. the almost surely uniquely determined cell containing the origin of a Poisson
hyperplane tessellation. Moreover, we consider the typical cell of the same process. In a last

step the typical cell of a Poisson-Voronoi tessellation in hyperbolic space is studied.

1.3 HYPERPLANE TESSELLATIONS

In R? with d > 2 and in the stationary and isotropic case, the construction of a Poisson
hyperplane tessellation can be described as follows. Fix a parameter ¢t > 0 and consider a
stationary Poisson point process on the real line with intensity ¢. To each point p; of the
Poisson process we attach independently of each other and independently of the underlying
Poisson process a random vector u; which is uniformly distributed on the unit sphere S of
R?. Then to each pair (p;, u;) € RxS? ! we associate the hyperplane H; := {x e R?: (x, u;) = p;}
and call the random collection of all such hyperplanes a (stationary and isotropic) Poisson
hyperplane process in R? with intensity ¢. The random hyperplanes H; almost surely divide the
space R? into countably many random convex polytopes. The collection of all these polytopes
is a (stationary and isotropic) Poisson hyperplane tessellation in R? with intensity t. We
remark that the intensity parameter ¢, roughly speaking, controls the expected surface content

of the Poisson hyperplane tessellation per unit volume. More precisely, t = EH?1(Z n[0,1]%),
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where Z = U7 H; is the random union set induced by the Poisson hyperplane process and
H4L stands for the (d - 1)-dimensional Hausdorff measure.

For Poisson hyperplane tessellations many first- and second-order quantities are explicitly
available for a broad class of functionals and also a comprehensive central limit theory has been
developed over the last 15 years, cf. [37, (39, 65, 96] and [103, Chapter 10] as well as the many
references cited therein. In the literature, central limit theorems for functionals of Poisson
hyperplanes have been considered in two different set-ups. In a first setting the tessellation
is restricted to a fixed (usually convex) observation window and the asymptotic behaviour is
explored when the intensity ¢ of the underlying Poisson process is increased. Alternatively,
the intensity is kept fixed, while the size of the observation window is increased. By a simple
scaling relation both set-ups are equivalent when homogeneous functionals (such as intrinsic
volumes, positive powers of intrinsic volumes or integrals with respect to support measures) of
the tessellation are considered, see [65, Corollary 6.2]. While the spherical analogues of Poisson
hyperplane tessellations, namely Poisson great hypersphere tessellations, were investigated, for
example, in [2, 47, 42, 46, 44, [75], only few results seem to be available for such tessellations in
standard spaces of constant negative curvature, see [49, 91} 100, [114]. The spherical space of
constant positive curvature especially features by its compactness, which in turn implies that
Poisson great hypersphere tessellations almost surely consist of only finitely many spherical
random polytopes. In contrast, Poisson hyperplane tessellations in a standard space of constant
negative curvature display a number of striking new phenomena that cannot be observed in
their Euclidean or spherical counterparts. It is the purpose of the present work to uncover
some of the anticipated and remarkable new phenomena. We confine ourselves to the study
of the total volume (in the appropriate dimension) of the intersection processes induced by
Poisson hyperplanes in a (hyperbolic convex) test set. We explicitly identify the expectation
and the covariance structure of these functionals by making recourse to general formulas for
and structural properties of Poisson U-statistics and to Crofton-type formulas from hyperbolic
integral geometry. In addition and more importantly, we study probabilistic limit theorems
for these functionals in the two asymptotic regimes described above for the Euclidean set-up.
While the central limit theorems for growing intensity and fixed observation window are a direct
consequence of general central limit theorems for Poisson U-statistics [65} [96] (108, [109], it will
turn out that the limit theory in the other regime, that is, when the intensity is kept fixed and
the size of the observation window is increased, is fundamentally different. We will prove that
here a central limit theorem in fact holds in space dimensions d = 2 and d = 3. On the other
hand, we will show that a central limit theorem fails for all space dimensions d > 4 if the total
(d—1)-volume of the union of all hyperplanes is considered. For the total volume of intersection
processes of arbitrary order this will be proved for technical reasons only for dimensions d > 7.
We emphasize that this remarkable and surprising new feature is a consequence of the negative
curvature of the underlying space and has no counterpart in the Euclidean or spherical set-up.
Another interesting and unexpected feature is observed in this regime for the asymptotic
covariance matrix of the vector of k-volumes of the k-skeletons, k=0,...,d — 1. This matrix

turns out to have full rank for d = 2, but it has rank one in dimension d > 3. In addition,
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we will study the situation in which the intensity and the size of the observation window are
increased simultaneously. In this case it will turn out that in all situations where the central
limit theorem fails for fixed intensity, the Gaussian fluctuations are in fact preserved as soon
as the intensity tends to infinity, independently of the behaviour of the size of the observation
window (as long as it is bounded from below). As anticipated above, the proofs of our results
concerning first- and second-order properties of the total volume of intersection processes rely
on general formulas for U-statistics of Poisson point processes as presented in [64] and on
tools from hyperbolic integral geometry as developed in [15, (32} 101} [110]. The central limit
theorems we consider will be of quantitative nature, that is, we will provide explicit bounds on
the quality (speed) of normal approximation measured in terms of both the Wasserstein and
the Kolmogorov distance. Their proofs are based on general normal approximation bounds
that have been derived in [27, 96} [109] using the Malliavin-Stein technique on Poisson spaces
(see collection [88] for a representative overview concerning this method). This directly implies
the central limit theorem for fixed windows and growing intensities. On the other hand, for
fixed intensity and when the window is a hyperbolic ball B, of radius r around a fixed point in

H¢, crucial building blocks of these bounds are Crofton-type integrals of the form
H¥(H n B,)! w(dH),
J A A CRESITACT)

where Ap(d, k) denotes the space of k-dimensional totally geodesic subspaces of HY and gy, is
the suitably normalized invariant measure on Ay (d, k) (all terms will be explained in detail
in Section . While in the Euclidean case the asymptotic behaviour of such integrals, as
r — oo, is quite straightforward, this is not the case in the hyperbolic set-up. In contrast to
the Euclidean case, it will turn out that their behaviour crucially depends on whether I(k — 1)
is less than, greater than or equal to d — 1 (see Lemma . In essence, the latter is an effect
of the negative curvature, which in turn causes an exponential growth of volume of linearly
expanding balls in H¢. To show that a central limit theorem fails in higher space dimensions is
arguably the most technical part of this work. We do this by showing that the fourth cumulant
of the centred and normalized total volume of the intersection processes does not converge to
0, which in turn is the fourth cumulant of a standard Gaussian distribution. However, to bring
this in contradiction with a central limit theorem we need to argue that the fourth power of
the total volume is uniformly integrable, which in turn will be established by consideration
of their fifths moments. This requires a fine analysis of combinatorial moment formulas for
U-statistics of Poisson processes. In essence and in contrast to the lower dimensional cases
d =2 and d = 3, the failure of the central limit theorem for space dimensions d > 4 is due to
the fact that in these dimensions the contribution of single hyperplanes is asymptotically not

negligible anymore.
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1.4 SPLITTING TESSELLATIONS

Splitting tessellations are introduced in [81] and are more commonly known as STIT-tessellations
in the Euclidean space. In contrast to most other famous models, their cells are not face to face.
This fact makes them a useful model in many applications such as investigating earthquake
distributions [51] or the indoor propagation of 5G waves [83]. Other possible applications are
presented in [80]. Besides their use in applied science, splitting tessellation are challenging and
fruitful models in a mathematical point of view. Their connection with other famous models
such as hyperplane tessellations makes them a highly observed topic in the last decade. It
turned out that introducing a splitting tessellation as a continuous time pure jump Markov
process is an elegant way to deduce a great number of results. We will follow this approach in
our work.

As in the Euclidean and spherical set up, the splitting tessellation Y; = Y;(W) for ¢ > 0 inside
a fixed compact and convex window W at time t can also be constructed recursively. This
introductions helps to develop an intuition for the process. Most of the time we choose the
observation window W to be a geodesic ball of radius 7 > 0 and centre p € H?. At a starting time
zero the tessellation consists of a single cell, namely the convex set W. After an exponential
waiting time with parameter pg-1(Hy-1(W)) a uniform random (d — 1)-dimensional totally
geodesic subspace (hyperbolic hyperplane) divides W into two cells, where pg-1 (Hg-1(W)) is
the measure of the set of hyperplanes hitting W (for more details on this measure see Section
. The splitting process continuous independently in both cells, whereas the waiting times
depend on the measure of all hyperplanes having nonempty intersection with the respective

cell. The construction of Y; is more formally described by:

1 Initiation:
At time zero we set Yp := {WW}, 79 = 0 and take a counter n = n(t), describing the number

of cells, to be equal to one.

2 Recursion:
Assume that the counter is n > 1 and the corresponding random waiting time 7,-1 as
well as the random tessellation Y, , have been realized. Generate the random time 7,
such that 7,, — 7,-1 has the same distribution as an exponential random variable with

parameter ey,  fta-1(Ha-1(c)).
If 7, < t, we

— pick a cell ¢, €Y,, |, at random, were each cell ce Y, | is picked with probability

n-1

proportional to pg_1(Hg-1(c)),
— choose a uniform randomly generated c¢,-hyperplane H,,,

— set Yy, = @(cn, Hy, Y, ,), which means keeping all cells except of ¢, and replace it
with the two cells ¢, n H,} and ¢, n H,, (see Definition 2.6.2)),

— increase the counter n by one and repeat the recursion step.

If 7, > t give out the random tessellation Y, .
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As mentioned above, a similar model is known in the Euclidean space. It is studied intensively
in various works such as [82, 74, 106, [107]. The Euclidean counterpart is known as a so-called
STIT-tessellation, since it is stable under iterations. In [26] the model is introduced in the
spherical setting for dimension 2. First effects resulting from the different curvature are
described in this work. More recently Hug and Théle [47] extended this research on spherical
spaces of arbitrary dimensions. Besides isotropic splitting tessellations also the more general
case of arbitrary direction distribution is treated therein. To the best of my knowledge the
present work is the first that investigates a similar model in hyperbolic space. On one hand,
lacking the vanishing curvature of the Euclidean space, it somehow behaves as the spherical
model. On the other hand, the fact that hyperbolic space is, in contrast to spherical space,

unbounded leads to more closeness to the results in Euclidean space.

We start in Chapter [4| with giving an alternative, less algorithmic definition of the model.
To do so we define the process as a continuous time pure jump Markov process. This gives us
the chance to derive martingale properties for a broad class of functionals depending on the
process. In a next step the capacity functional is defined and considered in detail. It is used
in order to show the existence of a splitting tessellation on the whole space H? and not just
inside a fixed observation window. Restricting ourselves again onto a fixed window, we derive
several expected values of functionals depending on the splitting process. Such functionals
are for example the expected k-dimensional Hausdorff measure of the k-skeleton and the
expected volume of the typical- (in dimension 2) and Crofton cell (in arbitrary dimensions).
It turns out that the expected k-dimensional Hausdorff measure coincides with the ones in
the Euclidean and spherical space, whereas the expected volume of the typical and Crofton
cell show fundamentally different behaviour. Further restricting the observation window to
take the shape of a ball gives us the opportunity to treat second moments. We calculate the
variance of the total surface area of the (d - 1)-skeleton. The limit behaviour of the variance is
considered for growing time ¢ and also for growing radius of the spherical intersection window
W. The behaviour is compared with the results for Poisson hyperplane tessellations in Chapter
As in the previous chapter one can observe major differences to the results in Euclidean and
spherical spaces. As shown in Chapter |3] the behaviour of the limit variance heavily depends
on the dimension of the surrounding space. In the last part of Chapter 4] a mixing property of
the process is shown. Such properties can be used in order to show central limit theorems in

further research.

Chapter [4| makes use of the theory for continuous time pure jump Markov processes. Several
works deal with this theory such as [13, Chapter 15], [25] [54, Chapter 12], [63, p. 19, Chapter
2.5] and [67, Chapter 1]. Further we apply theory of random closed sets and its connection to
the capacity functional which can be found in [103]. In order to derive the results concerning
expected values, we argue with the Crofton-type formula and the representation of the
invariant measure of hyperplanes in hyperbolic space
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1.5 KENDALL’S PROBLEM

In Chapter [5| we start by again considering Poisson hyperplane tessellations. Later also
the Poisson Voronoi tessellation is treated. The just mentioned Voronoi tessellation can be
constructed by realizing a (invariant) Poisson point process X on H¢ and associating with
cach point = € X all points of H? that have less distance to z than to every other point in X.
This time the so-called Kendall problem is treated. In [112] the original form of this problem
is recalled. The original problem asks for the conditional law for the shape of the zero cell
Cy of an isotropic and stationary Poisson line process, where the given area tends to infinity.
The conjecture stated that the shape concentrates at the circular shape in the limit. Heuristic
arguments by Miles supported this conjecture. A proof was first given by Kovalenko (see [57]
for the simplified version) for the Euclidean plane. Later many different generalizations and
modifications were studied. In the literature various works deal with related problems such
as [16], [33], [11]. All variants have in common that one is interested in the shape of a cell
given that it is somehow big. Recently the problem was considered on d-dimensional spherical
spaces [42], [95]. To the best of my knowledge the present work is the first that approaches the
problem in hyperbolic space. Due to the curvature many results that hold in the Euclidean set

up cannot be transferred to hyperbolic space.

We start by proving two basic results showing that there are major differences as well as
similarities to the Euclidean set up. A first example shows that the convergence of the shape
of a cell does not hold in general for increasing size of the cell. In a second step we show that
the shape of the Crofton cell of a Poisson hyperplane tessellation, given that it contains a
ball with centre in the origin, converges to the shape of a ball as the intensity of the process
tends to infinity. We also develop several useful results concerning the continuity of several
functionals needed later on. Further inequalities of isoperimetric type, which are typical tools
in this context, are shown. These results include more specific inequalities in lower dimensions
and a more general inequality for arbitrary dimensions and size-/ hitting functionals. Also
approximation results are transferred to the hyperbolic setting. More precisely we approximate
convex sets with polytopes having in some sense few vertices. The end of Section is
dedicated to show that the Crofton cell is with high probability contained in a ball with some
radius r > 0 and centre p. This is needed in order to restrict ourselves to a fixed observation
window. In Section we show that the shape of the Crofton cell tends to the shape of a ball,
given that its volume exceeds a certain value a > 0, as the intensity of the Poisson hyperplane
process tends to infinity. Later also the limit distribution of the volume of the Crofton cell is
shown. In the next section we recall theory for stationary random measures on homogeneous
spaces, specialized for our context. We use this theory to transfer the results for the Crofton
cell to the typical cell of a Poisson hyperplane tessellation. In the following part, dedicated to
the Poisson-Voronoi tessellation, we start by formally introducing the model. We also show
that the shape of the typical cell tends to the shape of a ball, given that it contains a ball of
fixed radius a > 0 around its generating point, as the intensity of the underlying Poisson point

process tends to infinity. In this scenario also explicit rates of convergence can be shown.
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The proofs of the theorems concerning the Crofton cell of a Poisson hyperplane process use
techniques which already proved to be helpful in the Euclidean and spherical setting. These
techniques include approximating results containing arguments from [14]. Since hyperbolic
space is in contrast to spherical space not compact, we have to restrict ourselves to bounded
sets. The results allowing us this restriction contain several geometric arguments. Specialized
results of isoperimetric type rely on a recently proved Bonnesen-style inequality in spaces
of constant curvature [19]. The more general isoperimetric inequality is based on research
developed in [29]. The part concerning the typical cell heavily depends on theory of measures
on homogeneous spaces which are treated for example in [62} [99]. The proofs for typical cells

in Poisson-Voronoi tessellations again use some geometric ideas.






CHAPTER 2

BASICS

In this chapter we introduce the most important definitions and fix the notations needed in
this work. We will also state and partially prove some general results. We start in Section
with concepts from probability theory. In the subsequent section we introduce hyperbolic
space and focus on the history of hyperbolic space, its models and definitions related to it.
The following Section deals with some general concepts from stochastic geometry and
their adaptation in hyperbolic setting. In Section we introduce a measure on the space of
k-planes, state some of its properties and use it to define a Poisson hyperplanes process. Also
the concept of hyperbolic quermassintegrals is discussed in this section. The following sections

are introducing concepts for the main chapters, namely Chapter and

2.1 PROBABILITY THEORY

We let (€2, A,P) be the underlying probability space with o-Algebra 4 and probability measure
P. We will always assume (€2, A,P) to be rich enough to carry all random objects in this work.
By E, Var, Cov we denote the expectation, variance and covariance, respectively. For a sub
o-Algebra A ¢ A, we denote the conditional probability by P(-|.A). Convergence in distribution
is indicated by 4 and equality in distribution by 2 We say that an event A happens almost
surely, with respect to some probability measure P, whenever P(A) = 1 holds. A d-dimensional,
real valued random vector N is said to be normally distributed with some (positive definite)

covariance matrix X = (U,-J)Z ;=1 and expectation p € R? if its density is given by

fn(z) =

exp(-5 (-5 @), weRl

1
J2m) det(x)
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2.2 HYPERBOLIC SPACE AND ITS MODELS

In Subsection we start with a small overview of the history of hyperbolic space and
introduce some models of hyperbolic space in the following subsections. We will also point out
their advantages and disadvantages for our different proposes. In Subsection we deal with
the most basic concepts from hyperbolic geometry. Also hyperbolic trigonometry is treated in
Subsection [2.2.6

2.2.1 HISTORY OF HYPERBOLIC SPACE

The history of hyperbolic geometry begins more than 2000 years ago, when Euclid formulated
his five postulates for plane geometry. While the first four postulates seemed pretty convincing

and were easy to understand, the fifth stood out. In its original form it was formulated like:

If a straight line falling on two straight lines makes the interior angles on the same
side less than two right angles, the two straight lines, if extended indefinitely, meet

on the side on which the angles are less than two right angles.
A more modern formulation that is proven to be equivalent reads like

Through a point outside a given infinite straight line there is one and only one in-

finite straight line parallel to the given line.

Also many geometric results did not need for the fifth postulate to hold. Therefore many
mathematicians tried and failed to derive the fifth postulate from the first four. Carl Friedrich
Gaufl was the first to formulate a so-called non-Euclidean geometry which arises by denying
the fifth postulate. Since he never published his results, the ideas had to be rediscovered by
Nikolai Lobachevsky and Janos Bolyai in the beginning of the 19-th century. Now the fifth or

parallel postulate in hyperbolic space reads like:

Through a point outside a given line there are infinitely many lines parallel to the

given line.

The postulates quoted here are taken from [92, Chapter 1].

2.2.2 HYPERBOLOID MODEL

Hyperbolic d-space H? is the unique d-dimensional complete simply-connected Riemannian
space of constant curvature —1. Many books define it via the hyperboloid model. To do so the
so-called Lorentzian inner product is used. For two points z,y € R%! it is defined to be the
real number

Toy=-Tiyr tx2y2+....+ Tge1¥Yd+1-
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Using the inner product one can define the set F%:= {x e R™!: zox = -1}. Since this set is
the union of two disconnected hyperboloids, one defines hyperbolic d-space H? as the positive
half of F¢, namely F¢. The construction comes from the duality to the sphere of radius
r > 0, which has constant curvature 7~2. Interpreting x|z := \/Z oz as a distance (possibly
imaginary), hyperbolic space is a sphere of unit imaginary radius and therefore has negative
constant curvature. Obviously || - |z is not a norm even though it is called Lorentzian norm.
Technically it is a quasinorm. The space H? carries a metric, the so-called hyperbolic distance
function dj, : HY x H? - [0, 00). Tt is defined via the Lorentzian time like angle n(z,y) between
two points z,y € H¢ (see [92, Chapter 3.2]). An alternative approach to define a metric on H¢
is via the Infimum of all C'-paths (see [I, Chapter 3.4] for the 2-dimensional case). Unlike to
the FEuclidean case there exists no distinguishable origin. We can therefore pick an arbitrary
point as the origin. In the hyperboloid model this will be (1,0,...,0) € F.

Since the hyperboloid representation of hyperbolic space is in many situations quite unhandy;,
there exist several models of hyperbolic space. Each of them has their specific advantages and
disadvantages. The most famous models are the conformal ball model (interior of the disk
model), projective disk model (Beltrami, Klein model), the Half-space model and the already
mentioned hyperboloid model. In this work we will focus on the first two models. To see a

description of all model plus the hemisphere model, we refer to [18, Chapter 7].

2.2.3 CONFORMAL BALL MODEL

The conformal ball model, also called Poincaré disk model or interior of a disk model, represents
H? in the interior of the d-dimensional unit ball D? = B,,.(0,1)° ¢ R%. The bijection between
ff and D? is given by

Cd d {5 Td+1
m FY - DY, (ml,xQ,...,xd+1)r—>( )

l+z; "1+

The map is visualized for the 1-dimensional case in Figure By the choice of the origin,
the Euclidean and the hyperbolic origin coincide. The metric in F¢ transfers to D? via the

inverse of 7, namely

dp(z,y) =dp(x 7' (2), 77 (),  x,yeD™
It can also be calculated by

dp(z,y) = arcosh(2¢(z,y) + 1), x,y € DY,

with )
Hil] B y”euc

1 [z]2,0) (1= ]2
(see [92, Chapter 4.5] for a proof). The greatest advantage of the conformal ball model is

o(z,y) = (

already implemented in its name. Since the projection preserves angles, the angle between two

hyperbolic lines is the Euclidean angle between their conformal representation ([92, Chapter
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1.2]). Furthermore, hyperbolic balls are represented by Euclidean balls (but with possibly
shifted centre) and hyperbolic m-planes are represented by the intersection of D and m-
dimensional linear subspaces of R? or an m-sphere of R? orthogonal to 9D (see [92, Theorem
4.5.3, 4.5.4]). Figure shows some hyperbolic objects frequently needed in this work,

represented in D2.

Figure 2.2.1: Balls of radius 1 and hyperplanes in the conformal ball model.

2.2.4 PROJECTIVE DISK MODEL

The projective disk model, Beltrami or Klein model also represents H? in the interior of the
open unit ball B.,.(0,1)° ¢ R In contrast to the conformal ball model it does not preserve

angles. The bijection from the hyperboloid is given by

~ €2 Ld+1
71 F 5 Beue(0,1)°, (21,...,24:1) = (—,...,—+).
X1 T

Again the Euclidean and the hyperbolic origin coincide. Its greatest advantage is that m-planes
are the (non-empty) intersection of BZ,.(0,1) with Euclidean affine m-planes [92, Theorem
6.1.4]. This fact makes the model useful in context of convexity. Since convexity of a hyperbolic
set is equal to convexity (in Euclidean sense) of its Euclidean representation in the projective
disk model many results can be easily transferred. Also other results are easily transferable
from the Euclidean setting via the projective disk model as long as they are of principle nature

such as existence results.

2.2.5 GEOMETRIC CONCEPTS IN HYPERBOLIC SPACE

Recall that by H? we denote the hyperbolic space of dimension d. Let p € H? be an arbitrary
(fixed) point. We will also refer to p as the origin. For x € H? we denote by T,H the tangent
space to H? at z. We use the notation exp,, : T,H? - H? for the exponential map. Recall
that dj,(-,-) is the hyperbolic metric function. We write By,(z,7) = {z e H? : dj,(z,2) < 7} for
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-2 -1 0

Figure 2.2.2: Projections between the models.

the hyperbolic ball with centre z € H? and radius r > 0 and put B, = B (p,r), where p is the
fixed reference point. If it is clear from the context, we will omit the index indicating the
surrounding space. For a > 0 we denote by B® the unique hyperbolic ball with centre in p
such that H(B®) = a holds. In this work the s-dimensional Hausdorff measure H*, s > 0,
is understood with respect to the metric space (Hd, dp). The hyperbolic Hausdorff distance
between two sets C,C" is defined by

3,(C,C") = max {I;gg max dn(,y), min max dh(ﬂf?y)}-
For k€ {0,1,...,d -1} a k-dimensional totally geodesic subspace of H? is called a k-plane and
especially (d — 1)-planes are called hyperplanes. Here a space H is called totally geodesic if
for any two points x,y € H the (unique) geodesic connecting x and y is contained in H. The
space of k-planes in H? is denoted by Ay, (d, k). For more information on this space, we refer
to Section For a fixed hyperplane H € Ap(d,d - 1) we denote by H*, H™ the two closed
half-spaces into which H¢ is divided by H.

For later reference we need a formula for the surface area of a hyperbolic ball B(z,r). It is
given by
HEL(OB(2,7)) = wasinh? (7)),

where wy is the surface area of the (d — 1)-dimensional unit ball and cosh and sinh are the

hyperbolic cosine and sine, which are given by

et +e " et —e*

cosh(x) = 5 and sinh(x) = 5

relR,
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respectively. Moreover, the volume of a hyperbolic ball of radius r is given by
d " d-1
HY(B(z,7)) =Wdf sinh® ™" (s) ds. (2.1)
0

We refer to Sections 3.3 and 3.4 and especially to formulas (3.25) and (3.26) in the monograph
[20]. For the special case d = 2, we thus get H?(B(z,7)) = 2m(cosh(r) - 1). We will frequently
make use of the fact that cosh(z),sinh(z) € ©(e”), as © - oo, where O(-) stands for the usual
Landau symbol. We also use the notations f € O(g) to indicate that f grows at most with the
same speed as g and f =0(g) to indicate that g grows faster than f. Additionally we will use

the following inequalities.

Lemma 2.2.1. The function sinh satisfies the inequalities
(a) sinh(z) > "3  for x> 0.1, (b) sinh(z) >z forz>0.

Proof. (a) By the definition of the hyperbolic sine function, we get

2sinh(z)

e oB3(1-e)>2 forx>0.1,
er—3

since exp(2z) > (1 - 2exp(-3))~* for x> 0.1.

(b) This follows from the definition of sinh by basic calculus.

2.2.6 HYPERBOLIC TRIGONOMETRY

In this section we present some trigonometric formulas in hyperbolic space. Their proofs can
be found in [92, Chapter 3.5] and will therefore be omitted in this work. We start with the

general results and then formulate the special cases of right-angled hyperbolic triangles.

Theorem 2.2.2 (The first law of cosines). Let o, 3,7 be the angles of a hyperbolic triangle
and a,b, c the lengths of the opposite sides, then the first law of cosines

cosh(a) cosh(b) — cosh(c)
sinh(a) sinh(b)

cos(y) =

holds.

Theorem 2.2.3 (Right-angled triangles). Let «, 3,7 be the angles of a hyperbolic triangle and
a,b,c the lengths of the opposite sides with vy = /2. Then the following equations hold:

_ tanh(b)
@) cos(ar) = tanh(c)
b) sin(a) = sinh(a)
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2.3 STOCHASTIC AND CONVEX GEOMETRY

By Beuc(x,r) we denote the Euclidean ball with centre x € R? and radius r > 0. If it is clear
from the context we omit the indicator of the space. The Hausdorff distance between two
nonempty compact Euclidean subsets C,C’ ¢ R? is defined to be
deuc(C, C") = max {E?Jél max deuc(, y), min max deuc(x,y)}-

Let S? be the d-dimensional unit sphere embedded in R and let Bs(u,a), ueS? a >0 be
the spherical cap with centre u and radius o. The natural distance function on S¢ is denoted by
ds(-,-). The Lebesgue measure on S¢ is denoted by o4. For the surface area of the unit sphere
S% we write wgyq = Jd(Sd). Further let k4 be the volume of the unit ball. These values are given
by wq = 27%?|T(d/2) and kg = 7%?|T(1 + d/2) and are therefore connected by wq = d kq. Here
I stands for the Gamma-function. Further we denote by Sg i= {u e T,H: dp(exp,(u),p) =1}
the set of directions in the tangent space of H?. With a slight abuse of notation, we use the
notations o4_1(+), Bs(+,+) and ds(-) on Sg_l as well.

We write A for the boundary of A ¢ H? and use the notation int (A) or A° for its interior.
The operator relint (A) refers to the relative interior of A and cl(A) to its closure.

Let E be a topological space. We denote by F(E) the space of closed subsets of E and by
F'(E) the space of nonempty closed subsets of E. We write F;¢(F) for the set containing all
elements of F(FE) which are additionally locally finite subsets of E. Further let C(E), O(FE) be
the set of compact and open subsets of E, respectively. Whenever it is clear from the context,

we will omit the notation of the underlying space E. For a subset A ¢ E, we denote by
FA={FeF(E): FnA=g).

This definition is used in order to define a topology on F(FE). It is known as the Fell topology
and is generated by the system

{FC: CeC(E)}.

For a more extensive introduction, we refer to [103, Chapter 2]. A set A € H? is called convex
iff for all 2,7 € A the unique geodesic connecting = and y is contained in A. Let Fepno(H?) be
the set of all closed, nonempty, convex sets. Besides this definition of convexity in hyperbolic
space there exists the more restrictive h-convexity which will not play an important role in
this work. Further let Kﬁ be the set of all convex bodies (compact, nonempty, convex sets) in
d-dimensional hyperbolic space and let ICf%O be the set of convex bodies containing the origin p.

Denote by conv(A), A cH? the convex hull, namely the smallest convex set that contains A.
Lemma 2.3.1. The space IC;iL s a locally compact topological space with countable base.

Proof. Since H? is a locally compact space with a countable base, [103, Theorem 12.2.1] shows
that F (Hd), the system of closed subsets of H?, is a compact space with a countable base with
respect to the Fell topology. Since [103] Theorem 12.3.4] transfers to the hyperbolic setting,
the topology induced by the hyperbolic Hausdorff metric and the subspace topology induced
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by the Fell topology on IC% coincide. For a given K € IC;lL, let U € H? be an open and relatively
compact set with K c U. Then U := cl(U) is compact and K € Fyy c Fg=F~ FY, where Fis

is open and F \ FU is closed and therefore compact. O

The following lemmas allow us to transfer results from the Euclidean to the hyperbolic
setting. We write 7 : H? — ngfc for an isometric diffeomorphism which allows us to identify
hyperbolic space and the projective disk model. Lemma shows that the model preserves

convexity. Although this is well known, we indicate the proof to show how we can proceed in
d

¢.c be the set of Euclidean convex bodies.

other situations. For this, let K

Lemma 2.3.2. Let K C H? be a hyperbolic set, then the following equivalence holds

KeK¢ — n(K)ekKkd

euc:

Proof. Fix K € IC% and pick any z,y € 7(K). Since K is convex, the hyperbolic segment
[ (), 7 (y)] lies completely in K. Since geodesics are mapped onto lines in the model, we
get

7 ([7 " (2), 7 (®)]) = [z, y] c 7(K).

Therefore we get that 7(K) is convex. The other direction can be shown similarly. O

The projective disk model preserves basic topological features. This is expressed in the next

lemma,; see [93] Theorem 6.2.2].

Lemma 2.3.3. Let K € K. Then x € int(K) if and only if #(x) € int(7(K)). The same holds
for relint (+), cl(-) and O(-).

Moreover, if x € int(K) (x € relint (K)) and y € cl(K), then [z,y) ¢ int(K) ([z,y) <
relint (K)).

Now we state Blaschke’s selection theorem in the hyperbolic setting. A direct proof can
be based on Blaschke’s selection theorem in the Fuclidean space and the representation of
hyperbolic space in the projective disk model. Lemma is also a very special case of [4]

Satz 4.6], which holds in a complete Riemannian space with non-positive sectional curvature.

Lemma 2.3.4. Let (K;);en be a sequence of convex bodies, all lying in a geodesic ball of radius
R >0. Then there exists a subsequence (K;, )ren and a convex body K € IC;lL, Ky € Bg, such
that

k—o0

K; — Kj
holds in the hyperbolic Hausdorff distance.

In the following we introduce some definitions from [92]. We define a side of a convex set
A € ,Cgon'u

for a side S of A there exists no further nonempty subset S ¢ A\ S such that Su S is still

convex. We use this definition in order to define a convex polyhedron.

as a nonempty, maximal and convex subset of JA. Here the maximality means that
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Definition 2.3.5 (Polyhedron). A convex polyhedron P in H? is a nonempty, closed, convex
subset of HY such that the collection S of its sides is locally finite in H?. We denote the set of
hyperbolic polyhedrons of dimension at most d by PD.

The following results concerning polyhedrons are available from the literature:

o A d-dimensional convex polyhedron is the intersection of the (at most countably many)
half-spaces bounded by the hyperplanes which are determined by the sides of P and
contain P [92, Theorem 6.3.2].

« Let G be a family of closed half-spaces of H? such that {0G : G € G} is locally finite
(and hence at most countable) and N{G : G € G} #+ @. Then Nn{G : G € G} is a convex
polyhedron [92, Ex. 6.3 (2)].

e A d-dimensional convex polyhedron P is compact if and only if P has at least d + 1 sides,

P has only finitely many sides and each side of P is compact [92, Theorem 6.3.6].

e« A convex polyhedron P in H¢ is compact if and only if P has only finitely many vertices

(zero-dimensional faces) and P is the convex hull of its vertices [92, Theorem 6.3.17].

In a next step we want to define the i-faces of a polyhedron P € PD?. In order to give a proper
definition of i-faces, we start with the following definition which is based on the definition in

Euclidean space.

Definition 2.3.6 (Support set). Let A ¢ H? be a closed and convex set and let H be a
supporting hyperplane. Here a hyperplane H € Ap(d,d-1) is said to support A if A is contained
in at least one of the two half-spaces H*, H™ and if the intersection H N A # @ is nonempty.
Then the set An H is called a support set (of A).

One can use the definition of support sets in order to define the ¢-faces of a polyhedron.

Definition 2.3.7 (i-face). The support sets of a polyhedron P € PD? are called faces. A face
F of P is called an i-face for i € {0,...,d -1} if its dimension dim(F") is equal to i. We will
denote the set of i-faces of a polyhedron P e PD? by F;(P). The set Fo(P) will also be referred

to as the vertices of P.
We are now in the position to define polytopes in hyperbolic space the following way.

Definition 2.3.8. A polytope in H? is a convex polyhedron P in HY such that P has only

finitely many vertices x1, ..., T, and fulfills
P =conv{zy,...,x,}.

We denote the set of hyperbolic polytopes of dimension at most d by P.

One can show that the definition above coincides with the one in Euclidean space, where

polytopes are defined as the convex hull of finitely many points (see [102, p. 3]).
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Lemma 2.3.9. A set P is a hyperbolic polytope if and only if P is the convex hull of finitely

many points.

Proof. First let P be a polytope. By definition it has only finitely many vertices and P is the
convex hull of its vertices. To show the other implication let P = conv{zy, ..., z,} be the convex
hull of finitely many points. In a first step we show that P is a convex polyhedron. By definition
it is nonempty and convex. To show that P is closed and that the collection of its sides is
locally finite, we project P into the projective disk model. Now #(P) = conv{7(z1),...,7(zn)}
is a polytope in the Euclidean sense. Since 7?(]5) is closed, P is closed, too. Again using that
7(P) is a polytope we know that it has a finite number of sides. Therefore the number of

sides of P is finite and consequently the set of its sides is locally finite. Since the vertices of

#(P) are among 7 (z1),...,7(2,), their number is finite and so is the number of vertices of P
which are among x1,...,x,. Finally, since 7?(]5) is the convex hull of its vertices, the same
holds true for P. O

Now we know that the Euclidean and hyperbolic definition of a polytope coincide. Hence
we know that a set P ¢ H? is a polytope if and only if 7(P) is a Euclidean polytope. This
allows us to transfer many results about polytopes into the hyperbolic setting. We start with
transferring [102, Theorem 2.4.3].

Lemma 2.3.10. Every hyperbolic polytope is the intersection of finitely many closed half-spaces.

Proof. Let P be a hyperbolic polytope. Since 7(P) is a Euclidean polytope, it is by [102]
Theorem 2.4.3] the intersection of finitely many closed half-spaces Hi,..., H,. Therefore P is
the intersection of # L(H{),..., 7 L(H;). O

Lemma 2.3.11. For every r > 0 one can find a hyperbolic polytope P = P(r) such that
B, c P(r) and OP(r)n B, =& holds.

Proof. We consider the projection of B, in the projective disk model. It is a Euclidean
ball of radius 7 € (0,1) and centre 0. Now there exists a Euclidean polytope P such that
Beue(0,7) € P € Beye(0,1) with 0PN Beye(0,7) = 9PNdBey.(0,1) = @. Therefore the hyperbolic
polytope P := 7#~1(P) fulfills the desired properties. O

Lemma 2.3.12. Fvery bounded, nonempty intersection of finitely many closed half-spaces is

a polytope in H?.

Proof. Let P be the intersection of finitely many hyperbolic half-spaces Hy,..., H, such
that P is bounded. Hence 7(P) is the intersection of finitely many Euclidean half-spaces
7(H{),...,7(H}). Additionally, we know that 7(P) is bounded. Therefore 7(P) is by [102,

Theorem 2.4.6] a polytope. Hence P is a hyperbolic polytope. ]

Let (X, X) be a measurable space. We denote by N the space of all counting measures on
X. Furthermore, we denote by N the o-field which is generated by the collection of all subsets
of N of the form

{neN: pu(B) =k}, BeX, keNy.
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We call a random element 7 of (N, N') a point process. The space of all simple counting

measures is denoted by Nj.

Definition 2.3.13. Let A be a s-finite measure on X. A Poisson process with intensity measure

A is a point process on X that fulfills the following properties:
i) For every B e X, the random variable n(B) is Poisson distributed with parameter \(B).

it) For every natural number m € N and pairwise disjoint sets By, ..., By, € X the random

variables n(B1),...,n(Bm) are stochastically independent.

Fore background on Poisson processes, we refer to [64].

Hyperbolic tessellations partition the space H? into countably many, non-overlapping d-
dimensional hyperbolic convex sets. By T? we denote the set of all tessellations. We start
with the definition of a mosaic respectively of a tessellation. Here and in the following, we use
mosaic and tessellation synonymously. In contrast to the Euclidean counterpart, we allow the
sets or cells of a mosaic to be unbounded. One underlying reasons for this is to include some
cases of Poisson hyperplane mosaics in hyperbolic space with low intensity. For a definition in
the Euclidean case see [103, Definition 10.1.1].

Definition 2.3.14 (Mosaic, Tessellation). A mosaic (tessellation) in H? is a countable system

m of subsets of H® which satisfies the following conditions:
1. The system m is a locally finite system of nonempty closed sets, i.e. m € ]:lf(]:'(Hd)).
2. The sets c € m are convex and have interior points.

3. The sets c € m cover the whole space

Uc:Hd.

cEmM
4. Two different sets c¢1,co € m have no common interior point, i.e. int (¢1) nint (c2) = @.

The set that contains all skeletons belonging to a mosaic is denoted by ]-'ff skel- We are
aiming to show that the set T¢ of all tessellations is a Borel set in F(F’(H%)). This is done in
the forthcoming lemma. The proof is based on the one in Euclidean space (see [103, Lemma
10.1.2]).

Lemma 2.3.15. The set T¢ of all tessellations is a Borel set in F(F'(H?)).

Proof. The idea of the proof is to rewrite the set T and to show the measurability of the new
representation. In order to do so, we need to define the following set. For r > 0 let IC%_D be
the set

KUY = {K € Feono(H?) : dim(K) <d -1, KB, + o}
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of lower dimensional closed convex subsets of H® which intersect B,. Now we can rewrite T% as

T = {meﬂf(f (HY)): Je= Hd}

cEmM

ﬁ{meﬂf(]:'(Hd)):mnlC(d Yoz, Y HYcnB,) =HY(B, )} (2.2)
1

ceEm

To show that the right hand side is a Borel set in F(F'(H?)), we start with showing that
Fip(F'(HY)) is a Borel set in F(F'(H)). In order to do so, we rewrite Jj¢(F'(H?)) as

Fop (F'(HY) :ﬁ[’j{pef(Hd P 0B <n).

For 7,n € N the sets {F e F(H?): |F n BZ| <n} are closed. This can be shown by using [103,
Theorem 12.2.2] as one picks a sequence Fy, Fy, ... of elements in {F € F(H?): |Fn B2 <n}
for fixed r,n € N which converges to F. By making use of (¢;) in Theorem 12.2.2 one can
show that the limit of the sequence has to lie in {F e F(H?): |F n B2 <n} as well. This fact
immediately gives the measurability of F¢(F "(H%)). We now turn to show that the mappings
in are measurable. We start with the mapping

f:Fy(F' ) - FH), m- e
cem
Since the o-Algebra of Borel sets of F/(HY) is generated by the system {F: C eC}, it is
enough to consider their preimage. So fix C' € C. We get Upen, ¢ € FC iff no set in m hits C.
This in turn is equal to m(F) = 0. Since the set of systems fulfilling this is measurable, we
get the measurability of f. Further the mapping m — mn ICfnfih_l) is by [103, Theorem 12.2.6
(a)] upper semi continuous and hence measurable. The measurability of the remaining map
m = Y em H(cn B,.) follows directly from Campbell‘s theorem (see for example [103, Theorem
3.1.2]). Together this shows the statement. O

2.4 THE SPACE OF k-PLANES

Let I(H?) denote the isometry group of H? and let I(H?, p) denote the subgroup of isometries
which fix p. We remark that in the conformal ball model, I(H?) can be identified with the group
of Mébius transformations of B, see [92, Corollary 4.5.1]. We denote by G,(d, k) the compact
space of k-dimensional totally geodesic subspaces containing the origin p. We recall that in the

conformal ball model, all elements of G}, (d, k) arise as follows. If p coincides with the centre o
of B?

d ., then an element of G,(d, k) is the intersection of BZ . with a k-dimensional Euclidean

linear subspace of R?. If otherwise p # o, then an element of Gh(d k) is the intersection of B,
with a k-dimensional Euclidean sphere in R? through p which is orthogonal to the boundary
of BY
measure v, which is invariant under I(H?, p). Since G} (d, k) is compact we can normalize
vy such that v, (Gr(d,k)) = 1. We denote by Ap(d, k) the space of k-dimensional planes in

cf. [92, Theorem 4.5.3]. Up to a scaling factor, G (d, k) carries a unique regular Borel

euc)
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H?. In the conformal ball model all elements of A,(d,k) can be represented as intersections
with B¢

d _ of either k-dimensional Euclidean linear subspace of R or k-dimensional Euclidean

d
euc*

spheres in R that are orthogonal to the boundary of B On Ap(d, k) there exists a unique
(up to scaling) I(H?)-invariant measure. In contrast to Gj,(d, k), the larger space Ay (d, k) is
not compact. Each k-plane H € Ay(d, k) is uniquely determined by its orthogonal subspace
L4 passing through the origin p and the intersection point {z} = H n L4_;. Using these facts,
Santalé [101, Equation (17.41)] (see also [110, Proposition 2.1.6], [32, Equation (9)]) provides
a useful representation of an isometry invariant measure on Ay (d, k), which we use here with

a different normalization. For a Borel set B ¢ Ay(d, k), it is given by
i (B) = [ cosh*(dn(w,p)) 1{H (L) € BY HH(do) van(dL),  (23)
Gn(d,d-k) JL

where H(L,x) is the k-plane orthogonal to L passing through z.

Remark 2.4.1. The current normalization of the measure uy, differs from the normalization
of the measure dLj used in [101] by the constant wg--wg-g+1/(wk---w1). This also affects the
constants in the formulas from hyperbolic integral geometry taken from [101]. The reason for
the present normalization is to simplify a comparison of our results to corresponding results in

Euclidean and spherical space.

We use this measure in order to define a Poisson hyperplane process in hyperbolic space. For
t >0 we let 1; be a Poisson process on the space of hyperplanes in H?. The intensity measure is
t times the invariant measure p4y_1. The Poisson process 7, will be referred to as a (hyperbolic)
Poisson hyperplane process with intensity ¢. It induces a Poisson hyperplane tessellation
in H? with (possibly unbounded) hyperbolic cells. According to [101, Equation (14.69)] the
measure [, satisfies the following Crofton-type formula. In fact, the discussion in [15, Section
7] allows us to state the result not only for sets bounded by smooth submanifolds (as in
[101]), but for much more general sets, which include arbitrary convex sets as a very special
case. The following lemma holds for H%~* measurable sets W c H? which are Hausdorff
(d+i—k)-rectifiable. Following [15] Definition 5.13], we say that a set W c H? is {-rectifiable if £
is an integer with 0 < £ < d and W is the image of some bounded subset of R® under a Lipschitz
map from R’ to H?. A set W c H? is Hausdorff /-rectifiable provided that H’(W) < co and if
there exist (-rectifiable subsets By, Ba, ... of H? such that H* (W N Ui»1 Bi) = 0. Clearly, any
Borel set W which is contained in an ¢/-dimensional plane is Hausdorff ¢-rectifiable if it satisfies
HI(W) < 0.

Lemma 2.4.1. Let 0 < i <k <d-1, and let W c H? be a Borel set which is Hausdorff
(d +1i - k)-rectifiable. Then

f H (W N E) pp(dE) = —2 L&l qdvick ). (2.4)
Ap(d,k)

WEk+1 Wd—k+i+1

Remark 2.4.2. Strictly speaking the case k = i is not covered by [15]. Although the framework

in [15] should extend to this marginal case, we prefer to provide an elementary direct argument
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for the case k = 4. In this case, the left side of defines an isometry invariant Borel measure
on HY. Therefore in order to confirm in this case, it is sufficient to show that the equality
holds for W = B,., r > 0. Since equality holds for r = 0 and in view of , it is sufficient to
show that wgsinh?1(r) is the derivative with respect to r of the function defined by

h(r) = ];1 o Hi(B, 0 E) y(dE)
_ /G . /L cosh® (dy (z, p)) Hi(B, 0 H(L, z)) H**(dx) vap(dL)
- [L cosh® (dy (2, p)) Hi(B, n H(L,z)) H*(dx)

= /(;r de_k_l sinh®* () cosh® () H'(B, n H(L, exp,(tu))) og-k-1(du) dt
3

cosh(r) )

T arcosh o
=Wy, f [ sinh? 71 (¢) cosh* () [ (S5
0 Jsgkt 0

" d-k-1 k arcosh( 2555
Zwkwd—kfg sinh® "7 (t) cosh (t)[0

where we used (2.3) and (3.7) and denoted by L an arbitrary (d-k)-dimensional linear subspace
and by S%H“’l the set of direction spanning the linear space L. The differential of h can be

sinh* () og_p_1(du) ds dt

sinh*1(s) ds dt,

determined by basic rules of calculus. Using that arcosh(cosh(r)/cosh(r)) =0, we thus obtain

k-1
2

R (r) = wpwy_i /(;r sinh®*1(¢) sinh(r)( cosh?(r) - cosh2(t)) cosh(t) dt.

The substitution sinh(t) = sinh(r) -z leads to
Uk 2\ 52 d-1 d-1
B (r) :wkwd_kf x4 (1—3: ) 2 dx sinh® " (r) = wgsinh® " (r),
0

as was to be shown.

Remark 2.4.3. Although both sides of define measures with respect to their dependence
on a Borel set W ¢ H, for k # i the equality in in general does not extend from (d+i—k)-
rectifiable sets to general Borel sets. This is due to deep classical results in the structure
theory of geometric measure theory, see [30, p. 2] or [78, Chapter 3] for an introduction and
[30, Theorem 3.3.13] for the general treatment. In fact, in the Euclidean setting, for i = 0,
ke{l,...,d-1} and for a general Borel set W c R?, the right side of is always as large
as the left side with equality if and only if W is (d - k)-rectifiable.

We will frequently make use of the following transformation formula.

Lemma 2.4.2. Let k€{0,...,d—1}, and let f: Ap(d,k) > R be a non-negative measurable
function satisfying f(Hyn...nHyg ) =0 if dim(Hyn...n Hy) #+ k. Then

Loy T 0o Ha) o o) = eldik) [ F(E) y(dE)

Ap(d,k
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with ik
o(d, k) = 2kt (@) '

Wd+1 \ Wq

Proof. Let ¢ € I(H?) be an arbitrary isometry, and let B a measurable subset of Ay(d, k).

Then we have

PR (HY, L Hay) € An(dyd=1)7%: Hyn...0Hy e pBY)
= pg Y({(Hy, ..., Hag) € Ap(d,d=1)"": Hin...nHy e BY})

by the isometry invariance of pg 1. Since up to a multiplicative constant, u is the only
isometry invariant measure on Ap(d, k), the formula follows up to the determination of the

constant, which is independent of the function f. We do this by choosing

Hk(Hlﬂ...ﬂHd_kﬂW) Idim(Hlﬂ...ﬂHd_k)=k',
f(Hy, . Haoy) =

: otherwise,

where W € ICz is a fixed convex body with Hd(W) =1. We compute
Hin...aHyyoW) pd¥d(Hy,... Hy
/Ah(d,d_1)d% f(Hin...0oHg 0 W) pg=(d(Hy, ..., Hyk))

_ (Cﬁ Wd+1 @) ”Hd(W) _ Wil (wd+1 )d—k

izk Wd Wit2 Wd+1 \ Wq

by a (d - k)-fold application of the Crofton formula (2.4) with the choice k = d -1 and
(successively) i = k,k+1,...,d -1 there. On the other hand, applying directly the Crofton

formula with ¢ = k, we get
[Ah(d,kz) ( ) i (dE) (W)

A comparison yields the constant and proves the assertion of the lemma. O

In what follows we use the convention that dim(@) = —1.

