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1. Introduction 
Second-harmonic gyrotrons with available superconducting magnets are currently the most powerful sources of coherent 
continuous-wave radiation for a wide variety of emerging applications in sub-terahertz-to-terahertz frequency range [1, 2]. 
One of the main factors limiting their performance is the competition from the first-harmonic modes, which can be 
explained by the fact that starting currents of the first-harmonic modes are naturally much lower than those of the second-
harmonic modes. This feature is described by the simple approximate formula [3, 4] 
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where sI , sQ , sL  and 2

,m sC  are the minimum starting current, total quality factor, effective cavity length and beam-wave 

coupling coefficient for the s -th harmonic TEm,p mode interacting with a helical electron beam in a gyrotron cavity, 

respectively,    2 2
0 01 1   

     is the initial transverse electron velocity normalized to the speed of light in 

vacuum, 0  and   are the initial relativistic and pitch factors of the electrons, respectively. 

In gyrotrons with conventional cylindrical cavities, 1 2L L  and the ratio 2 1Q Q  of total quality factors can approach 

the peak value of 4 [5], provided that the ohmic losses in metal cavity walls are negligible. Despite this, the minimum 
starting currents of the first-harmonic modes are usually several times lower than those of the second-harmonic modes [3, 
6-11]. The main reason lies in the constraint 2

0 1   for conventional weakly-relativistic gyrotrons [3, 4]. This constraint 

is inevitable and becomes more rigid for lower beam voltages. An additional limiting factor is associated with the ratio 
2 2

,2 ,1m lC C . This ratio is often distinctly smaller than unity, since the peak values of the beam-wave coupling coefficients of 

the first-harmonic modes are generally several times those of the second-harmonic modes. Besides, in low-power second-
harmonic gyrotrons with broadband continuous frequency tuning, long cavities are employed to reduce the operating beam 
current and to provide continuous transition between high-order axial modes [3, 12-15]. In such cavities, the contribution of 
ohmic wall losses to the total quality factor is large [16]. It reduces the value of 2 1Q Q , thereby providing further decrease 

in the ratio 1 2I I  of starting currents of the first- and second-harmonic modes. Because of the small ratio 1 2I I , operation 

of low-current second-harmonic gyrotrons equipped with conventional cavities requires careful choice of the operating 
mode, which must be well-isolated in frequency from dangerous first-harmonic competitors. As the oscillation frequency 
and eigenvalue of the operating mode increase, it becomes more and more difficult to fulfill this requirement. 

This brings to the forefront the need for the use of advanced cavities with improved mode selection in sub-terahertz and 
terahertz second-harmonic gyrotrons. Among them are cavities enabling selective decrease of diffraction losses of the 
operating second-harmonic modes, with a consequent increase of the ratios 2 1Q Q  and 1 2I I  in (1). Such cavities include 

iris-loaded cavities [17, 18], coaxial cavities with tapered corrugated [19] or smooth [9] inserts, cavities with output 
reflectors [20], cavities with distributed dielectric coating [21] or impedance corrugations [22]. However, ohmic wall losses 
substantially reduce the benefit from using these cavities in low-power second-harmonic gyrotrons. Better performance can 
be theoretically achieved in coaxial gyrotron cavities with resistive inserts [19, 23], which make it possible to increase the 
ohmic losses of competing modes. However, their chief practical drawback is the very low conductivity required for 
resistive (conducting) rods to ensure efficient suppression of high-order axial modes, which often brings the major threat to 
operation of second-harmonic gyrotrons [6-11] and feature high diffraction losses. Such conductivity can be beyond the 



range of the available metallic materials, especially in the terahertz range [11]. For mode selection by ohmic losses, 
dielectric inserts made from available lossy ceramics can be used as alternative to resistive rods in cavities of sub-terahertz 
second-harmonic gyrotrons [11]. In practice, such a use would require further research on material aspects of lossy 
ceramics in the sub-terahertz-to-terahertz range and careful choice of ceramic materials with desirable vacuum, thermal, 
mechanical and charging properties.  

