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Abstract 

This letter describes an algorithm using Compressive Sensing to analyse a stack of SAR images to monitor small urban areas. It 
uses the combination of the Orthogonal Matching Pursuit and Complex Least Squares, in order to estimate the residual height, 
thermal dilation coefficient and the displacement rate associated with one or multiple dominant persistent scatterers in a SAR 
resolution cell. It can be interpreted as a hybrid tomographic-PSI algorithm. The proposed method is tested with simulated data 
over single and double PS. Then it is applied to a stack of 79 SAR scenes over the Central Business District of the city of Perth in 
Australia. The results are compared to a conventional algorithm. 
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1. Introduction 

Persistent Scatterer Interferometry (PSI) enables to monitor the displacement of the surface and other backscatter 
points in urban areas from a stack of SAR acquisitions. It was introduced in [3] and works by decomposing the main 
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components of the interferometric phase, in order to reconstruct the height, the linear displacement rate and the 
thermally induced displacement of the potential dominant scatterer in a SAR pixel. Due to the side looking geometry 
of SAR acquisitions, it is possible that there are two or more dominant scatterers at different heights within a resolution 
cell. The reconstruction of those multiple PS-points is the goal of PS tomography, which estimates the number and 
intensity of dominant scatterers in a resolution cell along with their respective height, linear deformation rate, and 
eventually seasonal motion or thermal dilation. As the signal is assumed to be sparse in the elevation direction, it can 
be advantageous to use Compressive Sensing methods to solve the problem. 

This paper presents a new algorithm to detect the different parameters of PS-points by using the orthogonal matching 
pursuit as a first Compressive Sensing approximate solution, and then least squares in order to further improve the 
estimation.  

2. PSI and Tomographic Estimation 

For the rest of the article, some assumptions are made: 
 the reference phase and the topographic phase using a global Digital Elevation Model (DEM) are already 

removed. 
 all the scenes are coregistrated to a single master. 
 only small urban areas are considered, where atmospheric phase components and other large-scale variations 

are small enough 
 phase contributions which can be modeled as a linear function of certain parameters are predominant 

 
The Persistent Scatterer Interferometry enables the analysis from large areas by separating the different phase 
components of the dominant scatterer in a resolution cell. The goal is to find multiple parameters associated with a 
SAR pixel, as the residual height, the linear displacement rate or the thermal displacement, using a stack of 1N  SAR 
scenes. The classic model used for one interferogram is described in Equation 1 and contains 𝜙𝜙ℎ which is due to the 
local residual height with respect to the DEM, 𝜙𝜙𝑣𝑣 due to the linear displacement of the PS, 𝜙𝜙𝛼𝛼 due to the thermal 
displacement of the PS and 𝜙𝜙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is due to atmospheric change between the master and slaves acquisitions. 

 
 h v atmo noise           (1) 
 

There is a linear relation between the three first phase components and the parameter to be found, which are detailed 
in Equation 2. 
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𝐵𝐵⊥ in is 𝑚𝑚 the orthogonal baseline between the master and the slave, 𝐵𝐵𝑡𝑡 is the number of days between the master and 
the slaves and finally 𝐵𝐵𝐾𝐾  is the temperature difference in K. ℎ is the height in m, 𝑣𝑣 is the linear displacement rate in 
m/y and 𝛼𝛼 is the thermal displacement rate in m/K. It is important to remember that the measured phase is wrapped, 
which turns all those linear problems into a non-linear one. There are several different approaches in order to solve 
this problem. The most efficient and known methods are Ferretti's approach [3], StaMPS [6], where only the height is 
estimated before the unwrapping, SBAS [1], M-SBAS [8]. After the estimation of the parameters, it is important to 
validate if the values found are correctly estimated. The main criterion used is the temporal coherence 𝛾𝛾𝑃𝑃𝑃𝑃, computed 
as follows: 
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where 𝜙𝜙𝑛𝑛 is the observed phase at 𝑛𝑛𝑡𝑡ℎ interferogram and 𝜙̂𝜙𝑛𝑛 is the reconstructed phase with the estimated parameters. 
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where 𝜙𝜙𝑛𝑛 is the observed phase at 𝑛𝑛𝑡𝑡ℎ interferogram and 𝜙̂𝜙𝑛𝑛 is the reconstructed phase with the estimated parameters. 
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Tomographic reconstruction works with the 
complex signal in order to reconstruct the 
reflectivity profile in elevation direction. The first 
demonstration of TomoSAR was made in [7]. It 
enables to find more than one scatterer in a 
resolution cell, as can be seen in Figure 1. 
 