Lemma 2.4.3. Fizr d>2 and let ne{1,...,d}. Then dim(Hyn...nH,) € {-1,d-n} holds
for ph_y-almost all (Hy,...,H,) € Ap(d,d-1)".

Proof. We apply induction over n and start by observing that for n = 1 there is nothing to

show. For n > 2 we have
,ugjll({(Hl, cooyHyq) € Ap(d,d - 1)"‘1 cdim(Hyn...nHp1) ¢{-1,d=(n-1)}})=0

by the induction hypothesis. Let us introduce the abbreviation Ly := Hi n...n Hy for
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Hy,...,Hpe Ap(d,d—1) and ke {1,...,d}. We obtain

o1 ({(Hy,...,Hy) e Ap(d,d-1)": dim(Hin...nHy) ¢{-1,d-n}})
- fAh(dd_l)n 1{dim(La-n) ¢ {~1,d=n}} i (d(H, .., Hy)).
We decompose the indicator function as follows:
{dim(Lg-p) ¢ {-1,d=n}}
~ 1 {dim(Lay) ¢ {-1,d-n}, dim(Lg (1)) =d- (n—1)}
+1{dim(Lg-,) ¢ {-1,d - n}, dim(Ld—(n—l)) =-1}
+ 1{dim(Ld—n) ¢ {_17 d- n}7 dim(Ld—(n—l)) ¢ {_17 d- (TL - 1)}}

(2.5)

Since the second indicator function on the right-hand side is identically equal to zero, we arrive

at
Wi ({(Hyo o Hy) € Ap(dyd=1)" s dim(Hy 0.0 Hy) ¢ {~1,d—n}})
< /Ah(d,d—l)" Hdim(Lg—p) ¢ {-1,d-n}, dim(Ld—(n—l)) =d-(n-1)}

 1{dim(Ly_u1) £ {-Ld= (n-1)}} iy (d(Hy...., Hy)).

By the induction hypothesis and Fubini’s theorem we get

fAh(d,dq)n H{dim(Ly(n1)) ¢ {-1,d~ (n—1)}} phy(d(Hy,..., Hy)) =0,

which covers the case of the third indicator function on the right-hand side of . Finally,
we write ¢(Hq,...,Hy,-1) for an arbitrary point chosen on Hy n...n H,_; (in a measurable
way). Then, again by Fubini’s theorem, we conclude for the first indicator function on the
right-hand side of that
o1 ({(Hy,...,Hy) e Ap(d,d-1)": dim(Lg4—,) ¢ {-1,d—n},
dim(Lg-(n-1)) =d - (n-1)})
< /;xh(d,d—nn—l /Ah(d,d—l) 1{Hin...nH, 1S H,, Hin...nH,_1+@}
pa-1(dHy) pg=y (d(Hi, ... Hyo))
< fAh(ddil)n_l Lh(d,d—l) V{e(Hy,..., Hyy) € Hy} prgor (dH,) p5- (d(Hy, ... Hooy))

) [4h(d d-1)n-1 0 'ug:ll(d(Hh oy Hy1)) =0,

This completes the proof. O
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2.4.1 QUERMASSINTEGRALS

For a convex domain K € ICZ, the quermassintegrals are in [110, Definition 2.2.1] defined by

(d - k)wg-w1

Wi(K) :=
k(K) dwg-1+Wd—k

fﬁ (LpnK) dLy,  k=1,...,d-1.

k

Here £}, is the notation for the space of k-dimensional totally geodesic subspaces of HY in [110].
Further dLj, stands for the invariant measure on L. The map x(-) is the Euler characteristic.
Choosing k = 0, one ends up with the hyperbolic volume functional %¢. The measure dL;
is unique up to a constant factor. For normalization the same interpretation given in [32] is
used. In order to give a definition with respect to our measure ui, we have to change the
normalization factor to
(d-k)wa

Wi(K) = dorr

HnK dH k=1,...,d-1.
Sy XU 0K (), -

This definition coincides with the definition of quermassintegrals in the Euclidean case.

2.5 HYPERPLANE TESSELLATIONS

2.5.1 PoOI1SSON U-STATISTICS

In this section we define and introduce the concepts needed in Chapter |3 Besides Poisson
U-statistics this includes also the theory of normal approximation bounds.

Let (X,X) be a measurable space, which is supplied with a o-finite measure u. Let 7
be a proper Poisson process on X with intensity measure p (we refer to [64] for a formal
construction). Further, fix m € N and let A : X™ - R be a non-negative, measurable and
symmetric function, which is integrable with respect to u™, the m-fold product measure of p.
By a Poisson U-statistic (of order m and with kernel h) we understand a random variable of

the form

Y = Z hx1,. .. Tm),

(@155 ) ENT
where 1" is the collection of all m-tuples of distinct points of 7, see [64]. Functionals of
this type have received considerable attention in the literature, especially in connection with
applications in stochastic geometry, see, for example, [27, 48] (59, 60, [65] 88, (96, 108, [109].
In the following, we will frequently use the following consequence of the multivariate Mecke
equation for Poisson functionals [64, Theorem 4.4]. Namely, the expectation E%Z of the Poisson

U-statistic % is given by

E7 =E Y h(xl,...,xm):[Xmh(agl,...,gcm)w(d(;pl,...,xm)). (2.6)

(@105 ) €N

In the present work we need a formula for the centred moments of the Poisson U-statistics

% as well as a bound for the Wasserstein and the Kolmogorov distance of a normalized version
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of  and a standard Gaussian random variable. To state such results, we need some more
notation. Following [64, Chapter 12|, for an integer n € N we let II,, and II}, be the set of
partitions and sub-partitions of [n] := {1,...,n}, respectively. We recall that by a sub-partition
of {1,...,n} we understand a family of non-empty disjoint subsets (called blocks) of {1,...,n}
and that a sub-partition o is called a partition if U, J = {1,...,n}. For o € I}, we let |o|
be the number of blocks of o and |o| = |Ujes J| be the number of elements of Use, J. In
particular, a partition o € II,, satisfies ||o|| =n. For e Nand ny,...,nge N, let n:=nj+...+ny
and define

Ji::{jeN:n1+...+ni_1<j$n1+...+ni}, Z.E{l,...,g},

and 7:={J;:i€{l,...,¢}}. Next, we introduce two classes of sub-partitions of [n] by

0*(n1,...,np):={cell}:|JnJ'|<1forall Jeoand J er},
IIZy(ny,...,ne) ={o ell*(ny,...,ng) :|J| > 2 for all Jeo}.

In the same way the two classes of partitions II(ny,...,ny) and Ilsa(nq,...,np) of [n] are
defined (just by omitting the upper index * in the above definition). From now on we assume
that ny =...=mny =m e N and define, for o € II*(m,...,m) (where here and below m appears

¢ times),
[0] := {i € [¢] : there exists a block J € o such that Jn{m(i—-1)+1,...,mi} + @}

as well as
I55(m,...,m) = {o eUiy(m,...,m) : [o] = [£]}.

The sub-partitions o € II$5(m,...,m) of [ml] are easy to visualize as diagrams (cf. [113]
Chapter 4]). The m{ elements of [m/] are arranged in an array of ¢ rows and m columns,
where 1, ..., m form the first row, m + 1,...,2m the second etc. The blocks of ¢ are indicated
by closed curves, where the elements enclosed by a curve are meant to belong to the same
block. Then the condition that o € II{5(m,...,m) can be expressed by the following three

requirements:
(i) all blocks of o have at least two elements,
(ii) each block of o contains at most one element from each row,
(iii) in each row there is at least one element that belongs to some block of o.

For an example and a counterexample we refer to Figure|2.5.1
For two functions ¢ : X > R and go: X% - R with 01,05 € N), we denote by g1 ® g2 :
X+ - R their usual tensor product. We are now in the position to rephrase the following

formula for the centred moments of the Poisson U-statistic % (see [64, Proposition 12.13]):

FlCr - % )/mea—a(h®€)g a1, (27)

* %
oellis (m,...,m
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Figure 2.5.1: Left panel: Sub-partition from II$5(4,4,4). Right panel: Example of a sub-
partition not belonging to I135(4,4,4). In fact, the block indicated by the dashed
curve contradicts condition (i), the block indicated by the dotted curve contradicts
condition (ii) and since no element from the last row is contained in any block
also condition (iii) is violated

where h®’ is the (-fold tensor product of h with itself and (h®), : X"ol=lol 5 R stands for

h®¢ by replacing all variables that are in the same block of ¢

the function that arises from
by a new, common variable. Here, we implicitly assume that the function A is such that all
integrals that appear on the right-hand side are well-defined. This formula will turn out to be

a crucial tool in the proof of Theorem (c).

2.5.2 NORMAL APPROXIMATION BOUNDS

In this section, we continue to use the notation and the set-up of the preceding section. But
since we turn to normal approximation bounds for Poisson U-statistics, some further notation is
required. For uw,v e {1,...,m} we let TIS9"(u,u,v,v) be the class of partitions in Iso(u,u,v,v)
whose diagram is connected, which means that the rows of the diagram cannot be divided
into two subsets, each defining a separate diagram (cf. [113 page 47]). More formally, there
are no sets A, B c [4] with Au B =[4], An B =@ and such that each block either consists of
elements from rows in A or of elements from rows in B, see Figure for an example and a

counterexample. We can now introduce the quantities

My (h) = > o (1 ® s ® Py ® ) dule!, (2.8)

oeﬂggn(u,u,v,v)

where

m

hu(xl,...,wu)=( )[m_uh(xl,...,xu,jl,...,im,u)um_“(d(:ﬁl,...,im,u)) (2.9)

u

for ue {l1,...,m} (again, we implicitly assume that h is such that the integrals appearing in
(2.8) are well-defined). To measure the distance between two real-valued random variables

X,Y (or, more precisely, their laws), the Kolmogorov distance

drg(X,Y) =sup|P(X <s5)-P(Y < )|
seR
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con

Figure 2.5.2: Left panel: Partition from II$5"(2,2,3,3). Right panel: Example of a partition
not belonging to I1$9"(2,2, 3, 3). In fact, the diagram is not connected as indicated
by the dashed line

and the Wasserstein distance

dw(X,Y) = sup [Eo(X)-Ee(Y)|
eLip(1)
are used, where Lip(1) denotes the space of Lipschitz functions ¢ : R - R with a Lipschitz
constant less than or equal to one. It is well known that convergence with respect to the
Kolmogorov or the Wasserstein distance implies convergence in distribution. We are now in the
position to rephrase a quantitative central limit theorem for Poisson U-statistics. Namely, [96,
Theorem 4.7] and [109, Therorem 4.2] state that there exists a constant ¢, € (0, 00), depending
only on m (the order of the Poisson U-statistic), such that

U -EU mo /My, (h)
d(—V—ar(%)’N) < m Z Va(2) (2.10)

where d( -, -) stands for either the Wasserstein or the Kolmogorov distance. Here, one can

7/2

choose ¢, = 2m™/? for the Wasserstein distance and ¢, = 19m? for the Kolmogorov distance.

Finally, we turn to a multivariate normal approximation for Poisson U-statistics. For integers

peNand mq,...,mp €N, and for each i € {1,...,p}, let

U; = Z h(i)(xl,...,xmi)

(xlv--wxmi )Eﬂlni

be a Poisson U-statistic of order m; based on a kernel function A() : X" — R satisfying the
same assumptions as above. We form the p-dimensional random vector U := (%4, ...,%,) and
our goal is to compare U with a p-dimensional Gaussian random vector N. To do this, we use

the so-called ds- and ds-distance, which are defined as

dy(U,N) := sup [Ep(U) - Ep(N)|
heC?2

)

d3(U,N) := sup [Ep(U) - E(N)
heC3
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respectively. Here, C? is the space of function ¢ : R? - R which are twice partially continuously

differentiable and satisfy

x —_—
sup P Wl and  sup VP = VeWlor
wry |z -yl w2y |z -yl
where | - | denotes the Euclidean norm in R” and | - |, stands for the operator norm. Moreover,

C3 is the space of functions ¢ : R? - R which are thrice partially continuously differentiable

and satisfy

w(w)’

83
and max sup ﬂ| <1
O0x;0x;

1<i<j<k<p 1ecRP 81:1 8% 8.%'k

max sup
1<z<] <p :CERP

Moreover, similarly to the quantities M, ,(h) introduced in (2.8), for i,j € {1,...,p}, u €
{1,...,m;} and v e {1,...,m;} we define

Mo GO = T [ 00 b o) o). dur

mell$9" (u,u,v,v)

where hﬁf) and hf,j ) are given by (2.9). This allows us to state the following multivariate normal
approximation bound from [108, Theorem 6.3] (see also [97, Equation (5.1)]). Namely, if N is

a centred Gaussian random vector with covariance matrix ¥ = (‘71,1) then

1,7=1"

p
ds(U — EU, N) s% S |ow, - Cov(%, %))
2,

(2.11)
+—(Z\/Var(?/)+1) » z zm7/2\/Muv(h() h).
i,j=1u=1v=1
If the covariance matrix X is positive definite then also
P
d2(U-EU,N) < |7 op 2[5 Y [oij — Cov(%, %))
1,7=1
o N (2.12)
P ”Hz 3/2||z||0p(z\/var(@/)+1) 3 Z Zm7/2\/M RUONION
i,j=1u=1v=1
where again || - |op stands for the operator norm. We remark that although the bound for

d2(U -EU,N) is not explicitly stated in the literature, it directly follows from [89, Theorem
3.3] together with the computations in [108, Chapters 5 and 6] for the ds-distance.

2.6 SPLITTING TESSELLATIONS

In Chapter [4| two different set ups are considered. In a first step we study splitting tessellations
inside a fixed convex window W ¢ IC%. In a second step we will show that the process can be
extended to the whole space HY. In order to handle technical problems arising due to boundary

effects we introduce some definitions concerning tessellations inside a fixed window W. We
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will often omit reference to the convex set W if it does not play an important role or is clear
from the context. We define the set P%V by

P, = {PnW: PePD?,

and call the elements of ng semipolytopes (in W). Here PD? is the set of d-dimensional
polyhedrons in hyperbolic space. For a definition of polyhedrons, we refer to Section For
the special case W = B,, r > 0 we will shorten the notation by defining P¢ := IP’%T.

Definition 2.6.1. By a tessellation T’ of W we understand a finite collection of d-dimensional

semi-polytopes such that
Z) Ueerc=W
ii) For c1,c9 € T with ¢1 # co the intersection int(c1) Nint(ce) is empty.

The set of all tessellations of W is denoted by T¢(W). The space T¢(W) can be equipped
with a o-field. Analogue to Lemma one can show that T¢(W) is a Borel subset of
F(F'(HT)).

Next we will define the so-called splitting operator @. It defines the tessellation which results
if one splits a single cell of the tessellation by a hyperplane and replaces it with the two arising

parts.

Definition 2.6.2. For a conver set W € K¢, T e TY(W), c e P§, and H € Ay(d,d - 1), we
define the operator @ : IP’CVIV x Ap(d,d-1) x T? - T? by

T~{cH)u{ecnH ", cnH } :ceT,
S (N ONT )
T : otherwise,

where H" and H™ are the two closed half-spaces determined by H.

If ce T and H nc =@ holds, then the splitting operator keeps the tessellations invariant,
since in this case one of the two closed half-spaces contains ¢. Similar to [47, Lemma 2.6], the
(Borel-) measurability of the operator can be shown the following way. One first shows that the
set {(¢,T) e P4, x TY(W): ceT} is measurable. The argumentation to prove this transfers
from [47] to our setting as well. Furthermore, the map (¢,T) » T ~ {c} is measurable, since
removing one cell from T corresponds to subtracting the dirac measure on ¢ from the measure
n. Here n e N(H?) is the simple counting measure which takes the value 1 if ¢ € T holds and 0
otherwise. In a last step we start by arguing that the set {(c, H) € P, xHy_1 ((W))} is open and
therefore measurable. On this set the map P‘év xHy_1((W)) = Ny(HY), (¢, H) = Ounpr+ +Onp-
is measurable. Now @ is measurable as the combination of measurable maps.

We denote by Tgplit(W), the set of all tessellations of W resulting from as splitting process.

We state the following lemma without a proof.

Lemma 2.6.3. The set T (W) of all splitting tessellations is a Borel set in TY(W).

split
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2.7 KENDALL’S PROBLEM

In this section we consider some concepts which are needed in order to formulate and solve
Kendall’s problem in hyperbolic space. We start with some terms that allow us to speak more
precisely about the size and the shape of a cell. We also state and prove the reverse Holder
inequality since it is frequently used in Chapter

The Crofton cell or zero cell Cpy of an isometry invariant random tessellation is defined as
the cell containing the origin p (the fixed reference point). In our model, this cell is almost
surely uniquely determined. For the introduction of the concept of the typical cell, which can
be interpreted as a statistical, spatial average of the cells in the tessellation, we refer to Section
and the literature cited there.

Since our aim is to provide (quantitative) information about the shape of Crofton and typical
cells of Poisson hyperplane tessellations in hyperbolic space, we also require various geometric
concepts. In particular, we will use the notions of a deviation function, a size functional, and a
hitting functional for comparing the shapes of cells to the spherical shape, to quantify the size
of cells and to describe the hyperplane process in more geometric terms. The corresponding
concepts have already proved to be particularly useful in Euclidean and spherical spaces.

An upper semicontinuous function ¢ : Kz — [0, 00) is said to be a deviation function for a
class G ¢ K¢, if for all K e K¢ with H(K) > 0, the equality ¥(K) = 0 holds if and only if
K € G. In the following, we will call a deviation function for the class of hyperbolic balls simply

a deviation function. A canonical example for an isometry invariant deviation functional is
Y(K) = inf{6,(K,B): B is a hyperbolic ball},

where 4y, is the hyperbolic Hausdorff distance (for a definition see Section [2.2.5). The required
properties can easily be verified. For a convex body K € Kg, we define the centred inball radius
re by
sup{r >0: Byp(c,r) S K}, ceK,
re(K) =
0, otherwise.

and the centred circumradius R, by
R.(K):=inf{r>0: K c By(c,7)}.

Here one could replace the supremum (infimum) by the maximum (minimum) respectively.
For the special case ¢ = p, we use the notation ry and Ry. Using these definitions, a specific

deviation function for the class of balls with centre in the origin is
do: K = [0,00), K = Ro(K) - ro(K)

Clearly, 99(K) =0 holds if and only if K is a hyperbolic ball with centre in p. The continuity
of ¥y follows from Lemmas and below. Furthermore, 9y is invariant under isometries
fixing p.
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For the isoperimetric inequalities, which are based on a Bonnesen-style inequality, we

introduce for K € IC% the notation
Tin(K) :=sup{r >0: By(c,r) ¢ K for some c € K }.
Further, we denote by Ryy,:(K) the circumradius of K which is defined by
Row(K) :=inf{r >0: K ¢ By,(x,r) for some z € H}.

Note that 9(-) = Rout(-) = rin(:) is a deviation function; more precisely, it is an isometry
invariant deviation function for balls with arbitrary centre. As in the case of the centred inball-
and circumradius, it is possible to replace inf(sup) by min(max) in the definitions of r, and
Rout. The continuity of 9 is shown in Lemmas , We denote by C,.(K) :={ce K :
re(K) = rin(K)} the set of points realizing the inball radius. Using this notation, we can define

the geometric functional
O (K) :=inf{R(K) —r.(K) :ce Cr(K)}.

This functional is no deviation functional since it is lower semicontinuous but not upper
semicontinuous (for a proof see Lemma and the following remark). Nevertheless it will
be used for the statement of a result of isoperimetric type (see Theorem .

A function X : IC;lL — [0, 00) that is continuous, not identically zero and increasing under
inclusion is called a size functional. Some examples are the hyperbolic volume H? or the
hyperbolic inball radius ¥, := 74, (we use the different notation in order to indicate that it takes
the role of a size functional). Lemma shows the continuity of H%, the continuity of the
inball radius follows from Lemma Another important functional which arises naturally
in this context is the so-called hitting-functional ® : IC% — [0,00). The hitting functional
depends on the underlying point process and roughly describes how likely it is that a body is
hit by the (hyperbolic) hyperplanes of the point process. It is continuous with respect to the
Hausdorff metric and fulfills ®(K) > 0 for all K containing more than one point. In this work,
the hitting functional will be a constant multiple of the (d — 1)-dimensional quermafintegral
W,4-1 whenever we investigate the behaviour of cells in Poisson hyperplane tessellations. The
continuity of Wy_; will be shown in Lemma For the case of Poisson Voronoi tessellations,
we use a different hitting functional which will be introduced in Section

The concept of a deviation function is used for defining the convergence of the shape of cells
in tessellations. A random set Z = Z(t) is said to converge in probability to the shape of a ball
as t — oo if for an appropriate (geometrically meaningful) deviation function ¥ and for all £ > 0

we have
tlim P; (9(Z) >¢) =0.

In the present work, the parameter ¢ indicates the dependence on the intensity of the underlying
Poisson hyperplane process 7; inducing the tessellation. The probability measure P} is given

by a conditional probability, where the condition implies a restriction on the size of the random
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cells under consideration.
For a fixed hitting functional ®, size functional ¥ and a number a > 0 we define the

isoperimetric constant
7(®,%,a) :=min{®(K): Ke¢ K%,O? Y(K) >a},

where IC%O c IC?L is the set of convex bodies containing the origin. We will see that this
minimum is indeed attained. Further, we omit the dependence on @, 3 if they are clear from
the context.

We will use the so-called reverse Holder inequality in the proofs of Chapter |5, It follows
easily in a few steps by the classical Holder inequality, which can be found for example in [56),
Theorem 7.16].

Lemma 2.7.1. Let p € (1,00), (X,F,u) a measurable space and f,g : X — R such that
1
[x f(@)g(z) p(dz) < oo and [y g(xz) 7T p(dz) < oo hold with g(x) # 0 for p-almost all z € X.

Then the reverse Holder inequality

-(p-1)

[ @) ptde) > ( [ 7@ o) ( [, a0 uan))
holds.

Proof. We define ¢ := 1% which fulfills 117 + % = Il) + ’%1 = 1. Applying Hoélder’s inequality for
the functions (f ¢g)"? and ¢~'/P in the penultimate step we get

(oo an) " (- )
([ s wan) " ([ oy ugan) "
X X
([ (@Y utin) " ( [ oy )
(% X0

> [ (@) o) )
> [ 5@ u(da).

(r-1)/p

Taking the p-th power and dividing by (fXg(x)_l/(p_l) ,u(d:c))(pil) yields the result. O






CHAPTER 3

HYPERBOLIC POISSON HYPERPLANE TESSELLATIONS

This chapter is structured as follows. In the next section we recall several important notations
in H? and present our main results. We start in Section with expectations and continue in
Section with second-order characteristics associated with the total volume of intersections
processes. Our limit theorems will be discussed in Section All remaining sections
are devoted to the proofs of our results. In Section we present the proofs for first- and
second-order parameters and also carry out a detailed covariance analysis, which is needed
for our multivariate central limit theory. Our results on generalizations of the K-function
and the pair-correlation function are established in Section All univariate limit theorems
are proved in Section while the arguments for the multivariate central limit theorems
are provided in the final Section For the necessary background material on hyperbolic
geometry and hyperbolic integral geometry we refer to Chapter [2|and especially to Subsections
and for the background material on Poisson U-statistics.

3.1 MAIN RESULTS

3.1.1 FIRST-ORDER QUANTITIES

Recall that we denote by H?, for d > 2, the d-dimensional hyperbolic space of constant curvature
-1, which is supplied with the hyperbolic metric dj (-, -). We refer to Section above for
further background material on hyperbolic geometry and for a description of the conformal
ball model for H?. Let p e H? be an arbitrary (fixed) point, also referred to as the origin. For
r >0 we denote by B, = {z e H?: dj,(x,p) <r} the hyperbolic ball around p with radius r. A
set K c H? is called a hyperbolic convex body, provided that K is non-empty, compact and if

with each pair of points x,y € K the (unique) geodesic connecting = and y is contained in K.
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Figure 3.1.1: Two realizations of a Poisson hyperplane tessellation in H? of different intensities
represented in the conformal ball model

The space of hyperbolic convex bodies is denoted by IC;IL. Recall that for k€ {0,1,...,d-1} a
k-dimensional totally geodesic subspace of H? is called a k-plane and especially (d - 1)-planes
are called hyperplanes. The space of k-planes in H? is denoted by Ay,(d, k). The space Ay(d, k)
carries a measure pg, which is invariant under isometries of H? (see Section for the
present normalization of this measure). For s > 0 we denote by H* the s-dimensional Hausdorff
measure with respect to the intrinsic metric of H? as a Riemannian manifold. Finally, we write
wy, = 2m*2 T (k/2), k € N, for the surface area of the k-dimensional unit ball in the Euclidean
space R¥.

For t > 0, let 7; be a Poisson process on the space Ay(d,d - 1) of hyperplanes in H? with
intensity measure tug_1. We refer to n; as a (hyperbolic) Poisson hyperplane process with
intensity ¢. It induces a Poisson hyperplane tessellation in H?, i.e., a subdivision of H¢
into (possibly unbounded) hyperbolic cells (generalized polyhedra), see Figure [3.1.1, For
i€{0,...,d-1} we consider the intersection process flfi) of order d—17 of the Poisson hyperplane

process 1; given by

i 1 i '
t( ) = N Z 5H1m...de—i Hdim(Hyn...nHy) =i},
(d~1)! (Hi,oHai)eng

where ng;i is the set of (d —1)-tuples of different hyperplanes supported by 7, d(.) denotes the
Dirac measure and dim(-) stands for the dimension of the set in the argument. In this work

we are interested in random variables of the form

RS, = f H(EAW)eD (dE)

1 A
=— > H(Hin...nHyynW)1{dim(Hyn...n Hy;) =1},

—7)! i
(d Z)‘(Hh...,Hd—i)Eng,;Z

(3.1)

where W c H is a (fixed) Borel set in H? . In other words, Fv(‘i)t measures the total i-volume
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(i.e., the i-dimensional Hausdorff measure) of the intersection process §§i) within W. For

example,

d-1 - _
F D = Y H How) =1 (U How)
Hé’r]t Hent

is the total surface content of the union of all hyperplanes of 7 within W. On the other hand,

1 .
FIE‘%:E > HHin...nHgeW,dim(Hin...nHg) =0}

(H17"'7Hd)€n{i7¢
is the total number of vertices in W of the Poisson hyperplane tessellation, i.e., the total
number of intersection points induced by the hyperplanes of 7. In the Fuclidean case these
random variables have received particular attention in the literature, see e.g. [35} 37, 48] [52]
53, 165] (73] 196], [103] and the references cited therein. As in the Euclidean case, we will start by

investigating the expectation of Féé)t.

Theorem 3.1.1 (Expectation). If W c H? is a Borel set, t >0 and i€ {0,1,...,d -1}, then

By wisl (wae |\ d
EF‘SV)t T Waet ( W ) (d—1i)! HEW)-
Remark 3.1.1. In comparison with the Euclidean and spherical case we observe that precisely
the same formula holds in these spaces. This is not surprising, since the proof of Theorem
is based only on the multivariate Mecke formula for Poisson processes and a recursive
application of Crofton’s formula from integral geometry, see Section Since the latter
holds for any standard space of constant curvature x € {-1,0,1} with the same constant (cf.
[15, 101]), independently of the curvature , the result of Theorem holds simultaneously
for all standard spaces of constant curvature x € {-1,0,1}. In other words, this means that
the expectation EF‘S&)t is not an appropriate quantity to ‘feel’ or to ‘detect’ the curvature of

the underlying space. For this we will use second-order characteristics.

3.1.2 SECOND-ORDER QUANTITIES

In a next step, we describe the covariance structure of the functionals F‘Sé)t, i€{0,1,...,d-1},
introduced in (3.1). The following explicit representation for the covariances will be derived

from the Fock space representation of Poisson U-statistics.

Theorem 3.1.2 (Covariances). Let W ¢ H? be a Borel set, lett >0, and leti,j € {0,1,...,d-1}.
Then

min{d-i,d—j}

, : i o
Cov(Fé;?t, FIS[‘Z;) = Z:l Cijmd (2d=i=j-n [Ah(d . HEY(EW)? pign(dE)
n= i
vt 1 1 wi w; way1 |2
oo i+1 j+1 ( d+1)
ST ) W Waemer (d=i=n)! (d =5 -n)!'\ wy
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Remark 3.1.2. Since Theorem follows from the general Fock space representation of
Poisson U-statistics, the formula for Cov(Féé?t,Fv(%) is formally the same for all spaces of
constant curvature k € {-1,0,1}. However, the curvature properties of the underlying space

are hidden in the integral-geometric expression

. k 2
Je(W) = //;h(d,@” (EnW)? u(dE),

for k€ {0,...,d—-1}. In fact, if k € {-1,0} and if we replace W by a ball B, of radius r around
an arbitrary fixed point, we can consider the asymptotic behaviour of Ji(B,), as r — oo, which
is quite different in these two cases (note that in spherical spaces with constant curvature x = 1
the range of r is bounded). While in the Euclidean case k = 0, Ji(B,) behaves like a constant
multiple of 7%** for all choices of k, in the hyperbolic case x = —1 we will show that J;(B,)
behaves like a constant multiple of e(*D7" if 2k — 1 < d, like a constant multiple of re(¢D7 if
2k — 1 = d and like a constant multiple of e2*~D7" if 2k — 1 > d, see Lemma below. In
this sense we can say that second-order properties of the functionals Fé[?t are sensitive to the

curvature of the underlying space.

Continuing the discussion of second-order properties of Poisson hyperplane tessellations
in H?, we now introduce and describe the K-function and the pair-correlation function of
the i-dimensional Hausdorff measure restricted to the i-skeleton of the tessellation. In the
Fuclidean case these two functions have turned out to be essential tools in the second-order
analysis of stationary random measures (see the original paper [98] and the recent monograph
[3] as well as the references cited therein). To be precise, for i € {0,1,...,d -1} and fixed t > 0,
we first consider the i-skeleton of the Poisson hyperplane tessellation in H? with intensity ¢,

which is defined as the random closed set

Skeli = U Hlﬂ...ﬁHd_i.

(Hy,o Hg_)enf !

dim(Hyn...nHg_;)=i
The i-dimensional Hausdorff measure on skel; is denoted by M;. It is a stationary random
measure on HY, that is, its distribution is invariant under isometries of H?. Its intensity is
defined by \; = EFJ(Bi’)t, where B c H? is an arbitrary Borel set with #?(B) = 1. It follows from
Theorem that

d-i  4d—i
Witl [ Wd+1 t
A = ( ) . 3.2
Wa+1 \ wy (d—1)! (32)
The K-function of the random measure M; is defined by
1
Ki(r) = pEfHd /;B 10 < dn(z,y) <7} My(dy) My(dz), 7> 0. (3.3)

The condition dp(x,y) > 0 is usually omitted in the definition of the K-function of a diffuse
stationary random measure. For i € {1,...,d -1}, the proof of the following more general
Theorem will show that K;(r) remains indeed unchanged if we drop the condition

dp,(x,y) > 0. For i = 0, however, the random measure M is a stationary point process in H?
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and then the restriction dp(x,y) > 0 is common. The proof of Theorem will also show
that the summands corresponding to indices n € {0,...,d -1} in li are not affected by the

restriction, but the summand with n = d will be zero.

If we define K;(B,r) as in , but for a general measurable set B c HY, it follows from
the stationarity of 7; that the measure K;(-,r) is isometry invariant and hence a constant
multiple of H%(-), provided it is locally finite. In Theorem this will be shown and the
constant will be determined. We will also see that K;(r) is differentiable, which allows us to

consider the pair-correlation function

1 dK;
Wy sinh?! (r) dr

gi(r) = (r), r>0.
Roughly speaking it describes the probability of finding a point on the i-skeleton at geodesic

distance r from another point belonging to skel;.

More generally and in analogy to the covariances considered in Theorem we will
consider the mixed K-function Kj;; for 4,5 € {0,...,d —1}. For r > 0 and a measurable set
B c H? with H%(B) =1 it is defined by

() = 5 B [, [0 <datay) <) My ) M)

1

= E 1 J :
o S, S 10 < o) <7y 1 () ! )

and describes the random measure M; as seen from a typical point of M, in the sense of Palm
distribution. In particular, we retrieve the ordinary K-function by the special choice j =i. The
mixed pair-correlation function g;; is then defined in the obvious way by differentiation of K;,

namely,

1 dK;;
wgsinh?(r) dr

9ij (1) = (r), r>0.

As in the case of the K-function, the condition that 0 < dj,(xz,y) can be omitted if ¢ > 1 or j > 1.

Theorem 3.1.3 (Mixed K-function and mixed pair-correlation function). Ifi,j € {0,1,...,d-
1}, t>0 and r >0, then

m(dv’L?]) — 1 _ 9 n T
Kij(T)Z Z n‘(d Z)(d ])Wd+lwd—n( wd 1) ] Sinhd_n_l(s) ds, (34)

n=0 n n /) Wips1 \Wds1t 0
m(did) i d i\ (d — i n-1 1
1§ (0 e ()
oy n n ) Wi-n+1 \ W1 (tsinh(r))™

where m(d,i,7) == min{d - i,d - j,d - 1}.

In (3.4) we restrict the summation to n < d—1 in order to avoid an undefined expression which
arises for i = j = 0 and n = d. Alternatively, for n = d the factor wy_,, = wg is wg = 2/T'(0) =0

and the product with the infinite integral can be defined to be zero.
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120 |- :

100 -

601
40 |

20

Figure 3.1.2: Left panel: The pair-correlation functions gg (solid curve) and ¢; (dashed curve)
for d =2 and ¢ = 1. Right panel: The pair-correlation functions go (solid curve),
g1 (dashed curve) and g9 (dotted curve) for d=3 and ¢ =1

In the special case d =2 and for i = j we thus obtain

4 1 1 1
A - d 14—
90(r) mt sinh(r) o 91(r) mt sinh(r)’
and for d = 3 and again i = j we get
1 36 1
=1+— + ,
90(r) 2¢ sinh(r) 722 sinh?(r)
2 1 4 1
=1+- +
(r) t sinh(r)  w2¢2 sinh?(r)’
1
ga2(r) =1

Y sinh(r)’

see Figure

Remark 3.1.3. An inspection of the proof shows that Theorem is based only on Crofton’s
formula and Lemma which in turn is also based on Crofton’s formula. However, since
the latter holds for any space of constant curvature x € {-1,0,1} with the same constant (cf.
[15] 101]), independently of the curvature x, Theorem remains valid also in spherical and
Euclidean spaces of curvature x =1 and « = 0, respectively. Namely, defining the modified sine
function

sin(r) k=1,

sng(r) =1r ik =0,

sinh(r) :k=-1,

we obtain

m(d,i,j)

Ky(r)= ) m(d—i)(d—j)ww—n( wa 1)"

=0 n n /) Wigpe1 \Wdi1t

f snd™"1(s) ds

0
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and

TP S Ul () S (L
o n I\ n Jwipa\was ] (Esne(r))”

forr>0if ke {-1,0} and 0<r<7mif Kk =1. Fori=j=d-1and k =1 these formulas have been
proved in [47, Section 6.2] based on a different normalization. Moreover, for = 0 the formula
for go(r) appears as the identity (3.15) in [38], while g4_1(r) can be found in [104, Section 7].
As already explained in [39], for general i € {0,1,...,d -1} it can in principle be deduced from
an explicit formula for the second-order moments of the total volume of intersection processes,
see [72] p. 164].

3.1.3 LIMIT THEOREMS

Our next result is a central limit theorem for Fé;)t, for a fixed hyperbolic convex body W,
when the intensity parameter ¢ tends to infinity. We will measure the distance between (the
laws of) two random variables by the Wasserstein and the Kolmogorov distance. For their

definitions we refer to Section 2.5.1

Theorem 3.1.4 (CLT, growing intensity). Let d>2, i€ {0,1,...,d-1} and let W € ng be a
fized hyperbolic convexr body with non-empty interior. Let N be a standard Gaussian random
variable, and let d(-,-) denote either the Wasserstein or the Kolmogorov distance. Then there

exists a constant ¢ € (0,00) such that

(1) _ (1)
FW,t EFw,t N < ci-1/2
\ /VarFIS‘?t

forallt>1.

As already explained in the introduction, the central limit problem for Féé)t can also be
approached in another set-up, which in the Euclidean case is equivalent to the one just discussed,
but turns out to be fundamentally different in hyperbolic space. More precisely, we turn now
to the case, where the intensity t is fixed, while the size of the observation window is increased.
We do this only in the case of spherical windows in H%. In other words, we choose for W
the hyperbolic ball B, (around the origin p) and write FT(? instead of F' gT) , in this case. Our
next result is a central limit theorem for FT(? for dimension d = 2 in part (a) and for d =3 in
part (b). Moreover, it turns out that a central limit theorem for FT(; is no longer valid in any
space dimension d > 4, see part (c). We emphasize that this surprising phenomenon is in sharp

contrast to the Euclidean case [37, 65, [96] and is an effect of the negative curvature.

Theorem 3.1.5 (CLT, growing spherical window). Let t > 1, let N be a standard Gaussian

random variable, and let d( -, -) denote either the Wasserstein or the Kolmogorov distance.
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(a)

(b)

If d =2, then there is a constant cg € (0,00) only depending on t such that

() _ @)
Eri ~BE N|<eort™e/?

forie{0,1} and r > 1.

If d = 3, then there is a constant cs € (0,00) only depending on t such that

OB\ fer isn

S N <
\/V(J,T’Fr(? c3r M2 e {0,1},

forr>1.

(¢c) Ifd>4 andi=d-1 orifd>7 and i€{0,1,...,d -1}, then a central limit theorem for

(Fr(’? —EFT(;))/\/VarFT(;) does not hold for r — oco.

Remark 3.1.4. (i) The restriction imposed on the parameters d,i in Theorem (c) is

(i)

the result of a number of technical obstacles one needs to overcome in its proof. We
strongly believe that a central limit theorem in fact fails for all d > 4 and all choices of
i1€{0,1,...,d—1}. However, we have to leave this as an open problem for future work.
For some remarks about the potential limiting distribution in Theorem (c) we refer
to Remark

It is instructive to rewrite the normal approximation bounds in Theorem (a) and
(b) as follows. For d =2 and i € {0,1} we have that

(4) (1) i
FY -EF 1-i 942
r,i rt Nl<eé log H (BT’)

d| —V—=, SC—F—, 21,
\Var O (B,

and for d = 3 we have, again for r > 1,

A 7 1 .

Fr(,t) - EF?"(,t) < 63 log H3(By) = 2’
/ i) - 1 .
VarFr(jt) 10g’H3(B,«) S {0?1}

Here é9, ¢3 € (0, 00) are again constants only depending on ¢. This means that in dimension
d =2 and for 7 = 0 the speed of convergence is the same as in the Euclidean case, up to
the logarithmic factor. Moreover, it shows that d = 3 is the critical dimension for the
central limit theorem, which only holds in this case with a rate of convergence which is

very much slowed down.

Theorem shows that for fixed radius r and increasing intensity ¢ a central limit theorem
for Fr(? with i€ {0,1,...,d -1} holds. On the other hand, according to Theorem [3.1.5| (c) the

central limit theorem breaks down for dimensions d > 4 (if the total surface area is considered)
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or d > 7 (for general i € {0,1,...,d—1}) if the intensity ¢ stays fixed and r - co. Against
this background the question arises whether in these cases the central limit behaviour can
be preserved if the intensity ¢ and the radius r tend to infinity simultaneously. In fact, the
following result states that this is indeed the case. More precisely, it says that, independently
of the behaviour of 7, the central limit theorem holds as soon as t - oo (and r is bounded from
below by 1).

Theorem 3.1.6 (CLT for simultaneous growth of intensity and window). Let d >4 andi=d-1
ord>7andi€{0,1,...,d=1}. Also, let N be a standard Gaussian random variable. Then

there is a constant c € (0,00) such that
[EOERD N
\/VarFT(;) Vi

forallr>1 and t > 1, where d(-, -) denotes either the Wasserstein or the Kolmogorov distance.

Remark 3.1.5. In dimensions d = 2 and d = 3 we also have normal approximation bounds

that simultaneously involve the two parameters ¢ and r. In fact, for d =2 the bounds (3.24)
and (3.28) below show that

holds for all ¢ > 1, » > 1 and 7 € {0,1}. Similarly, for d = 3 the estimates (3.30), (3.34) and

prove that

F% -EFY Ul o

SN P
\/Var Fr(? Y22 e {0,1},

for all ¢ > 1 and r > 1. In both cases, d( -, -) stands for either the Wasserstein or the Kolmogorov
distance. This way we recover Theorem for d = 2 and d = 3 in the special case where
W = B, with r fixed and we recover Theorem (a) and (b) by fixing .

Finally, let us turn to the multivariate set-up. To compare the distance between the
distributions of (the laws of) two random vectors we use what is known as the do- and the
ds-distance; for their definition we refer to Section below. We approach the multivariate
central limit theorem by considering, as above, two different settings. To handle the central
limit problem for a fixed window W ¢ ICZ and growing intensities we define for ¢ > 0 the

d-dimensional random vector

(0) (0) (7) (1) (d-1) (d-1)
F - Fw,t - EFW,t FI/I;,t - EFI/V,t Fw,t - EFW,t
Wit td—1/2 T pd=i-1f2 T $1/2

Moreover, for i,j € {0,1,...,d—1} we introduce the asymptotic covariances and the asymptotic
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covariance matrix of the random vector Fyy;, as t — oo, by

(3) (%) () ()
i Jim C Fvé,t - EFV;,t Fv%t - EFWi,t T oo (00 d-1
Twom IO T amiz 0T a2 ) W= (Tw)i,j:O

The existence of the limit and the precise value of 7'{,[,] follows from below. It is easy to
see that Ty has rank one, as in Euclidean space.

In view of Theorem for fixed intensity ¢ > 0 and a sequence of growing spherical
windows, taking W = B, for r >0 we put

PO R-er)
er/2 ’ er/2

e A N

T’,t T \/’I_”CT ) \/,,_ner ) \/;e'r ° -
(0) (0) (d-1) (d-1)

Fr,t _]EFr,t Fr,t _EFr,t ) . d > 4

er(d-2) R er(d-2) . =5

o \d-1
and define the asymptotic covariance matrix g4 = (Uji])‘ _of the random vector F,;, as
17‘7:

r — oo, for d > 2 by

(4) () @) ()
: F’rtiEFrt F’rtiEFrt
lim Cov | =55, = rd=2,
(%) (ORAE)] @)
i FW-EFY) FY)-EFR
%, ._ : Tt r,t Tt r,t . _
od = i Cov| =0, =ome | =8
&) _gp)  p@)_gpo)
. FO_Ep® p9_gp
lim Cov | g, 5™ td > 4.
r—00

The covariance matrices Y4 are explicitly given by for d =2, for d =3 and (3.17)
for d > 4 below. Moreover, in Section we determine convergence rates. In particular,
we will show that Yo has full rank (is positive definite) and ¥; has rank one for d > 3. We
remark that this is in sharp contrast to the corresponding result in Euclidean spaces, where
the asymptotic covariance matrix has rank one for all d > 2, see [37, Theorem 5.1 (ii)]. Note
that the dependence of these limits on the fixed intensity ¢ > 0 is not made explicit by our
notation, but this dependence is shown in Lemmas 20, 21 and 23.

In order to state the multivariate central limit theorem, we use the ds and the ds distance
for random vectors (see Section for explicit definitions).

Theorem 3.1.7 (Multivariate CLT). (a) Let d > 2 and W € K. Let Nr, be a d-
dimensional centred Gaussian random vector with covariance matriz Tyy. Then there

exists a constant ¢ € (0,00) such that
dg(FW,t, NTW) < Ct_1/2

for all t > 1.
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(b) Fixt>1 and let d=2. Let Nx, be a 2-dimensional centred Gaussian random vector with

covariance matrix Xo. Then there exists a constant co € (0,00) such that
dj(Fyi,Ns,) <car e T2

forallr>1 and je{2,3}.

(c) Fixt>1 and let d=3. Let Nx, be a 3-dimensional centred Gaussian random vector with
covariance matriz 3. Then there exists a constant cs € (0,00) such that
dg(Fnt, N§33) <cs 7“_1/2
forallrT>1.
Remark 3.1.6. After having seen that in the univariate case the central limit theorem for
d > 4 can be preserved by a simultaneous growth of the intensity ¢ and the radius r, the

question arises whether such a phenomenon also holds in the multivariate set-up. This is in

fact the case, but we decided not to present the details for brevity.

3.2 PROOFS I — EXPECTATIONS AND VARIANCES

3.2.1 REPRESENTATION AS A POISSON U-STATISTIC

We recall that n;, for t > 0, is a Poisson hyperplane process in H¢ with intensity measure tpq_1.
Moreover, for a Borel set W c H? and i € {0,1,...,d - 1} we recall from (3.1) the definition of

the functional Féé)t. To shorten our notation we put

£ H,.): ﬁ%i(ﬂlm...de_imW) cdim(Hy n...nHy_;) =1,
1y+--y4dd—g) =
0

: otherwise,
which allows us to rewrite F‘Sé)t as
Ry, = > FOHY, .. Hyy).

(Hi,oHai)eng !

In other words, F‘Sé)t is a Poisson U-statistic of order d—i and with kernel f(. Tt is well known
(see [64, (59, 160, (65, 96]) that Poisson U-statistics admit a Fock space representation having
only a finite number of terms. This leads to the variance and covariance representations
() _ & j2(di )2
Var(Fy) = Y 240l 015, (3.5)

n=1
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where the functions féi) :Ap(d,d-1)" - [0,00) are given by

. d—i . N N

O(Hy,..., H ::( )[ O(Hy, ... Hy Hy,... Hy i

fn ( 1, ) n) n Ah(d,d—l)d*i*nf ( 1, s Ly L1, s Hdd—g n)
A i),

recall (2.9), and we write | - ||,, for the norm in the L-space L?(u”_,) with respect to the n-fold
product measure of pg_1. Similarly, for 4,5 € {0,1,...,d -1} the covariance (COV(FIE;)“F(] 1)

can be represented as

@) ) min{d-i,d-j} o ) )
Cov(Fy), Fygp) = % 27570 £, (3.6)
n=1

where (-, - ), denotes the standard scalar product in L?(u% ;).

3.2.2 EXPECTATIONS: PROOF OF THEOREM

Theorem is a consequence of the transformation formula in Lemma and the Crofton
formula in Lemma with k& = ¢ there. In fact, using (2.6) we obtain

EF(i):tdﬁf O(H,, ..., Hy d(Hy,... Hy i
Wit Ah(ddl)dzf (Hi, a-i) gy (d(Hy, . Hy )

_ (dtd_;)' /Ahw_l)d—i Hi(Hy 0.0 Hyy 0 W) =t (d(Hy, . Haos))
i) s [ HE W) ()
=c(d, 1) (dd Z) HAUW)
. d—i d—i
o) (dt—z')! W),
and the proof is complete. O

Remark 3.2.1. The measure W EFIE‘Z is isometry invariant. One could argue that it must
be a constant multiple of H?, if one knows that it is also locally finite. Theorem shows
that this is indeed the case and also yields the constant.

3.2.3 VARIANCES: PROOF OF THEOREM

To investigate the variance of Féé)t we use the representation as a Poisson U-statistic, especially
(3.5). We start by simplifying the kernel functions f,(f).

Lemma 3.2.1. Let ne {1,...,d—1i}. Let W c H? be a bounded Borel set. If Hy,..., H, €
Ap(d,d—1) are n hyperplanes satisfying dim(Hy n...n Hy) =d —n, then

féi)(Hl,...,Hn) = c(i,n,d)?—[d_"(Hl Nn...nH,nW)
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with
c(iyn,d) :=

(d:) Wil (Wae1 |
(d—1i)! wg—n+1 ( wq ) .