According to (1), highly efficient mode selection can be achieved in advanced gyrotron cavities characterized by a 
reduced effective cavity length 1L  of the competing modes. This is because the ratio 1 2I I  of starting currents of the 

competing and operating modes is proportional to the second power of 2 1L L . Moreover, a decrease in effective cavity 

length of the competing modes greatly reduces their diffractive quality factors [5], thereby making an additional 
contribution to the rise in 1 2I I . Such an improved selectivity can be realized in advanced gyrotron cavities with abrupt 

structural variations, which have little or no effect on the operating mode (or mode pair), but initiates reflection of the 
competing modes. Among such cavities are complex cavities [24, 25], cavities with transverse (circumferential) selective 
grooves [10], coaxial cavities with stepped inner conductors [8], and cavities with coaxial inserts partially coated by 
dielectrics [9]. Contrary to conventional cylindrical cavities, these cavities, however, can exhibit unwanted conversion 
between coupled radial modes due to abrupt change of the longitudinal (axial) structure. Even though such mode 
conversion is well-studied in cold cavities [26-30], its effect on the beam interaction with first- and second-harmonic modes 
still remains poorly explored [31] and therefore may present a hidden factor in designing the advanced cavities for second-
harmonic gyrotrons. 

A fundamentally different method of mode selection can be employed in cylindrical gyrotron cavities with mode-
converting longitudinal corrugations [32], which also find use in coaxial cavities of the first-harmonic gyrotrons [33-36]. 
Such wall corrugations have generally only a slight effect on the operating mode of a second-harmonic gyrotron, provided 
that the corrugation depth equals half its wavelength. This depth corresponds to nearly a quarter wavelength of the 
competing first-harmonic modes. Under this condition, the first-harmonic modes suffer from conversion to coupled 
azimuthal modes (Bloch harmonics) [37, 38]. If the number of corrugations is large enough, high-order Bloch harmonics 
feature caustic radii far in excess of the beam radius. In this case, one might expect the reduction of the beam-wave 
coupling coefficients 2

,1lC  for the first-harmonic competing modes due to mode-converting corrugations [32, 36] and, 

consequently, the rise in the ratio 1 2I I  of starting currents of the first- and second-harmonic modes (see (1)). Thus mode-

converting wall corrugations are expected to improve mode selection in cavities of second-harmonic gyrotrons as suggested 
by cold cavity analysis (without electron beam) [32]. However, before proceeding to a concrete design of such a cavity, it is 
necessary to develop a self-consistent theory of the beam-wave interaction in a gyrotron cavity with mode-converting 
corrugations and to investigate the influence of corrugations with half- and quarter-wavelength depth on the starting 
currents of the cavity modes. Such an investigation is the prime object of this study. 

 
2. Gyrotron equations 
Consider a gyrotron cavity with N  longitudinal wedge-shaped wall corrugations of the depth d  and width Lw R  

(Fig. 1). We neglect conversion of radial cavity modes due to slow variation of the cavity radius  R z  [26-30], and first 

assume that the cavity is made of a perfect electric conductor. Such a corrugated cavity supports pure TE modes ( 0zE  ). 

In the cylindrical coordinates  , ,r z , their fields can be written as 
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where  V z , k  and   are the mode amplitude, transverse wavenumber and angular frequency, respectively,  ,r   is 

the membrane function, which can be expanded in terms of Bloch harmonics    exp
nn k n

n
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where nk m nN   are the azimuthal indices of the fundamental ( 0n  ) and higher-order ( 0n  ) Bloch harmonics, 

0, 1, 2...n    , dR R d  , /l Ll   ,  lJ   and  lN   are the l -th order Bessel and Neumann functions, respectively. 

Such field representation is known as spatial harmonic method (SHM) [37-41].  
The field components (2) must satisfy continuity conditions at the interfaces between regions I and II, and boundary 

conditions at the perfectly conducting surface of the cavity. Using these conditions and the orthogonal properties of Bloch 
and Fourier harmonics, one obtains the dispersion relation for a gyrotron cavity with longitudinal wedge-shaped 
corrugations [37]. This equation yields real eigenvalues k R   of TE modes of the perfectly conducting cavity. In the 

case of finite wall conductivity  , the transverse wavenumbers of these modes becomes complex   1 2 ohmk R i Q    



and can be found by the perturbation technique [32, 38, 41]. Note that generally TE modes of a corrugated gyrotron cavity 
are in the form of coupled Bloch and Fourier harmonics. The coupling between spatial harmonics becomes weak for large 
number N  of corrugations. In this case, the contribution from high-order harmonics to the membrane function can be 
neglected and one is led to an approximation called the surface impedance model (SIM) [19, 22, 42-44]. 