However, the main problem in Tomo-SAR is the 
high computation time. In [2], a PSI and 
tomographic solution were compared. While the 
first one presented a smaller number of PS, the 
computation time required was 60 times larger for 
the tomographic approach.  

 
A well-known TomoSAR algorithm is SL1MMER 
(Scale-down by 𝐿𝐿1- Minimization, Model selection 
and Estimation Reconstruction) which is based on 
Compressive Sensing optimization methods. Given 
a set of interferometric measurements g, the 
reconstruction of the reflectivity profile γ is 
possible via the inversion of the matrix Lh which 
links the two quantities. 
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In Equation 5, 𝜆𝜆 is the wavelength of the signal, 𝑟𝑟 is the range between the satellite and the center of the scene,  𝜃𝜃 is 
the look angle, 𝐵𝐵⊥,𝑝𝑝 is the orthogonal baseline of the p-th interferogram and ℎ𝑞𝑞  is the discretized height. Using a 
classical master-slave configuration and a fine discretization step in the elevation direction, there are more columns 
than rows which means that there are more unknowns than measurements. An additional information is that the signal 
is sparse in the elevation direction, as it is almost impossible that there are more than four dominant and coherent 
points in a resolution cell according to [12]. It confirms that Compressive Sensing methods can be used. 
 
The goal of Compressive Sensing is to solve Equation 4 using the sparsity prior knowledge which can be translated 
by solving the following problem: 
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12

minimize   Lγ g γ  (6) 

 
where   is the regularization parameter. Theoretically, the norm which enforces sparsity is the ‖ . ‖0-norm but leads 
to an NP-hard problem. The ‖ . ‖1-norm is the convex relaxation of the problem. With this it is possible to solve the 
problem by using convex optimization algorithms, as the Basis Pursuit DeNoising (BPDN) approach in the original 
version of SL1MMER or more recently the Randomized Blockwise Proximal Gradient (RBPG) [9], which is faster. 

3. Simultaneous vs. sequential Parameter Estimation 

The goal of the developed algorithm is to reconstruct the parameters of the dominant scatterers in the pixel, which are 
given by the following observation equations for the  𝑛𝑛-th interferogram. 

  

Figure 1: Illustration of the Tomographic Reconstruction 
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There are 3𝑄𝑄 + 1 parameters to estimate: the residual height, the linear displacement rate and the thermal dilation for 
each scatterer in the resolution cell, plus 𝑄𝑄 which is the number of significant scatterers in the resolution cell. The 
matrix Lh from Equation 5 is used to estimate the height. For the two other parameters, linear displacement rate and 
thermal dilation, the respective following matrices are used: 
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𝐵𝐵𝑡𝑡,𝑝𝑝 is the temporal baseline and  𝐵𝐵𝐾𝐾,𝑝𝑝 is the thermal baseline, which means the difference of temperature at the ground 
between the acquisitions. In M-SBAS, the estimation is done with stacks of small-baseline interferograms selected 
from all  𝑁𝑁(𝑁𝑁−1)2   possible interferometric combinations and by decomposing the 3D-parameter estimation into a 
sequential and iterative 3x1D-parameter estimation approach in order to reduce computation time [8]. By using 
arbitrary and variable interferogram stacks, including slave-slave interferograms for each parameter, and by using a 
sequential estimation approach, M-SBAS is limited to conventional single PS estimates with 𝑄𝑄 + 1.  