Proof. We use the definition of fﬁi), the transformation formula in Lemma and the
Crofton formula (in the general form indicated before the statement of Lemma [2.4.1)).
Putting Ly, := H1 n...n Hy, this gives

_' 71 .
(d Z) FD(Hy, . Hy)
n

1 4 s . i N .
S WLgn O HL O 0 Hy o 0 W) u& (A, Hy,
T oy MmO H 00 By 0W) @ Hiion)
_c(d,i+n)
C(d-1i)! Jap(din)

(d=1)! Wisn+1 Wd-n+1

1 i d-n—i -
:(d—i)'wj+11(wd+l) HO(Hy o0 Hyn W),
: -n+

H(Lgep "W N E) ptisn(dE)

Wd

Here we used that since Ly, is (d — n)-dimensional, the intersection Ly, n W is Hausdorff
(d — n)-rectifiable. O
For the variances and covariances, we need the L?-norms and the scalar products of these

functions.

Corollary 3.2.2. Let W c H? be a bounded Borel set. If ne {1,...,min{d-i,d—-7j}}, then

S f = eldomsing) f - HEEAW)? paon ().

Especially, the choice W = B, for some r >0 yields

(PO S0 = eldmsi f)wn [ cosh(s)sinh™ () H' " (La-n(s) 0 B,)? ds,
where ¢(d,n,i,j) = c(d,d - n)c(i,n,d)c(j,n,d) and Lg_,(s) for s € [0,r] is an arbitrary
(d — n)-dimensional totally geodesic subspace which satisfies dp(Lg-n(s),p) = s.

Proof. The first claim is a direct consequence of the previous lemma and the transformation
formula from Lemma, [2.4.2

The second claim follows by combining the previous result with and using geodesic
spherical coordinates in the (d —n)-dimensional planes L;_,, through p (see [20, Proposition
3.1 and Equation (3.22)]). O

Proof of Theorem[3.1.2. This is now a direct consequence of (3.5) and Corollary O

3.2.4 VARIANCE: ASYMPTOTIC BEHAVIOUR

In this section we look at the variance of FT(? =F gg , in the asymptotic regime, as r — co. We

divide our analysis into the three different cases d = 2, d = 3 and d > 4. Before, we start with a
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number of preprations.

PRELIMINARIES
The following lemma will be repeatedly applied below.
Lemma 3.2.3. If r>0 and 0<s<r, then

cosh(r)
cosh(s)

0< arcosh( ) - (r—s) <log(2).

Proof. We start by proving the lower bound which is equivalent to cosh(r)—cosh(s) cosh(r-s) >

0. By definition of cosh, sinh and since 0 < s <7 we have
cosh(r) — cosh(s) cosh(r — s) = sinh(s) sinh(r —s) > 0.

This yields the lower bound. Next, we turn to the upper bound. We use the logarithmic represen-
tation arcosh(x) = log(z+Vx? - 1) of the arcosh-function and the fact that cosh(r)/cosh(s) > 1
for r > s > 0. Then we get

h h h2
arcosh [ SSN) _ 1 g) < pog [ XN LD )
cosh(s) cosh(s) \ cosh?(s)
s 2s 2 2s
~log e® cosh(r) N cosh2(7") e
e cosh(s) e?r cosh®(s) €2

~log e(e" +e™) . \} e2s(em +e )2 e2s

er(es +e7%) e2r(es+e)2 e

=1
Bl 1Ty e2r(e?s + 2 + e729)

o [ LT e ?r \/1 +e7dr — 2572 _ o—ds
S\1ve2s 142728 + e72572r

<log(2),

14e2r \J e25(e2r +2 4 =2 — 25 — 2 — =25)
+

where the last inequality holds because both terms in the argument of the log function are
bounded from above by 1 for s € [0,7]. O

Moreover, we frequently apply the following upper and lower bounds for H*(L;(s) n B,). As
before, let L;(s) denote an arbitrary measurable choice of an i-dimensional totally geodesic
subspace satisfying dj(L;(s),p) = s, i€ {1,...,d—1}. The following lemma concerns the case
i€{2,...,d-1}.

Lemma 3.2.4. Ifie{2,...,d-1} and 0 < s<r, then

'Hi(Li(s) NnB,) < w—ile(r_s)(i‘l).

7 -
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If, in addition, 0 < s <r—1/2 then

B GO GE VP TS
63(i‘1)(i—1)e <H'(Li(s) n By).
Proof. We start by noting that L;(s) n B, is an i-dimensional hyperbolic ball of radius

arcosh (EEZEES) forie{1,...,d—-1}, see [92, Theorem 3.5.3]. Thus we get

h cosh(r) )

i arcosh(E3565) 5
H'(Li(s) N By) =w; fo sinh"™* (u) du (3.7)

forie{1,...,d-1}. Hence, using Lemma and for i€ {2,...,d -1} we get

. r—s+log(2) 1
H'(Li(s) n B,) <w; [0 sinh"™* (u) du

< w; fr—s+log(2) eu(i—l) du
— 2=l Jo

Wi i-1_(r-s)(i-1)
< ——=2
Sori(i-n” ¢
= Wi (=),
1—-1
On the other hand, Lemma and Lemma imply that

”Hi(LZ-(s)ﬂBT)Zwifo ssinhi_l(u) du
s s e [ s ) a
= wj > sin u) du+t J - sin u) du
r—s [ oW\ 1 1/2 .
ZCUi(/ (6—3) du+f u't du)
12 \e 0

L Wi () _en2) L i
e3G-1) (- 1) (6 € ) " 2 4
_ Wi res)(inD)
2 63(1’—1)(2' _ 1) € ’
where we used that s <r—1/2 to obtain the equality in the third line. The last inequality is

due to

lﬂ_ Wi = () L_ 1 >0
2 GG (i—1)  T\i2i  eGmGEN(i-1))

The positivity of the last term holds for i > 2, since 2/*! < eG/2-1) implies that
coi—1 i
2l < ——— B
i

which is equivalent to the desired inequality. ]

We will need later the following lemma.

Lemma 3.2.5. Let r > 1. For ke {0,1,...,d-1} and 0 < s <r, let Ly(s) € Ap(d, k) be a
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k-dimensional totally geodesic subspace such that dp(Ly(s),p) =s. Then for any l € N there
exist constants ¢, C >0, depending only on k,l and d, such that

cg(k,l,d,r) <wig [Or cosh”(s) sinh®™1 7% (s) H*(Ly(s) n B,) ds

k l
= H*(HnB,) u(dH) <Cg(k,l,d,
f,L(d,k) ( ) k:( ) 9( 7‘)

with
exp(r(d-1)) :l(k-1)<d-1,
g(k,l,d,r) = rexp(r(d-1)) :l(k-1)=d-1,
exp(ri(k-1)) :l(k-1)>d-1.

Proof. The asserted equality of the two integral expressions is clear from the argument for the
second claim in Corollary

For k£ = 0 the integral is just the volume of a geodesic ball of radius r which can be bounded
from above and below by a positive constant times exp(r(d-1)).

In the following, we repeatedly use that the intersection Li(s) n B, is a k-dimensional
hyperbolic ball of radius arcosh(cosh(r)/cosh(s)). The constants ¢ and C used in the calcula-
tions below only depend on k,[,d and may vary from line to line. Suppose that k£ > 2. The
substitution u = — s and an application of Lemma yield

for cosh®(s) sinh 7% (s) H* (Ly(s) n B,)  ds

= [OT cosh”(r — u) sinh™ 7 * (r —w) H* (L (r - u) n B,) du

cosh(r) )

" arcosh
= fo coshk(r —u) sinhd_l‘k(r — ) (wk —/0 (COsh(rfu)
!
< C[rek(r—u) (d-1-k) (r-u) (2_(k_1) fu+10g(2) (k1o ds) .
0 0

, l
< Cf o(d=1)(r-u) ( 1 €(u+log(2))(k—1)) du
- Jo k-1
< Cer(@D) /Teu(l(k:—l)—(d—l)) du
0

<Cg(k,l,d,r).

l
sinh® ™1 () ds) du

To obtain the lower bound, we first show for u > 0.2 that

/usinhkfl(s) > fusinhkfl(s) ds > fue(kfl)(sfi’») ds
0 0.1 0.1

o-3(k-1)

k-1
O-1(k-1)

>
k-1
O-1(k-1)
>

(e(m)u _ eo.l(kfl))
o-3(k-1) (e(k%)(w&l) - 1)

o301 L (k-1)(u-01)
k-1 20
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Now we substitute again u =7 —s. An application of Lemma and the lower bound from
Lemma then yield

AT cosh”(s) sinh®™1 7% (s) #* (L (s) n B,) ds

= for cosh®(r —u) sinh™ % (r — u) H*(Li(r - u) n B,) du

cosh(r) )

" arcosh -
= f COShk(T —u) sinh®™1 7% (r - w) (wk f (°°Sh(’ )
0 0

r—0.1 U l
ZC/O h(r=w) g(d-1-k)(r-u-3) (/0 sinh*1(s) ds) du

0

!
sinh*1 () ds) du

r(d-1) [T

0.2

r—0.1
— Cer(d—l) eu(l(k—l)—(d—l)) du

0.2
>cg(k,l,d,r).

1
> ce e-u(d=1) J(k=1)(u-0.1) 7.

For k =1, the proof is almost the same except that we simply use that /" sinh*"!(s) ds = a for
a>0. O

THE PLANAR CASE d =2

Although we present a very detailed covariance analysis in Section we will separately
investigate the asymptotic behaviour of the variances in Lemmas [3.2.6]— In fact while the
results of Section are necessary for the multivariate central limit theorems, the variance
analysis we carry out here is already sufficient for the unvariate cases. In this and the following
two sections, ¢; will denote a positive constant only depending on the dimension and a counting
parameter i € Ng. If it additionally depends on another parameter n € Ny, we indicate this by
writing, for instance, ¢;, or ¢;(n). The value of this constant may change from occasion to

occasion.

Lemma 3.2.6. Let d = 2, i € {0,1} and t > to > 0. Then there are constants
D (2,t0),CD(2,t0) € (0,00) such that for all > 1,

(2, t0) 3% e < Var(Fr(?) <CW(2,t0) 3% ¢
Proof. For i€ {0,1} and n =1, Corollary and Lemma yield
o7 @y2 _ . ! 1 2 o
cie" <||fy i =q fo cosh(s)H (Li(s)n B,)" ds < C;e".
Similarly, for 7 =0 and n = 2 we obtain

”fQ(O) Hg = ¢ [OT sinh(s)H(L1(s) n B,)? ds = cg /OT sinh(s) ds = co( cosh(r) - 1).
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From (3.5) we now deduce that
c(t? +t3)e" <ertPe” + eate < Var(Fr(g)) <etde” + cot?e” < C (12 + t3)e".

Using that t >ty > 0, the assertion follows for ¢ = 0. The case ¢ =1 is obtained in the same way,
but requires bounds for only one summand in (3.5). O

THE SPATIAL CASE d =3

Lemma 3.2.7. Let d = 3, i € {0,1,2} and t > to > 0. Then there are constants
D (3,t0),CD(3,t0) € (0,00) such that for all > 1,

(3, t0) 7 re? < Var(FTE?) <CO(3,t) 7% re?.
Proof. Corollary and Lemma imply the upper bound

Var(F)) = 3 1072l 02 = 6772 70 < 72 e
n=2

It remains to determine the asymptotic behaviour in r of the terms | f2i)H% and | fgi)Hg.

Corollary and Lemma yield
cie’ < ||f2(i) |12 < Cie* and cie’ < ||f3i) |2 < C;e®.
To deduce the lower bound, it is sufficient to derive a lower bound for the term | fli) |2. But
Var(Fr(;)) > t5_2in1(i) |2 > c; t7 2 re®.

This completes the proof. ]

THE HIGHER DIMENSIONAL CASE d >4

Lemma 3.2.8. Let d>4,i€{0,1,...,d—1}, and t >ty > 0. Then there are positive constants
D (d,tg), CD(d,tg) € (0,00) such that for all 7> 1,

C(i)(d7 to) (2(d=i)-1 2r(d-2) VaT(Fﬁ)) < C(i)(d’ to) 42(d=i)~1 2r(d-2)

Proof. Combining Corollary with Lemma we obtain

) d—i _ ) min{d-2, d-i} )
Var(FT(;)) - Z 2(d=i)-np) ||f75’) ||,21 < Z Cin {2(d=i)-n g(d—n,2,d,r).
n=d-1 n=1

For n =1 <min{d-2, d-i}, we have g(d—1,2,d,r) < C; exp(r2(d-2)), since 2(d—2)—(d-1) =
d-3>0. If2(d-n-1)-(d-1)=d-1-2n>0, then g(d-n,2,d,r) < g(d-1,2,d,r). For
the remaining cases, we use that exp(r(d—1)) is of lower order than exp(2r(d -2)) for d > 4.

Moreover, as in the case d = 3 it follows that | féi)l |2, and | f di) |% are of order at most e"(?1).
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This yields the upper bound.
The lower bound is again derived by just taking into account | fl(z) |# and by applying the
lower bound ¢g(d-1,2,d,7) > ¢; exp(r2(d - 2)) from Lemma O

3.2.5 COVARIANCE ANALYSIS

In this section we prepare the proof of Theorem by an asymptotic analysis of the covariance

structure of the random vector F,; in dimensions d =2 and d = 3.

THE PLANAR CASE d =2

The following lemma describes the rate of convergence, as r — oo, of the suitably scaled

covariances to the asymptotic covariance matrix X; = (o’ g,;io for d = 2.

Lemma 3.2.9. Let d=2 and t >ty >0. There is a positive constant c.on(2,to) € (0,00) such
that if r > 1, then

20 _pp) p() _gp) y
rt i it nt < Cco’U(Qa tO) t3—z—jr2€—7” Z’] € {0’ 1}

i7j b
oy’ —Cov
? ( er/? ’ er/?

Moreover,
2((4)2 1 8 42
s = t ((;) ta+;) ;ta
9= 8 . (3.8)
—ta 4ta

and a =4 - G with Catalan’s constant G ~ 0.915965594. In particular, o is positive definite
with det(Xg) = %t‘ga.

Proof. Since F,; is a vector of Poisson U-statistics the covariance representation (3.6) shows
that, for 4,5 € {0,1},

D, fD)

FO B B BR\ i
Cov o , o =e

n=1

and it remains to compute the scalar products. Using (3.7) and Corollary we get

cosh(r) .
cosh(s)) d

( 1(i)> l(j)>1:c(2,1,i,j)-2-4/0 cosh(s) arcoshQ(

' h
= 6(2,1,7;,]') 24f COSh(T‘—S) arcosh? M ds
0 cosh(r - s)

i r 1 -2r
- cg ) /0 (" + ") arcosh? (es (—1 +J;26(S_T) )) ds
with cgi’j) =4-¢(i,1,2)c(4,1,2). We have ¢(0,1,2) =2/7 and ¢(1,1,2) = 1, and hence

2 2
cgo,o) :4(2) _ (ﬁ) 7 Cgl,l) _4, cgl,o) 2050,1) :4.2 _ §

™ ™ ™ ™
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Furthermore, again by Corollary
(O A57)2 = e(2:2,0,) -2 [ sinh(s)ds = S0 (74 7 -2)
with cgi’j) = (2/m)e(i,2,2)c(7,2,2). In particular, céo,o) =1/(2x). In the following, we use that

b (e (257 ) < arcosh () < 5 + log(2 3.9
arcosh | e”| -——— | | <arcos (€%) < s +log(2). (3.9)

For (i,7) € {(0,1),(1,0),(1,1)} we then deduce from the dominated convergence theorem that
-2r
Qg _ yir (1) 3-imj [T —s , _-2r+s of s Ll+e
oy rllglo eyt ; (e +e ) arcosh (e (—1+62(S_r) ds

= cgi’j)t?’*i*j f e~ % arcosh?(e®) ds = cgi’j)t&i*j -a
0
and, in addition we have

0,0
03,0 (0, )t3

- (0,0)
=q 5

ca+2t%¢

Since a = 4-G by the following Remark we obtain the specific values of a;’j for i,7 € {0,1},
and hence the determinant of the asymptotic covariance matrix o given in (i

Next we prove the asserted rates of convergence. For (7,5) € {(0,1),(1,0),(1,1)}, we get

o (FD-BED EQ xRy
2 er/Q ’ er/?
-2r
|65 3= (i) 3-imj /‘T —s , ~2r+s of sf Lte
cy Ut a-cy 't ; (e +e ) arcosh (e (1+e2(s_r) ds
i . r 1 —2r
ch ’j)t‘q’_z_]fo e’ (aurcoshQ(es)—aurcosh2 (es(%))) ds (3.10)
-2r
(i,3) 1 3—ij fr ~2r+s of s L1+e
+e 7t ) € arcosh (e (1+62(S_T) ds (3.11)
+c§i’j)t3_i_j/ e~% arcosh?(e®) ds. (3.12)

Applying the second inequality in (3.9) to the expression in (3.12) we get
f e *arcosh?(e®) ds < f e *(log(2) + 5)* ds < crie™. (3.13)
T T
Using (3.9) for the expression in (3.11)) we obtain

r 1 —2r r
[ e~ arcosh? (es (%)) ds < [ e” 2% arcosh? (¢*) ds
0 + e\ 0

S/O e 25 (s +1og(2))% ds

<crfe™. (3.14)
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Finally, we treat the expression in (3.10). An application of the mean value theorem in the
first and (3.9) in the second to last step yields

r 1 -2r
fo e’ (arcoshg(es) — arcosh? (es (%))) ds

r 1+ -2r
< [ e[ lef—es | 28— max i(3urcosh2(z)) ds
0 1 + 2(s-1) Ze[es( Tre—2r ) ﬁ]dz
e2(s-r)
2(s-r) -2r s
rfe —e 2arcosh(e
< [ )
0 1 + BQ(S_T) es+672r+5 2
-1
( 1+e2(s-7) )

_ /”e_gr (628 _1) 2 arcosh(e®)
0 \/62S

1 + e2(s-2r) _ g=4(r-s)
2 h(e®
arcosh(e®) s

f —2T 1)

1/ e2s _
[0 Ve?s — 1 arcosh(e®) ds

<ce '[Or e®(s+1og(2)) ds

<cre . (3.15)

Thus, a combination of (3.13)), (3.14) and (3.15]) yields the result for (¢, ) € {(0,1),(1,0),(1,1)}.

Finally, if (i,7) = (0,0) we obtain the result by additionally taking into account that

|c§0’0)(1 +e M _2e7) - cé0’0)| <ce .

This completes the proof. ]

Remark 3.2.2. The relation a = 4G can be confirmed by Maple. It is not clear to us how
Maple verifies this relation. Since we could not find the current integral representation of the
Catalan constant in one of the lists available to us, we provide a short derivation. We first
use the substitution ¢ = exp(—arcosh(e®)) or e® = %(t‘1 +1) and then expand (1 +#%)72 into a

Taylor series under the integral sign. This leads to

oo 2
a= [T e arcosh(eh) = f (1 2)2(lnt dt—2/ Zo 1Y+ 1) (1 - £2)(Int)? dt.

By the substitution ¢ = e¥ we obtain

1. 2
P (nt)dt = ————.
fo (Int) (2i+ 1)
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Hence we can interchange summation and integration to get

a=1(SC0 6D G v -5y <z+1>( )
:4( Z( )’ ) ( G+1)+= Z( 1)’(2 +3)3)
24(§G+§G+§—%)=4G

THE SPATIAL CASE d =3

Now we turn to the case d = 3 and again describes the rate of convergence, as r — oo, of the

5 \d—1

suitably scaled covariances to the asymptotic covariance matrix 3y = (0" 4 Jij=o-

Lemma 3.2.10. Let d=3 and t >ty >0. There exists a positive constant cqu(3,to) € (0, 00)
such that

F -EF B -EFY 5-inj -1
Couv| - L L < caon(Bt0) 7T, i€ {0,1,2),

Jrer Vrer

for r > 1. The matrix X3 has rank one and is explicitly given by

2
7I'_8t5 7T_t4 214t3

2 26
D=2 | Tt T Ze? ] (3.16)
0 Pt

Proof. For i,j €{0,1,2}, the covariance formula for Poisson U-statistics yields that

e T > O, 1),

n=1

(i) 0) pG) (5) min{3-i,3-j
(:ov(F” -EF,) F,} -EF,; ):7’1627" {3-i,3-j}

As in the planar case d = 2 we compute the scalar products. We let La(s) be a 2-dimensional
subspace in H? having distance s > 0 from the origin p. For n = 1 Corollary and Equation

yield

<f1i)7 1(])>1 = ch(Sv 177’7-7) ATCOSh2(S) H2(L2(5) n BT)2 ds

cosh(r) )

r arcosh e
= wiwic(3,1,1,5) f cosh?(s) (/ (6
0 0

r cosh(r) 2
= wiw1c(3,1,4,5) [ cosh?(s) -1 ds
0 cosh(s)

=w§wlc(3,1,i,j)f0 (cosh(r) - cosh(s))? ds

1
= wawic(3,1, i,j)§ (7 + 2r cosh?®(r) - 3sinh(r) cosh(r)).

2
sinh(u) du) ds
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In addition, using Lemma and Lemma we obtain

( z(i), Q(j))zéce% and ( ?Ei), éj))3<cegr.

Since ¢(3,2) =1, ¢(0,1,3) = /16, ¢(1,1,3) = w/4 and ¢(2,1,3) = 1, we obtain ¢(3,1,0,0) =
72)28, ¢(3,1,0,1) = w2/25, ¢(3,1,0,2) = 7/2%, ¢(3,1,1,1) = w%/2%, ¢(3,1,1,2) = 7/2? and

¢(3,1,2,2) = 1. Moreover, we have

r—00

ob? = lim 27 wlwie(3, 1, z‘7j)§ rle?r (r+2r cosh?(r) — 3sinh(r) cosh(r))
. 1
=27 wlwie(3,1, i’j)é_l
=7 272 ¢(3,1,1, 5).

Therefore we conclude that the asymptotic covariance matrix 33 is given by (3.16). Clearly,

3.3 has rank one. Moreover, we obtain

o _ Cov Fr(lt) —EF r(zt) 3 r(%) - B, r(Jt)
; e T e
< 577 472¢(3,1, 14, §) ‘1/2 - r‘le‘Qr(r +2r cosh?(r) — 3sinh(r) cosh(r))‘
min{3-4,3-j5} o ) .
+r e > 0= T(LZ)7 7’(L])>n
n=2

< Ceon(3,t0) 27 7L

where we used that [1/2 - r~'e™?"(r + 2r cosh?(r) — 3sinh(r) cosh(r))| is bounded from above

by a constant multiple of 7~' as r - co. This completes the proof. O

THE CASE d >4

In order to describe explicitly the limit covariance matrix ¥(d) for d > 4 we need the following

lemma.

Lemma 3.2.11. For a >0,

n[Q

)
1)'

T

foocosh_a(x) dx = VT I
0 2 I'(=

l\D|

Proof. Substituting first u = e® and then tan(z) = u, and using (tan?(z) +1)7! = cos?(z), we
get

-1

) 0o «a /2
fo cosh™*(z) dx =2 fl (UQQLT)Q du = 2¢ fﬂ/4 sin® 1(2) cos® 1(2) dz =: I,.
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The trigonometric identity 2sin o cos « = sin(2«) and the substitution y = 2z yield

V7 T(3)
2 T(2)

w/2 /2
I,=2 f/4 sin®1(22) dz = [0 sin® ! (y) dy =

This completes the argument. O

Depending on the dimension, we will bound the speed of convergence by means of the

function
e’ 1d =4,
h(d,r) ={re™?" :d=5,
e?r :d>6

Lemma 3.2.12. Let d >4 and t >ty > 0. There exists a positive constant cqo(d,to) € (0, 00)
such that

g FY-gr% Y -mFY o
oy’ _Cov( T’er(dﬂ)n ’ T’eT(d72)T7 < Coon(d, to) 471 (d, 1),
forr>1 and any i,7 € {0,...,d=1}. The matriz X4 has rank one and its entries are explicitly
given by
Wd-1Wq

ohd = 124170 o(3,1,d) ¢(j, 1, d) i,j €{0,...,d-1}, (3.17)

49-2(d - 3)(d - 2)’
where the constants c(i,1,d),c(j,1,d) are introduced in Lemma|3.2.1|

Proof. Recall that

Fy) -EF;) F) -EF
Cov ’ : : :
e(d-2)r 7 e(d-2)r

min{d-i,d-j} . ) .
e 2d2r T pdeigeny p) gDy (3.18)

n=1

for r > 1. In a first step, we bound from above the summands with n > 2. For this, let
ne{2,...,min{d-i,d-j}}. Lemma implies that

e 20dDr (1) £ (G)) < oo 2D g o )

with some constant ¢, not depending on r. For 2(d-n-1) < d -1 we obtain from Lemma
that
cef2(d72)7dg(d -n,2,d,r) < ce(72d+4) or(d=1) ¢ o or(=d+3) ¢ ch(d,r).

Note that 2(d—n—-1) =d -1 implies that d is odd, hence d > 5, and therefore
ce_Q(d_g)rg(d -n,2,d,r) < cen(2d+4) por(@=1) ¢ (o or(=d43) ¢ ch(d,r).
For 2(d-n—-1)>d -1 we get

ce_Q(d_2)r9(d -n,2,d,r) < cer(F2d+d) g2r(d=n=1) o or(=2n+2) ch(d,r),
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since n > 2.

Now we examine the remaining term corresponding to n =1 in (3.18)). By Corollary

and we get

e~ 2(d-2)r (fl(z)’ fl(]))l

C(d7 17 Z)]) w1 r d-1 d-1 9
:WA cosh® " (s) H* " (La-1(s) n B;)* ds

cosh(r) )

_ C(d7 1)Z)j) wl r d-1 arCOSh(COSh(S)
=~ ) fo cosh® " (s) | wq-1 /0-

= C(d’ 17Z7])W1 W§71 /TCOShd_l(S)
0

e2(d-2)r
cosh(r)) g—2 k 2
-1 -2
)Z ( di)2 (d )eu(d7272k) du) ds

f arcosh( cosh(s)
X
0 =0 2 k

C(d717i7j)w1 w§_1 r d-1
T gd22(d-2)r fo cosh™"(s)

2
sinh®2(u) du) ds

(3.19)

cosh(r)

2
d-2 _ arcosh
(S () [T e )
k=0

The quadratic term in brackets in (3.19) is given by

cosh(r)

(_1)k1+k2 (d - 2) (d - 2) farCOSh(Cosh(S)) 6u1(d_2_2k1) dU1
k‘l kQ 0

(k1,k2)€{0,...,d-2}2

cosh(r)

arcosh
sh(s _9_
y f (CO ( )) eug(d 2 2k2) du2.
0

Next, we provide and upper bound for the summands obtained for (k1,k2) € {0,...,d -2}~
{(0,0)}. Without loss of generality we assume ko > 1. Then we get

cosh(r) cosh(r)

e—2(d—2)7’ \[Or Coshd—l(s) Aarcosh( cosh(s)) elt (d-2-2ky) duy Aarcosh( cosh(s)) o2 (d-2-2k2) dusy ds
(3.20)
< Ce_QT(d_Q) fr es(d—l) [r—s+10g(2) eul(d—2—2k1) du, /T—s+10g(2) euz(d—2—2k2) duy ds
0 0

0
< ce2r(d-2) fores(d—l) o(r=9)(d-2) (r=s)(d-4) g

<ce fo ) ds < ch(d,r).
for d > 5. For d =4 the third line is
ce ¥ /(; > 2 (p — s +1og(2)) ds = ce™? fo (r—s+log(2))e’® ds<ch(4,r).

Therefore we can concentrate on the summand corresponding to k& = 0 in (3.19). In the

following we will make use of the logarithmic representation arcosh(x) =log(z + V2?2 - 1) of
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the arcosh-function in order to evaluate the inner integral. Then we get

cosh(r)

2
r arcosh( —— . 5
cosh™2(4=2) (1) /[; cosh?™1(s) (fo () ¢t(d-2) du) ds

d-2 2

1| ds  (3.21)

_ cosh” 2(d- 2)(7‘) cosh(r) cosh?(r)
e 2)2 f cosh®1(s) cosh(s) + —cosh2(s) -

d-2 2
) ) ) » cosh2($) cosh(s) d-2
(d-2) 2/0 cosh™(@-3) (5) 1+\I?T(r) _(M) o

For r — oo this expression converges to a constant. To get the correct rate stated in the lemma

we observe that

(-t 7 -ert)
Cov : : : :

er(d-2) ’ er(d-2)
.. L. (,) (.) Inin{d_dvd_j} .. . .
< le,] _ e—2(d—2)r t2d—1—z—j(f11 ’flj >1| i e—2(d—2)r Z t2d—z—]—nn!<f7§z)7f7§])>n.
n=2

We have already shown that the second summand satisfies the asserted upper bound. It follows
from (3.20)) that it remains to consider

cosh(r)

2
B r d-1 arcosh( cosh(s) ) (d-2
i,J u )
°F @) [0 cosh® " (s) _/0 e du| ds
cosh(r)

2
.. ﬁ T d-1 arcosh(m) (d-2)
ij u
<oy 12 a2 (1) [0 cosh® " (s) ]0- e dul ds

(3.22)

cosh(r)

2
r arcosh
/0 cosh?1(s) (fo (cosh(s>)eu(d_2) du) ds,

Bi= $2d-1-i-j C(dalvlv])wlwg 1
4d-2

1 1
44-2 cosh2(@-2) (1)  e2r(d-2)

where we set

For the second summand, observe that

1 -2r(d-2) —2r\-2(d-2) —2r(d-1)
197 cosh @D (y @) | < (1-@ee®) @) cce :

Since by (3.21)) the integral in the second summand of (3.22) is of the order 2"(¢=2) the second

summand is at most of the order fe™2".

It remains to show the decay of the first summand in (3.22). This is done by using the

same steps as in (3.21]) and by splitting up the limit covariance a;’j . Lemma, [3.2.11| and basic
calculus show that the asserted entries of the asymptotic covariance matrix can be written in



3.2 PROOFS I — EXPECTATIONS AND VARIANCES 63

the form

ij s ® —(d-3
oy = (d-2)° /(; cosh™ (3 (s) ds.

Then we get

cosh(r)

2
. 6 r d-1 arcosh(m) (d-2)
ij "
7d 44-2 ¢osh2(@-2) (1) /o cosh®™ " (s) /0 e du| ds

where

<+ Is,

B
(d-2)?

I = /oo cosh™ (@3 (s) ds < cfe (T3,

and

p T —(d-
B g Jy o)

- d-2 i 2
o o2 14412 cosh”(s) _ [ cosh(s) s,
cosh?(r) cosh(r)
It remains to provide an upper bound for Is. For this we expand the square and use the

triangle inequality to get Iy < I3 + I4, where

I3 < " cosh-(@3) a1 1 cosh?(s) " cosh(s) d-2 cosh(s) 2(d-2) ]
3_5/0- cos (s) + " cosh2(r) cosh(r) + p—e <

<cp f?“ o5(d-3) (e(s-r)(d—z) . e(s—r)(2d—4)) ds
0
<cp e—r(d—?) AT o5 ds + Cﬁe_r@d_4) Ar eS(d—l) s < Cﬁh(d,r)’

with some constant ¢. Here we also used that

cosh(s) e’ +e™® < 2e°

= < =2e°7", 0<s<r. 3.23
cosh(r) er+em ™ er ‘ ser (3:23)

In order to provide an upper bound for I, we use the mean value theorem and the inequality
-V1-z<z, for x €[0,1], to get

22042 _ (141~ x)Q(H) <2(d-2)2%5

Hence we obtain

- 2(d-2)
r h
I, <p /[; cosh™(@3) () |22(4-2) _ (1 +41- %) ds

<cp f cosh™ (% 3)( )COSh (s) ds<cfBe fores(_d%) ds < cph(d,r),

cosh?(r)

where also (3.23)) was used. This concludes the proof. ]
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3.3 PROOFS II — MIXED K-FUNCTION AND MIXED
PAIR-CORRELATION FUNCTION

Let >0, 4,7 €{0,...,d-1} and let B c H be measurable with H%(B) = 1. Then

1
AiAj

Ky =B [ [ 10 <dp(e,y) < r} O (dy) W (da).
skel; Jskel;nB
Already at this point we see that the condition 0 < dj(z,y) can be omitted if ¢ > 1 or j > 1.

Requiring that x € skel; and y € skel; means that there exist
(Hl,...,Hd_i)Eng;i and (Gl,...,Gd_j)Eng;j

such that z e Hyn...n Hy; and y € Gy n...nGy;. However, some of the hyperplanes of
the first (d —i)-tuple may coincide with some of the hyperplanes of the second (d — j)-tuple.
We denote by n € {0,1,...,d -4} the number of common hyperplanes. Then we obtain the

representation

1 min{d-i,d-j}

)\i)‘j nZ:;) a( b n) Z Hin..nHg_;

(Hi o Hy§,G1 oG e 7970

t,*

Kij(r) =
1{0<d <r}HI (dy) H'(d
* .ﬁfm...anme...Gd_j_nnB {0 < h(x’y) B T}H ( y) 7t ( x)

with the combinatorial coefficient given by

1
n!(d—i-n)l(d-j-n)

a(d7i7j7 n) =

Note that if n = 0 we interpret the second integral as an integral over the set G1n...nGy_;Nn B
and if n = d - j we understand that the integral ranges over Hyn...n Hg_; n B. Moreover, if
i =7 =0, then the summand obtained for n = d is zero, since almost surely x,y € Hin...n Hy
and dp,(x,y) > 0 cannot be satisfied simultaneously. Hence the summation can be restricted to
n <m(d,i,7) in the following. An application of leads to

Kij(r)
. —i—j-n
= Y. a(d,i,j,n)t* f » f f
)\z‘/\j n=0 Ap(d,d-1)2d—=i—n JHin..nH4_; JH1N..nH,nG1N...Gg4_j_pnNB

x 1{0 < dp,(x,y) <} H (dy) H' (da) 12" (d(Hy, ..., Hai, Gy, Gajon))

1 m(d,i,j) o
- > a(d,i gy | /, L |
AiNj 0 Ap(d,d-1)n J Ay (d,d-1)d-i-n J A}, (d,d-1)d-i-n

1{0<d <r} M (dy) H'(d
X‘[Hm...de,i .ﬁiln...anmGlm...Gdjnt { < h(%y) T}H ( y)H( LL’)

x :us:{_n(d(Gb s 7Gd*j*n)) :ugill_n(d(H'nﬁla ceey Hd*’i)) Mgfl(d(Hlv s 7Hn))7
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where we have used Fubini’s theorem to split the integration over Aj(d,d - 1)24=%J=" in
the form Ap(d,d-1)" x Ap(d,d-1)" x Ap(d,d - 1)47™, The first group of hyperplanes
comprises the n common hyperplanes Hy, ..., H,, while the second and the third group is
associated with the (d —i - n)-tuple Hy.1,..., Hq-; and the (d - j - n)-tuple Gi,...,Gq_j_n,
respectively. We now apply Lemma successively to each of the three outer integrals.
Together with Fubini’s theorem this gives

Kij(r)
1 m(d,i,j)

= old,i,7,n)8(d,%,5,n t2d_i_j_”f f f
Aidj n;) ( 3m)B( j:m) Ap(d,d-n) JAy(dji+n) J A (d,j+n)

J i . .
<[ {0 <dn(ay) <} H(dy) B (o) 170 (AG) pien (AF) pa-n(dE)
1 m(d?’Lu])

= dv .7 .7 d7 .7 .7 t2d_i_j_nf / /
Aidj ,;) o(d,i,5,n)B(d,i,5,n) Ap(d,d-n) JAL(d,j+n) JBNENG

<[ 10 <di(ay) <} Hd) en(dF) H (dy) pon(4G) pa-n (A,
Ap(dyji+n) JENF

where 5(d,i,j,n) = c(d,d-n)e(d,i+n)c(d,j+n).

For the two innermost integrals we get

L ' i+
Ah(d,ﬂn) ‘/EOF {0 <dn(z,y) <7} H'(dx) pivn(dF)
:/ ’Hi({xEEﬂF:O<dh(x7y)sr})ui+n(dF)
Ap(dyi+n)

) /I;h(d,i+n) HZ(E n (B(y,r) N {y}) n F) ,UllJrn(dF)

Since y € F, the intersection En(B(y,r)~{y}) has dimension d—n and we can apply Crofton’s
formula to conclude that

i Wd+1Wi+1 d-n
1{0<d < 42 iy (dF) = —LEIHL qydon(p o By ).
Lh(d,i+n) /EmF {0 <dn(z,y) <7} H'(d2) pien(dF) HT(En B(y,r))

Wit+n+1Wd-n+1

Here we also used that H4"(En(B(y,r)~{y})) = H4 " (EnB(y,r)), since d—n > 1. Moreover,
since y € E the value of H*™(E n B(y,r)) is independent of the choice of E and y, and is

given by the (d - n)-dimensional Hausdorff measure

HEY (B = wyen ]0- sinh®™"(s) ds
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of a (d - n)-dimensional geodesic ball B¢™ of radius r. We thus arrive at

1 m(dﬂ/?])

. . Wd+1Wi -n -n —i—j-n
KZ](T') = Ao Z a(d,z,j,n)ﬁ(d,z,j,n)ﬁl—ﬂ’l{d (B;l )th /
17 n=0 i+n+1Wd-n+1
1 H (dy) 1140 (dG) pig—n(dE
XfAh(d,d—n) fAh(d,jm) anEnG (dy) pjn(dG) pan(dE)
1 m(d,i,j) o . W1 Wis1 den ¢ med—ry2d—imj—n
- Z a(dvlvjun)ﬁ(dvlv.%n)—?—[ (B'r' )t
)\i>\j n=0 Witn+1Wd-n+1

HBAENG) p1jun(dG) jig-n(dE).
X/z“‘h(d:d—n) [4h(d,j+n)H( NENG) ptjin(dG) pra—n(dE)

The two remaining integrals can be evaluated by using twice the Crofton formula. Indeed,
noting that for pg_p,-almost all E € Ap(d,d—n) the set Bn E is either empty or has dimension
d —n we find that

H(BNENG) ftjun(dG) ptg—n(dE
/;lh(d,dfn)/;lh(d,ﬁn)%( NENG) pjmn(dG) pig—n(dE)

Wi+n+1Wd—n+1 Ap(d,d-n) ( ) /-‘Ld—n( )
= MHd(B)

Wjtn+1Wd-n+1

Since HY(B) = 1 we finally conclude that

1 &) o o Wi Wit1Wj+1 2d—i—j-nq d-n; pd-n
KZ](T) = I Z a(dﬂ’a]an)/@(dﬂﬂ]an) P} t H (BT )
] n=0 Wy ne1Witn+1Witn+1
1 mdia) . . W3, Witr1Wj+1
= W\ Z a(d,z,],n)ﬁ(d,z,j,n) 2 .
1) n=0 Wo_pa1Witn+1Wi+n+1

.. T
X Wy_pt 247 [0 sinh?""1(s) ds.

Simplification of the constant by means of the constants given in (3.2) and Lemma
completes the proof for the mixed K-function Kj;. The formula for the mixed pair-correlation
function follows by differentiation. This completes the proof of Theorem ]

3.4 PROOFS III — UNIVARIATE LIMIT THEOREMS

3.4.1 THE CASE OF GROWING INTENSITY: PROOF OF THEOREM

The central limit theorem is in this case a direct consequence of the central limit theorem for

general Poisson U-statistics stated as Corollary 4.3 in [109] (see also [27]). o

3.4.2 THE CASE OF GROWING WINDOWS: PROOF OF THEOREM

Our strategy in the proof of Theorem (a) and (b) can be summarized as follows. The
normal approximation bound (2.10) for general U-statistics of Poisson processes is given by a
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sum involving terms of the type M, ,, which are defined in and (2.9) and which in turn
are given as sums of integrals over partitions o € II$9"(u,u,v,v). In applying these normal
approximation bounds to the Euclidean counterparts of the functionals Fr(zt it was possible to
extract a common scaling factor from each of the integrals in M, , and to treat the number
of terms, that is, the number of elements of IIS9" (u,u,v,v) as a constant, see [65 96]. In the
hyperbolic set-up this is no longer possible and each integral in the definition of M, , needs a
separate treatment. In fact, it will turn out that these integrals exhibit different asymptotic
behaviours as functions of r, as - oo. For the analysis, we have to determine explicitly the
partitions in IIS9" (u,u,v,v) and for each such partition we have to provide a bound for the
resulting integral. Since p = tuq-1, we can bound the dependence with respect to the intensity

t>1by 4(d-1) - 2(u+v) +|o| for each o € II$G" (u, u,v,v).

To show that a central limit theorem fails in higher space dimensions d > 4 is the most
technical part in the proof of Theorem We do this by showing that the fourth cumulant
of the centred and normalized total volume Fr(? is bounded away from 0 by an absolute
and strictly positive constant and hence does not converge to 0. The latter in turn is the
fourth cumulant of a standard Gaussian random variable. However, in view of the well known
expression of the fourth cumulant in terms of the first four centred moments this approach can

only work if we can ensure that the sequence of random variables
EEL)
\/Var(E$)
is uniformly integrable. We will prove that this is indeed the case by showing that their fifths

moments are uniformly bounded. This requires a very careful analysis of the combinatorial
formula (2.7) for the centred moments of U-statistics of Poisson processes.

The representation of a U-statistic will be as in Section In the following computations,
c will be a positive constant only depending on the dimension and whose value may change

from occasion to occasion.

THE PLANAR CASE d = 2: PROOF OF THEOREM [3.1.5 (A)

As indicated above, we will use the bound 1) We distinguish the cases i =0 and i = 1. In

the following, we can assume that r,t > 1.

For ¢ = 1, which corresponds to the total edge length in B, it is enough to bound Mlvl(f(l)).
For this we note that II1$5"(1,1,1,1) only consists of the trivial partition o1 = {1,2,3,4}, see
Figure (left panel). Thus, using Lemma [3.2.5, we have that

My, (fD) = thA )’Hl(HﬁBT)‘Lul(dH) <cte.

h(271
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01 01 g2 g3 g1 g2 g3 g4
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Figure 3.4.1: Left panel: Illustration of the partition in I1$9"(1,1,1,1). Middle panel: Illustra-
tion of the partitions in I1$3"(1,1,2,2). Right panel: Illustration of the partitions
in 11$9"(2,2,2,2)

Together with the lower variance bound from Lemma this yields

(1) (1)

Y _gp Yo

Dre Tt Sc%gct—me—m_
1 r

Var(F ) tet(2) e

Here we used that the exponent of ¢ is given by 4(2-1)-2(1+1)+1=1.

(3.24)

Next, we deal with the case ¢ = 0, which corresponds to the total vertex count in B,. In this
situation, we need to bound the terms My 1 (f(0), My o(f©), Moo (f@). For My 1(f©) we
can argue as in the case i = 1, since I11$3"(1,1,1,1) only consists of the single partition o1, see
Figure (left panel). This allows us to conclude that

My (@) =ct5/ HY(H 0 B ju(dH) < e3¢
Ap(2,1)

where we used that the exponent of ¢ is given by 4(2-0) -2(1+1)+1=5.

To deal with M172(f(0)) we observe that, up to renumbering of the elements, T1S9"(1,1,2,2)
consists of precisely three partitions o1, o9 and o3, which are illustrated in Figure (middle
panel). For o1 we obtain, using Crofton’s formula and Lemma

f HY(Hy 0 B2 HO(Hy 1 Ha 0 B,)? j2(d(Hy, Hy))
Ah(271)2
= [ HNH 0B HO(H 0 a0 By A (d(Hy, )
Ah(271)2

= Y(H,nB,)? H T 2
cfAhm)H( LA B, i (dHy) < ce (3.25)

Moreover, for the partition o2 we compute, using twice that H'(H n B,) < 2r for each

H e Ap(2,1) and again Crofton’s formula,
fA a0 B (H 0 B, HO(Hy 0 Hy 0 By i (A, H2)
h4;

S4’r2/ HO(Hy 1 Hy 0 By) p2(d(Hy, Hy)) < cr?e”, (3.26)
Ap(2,1)2
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and fOI' partition 03 We get
[4 (2 1)3 ’[1(111 BT‘) 7[1(112 Br‘) 7i0(111 113 Br) 7i0(112 -HS BT)M?(d(lfll,HQ,Hg))
h\4,
: L (2 1)2 1(112 BT) 7£1(-H3 B'r‘) 7i0(112 -H?) Br)ui(d(-HQy-Hd))
h\4,

< 4r? HY(H3n B,)? 1 (dHz) < cr? e’ (3.27)
Ap(2,1)

This yields that M; o(f(?) < ct® (e +2r2e") < ct®r2e” (recall that r,t > 1). Here we used that
the exponent of ¢ is given by 4(2-0) —2(2+ 1) + max{2,3} = 5.

Now we deal with the term My o( f (0)), which involves a summation over partitions in
11$9"(2,2,2,2). Up to renumbering of the elements, there are precisely four such partitions o1,
09, 03 and o4, which are illustrated in Figure (right panel). For o1 we compute

_/Ah(m)g H°(Hy 0 Hyn B)* i (d(Hy, Ha)) = (202 HO(Hy n Hy 0 B,) 12 (d(Hy, Hs))
B cfAh(z,l) H'(Hy 0 By) pn(dHy) < ce”,
where we used Crofton’s formula and Lemma Similarly, for o9 and o3 we get
[Ah(m)g HO(H, n Hyn B,)?*HY(H, n Hy 0 B,)? 13 (d(Hy, Ho, H3))
= /Ah@,ns H(H, n Hyn B,) H°(H, n H3n B,) 13 (d(Hy, Ho, H3))
B C/;lh(2,1) H'(Hy 0 Bp)? p (dHy) < ce”
and, additionally using that H°(H; n Hon B,.) < 1 for p3-almost all (Hy, Hs) € Ap(2,1)?,
[4;1(2,1)3 HY(Hy n Hyn B.)*H(H, n H3 0 B,) H(Hy 1 H3 0 B,) p3(d(Hy, Hy, Hs))

< /A P 1)37-[0(H1 N Hs mB,,)HO(Hz N Hz ﬁBr)u:f(d(Hl,Hg,Hg,))
W(2,1):

1 2 r
= H (Hsn B, dH3) < .
cfAh(Q,l) ( 3n ) Ml( 3) e

Finally, we deal with o4. Using once more that ’HO(Hl NnHyn B,) <1 for ,u%—almost all
(Hy, Hs) € Ap(2,1)% and also that H'(H n B,) < 2r for each H € Aj,(2,1), and again Crofton’s
formula together with Lemma we obtain

fA 1y PO H 0 B HOCHy 0 Hy 0 B HO(Hy 0 Han B)
h\4,
x HO(Hy 0 Hy 0 B,) pi(d(Hy, Hy, H3, Hy))

<c f 1Y (Hs 0 B,) HO(Hs 0 Hy 0 By) H(Hy 0 B,) p2(d(Hs, Hy))
Ap(2,1)2

< Y(Hyn B)? i (dHy) <cre’.
_CTfAh(zl)H( 4N B ) pui(dHy) <cre
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Altogether, this yields that Mg}z(f(o)) <ctt(e" +e" +e" +re") <ctire’, where the exponent
of t follows from 4-2-2-4 + max{2,3,4} = 4.

Combining the bounds for Mlvl(f(o)), Mlyg(f(o)) and M272(f(0)) with the lower variance
bound provided by Lemma we deduce from that

0 0
FT,(,t) - EFr{t) N VB N Brre + e

dl ————=,N|<c <ctV2pem?, (3.28)
VVar(F9) B (2)er
This completes the proof of Theorem (a). o

THE SPATIAL CASE d = 3: PROOF OF THEOREM (B)

The following lemma will be used repeatedly in deriving upper bounds for integrals. For

H € A,(3,2) we write L1(H) for an arbitrary 1-dimensional subspace in H which satisfies
dh(H7p) = dh(Ll(H)ap)

Lemma 3.4.1. Letd=3 and a,b>0. Ifr > 1, then

exp(2r) :0<a<2,
I(a,b) = fA 59 H2(H 0 B)* H (L1(H) n B,)° pa(dH) < ¢ {rb* L exp(2r) :a =2,
h\9,
rPexp(ar)  :ta>2,

where ¢ = ¢(a,b) is a constant depending only on a and b.

Proof. We use the definition (2.3) of the measure yo, Lemma and the argument in the
proof of Lemma to get

I(a,b)<c ]0- e (1 — 5 +1og 2)" ds.