Let us next consider a helical electron beam, which propagates along the corrugated cavity from the input end ( 0z  ) 
and interacts with a single cavity TE mode. Using a widely accepted technique, one can derive the self-consistent system of 
ordinary differential equations known as single-mode gyrotron equations [45, 46], which combine the wave equation for the 
amplitude  V z  of the cavity mode, which is excited by the electron beam, with the equations of electron motion in the 

mode field and axial external magnetic field 0B . In the case of a gyrotron cavity with longitudinal corrugations, these 

equations can be written in the following dimensionless form:  
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where zG   is the dimensionless axial coordinate, 0 2G k , 0 0z    is the pitch factor, 0 0v c  , 

0 0z zv c  ,  0 0 0em v p  is the initial electron velocity, k c ,  2 2 2 2k k G   , 
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 0с eeB cm   is the electron cyclotron frequency,  0 0 0с eeB cm  ,  22
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 2
0 1 b eeV m c    is the relativistic factor and its initial value, bV  is the beam voltage, e  and em  are the electron charge 

and rest mass, respectively, ...  denotes averaging over the beam electrons,     2
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nn s n k s c n cC J k r P P P     is the 

coefficient of beam coupling with n -th Bloch harmonic, 
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 is the power flow along the corrugations (region II), 

       2 2 22 1
l l l l lcl l d lP X B g R R g g D g               ,   2 2 2 2

l dB R R l   ,  2 21lD l   , 

     2 2 2 2
0 0 1 1 1 1 1c dP X B g R R D g g       ,          l l l l d l dg z J z N z J R R N R R     , cr  and 0  

( 00 2   ) are the polar coordinates of the electron guiding centers, respectively. Note that in order to avoid artificial 

coupling of the n -th and n -th Bloch harmonics in computations, the number N  of discretization steps along the azimuthal 

coordinate 0  must ensure non-integer value of the ratio  n n N N  [47]. 

The system of equations (3) takes into account the self-consistent effect of longitudinal wall corrugations on the beam-
wave interaction in a gyrotron cavity. According to [22, 32, 34, 40, 42], for a selected TEm,p mode this effect is associated 

with the change of the complex transverse wavenumber   1 2 ohmk R i Q   . More importantly, corrugations can initiate 

energy transformation from the TEm,p mode (fundamental Bloch harmonic) to one or more ,TE
nk l  modes (higher-order Bloch 

harmonics) [32]. Such energy transformation is known as mode conversion. In this process, the normalized amplitude n  

decreases from unity for the fundamental ( 0n  ) Bloch harmonic and increases from zero for one or more higher-order 
( 0n  ) harmonics (see [32] for more details). As the corrugation depth d  (or width w ) approaches zero, one obtains 

,m p  , 0 1  , 0n   ( 0n  ), 0сP  ,    2 2 2
0 , ,m p m m pP m J    , where ,m p  is the p -th root of the function 

 mJ   . In this case, gyrotron equations (3) take the standard form and describe beam-wave interaction in a conventional 

cylindrical gyrotron cavity [16, 45, 46]. 
Equations (3) must be supplemented by the outgoing-wave boundary conditions at the input ( 0  ) and output 

( out  ) ends of a gyrotron cavity, and the initial condition    00 expp i  with 00 2    for the dimensionless 

electron momentum [16, 45, 46]. With the knowledge of the complex transverse wavenumbers k  and beam-wave coupling 



coefficients 2
,n sC  for the cavity modes, these equations can be applied to find mode frequencies and starting currents, 

provided that the field amplitude  f   and interaction efficiency are small enough. In the next Section, we will investigate 

k  and 2
,n sC  for TE modes of a gyrotron cavity with longitudinal wedge-shaped corrugations. 