 
The other possibility is to solve the problem in the 3D-space using a combination of the three matrices presented in 
Equation 5 and 8. The Kronecker product is the intuitive way to combine such measurement matrices, for example 
when the multi-dimensional problem can be interpreted as an image (2D) or a video (3D). In the encountered case, 
there are only N  measurements in the classical master-slave configuration, and the number of rows of the 
measurement matrix should not increase by estimating three parameters, which would be the case by using the 
Kronecker product with the measurement matrices, namely 𝑁𝑁3  rows. That is why the transposed Khatri-Rao       
product •  was implemented and works as follows: 
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So, the final measurement matrix is given as: 
 

 • • h v αL L L L  (10) 
 

This product can combine the three matrices. The output matrix is smaller than the conventional Kronecker product, 
but still very large and the computation time will have time-complexity of 𝒪𝒪(𝑁𝑁𝑑𝑑) , where 𝑑𝑑  is the number of 
parameters to estimate. However, it avoids the iterative estimation and provides a basis for a multi-dimensional 
Compressive Sensing estimation approach. 

4. Proposed Method  

4.1. Parameter Estimation 

The proposed method is based on a greedy Compressive Sensing algorithm: the Orthogonal Matching Pursuit (OMP). 
It works completely differently than the optimization method used in SL1MMER. Indeed, greedy algorithms are faster 
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points in a resolution cell according to [12]. It confirms that Compressive Sensing methods can be used. 
 
The goal of Compressive Sensing is to solve Equation 4 using the sparsity prior knowledge which can be translated 
by solving the following problem: 
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where   is the regularization parameter. Theoretically, the norm which enforces sparsity is the ‖ . ‖0-norm but leads 
to an NP-hard problem. The ‖ . ‖1-norm is the convex relaxation of the problem. With this it is possible to solve the 
problem by using convex optimization algorithms, as the Basis Pursuit DeNoising (BPDN) approach in the original 
version of SL1MMER or more recently the Randomized Blockwise Proximal Gradient (RBPG) [9], which is faster. 

3. Simultaneous vs. sequential Parameter Estimation 

The goal of the developed algorithm is to reconstruct the parameters of the dominant scatterers in the pixel, which are 
given by the following observation equations for the  𝑛𝑛-th interferogram. 

  

Figure 1: Illustration of the Tomographic Reconstruction 
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There are 3𝑄𝑄 + 1 parameters to estimate: the residual height, the linear displacement rate and the thermal dilation for 
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𝐵𝐵𝑡𝑡,𝑝𝑝 is the temporal baseline and  𝐵𝐵𝐾𝐾,𝑝𝑝 is the thermal baseline, which means the difference of temperature at the ground 
between the acquisitions. In M-SBAS, the estimation is done with stacks of small-baseline interferograms selected 
from all  𝑁𝑁(𝑁𝑁−1)2   possible interferometric combinations and by decomposing the 3D-parameter estimation into a 
sequential and iterative 3x1D-parameter estimation approach in order to reduce computation time [8]. By using 
arbitrary and variable interferogram stacks, including slave-slave interferograms for each parameter, and by using a 
sequential estimation approach, M-SBAS is limited to conventional single PS estimates with 𝑄𝑄 + 1.  
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So, the final measurement matrix is given as: 
 

 • • h v αL L L L  (10) 
 

This product can combine the three matrices. The output matrix is smaller than the conventional Kronecker product, 
but still very large and the computation time will have time-complexity of 𝒪𝒪(𝑁𝑁𝑑𝑑) , where 𝑑𝑑  is the number of 
parameters to estimate. However, it avoids the iterative estimation and provides a basis for a multi-dimensional 
Compressive Sensing estimation approach. 

4. Proposed Method  

4.1. Parameter Estimation 

The proposed method is based on a greedy Compressive Sensing algorithm: the Orthogonal Matching Pursuit (OMP). 
It works completely differently than the optimization method used in SL1MMER. Indeed, greedy algorithms are faster 
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but also less accurate than the optimization methods. More information about the different types of Compressive 
Sensing algorithms can be found in [4]. 