If 0 <a <2, then
T
I(a,b) < ce* / (2 (s +10g2)b ds < ce?".
0

This also shows that I(2,b) < ce? r’*!. For a > 2, we get
T
I(a,b) <ce™ f e ) (r - s +log2)’ ds < crbe®,
0

which completes the argument. O

For d = 3 we need to distinguish the cases i =2, ¢=1and ¢ = 0. If 4 = 2 there is only one
partition o1 (compare with the left panel of Figure[3.4.1) and we obtain

f H2(H n B) jio(dH) < cg(2,4,3,7) < ce'™. (3.29)
Ar(3,2)

This proves that Mj 1 (f®) < cte? and together with the lower variance bound from Lemma
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and (2.10) this yields
F(z) _ EF(2) / Ar
df —2L N SC%S(:{U?FI. (3.30)
/Var(F(?)) tC( )(3)6 T

To deal with the case i = 1, we need to bound My 1(f(), My o(f1M) and Mao(fM). As in
the case d = 2, to bound M 1(f) we can argue as for i = 2 to obtain M1 (f(V) < ct®e?.
Next, we consider M o( f (1)), which requires an analysis of the integrals resulting from the

three partitions o1, o2 and o3 shown in the middle panel of Figure For o1 we compute
f H?(Hy 0 B,)* H'(H1 0 Hyn B,)? p3(d(Hy, Hy))
Ah(372)2
< fA 272 H?(Hi n B, H' (L1 (H1) n B.)H' (H1 n Hy 0 B,) p3(d(Hi, Ha))
h\9;
<cI(3,1) <ere’, (3.31)

where we used the Crofton formula and Lemma Arguing similarly for the partition oo
from the middle panel of Figure we obtain

fAh(gz)Q H?(Hy 0 B,) H*(Hyn B,) H' (Hy n Hyn B,)? i3(d(Hy, Hy))
< CfAh(s,Q)z H2(Hy n B,) H2(Ho 0 B,) H (L1 (Hy) n B,) HE (L1 (Hs) n By) p2(d(Hy, Hs))
<el(1,1)?<ce’, (3.32)
and for o3 we get
[%(3,2)3 H2(Hy 0 B,)H?*(Hyn B,)HY(Hy n Hyn B,) H'(Ha 0 Hy 0 B,) i3 (d(Hy, Ha, Hs))
< fAhm)a H2(Hy 0 B,)H2(Hy 0 B) HY (L1 (Hy) n B,) HY(Hy 0 Hy 1 B,) pi (d(Hy, Ha, Hs))
: C/Ah(3,2)2 H*(Hi 0 By) H*(Hy 0 B,)* H! (L1 (Hy) 0 By) i (d(Hy, H))
<cI(1,2)9(2,2,3,7) <cre'. (3.33)

We thus conclude that M o(f(V)) < et® (re® + e +re'™) < ct®re'.

Finally, we deal with M o(f (1)) for which an analysis of the four partitions o1, o9, o3 and

o4 shown in the right panel of Figure is necessary. For o1 we have

/, ooy (L0 H 0 B, i3, 1))
h\9

< fA (3.2)2 HY(Hy 0 Hyn B,) H'(Ly(Hy) 0 B,)? ji3(d(Hy, Hy)) < cI(1,3) < ce®,
h\9,



72 CHAPTER 3 HYPERBOLIC POISSON HYPERPLANE TESSELLATIONS

o1 092 o3
| |

o e, )

O ) 0

ocoeHm  eOHN £ enm[

Oem  ©€ON  ONDIO
| |

Figure 3.4.2: Illustration of the partition in I1$9"(1,1,3,3)

where we also used Crofton’s formula. We continue with o9 and get, by similar arguments,
fA 2y HY(H, n Hyn B.)?HY(Hy 0 Hyn B,)? 1i3(d(Hy, Hy, Hs))
h\9,
< _/A (3.2)? HY(L1(H,) n B,)*HY(H, n Hoyn B,)HY(H, n H3n B,) 3 (d(Hy, Hy, Hs))
h\9)
:cf H(Li(Hy) n B)2H2(Hy 1 By)? o (dH:)
An(3,2)
<cl(2,2) <crde.
Moreover, for o3 and o4 we have the bounds
fA (.20 H'(Hy1n Hyn B,)*H'(Hy n Hyn B,) H'(Hyn Hy 0 B,) piy(d(Hy, Hz, H3))
h\9
< C]A Gy H'(Li(Hy) 0 By)* "' (Hy 1 Ha 0 By) p3(d(Hy, Ha, Hy))
h\9
<cH3(B,)I1(0,3) <celr
and
f H'(Hy nHy 0 By)H'(Hy n H3n B,)H'(Hs n Hyn B,)
Ap(3,2)4
X Hl(HQ n H4 n B"’) :u%(d(Hla H27 H37 H4))
< fA (3200 Hl(Ll(Hl) n BT)2 HI(HQ NnHyn B;) ’Hl(Hg NnHynB,) M%(d(Hh Hy, Hs, Hy))
h\9,
:c/ HY(L1(Hy) 0 B,)? HA(Ha 0 B)? j2(d(Hy, Hy))
Ap(2,3)2

<cl(0,2)9(2,2,3,7) <cre™.

Altogether this gives Mo (f(M) < ctt (e + 13 + e + re") < ctire’™. The estimates for
My 1(fD), Myo(fD) and Mao(f(M) together with Lemma|3.2.7 and (2.10) show that

(1) (1)

F. —-EF 5 4T 5. AT 1, 4r

T/’t (;)t N SC\/t - ;%T; 21 Viire <ct el (3.34)
Var(F,.;”) c(3)e?r

Finally, we need to treat the case of Fr(fz), which requires to find upper bounds for the terms

My (fO) with (u,v) € {(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)}. We have My ;(f(¥) <ct? el
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from (3.29). To treat M o(f (0)) we need to consider the partitions o1, 09 and o3 shown in
the middle panel of Figure and to obtain upper bounds for the three integrals which

are already treated in (3.31), (3.32) and (3.33). This implies that M o(f(©) < ct? re®”. Next,

we deal with M 3(f (0)), which can be expressed as a sum over the three partitions oy, o9
and o3 shown in Figure For o1, using that H°(Hy n Hy n H3n B,) <1 for p3-almost all
(Hy, Hy, H3) € Ap(3,2)3, we have that

fA .2y H2(Hy n B,)>HO(Hy n Hyn Hz 0 B,)? u3(d(Hy, Ha, H3))
h\9,
= /A By 7—[2(H1 n BT)2 HO(Hl NnHyn Hsn B,) u%(d(Hl,HQ,Hg))
h\9;
:C[ H2(H, n B,)? pa(dHy) < cg(2,3,3,7) < e,
Ah(3,2)
where we also used Crofton’s formula and Lemma Similarly, for oo we obtain
fA (3,2)3 H?(Hy 0 By) H*(Ha 0 B;) H'(H1 0 Hz 0 H3 0 B,)? py(d(Hy, Ha, Hs))
h\9,
= fA 2y H?(Hy 0 B,)H?*(Ho 0 B,) H°(H, n Hy n Hs 0 B,) ps(d(Hy, Ho, H3))
h\9,
< C'HB(BT) I(l, 1) < ce47",
and for o3 we have that
f H?(H, n B,) H*(Hyn B,)H(H, n H3n Hyn B,)
Ah(372)4

XHO(HQmHgnH‘lmBT)Mg(d(H17H2aH37H4))
< [A 2yt H?(H,n B,)H*(Hyn B,) H°(H, n H3n Hyn B,) pa(d(Hy, Ho, Hs, Hy))
h 5

= cH3(B,) /1‘4}1(3 ? H?(Hy 0 B,)? po(dHy) < ce* g(2,2,3,7) < cre'”.

This proves that M 3(f(0) < ct® (&3 + e + re'™) < ct®rel.

The next term is Mao(f(?)). However, up to a constant, this term is the same as Mo o(f()),
which was already bounded above. This yields that My s(f(®) < ct®re?™ and it remains to
consider My 3(f(©) and Mz 3(f(?).

In order to deal with Ma 3( f(o))7 up to renumbering of the elements precisely the 12
partitions o1,...,012 in 1I$9(2,2,3,3) have to be considered, see Figure Using that
HO(Hy n Hon H3n B,) <1 for p3-almost all (Hy, Ha, H3) € A,(3,2)? we find for o1 that

fA (20 HY(H, nHyn B,)?*H°(H, n Hyn Hy 0 B,)? 1i3(d(Hy, Ha, H3))
h\9,

= /A (3.2)° Hl(Hl N Hyn B,,)Q”HO(Hl N Hon Hs ﬂBr)Mg(d(Hl,Hg,Hg)).
h 9,



74 CHAPTER 3 HYPERBOLIC POISSON HYPERPLANE TESSELLATIONS

o1 o9 o3 o4 o5 o6
| | | | |
On L0 O el | el | el | O m
om o m o O o m o O o m
omOd, om0, OO0, Ced , Ome , Ome
OmMO omMO OEMe Oed OmMme  OOe
| | | | |
(g g8 g9 J10 011 J12
| | | | |
on N Wn W 'm e . 0 O el
Om L om o0 O . mO ''me WO
ocoed ,omO, Ome , OOA , He,A  HOA
em O  OENGO OmEMO L O@A 1 OOA I OOA
| | | | |

Figure 3.4.3: Illustration of the partition in I1$9"(2,2,3,3)

Applying now Crofton’s formula, we obtain the upper bound
C[A (32: HY(H, 0 Hyn B,)3 i3 (d(Hy, Hy)) < ¢I(1,2) < ce?.
h\9,

The same arguments also lead to bounds for the remaining partitions os,...,012. As for oy,
the first step is always to bound the 0-dimensional Hausdorff measure () of the intersection
of the three planes corresponding to the last row of the partition by 1, which is a valid estimate
for ,u%—almost all triples of planes. For this reason we systematically skip this first step in our
following computations and only show how to deal with the integral of the three remaining

terms

#H! (intersection of the 2 planes corresponding to the first row)
x M (intersection of the 2 planes corresponding to the second row)

X Ho(intersection of the 3 planes corresponding to the third row).
For o9 we get
fA .2y H'(Hyn Hyn B,)H' (Hy n H3n B,)H°(Hy n Hyn Hyn B,) p3(d(Hy, Ha, Hs))
h\9

< cfA (32): HY Ly (Hy) 0 B)?HO(H, n Hyn Hy 0 B,) pia(d(Hy, Ho, H3))
h\9,

<cl(1,2) <ce™,
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for o3 we get
[4}1(3’2)4 HY(H,nHyn B,)H' (H, n H3n B,) H(H, n Hy 0 Hyn B,) pa(d(Hy, Hy, Hz, Hy))
< cfAhm)g HY(Hyn Hyn B,)H (L1 (Hy) n B,) H (L1 (H3) n B,.) pis(d(Hy, Hy, Hz))
<eI(1,1)1(0,1) <ce',
for o4 we get
-[Ah(3,2)4 7-[1(H1 N Hy nBr)2 HO(H1 NHy3nHyn Br)ﬂ%(d(H17H2,H3,H4))
< C[4h(3,2)2 HY (L (Hy) 0 B,) HY(Li(Hy) n B,) H*(Hy 0 B,) pa(d(Hy, Ho))
<cI(1,1)1(0,1) <ce™,
for o5 we get
[4h(3,2)4 HY (H,nHyn B,)H'(Hyn H3n B,)H’(Hy 0 Hyn Hyn B,.) pa(d(Hy, Hy, Hz, Hy))
< CL}L(372)3 HY(H, 0 Hyn B)H (L1 (Hs3) 0 B,)? 13 (d(Hy, Ho, H3))
<cHY(Br)1(0,2) <ce™,
for og we get
/Ah(3,2)4 HY(H,nHyn B,)H (Hy 0 Hyn B,)H°(Hy n H3 n Hyn B,) pa(d(Hy, Ha, Hs, Hy))
< 0[4]1(3’2)3 HY(H, n Hyn B,) Hl(Ll(Hg) n B,)? H%(d(Hh Hy, H3)),
which is the same as for o5 and thus bounded by e*". For o7 we have
[Ah(3,2)4 7-[1(H1 N Hy nBT)2 HO(Hl NnHyn Hy ﬂBr)Mé(d(H1,H2,H3,H4))
< cfAhm)Q HY(Lo(HL) A By HY (Ly(Ha) 0 By) H2(H 0 By) ji2(d(Hy, Ha))
<el(1,1)1(0,1) <ce’,
for og we have
[4h<3,2>4 HY (Hy,nHyn B,)H'(H3n Hyn B,) H*(Ho 0 H3n Hyn B,.) pi5(d(Hy, Hy, H3, Hy))

< /A (3.2)8 HY(H,n Hyn B,)H'(Hs n Hyn B,) pa(d(Hy, Hy, H3, Hy))
h 9,

= C'H?’(BT)2 <ce',
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for o9 we have
./Ah(3 . H'(Hyn Hyn B,)H'(H3 0 Hyn B,) H°(Hy n Hyn Hy 0 B,.) p3(d(Hy, Ha, Hs, Hy))
< -/Ah(32)4 ’Hl(Hl NnHyn B;) Hl(Hg nHyn B,) M%(d(Hl,H27H3,H4))
=cH3(B,)* <ce'
Next, for o109 we get

1 1
HinHyn B, Hin H3n B,
[4h(32)5H( 1N HynB)H (HinHsn By)
x HO(Hs n Hy n Hs 0 B,) ps(d(Hy, Ha, Hs, Hy, Hs))
“fA (3.2)3 H'(Hy n Hy 0 B,) H' (L1 (Hs) n B) H*(Hs 0 By) iy (d(Hy, Ha, Hs))
h\9;

<cH3(B,)I(1,1) <ce™
for 011 we get

H'(Hy 0 Hyn B) H'(Hz 0 Hy 0 B,
Ah(32)5 (HinHynB,)H (H3nHyn By)
x HO(Hs 0 Hyn Hs 0 B,) p(d(Hy, Ha, H, Hy, Hs))
:C\/z; (3, 2)4 Hl(HlmHQmBr)Hl(H:imH4mBr)Qu%(d(HlaH27H37H4))
h

<cHOBy) [ H (L () 0 B H (s 0 Hy 0 By) p(d(H, Hy))

- ¢H3(B,) f HY (L1 (Hy) By H2(Hy 0 By) pa(dHz) < cH3(Bo) I(1,1) < e

h(7

and for o192 we get

[4 (3,2)° 1( 1 H2 BT) 7i1(1i3 H4 ﬂBr)
h
xH (112 113 1i5 B7) Mz(d(11171i271i37H4, H5))

< cH3(B)) Ah(g ) (0 B (L (Hy) 0 By) pa(dHy) < e 1(1,1) 8 e

Altogether this yields that Ma3(f(0) < ct™ (2 +10e*) < ct” e

Finally, we deal with the term Ms;3(f (0)). This requires to consider the partitions in
1$9"(3, 3,3, 3). Up to renumbering of the elements there are precisely 11 partitions o1,...,011
of this type and they are shown in Figure The analysis of the resulting integrals works the
same way as above. Especially, we use once again systematically that HO(HynHynH3nB,) <1
for p3-almost all (Hy, Ha, H3) € Aj,(3,2)3 and apply this to the term corresponding to the last
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Figure 3.4.4: Illustration of the partition in I1$9"(3,3,3,3)

row of each of the partitions. This leaves us with integrals over

’Ho(intersection of the 3 planes corresponding to the first row)
X Ho(intersection of the 3 planes corresponding to the second row)

X ’Ho(intersection of the 3 planes corresponding to the third row),

which in turn can be bounded using Crofton’s formula, Lemma and Lemma For
this yields

H°(Hy n Hyn Hy 0 B,)? 3 (d(Hy, Hy, H.
-/f;h(32)3 ( 1 2 3 ) MQ( ( 1,412 3))
- L (3,2)3 HO(HI n H2 n H3 n BT)M%(d(HbHQ?H?))) = CHg(Br) < C€2T7
h\9
for o9 and o3 we obtain
fA (3.2)4 ’HO(H1 NHon H3nN BT)2 ’HO(Hl NHynHyn BT’)M%(d(Hla-HQaH37H4))
h\9;
= /A (321 HO(H1 N Hyn Hs nBr)HO(Hl NHynHyn Br)ug(d(H1,H2,H3,H4))
h\9)
s [ MM Hy 0 B (d(H, H)) < eI(1,1) < e
Ap(3,2)2
for o4 we obtain
/A (3.2)° HO(H, nHyn H3n B,)>H°(H, n Hyn Hs N Br)ug(d(H1,H2,H3,H4,H5))
h\9,
= /A (3.2)5 HO(H,nHyn H3n B,) H'(H, n Hyn Hs ﬂBr)ug(d(Hl7H2’H37H47H5))
h\9;

=cf H2(H, N B,)? uo(dHy) < cg(2,2,3,7) < cre®,
Ah(372)

01
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for o5 we have

f HO(HynHyn H3n B,) H°(Hy, n Hyn Hyn B,)
Ap(3,2)%
x HO(Hy 0 H n Hs 0 B,) p3(d(Hy, Ha, Hs, Hy, Hs))
< cfA oy O 0 B H (L (L) 0 B,)” po(dH) < 1(1,2) < e
h\9

for o we have

/A (3,2)4 HO(Hy nHyn Hyn B,)HO(Hi n Hyn Hyn By)
h 9,

x HO(H1 0 Hy 0 Hy By) iy (d(H, Hy, Hy, Hy))
< [A 32y HO(Hl N Hsn Hs mBr)HO(Hl N Hyn Hy ﬂBr)M%(d(H1,H2,H3,H4))
h\9,

= H'(Hy n Hon B,)? j3(d(Hy, Hy)) < ce™
[, sy M H 0 B, (A, Ha)) < cc
by the same argument as for o2 and o3. For o7 we have

f HO(H,nHyn H3n B,)H(Hyn Hyn Hyn B,)
An(3,2)°
x HO(Hy N Hyn Hs 0 B,) 3 (d(Hy, Ha, H3, Hy, Hs))
= HY(Hy n Hyn B,)? pa(d(Hy, H
¢ [, gy MU0 B, oA, Ha))

< C-[4h(3,2)2H1(H1 N Hyn B)H (L1 (Hy) n B,)? p3(d(Hy, Ho)) < ¢ I(1,2) < ce™,
for og we obtain
]Ah(?n?)S HO(H, n Hyn H3n B,)?>H(H, n Hyn Hs 0 B,) u5(d(Hy, Hy, Hs, Hy, Hs))
- Lh(3,2)5 HO(Hy 0 Hy 0 Hy 0 By) HO(Hy 0 Hyn Hy 0 B,) i3 (d(Hy, Ho, Hy, Ha, Hy))

:c/ H2(Hy 0 B,)? uo(dHy) < cg(2,2,3,7) < cre®”,
Ap(3,2)
for o9 we get

f HO(H,nHyn H3n B,) H°(Hy, n Hyn Hyn B,)
Ah(372)5
x HO(H, n Hs n Hs 0 B,) ps(d(Hy, Hy, Hy, Hy, Hs))

< C[A (3.2)? ’Hl(Hl NnHyn BT)Hl(Hl N Hj mBr)Hg(d(Hl,HQ,Hg))
h\9,

=cf H?(Hy N B,)? uo(dHy) < cg(2,2,3,7) < cre®,
AR(3,2)
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for o1y we obtain

f HO(HynHon H3n B)HY(Hin Hyn Hyn B,)
Ap(3,2)6
x HO(Hy 0 Hs 0 He 0 B,) p5(d(Hy, ..., He))
ScfA (32)4H0(H1ﬁHzﬂHsﬂBr)HQ(HzLﬂBr)Mg(d(Hl,Hz,H&Hzl))
h\9
= cH3(B,)? < cel”
and, finally, for 011 we have
f H(HynHyn H3n B,) H°(H, n Hyn Hs N B,)
Ap(3,2)6
x H(Hs n Hy 0 He B,) ps(d(Hy, ..., He))
:cfA (32)3H1(H10HgmBT)H1(H1mH4nBr)Hl(HgnH4mBr)u§(d(H1,H3,H4))
h\9,
30[4 (o0 P (L (L) 0B MY (Hy 0 Hi 0 By) (A H, H, i)
h\9
= ¢H3(B,)1(0,2) < ce™.

We thus conclude that Mz 3(f(?)) < ¢t® (6e?" + 3re?” +2¢%) < ¢t%¢. An application of the
upper bounds for M, ,(f) with (u,v) € {(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)} and the
lower bound for the variance from Lemma in (2.10) shows that

(0) (0)
d Fo -EE, 7 ¢ 3\/75264: + 3\/27597‘64T <ot 12,102 (3.35)
’Var(Fr(fz)) t C( )(3)6 Ty
and the proof of Theorem (b) is complete. i

THE HIGHER DIMENSIONAL CASES d > 4: PROOF OF THEOREM [3.1.5| (C)

In order to show that for d >4 and i =d—-1 and for d > 7 and i € {0,...,d—1} non of the centred
)

and normalized functionals Frgt converges in distribution to a Gaussian random variable, as
b

r — oo, we will argue that the fourth cumulant
—\4 —_— F(l) -F F(Z)
cumy =B(F) -3, F) e St
Var(F))
does not converge to zero, which is the value of the fourth cumulant of a standard Gaussian

random variable. We start with the following crucial, but rather technical result, which is
based on the formula (2.7) for the centred moments of a Poisson U-statistic.

Lemma 3.4.2. Letd>4,i€{0,1,...,d-1} and t >ty >0. Ifde{4,5,6} andi=d-1 orif
d>17, then

——\5
supE(Fr(;)) < o0.

r>1
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Figure 3.4.5: Left panel: The two types of (sub-)partitions in I15(1,1,1,1,1). Right panel:
Example of a sub-partition o from 1135 (4,4, 4, 4,4) with m(c) =3

Proof. We start by explaining our method by considering the case i = d — 1. In this situation

d-1 d-1)\5 d-1 d-1)\5
E(F(dl))5 _ E(Fr(t )_EFr(,t )) < CE(Fr(,t )_EFr(,t ))
(Var(FT(f_l)))PB/Q - 65T‘(d—2) )

where we used the variance bound from Lemma which is available since ¢ > ¢g and 7 > 1.
For the centred fifth moment, (2.7) implies that

EB(F-D _gpld-1))? S-lol+lol (d-1)y®5) 4 5lol+lo]
( mt mt ) Uenﬂgz 111 Ah(d,d—1)5-\0|—HoH((f ) )0 Ha-

The set 1135(1,1,1,1,1) consists only of two types of sub-partitions of {1,2,3,4,5}, which are
actually partitions, see Figure [3.4.5] The first type only consists of one partition, namely
the trivial partition, only containing the single block {1,2,3,4,5}. The second type contains
(g) = 10 partitions having precisely two blocks, one of size 2 and the other of type 3. Since the
integrals corresponding to these partitions all yield the same contribution, we can restrict our
computations to {{1,2,3},{4,5}}, for example. Thus,

(d-1) (d-1)\5 _ 9/ d-1 5
E(F -EF =t H Hn B, _1(dH
( Tt rt ) Ap(dd-1) ( ) Kd 1( )
1Ot8f 1H, 0 B,)? HE Y (Hy 0 B,)? 2., (d(Hy, Hy)).
+ ey L (HnBr)THT(He 0 Br)” iy (A(H, H2))
By Lemma we have
HEYH 0 B,)? prg1(dH) < cg(d - 1,5,d,7) < ce® (472
oy B 0B o (d) < e r)<ce
since 5(d—2) - (d—1) =4d -9 > 0. Again by Lemma we obtain

fAh(d 12 HIYH, "B} HYY(Hy 0 B,)? 42 (d(Hy, H))

<cg(d-1,3,d,r)g(d-1,2,d,r) < ce®(d72)g2r(d=2) ¢ 57(d=2)
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since d > 3. Thus we get

——\5 5r(d-2) 5r(d-2)
(%) e +e B
SrL;Il)E (Fr,t ) <c srlilla o (d-2) =< 0o.
This proves the claim for i =d - 1.
Now we fix i € {0,1,...,d — 2} arbitrarily and assume that d > 7. Furthermore, we fix an

arbitrary partition o € II35(d -4,d —4,d —i,d —i,d — i). We denote by m(o) € {2,3,4,5} the
size of the maximal block of ¢ and represent ¢ as a diagram. The elements of this diagram
are labelled a,,. Here, pe {1,...,5} represents the row number and g € {1,...,d -4} stands
for the column number. Without loss of generality we can and will assume that the maximal
block of ¢ sits in the left upper corner of the diagram of o, that is, the maximal block is of the
form {ai1,..., @)1} To each row pe{1,...,5} we associate two numbers b(p) and c(p) in

the following way. By b(p) we denote the number of elements of row p in position

(p,q) e ({1,...,m(0)} x{2,....,d=i})u({m(o)+1,...,5} x{1,...,d—i})

which are contained in a block of ¢ that has at least one element in a row below p, and we let
¢(p) be the number of elements in position (p,q) (with the same restrictions as above) in row
p not contained in any block of ¢ that has at least one element in a row below p, see Figure
for an example. Note that b(5) =0, ¢(5) =d—-1i if m(c) <5, and ¢(p) =d—-i-b(p) -1 if
pe{l,...,m(o)}. Our task is to show that the integral (in symbolic notation)

j::f...f((f(i))&%)a
:f...ff(i)(Hl,Gl,...,Gb(l),Klyu-ch(l))
PO PO D) FOC ) paa () ..

is bounded by a constant multiple of €’(*2)" which is the order of (Var(Fr(;)))E’/ 2. We
first integrate with respect to the hyperplanes Ki, ..., K.), which do not appear in any
of the arguments of the other four functions f(?(...). By Crofton’s formula this gives
cHEI (B, n HinGin...nGyy). Now we replace HinG1n...nGyy by a (d-1-b(1))-
dimensional subspace Lg_;_y(1)(s1) having distance s1 = dj,(Hz,p) from p. This leads to

HIP (B A HinGin...nGyy) <HTTP D (B0 Loy p)(s51))- (3.36)
Then G, ..., Gy are active integration variables for rows below the first row. Repeating the
same argument for p=2,...,m(o), we arrive at (again in symbolic notation)

S [ [HTIOB, A Ly (50)-HTH O By A Ly oy (1))
< SO O ) paa(di)

where f(V)(...) appears 5 — m(c) times. From now on we distinguish the following two cases:
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(a) there is no block that contains precisely two elements from the rows below m(o),
(b) there exists a block that contains precisely two elements from the rows below m(o).

We start by treating case (a). If m(o) = 2, then all blocks of o have two elements. In particular,
no element of row p > 3 can be in a (2-element) block with another element in a block below.
Hence, we have ¢(p) =d —i for p > 3. If m(o) = 3, then an element of row p = 4 cannot be in a
common block with an element of row 5 due to assumption (a). Hence ¢(4) = ¢(5) = d—i. This
shows that ¢(p) =d—i for pe {m(o)+1,...,5}. We can thus carry out the 5 —m(o) integrals
involving the functions f (i)(. ..), which by Crofton’s formula and Lemma leads to the
upper bound

HY(B,) ™) < cGmeNd-1)r (3.37)
The only remaining integral in .# is
F = j(;r cosh® (s) HI P M(Br 0 Loy (1) (8))=HT MO (B0 Ly 1oy (5)) ds.
To proceed, we define for p e {1,...,m(c)} the function

e(r=s)(d-2-b(p)) . g_1— b(p) > 2,
gp(S) = 7(d2), r—s+log(2) :d-1-b(p) =1,

1 :d-1-b(p) =0.
Then, Lemma 1} and Lemma imply that
F <ee™ED o ith = fo " cosh®L(s) 91(8)Gm(o) () ds. (3.38)
We let
Zoy={pe{l,...,m(0)}:d-1-b(p) €{0,1}},
Zy={pe{l,....m(o)}:d-1-0b(p) =1}.
Then
m(o) r
H <o I ER T M0 [T 1og(2)) e ds, (3.39)
where the exponent F is given by
m(o)
E:=(d-1)-(d-2)(m(o) = |Zul)+ 3. b(p).
p=1,p¢Z01

If E <0 the integral in (3.39) is bounded by a constant times Pl In view of (3.37) and (3.38)
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we conclude that

m(o)

7 < 06(5—m(0))(d—1)7" em(a)(d—Q)r e_(d_Q)‘Z(“'T_T ZP:11P¢Z01 b(p)r|Zl|, (3.40)

5(d-2)r

In order to bound .# from above by a constant times e , we use the decomposition

e5(d72)r _ e(5fm(cr))(d71)r em(o)(d72)r 67(57m(0))r' (341)

A comparison of the exponents in (3.40) and (3.41) shows that if E <0, then it is sufficient to
prove that

m(a) >5-m(o) :if |Z1]=0,
(d=2)|Zoul+ 3 b(p)
p=1,p¢Zo1 >5-m(o) :if|Z;|>0.

If |Zo1| > 0, then (d - 2)|Zo1| >4 > 5-m(o) for d > 6. If |Zp1| = 0, then also |Z;] = 0,
and in this case it is sufficient to show that Z;lz(la) b(p) >5—-m(o). To see this, note that,
for any m(o) € {2,...,5}, under condition (a) we know that for 5 —m(c) of the positions
(p,q)€{1,...,m(0)} x{2,...,d—1i} there has to be a block containing the element at (p,q)
and exactly one element at (p',¢') € {m(o) +1,...,5} x{1,...,d -1}, since each row has to be

visited by some block. But this implies the required inequality.

Next, suppose that E = 0. Then the integral in (3.39) is bounded by a polynomial in r of
degree at most |Z1|+ 1 and another comparison of exponents in (3.40) and (3.41) implies that
in this case we need to prove that

m(o)

(d-2)[Zn|+ >, b(p) >5-m(o). (3.42)
p=1,p¢Zo1

Using the assumption that £ =0, we see that in this case

m(o)

(d=2)|Zo|+ . b(p)=m(o)(d-2)-(d-1).
p=1,p¢Z01

This shows that the inequality in (3.42)) is equivalent to (d —1)(m(c) - 1) > 5, which is always
satisfied for d > 7.

Finally, we suppose that E >0 in which case a comparison of the exponents in (3.40) and
(3.41) shows that we have to verify that

m(o) m(o)
(d=2)Zoil+ >, b(p)-(d-1)+(d-2)(m(o)=|Znl) - ) bp)=25-m(o).
p=1,p¢Zo1 p=1,p¢Zo1

After simplification, this is equivalent to (d —1)(m(o) — 1) > 5, which holds for d > 6. This

completes the argument in case (a) for d > 7.

We turn now to case (b), where we have to distinguish the sub-cases m(o) =2 and m(o) = 3.

We start with the case m(o) = 2. Then, arguing as at the beginning of the proof for case (a),
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we have
I <c I IHYB,)

with
Sj= fo cosh™™! (s) HT1HED (B, Ly 1-5(2j-1)(5)) HEED (B, Ly 1 p(25)(5)) ds

for j € {1,2}, where b(i) = b(i) for i € {1,2,4} and b(3) = b(3) - 1 > 0. Moreover, without loss
of generality, we can assume that b(1) > 1. Similarly to (3.38)), for j € {1,2} we get

Ji < ez(d_Q)r,%/j with K = /(; coshd_l(s)g%,l(s) g2;(s) ds.
For j e {1,2} we let
Zg = {pe{2j-1,2j} :d~1-b(p) € {0, 1}},
Z]={pe{2j-1,2j} :d-1-b(p) = 1}.

Then

—r(d-2)|Z2 |-r 5% S b(p) ;
K <ce O T, f (r— s +log(2)) 4l 5B ds, (3.43)
0

where the exponents E;, j € {1,2}, are given by
) 2j _
Ej=(d-1)-(d-2)2-1Z5D+ > b(p).
p=2j-1,p¢Z},
We will show that 7] is bounded by a constant multiple of e and % by a constant. Then
we can conclude that

I < ce(d_l)rjle < celdDrdld=-2)r —r o 5(d=2)r

We first consider .#1. For E; <0 the integral in (3.43) is bounded by a constant multiple of

rlZil. Therefore it is sufficient to compare the exponents and to show that

2 >1 |21 =0,
(@-2iZhl+ Y W) 1
p:l’p$Zél > 1 . |Z1| > 0.

Since b(1) > 1 and d > 4, this is satisfied.

Next, suppose that E7 = 0. In this case, the integral in (3.43) is bounded by a polynomial in

r and we have to show the inequality

2

(d-2)Zul+ > b(p)>1. (3.44)
p=1,p¢Z},
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Using the assumption that E; =0, we get
2
(d-2)|Zu|+ > bp)=-(d-1)+2(d-2)=d-3
P:17P¢Z31

Hence (3.44) is true for d > 5.
Finally, we suppose that Fq > 0. Then we have to show that

2 ] 2
(d-2)[Zx+ > bp)-(d-1)+(d-2)2-|Znf)- > bp)>1.
p=1,p¢Z}, p=1,p¢Z};

After simplifications this is equivalent to d > 4.

Now we prove that J#5 is bounded by a constant. For Fs < 0, a comparison of the exponents
in (3.43) shows that we need that

4 [0 :|Zf=0,
(@-2)|Z8+ > b) 2
p=3,p¢Z2, >0 :|Z{]>0,
which is trivially satisfied.
For E5 = 0 the required inequality is
2 .
(d=2)|Zgi|+ > b(p)>0,
p=3,p¢Z2

which is equivalent to —(d —1) + 2(d - 2) > 0, that is, to d > 4.

Finally, if Fo > 0 then we have to verify that

4 _ 4 _
(d=-2)ZH1+ Y bp)-(d-1)+(d-2)2-|Zn)- > b(p)>0.
p=3,p¢Z2, p=3,p¢Z2,

Again simplification yields that this is equivalent to d > 3.

Now we turn to the case m(c) = 3. Then we have
I <cI3.9
with

r 3 .
I3 = [0 coshd_l(s) H Hd_l_b(l)(Br N Lg_1-p3)(8)) ds,
i=1

T 5 T/
Iy = fo cosh®1(5s) g%d_l_b(z)(Br N Ly_q_30)(5)) ds,

where 0 <b(4) :=b(4) -1 <d—-i—-1<d-1 and b(5) = 0. We will prove that .5 < ce3(<2)" and
Iy < ce2@27 which in turn proves that & < ced(@=2)r,
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As in the proof of case (a) (and for m(o) = 3 there), we obtain
Iy < e D g with M = [0 cosh®1(s)g1(s)g2(s)gs(s) ds.

We show that 3 < c¢. For this, we proceed as before and obtain

—r(d-2)|Z3. |- 23 b r
Hz<ce rD p=1.p¢ 75, (p)f (T—s+1og(2))|Z13|63E3 ds,
0

where
Z3 ={pe{l,....3 :d=1-b(p) €{0,1}}, Z}:={pe{l,....,3:d-1-b(p)=1}

and
3

By:=(d-1)-(d-2)3-|ZgD+ Y  b(p).
p=1,p¢Z3,

If F53 <0, then

_ 3 b
23] (2|2 T E e ez, ) e

provided that

> >0 :|Zf|=0,
(@-2IZ5+ Y bo) :
p=1,p¢Z3, >0 :]Z7]>0.

This is obviously true, since |Z3,| > |Z}| and d > 4. Hence, if F5 <0, then J#; < c.
If E5 >0, then #3 < ¢ follows provided that

3
(@-DZ4]+ > bp) - By 20
P=17P¢ZS’1

The latter is equivalent to (d—2)3 - (d-1) >0, that is, to 2d > 5. Thus we have shown that

3 < ce®@2) In order to show that .7 < ce(@2) we distinguish several cases.

If b(4) < d -3, then

7, < C-[r6s(d—1)e(r—s)(d—2—5(4))e(r—s)(d—Q) ds
0

< ce2(d-2)-b@)r fres(—d+3+z3(4)) ds < ¢e2d-2r
0

If b(4) = d - 3, then
Iy < e, pper(d=l) ¢ 2(d=2r
since d — 1 < 2(d - 2) for d > 4.
If b(4) = d - 2, then

Jy < ch e (1~ 5 +10g(2))e"72) g5 < cm(@D),
0
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It 5(4) =d -1, then
Iy < cfres(d—l)e(r—s)(dfz) ds < cer(@D)
0

2(d-2)r

Thus in all cases we have %, < ce , which completes the proof. O

Proof of Theorem|3.1.5 (c). Let d and i be as in the statement of Theorem (c), and

suppose to the contrary that FT(Zt converges in distribution, as r — oo, to a standard Gaussian
random variable N. As a consequence of Lemma the family of random variables
((ng,it))4)r>1 is uniformly integrable, which implies that ]E(FT(;))4 -~ EN*=3, as r - oco. Thus,

we would also have that
——\4
cumy =R (FQ) ~35>EN*-3=0, (3.45)

as r — oo. On the other hand, from [109, page 112] we know that

My (D)

——— <cumy.
(Var(F))2

In addition, we have the following lower bound for M; 1 (f®):

Ml,l(f(i)) = opAd-1-i)+1 [A ) %d—l(ﬁh N Br)4 pra—1(dHy) > cg(d-1,4,d,7) > Ce4r(d—2)’
W (d,d—

since 4(d - 2) — (d - 1) > 0, which follows from our assumption that d >4, and since i <d -1
and t > 1. In combination with Lemma we thus find that

Mia(f0) e e
(Var(F}))z ~ (@) et

cumy > c>0,

which is a contradiction to (3.45). Consequently, the family of random variables (Fr(?)r

>1
cannot satisfy a central limit theorem as r — oo. 0

Remark 3.4.1. Let d>4andi=d-1ord>7and i€ {0,1,...,d—-1}. For such d and i
the proof of Theorem (c) in combination with [10, Corollary 4.7.19], a corollary of the

Eberlein-Smulian theorem, shows that there exists a subsequence Fr(;)t such that Fr(;)t converges

in distribution and in L* to some limiting random variable X, say. Especially this implies that
EX =0, EX2 =1 and EX™ < co for m € {3,4}. In particular, this rules out for X the classical
a-stable distributions for any 0 < o < 2 and, since we have shown that cumy(X) > 0, also a
Gaussian distribution. We leave the determination of the distribution of the limiting random

variable X as a challenging open problem for future research.
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3.4.3 THE CASE OF SIMULTANEOUS GROWTH OF INTENSITY AND WINDOW: PROOF
OF THEOREM

According to Lemma we have that, for any fixed ¢ > 1,

—\5 — O _gp®
supIE(FT(,Zt)) < 00, where Fr(zt) S

r>1

Var(F})

and where d and 7 are as in the statement of Theorem Then, taking ¢ = 1, by Holder’s
inequality it follows that

——\4 ——\5\4/5
supE(Fffl)) Ssup(E(Fr(fl)) ) < o0. (3.46)

Next, we recall the definition of the integrals M, ,(h), u,v e {1,...,m}, from that are
associated with a general Poisson U-statistic of order m € N with kernel function A. In order
to emphasize the role of the measure these integrals are taken with, we will write M, ,(h; 1)
in what follows. By definition of the integrated kernels in (2.9) we have that

Mo (fD 5 tpgy) <t* D0 (FD 5 g ) (3.47)

for any ¢ > 1 and any fixed r > 1. In fact, fui) and fqﬁi) contribute twice the factor t¥~* and
twice the factor t4=% by (2.9), respectively, and the integral in (2.8) leads to an additional

o

factor t'°!. By the choice u = v = 1 we maximize the resulting exponent and see that their

product is bounded by t4@="D*1 Indeed, if u = v = 1 we necessarily have that |o| = 1 since o

has to be connected. On the other hand, if v +v > 3 then |o| < u + v and hence
2(d-i-u)+2(d—i-v)+lo|<2(d-i-u)+2(d—i-v)+u+v

=4(d-i-1)-(u+v)+4
<4(d-i-1)+1.

Now, we apply the normal approximation bound l) to the Poisson U-statistic Fr(?
Together with 1} and the lower and the upper variance bound from Lemma this yields

(@) (@) ; .
Fr _EFT d—i M, (z);t 3
d it )t N c \/ ) (f Hd 1)

\/ Var Fr(? u,v=1 Var(Fr,t )
d—i 32(d—i-1)+1/2 @) -
sc t 2(d—i)-1 VAl] (;)ud_l)
u,v=1 t Var(Fm )
¢ N/ Myo(FD 5 pgy)

Y uv=1 Var(Fr(ﬁ))

for any ¢t > 1 and r > 1. Note that the expression in the sum has now become a function of the
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parameter r only. We can now apply for any w,v € {1,...,d—1i} the estimate

VMoo (D5 i) _ E(;?)‘l_?,
Var(F) "

from the discussion after [109, Corollary 4.3] (see also [60, Proposition 3.8]). This leads to the

bound
(7) (Z
F —IEF
E(ER) ae o fe(2T)
'\\/arF(z)

However, in view of (3.46) the last expression is bounded by ¢/v/t for all ¢t > 1 and r > 1. This
completes the proof of Theorem ]

3.5 PROOFS IV — MULTIVARIATE LIMIT THEOREMS

3.5.1 THE CASE OF GROWING INTENSITY: PROOF OF THEOREM [3.1.7 (A)

This is a direct consequence of [65, Theorem 5.2]. o

3.5.2 THE CASE OF GROWING WINDOWS: PROOF OF THEOREM (B) AND (C)
THE PLANAR CASE d = 2: PROOF OF THEOREM (B)

Our goal is to use (2.11). The first term in is bounded by a constant multiple of
72" by Lemma To evaluate the second term we have to combine the lower variance
bound from Lemma with upper bounds for the terms M;j 1, Mj 2 and Mao. In the
proof of Theorem (a) we have already shown that M;1(f®, () < ce” for i € {0,1} and
MQ’Q(f(O), ) < ere”, which implies that

MLl(e—r/Zf(i)’e—r/Qf(i)) < ce—2r e = Ce—r’
M2,2(e_7"/2f(0), e_r/Qf(O)) <cre¥e =cre.

Finally, up to a constant factor an upper bound for M1’2(6_T/2f(i), e 2O for i € {0,1}, is
given by
MLQ(e_’"/Qf(O), e""/Qf(O)), which is equal to

eferl,g(f(O)) <ce M (e"+2r%e") <erte .
Thus we conclude from (2.11) that

d3(F,4,Nx,) <c(rPem +e P arlPem2 ey core™/?,
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Since the covariance matrix Y is invertible, HE;IHOPHEQHS)}/;Q

and finite constants only depending on ¢. Together with (2.12) this also implies that

and |25 op|*/?%2]op are positive

da(F e, Ny,) s cre P2,

and completes the proof of Theorem (b). m]

THE SPATIAL CASE d = 3: PROOF OF THEOREM (c)

Our goal is again to use the normal approximation bound (2.11). By Lemma [3.2.10| the first
term in (2.11) is bounded from above by a constant multiple of 7. Next, it remains to provide

upper bounds for the terms

My for (u,v) €{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)}.

As in the planar case d = 2 all integrals which are involved have already been treated in the
proof of the univariate limit theorem. Thus, using the bounds derived in the proof of Theorem

3.1.5/ (b) we can complete the proof in dimension d = 3. o



CHAPTER 4

SPLITTING TESSELLATIONS IN HYPERBOLIC SPACES

In this chapter we investigate a splitting model in hyperbolic space. For further background
we refer to Chapter 2| We will start by formally defining the model in Section Section
and Section contain certain general properties of this process that will be needed later on.
In Section we introduce a famous geometric concept, namely the capacity functional which
is helpful for making statements about the distribution of the process. Later in Section 4.5 and
first and second order properties of functionals depending on the process are regarded. Here
we are mainly interested in the k-dimensional Hausdorff measure of the k-skeleton. Finally,
Section shows that the process is mixing.

4.1 DEFINITION OF THE MODEL

In Section we already gave an intuitive definition. In this section we define the model in a
more formal way as a continuous time pure jump Markov process. This definition is similar
to the one used for random fragmentation processes and branching Markov chains (see [7]).
For the context of splitting tessellations, it already appears in [105]. The theory of pure jump
Markov processes is introduced for example in [13| Chapter 15], [25] [54, Chapter 12], [63] p.
19, Chapter 2.5]. Recall that we denote by Hy_1[W] the set of hyperplanes, having nonempty

intersection with a window W.

Definition 4.1.1. By an isotropic splitting process (Y:)s0 in hyperbolic space inside a fized

window W we understand the continuous time pure jump Markov process on the space of
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Figure 4.1.1: A realization of a splitting tessellation inside the window W = By, represented in
the Conformal ball model.

tessellations with generator

ANM) =% [ [f(@(e, H,T)) = f(T)] par(dH)
cer JHa-1[W]
for T € T% and f:T¢ - R being a bounded and measurable function. The random tessellation

Y, will be called splitting tessellation at time t.

Remark 4.1.1. One can show the existence of such a process, as done in [13] Chapter 15,
Section 6], and its uniqueness [13, Proposition 15.38]. Also variations are possible, such as
starting with a fixed tessellation Y € T? at time ¢ = 0 instead of the whole window . Also
the splitting hyperplanes can be chosen with a different directional distribution which would

renounce the isotropy property.

4.2 AUXILIARY RESULTS

The following lemmas will be used in Section in order to show a martingale property for
certain stochastic processes depending on the splitting process. The first Lemma gives
bounds for the distribution of the number of cells after a certain time ¢ > 0. The second Lemma

4.2.2|is more technical and deals with the underlying o-fields.

Lemma 4.2.1. The number of cells in a splitting tessellation inside a window W at time
t > 0 s stochastically dominated by a random wvariable having a geometric distribution with

parameter exp(—t g1 (Hg_1 (W))).

Proof. We can interpret the number of cells |Y;| as a continuous time pure jump Markov process

in N with intensity rate

> pa-1(Ha-1(c))

ceYy
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and jump height 1. We further introduce M; as a continuous time pure jump Markov process

in N with intensity rate

M,
Z}; (pa—1(Hag-1{W)) = pg-1(Ha-1{c}))) + ;Nd—l(Hd—l<W>) 2 0,

and jump height 1. We further let the jump times of M; be independent from the ones in
[Y:| and set My = 0. Further both processes are constructed on the same probability space.
The sum of both processes |Y;| + M; is a continuous time pure jump Markov process in N with

intensity rate

My
Zi; a1 (Hg-1{(c)) + ;/ (a-1(Hg-1(W)) = prg-1(Hg-1{c))) + ;Nd—l(Hd—1<W>)

|Y}|+Mt
= > pa-1(Hg—1 (W)),
i1

i.e. a Yule-Furry process with birth rate pg_1 (Hg_1(W)). This shows that |Y;| is stochastically
dominated by a fitting Yule-Furry process. Such a process is geometrical distributed with
parameter exp(—t puq_1(Hg-1(WW))). To see this, let N(t) := [Y;| + M; be the random number of
individuals at time ¢ in this process. Further define p,(t) := P(N(¢) = n) as the probability to

have n individuals at time ¢. By the definition of the process, a given individual has probability

—/Oh e‘/‘d—l(Hd—l<W>)(h_s)Md_1(Hd_l(W))e_#d—l(Hd—l<W>)s ds

= hptg1(Hg_1 (W))e Ha-1 Ha-a{W)h

of splitting into exactly two within the time interval (¢, + h) and probability e ta-1(Ha-1(W))h

of not splitting within this time interval. Adding that the splitting happens independently for

all individuals, yields

pa(t+ 1) = kipkum(fv(t +h)=n | N(t) = k)
=0

= pa(t) e eV sy () (0 = D) hptgor (Haa (W) (o (TDR

n—2

+ kZ pe()P(N(t+h)=n | N(t) = k).
=0

One can easily show that P(N(t+h) =n | N(t) = k) = o(h) holds for every n e N and k <n-2.
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Thus we get

Pu(t+h) = pu(t)
h

o <, (g r(Hla 1 (W))hY
_}Llir(l)h Lo (t) (_1+JZ=;] d-1 jdll )

+ o1 (£) (0 = 1) gy (Hg_q (W) e a1 Han (Whh

/ .
) =1
P (1) lim

+”fpk(t) WIP(N(t+h) =n | N(t) = k)
k=0

N &, (—npg_1 (Hy_1 (W))h)?

-1 1 N (=nptg-1(Hg 1

lim A~ p (t)]; i

+pp-1(t)(n - 1)/,Ld_1(Hd_l(W))e*n/‘d—l(Hd—MW))h

= —pn(t) 1 pg-1 (Ha-1(W)) + pro1(n = 1) pg-1 (Hag-1(W)).

Adding the initial condition p;(0) = 1 gives the differential equation

Pn(t) = =pu(t) nprg1 (Ha1 (W) + pn-1(n = 1) g1 (Hag-1 (W)
p1(0) =1.

The solution of this is given by

pu(t) = e_t/»‘d—l(Hd—1<W>)(1 _ e_tﬂd—l(Hd—1<W>)(”_1))

which in turn is the geometric distribution with parameter exp(—t pg—1 (Hg-1(W))). O]

The space T can be equipped with a o-field. Lemma will show that two different
approaches lead to the same o-field. In order to formulate this lemma, let i : Ny(E) —
Fif(E), n — supp(n) be the map that assigns to each simple counting measure on E its
support, where F is an arbitrary locally compact space with a countable base. The space
Fif(E) can be equipped with the subspace topology of the Fell topology on the whole space
of closed subsets of E, denoted by 7;¢. On the other hand, N,(FE) will be equipped with
the vague topology, i.e. the coarsest topology such that the mapping n ~ [ g(z) n(dz) is
continuous for every continuous, non-negative function g: F — [0, 00). This topology will be

denoted by Tyg. The following lemma is an analogue to [47, Lemma 2.4]. It is used in the
proof of Lemma [4.3.2]

Lemma 4.2.2. Let By and B,y be the o-fields generated by Tiy and Tyy, respectively. Then
Bug =i (Bif) and is(Bug) = Bis. In particular, the o-fields induced on T? by the vague topology
and by the Fell topology coincide, and T is a Borel space.