 
3. Mode conversion in a corrugated cavity 
As an example, let us consider the second-harmonic ( 2s  ) TE6,12 mode ( 6,12 44.35  ) of a gyrotron cavity with 

longitudinal wedge-shaped corrugations (Fig. 1). We focus our attention on the main cavity section with constant radius of 
0.248 cm. In the following, we consider corrugations of equal depth and width, i.e. w d . Such a design of corrugations is 
usually the most appropriate with regard to cavity fabrication. The cavity is assumed to be made of copper with reduced 
conductivity 72.9 10    S/m due to surface roughness.  

Fig. 2 shows the influence of the corrugation depth d  on cutoff frequency cf  and ohmic Q-value found from SHM and 

SIM for the TE6,12 mode. In calculations, the number of corrugations is set to 60 and satisfy the condition 
2N m m   , which is the well-known extended criterion of SIM validity for a corrugated conducting rod [40]. In this 

case, the eigenvalue of the TE6,12 mode corresponds to the twelfth root of the dispersion relation. Although the condition 
N m   holds true, there is an essential discrepancy between SHM and SIM in the vicinity of 4 0.009d    cm (see 

Fig. 2), where cc f   is the cutoff wavelength. As was shown in [37, 38], this discrepancy slowly decreases with N  and 

is attributed to coupling between fundamental and higher-order Bloch harmonics. In a corrugated gyrotron cavity, such a 
mode coupling depends critically on the corrugation depth [32]. 

Usually the coupling between Bloch harmonics is weak, provided that the depth d  is close to 2  (half-wavelength) and 

the corrugation number N  is relatively large [32]. In the case of the TE6,12 mode, one obtains 2 0.019d    cm. As 

Fig. 2 suggests, for such a corrugation depth, the cutoff frequency of the TE6,12 mode approaches 792.25 GHz and is close to 
that of the TE6,11 mode ( 6,11 41.18  ) of the smooth cylindrical cavity ( 0d  ). This is because these modes have much the 

same field distribution inside the cavity region 0 r R   [32]. 
Fig. 3 shows the cutoff frequency of the TE6,12 mode as a function of the number N  of corrugations for 

2 0.019d   cm (see the line 6,11  ). It can be seen that this frequency deviates only slightly from 792.25 GHz, thus 

approximately satisfying the condition 6,11   for any N . The exceptions are 33N   and 46N  . As can be seen from 

Figs. 3 and 4a, for this N  the cutoff frequency cf  undergoes a change, which is attributed to conversion of the fundamental 

(TE6,12 mode) to higher-order Bloch harmonics. In the case of 2d  , such mode conversion is also evident for 12N  , 6, 

4, 3, 2 and 1 (Fig. 4a). In this case, however, the wall corrugations couple the co-rotating TE+6,12 and counter-rotating TE-6,12 
modes with identical eigenvalues and therefore have no effect on cutoff frequency of the cavity mode (Fig. 3). 

As the number N  of corrugations decreases and nk  becomes smaller than  , the number of higher-order Bloch 

harmonics ( ,TE
nk l  modes) in the vicinity of 792.25 GHz increases (Fig. 3). However, as discussed above, this fact is 

generally of no consequence for the selected second-harmonic TE6,12 mode at 2d  . Moreover, in the following, to ensure 

the strongest coupling of this mode (fundamental Bloch harmonic) with the electron beam we will keep the value of cr R  

constant and set the beam radius cr  close to the maximum of the function  2
6 2 cJ r R , regardless of the mode eigenvalue 

 . For such beam radius, the ,TE
nk l  modes are weakly coupled with the electron beam, provided that nk m  

( 2N m n ). This can be seen from Fig. 4b, which shows the dependence of the maximal beam-wave coupling coefficients 

 2
,maxs n sC C  on N  for the TE6,12 mode (blue circles) and all other ,TE

nk l  modes (red stars) with eigenvalues lying in the 

range 6,11 2     (see Fig. 3). As is evident from Fig. 4b, among these modes the TE6,12 mode features the strongest 

beam-wave coupling, which is nearly the same as for the TE6,11 mode of the smooth cylindrical cavity, i.e. (0)
s sC C , and 

slightly decreases with N  due to increasing power flow cP  along the corrugations. In some cases discussed above this 

coupling can be additionally weakened by the mode conversion. 
It is well known that for conventional cylindrical cavities with metal wall, the ohmic Q-value of the TEm,p mode equals 

 (0) 2 2
,1ohm s m pQ R m   [48], and therefore is mostly determined by the transverse dimensions of the cavity surface, where 

s  is the skin-depth. Obviously, longitudinal wall corrugations tend to increase the conducting surface of a gyrotron cavity. 