 
The disadvantage of greedy methods over optimization methods, as the classical BPDN, is that the number of points 
in the resolution cell must be given as a prior knowledge, which is not available in SAR Tomography. Thus, the 
algorithm must be tested for one, two or three etc. potential PS in the resolution cell, whereas the optimization methods 
do not need this additional parameter. However, the ill-posed configuration of the acquisitions leads to a high 
coherence for the matrix Lh and induces some artefacts in the reconstruction of the elevation profile. In SL1MMER, 
the Bayesian Information Criterion (BIC) is used in order to delete those artefacts and select the optimal number of 
scatterers in the resolution cell. With a greedy method, the only thing to do is to select the most plausible number of 
PS in the pixel because no artefacts are reconstructed. 

 
The chosen greedy algorithm is the OMP and is introduced in [10]. It was selected among the 𝐿𝐿1-minimization, 
CoSaMP, and the Fast Hard Thresholding Pursuit (FHTP), as the best compromise with respect to accuracy and speed. 
This selection was done based on simulations with single and double scatterers. In order to speed up the solution, the 
choice was made to perform a two-step OMP with a first coarse discretization step over a large range of possible 
values, and then on a finer grid, nested around the first results to increase the accuracy of the results. 

 
The OMP is a well-known algorithm to provide approximate solutions of the problem. After the run of the OMP for 
each assumed number of scatterers in the pixel, the number of unknowns was considerably reduced. From more than 
a thousand unknowns which correspond to the values of the reflectivity profile, there are only 4 unknowns per PS 
after this step: reflectivity, height, linear displacement rate, and thermal dilation, for which the OMP gives approximate 
solutions. These values are used for the first iteration of a Least Squares estimation via the Gauß-Markov Model. With 
the decomposition of the complex exponential in trigonometric functions, it is possible to rewrite the model of the 
signal in Equation 7 as follows: 
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The three coefficients C  represent the factor for each unknown and depend on the baseline (cf. Equation 2). An 
additional unknown is added which is 𝜙𝜙𝑑𝑑  and represents the residual phase of the master acquisition, like 
neutrospheric phase delay, that is present in all interferograms. 

 
The separation of the real part and the imaginary part of the equation gives the two following real equations. 
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This means that with an initial set of 𝑁𝑁 complex measurements, a set of 2𝑁𝑁 real measurements can be exploited.  
The derivations of the functions 𝐹𝐹𝑛𝑛, 𝑛𝑛 ∈  ⟦1 ; 2𝑁𝑁⟧ are not difficult to compute as it is only a sum of trigonometric 
functions. These derivatives fill up the design matrix 𝑨𝑨𝒌𝒌 at each step 𝑘𝑘. 

 
Iteratively, the parameter estimation is done according to the following estimator (Equation 14) until a stopping 
criterion over the norm of 𝐝𝐝𝐝𝐝 or the number of iterations is met. 
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This final estimator has the advantage that it works only with real data and this is more suitable for the analysis of the 
covariance matrix 𝐂𝐂𝐱̂𝐱𝐱̂𝐱, which is in this case given at the final iteration by 
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4.2. PS Selection 

After the estimation, a criterion must be established in order to select the most likely number of PS in a resolution 
cell, and to detect, if they really can be considered as PS-points or if they must be discarded. The chosen criterion is 
based on the coherence from [6], and the Information Criterion as the Bayesian or Akaike one and is called the Measure 
for Phase Stability (MPS). It is defined in Equation 16 and is denoted as 𝛾𝛾𝑀𝑀𝑀𝑀𝑀𝑀. 
 

 ,

1 ,

ˆ1max ( 1)
ˆ

N
n k n

MPS k
n n n k

g g
k

N g g
 



     
  

  (16) 

 
where k  represents the number of PS in the pixel. 𝑔̂𝑔𝑛𝑛,𝑘𝑘 is the estimated signal at interferogram 𝑛𝑛, using the values 
found during the estimation and injecting it into Equation 11. The quantity 𝛽𝛽 is a free parameter and was determined 
empirically with simulated data. This parameter is very important because it has the same function as the BIC: 
discriminate a too big number of parameters. Our studies show an optimal value of 0.06 .  
 