Proof. Let E = Fony(H?) be the space of nonempty closed convex subsets of H?. In a first
step we show that is: Ny(E) - Fis(F) is continuous. To do so let 1, n,, n €N be elements
of Ns(E) such that n, - n as n - co. By [103] Theorem 12.2.2] we know that i5(n) = is(n)
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is equivalent to (i) and (éi) to hold with

(1) If Ac O(N4(F)) and Anig(n) + &, then Aniy(n;) + @ for almost all j € N.
(7i) If Be C(N4(F)) and Bnig(n) =@, then Bniy(n;) =@ for almost all j € N.

To show (i) we let A be an open subset of N4(E) such that Anig(n) #+ @ and assume that
Anig(n;) = @ for infinitely many j € N. By the Portmanteau-Theorem (see [28, p. 385]) the

convergence of counting measures 7,, n € N implies
liminf n,(A) >n(A4) > 1.
n—o0

By our assumption we get on the other hand liminf,,_ 17,(A) = 0 which is a contradiction.
The same way (ii) can be shown.

Using the continuity of is we get i;l('ﬁf) c Tug. This directly yields the inclusion property
for the induced o-fields i;*(B; #) € Byy and hence also for the subspace o-fields on T Tt
remains to show that the other inclusion By, ¢ i;'(B;s) also holds (since this again transfers
the result to the intersection with T%). The desired property can be shown using [103, Lemma
3.1.4].

Applying a hyperbolic version of [103] Lemma 10.1.2] gives the second claim. O

4.3 MARTINGALES

Similar to the Euclidean and spherical case we will rely on the martingale property of certain
random processes depending on the splitting process. For completeness reasons and since
analogues such as [106, Proposition 2| contain some inaccuracies, we will present some detailed
proofs in this work. The inaccuracies mentioned above are fixed in the spherical work [47].
The proofs presented below base on this work. The following underlying lemma is taken from
[25, Proposition 14.13]. For the definition of a Markov process and its domain, we refer to this

work as well.

Lemma 4.3.1. Let E be a Borel space and let (X¢)es0 be a Markov process with values in E
and with generator L whose domain is D(L). Further, let f € D(L). Then the random process

)=o) - [[(ENCK) ds, 120,

is a martingale with respect to the filtration induced by (X¢)es0- If (Xt)ts0 98 a jump process
with bounded intensity function, then Fy(E) = D(L).

By Lemma we know that the space of tessellations T is indeed a Borel space, as a
Borel subset of the Polish space F(F'(H?)). Therefore we will choose E to be the space of
tessellations of H? in a first application of Lemma m Further the generator defined in
will play the role of the generator £ and the splitting process (Y;)so will be the Markov

process (X;)s0. Since the intensity function of our jump process, denoted by A(Y), is not
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bounded (the sum over all hitting values of all cells increases over time) and since the desired
functionals are not necessarily bounded, we will need to work with some sort of localization
argument. The idea is to introduce a second Markov process that realizes the same values as
the original process, but stops at a certain time. This process will fulfill the requirements in
Lemma Now letting this stopping time run to infinity will first show a local martingale

property and then the proper martingale property for the original process.

Proposition 4.3.2. Let ¢: IP’%Z,V — R be bounded and measurable, and define

So(T) = X 0(c) = [, (P) pr(dP),  TeT

ceT

Then the stochastic process

My(9) = 5 (¥) - Dy(¥0) - [ (AS)(Va) ds, 120,

is a martingale with respect to Y, where Y := (V4 )s0 is the filtration corresponding to the family
of o-fields Yy =o(Ys:0<s<r).

Remark 4.3.1. Let k€ {0,...,d}. A function that assigns the total k-dimensional Hausdorff
measures of all k-faces of a cell is not necessarily bounded. But if we restrict ourself to a

bounded observation window they are.

Proof. In a first step we show that X : T? - R is measurable. To show this we let B € B(R),
then

SN (B) ={T eT": z¢(T)eB}:Tdmh({ne/\@(/cg):de (K) n(dK)eB}).

This is contained in T¢ N B;; since the map 7 + I’C'fl #(K) n(dK) is by definition of ¢ (non-
negative, continuous) and the definition of the vague topology a continuous function. Therefore
the set {n e N;(K%): f’Ci ¢(K) n(dK) € B} is contained in B,,. By Lemma 4.2.2| the image

in(A) lies in Bjf, whenever A € B,,. Since the function ¢ is assumed to be bounded, one

can find a real value a := sup{|¢(c)| : ¢ € P4} < oo depending on the functional ¢ and the
observation window W. Using this value, we introduce a truncated version of the functional

4. Namely for every N € N we define for A denoting the minimum
25 (T) = (S6(T) A (Na)) v (-(Na)),  TeT, (4.1)

which is measurable since ¥, is measurable and bounded via |Ef;f (T)| < Na. Besides the
truncated functional we introduce for each N € N a truncated Markov jump process (Y%)s0-
Here the truncation is with respect to the transition kernel ¢V (7T,-) := (A(T) A N)7(T),-) and
the generator, which takes the form AY := (AAN)(7=1I) = (AA N)X'A. This way we bound
the intensity function by IV, since it takes the value XA N by the above definitions. This makes
sure that D(AN) = F,(T¢), which is not necessarily the case for processes with unbounded

intensity function. Using the results in [54, Chapter 12|, we can construct (Y;)w0 and its
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truncated version (Y{fN )t>0 on the same probability space. Denoting Ji, k € N as the time of
the k-th jump of the process, we know that for all times s < Jy the transition kernel and the
generator of the original and the truncated process coincide. Since they are constructed on the
same probability space this means that YSN = Y; holds almost surely for all s < Jy. Applying
Lemma on the truncated process and the truncated functional Eg yields that

MY (0) ==Y () -2 () - [N ds, e

is a YV-martingale, where YV is the filtration generated by (Y;N )t>0- Here Lemma is

applicable since (YtN )t>0 has a bounded rate function and since Zg is bounded.

In a next step we are aiming to transfer the martingale property to our original stochastic
process M;(¢). The idea is to take the limit of N to infinity and since this way M;(¢) and
MY (¢) will coincide more and more the martingale property will transfer locally to the original
process. In a next step we will show that the local martingale property can indeed be extended

to a proper one.

In order to derive the local martingale property, we define for every N € N the (almost surely
finite) random variable 7x = inf{¢t > 0: A(Y;) > N} as the time of the (N - 1)-th jump. We
will show that 7y is a stopping time with respect to both filtrations J and Y. To do so we

consider the event
{rv >t = (Vi <N -1} = ¥¥ ] < N -1} e Dy n 9.

Since the optional stopping theorem (see for example [56]) states that stopping at a certain
stopping-time does not change the martingale property, we know that ]\ZN (¢) = Mgv n(0), 620
defines a martingale as well. Next we will show that this stopped and truncated process is equal
to the stopped original process (M;™ (¢))s0, which is defined via M~ (¢) = My () for
t>0. To do so we start by considering 34 (Yrya¢) for t > 0. Since Ty At = Iy_1 At < Ino1 < JIn

holds almost surely we derive

Be(Yrxat)l = 3. ¢(c) < [Yrynla < Na

CGYTN At

and therefore by the definition of E(J;[ in (4.1) the original and the truncated functional are

identical in the sense that

25 (Yivne) = 25 (Yoyat) = So(Yoyat)- (4.2)

T

Since for s < 7y there have been at most N — 2 jumps in the process, even |Y| < N — 1 holds.

This gives a similar result to (4.2) for 4 and Eg evaluated at a split process, namely since

S4(0(c, H, YY) = [Zg(@(c, H,Y))| < Vs + lja < Na
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holds for all H € Ap(d,d - 1) the equation
24 (e(e, H, YY) = 25 (a(e, H,Y;)) = S(@(c, H, Y5))

follows with H € Ap(d,d-1), s < 7y. Since Eg(YON) =34(Yp) obviously holds true, we remain
to show the equivalence of the integral. In order to do so we consider the integrand. For s < 7

our definition of A" yields

MY
A(Ys) ho(Td) Lh(d’d_l)[zﬁ(@(c,ﬂ,w))—z;Y(YSN)] pa-1(dH) py(de)

) ho(Td) fflh(d,d—l)[zd)(@(c’ H,Y5)) = 24(Y5)] pa-1(dH) py, (de)

= (AX) (Y5)-

(AYENYY) =

Thus all summands of M} (¢) and M;™ (¢) are equal and we can conclude
M (¢) = M{™(¢),  t20.

Therefore it remains to show that 7 — co diverges almost surely for N — co. This follows
from Lemma Therefore (M~ (¢))+s0 is a local Y-martingale.

In a last step we show that the local ) martingale property of (M;(¢))s0 extends to a
proper martingale property. By [55, Definition 4.8, Problem 5.19(i)] we have to show that M~
converges in £! to M; as N tends to infinity for every t > 0. By the dominated convergence

theorem it is sufficient to show that

Esup |[M;¥| < o0
NeN

for all ¢ > 0. First we show

[ Az (V) ds

t
<[ [ IS0 H o))~ Sp(Vrns)| sraci (dH) ds
0 Hd_l[c]

CGYTN/\S

t
< /0 S figo1 (a1 (W))3a: ds
ceYs
< 3ot pa-1(Ha-1 (W) V3.

Using this and the results from Lemma we conclude

Sy Vegns) = So(00) = [ (AR (Voyns) ds

E sup | MV | < Esup
NeN NeN

fo (AS) (Vins) ds

|

< [Sup S0 (Yryns)| +[E6 (Yo)| +
NeN

IN

E []svug |Yruntl o +a+ t|Y}\ud1(Hd1(W))3a]
€

<E[|Yi a+ a+t|Yipg-1 (Hg_1 (W))3a] < oo.
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The finiteness holds since, as mentioned above, the number of cells is stochastically bounded
by a geometrically distributed random variable. Therefore the expected number of cells at
time t is finite. 0

Again similar to the spherical setting one can show the following result, which will be used

to investigate higher moments.

Proposition 4.3.3. Let ¢: P4, — R be bounded and measurable, let b e C*([0,00)), and define
Uy(T,t) = (Zp(T) - b(t))?,  TeT? t>0.
Then the stochastic process

t 0Vy
Ni(W9) = W (Vi) = Us(Y0,0) = [T(AW4(,5)(Ve) + 2 (,5) () ds,
is a martingale with respect to Y.

Proof. The proof is similar to the one stated in [47] O

4.4 THE CAPACITY FUNCTIONAL

In this section we will investigate some properties of the capacity functional of a splitting
tessellation and calculate concrete values in some special situations. In a next step we will use

the theory for capacity functions in order to expand the process to the whole space H¢.

4.4.1 CAPACITY FUNCTIONAL FOR SPLITTING TESSELLATIONS

It is often useful to the union of all cell boundaries instead of the tessellation itself. Therefore
we define
Zy:=Zy,=J0c, t>0
ceYy

as this union. This set will be called the skeleton of Y;. Recall that .7-",?7 kel 18 the set of
skeletons of a tessellation. Our first aim is to show that Z; is a random closed set as defined in
[103} chapter 2], namely to show that Z; is a measurable map from the underlying probability
space (9, A,P) into the measurable space (F(H?), B(F(H?))) of closed sets. Additionally,
we will show that for W = B, the distribution of Z; is isotropic for all £ > 0, i.e. invariant
under all isometries of hyperbolic space fixing the origin. Clearly, it is not invariant under all
isometries of hyperbolic space, since Z; is restricted to B,. In Theorem we will show that
invariance with respect to isometries holds locally, that means that Z; nC d Zyn(C), as long
as C,(C) € W are compact sets and ¢ € I(H?) is an isometry.

In order to apply several results from [103] one has to show that H? is locally compact and

has a countable base. Both properties are easy to show. The set

B = {Bp(exp,(2),q0)° : «=qibi +-+qabg, q1,...,¢a€Q, ¢ € Q"}
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gives a countable base. Here {b1,...,bs} is an arbitrary basis of T}, H?. To show that H? is
locally compact we show that it is Hausdorff and that every point has a compact neighborhood.
The Hausdorff property comes with the metric and closed balls of radius 1 fulfill the second

requirement.

Lemma 4.4.1. For everyt >0, W = B, r >0 the set Z; is an isotropic random closed set in
He.

Proof. We show the measurability of Z; by decomposing Z; into three maps, which we will show
to be measurable. The map Y; : (2,4, P) - (N (K$), B,g) is by definition measurable. To show
that the map (NV(K{), Byg) — (NM(F(H)), B, g)» Lede = X dp(c), which assigns to each simple
counting measure on ICZ the corresponding counting measure of its boundaries, is measurable, we
apply [103, Theorem 12.2.6]. Tt states that the map (K¢, B(K$)) — (F(H), B(F(H))),c = d(c)
is lower semicontinuous and therefore measurable. Finally, the union map (N (F(H?)), By,) —
(F(H),B(F(H))), X p0p — UpF is measurable. The proof presented in [103, Theorem 3.6.2]
transfers to the hyperbolic case. Composing these measurable maps yields the measurability
of Z;.

The isotropy of Z; is based on the isotropy of Y;, whereas Y; is isotropic due to the isotropy of
the measure pg-1. To show that Y; is isotropic we aim to show that Y; d pY; forall p el (Hd, D).
Here I(HY,p) is the group of isometries fixing p, namely I(H? p) = {p e I(H?): @op = p}.
By [13, Proposition 15.38] it is sufficient to show that the generators of Y; and ¢Y; coincide.
By ¢T = {¢c: c € T} we refer to the rotated tessellation T € T?. Now let f: T? - R be a

bounded and measurable map. The rotational invariance of pg_1 gives

AN = 3 [ (F(le H.eT)) = [(e1)] pua(dH)

ceT

S o @ H ) = ()] praes(d)

p-leeT a-1(c]

= 3 f (et oHoT)) = ()] paa(dH) = (AT o ))(T).

cepT

Using the limit representation of the infinitesimal operator A gives

(A?F)(T) =lim 7 (BLf (Y1) Yo = T] - £(T))
=lim 1 (B[(f 0 ) (YD)Yo = ¢ (T)] = (f 0 2)(¢7'T))
= (A(f o)) (™ (1))

Combining both equalities gives (Af)(T) = (A?f)(T) and by [13, Proposition 15.38] the
equality in distribution of the rotated tessellation. O

Next we will consider the capacity functional T3(C') : C(W) - [0,1] of the random closed
set Z;. It is defined by
Tt(C) = TYt(W)(C) = P(Zt NnNC # @)
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for C' e C(W), where C(W) is the set of all compact subsets of W. With a slight abuse of
notation we will also write TZyt ) for Ty, (w). For simplicity reasons we will compute the
value of U;(C) which is defined as

Ut(C) = UYt(W)(C) =1 —Tt(C) = [P(Zt nC = @).

We want to point out that U;(C') depends W, even though we omit the dependence on W in
its notation. Using [103, Theorem 2.1.3] we will be able to make some invariance statements
about the process. The next theorem gives an explicit form of the U-functional evaluated for

connected sets which lie in the interior of W = B,. An Euclidean analogue is proven in [81].

Theorem 4.4.2. Let W = B,., >0 be a fized window. Let C € C(W) be connected and such
that CnOW = @& holds. Then

U(C) = exp(~t pg-1(Hg-1(C))), t>0.

Proof. Consider the map ¢: P4 - R, ¢+ 1{C cc}. Since ¢ is measurable and bounded, the

process

> o) -oB) - [ %

ceYy ceYs

/Hd_l[c] [o(cn H+) +d(ecnH )= ¢(c)] pa-1(dH) ds (4.3)

is by Proposition a martingale with respect to the filtration ) induced by (Y};)s 0. First
define

&= ¢(c)= Y 1{Ccc}.

ceYy ceYy
We aim to show that & = 1{C' n Z; = @} holds P-almost surely. We show this by distinguishing
three different cases:
Case 1: Let & > 2. This implies that there exist two cells ¢1, ¢ € Y; such that C € ¢y, C' Sy
and therefore C' € ¢ nco holds. Since Y; is a tessellation this implies C' € 9(¢y) € Z;. Therefore
using Lemma one gets for zg € C and ¢ € I(H?, p)

P(z0 € ¢ ' Z) =P(20 € Z;) > P(C € Z;) > P(& > 2).

If zp = p we immediately get P(zg € Z;) = 0. For zy # p and dj,(20,p) = s > 0 we integrate over
all hyperbolic rotations to get

Pe22)< [ B[t < 2] v(dp)
=E [/](Hd,p) 1{pz0 € Z;} I/(dcp)]
CE[HTY OB, 0 Z)]
- HTNOB,,)

Here the last equality is due to Theorem [4.5.2]
Case 2: Let § = 0. We assume Z; nC = @. Therefore we get C C Uy, int (¢). Since & =0
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there are two cells ¢1,co € Y; such that Cne; # @ and Cneg #@. Thus C is not connected.
This is a contradiction and we conclude that 1{Z; nC = @} = 0 holds in this case.

Case 3: Let & = 1. Therefore there exists exactly one cell ¢ € Y; such that C' ce. If C ¢ inte,
then there exists a time s < ¢ such that at time s a hyperplane H appears such that Cn H + &
and C' ¢ H* or C' ¢ H™ holds for the first time. A hyperplane having these properties will be

called a supporting hyperplane of C'. Using the representation of the measure uy_1 stated in

(2.3) we derive
Md_l{HEAh(d,d—l):CﬁHig, CcH or CEH_}
- f f cosh® 1 (dy(z,p)) 1{H(L,z) supports C} H(dz) v (dL)
Gnd1) Jr
- 0 v (dL
‘[th(dJ) Vl( )

=0.

Therefore the probability of such an event is 0 as well. Thus having & = 1 implies that C is
P-almost surely contained in the interior of a single cell and therefore Z;((7")) n C = @ holds

P-almost surely as well.

Together these three steps prove that & = 1{C n Z; = @} holds P-almost surely. We now
progress with the proof of the desired equality. Taking the expectation in equation (4.3) leads

to

U,(C) _1+/ Esz [1(CcenH) +1(CcenH ) ~1(C < )] gt (dH) ds

ceYs da-1[c]

since ¢(B,) =1 and since the expression in (4.3)) is a martingale. For s € [0,¢], multiplication
of the sum in the expression above with £; does not change the result. To show this let &5 = 0.

In this case there is no c € Yy such that any of the indicator functions take value 1, namely
1(CcenH)+1(CcenH )-1(Cce) =0, ceYs.
Since we showed & € {0,1} a.s. there is nothing more to show. Now the sum
cezi; fHdl 1(CcenH)+1(CcenH ) -1(Cce)]pg-1(dH)
has almost surely the form
2 ZY fd_l[c] [1(CcenHY+1(CcenH) - 1(C < ¢)] g1 (dH)
- ¢, fHd,l[cO] [1(Cceon H)+1(C ceonH) - 1(C < e0)] g (dH)

¢ [ MO H + o) paa(dH)
Hg-1[co]

= —pg-1(Hg-1(C)H{Zs n C = @}
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The first equality is due to the result above that there is almost surely at most one cell
containing C'. For the second equality consider the case HnC = @. This gives C S int (H") or
C cint (H™) and therefore the integrand takes the value 0 in this case. Now let HnC' # @. We
can assume for C' € ¢y to hold, since otherwise the whole expression takes the value zero anyway.
Therefore it remains to show that both indicator functions 1(C' cc¢on H*), 1(C ccoyn H™)
are jig-1-almost surely 0. This is the case since in order for C to be contained in one of the
half-spaces H* or H~ and C having nonempty intersection with H, would mean for H to touch

C. This is a negligible event under pg_1. Taking this into account we get
t
f EY f [1(CcenH)+1(CcenH ) ~1(C € ¢)] g1 (dH)ds
0 ey, JHa-1[c]

= 0 1(Ha1(C) [ B(ZinC=0) ds
- _Md,l(Hd,l(C))fotUs(C) ds

and therefore

UAC) =1~ (e () [ "U.(©) ds.

Adding the condition Uy(C') =1 gives the unique solution

U(C) = exp(~t pg-1(Ha-1(C))).
O]

Remark 4.4.1. The expression on the right hand side in the theorem above does not depend
on W anymore. This will be needed in order to expand the process to H¢. It should also be
pointed out, that U;(C') = 0 holds trivially for every C' e C(W) with CndW # @. This is due
to the fact that OW is almost surely contained in Z; for every ¢ > 0.

Corollary 4.4.3. For the special case of C =T, y, x,y € B(0,7)° being a hyperbolic segment,

the capacity functional takes the form
UAC) = exp (-t 222 dy (0, ).
Wq W2

Proof. The proof follows easily by Theorem and the Crofton-type formula (2.4) which
shows that
_ Wd+1 W1

-1 (Hg_1(7,y)) = ———— dp(z,y).
Wq W2

O]

Now we will give a result for the capacity function of sets, containing more than one connected
component. Since its proof is similar to the proof given on the sphere, we will omit it in this
work and refer to [47, Theorem 3.5]. It is worthy to mention that in order to show the formula
for the capacity functional for more than one connected component, a little more general
version of Theorem is needed, as done in [47]. There the result (for spherical splitting
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tessellation) is shown for an arbitrary initial tessellation. It turns out that the formula does
not depend on the initial tessellation. In Euclidean space an analogue result is stated in [81]
Lemma 4]. It is worthy to mention that the arguments used there are of a different form than
in [47].

In order to state the result, we need some more notations. First let C' be the hyperbolic

closed convex hull of C, namely

C:=cd( N A).
AelC;il: CcA
Also let Hy_1(B1|Ba2) be the set of hyperplanes that (properly) separate two sets Bi, Ba. More
formally it is given by

Hy_1(B1|Bs):= {H € Aj,(d,d-1): BynH=BynH =@, BiuByn H # &}.

Last we consider closed subset C'=CyuU...uC, € C(HY), neN with Cy,...,C, € C(H?) being
closed and connected subsets of H?. Now II(C) is the set of proper partitions of C. This
means that {P, P} e II(C) if and only if there exists a set J ¢ {1,...,n}, 0<|J|<n such that

pP=lJc;, P= U 0
jeJ je[n]nJ

Theorem 4.4.4. Let W = B,., r >0 be a fized window. Let C' € C(W') be such that there exists
an integer n € N and pairwise disjoint, nonempty connected subsets C1,...,Cy € C(W) with
C=C1u...uCy, and CnOW =@. Then the value Uy (C) is given by

Uy (C) = e tra-1(Har(C) 4 > pa1(Ha(PIP))
{P,PII(C)}

. _ N
Xf e—sud_l(Hd—l(C>)Ut_s(P)Ut_s(P) ds
0

for any t > 0.

Proof. See [47, Theorem 3.5]. Recall that the cited proof relies on a little more general version

of Theorem O

Remark 4.4.2. It should be pointed out that Theorem gives the value of the capacity
functional on the class of sets that can be written as a finite union of pairwise disjoint, nonempty
connected closed subsets of B,.. One can show that this class is indeed rich enough to determine
the value of T(C) for all C'e C(W). Indeed the class of sets which can be written as a finite
union of pairwise disjoint, nonempty, connected closed subsets is a separating class (for a
definition see [77, Definition 1.1.48]). To see this, we see that the class of sets which can be
written as a finite union of pairwise disjoint, nonempty, connected open subsets forms a basis
of the standard topology on H?. Now applying [77, Proposition 1.1.53] yields the separating
property and the unique determination of 7;(C') for all C' € C(B,). Having this we can conclude
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that the capacity functional is invariant under isometries that keep the evaluated set in the

interior of W.

4.4.2 EXPANSION OF THE PROCESS

Using the results developed in Section enables us to expand the process to the whole
space H?. We do this by using the fact that the distribution of a random closed set Z is
determined by its capacity functional Ty : C(H?) - [0,1] (see [103, Theorem 2.1.3]). In a
second step we show that the map that assigns to every skeleton the corresponding tessellation
is measurable. This shows that the distribution of a random tessellation is determined by the

capacity functional of its skeleton.

Theorem 4.4.5. For every t >0 there exists a random tessellation Yy of HY with
d
Zyt NnNK = ZYt(Bn) NK

for every K € C(HY) and n e H* such that K ¢ B,,_1/2 holds.

Proof. Let t >0 and Bj, j=1,2,... be a sequence of hyperbolic balls with centre in p and
radius j € N. We define the random closed set Z;, i € N by

Zi = Zy,(B;) N Bi_1)2

For every ¢ € N and j > ¢ we have

5 d
Z] N Bi—l/Q = Zz

To show this let C' € C(B;_1/2), then

T(Z]'mBi—l/Z)(C) - T(ZYt<Bj>“Bj—1/2ﬂBz’—1/2)(C) - TZYt(Bj)(C) = Ty,(5,)(C)

© Ty,(B,)(C)
=1%y,5,(C)

=12y, 5,)nB; 1, (C)
=T5,(C)

holds. Here we used simple consequence of the definition of the capacity functional. The
equality labeled by (*) follows from Theorem since there it was shown that the capacity
functional is independent of the choice of the underlying window W. Applying [103, Theorem

2.3.1] gives the existence of a random closed set Y; in HY such that

d .
ZYt N Bj—1/2 = ZYt(BJ) N Bj—l/?v ] € N.



106 CHAPTER 4 SPLITTING TESSELLATIONS IN HYPERBOLIC SPACES

Now take an arbitrary compact set K ¢ H. For every j € N with K ¢ B;_1/2 we know

d
Iy, K =(Zy,nK)NBj 19 =(Zy, N Bj_172) N K = (Zy,(;) " Bj-12) N K
= Zvisy) N K

Having the existence of such a tessellation Y; one can show that it is invariant.
Theorem 4.4.6. The tessellation Y; is invariant with respect to I(H®) for all t > 0.

Proof. For every C ¢ C(H?) and ¢ € I(H?) there exists an integer j = j(C, ) € N such that
CugpoC < Bj 5. Now using the results from Theorem and Theorem we get

Ty, (poC)=Tzy,(p0C) = Tay,08, 1, (¢ 0 C) =Tz, 0B, 1 (9 0 C)
= TZY(Bj>“Bj—1/2(C)
=T2y,0B,_,,,(C)
=Tz, (C)
=Ty, (C).

O

Remark: The famous and name giving scaling property, which is derived for Euclidean

space in [81, Lemma 5], does not hold in the hyperbolic case.

Lemma 4.4.7. The map h : .7:;? shel T? that assigns to every (d-1)-skeleton the corresponding

tessellation is measurable.

Proof. We decompose the map h. Recall that f,‘f kel 18 the set of skeletons of tessellations in
H¢. Now let y € H? be an arbitrary point. We show that the map

1(ccomp (y, Z¢)) :ify¢Z
; g c P (¥, ytZ,
Py :fh,Skel _)fc,onv(H )7 Z - d .

: otherwise.

is upper semicontinuous. By [103, Theorem 12.2.5] it is sufficient to show that lim sup(¢,(Z;)) ¢
oy(Z) for all Z,Zy,... € }";iskel such that Z; - Z. We let x € limsup(yy(Z;)), then there
exists a subsequence (ix)ken and x;, € v, (Z;, ) such that z;, — « holds for k - co. We assume
that = ¢ ¢, (Z) holds. If y lies in Z, then our assumption would be contradicted since y € Z
implies ¢, (Z) = H?. Since Z is the skeleton of a tessellation, we know that the cells are
convex. Therefore by our assumption x ¢ ¢,(Z) we know that there exists a z € (z,y) with
z € Z since otherwise x would lie in the same connected component as y. Since z € Z and
Z; - Z hold, there exists a converging sequence z; - z with z; € Z;, ¢ € N. Further since y is
contained in the interior of ¢,(Z), we get the existence of an open neighbourhood U = U(y)

of y such that U ¢ int (¢,(Z)) holds. By the convergence of Z; we know that for almost all
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i € N this neighbourhood U is contained in int (¢, (Z;)) as well. Further by x; - = and z; - z,
we know that almost all lines (I(z;, 2;) )seny through x; and z; have nonempty intersection with
U. Therefore almost all x; are not contained in ¢,(Z;). Therefore our assumption is wrong

and we know z € p(Z). This in turn shows the upper semicontinuity of .

In a next step we show that the map
v: FH) xH' >R, (F2)~ L{z{ F}

is lower semicontinuous. Again we apply [103, Theorem 12.2.5]. For (F;,z;) — (F,x) we need
to show liminf; o 1{x; ¢ Fi} > 1{z ¢ F'}. If liminf, .o 1{x; ¢ F;} = 1 holds, there is nothing to
show. Therefore assume lim inf; o, 1{x; ¢ F;} = 0. This implies the existence of a subsequence
(ik ) ken with 1{z;, ¢ Fj, } = 0. Therefore z;, € Fj, holds and [103, Theorem 12.2.2] tells us that
therefore = € F' also holds true which in turn gives 1{x ¢ F'} = 0.

Let @Z ={quui + ...+ qqugq: ui,...,uqg € Q}, where uy,...,uq is an arbitrary basis of Tp]HId.
We now get that

g: fg,skel - N(]:c,onv(Hd))’ Z Z ]l{y ¢ Z} 6g0y(Z)-

y=expy,(q): qeQg

is measurable as the composition of measurable maps. In a last step we argue that the map
i N(Fhopo(HD) > F(Fho o (HD)), 7+ supp (1) is measurable by [103, Lemma 3.1.4] and so
is therefore the map

h: fg,skel - Td, Z ~ supp (9(2)).

In order to show that h is actually the map, assigning to each (d - 1)-skeleton its corresponding
tessellation we let c € T be a cell of a tessellation T'. Further Oc is contained in Z7 and since
¢ has interior points, there exists a q € Qg with exp(q) € int (¢). Therefore we know that c is
contained in the support of g(Z7). Now assume that g(Zr) contains a set ¢, which is not
contained in 7. Therefore there exists a point x = exp,(q) with ¢ € Qg which is in the interior

of at least two cells of T'. This is a contradiction to the definition of a tessellation. O

4.5 EXPECTATIONS

In this section we consider several expected values. In Section the expected i-dimensional
Hausdorff measure of the i-skeleton in the interior of the observation window and including
its boundary is considered for i € {0,...,d —1}. In Section we investigate the expected
volume of the Crofton cell. For dimension d = 2 also the expected volume of the typical cell can
be calculated. For this special case and a spherical intersection window we will also compare

the limit behaviour of the typical and the Crofton cell for growing radius r.
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4.5.1 EXPECTED 7-DIMENSIONAL HAUSDORFF MEASURE OF THE i-SKELETON

This section contains results for the expected i-dimensional Hausdorff measure of the i-skeleton

of all cells of a splitting tessellation. For this purpose, we first recall the notation

Br(Ye) = ). f(c)
ceYy
for a measurable function f : ]P’gv — [0,00). With a slight abuse of notation, we also write
Y¢(t) = X¢(Y:). Now we make a special choice for f, namely 1/2-times the i-dimensional
Hausdorff measure of all i-faces. Recall that for a polyhedron P € PD? we denote by F;(P)
the set of all i-faces of P. We enlarge this definition for semi-polytopes. First we know by the
construction of a cell ¢ of a splitting tessellation in W that it is the intersection of finitely many
half-spaces with W, i.e. the intersection of a polyhedral set with W and hence a semi-polytope.
We define the set F;(c) of all i-faces of ¢ to be

Fi(e) ={FnW: FeF(P(c))},
where P(c) is the polyhedral set inducing ¢. Now define

file)y= > 17#’(1? NOW),  i=0,....d
FeFi(c)

as the sum over all i-faces F' € F;(c) of ¢, where the i-dimensional Hausdorff measure of
F ~ OW is summed up. As special cases one has fy(c) = Hi(c~ W) /2 = HU(c)/2, fi-1(c) =
HEL (e~ OW) /2 and fo(c) is the number of vertices of ¢ in the interior of W divided by two.
The additional factor is used in order to actually get the total measure of the skeleton. Since
each i-dimensional face is contained in exactly two cells, the value E[X, (t)] is the expected
Hausdorff measure of the i-skeleton for ¢ = 0,...,d — 1. Also one has to keep in mind that
E[Z,(t)] = 3H(W) holds.

Instead of asking for the expected i-dimensional Hausdorff measure of the process restricted

to the interior of the window W, one can include the boundary of W as well. To do so, we
define fi(c) = f;(c) + fi(c) for i=0,...,d -1 with

fo= % %H’(Fn ow).
FeFiia(c)
This functional allows us to calculate the total Hausdorff measure of the i-skeleton on the
boundary which is induced by all (i + 1)-faces of the process. As above, one has to keep in mind
that E[X fd—l(t)] = %Hd’l((?W) holds. The measurability of f; and f; can be shown with the
help of [117, Corollary 2.1.4]. For the two functionals f; and f; one gets the following result.

Lemma 4.5.1. Let W ¢ IC‘;L and t>0. Then

2 i t .
B[S, (0] = B[S, ()] = =225 [TR[s, (V)] ds,  i=0,...,d-1
Wq Wi+2 0
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and
2 o1 [
IE[ZA,(t)]:IE[Ej(Yt)]:Mf E[Y; (Yy)]ds, i=0,....d-2
fl f’L wdwi+2 0 f7,+1

hold.

Proof. We let g; be either f; or f; for i =0,...,d -2 and f; for i =d - 1. Now we take the
expectation of the martingale in Proposition with ¢(c) = gi(c) to derive

B[, (V)] = B%,,() + E [ (A5,)(¥,) ds

:fot@s fHH(C) (3, (@(c, H,Y3)) - X4, (Ys)] pa-1(dH) ds

t
- f EY f 2i(cn H) pg_1(dH) ds. (4.4)
0 ey, JHa-1(c)

To show the last equality, we fix a cell ¢ and a hyperplane H € Hy_1(c). Then we get p4-1

almost surely

2(fi(cnH ) + fi(cn H") - fi(c))

= Y HEFENW)+ > H(FNOW)- > H(FNOW)
FeF;(cnH™) FeFi(cnH*) FeF;(c)

= > HI(FNOW) + P Hi(F ~ OW)
FeF;(ecnH-), FcH FeFi(cnH™), F¢H

+ D HI(F~OW) + 3 HI(F N OW)
FeFi(enH*), FcH FeFi(ecnH*), F¢H

- 3 H((FnH)NOW)- > H((FnH")NOW)
FEfi(C) FE.T‘Z'(C)

= 3 HI(F~OW) + 3 HI(F~OW)
FeFi(enH-), FcH FeFi(enH*), FcH

=2 3 HI(F N W)

FeFi(enH), FcH
= 4fZ(C N H)

The equality fi(cn H™) + fi(cn H*) - fi(¢) = 2fi(¢n H) can be shown for pg_q almost all
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hyperplanes the same way by

2(filcn HY) + filen HY) - fi(c))
= > H(FadW)+ > H(FndW)- > H(Fnow)

FE]:Z'Jrl (COH_) Féf¢+1(CﬁH+) F'EfiJrl(C)

= 3 HU(F W) + > HI(F noW)
FE]:Z'Jrl(CﬁH_), FcH FE]‘—iJrl(CﬁH_), F7¢_H

+ D HI(F W) + D HI(F W)
FeFiy1(enHY), FcH FeFiy1(enHY), F¢H

- Y H(FnH)noW)- > H((FnH)NOW)
FE]‘—iJrl(C) F€f¢+1(c)

= 3 HI(F W) + D HI(F noW)
FeFiy1(enH™), FcH FeFii1(enHY), FcH

=2 D HI(F noW)

F€.7:Z'+1(CQH), FcH
=4fi(cn H).

Using this gives
Sg.(0(c, H,Ys)) = Bg,(Ys) = gi(en H™) + gi(cn H") = gi(c) = 2g;(cn H).

Continuing the calculations in (4.4) with g; = f; yields

f 2, fH in(cmH).Ud—l(dH) ds

ceYs d-1{c)
f EY f Hi(F~OW) pg1(dH) ds
cev, YHa-1(¢) per, (an)

“[ EY f (G0 H)NOW) paa(dH) ds
ceY GeFy, 1(c) Ha-1(c)

(**)f E MHlJrl(G\aw) ds
ceYs

GE:FHl (C) wd Wit2

_ 2 Wit [0 E Y firi(c) ds

wd Wi+2 ceYs

[ E5p00 ds

2Wdﬁ—l Wi+1

Wd Wi+2

Equality (*) holds since F' € F;(c¢n H) is either the intersection of an (i + 1)-dimensional or an

i-dimensional face of ¢ with H. For the latter we get for G € F;(c)

Wd+1Wi+1
WdWi+2

fH oy MG H N OW) gy (dH) = H(G) =0,  i=0,....d-1.
d-1\¢C

The second marked identity (*x) is due to the Crofton-type formula (2.3). With minor changes,
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the same calculations and arguments can be applied for g = ﬁ
t R
f EY f 2filen H) paa(dH) ds
0 ceYs Ha-1(c)
f EY f Hi(F 0 OW) g1 (dH) ds
ceYs Ha-1(

Fe]—'+1(cmH)

[OEZ 5 f (G0 H) 0 OW) paa(dH) ds

s GeFiro(c) 2 Ha-1(c)

fEZ S LALC i (G n W) ds

CeYs GeFrra(e) WA Wiv2

— 2Wd+1 Wi+1 A E Z fi+1(c) ds

Wd Wi+2 ceYs

2 i
4 Wdt] Wit1 f IEZf (Y,) ds.
Wd Wi+2 !
O
Since Y; is for all £ > 0 almost surely a tessellation one clearly gets
1 1
E[Z;,(Y:)] = 5H@’(W NOW) = 5Hd(W), t>0 (4.5)
and
1 1
E[S; (Y))]= 5%CH(W NOW) = 57—[‘1’1(8W), t>0. (4.6)

Using (4.5) and Lemma we derive the following theorem.

Theorem 4.5.2. For k=1,...,d the expected (d - k)-dimensional Hausdorff measure at time
t >0 of a splitting tessellation in W is given by

2w

Wi os k-1 4k
B[S, ()] = B[Sy, (%)) = 2bt (220 ) Eqad ),

Wd Wd

Remark 4.5.1. The expected total (d - 1)-dimensional Hausdorff measure of the (d —1)-
skeleton is the same as in the case of a Poisson hyperplane process investigated in Theorem
. For k > 1 the results differ by the factor 2¥"!. The same behaviour can be seen for
Euclidean splitting tessellations. To see this, one combines [106, Theorem 2| with the expected
Hausdorff measure of the skeleton in Euclidean space, also stated in Theorem

Proof. We prove this by induction on k. For k = 0 the result is obviously true (compare
equation (4.5)). Now let k > 1 and assume that it holds for £ - 1. By Lemma with g; = f;
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and the hypothesis for £ — 1 we derive

2Wai1 Wa-k+1 [
E[Xy, V1] = . - [0 E[Zy, (k- 1)(Y )] d

Wd Wd—k+2
k-2 k-1
_2Wdn1 Wikl [P Wd-ke2 (2Wdn s d
T H (W) ds
W Wd—k+2 0 Wy (k-1)!

_ Wd-k+1 (2wd+1 )k_l " Hd(W)
Wy Wd

Theorem 4.5.3. For k=2,...,d the expected (d — k)-dimensional Hausdorff measure at time
t > 0 including its boundary is given by

k-1

2(k—1)!

Wikl (2wae1 \F d
B3, ()] - 22 (220 Lty

Hd‘l(OW)).

Proof. First one gets

Ex;, (Y] =E[Xg, (V)] +E[X; | (V)]

by the definition of f. Since the first summand was already treated in Theorem we
concentrate on the second. Let k € {2,...,d} then by Lemma with gg_i = fa_r we derive

2Wds1 Wd-k+1
E[Z; (Y)]= mfo E[Zy, ., (¥s)] ds. (4.7)

As in the proof of Theorem we apply induction on k. The base case for the forthcoming
induction argument is the surface area. In this case we get by (4.6)

B[, (V)] = 1 @),

Now let k£ > 2 and assume that

Wd—+1 [ 2Wdr1 )é_l ¢! d-1
Y, ow
E[> fa- f( 1= Wy ( wq 2((—1)!% ( )
holds true for £ = k —1. Now we derive
2wgiiwake1 [
]E[Zfd—k}/t] - Wo Wa—kr2 [0 E[Efd—(k—l)(ys)] ds
_ 2Wds1 Wd-k+1 ft Wi—k+2 (2wd+1 )k_z sh2 HEV(OW) ds
Wd Wd—k+2 0 Wd Wq 2 (kj - 2)'
_ Wd—k+1 (2wd+1 )k_l tk_l Hd—l(aw)
Wy Wy 2(k-1)! .

Combining this with the results from Theorem finishes the proof. O
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4.5.2 EXPECTED VOLUME OF THE TYPICAL AND CROFTON CELL

In this section we make the special choice W = B, for some r > 0. We will call the almost
surely uniquely determined cell at time ¢ > 0 containing p the Crofton cell Cy = Cy(t). We
are aiming to give two results on the expected (d — 1)-dimensional Hausdorff measure of the
Crofton and the typical cell of the hyperbolic cell splitting tessellation. We will investigate
their limit behaviour in t. To describe the limit behaviour, we write f ~ g if f(¢)/g(t) - 1 as
t - oo. For a definition of the typical cell, we refer to Section

Lemma 4.5.4. The expected d-dimensional Hausdorff measure of the Crofton cell of a splitting

tessellation within B, is
E[HY(Cy)] = wdf sinh?™1(s) exp(—tMs) ds.
0 wWq w2

Proof. We calculate directly by using spherical coordinates, Fubini and the isotropy of the

process
E[HY(Cy)] = E[BT 1z € Co} H(dw)
_E fs - fo "sinh® ! (s)1 {exp, ([p, su]) € Co} ds du
_ [Sg1E[0Tsinhd_1(s)]l{expp([p, sul) € Co) ds du
_ fS L E fo "sinh® (s)1{exp, ([p, sv]) € Co} ds du
- wyE /O "sinh® (s)1{exp, ([p, sv]) < Co} ds
- wiE fo sinh®" (s)1{exp, ([p, sv]) 0 Z = @} ds

T
:wdf sinhd_l(s)exp(—tws) ds,
0 Wq W2

where v € Sg_l is an arbitrary direction. Here the last equality is due to Corollary 0

We now investigate this value for two different set ups. In the first one we fix the radius of
the intersection window and increase the time ¢. In the second scenario we fix the time and

increase the radius r of the intersection window.

Lemma 4.5.5. Let r > 0 be fized and let Cy be the Crofton cell of a splitting tessellation within
B,.. Then

d
E[HY(Cp)] ~ wq (d-1)! (M) 4
Wd+1 W1

as t — oo. In particular the limit is independent of r.

Proof. To show the limit behaviour, we pick an arbitrary value a € (d/(d +2),1) and set
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Wd4+1W1
wqwa

c:= Consider the following integral for ¢ big enough, such that t™* < r holds

—-a

r t
A t%sinh® 1 (s) exp(~tes) ds = _/0 t?sinh® 1 (s) exp(~tes) ds

+ [ t%sinh® 1 (s) exp(~tes) ds. (4.8)
t-a

<rsinh? 1 (r) t4 exp(-tl-ac)

Since the second term is additionally non-negative, it vanishes for growing ¢. In a next step
we investigate the expression t4(sinh®!(s) - s%°1) for s € [0,£7%]. First one can easily see that
sinh?™1(s) = 51 > 0 holds. Additionally we get for ¢ > 1

td(Sinhd_l(S) _ sd—l) _ td i ﬂ d-1 ) Sd_l
b (1+2k)!
d-1 142k

o 2 o

(K1eska-1)eNg—1n {0} =1
d-1 1

< tdt_(d+1)a Z H
(k1,....kg-1)eNd-1\{0} i=1 (1+2k;)!

< tf(d+1)a+d Sinhdfl (1)

Here we used the series expansion of the sinh-function. In the penultimate step we made use of
the relations s <t7® <1 and the fact that every summand in the second line contains the factor

s%*1. Now we use the calculations above in order to replace the sinh-function with s¢ ! via

—a —

t ta
f t%sinh® 1 (s) exp(~tes) ds = / 1% L exp(~tes) ds
0 0

+ _/Ot ' t4(sinh? 1 (s) — s471) exp(~tes) ds. (4.9)

<t=(d+2)a+d ginha-1(1)
Here the exponential function was bounded by 1. The remaining term can be evaluated by
substituting u = tes

ctfaJrl Ud_l

o 1
t4s9 7 exp(~tes) ds = / t ——— exp(~u)— d
fo s exp(—tes) ds ; (o) exp(—u) . du

Ct7a+1 Ud_l

= j(; C—dexp(—u) du
= - (d,u) ]
o0 -1)!
- T (d ety + (d- 1)) 2 @2 DE (4.10)
c
Combining (4.8)-(4.10) with the results from Lemma yields the desired result. O

Remark 4.5.2. The results derived in Lemma and can easily be transferred to the
setting of Crofton cells of a Poisson hyperplane tessellation. This is based on the fact that the
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capacity function of segments is the same in both models. Having this one can compare the
limit behaviour with the expected volume of Euclidean Crofton cells of Poisson hyperplane
tessellations. This value is calculated in [103, Theorem 10.4.9]. It coincides with the limit case

in hyperbolic space which can be shown by

wd(d—l)!( W w2 ) o

Wd+1W1 )7
Wd+1 W1

Wqw?2

o (d+1)/2 -d
: d( )

L((d +1)/2)drg2m
o (d-1)/2 )d

N\ T((a+ 1)/2)d/-;dt

2K,
= d!/id( dd lt)

In a next step we consider the expected volume of the Crofton cell for fixed time ¢ > 0 and

growing radius of the observation window.

Lemma 4.5.6. Fort < (d—1)-24“2 the expected volume of the Crofton cell diverges to infinity

Wa+1W1

forr — oo and fort>(d- 1)w‘:d‘1“£1 it converges for growing radius .
+

Proof. Let the time ¢ > 0 be such that ¢ < (d - 1) 2~ wdw? holds. Using Lemma Lemma

2.2.1|and choosing r > 1 we see

E[H(Co)] = wa f "sinhd ! () exp(=t L ) g
0 Wwq w2

T
def sinhd_l(s)exp(—tws) ds
1 Wq w2

> Wy f exp((s-3)(d-1) - stwd+1w1) ds
1 Wqw2

T—>00

2wdf1 exp((s = 3)(d-1) = s(d-1)) ds ~=> oo.

Now let ¢ > (d - 1) 2= wd” , then there exists an € > 0 such that t =e + (d - 1) wd“j This yields

E[H%(Cy)] :wdfrsinhdfl(s)exp(_t MS) s
0 W W
Wd Wdt1 W1
S2d71f exp((d—1)s)exp(—¢ onon s—(d-1)s) ds

w r Wis1 W
:Qd—ifo exp(—sﬂs) ds.

This expression is bounded in . We get the desired result by monotone convergence. O

Remark 4.5.3. As mentioned in the remark above, the results concerning the expected volume
of the Crofton cell are transferable into the setting of the expected volume of the Crofton cell
of a Poisson hyperplane tessellation. Considering the different normalization of the measure
ld-1, the threshold found in Lemma in dimension 2 coincides with the one established in

[114] (for Poisson hyperplane tessellations in dimension 2). In this work the authors asked for
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the probability of having visibility into infinity in an arbitrary direction from p. Below this

threshold, the probability was positive and above the threshold it is zero.
Using the calculations done in Section we get the expected number of cells and therefore

the expected area of the typical cell. For a formal definition of the typical cell, we refer to

Section

Lemma 4.5.7. Let C be the typical cell of a splitting tessellation inside a 2-dimensional ball

with radius r at time t > 0. Then

sinh(r)

E[H*(C)]=t2n (1 +t7 co(r) -1

-1
+7TH?(B,) ™ t-2) .
Proof. First we get by the Crofton-type formula in Lemma that for a convex body K ¢ lCz
1
i (HLy (K)) = U{HANK + 2} ju(dH) - - HOCH 0 OK) o1 (dH)

Ap(2,1) 2 JAL(2,1)

w3 w1 ,,1
= oK
g M O8)

= "H (OK)

holds. Using Theorem in the penultimate line, the expected number of cells is given by

t
BYil=E Y 1=ENol+ [ EY [ 1m(dH)ds
C€}/t 0 C€Y5 Hl(C)

14 fotn«: S (Hy(c)) ds

ceYy
t 141
:1+f E Y 7' H'(9c) ds
0 ceYs

t
=1+71 /0 OB, +2EXy (s) ds

t
=1+nt /(; 27 sinh(r) + 2EXy, (s) ds

t

=1+2sinh(r)t+7 " ]0- 2sHA(B,) ds
=1+ 2sinh(r)t+ 7 " H?(B,) 12

Therefore the expected 2-dimensional Hausdorff measure of the typical cell in dimension 2 is

H?(B,)
E[H? =
O = e f+ T2 (B 2
_ _ inh(r) 1 L\
P P 2] <721
" ( " cosh(r) -1 " 2(cosh(r) - 1) st

O

Remark 4.5.4. We would like to point out that the expected 2-dimensional Hausdorff measure

converges for growing radius r. The behaviour for large r and small intensities ¢t < 7/2 is
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10 +

Figure 4.5.1: Comparison of the expected area of the Crofton cell (straight blue line) and the
expected area of the typical cell (dashed red line) of a splitting tessellation inside
a ball of radius r at time t = 1.

fundamentally different in contrast to the expected 2-dimensional Hausdorff measure of the

Crofton cell (see figure [4.5.1).