Therefore, the ohmic losses in a corrugated gyrotron cavity are generally higher than those in a cylindrical cavity (Fig. 2b) 
and they increase with increasing number of corrugations [22, 32, 41, 43]. For the TE6,12 mode, this can be seen in Fig. 5. 
Compared to this mode, the higher-order Bloch harmonics have lower ohmic Q-values for 6nk m nN   . That is the 

reason why the ohmic Q-value drops off with conversion of the fundamental to the higher-order Bloch harmonics in the case 



of 33N   or 46N   (Fig. 5). As shown above, for 2d   such mode conversion in a gyrotron cavity with longitudinal 

wall corrugations is the exception rather than the rule.  
However, the situation is radically different for the corrugations with quarter-wavelength depth ( 4d  ) [32]. In this 

case, as a rule, there are no pure TE6,12 and ,TE
nk l  modes in the corrugated gyrotron cavity and the cavity modes have the 

form of coupled Bloch harmonics. The obvious exception is the extreme case N  , in which the mode coupling goes to 
zero and the results of the spatial harmonic method approach those of the SIM. In this case, 0 1  , 0n   ( 0n  ) and 

6,11   for 4d   [22, 37, 43] , where ,m p  is the p -th root of the Bessel function  mJ   (see Fig. 2a). As a result, for 

4 0.009d   cm and N   one gets the pure TE6,12 mode of the corrugated cavity with the cutoff frequency of 

823.03 GHz ( 6,11  ). 

Let us next investigate coupled modes of the corrugated gyrotron cavity in the vicinity of 823.03 GHz, so that the mode 

eigenvalues satisfy the condition 6,11 2     for 4 0.009d   cm and 6m  . Fig. 6a shows the cutoff frequencies 

of these modes versus the number of corrugations. Again, it can be seen that the number of coupled modes increases with 
decreasing number of corrugations. However, contrary to our previous findings, in this case the beam-wave coupling for all 
these modes is not so strong as for the TE6,11 mode of the smooth cylindrical cavity, even though the number of corrugations 
is large. This is because the modes contain the higher-order Bloch harmonics, which, as compared to the fundamental 
harmonic, have weaker coupling with the electron beam for the selected beam radius cr . Among them we discriminate the 

modes, which feature the maximal beam-wave coupling coefficients  2
,maxs n sC C  for each N . Cutoff frequencies and 

coefficient  2
,maxs n sC C  of these modes are shown in Figs. 6b and 7a, respectively. 

Fig. 7b shows the effect of the corrugations with quarter-wavelength depth on the ohmic Q-values of cavity modes 
having the maximal beam-wave coupling coefficients for each N . Firstly, it should be noted that such corrugations lead to 
high ohmic losses, even though the coupling of Bloch harmonics is neglected (see Fig. 2a and [22, 32, 41, 43]). Secondly, as 
the mode coupling in a corrugated gyrotron cavity strengthens, it becomes more and more difficult to emerge any regular 
trends in the behavior of ohmic Q-values of the cavity modes, which are in the form of complex mixtures of different Bloch 
harmonics. At the same time, it is reasonably safe to suggest that these ohmic Q-values are generally lower than those of the 
TE6,12 mode of the corrugated gyrotron cavity for 2d   (see Fig. 5). 

In the next Section, we will investigate the effect of corrugations with half- and quarter-wavelength depths on the starting 
currents of TE modes of the gyrotron cavity. For each type of corrugations we will consider two cases 44N   and 19N  , 
which correspond to relatively large and small number of corrugations, respectively. These values are shown by vertical 
green lines in Figs. 3-7. 