Then, a series of three tests is provided to increase the quality of the results. They are only presented in the case when 
two scatterers were detected in order to simplify the notation, but it can be easily expended to the case of three 
scatterers. They are organized as follows: 

 Test 1: It is based on the reflectivity ratio between the two scatterers. If max (𝛾𝛾1,𝛾𝛾2)
min (𝛾𝛾1,𝛾𝛾2

> 𝑇𝑇, then the smallest point 
is discarded, as it can not be really considered as a dominant scatterer over the second one. The value of 𝑇𝑇 
chosen is 𝑇𝑇 = 3. 

 Test 2: The difference between the OMP estimation and the LS estimation is computed for each parameter 
found. If it is larger than a given threshold for at least one of the parameters, it is assumed that the LS 
estimation has diverged and a third finer grid with the OMP is applied to replace the LS estimation 

 Test 3: To ensure the quality of the double scatterers, a spatial topological test is applied. A ball is constructed 
around each point of the multiple PS with a given radius 𝑅𝑅. If there are no single scatterers in this ball, this 
component of the multiple PS is discarded. Indeed, even for perfect conditions and selected buildings in 
urban scenes, there are less than 30 percent of double-PS in the optimal case of Spotlight TSX data [12]. This 
means that the probability of single scatterers in the neighborhood of a double-PS is very high. If it is not the 
case, it means that the double PS is isolated, and the estimation is most likely erroneous. A relevant radius is 
𝑅𝑅 = 30 𝑚𝑚. 
  

The complete Flowchart of the Algorithm is given in Figure 2. 
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where k  represents the number of PS in the pixel. 𝑔̂𝑔𝑛𝑛,𝑘𝑘 is the estimated signal at interferogram 𝑛𝑛, using the values 
found during the estimation and injecting it into Equation 11. The quantity 𝛽𝛽 is a free parameter and was determined 
empirically with simulated data. This parameter is very important because it has the same function as the BIC: 
discriminate a too big number of parameters. Our studies show an optimal value of 0.06 .  
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scatterers. They are organized as follows: 
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> 𝑇𝑇, then the smallest point 
is discarded, as it can not be really considered as a dominant scatterer over the second one. The value of 𝑇𝑇 
chosen is 𝑇𝑇 = 3. 

 Test 2: The difference between the OMP estimation and the LS estimation is computed for each parameter 
found. If it is larger than a given threshold for at least one of the parameters, it is assumed that the LS 
estimation has diverged and a third finer grid with the OMP is applied to replace the LS estimation 

 Test 3: To ensure the quality of the double scatterers, a spatial topological test is applied. A ball is constructed 
around each point of the multiple PS with a given radius 𝑅𝑅. If there are no single scatterers in this ball, this 
component of the multiple PS is discarded. Indeed, even for perfect conditions and selected buildings in 
urban scenes, there are less than 30 percent of double-PS in the optimal case of Spotlight TSX data [12]. This 
means that the probability of single scatterers in the neighborhood of a double-PS is very high. If it is not the 
case, it means that the double PS is isolated, and the estimation is most likely erroneous. A relevant radius is 
𝑅𝑅 = 30 𝑚𝑚. 
  

The complete Flowchart of the Algorithm is given in Figure 2. 
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Figure 2: Flowchart of the proposed method 
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5. Application  

5.1. Results on simulated data 

The algorithm was first tested on simulated data, in order to tune the processing strategy and accurately assess the 
final estimation accuracy. The baseline configuration used to simulate data are from the Perth data stack which is 
further described in subsection 5.2. The theoretical resolution in height can be computed according to Equation 17 
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For the used configuration, it is equal to 10.9s m  . 