The same behaviour occurs for higher dimensions (with different threshold depending on the
dimension d). We show this by bounding the expected number of cells in arbitrary dimension

from below.

Lemma 4.5.8. The expected volume of the typical cell of a d-dimensional splitting tessellation

is bounded in r for any fixed time t > 0.

Proof. We give a lower bound for the expected number of cells at time ¢ by

t t
Byl =ENol+ [ EY [ 1paa(dH) ds21+ [ pa(Hea(B)) ds
0 . JHaa(e) 0

12 fo " cosh®1(¢) de

2t " pa-1)
>1+ 2d_—1 ]0- e dav
t

T (erld) 4
+2d‘2(d—1)(€ ).

=1

Therefore the expected d-dimensional Hausdorff measure of the typical cell C' in arbitrary

dimension is bounded from above by some constant ¢ for any radius r > 0, since

H(B,) < H(B,) <
EYi| =1+ m(er(d_l) -1)

Cc

E[H(C)] =
holds. O

4.6 HIGHER MOMENTS

After investigating various first moments of functionals depending on splitting tessellations,

we aim to give results for the variance of the surface area. We start in Section with an
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integral representation for the variance of the hyperbolic surface area of a splitting tessellation.

Later in Section [4.6.2] and [4.6.3] we will use this representation to investigate the variance of

the total surface area for growing time ¢ and growing radius r respectively. In this section we

will fix the intersection window W to be a ball of radius r > 0.

4.6.1 VARIANCE OF THE SURFACE AREA

Theorem 4.6.1. Fort >0 the variance of the surface area of the splitting tessellation Xy, | (t)

within a ball of radius r > 0 is given by

Var(zfd-1 (t))

L exp(-e dn () ) Lr
) _(dH
cd ‘[]Hld—l<B7‘) LOBT LDBT dh($7y) H (dl‘) H (dy) Hd l(d )

with
Wq w2

Cq = .
Wd+1 W1

Remark 4.6.1. For other spaces of constant curvature comparable results are established.
For the Euclidean case see [104, Theorem 4.1] and for the spherical results see [47, Theorem
5.4].

Proof. To show this we define

ifd—l(t) = Efd—l (t) - Ezfd—l (t) = Z fd—l(c) - Hd(Br) L,
ceYy
where we used Theorem to evaluate the expectation. To shorten the notation, we define
for T €T and t >0 )
1.0 (5 fas() - H()1)

ceT

and using this notation yields 3, | (¢)? = g(Y;,t). For the special case t = 0 we get g(Yp,0) = 0.

The derivative of g with respect to the time component and a fixed tessellation T' gives

9 (7,5) = -2 (Z faa(c) -HY(By) ) HY(B,).

Os ceT

Inserting T' = Yy yields

o _
5 (Vays) = =257, () H'(B,).

Now Proposition [4.3.3| shows that

S, (02 -0- [ t 2 fHd_l[c] [(

2
. (zy far ()~ HI(B,) ) ]ud_1<dﬂ) 9%, (YHAB,) ds

2
fa-1(e) - HY(By) 5)

ceYsn{ctu{enH*}u{cnH"}
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is a Y-martingale. Here we chose b(t) = t H¥(B,) and ¢ = f;_,. Taking a closer look at the
expression in brackets gives

( > far(e)-HY(B,) 3)2 - ( > fa1(6) - HYB,) 3)2

geYan{cu{cnH* }u{cnH~} ZeY,
= (2,0 (8) = far(e) + faa(en HY) + far(en H_))2 - (ifd_l(s))2
= (54, (5) + 2far(cn H)) = (54, ()
=4fg 1 (cnH)? +4fs1(cnH)Xp, ().

To simplify the martingale, we use the Crofton-type formula stated in (2.4)

1.
S [ Afea(en ) paa(a) =4 Y, [ HTN(en H) N 0By o (dH)
ceYs del[c] ceYs Hd—l[c] 2

=4 %Hd(c N 0B,)
ceYs

= 2HYB,)

and therefore

_ t
Efd—l (t)2 - A Z [HI 4fd—1(c n H)2 ,Uadfl(dH) ds
ceYs a-1[c]

is a Y-martingale. Taking the expectation and using the definition of f;_1 leads to

Var(Zs,, (8) =E(Zy,., (£)?) :Efot ZY fHHM 4fs1(en H)? pg1(dH) ds

t
:f EY f HE N en HY? g1 (dH) ds.
0 ey, JHa-1[c]
This can be rewritten as

Var(Xy¢, ,(t))
=/0tEc; fHd_l[c](/H]I{:cec} Hd_l(dx))(/H]l{yec} Hd‘l(dy)) jia-1(dH) ds

) fotECZ; fdel[c] -[H .[H Uz,y e H(de) HTH (dy) pa-r(dH) ds

t
_ d-1 d-1
_ /O [Hd_l[Br] fH . fH o E X My ec) MU da) M (dy) pai (dH) ds

ceYs

t
= P(z,yn Zs = @) HE Y (dz) 1Y (d _1(dH) ds.
Iy S s S, iy, BT 01 20 = @) HE7H ) ! (dy) pracs () ds
Since by Corollary the probability is given by

P(Z5 0 Z = @) = exp(——2L2L 4, (2, y) ).
Wq W2
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Wy w2
Wd+1 W1

Defining ¢, := we can continue as

Var(Sy,., (1))
_ [ _.-1 d-1 d-1
= L L oy S, S, P ) 8) B () 5 (dy) g () s

1- eXp(_C&l dh($7 y) t) d-1 d-1
B d dy) pig-1(dH).
“ ‘/Hd—l[Br] /;IOBT /;IOBT dh(x,y) H ( 3:) H ( y) Hd 1( )

4.6.2 LIMIT BEHAVIOUR OF THE VARIANCE OF THE TOTAL SURFACE AREA FOR
GROWING TIME ¢

Having the representation developed in Section gives us the opportunity to make some
statements about the limit behaviour of the variance for growing time t. We distinguish
between d =2 and d > 3. The first one is covered by Corollary and the second by

Before we can start with the main results, we first have to establish some auxiliary results

needed in the proofs.

Lemma 4.6.2. Let a>0. The function f,:(0,00) - R with

1 _ efaw

X

fa(z) =
is decreasing.

Proof. First of all, we see that f, is continuously differentiable. Therefore it remains to show

, axe T +e W -1
fi(x) = 2 <0.

Using the series expansion of the exponential function we get ax + 1 — €% <0 and trough the

following equivalence relation

ar+1-e“ <0 < are ™+ -1<0 «<— <0
the desired monotonicity. O

The next result deals with two inequalities for integrals showing up in the proofs of Corollary

[4.6.4] and [4.6.5]

Lemma 4.6.3. Let a € [-b,b] with b>0 and let f:[0,00) — [0,00) be a decreasing function.
Then the following relations hold

@ [, FGo-ub dy< [ -y dy
Giy: [ s00-s dy> [ (gl dy
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Proof. Due to symmetry we can assume a to be non-negative. We start with showing (7).
This is done by the following equivalence relations, where the first one holds true due to the

monotonicity of f

v[Ob_af(u+b+a) duév[Ob_af(u) du
2b b-a
= [t dugfo F(u) du
— [OQbf(u) duﬁ/obmf(u) du+f0baf(u) du
— [:f(b—y) dyé[:f(a—y) dy+fabf(y—a) dy
— [ sQo-s) dy< [ 1lla-l) dy

Inequality (i7) is due to

fbb+af(u—a) du > fbb+af(u) du
— /bbaf(u) duszb+af(u) du
fobf(u) du > fob_af(u) du+fbb+af(u) du
2fobf(u) duzfobaf(u) du+_[0b+af(u) du
[:f(lyl) dyz/abf(y—a) dy+[:f(a—y) dy
[ G0y dy> [ (-l dy.

<~
<
<~
e

Corollary 4.6.4. Let d =2 and r > 0 be fized. Then the variance Var(Xy (t)) grows with

logarithmic speed in t and is therefore unbounded in t.

Proof. Let 0 <e <r and define the set A of hyperplanes having at least intersection length 2¢
with B,
A=A(e,r)={H e Ap(2,1): HY(HNnB,)>2¢}.

By our choice of ¢ this set is nonempty. To shorten the notation, we write

_ _HY(B,nH) cosh(r)
c¢:=c(r,H):= ———= =arcosh (m) .
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Now we are able to give a lower bound for the variance of the total edge length

—exp(—c;! T
Var(Zfl(t)):le 5] j];ﬂBT j];ﬂBT 1 p(dh(;’;dj;( ay)t) Hl(d.%') Hl(dy) Ml(dH)

g [ A
>le[ /Cl—exp —citde(z,y)t) da dy i (dH)

(z,y)
€ —exX 1 A
>01/[ f ! pd @ Z)( 9)1) dx dy pi(dH)
= 1 (A) f [ eXp(lxcly:x Y0 4 ay, (4.11)

—exp(— -1
w, Due to Lemma |4.6.2| the

We now apply Lemma |4.6.3| (i) with b=¢ and f(u) =
requirements of this lemma are fulfilled. This allows us to bound the two integrals in (4.11)
further by

/ fal—exp( —cit |z —ylt) i dy>f fal—exp( citle - ylt) dy da

] e~y
€1- —citle -yt
:25f expl=ele-ylt)
-e le -yl

:2€f2€1—exp(—cllut) J
0 u

_9¢ fl 1 -exp(-2c;tevt) o
0 v
= 2e(y +In(cy ' 2et) + By (e 2et)). (4.12)

Here 7 is the Euler-Mascheroni constant and E1(t) := [, s7'e™ ds (see [86, Chapter 6]) is a
finite number. Combining (4.11) and (4.12) yields the lower bound for the variance

Var(Zy, (1)) > 2c1e p1 (A)(y + In(ey ' 2et) + By (1 2et)).

An upper bound is given by

—exp(-c;t x
Var(Zfl(t))=clf - meBT meBT LexpCer dn(@ 8 3140y 1 (dy) ()

dn(z,y)
A fH (B,] f /. 1 _eXpd E;l ;l)(x’y)t) da dy ju(dH)
< fown o ) 1_6Xp(d E; ;z)(m DD 4 dy ()
- ¢ (Hi[ B )f fr 1 —exp(lxcl;:x ylt) iz dy. )

Now applying Lemma |4.6.3| (ii) with b =r and f(u) = which fulfills again due to

1-exp(-cjlut)
u
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Lemma the requirements, yields

-1

frfrl—exp(—cl |z — ylt) d dy<]r /r 1—exp(—cil |0 —ylt) dz dy

r |z -y r 10—y

o [ 1 —exp(=c; ' ylt)
- [yl

r1 -1
=4Tf 1 —exp(—ci ut) du
0 u

:47”f1 1 —exp(-cilrut) do
0 v

= 4r(y +In(c;trt) + E1(ci'rt)). (4.14)

dx dy

Combining (4.13) and (4.14) finishes the proof. O

For d > 3 we get a different limit behaviour.

Corollary 4.6.5. Let d >3 and r >0 be fized. Then the variance Var(Xy, (t)) is bounded in
t>0.

Proof. To shorten the notation, we define ¢ = ¢4 ftg—1 (Hg-1(B)). Further let L, be an arbitrary
(d — 1)-dimensional subspace containing the origin. Similar as in the proof of Corollary
one gets an upper bound by

Var(Xy, (1))

1-exp(~czl dp(z,9)t) . 41 i
B (dH
cd [I;Id—l[Br] »/;IMBT »/I;QBT H (dx) H (dy) Hd 1(d )

dh(fL‘, y)
(*) 1-exp(—cz dn(z,y)t) 44 d-1
< fHd_l[B,.] prnB,. /LpnB,. dp(x,y) A (de) 7 (dy) paa (AH)
. 1—exp(=c; dn(z,9)t) , a1 d-1
¢ /LpnB,« ﬁpnBT dh(x, y) " (dx) " (dy) (4'15)

In order to justify (*) let R := R(H,r) be the radius of the (d—1)-dimensional ball HnB, and let
B(R) = B(R, L,) be the (d - 1)-dimensional ball in L, having midpoint p and radius R. Since
B(R) and H n B, have the same radius, there exists an isometry ¢ = ¢(B(R), H n B,.) € [(H?)
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such that o(H n B,) = B(R). Using these definitions, we get

1—exp(—czt dp(z,9)t) . 41 i
LMBT /I;mBT dn(2,9) HT (dx) H (dy)

1—exp(—c;" dp(0™ ' (2), 0 (W) a1 d-1
:[p(HnBa[p(HmBr) dn(p71(x), 71 (y)) HE o) 7T dy)
f f 1—exp(—c;' dp(o™' (), (v))t)

B(R) JB(R) dn(p™ (@), 97 (y))
f 1 - exp(—c;' dp(z,y)t)
(R) JB(R) dn(z,y)
1- exp(—c;l1 dp(z,y)t)
pNBr prmBr dn(z,y)

H (dz) HH (dy)

H (dae) HT (dy)

——

H (dx) HO (dy)

—

for every r >0 and H € Hy_1[B,]. Here the last inequality used that for every r >0 and our
choice of L, € Gj,(d,d - 1), the (d - 1)-dimensional ball B(R) is contained in L, n B,. In
a next step and since the set L, n B, is contained in the (d — 1)-dimensional subspace Ly,
we can find a (d - 1)-dimensional subspace Tg_lM of the tangent space T, M at p such that
expp(Tzﬁl_lM ) = L, holds. Now we use spherical coordinates on Tlﬁl_lM in order to rewrite
the outer integration over L, n B, in , i.e. every point in Tg_lM is represented by its
spherical direction u € Sg—z and its distance from the origin s > 0. Further applying Fubini’s

theorem allows us to obtain

1-exp(—cz dp(z,y)t) 44 d-1
LPNBT ﬁpnBT dh(x,y) 7 (dx) 7 (dy)

' 1 - exp(—cg' dp(exp,(su), y)t)
= inhd-2 / 4 » 1 o
'[0 fS§’2 - () LynB; dn(exp,(su),y) HT (dy) oq-2(du) ds
= Wy-1 [Tsinhd_Q(s) 1 - exp(=c' dp(exp,(sv),)t)
L,nB, dh(expp(S’U),y)

HI Y (dy) ds. (4.16)

Here the last equality is obtained by first fixing an arbitrary direction v € Sg_Q. Now for every
u € Sg_Q there exists an isometry ¢, , € [(H?)P fixing the origin such that Puw(exp,(su)) =
expp(sv) holds for any s € [0,7]. We will use this isometry to get rid of the dependence of u in
the inner integral in the second line of via

1 —exp(-¢;" dy(exp,(su), y)t) _ .
e o R
B 1 - exp(=¢5" dn(Pup(expy(5u)), un (W) 4y
B prmBr dn(Puw(expy(s1)), Puu(y)) W )
) 1= exp(=c" d(exp,(s), pup(¥)) _ 44
s o) e )

H (dy).

[ 1 - exp(-c* dp(exp,(sv),y)t)
LpnBr dn(exp,(sv),y)
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In order to give further bounds we have to obtain results similar to the ones in Lemma [4.6.3]

but for higher dimensions. More precisely we are aiming to show that for any s € [0, 7]

f 1- (—:-xp(—cg1 dp(exp,(sv),y)t)

LpnB, dn(exp,(sv),y)

/ 1 - exp(=¢;" du(p, y)t)
LpnB; dn(p,y)

H (dy)

< H Y (dy) (4.17)

holds. To show this let A := A(s,r) := Bp(exp,(sv),r) n (B, n Ly) be the set of points in
(B, n Ly) having distance at most r from exp,(sv). Further there exists an isometry ¢ € I(L;)
with p(exp,(sv)) = p. Therefore this isometry fulfills ¢(A) € B, n Ly. The integrands in
only depend on the distance between y and exp,(sv) and on the distance between y and p.

Thus we get

H N (dy).  (4.18)

1—exp(cy'dp(exp,(sv),9)t) 4y, 1 —exp(cg'du(p, y)t)
/:4 dn(exp,(sv),y) H dy) = [P(A) dn(p,y)

Now for any z € (L, B;) \ A we get by definition of A that dj,(exp,(sv),x) > 7 holds, whereas
for all z € (L, n B;) \ p(A) the distance dj,(p,z) is bounded by r. Since the integrand is by
Lemma decreasing in the distance and since the sets (L, N B;) N A and (L, n B,) \ ¢(A)

have the same (d — 1)-dimensional Hausdorff measure we get

H (dy)

[ 1 - exp(—cy' dy(exp,(sv),y)t)
(LpnBr)NA dp(expy,(sv),y)

. f 1 —exp(—c;t dn(p,y)t)
" J(LpnBr)p(A) dn(p,y)

and together with equation (4.18) the desired relation (4.17) follows. Now combining (4.15)),
(4.16) and (4.17)) yields

Var(Xs, ., (1))

r 1- _ 1
Séwd_lf sinhd_2(s) exp(=¢g_dn(p,y)?) Hd_l(dy) ds
0 LpnBr dh(p,y)

H (dy)

—exp(=¢;' du(p,y)t)
dn(p,y)

- exp(—c;' dn(p, exp,(su))t)
dp(p, exp,(su))
—exp(—c;' dp(p, exp,(sv))t)

dp(p, exp,(sv))
—exp(—cy' st) is.

H (dy)

1
o d-1
- L,n B, f
EH" (Lpn By) LB,

T 1
- eHY (L, B,) /S o fo sinh®2(s) ds 0g_o(du)
P

T 1
= eHY(Ly 0 By) waet fo sinh?-2(s)

r 1
= ¢H" YLy By)wys /(; sinh?™2(s)

Here we used spherical coordinates to replace the integration over L, n B,.. This can be further
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simplified by using

sinh(s) & s > g2
= < = h .
s g(znu)!—?;)@n)! cosh(s)

Finally, we conclude

Var(gqu (1)
<t (Lp N By)wg-1 /0 sinh?3(s) cosh(s)(1 - exp(—c,' st) ds

<EHTY(Ly 0 By)was fo " sinh®3(s) cosh(s) ds

< 00,

Remark: The limit behaviour of the variance of the surface area for growing time ¢ is the
same as in the spherical setting, as shown in [47]. Heuristically one might argue that the
underlying reason for this is that due to the bounded observation window the curvature of
the underlying space does not play an important role. If one likes to compare the behaviour
of the variance for growing time ¢ with the one in Euclidean space, one has to consider [104]
Theorem 3| and rescale the observation window. Doing so it follows that in Euclidean space
and stationary set up the variance grows with logarithmic speed in ¢ for d = 2 and converges to

a constant in the limit case for d > 3.

To show the behaviour in Euclidean space let Y} (W) be the stationary Euclidean splitting
tessellation (i.e. STIT-tessellation) at time ¢ > 0 inside a fixed compact window W c R¢. For
proper definition of this process see for example [81]. Further let Yt,euc(]Rd) be the corresponding
splitting tessellation of the whole space at time ¢ > 0. Using [81, Theorem 1, Lemma 5] we

show in a first step

}/t,euc(W) g }/t,euc(Rd) nw g t_lyl,euc(Rd) nNw = t_l (Y17euc(]Rd) Nt W)
Y e (EW).

Now applying for d = 2 the results from [104) Theorem 3] gives

Var(H (Vi.eue(W))) = Var(H (171 Y1 cuc (EW)))
= Var(t "H (V1 euc(t W)))
=42 VaI‘(Hl(Yl,euc(t w)))
~ 1 HE (W) log(t),

where H! (Y7 cuc(W)) is the total surface area of the process at time ¢t. The same way we get
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for d >3 and the total surface area H (Y} euc(W))

Var(H (Vieue(W))) = Var(HE (7] cuc(tW)))
= Var(t" DUV (Y] e (tW)))

d-1
2

~

EQ(W)7

where Fo(W) is the 2-energy of W (i.e. a constant), given by

B(W)= [ [ la=-y|™? do ay.

4.6.3 LIMIT BEHAVIOUR OF THE VARIANCE OF THE TOTAL SURFACE AREA FOR
GROWING RADIUS 7

In this section we will investigate how the variance of the surface area behaves for growing
spherical windows. We will start with the 2-dimensional case and treat higher dimensions
afterwards in Lemma

Lemma 4.6.6. Let d =2 and t >0 be fized. Then there are constants ¢V (2,t), C(1(2,t) e
(0,00) such that for r > 1

D2, 1) e" <Var(Sy, (1) <CD(2,t) e

Proof. Using Theorem we get a representation for the variance. Applying the representa-
tion for the measure p stated in (2.3) yields

v 1 —exp(-adp(z,y)) ;1 1
VZt:]hf [ H (dz) HY(dy) ds,
ar(3p, (1)) =cz | cosh(s) iy, (B, n(@y) (dx) H(dy) ds
where we denote by a = a(t) = w; w3 w, 2t and let H;(s) be an arbitrary totally geodesic line at
distance s from the origin. We will use Lemma which gives bounds on the intersection
length of Hi(s) with B, and Lemma showing that the integrand is decreasing. Further

we apply Lemma[4.6.3] (ii). This yields

Var(%y, (1))
r r—s+log(2) r—s+log(2) 1 — — —_
S@f cosh(s)f / exp(zalr - y)) dx dy ds
0 —(r-s+log(2)) J—(r-s+log(2)) |l‘ - y|
r r—s+log(2) r-s+log(2) 1 — - -
SCQ_[ cosh(s)/ ¢ f : exp(=a]0 - y}) dz dy ds
0 ~(r-s+log(2)) J-(r-s+log(2)) [0 -yl

r-s+log(2) 1 — exp(-ay)

=4dcy for cosh(s)(r —s+1log(2)) fo dy ds. (4.19)

Here the integrand is bounded by

1-exp(-ay) <q
—y <

, y€(0,00).
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Combining this inequality with (4.19) gives

r r—s+log(2)
Var(3y, (1)) <4eo /0 cosh(s)(r — s +1log(2)) /0 ¢ a dy ds

= 4a cy /(;T cosh(s)(r - s +1log(2))? ds
<dacy fo e*(r—s+10g(2))? ds

<cW(2,t)e.

In order to derive the lower bound, we use r > 1 and do the following calculation using the

bounds from Lemma on the intersection length and Lemma [4.6.3] (i)

r r=s r=s 1 -exp(-alx -y|)
Var(X ¢ (t Zc/coshs/ [ dx dy ds
(S zes [eoshis) [ [0 SR

>02f cosh(s)[ [ L~ exp(zalr=s—y)) dz dy ds
0 (r-s) (r-s) |7’—s—y|
=262[0 cosh(s)(r—s)/ : L - exp(=alr=s-y)) dy ds

Ir—s -yl

In a next step we decrease the integration area of the first integral and rewrite the second

integration. This gives

2(r=s) 1 —exp(-au)

Var(X¢, (1)) > 2c2 for " cosh(s)(r - s) fo du ds

r—0,5 2(r-s) 1 — -
202f es(r—s)/ Mduds
0 0 U

r—0,5 min{2(r-s),1} 1 — —
ZCQ[O S(r—s)[ Mduds

u

202_/0“’6(7"—5)] — exp( au) du ds
>cD(2,t) e

The last inequality holds, since the second integral does not depend on s anymore and is

therefore a constant only depending on ¢ and the dimension d = 2. O
Now we turn to the case of higher dimensions.

Lemma 4.6.7. Let d > 3, t > 0 be fired and r > 1. Then there are constants
A (d ), ¢4 D (d,t) € (0,00) such that

A (3,1) e <Var(Sp, (1)) < CP(3,t) log(r) e®,  d=3

and
c(d’l)(d,t) rle2r(d-2) o Var(Sy, (1)) < C(dfl)(djt) rfleQT(d’Z), d>4.

Proof. In this proof ¢ will indicate a constant depending only on d and ¢ which may vary from
line to line. We will start with showing the lower bound. Using Theorem and the
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representation for the measure -1 in (2.3) we get a lower bound for the variance

Var(zfd—l)
r - 1 —exp(~ady(z,y)) . a1 d-1
=c cosh? (s f H dx) H dy) ds
d.[O (5) Lg-1(s)nBy JLg-1(s)NBr dn(z,y) () (@)
>c_d fres(d—l) / 1 _eXp(_adh(x7y)) /Hd—l(dl,) ’Hd_l(dy) ds
T2d-1 Jo Ly-1(s)nBy JLy_1(s)nB, dp(z,y) ’

where we set a = a(t,d) := wg,1 w1 (wgwa)~'t. By using that the integrand is by Lemma m

decreasing we derive for any s € [0,7], x,y € Lg_1(s)n B,

1-exp(—ady(z,y)) S 1 —exp(-2ra) S 1 —exp(-2a)
dp(z,y) N 2r N 2r ‘

(4.20)

Now let d > 4. We make use of (4.20) and apply the inequalities derived in Lemma to get

1 —exp(-2a)

d-1 d-1
d dy) d
Ld,l(s)ﬁBr -/;/d,l(s)ﬂBr 2T H ( x) H ( y) y

Var(Xy¢, ) > c/(;res(dfl)
= Cfo D (HI YLy 1(s) n By))2rt ds
r—1/2 d d
> Cfo D (Y ( Ly (s) n B2 ds
r—1/2
> C/o 5(d=1) 2(r=s)(d-2) -1 g
r-1/2
:CT—162r(d—2)-[0 oS(-d+3) g
> 4D (d, t)r e (@), (4.21)
For d = 3 we can use the same arguments to get

Var(Xy,) > D (3,t) e

The only difference for d = 3 is that the integral in the penultimate line of (4.21]) is not bounded

in 7 and therefore cancels out the term 771.

Now we show the upper bound. We once again start with the case d > 4. As above we

derive the following representation of the variance

Var(zfgl-1 )

r _ 1 —exp(-adp(z,y)) , 41 d-1
e pd-1 f f d dy) ds.
cd-1 fO €08 (5) La-1(s)nBr JLg-1(s)nBr dn(z,y) W de) W (ay) d

Using the same arguments as in the proof of Corollary (see equation (4.17)) this can be
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further bounded by

Var(Zy, )
<c fo " cosh®I(s) Las(s)nB, de_l(smBr 1 _eXIZlEL_(Z,C;h)(p’y)) H (do) 1T (dy) ds
<o [ o N N anrn ) [ ISR 3 ay) ds
A B R

where the last inequality used Lemma and an upper bound for the cosh-function. Now
we use spherical coordinates on Ly 1(s) n B, and Lemma to derive

Var(Efd_l)

r r—s+log(2) — —
Scer(d_2)f0 68/0 ) sinhd_Q(f)l#w de ds

r r/4 — —
:cer(dﬂ)fO es(fo sinhd2(€)1#w dr

r—s+log(2) _ _
; f ) ¢ sinhd—Q(z)M df)ds

r r/4 r—s+log(2)
<ce(@2) /0 es( /0 sinh®2(0) a dl + f/4 ¢ sinh®2(0)r! dﬁ)ds

r r/4 r—s+log(2)
<ce'(d2) fo es(fo sinh2(¢) a d€+f0 ¢ sinh?=2(¢)r~! dﬁ)ds

<ce(d2) [T e’ (a e1(d-2) 4 r_le(r_s)(d_z)) ds
0

= o er(d-2) f’"(aeg(d—z)es +T—1€r(d—2)€s(—d+3))d8
0

(-4

3) 4 eplp2r(d-2)

<cae

<1 (d,t) rler(d=2)

Here we depended on d > 4 in the third ultimate line in order to bound the integral for es(=d+3) s
by a constant. Further we used d > 4 in order to show that the second summand in the

penultimate line is indeed the leading term for r — oo.

Now we turn to the case d = 3. Here we have to be a little bit more careful. In order to
shorten the notation, we consider the two inner integrals first. Using the same arguments as in
the proof of Corollary (see equation (4.17)) and spherical coordinates on Lo(s) N B, we
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get

—exp(—adp(z,y)) , 2 2
»/;Q(S)OBT ‘/[/2(3)037“ dh($ y) H (dx) H (dy)

1 —exp(=adn(p,y)) , 2 )
: H2(de) HA(d
‘/Lz(S)ﬁBT LQ(S)OBT dh(p y) ( x) ( y)

~ 1 —exp(-adn(p,y))
= 7—[2([,2(3) nB,) - 0 ry) HZ(dy)

r—s+log(2) —
< cH2(Ly(s) n By) fo ¢ sinh(ﬂ)M de

Now we use Lemma and the monotonicity of the integrand (shown in Lemma[4.6.2) to

continue the inequalities in (4.22))

(4.22)

r—s+log(2) — —
7—[2(L2(S)HBT)[O o sinh(ﬁ)#w

r—s+log(2)
<ec T_S/ ¢ sin h(E)M drl

/7‘ s+log(2) E 1 —EXp( a[) &0
0 l

al

flog(2) ¢ 1-exp(-al) £+/TS+10g(2)eel—exp(—a£) dé)
1

( 0 J4 0g(2) Y4

1 (2) r—s+log(2)
f ° a+ [ T de). (4.23)
0 log(2)

()

The first integral can be easily bounded. For the second integral (*) we get

r—s+log(2) 01 . )
fl o €= Bi(r— s +log(2) - Ei(log(2)) (4.24)
og

where Ei(-) is the exponential integral (see [86, Chapter 6]). Combining (4.21))-(4.23)) and the

representation of the variance gives

Var(2,) Scforcosh2(s) ng(s)nBr LQ(s)mBr l_exzizz’dy")(x’y)) H2(dx) H2(dy) ds
< cforcoshQ(s)eHu +Ei(r - s+ log(2)) - Ei(log(2)) ds
<ce fOTes(l +Ei(r - s +10g(2)) - Ei(log(2))) ds
e fore“su + Ei(s + log(2)) - Ei(log(2))) ds

=ce’r [OT e *(1+Ei(s +1log(2)) — Ei(log(2))) ds. (4.25)

Since the constant terms in the inner brackets are asymptotically negligible, it remains to solve
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the integral

[OT e *Ei(s +log(2)) = [2log(s +10g(2)) — e *Ei(s + log(2))];

=2log(r +1og(2)) — e "Ei(r + log(2)) — 21log(log(2)) + Ei(log(2)).
All summands are in 0(log(r)) except the first one. Combining this with yields
Var(Xy,) < C®(3,t)log(r) ¥
O

Remark 4.6.2. The results presented in this section are almost similar to the ones for
hyperbolic Poisson hyperplane tessellations (see Section[3.2). For d = 2 the limit behaviour in
r is the very same, whereas for d = 3 an additional factor log(r) appears in the upper bound.

For d > 4 the lower and the upper bound contain the additional factor r~.

4.7 MIXING PROPERTY

Similar to the Euclidean case, considered in [58], we will investigate the mixing property
of hyperbolic splitting tessellations. The first Subsection gives an introduction to the
concept and states some definitions and a lemma needed to prove the main result. The result
and its proof are treated in Section [4.7.2]

4.7.1 MIXING INTRODUCTION

The concept of mixing is investigated for many different random mosaics (some classical results
can be found in [103, Chapter 10.5]). Heuristically speaking, a mosaic is called mixing, if the
dependency between two events vanishes for growing distance. Formally a Euclidean random
mosaic X is called (a-) mixing, if for all compact sets C1,C5 € C(F'(R))
HxlﬁmooP(X NCi=a, Xn(Ca+2)=0)=P(XnC;=2)P(X nC2=2)

holds. For different models the speed of this convergence differs. While for Euclidean stationary
Voronoi mosaics the f-mixing rate (for definitions in this case see [71, Chapter 2]) decays
exponentially fast in ||z| (see [36]), the S-mixing rate for Euclidean STIT tessellations decays
at most linearly in |z| (see [71, Theorem 5.3]). This is due to the fact that early cracks have
a long range and therefore imply long range dependencies in the mosaic. Mixing properties
play an important role in fields such as Poisson approximation (see [21]). Also central limit
theorems ([36]) and extreme value properties ([22]) rely on mixing properties.

In order to state an auxiliary lemma, recall the definition of the capacity function and the

U-function

T(C)=P(Z,nC+@), U(C)=P(Z;nC=w), CeC(H)
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For a compact set A € C(H?) and a > 0 we let r = 7(A) € N be the smallest value such that
A cint (B,) holds and define the constant

M = exp(a a1 (Hy1(Bya))), (4.26)

only depending on a, A and the space dimension d. Having this definition, we can prove the
following lemma, which will be used in the proof of Theorem [4.7.2]

Lemma 4.7.1. For A,B e C(H?), 0<t<a the following inequality holds
|Ua—t(A)Ua—t(B) - Ua(A)Ua(B)’ < t()‘A,a + )\B,a)

where Aa q, Ao are defined in (4.26)).

Proof. First the expression is rewritten by the capacity functional

[Ua-t(A)Ua—t(B) - Ua(A)Ua(B))|
=(1-Tut(A)) (1 - To-e(B)) - (1 - Tu(A))(1 - Tu(B))
=(Ta(A) - Ta—(A)) + (Ta(B) = Ta—t(B)) - (Ta(A)Ta(B) = Ta—t(A)Ta—(B))
(Ta(A) = Tat(A)) + (Ta(B) - Ta—t(B)).

Let r = r(A) € N be the smallest value such that A ¢ int (B,) holds. We consider both
summands separately and restrict ourself to the process Y, = Y,(B,) on B,. Now denote
by Ng-¢ the number of hyperplanes that appear up to time a —¢ for ¢ € [0,a]. For n € Ny
we set p, = P(Ng—¢ = n) > 0. By construction of the process the tessellation almost surely
contains N,_;+1 cells at time a—t. We will call them ¢y,...,cn, ,+1 and define 4; := Ang;, i =
1,..., N4t +1. This gives

Ta(A) = Ta-t(A) = Ua—t(A) - Ua(A)
=P(ZytnA=0)-P(Z,nA=0)
=P(Z,nA=0)-P(ZenA=2)P(Z,nA=3 | Zy-1 N A =2)
=Upt(A)P(ANZ, 2D | ANZyy = D)
<P(AnZ,+#@ | AnZyy = D), (4.27)

where we used the probability of the complementary event in the penultimate step. Now we

are aiming to further bound the expression in the equation above. To do so we condition on
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the number of hyperplanes that appear up to time a —t

P(AnZ,+@ | AnZ,t = D)
anP(AmZa;t@ | No-t=n, AnNZ,_1 = D)

n>0
= EpnIP’(HiE {1,....n+1}: AinZ,#@ | Ny-y=n, AnNZy 1 = D)
n>0
n+1
<SS pn Y P(A4iNnZ,#@ | Nooy=n, AnZyy =)
n>0 i=1
(+) n+1
= an ZP(AiﬂZaig | Nyt =n, AiﬂZa_tZQ)
n>0 i=1
n+1
< 2 Pn Z ]P)(COIIV(AZ') NZy + & | Ny t=n, AijnZy 4= @)
n>0 i=1
n+1
= Z Dn Z P(conv(A;)NZy + @ | Nyt =n, conv(A;) N Zyy = B). (4.28)
n>0 i=1

Here the last equality holds, since {A4; N Z,_¢ = @} = {conv(A;) N Z,—+ = @} holds. The relation
{A;nZ,y =@} 2 {conv(A;) N Z,—s = @} holds trivially. In order to show

{AinZ,+ =2} c {conv(A;) N Zo—t = T},

we assume that there exists a realisation such that A;n Z,_; = @ and conv(A;) N Z,—+ + @ hold.
This implies that there exist two points z1,22 € A; € ¢; and an y € (z1,22) € conv(A;) such
that y € Zy—¢, x1,22 ¢ Zq—¢ holds. This in turn implies that z1 and z9 are not contained in the

same cell, since the cells are convex. This is a contradiction to our choice of 1 and x».

In order to justify the equality marked by (*) in (4.28)), we do the following calculations.
To shorten the notation, we define the event B; for i€ {1,...,n+1} by

B; = B;i(a,t) := N {AxnZyt = 2}
ke{l,...,n+1}\{i}

Using this, one can see

P(AiNnZ,#+@ | Not =n, ANZyt = @)
_ P(AinZ,+D, Ng-t=n, AxNZyt =D,..., Apns1 N Zgt = D)
- P(Nyt=n, AxnZys=0,..., Api1NZay=D)
3 ]P’(AZ NZy+D, Neyty=mn, AynNZy_y = @,Bi)
- P( Ny_y =n, AiNZay=23,B;)
_ P(AinZ,+ D, Nag-t=n, AinZyt = D)
- P(Noy—y =n, AiNZay =)
" ]P’(BZ ‘ AiNnZ,+D, Noyy=n, Ai;NnZyy = @)
P(B; | Nat =n, AinNZot =) '

(4.29)

Here the first factor is equal to P(A; N Z, # & | Ng—t =n, A; 0 Zy_y = &). Therefore it remains
to show that the second factor is equal to 1. To do so, we let C; := C;(a,t) be the event that
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the process hits A; within the time interval (a —¢,a]. Using this, we get

P(Bl | A;nZ, + &, Ng_t =n, AnZ, ;= @)
=P(B; | C;, No-t=n, AinZ, = D)
=P(B; | No—t =n, AinZyy = D),

where the last equality holds, since B; only depends on the behaviour of the process within the
time interval [0,a —t] and C; on the other hand only on its behaviour within the time interval
(a —t,a]. Therefore the second factor in the last line of 1) is equal to zero and therefore
(*) holds.

Now we take a closer look at the probability of the event
{conv(A;)NZ,+ @ | Nyt =n, conv(A;) N Zy_t = B}

and hence the probability of hitting the set conv(A4;) within th time interval (a -t,a], given
that conv(A4;) is contained in the interior of a cell ¢; at time a —t. By the definition of the
process, this probability is the same as the probability of Y;(¢;) hitting conv(A;), where Y;(¢;)
is a splitting process within the cell ¢;. This probability does not depend on ¢; and is given by

P(conv(A;) N Za # @ | Na—t = n, conv(A;) N Zo—y = @) =P(conv(4;) n Zy, ., * D)

=1-U(conv(4;))

<1-U(conv(A))
-1- e—tud_l(Hd_l(conv(A)))‘

We combine this inequality with (4.27) and (4.28) to derive

n+1

Tu(A) - Tui(A) < S pn 3 (1 _ e—tud_l(Hd_l(COHV(AD))
n>0 =1
n+1
<Y pn Y, tpg-1(Hg_1{conv(A)))
n>0 =1
=t pg-1(Hy_1(conv(A))) Z pn(n+1)

n>0

=1 ptg-1(Hg-1(conv(A)))E[No—s + 1].

Here we used 1 —exp(-z) < x, x > 0 for the second inequality. By Lemma we know
that the number of cells at a certain time ¢ > 0 can be bounded by a fitting random variable,
having geometric distribution with parameter exp(-a pg—1(Hg-1(())B;)). Therefore we get
the following inequality

E[Na—t] < E[Na] < exp(aﬂd—l(Hd—l«DBr))'
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Finally, using the definition of A4 4, given in (4.26)), shows the claim

To(A) = Taoy(A) <t A

4.7.2 MIXING MAIN RESULT

For a fixed compact set A € C, we define F4 to be the event that A gets hit by the process
(Y4)e>0. Now we are in the position to state and prove the main theorem of Section

Theorem 4.7.2. Let x e HY, a >0 and 7, € I(H?) be an isometry with 7,,(p) = x. Further let
A, Be C(Hd) such that A and B do not just contain a single point. Then

Po(FA 0 F=B) —Po(F4) - Po(FP)| € O(dn(p,2) ™). (4.30)

Proof. The first results that are used to prove the theorem will be stated for two general sets
A, B e C(H?) instead of considering the two sets A, 7, B directly. Let us consider the splitting
process (Y;)ss0 inside the window W = conv(A u B). We set

ty:=inf{t>0] Yy # v}

as the time of the first appearance of a hyperplane dividing W. This hyperplane will be called
H, eHy_1[W]. Now consider the event

Tap:=Tap(a):={H €(A|B), t1<a},

where (A|B) is the set of hyperplanes that separate A and B. Thus I'4 p is the event that A
and B are separated until time a by the very first hyperplane of the process. Heuristically
speaking the event I'4 p is very likely to happen for A, B being far away from each other. We
use this event in order to give an upper bound. In a first step we bound the difference in the

theorem by

Po(FANFBY P (FA) - Po(FP) < Po(FAFE T ap) - Pu(FA, FB)| (4.31)
+ [P (FANFE AT 4 5) - Pu(FA) - P (FP).

We consider the first summand in the expression above. Knowing that I' 4 g takes place, the

behaviour of the process is independent on both sides of H; and therefore also the probability
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of Y, hitting A, B respectively. We first show

Po(FANFP AT 4 p) - Po(FA 0 FP) = |Po(FAn FP AT b))
<P(T4 )
=P(H; ¢ (A|B) U t;>a)
<P(t;1 >a)+P(H; ¢ (A|B))
=P(t; >a)+P(H; n(conv(A) uconv(B)) + @).

The reason for this is that a hyperplane H € Hy_1(conv(A u B)) either separates A and B or
intersects one of the two sets conv(A), conv(B). The first term in the expression above is

given by
P(t > a) = e ata-1(Ha-1(W)) (4.32)

and the second one by

pg-1(Hg_1{conv(A) U conv(B)))
ftag-1(Ha-1 (W))

P(Hy n (conv(A) uconv(B)) + @) = (4.33)

Now we turn to the second summand in (4.31), namely the difference of Po(F A FB T A,B)
and P, (FA)-P,(FP). We have
Po(FAnFP T4 p)
- fo " g (Ha (W))e a1 Eas W) p(FA 4 FB o | e (AIB) | 41 = 1) di
= _[0 a1 (Ha oy (W))e o BatWIB(H) € (AIB) | 1 = t)
xP(FANFB | Hi e (A|B)nty =t) dt

_[e ~tpigor (Ha_y (W) Hd-1(Ha-1(A[B))
= [ e (B (W) Cacn 8 )

= pa-1(Hq-1(A|B)) /0 e Mt BarWDp_ (FA) Py (FP) dt

Pot (FA) Pay (FB)

= pg_1 (Hy_1(A|B)) fo ¢ tHa1 B W (A)U,_¢(B) dt.
Using the value of the integral

/000 eftudq(qu(W))Md_l(Hd_l(W)) dt=1
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gives the following
IPo(FANFE AT 4 p) - Po(FA) - Po(FP)|
Jpra1 (BaafAIB)) [ et ey (AU, (B) db
- Ua(A)Ua(B) [0 et Eaa WD) (H (W) df
Jpta-r (Har(AIB)) [ et GG, (AN, () dt
~ a1 (B (A1) [ e Gy, ()0, (B) d
+ |t (Ha1 (A|B)) fo " ertrar @ WD 7 (A)UL(B) di
- Ua(A)Ua(B) [ et Bty (B (W)
<pa1 (Bar(A|B)) [ e Gl DU, (AU, o(B) - Ua(AVUa(B)| di m

‘_Nd—l(Hd—1<A|B>)
pa-1(Ha-1(W))

b puaa (a1 (AJB)) [ et Gt gy (111)

+1

paa (Haa (W) [ e Gy, (v, (B) de (1)

We are aiming to control expression (I)-(I11). We define §(A, B,a) := Aaq + AB,q, Where Ay,
and Ap, are taken from Lemma [4.7.1] This lemma also provides

|Ua—t(A)Uqs—t(B) = Uq(A)Uq(B)| < (Aayqa + ABa)t =t-0(A, B, a)
and therefore an upper bound for (I)

:U’d—l(Hd—1<A|B>) Aa 6_wdil(]Hldil(wv))|Ua—t(A)Ua—t(B) - Ua(A)Ua(B)l dt

< a1 (a1 (A|B)S(A, Ba) [ ? emtran e (W) gy

= pa-1(Ha-1(A|B))d(A, B, a) ["

5(A, B,a)
prd—1 (Ha-1(W))?
5(A, B,a)
pra-1(Ha1(W))?

e-wd_l(Hd_l(WD(md_l(Hd_1<W)) +1) ]“
pa-1(Hg_1(W))? 0

= p1g-1(Ha1{A|B)) (—e e BlastW (g (Hg 1 (W)) +1) +1)

< pa-1(Hg-1(A| B))
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Term (II) can be bounded by

+1

‘_Md—l(Hd—1<A|B>)
pra-1(Hg-1(W))
_ | #a-1(Ha-1(A|B))
pa-1(Ha-1(W))
< ‘_Nd—l(Hd—l(A|B>) +1‘
T pao1(Ha (W)
 pa-1(Hg-1(A|B))
pra-1(Ha1 (W)’

where the first step used that the U-functional is bounded by 1. The last term (I11) simplifies

via

pta-1(Ha-1{W)) /000 e e W)Y, (A)U,(B) di

+1|U(A)U.(B)

=1

a1 (Hy 1 (A|B)) f % —tuasHaa (W) gy - Pt Hai{AB)) o (a1 ()
a pra—1(Ha—1(W))
< e—aud—1(Hd-1<W))_

Combining the inequalities for (1) — (II1) gives

Po(FA0FP T4 p) ~Pa(F) - Po(FP)|
6("47370’) n (1 _ /J/d—l(Hd—l<A|B>)
pa-1(Hg_1{W))2 trd—1 (Hg—1(W))

To show the result one has to control the growth of pg_1(Hg_1(A|mB)) and pg_1 (Hg_1 (W))
in terms of dp(x,p). Since A, B are nonempty there exist x4 € A, xp € B. Without loss of

<p1a1 (a1 (A|B)) ) e (FaalVD (4,34

generality one has xp = p and therefore x = 7,(zp) € 7, B. This implies [x4,2] € W. Since

dp(xza,x) > dp(x,p) —dp(xa,Dp)

the hyperbolic length of this interval is at least dp(x,p) — dp(z4,p). Therefore one has by the
Crofton-type formula in Lemma

a1 (Ha 1 (W) 2 g (Hg_y (2, 7)) > “2L (G (2,p) - di (24, ).

Wqw2

Now we focus one the difference of pg_1(Hg_1(W)) and pg—1(Hg-1(A|B)). First one knows
that

0 < pta-1(Ha—1 (W) = pta-1 (Ha-1(A|B)) < prg-1(Ha-1{conv(A))) + prg—1 (Ha-1(conv(B))).
Now defining x(A, B,a) as

X(4; B,a) = 6(A, B, a) + 2ug-1(Ha-1(conv(A))) + 2pg-1 (Hg-1 (conv(B)))
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and using Q4.32D, Q4.33D, Q4.34D we conclude for the second summand in

P (FANFBY —Po(FA) - Po(FB)| <|Pu(FAN FB AT 4 ) - Pu(FA 0 FP)|
+|Po(FANFB AT 4 p) - Po(FA) - P (FP)
<x(A, B,a) +2u4-1 (Hg_1(W)) - eata-1(Ha-1{W))
- pra-1(Hg-1(W))

_x(A,B,a) +o(1) ] o)L
- /defl(Hd—1<W)) O(dh( 7p) )a

where we used that pg_1 (Hg_1(W)) is bounded from below by the measure of a line segment

of length dp,(p, ) minus a constant. O



CHAPTER D

KENDALL’S PROBLEM IN HYPERBOLIC SPACES

This chapter is dedicated to a hyperbolic version of the so-called Kendall problem. In Section
5.1 we get some first insights showing that we cannot expect the same results as in the Euclidean
case to hold. On the other hand, it is shown in this section that in some sense Euclidean and
hyperbolic results are alike. The second Section contains various lemmas and auxiliary
results needed in the proofs of the main theorems. Such auxiliary results include continuity
properties for various functionals, inequalities of isoperimetric type and approximation of
convex bodies by polytopes. A crucial result is developed in Subsection allowing us to
focus on a region around the origin p, whenever we investigate the behaviour of the Crofton
cell. The latter is considered in Section We investigate the limit behaviour (for increasing
intensity of the hyperplane process) of its shape, given that it exceeds a certain volume. Also
the asymptotic distribution of the volume of the Crofton cell is considered. The following
Section transfers the results from the Crofton cell to the typical cell of a Poisson hyperplane
mosaic. The last Section is dedicated to investigating the behaviour of the typical cell in a

Poisson-Voronoi mosaic.