 
4. Effect of mode-converting corrugations on starting currents 
Consider a second-harmonic gyrotron equipped with a corrugated copper cavity (Fig. 1). The beam parameters are 1.2  , 

30bV   kV and 0.5bI   A. In the absence of corrugations, the gyrotron operates in the TE6,11 mode at the frequency of 

about 792.3 GHz. For this mode, the field distribution across the cavity is shown in Fig. 8a. 
Fig. 9a shows the starting current stI  of the operating mode as a function of the magnetic field 0B . It can be seen that the 

starting current lies below the operating beam current in the range between 14.88 T and 15.05 T, thus offering the prospect 
for continuous frequency tuning with the bandwidth of 0.5 GHz.  

For 44N   and 19N   the influence of the longitudinal wall corrugations with half-wavelength depth on the starting 
current can be also seen from Fig. 9a. As this figure suggests, such corrugations initiate slight increase of the starting current 
of the operating mode. This effect is stronger for larger number of corrugations and is attributed to increased power cP  and 

ohmic losses in the corrugated cavity (see Figs. 4b and 5). The increased ohmic losses due to corrugations would thus be 
expected to reduce the beam-wave interaction efficiency and output power of the gyrotron [16]. Note that in the case of 

2d   the coupling between Bloch harmonics is extremely weak for both 19N   and 44N  . In this case, the gyrotron 

operating mode is nearly the pure TE6,12 mode of the corrugated cavity (Fig. 8b), while the nearby ,TE
nk l  modes have high 

starting currents owing to extremely weak coupling with the electron beam (Fig. 4b). 
As discussed earlier, this is not the case for a corrugated cavity with quarter-wavelength depth of the corrugations. In this 

cavity, the cavity modes are composed of coupled Bloch harmonics. Fig. 9b shows the starting currents of these modes 
versus 0B  for 19N  , 44 and 60. Comparison of Figs. 9a and 9b indicates that the corrugations with quarter-wavelength 

depth initiate a distinct increase of the starting current due to combined effect of mode conversion and ohmic losses. For 
60N   and 44N  , such an increase amounts to about 63% and 392% of the starting current of the TE6,11 mode of the 

smooth gyrotron cavity. In the case of 19N  , there are two modes with starting currents, which are relatively close to the 
operating beam current. For these modes, which are mixtures of coupled Bloch harmonics (Fig. 8c), the minimum starting 
currents are higher than that of the TE6,11 mode of the smooth gyrotron cavity by a factor of 6.8 and 13.7. As a result, in the 
case of corrugated cavity with quarter-wavelength deep corrugations, the coupled modes can satisfy the oscillation condition 

st bI I  only marginally for 60N   and fail to meet this condition for 19N   and 44N  , regardless of the magnetic field 



0B . This feature differentiates corrugations with quarter-wavelength depth from those with half-wavelength depth and can 

be applied for mode selection in the cavities of second-harmonic gyrotrons. 
For such mode selection the gyrotron cavity should incorporate wall corrugations with half-wavelength depth, which has 

a slight effect on the second-harmonic operating mode. By contrast, in this case, the first-harmonic competing modes are 
subject to the condition 4d   and therefore would exhibit mode conversion and increased ohmic losses, which tend to 

increase their starting currents (see (1)). In addition, the frequencies of these modes change with the number of corrugations. 
Therefore, with properly-selected N , one might expect to achieve favorable conditions for selective suppression of the most 
dangerous first-harmonic modes at moderately increased ohmic losses of the operating mode. Further investigation will be 
aimed at examining the performance of mode-converting corrugations by the concrete example of a corrugated cavity for a 
sub-terahertz second-harmonic gyrotron. 

Finally, it should be mentioned that longitudinal wall corrugations can increase the risk of mode conversion between 
radial modes in tapered sections of the gyrotron cavity. It is believed that this unwanted phenomenon can affect the field 
pattern of outgoing radiation, but is of little or no consequence for beam-wave interaction in the cavity [49]. In gyrotron 
design, this fact must be kept in mind in designing the output system, including the transition from the corrugated cylindrical 
cavity to a smooth-wall output waveguide. 