 
Three test cases are considered, presented in 
Table 1. The first case is the single PS case. 
Case 2 represents two scatterers in a SAR 
pixel which have the same reflectivity. Case 
3 simulates two scatterers in the resolution 
cell which have a normalized distance of 
approximately 0.5. The normalized distance 
is the quotient of the real height difference 
between the points over the resolution in 
height 𝜌𝜌𝑠𝑠.  

 
Figures 3, 4 and 5 show the results for the 
three scenarios. In all subfigures, the X-axis 
represents the increasing noise, for which the 
simulation were lead. It corresponds 
approximately to SNR from +∞ to 0 dB. For 
each SNR, 500 PS-points were simulated 
with random circular Gaussian noise 
according to the SNR level. 
 
In all subfigures of Figure 3, except for the 
upper right (UR) one, the blue curves 
represent the results after the OMP solution, 
whereas the red curves represent the results 
of the complete estimation. The LS 

estimation provides a significant improvement in the stability of the three parameters estimation (ML, MR, LL), which 
leads to an improvement of the coherence and the Residual Sum of Squares (UL, LR). Looking closer at the upper 
right graph, the number of detected points is always correct and avoids false alarms. With increasing noise, it starts to 
discard some points which is expected, considering the criterion used. 
 
Table 1. Considered test cases with one or two PS per resolution cell with intensity γ1/2, height h1/2 in meter, linear displacement v1/2 in mm/y 
and thermal dilation α1/2in mm/K. 

 𝛾𝛾1 𝛾𝛾2 ℎ1 ℎ2 𝑣𝑣1 𝑣𝑣2 𝛼𝛼1 𝛼𝛼2 

Case 1 1.0 - 12.24 - 1.6 - 0.08 - 
Case 2 1.0 1.0 4.56 25.34 -1.3 -1.6 0.09 0.24 
Case 3 0.8 1.0 0.14 5.46 0.04 -1.2 0.00 0.05 

 

Figure 3: Analysis of the algorithm applied to the first case with only a single PS. 
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In Figure 4, the graph UL shows the mean MPS 
calculated with the respective standard deviation 
for each SNR in both detected scenarios: 1 PS or 2 
PS estimated. It is clear that the MPS for two PS 
estimated is much higher than for only one PS. 
That is why the UR graphic shows that almost 
always the correct number of points is detected. 
The blue curves show the absolute error made 
when only one point was found, and the red curves 
represent the root mean square error for both 
reconstructed points. The errors have the 
magnitude order of what can be achieved with PSI 
or tomographic estimations. Indeed, the height 
error is about 0.5 m, the velocity error has a 
magnitude of 0.3 mm/y and the thermal dilation 
error is about 0.03 mm/K. The simulation 
represented in Figure 5 was simulated in order to 
analyze the super-resolution ability of the 
developed algorithm. It shows that with a low 
noise, it has good abilities to find both points. With 

increasing noise it finds more and more often only 
one point which is a mix of the two simulated PS. 
A surprising phenomenon is that the MPS is 
greater for one point than for two points when the 
noise becomes too large. This nicely demonstrates 
the preference of this algorithm towards sparse 
solutions. With high noise, it gives the same 
coherence to estimate the two separated points or 
one point in the middle. 
 
The coefficient 𝛽𝛽 in Equation 16 explains that the 
one PS case is selected more frequently. To 
conclude this section, the algorithm works very 
well for the single-PS case. In the case of multiple 
scatterers it works well too, but an almost 100% 
detection works only long with some restrictive 
assumptions, as a good separation of the scatterers 
and a reflectivity ratio reduced in a certain domain. 
 