5.1 FIRST INSIGHTS

Theorems [5.1.1] and [5.1.3] give results for the behaviour of the Crofton cell of a Poisson

hyperplane mosaic in hyperbolic space conditioned on the event that it includes the ball B,.
In the Euclidean case, for constant intensity ¢ > 0, the shape of the zero cell of a Poisson
hyperplane tessellation converges to the shape of a ball as a tends to infinity. This follows
from [44, Theorem 1] by choosing ¥ to be the Euclidean centred inball radius and b = co.

Surprisingly, in hyperbolic space a corresponding fact is no longer true, as we can see from



142 CHAPTER 5 KENDALL’S PROBLEM IN HYPERBOLIC SPACES

Theorem The first theorem is restricted to the hyperbolic plane.

Before we can state and prove the results, we need to define the restriction of a hyperplane
process 7; to a closed subset A € F (Hd) to be the set of hyperplanes that have nonempty

intersection with A, namely
Nya={H en: HnA=@a}.

The rest of the process is denoted by 74, it contains all hyperplanes of 7; not intersecting A,
ie.

Tga=m~nya={Hen: HnA=g}.
Likewise, we define the random sets

Zt|A = U H, Zt‘A = U H
HG%\A Hem

Theorem 5.1.1. Let n; be an isometry invariant Poisson line process in H? with intensity
t € (0,7/2). Then the shape of the zero cell Cy, given it contains B, does not converge to the
shape of a ball as a tends to infinity.

Proof. Let R be the set of hyperbolic rays starting a p. The set R can be constructed by
mapping all rays of TpHd that start at the origin into H? via the exponential function exp,.
Since the intensity is chosen low enough we know by [114] Section 4.3] that the probability

that there exists a ray not intersecting 7, is strictly positive
P({ReR: RnZ;=a}+2)>0.

Note that the normalization of the measure on the set of lines used in [114] and p, differ by
the constant wa/wy = 7 (see Section[2.4]for more details). An alternative notation for this event

above is -
{{ReR: RmZtZQ}iz}zﬂ{Ro(C’omBi):i}.
i=1

Now we consider the probability
P{ReR: RnZ; =2} + @, B,<Cy)
=P({ReR: RnZyp, =@, RnZyp, =@} + 3, Zyp, =)
=P({ReR: RnZyp, =0} + 3, Zyp, = 2)

=P{ReR: RnZyp, =2} +2)P(Zyp, = 2)
=P({ReR: RnZyp, =@} # @) P(B. € Cp).

Here we used the Poisson property of 7, for the third equality. Since Zyp, is almost surely
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contained in Z; for every a > 0 we get by using the equality above

P{ReR: RnZi=2}+3, B, < Co)
P(Ba c Co)

=P{ReR: RnZyp, =2} * D)

>P({ReR: RnZ; =2} +a)>0.

P{ReR: RnZ;=a}+ 3| B, cCy) =

Since the last value does not depend on a, the shape of the zero cell does not converge to the

shape of a ball as a tends to infinity. O

In order to show an analogue result for higher dimensions, we first state and prove a useful
lemma which deals with the intersection of a Poisson hyperplane process in dimension d with

a fixed 2-dimensional linear subspace.

Lemma 5.1.2. Let n; be a Poisson hyperplane process with intensity t > 0 in dimension d > 2
and let L € Gp(d,2) be an arbitrary 2-dimensional totally geodesic subspace containing p. Then
the intersection process

mnL:={HnL: Heny}

Wd+1 W2 t

is almost surely a Poisson line process in L with intensity t = s

Proof. In a first step we show that the elements of n;n L are almost surely 1-dimensional totally
geodesic subspaces. First we see that the elements of 1 0 L are by definition not the empty set.
Therefore we know that their dimension is either 1 or 2 since they are the intersection of a

2-dimensional and a (d - 1)-dimensional subspace. Using the Crofton type formula in Lemma

2.4.1] we get

1{dim(L n H) =2} (tpa-1)(dH) <t H*(LnH 0 By) pa1(dH
/Ah(d,d—l) tdim(Ln H) =2} (bpa-r)(aH) Ap(d,d-1) (LnHnBi) pa-1(dH)
= 2L 931 A By) = 0.
Wq Wq

Here the first inequality used that dim(L n H) = 2 implies that the intersection L n H is
equal to L. Then the integrand 1{dim(L n H) = 2} can be bounded by H*(L n H n By) =
2m(cosh(1) —1) > 1. Now let A e B(Ar(2,1)) be a Borel set of lines in L. We define the Borel
set B:=B(A,L):={H € Ap(d,d—1): HnL e A}. Now one can show that 7 n L is a Poisson

process since
P((mnL)(A)=k) =P({HennL: HeA)|=k)=P({Heny,: HnLeA})|=k)
=P({Hen: HeB}|=k)
=P(m(B) =k)

holds for all k € Ny and since 7; is a Poisson process. In a next step we show that n n L is an

isometry invariant Poisson line process. To do so let ¢ € I (Hd, L) be an isometry fixing L. Let
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k € Ng, then the invariance of n; n L under isometries is shown by

P((nnL)(pA)=k)=P({HemnL: HepA}|=k)
=P({H enyr: HnLepA}l| =k)
=P({H eny,: ¢ (HnL)eA}[=Fk)
=P({H eny,: ¢ (H)nLeA}[=Fk)
:IP’(|{Hent|L: HnLeA}|=k)
=P({HemnnL: HeA}|=k)
=P((mnL)(A) =k).

Here we used the invariance of 7; for the third last equality. We derive the intensity ¢ by

measuring the set of hyperplanes hitting a segment [p, x] of length r in L, z € L. This measure

is given by Lemma as

Wd+1 W1
t pg1 (Har ([p, 2])) = =———rt.
Wy W9

Therefore we get the intensity by

~ ~ W3 W1 ~ W3 W1 Wd+1 W1

L (Hi([0,2])) = T —==H" ([p,2]) = T == r = ————rt.

Wy w5 Wq w2
This yields ¢ = ¥2192¢ wwhich finishes the proof. O
wqws

The same effect shown for dimension 2 in Theorem occurs for higher dimensional
hyperplane mosaics in hyperbolic d-space. The proof transfers the result from dimension 2

into higher dimensions.

Theorem 5.1.3. Let 1, be an invariant Poisson hyperplane process in H? with t <
wqwsz/(wgriwi1). Then the shape of the zero cell Cy, given it contains By, does not converge to

the shape of a ball as a tends to infinity.

Proof. Take a fixed 2-dimensional totally geodesic submanifold L € G,(d,2) containing p.
Almost surely L is not a subset of Z;. Therefore n,nL ={H nL: H €ny} is by Lemma
a Poisson line process in the hyperbolic plane L. By Theorem we know that the
probability that the zero cell Co in 7t N L is unbounded is positive. An unbounded zero cell in
the mosaic generated by 7, N L leads to an unbounded zero cell of the mosaic generated by
n¢. This implies that there is no convergence of the shape of the zero cell to the shape of a
ball. O

Remark 5.1.1. In the coming associated paper, a related result to Theorem is shown.
Its advantage is that it does not require an upper bound on the intensity ¢ of the underlying

Poisson hyperplane process.

The latter theorems show major differences in the behaviour of large Crofton cells in

Fuclidean compared to the ones in hyperbolic space. One could show that there are also
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Figure 5.1.1: Hlustration for the proof of Lemma with z = exp,(ru) and y = exp, (7i)

similarities to the Euclidean case, when it comes to the asymptotic shape of the Crofton cell.
Before we can state the theorem showing the behaviour of the zero cell, conditioned on the

event that it includes B,, for increasing intensity ¢, we need to show a useful geometric lemma.
Lemma 5.1.4. Let a,e >0 and u € Sg_l. Further define 8= \/2- % Then
[p,exp,((a+e)a)] n H(exp,(ru)) # @

holds for every @ € Bg(u,3) and every r € (a,a +¢/2].

Proof. Let r € (a,a+¢/2] and o € (0,&]. Since cos(t) > 1 -12/2 for t € R, we get

cos(3) 21—1(2—

2 tanh(a + ¢) tanh(a +¢)

2 tanh(a +¢/2) ) _ tanh(a +¢/2)
Hence, by the monotonicity of cos and tanh,

tanh(r) < tanh(a +¢/2)
cos(a) —  cos(@)

<tanh(a+¢) < 1.

Therefore there is a unique number 7 € (0, a + £] such that

tanh(r)

tanh(7) = cos(a)

(5.1)
Let x := exp,(ru) € H?, and for i € Sg_l with ds(u, @) = a € (0,&] (for @ = u the assertion of
the lemma is clearly true) we define y := exp, (7 @). We will show that y € H(exp,(ru)). Let
v denote the angle at = of the hyperbolic triangle determined by p,z,y. For an illustration
see Figure Then the assertion follows once we have proved that cos(y) = 0. For this, let
a:=dp(z,y). Then [92] Thm. 3.5.3] yields

cosh(a) = cosh(r) cosh(7) — sinh(r) sinh(7) cos(a). (5.2)
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Moreover, it follows from [92, (3.5.3)], (5.1) and (5.2) that

sinh(a) sinh(r) cos(vy) = cosh(7) — cosh(a) cosh(r)

= cosh(7) — cosh?(r) cosh(7) + sinh(r) cosh(r) sinh(7) cos(c)
tanh(r)
tanh(7)

= cosh(7) (1 - cosh?(r)) + sinh(r) cosh(r) sinh(7)
= — cosh() sinh?(r) + sinh?(r) cosh(7) = 0,

which shows that cos(y) = 0. O

Theorem 5.1.5. Let 1; be an isometry invariant Poisson hyperplane process in H® and a > 0.
Then the shape of the Crofton cell Cy of the induced hyperplane tessellation X, given Cy

contains B, converges to the shape of a ball, as t tends to infinity.

Proof. Let € > 0. In order to prove the convergence of the shape of the Crofton cell to the
shape of a geodesic ball, we show that the probability P(99(Cp) > | B, € Cp) converges to

zero for every € > 0 as t tends to infinity.

We start by observing that

Pt(ﬁo(CQ) >e, By ¢ Co) = Pt(Ro(Co) - 7“0(00) >e, By < C())
SPt(Ro(C()) >a+e, BaECO). (5.3)
Let 3 be as defined in Lemma By applying the results in [12, Chapter 6] for Sg_l, we

know that there exists a natural number n = n(ﬁ~ ) and n directions uq, ..., u, € Sg‘l such that

the spherical caps (geodesic balls)
By(ui, 3/2) = {v e SZ_I s dg(v,u) < B2}, i=1,...,n,
cover Sg‘l. Using this and (5.3) gives
P:(90(Co) > €, B, € Co)

<P (Jue Sﬁ_l i exp,((a+e)u) e Cy, By < Co)
=P, (Jie{l,...,n}:Jue Bs(u;, 5/2) : exp,((a +¢)u) € Cy, By € Cp)

< iIP’t(Elu € B(ug,3/2) : exp,((a+¢)u) € Co, B, < Cp)
i=1

=nPy(Ju € By(u1,5/2) : exp,((a+e)u) € Cy, By < Co).

We define
D(uy, B) = {H(exp,(ru)): re(a,a+e/2], ue B,(u1,53/2)}.
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Now, by using the results from Lemma we get the inequality

Py(Ju e Bs(u1,3/2) i exp,((a+¢e)u) e Co, B, < Cp)
<Py(ne 0 D(u1,B) =@, B, < Cy),

Clearly, we have c:= c(a,e,B) = ud_l(D(ul,B)) > 0. Since
D(u1, B) nHy1(B,) = @,
the independence property of the Poisson process yields
Py(ne n D(u1, B) = @, By € Co) =Py(nen D(us, B) = @) (B, < Co).

Thus we conclude that
P (99(Co) > €, By € Cp)
Pt(Ba c CO)
n Pi(m 0 D(u1, B) = @) Py(B, € Cy)
Pt(Ba c CO)
=nPy(n: 0 D(u1, ) = @)

t—o00

=ne ' =50,

Py (99(Co) > | B4 € Cy) =

where we used that 7, is a Poisson process for the last equality. O

5.2 AUXILIARY RESULTS

In this section we show various useful results. More precisely, in Section we show the
continuity of various functions which are used in the main theorems. Section is dedicated
to results of isoperimetric type. Section contains the approximation of convex sets by
polytopes.

5.2.1 CONTINUITY RESULTS

Before we can turn to stability results in hyperbolic space, we have to show that the functionals
W41 and H? are continuous on the set of all convex bodies ng with respect to the Hausdorff
distance. We will also prove the continuity of the (centred) inball radius rp and the (centred)
circumradius Ry as functions of convex bodies in H?. Furthermore the continuity of the circum-
and inball radius are shown as well as the lower semicontinuity of ¢¥,. We then turn to show

the continuity of the circumcentre cy,.
Lemma 5.2.1. The functional Wy_1 is continuous on IC‘;L with respect to the Hausdorff metric.

Proof. Let K, K; € K¢ for i e N with 6, (K, K;) - 0 as i - co. Since x(H nK;) = 1{H n K;}
for H € Ap(d,d - 1), we show that 1{H n K; # @} - 1{H n K # @} for p4_;-almost all
H e Ap(d,d-1). We distinguish two cases (and can use e.g. the projective disc model). If
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H e Ap(d,d-1) is such that H nrelint (K) # @ and K ¢ H, then H n K; # @ for sufficiently
large i, and therefore 1{HnK; + @} > 1{HNK # @} asi—>oo. f HNK =&, then HnK; =@
for all sufficiently large i. Therefore one gets convergence of the indicator function in this case
as well.

It remains to be shown that all other hyperplanes have zero measure. For the set of

hyperplanes containing K this is clear. Hence we consider the set
A:={HeAy(d,d-1): Hnrelint(K) =2, HnK + o}.

By the isometry invariance of 1141, we can assume that p € relint (K). Let u € Sg_l be a fixed

direction and define
Ik (u):=sup{r>0: H(exp,(ru))n K # @}, (5.4)

where H (exp,(ru)) is the hyperplane orthogonal to [p,exp,(ru)] that contains exp,(ru). Let
r€[0,lx(u)). By Lemma and [92, Ex. 6.1 (5)] we have H (exp,(ru)) nrelint (K) # @,
and therefore H (exp,(ru)) ¢ A. Hence the representation of y1q-; in (2.3)) yields

1{H € A} pg-1(dH
oy HH € AY pa ()

1 Ik (u) d-1
<wy .[Sd X /l w cosh® " (r)1{H (exp,(ru)) € A} dr o4-1(du) = 0.
p  JiK(U

The result follows from the dominated convergence theorem, since pg_1(Hg-1(Bs)) < oo for
520. O

The following lemma states the continuity of the d-dimensional Hausdorff measure (volume)

on IC% in hyperbolic space.
Lemma 5.2.2. The functional H? is continuous on IC% with respect to the Hausdorff metric.
Proof. This is a special case of [4], Satz 4.7], in view of Lemma 4.1 and Korollar 4.2 in [4]. O

For the proof of the continuity of rg and Ry, the following lemma is useful. For K € IC,?IL
and z € HY, let dj,(K,z) := min{dy(z,z) : z € K} denote the distance from z to K. By
the unique footpoint property of compact, convex sets in H?, there exists exactly one point
z € K for which dy(K,z) = dp(z,x), the metric projection of x onto K. Let ¢ > 0. Then
K. :={yeH%:d,(K,y) <} is the parallel set of K at distance ¢.

Lemma 5.2.3. Let ¢ € H?, K « ICfL and 1,69 > 0 with €1 > ea. If Bp(q,e1) € Ke,, then
By(q,e1-¢e2) € K.

Proof. Suppose there is some x € Bj,(q,e1—g2)~ K. Let z be the nearest point from z in K with
§:=dp(K,x) >0, and let u € S¥! be the unique unit vector in T,H? for which exp, (du) = z.
By hyperbolic trigonometry and the convexity of K (a separation/support property), it follows
that dp(K,exp,(tu)) =t = dp(z,exp,(tu)) for ¢ > 0. Then y := exp,((J + e2)u) satisfies
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dp(K,y) =6+ > €9, hence y ¢ K.,. On the other hand, dj(x,y) = e2 and dp(q,z) < &1 — €2,
hence dj,(q,y) < e1. But then y € By(q,e1) € K.,, a contradiction. O

Lemma 5.2.4. The centred inball radius functional rq : IC% — [0, 00) is continuous with respect
to the Hausdorff metric.

Proof. Let K,K; € lCz for i € N with 0,(K;, K) > 0 as i —» oo. If ro(K) = 0, then clearly K
is contained in a hyperplane and therefore ro(K;) - 0 as i — co. Now let ro(K) > 0. For
e €(0,79(K)) we have By (p,m0(K)) ¢ K ¢ (K;): if i > ip(¢). Hence, by Lemma [5.2.3 we get
B(p,mo(K) -¢) ¢ K; for i >ig(g). This shows that liminf; e ro(K;) > ro(K).

Now suppose that limsup,_, ., 70(K;) > 79(K). Then there is some ¢ > 0 such that ro(K;) >
ro(K) + 2¢ for infinitely many ¢ € N, hence By (p,ro(K) +2¢) ¢ K; € K. for infinitely many
i € N. Using again Lemma [5.2.3| we see that Bj,(p,ro(K) +¢) ¢ K, a contradiction. This
proves that lim sup;_, ., 70(K;) < ro(K). O

Lemma 5.2.5. The centred circumradius functional Ry : IC;iL — [0,00) is continuous with

respect to the Hausdorff metric.

Proof. Let K,K; ¢ IC}dL for ¢ € N with §,(K;,K) - 0 as i - oo. Clearly, we have K ¢
By (p, Ro(K)). If € >0, then K; ¢ K. € By(p,Ro(K) +¢) for i > ig(¢). This shows that
limsup,_,., Ro(K;) < Ro(K) + &, and thus limsup,_ . Ro(K;) < Ro(K). In particular, if
Ry(K) =0, then lim; o Ro(K;) =0= Ro(K).

Now let Ro(K) > 0 and suppose that liminf; . Ro(K;) = Ro(K) — 3¢ < Ro(K) for some
e > 0. Then there are infinitely many i € N such that K; ¢ Bp(p, Ro(K) — 2¢), and thus
K ¢ (K;)e € By(p, Ro(K) — ¢) for infinitely many i € N, a contradiction. O

We can now turn to the circum- and inball radius.
Lemma 5.2.6. The functional Royu: is continuous with respect to the Hausdorff metric.

Proof. Let (K;)in be a sequence of compact convex sets with K; — K as i — oco. There exists
some ci € H* with K ¢ By (ck, Rout(K)). Let € >0. By our choice of (K;);ey there exists an
integer i(e) such that K; ¢ K. € By(ck, Rout(K) + ) holds for every i > ig(e). This implies
lim sup Rout (K;) < Rout(K) + € and therefore limsup Rout (K;) < Rowt(K).

1\7\2} now assume that liminf R, (K;) = Rouza? ) — 3¢ holds for some & > 0. This implies
Rout(K;) < Rout(K) — 2¢ g;o infinitely many 7 € N. Further there exists a sequence (¢;)ien
in H? such that K; € By(ci, Rout (K) — 2¢) holds for infinitely many i € N. By our choice of
(K;)ien there exist infinitely many 7 € N with K ¢ (K;): € By(¢i, Rout (K) — €) and therefore
Rout(K) € Ryt (K) — €, a contradiction. This shows liminf Ry (K;) > Rou(K) and together
with the first part the continuity of Ryyz. . O

Lemma 5.2.7. The functional r;, is continuous with respect to the Hausdorff metric.
Proof. Let (K;);n be a sequence of compact convex sets with K; - K as ¢ — co. Now assume

lim sup 7, (K;) > 74 (K) +4¢ for some € > 0. Therefore there exists an (ordered) index set I ¢ N

1—00
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with 7, (K;) > 74 (K) + 3¢ for all i € I and |I| = co. This yields the existence of a sequence
(¢;i)ier such that Bp(c;,7in + 3¢) € K; holds for all i € I. Since the sequence (¢;);es is bounded,
there exists a convergent subsequence, i.e. an index set J ¢ I of infinite cardinality with ¢; — ¢

as j — oo for j € J. This and our choice of (K;);cy implies
Bh(c, Tzn(K) + 26) c Bh(Cj,Tm(K) + 36) c Kj c K,

for all j € J exceeding a certain threshold jo(g). This in turn implies 74, (K) > rin(K) + & by

Lemma |5.2.3} a contradiction and thus limsup 7, (K;) < ri, (K).

7—>00

For the case 74, (K) = 0 there is nothing more to show. We can therefore assume r;,(K) > 0.
Let € € (0,7i,(K)). There exists some ¢ € H? with By, (c, 7, (K)) € K. By our choice of (K;)ien
there further exists some ig(g) € N with K ¢ (K;). for all i > ip(g) and hence By (¢, ryn(K)) €
(K;)e for all i >ig(g). We can therefore conclude with Lemma Bi(c,rin(K)-¢€) € K; for

all i >i(e) and thus

liminf r, (K;) > rin(K) — €.

Since we can choose ¢ arbitrarily small, the assertion follows. O

Before we can prove the lower semicontinuity of v, we have to show a line of helping results
first.

Lemma 5.2.8. The set
Cin(K)={ce K: r.(K)=ri(K)}

is a compact subset of K.

Proof. Let (¢;)ien be a converging subsequence in Cj,(K) with limit in ¢ € H?. Therefore
By (ci,min(K)) € K holds. This again implies By (¢, 7in(K))° € K and since K is closed also
By (¢,7in(K)) € K. In conclusion c¢ € Cy, (K) holds. O

Lemma 5.2.9. The map (¢, K) = R.(K) is continuous on H x K¢

Proof. Let ¢; > ¢ and K; - K as i - oo. Then the relation K; ¢ By, (¢;, R, (K;)) holds for all
ieN. Let € >0 and r :=liminf R, (K;). This implies R, (K;) <r +¢ and therefore also

7—>00

Ki c Bh(ci,r + E)

for infinitely many i € N. By our choice of (¢;);eny we further get By (¢, 7 +¢) € By(c,r +2¢) for
all i € N exceeding some threshold i1(g) and by the convergence of (K;);en we get the relation
K c (K;). for all i € N exceeding a certain threshold i2(g). Together with the considerations
above also

K c (K;): € Bp(c,r+ 3¢)

holds for infinitely many i € N. This again implies R.(K) < r + 3¢ and thus liminf R, (K;) >
1—> 00
R.(K) - 3e. Since € can be chosen arbitrarily small, we get liminf R, (K;) > R.(K).
1—>00
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Now assume that limsupR,, (K;) > R.(K) + 3¢ holds for some € > 0. By our choice of (K;);en
71— 00

and of (¢;);en there exists some ip(¢) € N such that
K,cK.c Bh(c, RC(K) + 6) c Bh(ci,Rc(K) + 26)

holds for all ¢ > ip(¢). This implies limsup R, (K;) < R.(K) + 2¢ and thus a contradiction.
71— 00
Therefore limsup R, (K;) < R.(K) follows. O
71— 00

Lemma 5.2.10. The functional (¢, K) = ro(K) is continuous on H? x K¢

Proof. Let ¢; > cand K; - K as i — co. We assume limsupr, (K;) > r.(K)+4e for some € > 0.
7—00

This implies 7., (K;) > r.(K) + 3¢ and thus By(c;,r.(K) + 3¢) ¢ K, for infinitely many ¢ € N.

This in turn implies By (c,r.(K) + 2¢) ¢ K; for infinitely many ¢ € N and therefore by Lemma

and our choice of (K;);n the relation By(c,r.(K)+¢) ¢ K. This is a contradiction and

shows limsup rc, (K;) < r.(K).

For the é;g; ro(K) =0, there is nothing left to show. For r.(K) >0, we chose ¢ € (0,r.(K)/2).
This implies By, (¢;,7e(K)) € B(c,r.(K) +¢) € K. € (K;)2. and therefore by Lemma/5.2.3 also
By(cisre(K) = 2¢) € K;

for infinitely many ¢ € N. This further implies

liggf Te,(Ki) 2 1e(K) —2¢
and thus 1i{1_1)g1frci(Ki) >7r.(K). O
Lemma 5.2.11. The functional 9, is lower semicontinuous and therefore measurable.
Proof. Let K; - K as i - oo. Then there are ¢; € Cj, (K;) such that

V0 (K;) = RCi(Ki) - rCi(Ki)’

Now chose I ¢ N with || = co such that 9, (K;) - liminf ¢, (K;) as i > oo and ¢ € I. Since
Jj—>o00

(¢i)ier is bounded, there exists a subset J ¢ I with |J| = co such that ¢; > cas j - oo and j € J

for some ¢ € HY. The limit point ¢ is contained in Cj,(K) since by Lemmas [5.2.10] and [5.2.7]

Te(K) = lim 7. (Kj)= lim 7y, (K5) =rn(K)

jroo,je] jvoo,je]

holds. This implies by using Lemmas 5.2.10/and c € Cjp, (K)

liminfd, (K;) = lim Jﬂr(Kj): lim (R, (K;)=re,(K;)) = Re(K) —re(K) > 9.(K).
]—)00 j—)oo7 JE

jooo, jedJ

O]
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Remark 5.2.1. There are examples showing that the functional 9, is not upper semicontinuous

and thus not continuous.
In order to show the continuity of the circumcentre, we first show the following lemma.

Lemma 5.2.12. The circumcentre cp,(K) of a convex body K € IC;iL is uniquely determined

and contained in K.

Proof. The first statement is well known. It follows by observing that the intersection of two
different geodesic balls of equal radius is contained in a geodesic ball of smaller radius (by
basic hyperbolic trigonometry).

Without loss of generality we can assume that ¢, (K) = p and Ryt (K) = r > 0. Suppose
that p ¢ K. Consideration of the situation in the Beltrami-Klein model yields the existence
of a Euclidean hyperplane H such that (the representation of) K is contained in H* and the
origin is in the interior of H~. We therefore know that there exists a hyperbolic hyperplane
H with K ¢ H* and p € int (H~). We denote by x € H? the unique point fulfilling H = H(z).
We have dj(p,z) € (0,7]. Now let z € K = Kn H* be an arbitrary point in K. We consider
the hyperbolic triangle determined by p, z, z and denote the angle at x by . Since z € H" we
know that v € [5,7]. Therefore [92, Theorem 3.5.3] yields

cosh(dp(p,2)) > cosh(dp(p,z)) cosh(dp(z,z))

and thus (dn(p.2)) )
_1 [ cosh(dp(p, 2 1 cosh(r
dp(z,2) <cosh™ [ /22 ) <cosh ™ | ————F— | <.
o) o™ (B ) o (o) <
This implies that K ¢ By(z,7) for some 7 < r, a contradiction. O

Lemma 5.2.13. The map ¢y, assigning to each conver body its corresponding circumcentre,

18 continuous on ICZ.

Proof. Let K; — K as i - co. We assume cp(K;) 4 cp(K) as i > o. By Lemma
the circumcentre cp,(K;) is contained in K; for every i € N. This implies that the sequence
(cn(K7))ien is bounded and therefore contains a convergent subsequence (cp,(Kj;))jen with
limit in ¢ # ¢, (/). We obviously have Rou(K;) = R, (k,)(#;) for all i e N. We therefore infer

by Lemmas and

Rch(K)(K) = Rout(K) = jli_gloRout(Kij) = ]h_fgoRCh(Kij)(Kij) = R.(K).
Since the circumcentre is uniquely defined, we get ¢ = ¢, (K), a contradiction. ]

5.2.2 ISOPERIMETRIC RESULTS

In this section, we establish several inequalities of isoperimetric type. Recall that we denote
by B, for a > 0, the unique hyperbolic ball with centre in p and H?(B?) = a. The following
theorem will be applied in the situation where % is the size functional and W,_; is proportional

to the hitting functional.
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Theorem 5.2.14. Let ¥ be a deviation function and a > 0. Then there exists a function
fa: [0,00) — [0, 00) with fa719(0) =0, fa’ﬂ(t) >0 fort>0 and

Wi 1(K) 2 (1+ fan(e))Wa-1(B?)

fore>0 and K € ICg’O with HYK) > a and 9(K) > €.

Proof. For n € N we define the set
I@(a,n) = {K € IC?%O : Wd,l(K) < anfl(Ba)h a > O7

of all convex bodies K ¢ ICZ with p € K and for which W;_;(K) is bounded from above. By the
definition of W,;_; and an application of Lemma with £ =d -1 and i = 0, it follows that
Wa_1(I) = wae1 (dws) ' for any interval I, of length 7. Hence every K € K(a,n) is contained
in By for some 7 =7(d,a,n) >0. Then Lemmas and imply that KC(a,n) is compact.

Now we consider the set
K(a,n) = {K € K(a,n) : HYK) > a}.

Since by Lemma the functional H? is continuous, K(a,n) is compact as well. Clearly,
B® € K(a,n) and hence K(a,n) #+ @. The functional W,y is continuous and attains its
minimum on K(a,n). The results in [29] show that this minimum is attained precisely by

geodesic balls of volume a. Now consider the set
Kane={KeK(a,n):9(K)>¢e}.

Since ¥ is upper semicontinuous, g ¢ is compact. We can now chose n € N such that K, ,, .
is none empty. If there exists no such n then there exists no K ¢ IC;‘;O with H4(K) > a and
Y(K) > ¢, hence there is nothing to show. Now Wj_; attains its minimum on Ky, .. Clearly,
the inequality

Tae = Ker}acir{w Wa_1(K) > Ker’rclgl’n) Wy 1(K) =7, (5.5)
holds for all € > 0 since K # @. Assume that 7, . = 7, holds. This implies the existence of
a body K € K4 such that HYK) > a and Wy_1(K) = 7,. Therefore K is a ball and hence
Y(K) = 0. Since this is a contradiction, the inequality in is strict. Finally, we define
Ja9(t) == Tay/Ta — 1 for t € (0,00) and fq9(0) := 0. The function f,y then has the desired
properties. O

Remark 5.2.2. The proof in [29] uses two-point symmetrization. Roughly speaking the
argument shows that if a convex body K is not a ball, then the two point symmetrization T’
does not increase the (d — 1)-th quermassintegral, while the volume is preserved. This means
that for a convex body K € IC‘,jL

Wyt (K)> Wy (T(K)) and HUK)=HUT(K))



154 CHAPTER 5 KENDALL’S PROBLEM IN HYPERBOLIC SPACES

holds true. In [29] F. Gao, D. Hug and R. Schneider focus on the spherical case but point
out that the argument works in the hyperbolic case as well. For the characterization of the
equality case it is used that two-point symmetrization preserves the surface area as well and
that geodesic balls are the only extremal bodies (in the class of compact convex sets) for the

isoperimetric problem in hyperbolic space.

In [115], G. Wang and C. Xia prove that the minimum of W} on K given W is achieved
precisely by geodesic balls for 0 <l <k <n—1. Here K is the set of all h-convex bodies with

smooth boundary.

Theorem [5.2.14) can be extended to arbitrary size functionals as done in [42]. We often write

fa instead of f, y if the underlying deviation functional is clear from the context.

The following result is based on a Bonnesen-style inequality established in [19]. It yields
a specific stability function f, :[0,1] - [0,1] in the special 2-dimensional case of Theorem
5.2.14. We will frequently use that Wi (K) = H!(0K)/2 holds for K € K7 with interior points

(positive volume).

Theorem 5.2.15. Leta >0 ande € [0,1]. Let K € K7 with H*(K) 2 a and Rout(K)~7rin(K) =
e. Then for

fa:[0,1] = [0,1], s~ min{(12cosh?(r, + 2) sinh?(r,)) ‘s 1} (5.6)
with rq = arcosh(1 + a/27) the inequality
Wi(K) > (1+ fu(e))W1(B%)

holds.

Proof. Let rq := arcosh(1 + a/27) be the radius of a hyperbolic circle with area a. In order to
prove the theorem, we distinguish two cases. First, assume that r;,(K) > r, + 1. In this case

we get
Wi(K) > Wi(B,,, (k)) = wsinh(r;,(K)) > wsinh(rg + 1) > 27 sinh(r,) = 2 W1 (B*),

where we used that sinh(x + 1) > 2sinh(x) for z > 0. Therefore the claim holds in this case.

Now suppose that 7;,(K) <7, + 1. As in [19], we define

A (K) =4W(K)? - (4 + HA(K))HA(K) < AW (K)? - (47 + a)a. (5.7)
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For the right hand side we obtain

(4 +a)a = (47 + 2w (cosh(r,) — 1)) (27 (cosh(ry) — 1)) (5.8)
= 47*(cosh(r,) + 1) (cosh(rg) — 1)
= 4n*(cosh?(r,) - 1)
= (2msinh(r))?
= 4 Wy (B%)2. (5.9)

We define g : K7 — [0, 00) such that it fulfills
Wi(K) = (1 +g(K))W1i(B?). (5.10)

By [29], we know that ¢ is non-negative. If g(K) > 1 holds, then there is nothing to show.
Thus we consider K € K7 with g(K) < 1. Then we get

4 (W (K)? -Wi(B")?) =4 ((1+g(K))*W1i(B*)? - W1(B*)?)
= 4 (29(K) + g(K)*) W1 (B*)”
< 129(K)Wy(B*)2. (5.11)

By [19, Corollary 2.1] we have

7.{.2

cosh?(Royus (K)) cosh?(rin (K))

Combining this with (5.7)-(5.11), we deduce that

7_[.2

cosh?( Ry (K)) cosh? (i, (K))

A (K) > (sinh(Ryu (K)) - sinh(r, (K)))?.

12g(K)W1(B%)? > (sinh(Rou(K)) - sinh(ry (K)))?. (5.12)

The last factor on the right-hand side can be bounded from below by

sinh( Ryt (K)) — sinh(r;, (K))
= sinh (7, (K) + ) — sinh(r,(K))
= sinh (7, (K)) cosh(g) + sinh(g) cosh(r, (K)) — sinh(r, (K))
> sinh(e) cosh(r;,(K))
> e cosh(ri, (K)), (5.13)

where an addition theorem for sinh was used. Finally, by using (5.12)), (5.13) and W;(B%) =
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msinh(r, ), we get

7T2 2

5
12W1(B2)2 cosh?(Rout(K))
1 2
2 1D €
12 cosh?( Ryt (K)) sinh®(ry,)
1 2
2 12 €
12 cosh? (7 (K) + €) sinh*(r,)
1 2
> 5
12 cosh?(r4 + 2) sinh?(r,)

9(K) 2

9

where we used 7;,(K) < 7, + 1 in the last line. Combining the last inequality with (5.10)
finishes the proof. O

Before we can state and prove a result for the special case where ¥ = 3, and 9 = 1J,., we need

to show the following lemma, which is used in the proof.

Lemma 5.2.16. Let a >0, € [0,1] and recall

E \}2_ 2tanh(a +¢/2)

) tanh(a +¢)

Then
1>6> e? (cosh(a +1/2) sinh(a + 1))_%.

Proof. By using an identity of the sinh-function in the third row, we get

tanh(a +¢/2) _ sinh(a+¢/2)cosh(a +¢)
tanh(a+e)  cosh(a+e/2)sinh(a+¢e)
cosh(a +¢&/2)sinh(a + &) —sinh(a + £/2) cosh(a + )
cosh(a +&/2) sinh(a +¢)
_ sinh(e/2)
cosh(a +¢&/2)sinh(a + ¢)
£

>
~ 2 cosh(a +¢/2)sinh(a +¢)
5

>
~ 2 cosh(a+1/2)sinh(a+1)’

h(a,e)=1-

(5.14)

from which the lower bound follows. For the upper bound, it is sufficient to consider ¢ € (0, 1].
Then (5.14) and the monotonicity of sinh and cosh yield

sinh(g/2) ~ e® 1

Ma,e) < cosh(e/2)sinh(e) = (e +1)2 )

which implies the upper bound. O

Now we are in the position to prove the following result.



5.2 AUXILIARY RESULTS 157

Theorem 5.2.17. Let K € K{, e €[0,1] and a > 0. If 5,(K) > a and 9,(K) > ¢, then there is
a constant qq = a(a,d) such that

d+1
2

Wd—l(K) 2 (1 + 57) Wd*l(Ba)a

where qp is given by

Wd-1
2a3%2wy(cosh(a + 1/2) sinh(a + 1))@d-1)/2"

a = qi(a,d) =

Proof. There is a point ¢ € C.(K) with Rz(K) —rz(K) = 9,(K). Further, there is an isometry
@z € I(H?) such that ¢z(&) = p. Let K := ps(K) be the isometric image body. It contains B,
and since ¥, (K') > ¢, it also contains a point 29 = exp,,((a+¢)u) for some u € SZ’I. Furthermore,

since K is convex, it follows that [exp,(au),exp,((a+e)u)] < K. Therefore
Wy_1(K) = Wy_1(K) > Wa_q(convy, (B, U [exp, (au),exp,((a+<)u)])),

where convy, is the hyperbolic convex hull operator. The definition of W,;_; implies that the
value Wy_1(K) can be bounded from below by

Wd

Wi ()2 7 [ X 0 (convi (B, 0 [expy (an). expy ((a +2)u)]) jaa-r (4H)

Wd
> Wy 1(By) + L f
a-1(Ba) * dwi JAp(d,d-1)\Hg_1(Ba)

Now recall §=4/2 - % and

e(B) = —oar({veS s dyuw) < 3)) € [0,1].

Wd

X(H n [exp,(au), exp,((a +)u)]) pa1(dH).

By Lemma we know that every hyperplane in
D(u,B) = {H(exp,(rv)) : 7 € (a,a +¢/2], v e By(u, §)}

has nonempty intersection with [p,exp,((a+¢)u)] and therefore also with [exp,(au), exp,((a+
e)u)]. Therefore, by using D(u,3) € Ap(d,d —1) ~ Hy_1(B,), the representation of pg_; in

and

Wd

(B, =—f HB,) pgy(dH
Wa-1(Ba) door Ah(d,d—l)X( N By) ta-1(dH)

a
= %2 [0 cosh®1(t) dt

< % cosh®!(a).
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we get

Wa-1(K) = Wa-1(Ba)

Wd

> — 1 pg1(dH
dwlfD(u,,B) pa-1(dH)

:W—Zth(dl)choshd*l(dh(a:,p))n{H(L,x)eD(u,ﬁ)} H (dz) 1 (dL)

~ a+ef2
= ﬁ c(B)2 f cosh?™1(s) ds
wd 6(5) €

cosh?™1(a)
> %ng_l(Ba). (5.15)

We take a closer look at C(B) Here we use spherical coordinates on the sphere, Holder’s

inequality and the elementary inequality 1 —cos(t) > t?/3 for t € [0,2] to get

_wd1 B 4o Bway (1 B d72_de—1 1 - cos(/3) -
c(B) [ sin2(1) dtzw—d(gfo sin(t) dt) - ( : )

Wd-1 Bd 1
3d 2wd

The inequality in Lemma [5.2.16 then yields

d-1

() > — 25 2 5d Ly 3d 2 (Cosh(a+1/2)s1nh(a+1)) T, (5.16)

Combination of the results in (5.16) with inequality (5.15) gives
Wy 1(K) Wy 1(B )> (ﬁ)aEWd 1(B )>-(a d)E 5 Wd 1(B )

where aq(a,d) is given by

ai(a, d) = ) :
2a3%2wy(cosh(a +1/2) sinh(a + 1))(@-1)/2

5.2.3 APPROXIMATION RESULTS

In this section, we are aiming to approximate convex bodies with polytopes having a controlled
number of vertices. The following lemma is an analogue to [42] Theorem 5.1] and yields bounds
for the Hausdorff distance between a hyperbolically convex set and an approximating polytope.
In contrast to the Euclidean or spherical case, it involves the circumradius of the convex body.
In fact, in hyperbolic space a polytope exceeding a certain volume has to have a certain number

of vertices.

Lemma 5.2.18. Let K € IC,flL with Ry(K) <r. Then there are constants ko and by, depending
only on the dimension d, such that for all k > kg, there is a hyperbolic polytope Q@ with at most
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k wvertices, which can be chosen on the boundary of K, such that
n(K,Q) < coshg(r)bok_%.

The mapping K » Q(K) can be chosen to be measurable.

Proof. We consider the projective disk model. We know that hyperbolic m-planes are precisely
the intersections of Euclidean m-planes with Beuc, in the model space. Therefore polytopes
are represented as intersections of Euclidean polytopes which are contained in BeuC By [14],
there is an integer ky € N and a non-negative number by > 0 such that for k > kg there is a

polytope Qq ¢ Bg{ﬁ; with at most k vertices on the boundary of 7(K) and

5euc(7~T(K)a QO) < bok_% .

Here §¢ye is the Euclidean Hausdorff distance. Since the furthest point of K has hyperbolic
distance at most r from the origin, we can bound the maximal Euclidean distance 7 of 7 (K)

from the origin from above. These two distances are related by

1
~2’

1-7

cosh(r) = (5.17)
where we used the metric dp in the projective disk model (see [92] Theorem 6.1.1]). Let
z,y € B%,.(0,7), and set z(t) := (1 —t)x +ty for t € [0,1]. We write (-,-) and |- | for the
Euclidean scalar product and norm in RY. Then [92, Theorem 6.1.5] and (5.17) yield

oy < [V POPL =T G0y —T

EOLE
OO =P+ O Pl =
<y NFEOIE “
ot Jy-sl i
"o T- TR < T )
= cosh?(r)deue(, ). (5.18)

We now define Q = #71(Qg). Having this one can give an estimate for the hyperbolic
Hausdorff distance between K and Q:

6h(K,Q) = ind ind
n(K,Q) maX{rgggrﬁg h(w,y),rggrﬁgg h(rv,y)}

=max4 max mindp(z max min dp(z
{mew(K)deo p(@:y), zeQo yer(K) ol y)}

< ma max min cosh?(r deye(x max mln cosh?(r deye(x
s e i cosh2 ) ) iy b))

= COSh (T)(seuc('ﬁ-(K)a QU)
< CoshQ(r)bgkfﬁ-
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Since the polytope Qg in the projective disc model can be chosen in a measurable way (see
[42]) this is true for @ as well. O

Theorem 5.2.19. Let 3 be a size functional, ® a hitting functional and let a,r > 0 and
a € (0,1) be real numbers. Then there is an integer v € N, depending only on a,d,c,r,3, P,

such that for every hyperbolic polytope P with 3(P) > a and Ry(P) < r there is a hyperbolic
polytope Q = Q(P) satisfying ext (Q) S ext (P), fo(Q) <v and

(Q)>(1-a)®(P).
Furthermore, the map P~ Q(P) can be chosen to be measurable.

Proof. The proof is similar to the one of [42] Theorem 5.2]. The functional ® is continuous on
the compact set IC%W with respect to the hyperbolic Hausdorff metric and therefore uniformly
continuous. Define the constant € := a7(®, %, a). Using the uniform continuity, it follows that
there is a ,(g) > 0 such that |®(K)-®(K')| <eforall K, K' € IC%W such that 6, (K, K") < §,(¢).

Now let P be a hyperbolic polytope of size 3(P) > a and Ry(P) < r. By Lemma
there exists a hyperbolic polytope @ = Q(P) and an integer v = v(«,a,d,r, X, 7), such that
ext(Q) < ext(P), fo(Q) < v and 6,(Q, P) < d,(g). Since X(P) > a we get ®(P) > 7(P,%,a)

and therefore
O(P)-2(Q)<|P(P)-2(Q)|ce=a7(P,X,a) <adP(P).

This gives the desired inequality. The measurability follows from Lemma [5.2.18 O

5.3 ZERO CELL

In this section, we will investigate Kendall’s problem in hyperbolic space under the assumption
(d-1)wq w2
T waniwr
cells of the tessellation X; are almost surely bounded.

that t > ¢4, where ¢4 = . In particular, we will show that under this assumption all

5.3.1 BOUNDING OF THE ZERO CELL

For the proofs of the main results of Section we distinguish for a suitable radius r > 0
whether Cy € B, or not. In a first step, we then provide an upper bound for the probability
that Cy ¢ B,.. This is achieved in two steps. First, we show that the boundary of B, can be
covered by a certain number of hyperbolic caps depending on the radius r > 0. By a hyperbolic
cap C of radius b > 0 we mean the intersection of the boundary of a hyperbolic ball B of radius
r > b and a second hyperbolic ball of radius b with centre on the boundary of B. In the second
step, we show that the probability that the process contains a hyperplane that separates such

a cap from the origin decays much faster than the number of required caps grows.

Lemma 5.3.1. The boundary of By, r >0, can be covered by (d)eT(d’l) hyperbolic caps of

radius 1.
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-1
Proof. The map h: 0B, - Sg_l, T~ %, provides a bijection between 0B, and Sg_l.
P

We are aiming to give an upper bound for the spherical radius rs of
h(0B; n By(exp,(ru),1)),

where u € Sg_l. We denote by z € H? an intersection point of 9B, and OBy (exp,(ru),1). The
value 7y is given as the angle a (measured at p of the hyperbolic triangle determined by the
points (p,exp,(ru),z). By the hyperbolic law of cosines ([92, Theorem 3.5.3]) this radius is
given via

cosh(1) = cosh?(r) — cos(rs) sinh?(r),

which yields

h*(r) - cosh(1 h2(r) - cosh? (1
rszarccos(cos (r) — cosh( ))=arccos(1—sm (1) — cosh(r) + cosh( ))

sinh?(r) sinh?(r)
B (1_ cosh(l)—l)
= arccos ()
> /2 % (5.19)

Here the last inequality is equivalent to cos(z) > 1 - %zQ for z e R. Using the definition of sinh

and (5.19), we get
2V/2
Ts > \/;_T\/cosh(l) ~12>2v2e"y/cosh(1) =12 2v2e7"\/1/2=2¢".

e’(’_

By [12, Chapter 6] we know that S*! and therefore also Sg‘l can be covered by qg(d)/ré!

caps of radius rs > 0. Therefore OB, can be covered by

a(d) __a(d)

rd-l T (2e7r)dt = qg(d)2 (D er(@h)

hyperbolic caps of radius 1. Hence the assertion follows by choosing qz(d) = qg(d)2~(*"D. O

The following lemma uses the result of Lemma to give an arbitrarily fast exponential
decay of a probability used in the proof of Theorem Recall that é; = (d—1)wqwa/(2wgs1)-

Lemma 5.3.2. Letd>2, k> 1, t > kéq and a > 0. Then for every ¢ >0, there exists a real

number r =r(d,a,c,k) >0 such that
Py(Ro(Co) 27) <e” @) and Py (Ro(Co) 27 | HU(Co) 2 a) <™.
Proof. Let k> 1 be fixed. Let r>1 and u € Sg_l. We denote by C' the hyperbolic cap

C :=C(u,r) := 0B, n By(exp,(ru),1).
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Now consider the set
Hy1(Clp) = {H ¢ Ap(d,d=1): pc H™, C< H*, ({p}uC)n H = o)

of hyperplanes that separate the origin p from C. Since Hy_1(C'|p) = Hy_1{conv,({p} u C))
(Hg-1({p}) uH4-1(C)), the measure of this set is bounded from below by

pa-1(Ha-1(C[p)) = pra-1(Ha-1{conv,({p} v C))) = pta-1 (Ha-1{{p})) - ta-1(Hg-1(C))
> ptg-1 (Hg-1([p, exp, (ru)])) = pa-1 (Hg-1(Bp(expy(ru),1)))

w w
= g (Ha(By)),
Wq W

where the last we used the fact that pg-1(Hg_1({p})) = 0 and the Crofton type formula (2.4).

Therefore there exists a real number 7 = 7(d, x) > 1 such that for all r > 7 the inequality

Was1w1 1+ kK

pa-1(Hg_1(C[p)) > -
wawo 2K

holds. Lemma shows that one can cover 0B, by n = (d)e’"(d_l) hyperbolic caps

Ci,...,C, of radius 1. Hence we get for r > 7

P(Ro(Co) 2 7) =P(0B, nCy + @) = P, ((CJ CZ) NnCoy + @)

=1
< EPt(Ci NnCy # @)
i=1
= nIP)t(Cl NnCy # @).

If C1 nCy # @, then no hyperplane H € 1 separates C; from p. By inserting the value of n

and using the Poisson property of the hyperplane process, we conclude that

P;(Ro(Co) > 1) < qg(d)e" (41 g7ta-1(Haa(C1lp)

Yd+1%1 1+k

< (d)er(d_l)e_t wqwa 2Kk

_ ap(d) exp (r(d 1) (1 _ g—dl;)) . (5.20)

Now let & = é&(d) > 0 be such that qg(d) < e for t > &;. Note that 1 — L1 <0 since t > Kéy.