 
 

4. Conclusion 
Self-consistent single-mode gyrotron equations have been derived for gyrotrons with cylindrical cavities incorporating an 
arbitrary number of periodic longitudinal wall corrugations. For modes of the corrugated cavity, the eigenvalues, ohmic 
losses and beam-wave coupling coefficients have been investigated with respect to the corrugation parameters. Using these 
characteristics, the gyrotron equations have been applied to investigate the effect of corrugations on electron beam 
interaction with cavity modes. In the general case, these modes appear as superposition of different azimuthal harmonics 
with mutual coupling, which depends critically on the corrugation depth. For corrugations with half-wavelength depth, this 
coupling has been shown to be generally weak, even though the spectrum of azimuthal harmonics becomes denser with 
decreasing number of corrugations. In this case, azimuthal harmonics behave much like TE modes of a smooth cylindrical 
cavity. Therefore, in the corrugated gyrotron cavity, the complex transverse wavenumbers and beam-wave coupling 
coefficients of cavity modes are found to be little affected by corrugations with half-wavelength depth. As a result, such 
corrugations have been shown to initiate only a slight increase of the mode starting currents due to ohmic wall losses, 
which decrease with decreasing number of corrugations. By contrast, in the corrugated gyrotron cavity with quarter-
wavelength deep corrugations, the coupling of different azimuthal harmonics is strong and cannot be ignored, even though 
the number of corrugations is large. This coupling strongly affects the eigenvalues of cavity modes. Moreover, it has been 
found that it weakens the beam-wave coupling in the corrugated cavity. For this reason, it has been shown that mode-
converting corrugations are capable of providing several-fold increase in starting currents for cavity modes with 
frequencies, which correspond to a quarter-wavelength approaching the corrugation depth. Such mode discrimination by 
means of beam-wave coupling coefficients has been demonstrated with a purely electrodynamic method, as opposed to that 
provided by electron-optical methods of [4, 7]. In advanced cavities with improved mode selection for second-harmonic 
gyrotrons, mode converting corrugations can be used in combination with non-uniform coaxial inserts [8, 9] to provide 
simultaneous reduction of effective cavity lengths, total quality factors, and beam-wave coupling coefficients of competing 
modes (see (1)). 
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Fig. 1 Structure of a corrugated cylindrical cavity 
 

 
Fig. 2 (a) Cutoff frequency  2cf c R   and (b) ohmic Q-value of a cylindrical waveguide with longitudinal 

corrugations versus the corrugation depth d  ( 0.248R   cm, 60N  ) 
 

 
Fig. 3 Cutoff frequencies of the corrugated cylindrical waveguide versus the number of corrugations for 2 0.019d    

cm ( 6m  , 0.248R   cm) 
 



 
Fig. 4 (a) Normalized amplitudes n  of the n -th Bloch harmonics for the ТЕ6,12 mode and (b) normalized maximal 

coefficients (0)
s sC C of the beam-wave coupling for the ТЕ6,12 and ,TE

nk l   modes versus N , where sC  equals (0)
sC  for 

0d   ( 0.248R   cm, 2 0.019d    cm, cr R const  ) 

 

 
Fig. 5 Normalized ohmic Q-value of the ТЕ6,12 mode versus the number of corrugations for 2 0.019d    cm 

( 0.248R   cm) 
 

 
Fig. 6 (a) The same as in Fig. 3, but for 4 0.009d    cm, and (b) cutoff frequencies of cavity modes characterized by 

maximal beam-wave coupling coefficients for each N  
 



 
Fig. 7 (a) Normalized beam-wave coupling coefficient  2

,maxs n sC C  and (b) ohmic Q-values versus N  for cavity 

modes depicted in Fig. 6b ( 6m  , 0.248R   cm, 4 0.009d    cm) 

 

 
Fig. 8 Distribution of azimuthal electric field E  for (a) the TE6,11 mode of the smooth cavity, (b) and (c) modes of the 

corrugated cavity with 19 wedge-shaped corrugations of half- and quarter-wavelength depth, respectively ( 0.248R   cm) 
 

 
Fig. 9 Starting currents of modes in the cylindrical gyrotron cavity with wedge-shaped corrugations of (a) half- and (b) 
quarter-wavelength depth 
 
 