 
Table 2: Mean and standard deviation of the parameter estimation 

X ℎ in m 𝑣𝑣 in mm/year 𝛼𝛼 in mm/K 
ˆ ˆ( )M SBAS OCLeaSX X E  0.20 0.01 0.01 
ˆ ˆ( )M SBAS OCLeaSX X    0.70 0.28 0.04 

Figure 4 : Analysis of the algorithm, applied to the third case with two 
persistent scatterers 
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5.2. Test on a real data set 

The test on simulated data was conclusive which invites us to use the method on a real data set. The choice was made 
to apply it on a stack of 79 TerraSAR-X Stripmap scenes over the Central Business District of Perth. These data 
present high skyscrapers possibly characterized by high thermally induced displacement rates, which renders the data 
interesting to test. The results are compared with M-SBAS, an alternative PSI-algorithm which uses the StaMPS 
framework but includes simultaneous estimation of height, displacement rate and thermal dilation in the PS selection 
process. 

 

The pixels considered as PS-Candidates are the pixels with an amplitude dispersion 𝐷𝐷𝐴𝐴  smaller than 0.44. The 
reconstruction of the height with the proposed algorithm is given in Figure 6. The linear displacement rate and the 
thermal dilation are given in Figure 7. The mean linear displacement rate is quasi equal to 0 mm/y. In the areas circled 
in red, the displacement rate goes up to -5 mm/y. A test was made to use the algorithm only with the height estimation 
and in those areas, no PS-points are found. The number of double-PS found in the scene is quite low and represents 
1% of the selected PS in the scene. According to [11], the utilization of SL1MMER can be up to 17% for Spotlight 
acquisitions. Also, it is important to notice that, unlike in our approach, in this study an additional preprocessing step 
is included to remove the atmospheric phase screen of the scene which increase the SNR and may improve the 
reconstruction of the reflectivity profile.  
 
For each parameter 𝑋𝑋, 𝑋𝑋 = ℎ, 𝑣𝑣, 𝛼𝛼, the mean 𝔼𝔼(𝑋̂𝑋𝑀𝑀−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑋̂𝑋𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)   and standard deviation 𝜎𝜎(𝑋̂𝑋𝑀𝑀−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑋̂𝑋𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) 
are computed. It allows to statistically analyze the deviations to the M-SBAS estimation. For each parameter, the two 
quantities are summarized in Table 2. All the standard deviations are small w.r.t. the quantity evaluated. Indeed, the 
deviation of the height is about 0.7 m which is below the standard accuracy reached in SAR tomography of 1 m. The 
mean difference between M-SBAS and OCLeaS is negligible and can come from the local referencing, which is not 
identical. 

6. Conclusion and Outlook 

The proposed method enables an analysis of a stack of SAR scenes in order to monitor mainly urban areas. The 
comparison with a PSI algorithm shows similar results which is encouraging for future work. The use of the Khatri-
Rao product allows to have a simultaneous estimation of all the parameters and seems to be adapted to a tomographic 
work. The next step of the work is the research on the acceleration of the estimation process, as the Khatri-Rao, for 𝑁𝑁 
points and 𝑑𝑑 parameters to estimate, has a time-complexity of 𝒪𝒪(𝑁𝑁𝑑𝑑). The tomographic reconstruction, especially the 
double scatterer identification works with simulated data but does not show the best efficiency on real data. The next 

Figure 6: Visualization of the estimated height - 3D model of the CBD 
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That is why the UR graphic shows that almost 
always the correct number of points is detected. 
The blue curves show the absolute error made 
when only one point was found, and the red curves 
represent the root mean square error for both 
reconstructed points. The errors have the 
magnitude order of what can be achieved with PSI 
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5.2. Test on a real data set 