Cq 2k —

Then the choice r = max {f, (c+é+7(a))2k(k—1)"teg(d - 1)‘1} implies that

Pu(Ro(Co) > 7) < ap(d) exp (e o+ (@)t (e e () 122”15)
< e®exp ((c+ ¢+7(a)) (%t - it?t))
=exp(-t(c+7(a))). (5.21)

In the present setting, we have ®(K) = pg-1(Hy-1(K)) for K € K&. Then the results of Section



5.3 ZERO CELL 163

show that
7(a) = min{®(K) : K € Kfl, H'(K) > a} = D(B*) = -1 (Ha-1(B"))
for a > 0. Hence
P, (HY(Co) > a) > Py (1:(Hg-1(B)) = 0) = exp (~tpg-1 (Ha-1(B"))) = exp(-tr(a)). (5.22)
By the definition of the conditional probability and we thus get

P, (RQ(C(]) >, Hd(Co) > a)
P; (H4(Co) 2 a)

P (Ro(Co) > )

" Py (HY(Co) 2 a)

o-t(etr())

s e—tT(a)

Py (RO(C’O) > | Hd(CO) > a) _

— e—ct.

As one can see, the choice of r = r(d, a,c, k) only depends on d,a,c and . ]

Lemma 5.3.3. Ift > ¢4, then almost surely the cells of X; are bounded. In particular, in this

case also Cy is almost surely bounded.

Proof. For any fixed t > ¢4 there is some « > 1 such that ¢t > ké4. For n € N we consider the
events A, = {Ro(Cy) > n}. Since t > kég we have (1 - LL) < 128 < 0 and hence (5.20)

Cq 2K 2
implies that

Pu(An) < ) exp (-n(d- 1)),

Summation over all n € N yields

S B(A) < S ax(d) exp (—n(d— TP jai 1) < oo,

n=1 n=1 2
Now the Borel-Cantelli Lemma implies that P;(limsup A,) = 0. Since {Cy unbounded} <
limsup A,,, this proves that Cy is almost surely bouﬁl_()iogd if t>éy.

Let A c HY be a countable, dense subset. Then P-almost surely 7;(F4) = 0, hence AndC = &
for each C € X; holds almost surely. By isometry invariance and the preceding part of the
proof, we can conclude that the unique cell of X; containing a given point a € A (in its interior)
is almost surely bounded. Since cells have nonempty interiors, each cell contains at least one

of the points. This proves that all cells are almost surely bounded if ¢ > &,. O

5.3.2 LARGE CROFTON CELLS

The proof of the main theorem of this section (Theorem [5.3.5) is based on a combination of
the auxiliary results provided in Section and the following lemma. Since the deviation
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function ¥ is fixed in the following, we define
ICCL,E = Ka,e(ﬂ) = {K € Kz : Hd(K) >a, 29(K) > z—:}

as the set of convex bodies having size at least a > 0 and for which the deviation functional
is bounded from below by € > 0. Lemma implies that the probability that Cp € ICq o (1)
and Ry(Cp) <, for a fixed r > 0, decays exponentially in ¢ at a specific speed. Note that if
Co € K¢, then the Crofton cell is bounded and therefore has at least d +1 bounding hyperbolic
hyperplanes. In the preceding section, it was proved that the Crofton cell (and in fact all cells
of X;) is almost surely bounded if ¢ > é;, but in the lemma no such restriction is imposed.
However, we already showed in Lemma that, for sufficiently small intensity ¢, with positive
probability the Crofton cell is indeed unbounded.

Lemma 5.3.4. Let Cy be the Crofton cell of a hyperplane tessellation Xy induced by an
isometry invariant hyperbolic Poisson hyperplane process ny with intensity t > 0. Further, let
a,e,7 >0 and R € (0,1). Then there is a constant qg> 0, depending only on a,d,r,R and ¢,
such that

IP)t((/VO € ’Ca,e(ﬁ)v RO(CO) < T) < qgexp (_ (1 + Nfa,ﬂ(g)) T(a)t) :

Proof. Let N e Nand Hy,...,Hy € Hy_1(B,) be such that p ¢ H; fori=1,..., N, which will be
the case almost surely in the following. Define H(yy := (Hi, ..., Hy) and let P(Hyy)) denote
the (hyperbolic) Crofton cell of the tessellation induced by Hi, ..., Hy. In the following, we
consider Hy, ..., Hy € Hg_1(B;) such that P(Hyy) € Ko and P(H(yy) € B,. This implies
that N >d+1 (as pointed out before).

Since ¥ is fixed, we simply write ICq instead of Ky (¥). Let fq = fo 9 be the stability
function from Theorem [5.2.14. Define R := (1 -R)/2 € (0,1/2) and « = Rf,(g)/(1 + fa(e)).
Hence we have (1 - «a)(1+ fo(¢)) =1+a with @= (1 -R)f,(g). For r >0 we set

N 2dW4_1( B,
70) = pa-a (Bl () = 2V
Moreover, we note that
a 2dWy_1(B®
7(a) = pg-1(Ha-1(B")) = —dw:l( 3

Then, by Lemma [5.2.18/ and Theorem [5.2.19| there are at most v = v(d, a,e,r,R) vertices of
P(H(yy) € Ko with P(H(xy) € B, such that the hyperbolic convex hull Q(Hyy) of these
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vertices satisfies

2dWq_1(B,)
-
S 2dWy1(Q(H(ny))

wd
2dWa-1(P(Hny))

Wd
>(1-a)(1+ fu(e))

=(1+a)7(a). (5.23)

7(r)

>(1-a)
2dWq-1(B®)

By Lemma|5.2.19 we can assume that the map (Hy,..., Hy) = Q(H(y)) is measurable. For
fixed r > 0, we consider the restriction of the isometry invariant measure p4-1 to Hy_1(B;) and

normalize it to get
_ . par L Hg o (By)
Hd-1 = .
pra-1(Ha-1(Br))

Since pg-1 is isometry invariant, every vertex of Q(H(yy) lies Pi-almost surely in exactly d

of these hyperplanes. The remaining hyperplanes which do not hit any vertex of Q(H ()
do not hit Q(Hyy). Hence the number of hyperplanes hitting Q(H(yy) is j € {d+1,...,dv}.
Without loss of generality we can assume H;nQ(Hyy) # @ for [=1,...,j. Hence there are
subsets Jp,...,J, of {1,...,j}, each of cardinality d, such that

() Hi. i=1,...,v,

lE.]i
are the vertices of Q(H(yy). In the following, let ¥(; ;) denote the sum over all v-tuples
of subsets of {1,...,j} with d elements. For K € K¢ with K ¢ B, we get

Wy 1(K)

1{Hn K =g} jig1(dH)=1- ———=.
»[Hd_1<Br> { } i 1( ) Wd—l(Br)

If P4(Cp € Kye, Ro(Cp) <r) =0, then there is nothing to show. In the complementary case, we
have ny(Hg-1(By)) > d + 1 Pi-almost surely. Basic properties of the Poisson process then yield
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that for N > d + 1 we have

P4 (Co € Ka,e, Ro(Co) <7 | me(Hg-1(Br)) = N)

= fHd,l(Br)N 1{P(H(n)) € Kae, P(H(ny) € By} fig_y (d(Hy, ..., Hy))

dv N |
<) ()f HP(H(wy) €Kaes P(Hny) € By H{HNQ(H(ny) #2, 1=1,...,j}
j=dr1 \J ) JHaa(Br)
x H{H N Q(Hn)) =2, l=j+1,...,N} jig_y(d(Hi,...,Hy))

dv

2dW 4 v i€ HZ —
S s Lo R e YR ) ()
i I (d) Hy-1(Br)? JHg-1({Br)N=3 Wd

J=d+1

14
x1{H nconv, | J N Hi=2, 1=j+1,...,N} i) 7 (d(Hjs1,..., Hy))
k=11ieJy

v .
x L{convy |J () Hi € By} i, ,(d(Hi,..., Hj))
k;=1i€Jk

dv

< > (N) > f ]1{2de_1(00th UY_; Nies, Hi) " +a)7(a)}
_ 37 (g, JHar (B >

j=d+1 Wd

v
x 1{convy, | J () Hi < B,}

Wa-1(convy, UL_y Nies, Hi) N
[1— et e B (... 1))

k=11icJj, Wa-1(Br)
v \V o N-j
deéjl(]j)(il) [1_(1;0(2;(@)] J, (5.24)

where the last inequality used that for at least one tuple (J1,...,J,) the integral in the line
preceding (5.24)) is positive and therefore a tuple (Hi, ..., H;) of hyperplanes exists such that

> W1 (convy, Ui _y Nieg, Hi) S (1+a)71(a)wq _ (L+a)r(a)
B Wd—l(Br) - 2de—1(BT‘) 7A—("ﬂ)

Hence, if Pi(Cp € Ko, Ro(Co) <7) >0, then summation over N gives
Py (Co € Ko, Ro(Co) <)

i P(Co € Kae, Ro(Co) <7 | ne(Ha-1(B;)) = N) Pe(ne(Ha-1(Br)) = N)

N=d+1
) dv N j v (14—5)7'((],) N-j (t?(r))N )
SN%U%(]-)(C;) [1‘ ) ] T exp(-t(r))
_j§1(d) P Nz=:j : #(r) (N =j)!
= exp[~t7(r) +t7(r) - (1 + @)7(a)t] Z (d) (tT(T))J

j=d+1

< Z (d) (tT(T)) exp(=(1+ (1 =R) fa(e))7(a)t).

j=d+1
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But then we get in any case
Py(Co € Ka,e, Ro(Co) < 7) < @@max{1,7(r)}* exp(~(1 + (1 -R) fa(e))7(a)1),
where

dv ,7 V1
2(6,(1,(1,7",&):'2 (d) _ﬁ’
j=d+1

and therefore also

P:(Co € Ko e, Ro(Co) <7) < qmexp(—(1+ (1 -2R) fo(e))7(a)t),

which proves the lemma, since (1 —2R) = R. O

We are now in position to state and proof the main theorem of this section.

Theorem 5.3.5. Let Cy be the Crofton cell of the hyperbolic Poisson hyperplane tessellation
X induced by the isometry invariant Poisson hyperplane process ny with intensity t > kéq,
where k> 1 (is fized). Let ¥ be a deviation functional for hyperbolic balls. Further let a >0,
Re€(0,1) and £ € (0,1]. Then there is a constant g5 > 0 such that

P(9(Co) > € | HY(Co) 2 a) < qgexp (—Rfap(e)7(a)t),
where gg depends only on a,d, e, k,R.
Proof. The proof of Theorem can now be done by combining the results from Lemmas

5.3.2land [5.3.4 Let a >0, £ € (0,1], R € (0,1) and s > 1 be fixed. For a given r > 0 (to be
specified below), we split the probability into two parts, that is,

Py (9(Co) > ¢ | H(Co) 2 a) =P (9(Co) 2 &, Ro(Co) >7 | HU(Co) > a)
+ P (9(Co) > ¢, Ro(Co) <7 | H(Co) > a).

Lemma implies that the first summand can be bounded from above by exp(-ct), for an
arbitrary ¢ > 0, as long as r = r(d, a, ¢, k) is chosen big enough. For the second summand we

get

T d a
P (9(Co) 22, Ro(Co) <7 | HI(Co) 2 a) = (9(Co) 2;; (RHOE(CCOS; ;)% (Co) > a)

The numerator was considered in Lemma for the denominator we already know by (5.22)
that

Py (H4(Co) > a) > exp(-7(a)t).
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Combining these observations, we obtain that

exp (=(1 + R fa(€))7(a)t)
exp(-7(a)t)

=exp(—ct) + qa(e, a,d,r,R) exp (-R fo(e)7(a)t) .

Py(9(Co) 2 & | H'(Co) > a) < exp (~ct) + qa(e, a, d, 7, R)

Choosing ¢ = R f,(e)7(a), we get
P, (9(Co) > | HUCh) > a) < (1 +qale, a,d,r,R)) exp (R fa(e)7(a)t) . (5.25)

By Lemma and our choice of ¢ the required choice of r only depends on d,a,¢, k, R, and
hence gg also depends only on d,a, ¢, k,R. Thus the choice g5 =1 + qg yields

P, (9(Co) > ¢ | HU(Cp) > a) < agexp (-Rf,(e)7(a)t)

which completes the proof of the theorem. O

By the same argument as in the proof of Lemma but using Theorem [5.2.17|instead of
Theorem [5.2.14] we obtain the following lemma.

Lemma 5.3.6. Let Cy be the Crofton cell of a hyperplane tessellation X; induced by an
isometry invariant hyperbolic Poisson hyperplane process ny with intensity t > 0. Further, let
a,e,r >0 and R € (0,1). Then there is a constant ag > 0, depending only on a,d,r,R and ¢,
such that

d+1
P (X, (Co) 2 a, 9-(Cy) >, Ro(Cp) <r) < agexp (— (1 + NT) %(a)t) )
As a consequence, we obtain the following more specific version of Theorem [5.3.5]

Theorem 5.3.7. Let Cy be the Crofton cell of the hyperbolic Poisson hyperplane tessellation
Xy induced by the isometry invariant Poisson hyperplane process ny with intensity t > kéq,
where k> 1 (is fized). Let ¥ be a deviation functional for hyperbolic balls. Further let a >0,
R e (0,1) and € € (0,1]. Then there is a constant an>0 such that

d+1
P,(9,(Co) 2 & | £:(Co) 2 a) < amexp (~Rare * #(a)t),
where a7 depends only on a,d, e, k,R.

In the hyperbolic plane, a specific deviation result (with explicit rate function) can be
obtained from Theorem [5.2.15| with H? as the size functional and 9, as the deviation functional.

Theorem describes the limit behaviour of the probability that H%(Cp) exceeds the
threshold a for growing intensity ¢. The proof is based on the same techniques as used in the
proof of Lemma Therefore we will be rather brief in our presentation.
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Theorem 5.3.8. Let a >0 (be fized) and let ny, Xy, Co be as in Theorem[5.5.5. Then

lim t P (HY(CY) > a) = -7(a).

Proof. First, we provide a lower bound for the limes inferior of the probability. This is done

by using to get
T (P HACo) > a)) >t In(exp(-7(a) t)) = -7(a).

Next we derive an upper bound for P;(H%(Cy) > a). Let t > 2¢q (say). Then Lemma

shows that for ¢ =1 there is some 7 = r(d, a, 1,2) such that
Pt(Ro(Co) > 1) <exp(-t(1+7(a))),
and hence

Pi(H(Co) 2 a) = Pu(H"(Co) 2 a, Ro(Co) <7) +Pu(H(Co) 2 a, Ro(Co) >r)
<P(HY(Co) > a, Ro(Co) <r) +exp(~t(1+7(a))). (5.26)
Next we deal with the first summand on the right-hand side of . Let Hy,...,Hy €
Hq-1(B;) and Hny = (Hi,...,Hy). If P(H(yy)) € Koo and P(H(y)) € By, then Theorem
implies that for each & € (0,1) there exists a polytope @ = Q(k) such that Wy_1(Q(k)) >
(1-k/2)W4-1(B?), ext(Q(k)) € ext(P(H(yy)) and fo(Q(k)) < v =v(d,a,k) (compare the
proof of Lemma . By the same calculations as the ones leading to in the proof of
Lemma we see that if P,(Cp € Kq0, Ro(Cp) <r) >0, then for N >d+1 we obtain

e =GV, k@]
(o Ko Ro(@) <7 InEaa(B) = V)< 3 (7)) - B

Following again the argument in the proof of Lemma we sum over all N > d+ 1 and thus

in any case we get that
P:(Co € Koo, Ro(Co) <r) <agexp(—(1-k)7(a)t), (5.27)
where the constant gg only depends on a,d and k. Thus we deduce

P, (HY(Ch) > a) < agexp(—(1 - k)7(a)t) +exp(~t(1 +7(a)))
= exp(-7(a)t) (qgexp(k7(a)t) + exp(-t))
<exp(-7(a)t)(qg+1)exp(kr(a)t). (5.28)

From this we conclude that

111;n supt ! In(P(HY(Co) 2 a)) < —(1 - k)7(a).
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Since k can be chosen arbitrarily in (0,1), it follows that indeed we also have

limsup ¢~ In(P(H¥(Cp) 2 a)) < -7(a).
t—o0
Together with the matching lower bound for the limes inferior the assertion of the theorem
follows. O

In the same way as Theorem was deduced from the arguments in Theorem we
obtain the following result via Theorem [5.3.7|

Theorem 5.3.9. Let a>0 (be fized) and let ¢, Xy, Cy be as in Theorem[5.5.5. Then

lim 1 InP(2,(Co) > a) = -7(a).

5.4 TYPICAL CELL

After having studied the Crofton cell it is natural to ask for the behaviour of the typical
cell. A quite general setting for describing typical objects in homogeneous spaces is developed
in [61} [62]. In these contributions, stationary random measures in homogeneous spaces are
studied. We will define the typical cell of an isometry invariant particle process, and hence in
particular of an invariant hyperplane tessellation, in hyperbolic space by specializing the more
general concepts developed in [61} 62] to the present setting. A generic relation between the
typical and the Crofton cell of isometry invariant tessellations will then allow us to transfer the
results from the last chapter to the typical cell of an isometry invariant Poisson hyperplane

tessellation.

5.4.1 TYPICAL PARTICLES OF INVARIANT PROCESSES IN HYPERBOLIC SPACE

Let I(H?) denote the group of isometries of He. It is well known that I(H?) is a locally
compact, second countable Hausdorff space and a Lie group which acts continuously and
transitively on H¢. Hence, up to a multiplicative constant there exists a uniquely determined
Haar measure X on I(H?). Since I(H?) is unimodular (see [40, Chap. X, Prop. 1.4] or [6)
Prop. C 4.11]) A is left invariant, right invariant and inversion invariant. We will choose the

normalization of A\ such that
d_ -1 _ ]
Hl=domt= [ Me(e) e} M),

where 7, : I(H%) - H?, ¢ ~ ¢(z), and = ¢ H? (the right-hand side is indeed independent of
). In the following, we also write @z instead of (z) for ¢ € I(H?) and x € H%. Proceeding as
in [42], we consider the isotropy group I(HY,p) = {p e I(H%): ¢(p) = p} of isometries fixing
p and denote by x(p,-) the I(H?) invariant probability measure on this compact subgroup.
Defining #(p, I(H?) ~ I(H? p)) := 0 this measure is extended to I(H?). More generally, for
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x e H? we define
I(Hd)p,w ={peI(H"): o(p) =z}
as the set of isometries that map p to z. Choosing an arbitrary ¢, € I(H?), ., we define

w(@,B) = [ Uy, opeBY k(pdg),  BeBUEY).

This definition is independent of the choice of ¢, (see [62]). Since z — ¢, can be chosen as
a measurable map,  is a stochastic transition kernel from H to itself. Moreover, s(z,-) is

concentrated on I(H?), ..

We assume that the underlying probability space (€2, F,P) comes with a measurable flow
{0, : ¢ € I(H?)}, that is, a measurable map Q x I(H?) - Q, (w, ) = 0,(w), which leaves P
invariant, that is to say, Po 6, =P for o € I (H%). (In our application, a canonical state space
can be chosen so that this assumption is fulfilled, see also [62]). In this case, a random measure

on is called invariant under the flow i
€ on H? lled der the flow if
£(O,w,pB) =E(w,B), weQ, pel(HY), BeB(HY). (5.29)

Here @B is defined pointwise @B = {pz : z € B}. Let w: H% - [0,00) be a measurable
(weight) function with [i,w(x)H%(dz) =1, and hence also

fI(Hd) w(e@)Md) =1,  cH (5.30)

Assume that
EfHdw(x)g(dx) € (0, 00).

Then the Palm measure of an invariant random measure £ is the finite measure on €2 defined by
Pe(A) = [Q [Hd fI(Hd) 1 {9;1(,0 e Ay w(z) k(z,dp) &(w,dz) P(dw), AeF. (5.31)

This definition is independent of the choice of w, which follows from the refined Campbell

theorem (see [61, Theorem 3.6]). Note that in general P¢ is not a probability measure.

We use these concepts and results to motivate the definition of the distribution of the typical
cell of a particle process. Let X’ be an isometry invariant particle process on H? having

nonempty compact convex particles. By this we mean a point process in ng satisfying
X'(0,w) = pX' (W), weQ, pel(HY).

In addition, we require a measurable centre function cy, : IC% — HY satisfying
cn(pK) = pen(K),  KeK¢ oelI(HY). (5.32)

An example is the circumcentre (see Lemma |5.2.13). Using a fixed centre function, we associate

with X’ the marked point process (random measure) ¢’, living on the product space H? x K¢,
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which is defined by
/ - -1 /
@O = [y f gy M) 97 ) € nlen (), dp) X', K.
For notational convenience, we write &' (w,-) := £'(w)(-). Let A € B(K{) and B e B(HY). Let

lC;iwp ={K ¢ ICZ : cp(K) =p}

d
h,cp*

Intuitively, the marked point process £ is the collection of all pairs of centers and “shapes” of

be the set of all convex bodies having p as their center. Then ¢’ is concentrated on H? x I

bodies K € X', where the shape of K is obtained by moving K so that its center is at p. Since
a unique selection of a motion is not available in the present setting, we use the probability
kernel x(c(K),-) for a uniform random choice of an isometry mapping ¢(K) to p. Finally, note

that the measure ¢ is invariant under motions in I(H?) in the sense that

¢ (Oyw, (WB) x A) =¢'(w, Bx A), ¢ eI(H). (5.33)
The intensity of the particle process X' is defined by

x = E [ I, wen ) X'(dm].

h

The definition is independent of w. We assume that yx € (0,00). Then the Palm measure of

¢ is the measure on Q x K¢ which is given by
. -1 /
Po0) = J, Jusnng Sy OO0 ) € Jue) o dp) € (o, d(a KNP, (539

The definition is independent of the choice of the weight function w. Moreover, ¢’ is concentrated

d

on the product space 2 x K7 pr

After these preparations, we define the distribution of the typical particle of the isometry
invariant particle process X’ with intensity vx+ € (0, 00) as the mark distribution of the Palm
measure of £’. Explicitly, it is given by

1
2 ¢

Fo()i= B [l [, 1 K € Juen(B)) slen(K), do) X' (4F).

This is a probability measure which is concentrated on IC% pr A random convex body C which

has distribution P¢(+) is called typical particle of X”.

Clearly, the typical particle C' is not stationary, but its distribution still has some symmetry

property. We state this as a lemma, the proof is straightforward.

Lemma 5.4.1. Let X' be an isometry invariant particle process on He with intensity vx: €
(0,00), and let C denote the typical particle of X'. Then the distribution of C' is invariant
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under isometries fixing p, namely
P(yCe)=P(Ce:),  ¢el(Hp).

In addition, the following disintegration result holds, which relates the intensity measure of

X' to the distribution of the typical particle.

Theorem 5.4.2. Let X' be an invariant particle process on H® with intensity vyx € (0, 00),
and let C' denote the typical particle of X'. If f: ICZ — [0, 00) is measurable then

A _[Kzf(K)X'(w,dK)P(dw)fyX/ | |/ s () N(d) P (). (5.35)

Moreover, Pc is the uniquely determined probability measure on Kﬁ which satisfies (5.35), is

concentrated on ICZ op and invariant under isometries firing p.
b

Proof. To verify the asserted relation, we start from the expression on the right-hand side and
use (in this order) the definition of P¢, the right invariance of A, the fact that x(cp(K),-) is
a probability measure, Fubini’s theorem, the isometry invariance of X’ and again Fubini’s

theorem to get

f,cz . f(Hd) F(oK) Mdyp) Pc(dK)

“E [ Srny Sy, T ED M) () (e (), ) X' ()
“E [ gy T M) 000 () e (1) ) X' (1)

“E o, [, P M) X (K

=y B Jeg SEFO (5 X (a5) A(2)

- fI(Hd)EfKZ FE)w(en(¢7K)) X' (dK) A(dp)

=E Kzf(f) f](Hd)w(ch(@‘lf))A(d@ X'(dK)

=5 L, J(F) X'(4F),

where we used (5.30), ¢, (¢ ' K) = ¢ ¢y (K) and the inversion invariance of A in the last step.

For the uniqueness, we consider another probability measure P* on IC‘;L which satisfies ,
is concentrated on IC% o
x> @, € [(H?),, can be chosen to be measurable and by [62} (2.9)] we have

and invariant under isometries fixing p. The map H¢ — I(H?),

A() = fH w(z, ) H(d). (5.36)

Since P and P* both satisfy (5.35)), it follows that

Jor S PRI P = [ [ oK) a0
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for all measurable functions f : IC?L — [0, 00). Using Fubini’s theorem, (5.36) and the definition

of the kernel x, we obtain

N A (CSRCOLETS
- /I(Hd) [ R P(dE) A(dp)

) [};Id -/(Hd) /;;d f(pr 0 Y K) Po(dK) k(p, dip) H (dax)
o fog SO Bt Hi )

where we used in the last step that P¢ is invariant under isometries fixing p and k(p,-) is a

probability measure. Since P* has the same properties as P¢, we thus get
oK) Po(dR) Hidw) = [ [ LK) P(dK) He(dx). 5.37
S Jg OBl W ) = [ [ FouBO P @O ). (537

Let h: K{ - [0,00) be an arbitrary measurable function. Then we define
F(K) = w(en(K)) - h (el K), K eKf.

If K e K¢

hep and x € H?, then ¢, (¢ K) = @ren(K) = 0 (p) = z, and hence

(oK) = w(en(a KD (05} ey pa ) = w(@)h (97102 K) = w(@)h(K).

Thus with this particular choice of f we obtain from (5.37) that
fHd de w(@)h(K) Pe(dK) H(dz) = /Hd flcd w(@)h(K)P* (dK) H(dz),
cp cp

and therefore

[icd h(K)PC(dK):de h(K)P*(dK),

h,cp h,cp

by the normalization (5.30). Since h was arbitrary, this proves the asserted uniqueness. [

Now we specify these results to the situation where X’ is the particle process determined by
an isometry invariant random tessellation of hyperbolic space (into hyperbolic convex polytopes
having nonempty interiors). It follows from that P-almost surely p is contained in (the
interior of) precisely one cell of X', since the H? measure of the boundary of each K € X" is

zero. We denote by Cy the almost surely unique cell of X’ containing the origin in its interior.

Lemma 5.4.3. Let f : lCﬁ > [0,00) be measurable and isometry invariant. Let X' be an
isometry invariant tessellation of H? (with positive and finite intensity vyx: ). Further let Cy, C
be the Crofton and the typical cell of the tessellation, respectively. Then

E[f(Co)] = E[f(CYHI(O)].
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Proof. A proof can be found in [62, Corollary 8.4]. For the convenience of the reader, we
provide a short derivation as an application of Theorem We start from the left-hand

side and use the invariance of f for the second inequality, hence
ELS(Co)=E [ JK)1p< K} X'(aK)
=X/ f,cd f f(eK)1{p e oK} MN(dp) Pc(dK)

fryep 7 T(H®)

=X flcd f(K) fI(Hd)]l{pesoK}A(dw)Pc(dK)

h,cp

“xe [ FUOHA) Bo(dK),

h,cp

since

Jrgy MO 0KIN ) = [ {07 € K} Mdp) = HA(K),

since A is inversion invariant. O

The lemma is well known in Euclidean space (see [103, Theorem 10.4.1]), in spherical space

a proof is given in [42] Theorem 9.2].

5.4.2 LARGE TYPICAL CELLS

The statement of Theorem for the typical cell corresponds to the statement of Theorem
for the Crofton cell. In this section we will deduce Theorem from Theorem via
the connection between the Crofton and the typical cell provided in Lemma

In the following, we always assume that the intensity ¢ of the underlying isometry invariant
Poisson hyperplane process 7; satisfies t > &;. This is required to ensure that the cells of the
resulting tessellation X; in H¢ are almost surely bounded and thus X; fits into the framework
of Section The next lemma shows in particular that the intensity of the particle process
X is well defined, that is, we have vx, € (0,00). In fact, we will need a better upper bound for
the dependence of vy, on ¢ in the following.

Recall that B! = B, is a geodesic ball of volume 1 and radius ro. We set

E(nt(FBl)):t-[ 1{Hn B+ &} g1 (dH) =t by,

Ap(d,d-1)
with by := ud_l(Hd_1<Bl>).

Lemma 5.4.4. Fort > ¢y,

In particular, In(vx,) = o(t) as t - oo.

Proof. We already know from Lemma that the cells of X; are almost surely bounded,

hence the center function is well defined. Choosing the weight function as the indicator function
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of B,,, we have
<, :Eflcd]l{ch(K) ¢ By} Xy(dK),
h

where ¢, (K) is the circumcentre of K. By a result of Miles [76], the number v(¢) of cells of
the cell decomposition of R? induced by £ € Ny hyperplanes in general position which meet By,

(considered as a subset of Bj) is bounded from above by
d (¢
v(0) <y, ( )
5=0\J

Interpreting the corresponding situation for a tessellation of hyperbolic space by hyperbolic

hyperplanes in the Beltrami—Klein model, we see that the same upper bound holds. Now we
use that by Lemma [5.2.12| ¢;,(K) € K for K € K¢ and

[e.e]

> WHen(K)eBy}< Y WK 0B, #@} <y 1{m(Fp, ) =L} v(l)
KeX, KeX, =0

< ;}1 {m(Fp,,) = g}j;] (g)

to obtain

[]l{nt(}"sro) 6}]2[:() i::zj: (byt)* _blt(ﬁ)

J

)

ij 10— );(blt)j(blt)éj et = Z (bit)’

j=0 J'

which proves the asserted upper bound.

To show that vx, > 0, suppose the contrary. Then
E[}Cﬁ]l{ch(K) ¢ B} X4(dK) = 0
for each r > 0, and by monotone convergence also
E/}an{ch(K) ¢ HY) X, (dK) = 0.

This yields a contradiction, since X; has infinitely many unbounded cells (for ¢ > é4). O

Theorem 5.4.5. Let C' be the typical cell of the hyperbolic Poisson hyperplane tessellation
X, induced by the isometry invariant Poisson hyperplane process ny with intensity t > kcq,
where k> 1 (is fized). Let ¥ be an isometry invariant deviation functional for hyperbolic balls.

Further let a >0, R € (0,1) and € € (0,1]. Then there is a constant ag> 0 such that
Py(9(C) 2 & | HY(C) 2 a) < qgexp (R fa,9(e)T(a)t),

where ag depends only on a,d, e, Kk, R.
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Proof. The minimal circumradius was defined (in an isometry invariant way) by
Row(K) :=inf{r >0: K ¢ By,(z,r) for some z e H%}, K e K.

Let ® € (0,1) be fixed. Assuming ¢ > kéy for some fixed k > 1, we want to provide an upper

bound for the probability

P.(9(C) 2 e, HY(C) > a)

P(9(0) 2| HUC) 20) = == iy o)

(5.38)

For this, we first provide a lower bound for the denominator. Let r > 0. Since He and R, are
isometry invariant, Lemma yields

P(HYU(C) > a) > PL(HUC) > a, Rout(C) <)

= E []l{?—td(C) >a, Rout(C) < r}%]
- 7; E, []I{Hd(Co) > a, Rout(Co) < 7“}H'“'I(C‘o)_l]
> mm [1{H*(Co) > a, Rout(Co) <7}]
_ mﬂ%(ﬁd(%) > a, Rout(Co) <)
1

T T0) (Py(HU(Co) 2 a) = Pi(Rour(Co) > 7). (5.39)

An application of Lemma with ¢ =1n(2)/(kéq) shows that there is an r1(d,a, ) > 0 such

that for r > r1(d,a, k) we have
Pt(Rout(CO) > ’I“) < Pt(RO(CO) > ,,a) < e—t(c+’r(a))

if t > k¢4 (which is part of the assumption). Hence, combining this with equation (5.39) and

(5.22), we get
g

1 -t In(2)-7(a)t
RO 20— () ) -7
(H( )>a)>'thHd(Br) t(H(Co) 2a) —e

1 ( -7(a)t 1 —T(a)t)

2 ———————|e€ -—e

’thHd(BT) 2

1

_ -7(a)t 5.40

since t/(kéq) > 1.

Now we turn to the numerator in (5.38). We apply Lemma [5.4.3| use that #¢ and ¢ are
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isometry invariant, and thus we get

PU(HU(C) > a, 9(C) > €) = E, [H{Hd(c) . 9(C) > S}ngg;]

L [1{14(Co) > a, 9(Co) > e} H*(Co) ']
VX

< 1 B (HUCo) 2 a, D(Co)22). (5.41)
aryx,

Finally, by Lemma with ¢ = R f, 9(¢)7(a) and by an application of Lemma it follows
that there is an ry(d, a, k,R,€) > 0 such that for r > ro(d, a, k, R, e) we have

P; (14 (Co) > a, 9(Co) >¢€) =P, (H(Cp) > a, 9(Co) >, Ro(Co) >7)
+P, (HY(Co) 2 a, 9(Cy) 2 &, Ry(Co) <)
<P (Ro(Co) >71) + Py (Co € Kooy Ro(Cop) <) (5.42)
< e (Ran@r(@rr(@)t | o= (148fa,0()) (@)t
< (1 + q)e @t R ao @@}t (5.43)

Now we choose r := max{ri(d,a,k),r2(d,a,k,R,e)}. Hence, qg depends only on d,a, e, k, R.

Combination of (5.40), (5.41) and (5.43) then yields
PU((C) 2 = | HA(C) > a) < agexp (~Xfop(e)r(a)t),

where qg = 2H4(B,)(1 + ag)a™! depends only on d,a, ¢, &, R. O

5.4.3 ASYMPTOTIC VOLUME DISTRIBUTION OF TYPICAL CELLS

In order to establish the asserted asymptotic behaviour of the distribution of the typical cell, as
the intensity goes to infinity, we proceed similarly as for the Crofton cell. However, at one point
an additional argument is required, since the intensity vx, of the associated particle process
does not cancel out and depends on the intensity ¢ of the underlying hyperbolic hyperplane

process.

Theorem 5.4.6. Let a >0 (be fized) and let ny, Xy, C be as in Theorem|[5.4.5. Then
tlim t ' InPy(HY(C) 2 a) = -7(a).

Proof. Throughout the argument, we assume that ¢ > k¢4 for some fixed x> 1. By (5.40) we

have

b ey
d b

27Xt H (BT)

where r = r(d, a, k) is independent of ¢. Hence,

P(HYC) > a) >

li%ninft_l InP,(H(C) > a) > -7(a),
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where Lemma, was used.
On the other hand, as in the derivation of (5.41) and by (5.28)) we get

1

aryx

Pi(H(C) 2 a) < P, (1%(Co) > a)

t

< B L exp(-r(a)t) exp(r(a)t),

Xt

where k € (0,1) can be chosen arbitrarily and gg depends only on d,a, k. Then again by Lemma

we get
limsupt ™ InP(HY(C) > a) < —7(a)(1 - k).

t—o0

5.5 VORONOI TESSELLATION

After considering the behaviour of large cells in hyperbolic Poisson-hyperplane tessellations,
it is natural to take a look at another famous model for generating mosaics, namely the
decomposition of H? by Voronoi cells. Their behaviour, in the context of Kendall’s problem,
is already considered in Euclidean space [43, [45] and in the spherical case [42]. We start
with formally defining a Poisson-Voronoi tessellation in hyperbolic space. We then state a
characterisation for Poisson point processes in H?. This gives us the opportunity to show that
the distribution of the typical cell is the same as the distribution of the zero cell of a Voronoi
tessellation depending on another point process. Next we state and prove an inequality of
isoperimetric type for the context of the Poisson-Voronoi tessellation. After proving several
auxiliary lemmas, the main result is stated in Theorem [5.5.5] It considers the probability that
the deviation of the typical cell of a Poisson-Voronoi tessellation, given that it contains a ball

of radius a > 0, exceeds a certain value.

For a given locally finite point process X ¢ H?, the Voronoi cell generated by its nucleus
x € X is defined by

Oz, X) = {zeH": dy(z,2) <dp(z,y), for all ye X}.
The cells are isometry invariant in the given way
Clpz,pX) = C(x,X),  pel(H’).

The aim of this section is to get results for the behaviour of large typical cells of the Voronoi
tessellation. The deviation function in this context is the difference between the centred
circumradius Ry and the centred inradius rg of the cell, denoted by 9. Since the typical cell

C will take values in IC% 9> We can measure the size of the cells by their centred inradius ro.
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The functional U is defined by
U(A):=H' ({zeH": H(exp,(exp,'()/2))nA+2}),  AeB(HY).

For a given radius 7 > 0 one also defines

- U(A)

@(A) = é(A,T) = m € [O, 1]7 Ac BT'

For simplicity reasons write 7(a) = U(B,) = H%(Ba,) for a > 0. To show results about the
typical cell one first has to derive its distribution. In order to do so, one uses the results from
Section and a famous result by Slivnyak (for a proof see [103, Theorem 3.3.5] ) generalized
by Gentner in [24) Theorem 4.21].

Theorem 5.5.1. Let X be an isometry invariant point process on H® with positive and finite
intensity vy, > 0. Let Px denote its Palm distribution. Then X is a Poisson point process, if
and only if

P(XeA)=P(X +5,cA), AecN(H).

Here the Palm distribution is defined as the normalized Palm measure, given in (5.31)
_ 1 -1
Py (A) .:%foHd fI(Hd)ﬂ{ew w e Ayw(z) w(z,dp) X (w,dz) P(dw).
In this case the refined Campbell Theorem (see [61, Theorem 3.6]) takes the form
Eff o1, Ldp) X (dz) = IE[ 0,0, 2)A(d 5.44
- I(Hd)f( o o)E(x,d) X (dx) = ypEx I(Hd)f( d: ©)A(d) (5.44)

for any measurable map f : Q x I(H?) - [0,00). In order to define the distribution of the

typical cell C', we take a look at the random measure & on H? x IC% which is given by
S(w) = Aﬂd ﬁ(Hd) 5(x,gp’1C(x,X(w))) "{‘7('7;7 d@) X(wv dw)

This definition is related to the measure defined in 1D Therefore by the invariance property

of ¢ (see (5.33))
£(Oypw, (¥B)x A) =&(w,Bx A),  AcKyi BcH? o eI(H)

holds, where A and B have to be measurable. Since X is a Poisson point process with intensity

measure E[ X (-)] = 7, H%(+), the distribution of C is given as the mark distribution of £, namely

P(ce.)zv_lthfHd [I(Hd)l{go_lC(x,X(w))e-}w(z:) k(2. d) X (w, dz) P(dw).

Using the results in Section and the refined Campbell Theorem (5.44) in the second line,
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this can be transformed to
B0 )= [ 1™ €0 X @) € o) (as2) X (o) Pl
= %'Yh A ﬁ(Hd) ]1{90_10“0(])),)((0900))) € }w(SO(p)) )\(dgﬁ) Px(dw)
) fg fz(Hd) HC(p, X (w)) € Jwlp(p)) Mdp) Px(dw)

=Px(C(p.X) ) [ (o) Mde)

=P(C(p, X +0p) €-).

Therefore the distribution of the typical cell is given by the distribution of the Crofton cell Cj

of a special process, namely the hyperplane process
Ty = {H(expp(exp;)l(a;)/2)) cxeX}. (5.45)

We will use this connection later in this chapter. Remark that this hyperplane process is not

isometry invariant anymore.

Theorem 5.5.2. Let K ¢ IC%O, e€[0,1] and a>0. If ro(K) > a and 9o(K) > & holds, then
U(K) > (1+qu(a,d)e ") U(B,),

holds, where qg(a,d) is given by

Wd-1 )
2awy3%2(cosh(a +1/2) sinh(a + 1))(d-1)/27

amg(a, d) = min{1,

Proof. If ro(K) > a and 9o(K) > €, then there exists a direction u € Sg‘l with 2o := exp,((a +

e)u) € K. Since K is convex, also I := [exp,(au),exp,((a +¢&)u)] € K holds. Thus we get

U(K)>U(Byul)=U(B,)+H ({x e H'\ By : H(expy(exp,'(2)/2))nI#2}). (5.46)

Further recall 8 =4/2- % and
| ) )
«(B)= oo sy di(wa) < 3p o)

We argue as in the proof of Theorem [5.2.17l We know, by using Lemma that every
hyperplane in

D(u, ) = {H (expy(ru1)): re(a,a+e/2], uye By(u, )}

has nonempty intersection with [p,exp,((a+¢)u)] and therefore also with [exp,(au), exp,((a+

e)u)]. We define A,(e) as the set of points such that the hyperplane having equal distance
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from p and this point is contained in D(u, B) More precisely define
Au(e)={zeH": {yeH": dy(y,2)=dn(y,p)} € D(u,B)}.
By the construction rule of the Poisson Voronoi mosaic, we get
Au(e) = {exp,(ruo) : 2a<r<2a+¢, ds(u,up) < B}
Therefore we get by
U(K)>U(B,) +HY(Aa(e)). (5.47)

Before we can give a lower bound for H%(A4(¢)), we derive, by using spherical coordinates on
Hﬂd

2a+e
HU{z e H: dy(p,x) € (2a,2a +¢€]}) = wy /2 sinh? () dt > wgesinh®™(2a).  (5.48)
By the definition of U
3 d 2 d d
U(B,) = H"(Baq) = wa [O sinh® ! (t) dt < 2awqsinh®*(2a)

holds. Therefore, using (5.48) and the definitions above, the hyperbolic volume of A,(¢) is
bounded from below by

Hd(Aa(e)):wdc(B)f;MEsinhd‘l( t) dt > ¢(B) wqe sinh® (2a) > ;ﬁ) 0(B.).  (5.49)
By equation we get
d-2 de1
(B> (2] e d)e’? (550)

with qri(a,d) = (cosh(a + 1/2) sinh(a + 1))"@/2. Combining the results for ¢(3) in (5.50)

with the inequalities in 1D and 1' gives

2awy

: 1\42 wy_yam(a, d) a1
> HlHl{l, (Eg) ————?Ea;;—————} [](13 )

ﬁ(K)—U(Ba)>C(B) U(B)>(3)d Wi i@, d) L1 i g

@ ~
=amfa,d)e 2 U(B,),

where arg(a,d) is given by

Wd-1 )
2awy3%2(cosh(a +1/2) sinh(a +1))(@-1/27"

(e, d) = min{1,
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We want to use Theorem [5.5.2) to get results for the probability of a typical cell to have a
certain deviation from the ball, given that it exceeds a certain size. Before that one needs to
somehow bound the size of a typical cell in Poisson Voronoi mosaics. Recall that Cj is the
zero cell of the hyperplane process 7j;, defined in .

Lemma 5.5.3. Let X be an isometry invariant Poisson point process of intensity v > 1

generating the Voronoi mosaic. In this case there exists a constant 7 = 7(d) > 2 such that
P(Ro(Co) >r) <exp (-2vkq sinh? ™ (r - d/(d - 1)))

for all r > 7.

Proof. Consider a fixed direction ug € Sg_l. Let 2o = exp,(ruo) € H¢ be the point in that
direction having distance r from the origin. Since Cy is convex, we get that the event {z0 € Cg}

is the same as {[p, z9] € Cp}. The probability of this event is given by
P(z0 € Co) = P(dn(20,p) < dn(20, X)) = P(B(20,7)° N X = @) = exp(—y H(B(20,7)))-
Let r>2/(d-1) then
14(B,) = dndforsinhd_l(t) dt
2dng [ inh?~1(t) dt
fid r—2/(d-1) S ( )
1(d=1) d-1 . 1 d-1
:dmdfo sinh® L (r —1/(d - 1) +¢) + sinh® (r — 1/(d — 1) ) dt

1/(d-1)
> dkg fo 2 sinh?1(r — 1/(d - 1)) dt

= zd“f sinh®(r-1/(d-1)) (5.51)
gives
P(zg € Cp) < exp (—7- Zd_ﬁi sinh® (r - 1/(d - 1))) .

In the next step one considers the neighbourhood of zy, namely B(zp,1) ndB,.. The probability

of Cy having nonempty intersection with this set can be calculated by

P(3z € B(20,1)ndB,: z€Cy) =P(3z e B(2,1) N 6B, : B(z,7)°n X = @)
<P(B(z0,7-1)°nX =2)
:exp(—’y-Hd(BT_l))

2d”f sinh? (r — d/(d - 1))) .

Sexp(—'y- ¥

By Lemma we know that there exists a constant gg(d) such that §B, can be covered by
az(d)e” 4V balls of radius 1 with centre on dB,, namely

6B, c | J B(x,1),

xel



184 CHAPTER 5 KENDALL’S PROBLEM IN HYPERBOLIC SPACES

where I denotes the set of centres of these balls. This gives, for r being big enough,

P(3z€dB,: 1€Cy)=P(3z0€el:3z € B(20,1)n 6B, : B(z,r)°nX = 2)
< > P(3w€B(2,1)néB,: B(z,r)°nX = @)

zo€el
=|I|P(3x € B(z,1)ndéB, : B(z,r)°n X = &)
<|IP(B(z,r-1)°nX = @)

= 1| exp (- - HY(B,-1))

< exp (_7. fld_”;’ sinh® (r - d/(d - 1)) + log(ap(d))r(d - 1))

<exp (= 2kgsinh™ ' (r - d/(d - 1))),

where z is an arbitrary centre from . In the last step we used that for r being big enough the
inequality 5
% sinh?! (r - d/(d - 1)) > log(ag(d))r(d 1)

holds. ]
We define the set I@m to be

Kaec={KeK}: ro(K)>a, 99(K)z>e}.

Theorem 5.5.4. Let a >0 and € € [0,1]. Let further X be a homogeneous Poisson point
process with intensity v > 1. Then there exist constants qg, arg> 0 and v € N such that

P(C € Kae, Ro(C) <7) < argmax{1,v#(r)}* exp(~(1 + arg(a, d)e' "2 [3)#(a)7),

where v only depends on a,d,e and r, = aiofa,d) is taken from Theorem and 18
given by

qz = az(a,d,e) = dZV (j)yl+ S 1

H jedn N\ ! Ao NV
Proof. Consider the hyperplane process 7}y, described in . Since the distribution of C
and Cj are equivalent one focuses on P(C’O € l&aﬁ, Ro(é'o <r)). For NeNand Hy,...,Hy €
Hg-1(B;) we define Hyy := (Hy,...,Hy) and let P(H(y)) denote the hyperbolic Crofton
cell of the tessellation induced by Hj,..., Hy. Assume that P(Hyy) € K4e. Further define
& = qoa, d)e 2 (2 + arg(a, d)e(“12) | where the constant qrg(a, d) is taken from Theorem
This leads to

(1-&)(1+amla,d)e4D?) =1+4a

and since qqg(a,d)e(*D/2 <1 also

a> 37" qm(a, d)e( D/
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holds. By Theorem [5.2.19; there are at most v = v(a,d, ¢, r) vertices of P(Hyy) such that the
hyperbolic convex hull Q(Hyy) of these vertices satisfies

D(Q(H(n))) 2 (1-a@)(P(H(y)))
> (1-a)(1 +ama, d)e/?)d(B,)
=(1+a)®(B,).

Here the second inequality used the result of Theorem Continuing in the same way as
in Lemma gives the result. It should be pointed out that the arguments in the proof of
Lemma transfer to the current setting, even thought a different measure on the set of
hyperplanes is used. ]

Combining the results in this section, one gets the main result concerning the limit shape of

large typical cells.

Theorem 5.5.5. Let a >0 and € € [0,1]. Let further X be a homogeneous Poisson point
process with intensity v > 1. Then there exist constants ary, arz, v such that

P(90(C) 2 & | 19(C) 2 a) < (1 + argmax{1,77(r)}*) exp(-aw(a, )= V7 (a)/3),
where arg, v only depend on a,d,e and aro = aig(a,d) is explicitly given in Theorem m

Proof. We use the alternative representation of the distribution of the typical cell, split the
probability and apply Theorem and

P(90(C) 2 € | ro(C) 2 a) =P(9o(Co) 2 € | ro(Co) 2 a)
=P(90(Co) > &, Ro(Co) <7 | ro(Co) > a)

+P(90(Co) > &, Ro(Co) > [ro(Co) > a)
LP(W0(Co) 22, Ro(Co) <7, mo(Co) 2a)  P(Ro(Co) > 1)
- P(ro(Co) > a) P(ro(Co) > a)
arzmax{1,7(r)}* exp(=(1 + q(a, d)el™DP2[3)7(a))
- exp(-7(a)7)

. exp(~2vkgsinh® L (r - d/(d - 1)))

exp(—7(a)y)

<(1 + qrzmax{1,77(r)}¥) exp(~amo(a, d)e D27 (a)v/3).

Here the last inequality is fulfilled for picking r large enough, depending on d,a, €. O

Remark 5.5.1. With a few more steps one can get rid of the dependence on ~ of the first
factor in Theorem Since

v (1+ qmax{1,77(r)}*) exp(-qm(a, d)e' ™ V/?#(a)/6)
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is bounded one can find a constant depending on d, a, e that fulfills

P(90(C) > € | ro(C) > a) < argexp(—am(a, d)e“/2#(a)~/6).
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