The test on simulated data was conclusive which invites us to use the method on a real data set. The choice was made 
to apply it on a stack of 79 TerraSAR-X Stripmap scenes over the Central Business District of Perth. These data 
present high skyscrapers possibly characterized by high thermally induced displacement rates, which renders the data 
interesting to test. The results are compared with M-SBAS, an alternative PSI-algorithm which uses the StaMPS 
framework but includes simultaneous estimation of height, displacement rate and thermal dilation in the PS selection 
process. 
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thermal dilation are given in Figure 7. The mean linear displacement rate is quasi equal to 0 mm/y. In the areas circled 
in red, the displacement rate goes up to -5 mm/y. A test was made to use the algorithm only with the height estimation 
and in those areas, no PS-points are found. The number of double-PS found in the scene is quite low and represents 
1% of the selected PS in the scene. According to [11], the utilization of SL1MMER can be up to 17% for Spotlight 
acquisitions. Also, it is important to notice that, unlike in our approach, in this study an additional preprocessing step 
is included to remove the atmospheric phase screen of the scene which increase the SNR and may improve the 
reconstruction of the reflectivity profile.  
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quantities are summarized in Table 2. All the standard deviations are small w.r.t. the quantity evaluated. Indeed, the 
deviation of the height is about 0.7 m which is below the standard accuracy reached in SAR tomography of 1 m. The 
mean difference between M-SBAS and OCLeaS is negligible and can come from the local referencing, which is not 
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step which will be achieved is to compare the tomographic component with other Compressive Sensing algorithms 
like SL1MMER. 

 
 
 

Acknowledgement 
 
The authors would like to thank Prof. Hansjörg Kutterer working at the Geodetic Institute Karlsruhe for the discussion 
about the least squares estimation and Dr. Mick Filmer from the Curtin University who has provide the data of Perth 
used to test the algorithm. The data used in this work was provided by DLR under general AO, proposal LAN1499. 
 
References  
 
[1] Berardino P, Fornaro G,  Lanari R, Sansoti E (2002) “A new algorithm for surface deformation monitoring based on small baseline differential 

SAR interferograms.” IEEE Transactions Geoscience and Remote Sensing 40: 2375-2383. 
[2] Budillon A, Crosetto M, Johnsy AC, Monserrat O, Krishnakumar V, Schirinzi G (2018) “Comparison of Persistent Scatterer Interferometry and 

SAR Tomography using Sentinel-1 in urban environment” Remote Sensing 10 (12) 
[3] Ferretti A, Prati C, Rocca F (2000) “Nonlinear subsidence rate estimation using permanent scatterers in differential SAR Interferometry” IEEE 

Transactions, Geoscience and Remote Sensing, 38: 2202-2212. 
[4] Foucart S, Rauhut H (2013) “A Mathematical Introduction to Compressive Sensing”, Applied and Numerical Harmonic Analysis, Springer, 

New-York 
[5] Hooper A, (2006) “Persistent Scatterer Radar Interferometry for Crustal Deformation”, PhD Thesis, Stanford: Stanford University 

[6] Hooper A, Segall P, Zebker H (2007) “Persistent Scatterer InSAR for crustal deformation analysis with application to Volcán Alcedo, 
Galapágos.” Journal of Geophysical Research, 112. 

[7] Reigberger A, Moreira A (2000) “First demonstration of Airborne SAR tomography using multibaseline L-band data.” IEEE Transactions 
Geoscience and Remote Sensing 38 (5): 2142-2152. 

[8] Schenk A (2015) “PS-Interferometrie in urbanene Räumen – Optimierte Schätzung von Oberflächenbeegungen mittels Multi-SBAS Verfahren” 
PhD Thesis, Karlsruhe Institute of Technology 

[9] Shi Y, Zhu X, Yin W, Bamler R (2018) “A fast and accurate Basis Pursuit denoising algorithm with application to Super-Resolving Tomographic 
SAR” IEEE Transactions, Geoscience and Remote Sensing, 56: 6148-6158 

[10] Tropp JA, Gilbert AC (2007) “Signal Recovery from random measurements via Orthogonal Matching Pursuit”, IEEE Transactions on 
information theory, 53 (12): 4655-4666 

[11] Wang Y, Zhu X, Bamler R (2014) “An efficient tomographic inversion approach for urban maping using meter resolution SAR image stacks” 
IEEE Geoscience and Remote Sensing Letters 11 (7): 1250-1254 

[12] Zhu X (2011) “Very High Resolution Tomographic SAR Inversion for Urban Infrastructure Monitoring – A sparse and non-linear tour”, PhD 
Thesis, Technische Universität München. 
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(a) Linear displacement (b) Thermal dilation 


