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Abstract 

The interaction of droplets consisting of urea-water solution (UWS) with a wall is of interest for 

automotive exhaust gas after-treatment of Diesel engines by selective catalytic reduction (SCR). Since 

the impingement of tiny UWS droplets on the solid substrate is difficult to examine experimentally, 

little is known about the detailed dynamics of this process. In the present study, the normal impact of 

single UWS droplets impinging on dry solid substrates of greatly differing wettability is investigated 

numerically under axisymmetric conditions. Simulations are performed by a diffuse interface phase-

field solver developed by the authors where the coupled Cahn-Hilliard Navier-Stokes equations are 

solved using OpenFOAM. The code is thoroughly validated against a number of experiments from 

literature considering the rebound of millimetre-sized water droplets from hydrophobic substrates. 

The numerical simulations on the impact dynamics of UWS droplets cover wide ranges of sub-

millimetre droplet sizes and impact velocities that are relevant in technical SCR systems. A strong 

influence of substrate wettability on droplet dynamics is identified. Reducing wettability from 

hydrophilic to superhydrophobic conditions reduces spreading and enables drop rebound with reduced 

drop-surface contact time. The effects of drop diameter, drop impact velocity and equilibrium contact 

angle on the maximum spreading ratio are quantified, and regime maps on rebound versus non-rebound 

(deposition) impact outcomes are provided. The results of the present interface-resolving numerical 

simulations may be useful for development of more advanced drop-wall interaction models as they are 

required in CFD codes relying on the Euler-Lagrange approach for large-scale computations of UWS 

sprays. 

 

Keywords: drop bouncing; drop impact dynamics; phase field method; selective catalytic 

reduction; urea-water solution 
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1 Introduction  

The emission of nitrogen oxides (NO𝑥) from Diesel engines is a major problem in air pollution, 

affecting environment and society. One of the most favorable technologies to reduce NO𝑥 is Selective 

Catalytic Reduction (SCR) [1, 2]. In this process, ammonia serves as reducing agent to convert 

pollutant NO𝑥 into harmless nitrogen and water [3]. In passenger cars, ammonia is not supplied directly 

in gaseous form for security issues. Instead, a spray of urea-water-solution (UWS) is injected into the 

hot exhaust upstream of the SCR catalyst. Ammonia is then provided through evaporation and thermal 

decomposition of urea (CH4N2O). A static mixer device mounted downstream of the injector serves for 

secondary atomization and enhances heat transfer to the droplets. Due to compact design requirements, 

spray impingement on the exhaust pipe wall downstream the mixer is unavoidable [4, 5]. Impacting 

droplets locally cool the wall and may form a liquid film [6]. As water evaporates from the solution, 

urea reaches a critical concentration that promotes crystallization [7]. As a result, there is an enhanced 

risk for undesired intermediates and by-products forming solid deposits [8, 9]. Therewith, the system 

efficiency deteriorates in terms of decreased NO𝑥 conversion and increased pressure drop. 

Computational fluid dynamics constitutes a valuable tool to support the optimization of automotive 

SCR-systems at various operating conditions [10-14]. The spray is typically modelled with a statistical 

Lagrange approach in combination with an Eulerian approach for the gas phase, being based either on 

the Reynolds-averaged Navier-Stokes equations or on large eddy simulation. Due to the complex 

physics of the drop impingement process, such simulations rely upon empirical models known as 

impingement maps [15]. Impingement outcomes are generally classified as deposition (the droplet 

spreads and recoils while adhering to the wall), splash (the droplet is disintegrated into smaller ones) 

and rebound (the droplet bounces from the wall). Splash might be further divided into prompt and 

corona type splash while rebound can be classified into partial and complete rebound [16]. The borders 

of the different regimes depend on hydrodynamic parameters and temperature and their knowledge are 

important ingredients for modeling of spray wall interaction in CFD simulation for SCR applications. 

From the various impingement outcomes, all but complete rebound contribute to liquid film formation. 
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There is still an uncertainty regarding impingement modelling for SCR applications, particularly in 

the range of the Leidenfrost temperature that separates wall wetting and non-wall wetting regimes due 

to thermally induced rebound [17]. Therefore, improvement of multi-regime impingement models for 

SCR applications is an actual topic of research [18-20]. Clearly, a deeper understanding of the drop-

wall interaction is a basic requirement to calibrate CFD models in order to improve their prediction 

accuracy for automotive SCR applications. Typical diameters of UWS droplets in SCR applications are 

of order 100 µm. The detailed dynamics of such tiny UWS droplets as they impinging on the solid 

substrate is difficult to examine experimentally due to the required high spatial resolution. 

Physically, the drop wall-interaction is strongly influenced by surface characteristics such as 

wettability and roughness. On an ideal surface, a static sessile droplet exhibits a unique equilibrium 

contact angle (𝜃e). For non-ideal real surfaces showing surface inhomogeneity, the droplet has no 

unique contact angle but exhibits a range of contact angles on the surface depending on roughness. The 

difference between the advancing (maximum) contact angle (𝜃a) and the receding (minimum) contact 

angle (𝜃r), both observed on a scale much larger than the scale of the surface 

inhomogeneity/roughness, is commonly denoted as contact angle hysteresis (𝐻 = 𝜃a − 𝜃r). Modeling 

approaches differ in how the contact angle is implemented as the boundary condition at the contact line 

and how this contact angle empirically depends on the contact line speed [21]. Today, there is no 

consensus on how to model the dynamic contact angle on a fundamental level. 

The goal of the present paper is to identify favorable physical parameters for achieving 

hydrodynamic rebound of UWS droplets in the SCR exhaust gas pipe by interface-resolving numerical 

simulation. Drop rebound significantly reduces contact time between drop and wall, thereby 

minimizing local wall cooling and reducing the risk for film and deposit formation. A well-known 

measure to induce drop rebound is the use of hydrophobic surfaces. As droplet impact on dry solid 

surfaces is important in various applications, it has been studied intensively as summarized in recent 

reviews [22, 23]. Depending on wall wettability (𝜃e, 𝐻), physical properties of the liquid (density 𝜌L, 

dynamic viscosity 
L
, and surface tension  ), drop diameter (𝐷0) and drop impact velocity (𝑈0), 

different impingement outcomes can be observed. 



5 

Due to its importance for technical applications such as self-cleaning or anti-icing [24], the 

development of hydrophobic (90° < 𝜃e < 150°) or superhydrophobic (𝜃e > 150°,  𝐻 < 10°) surfaces 

with drop rebound after impingement has attracted significant attention in the last few decades. 

Superhydrophobic surfaces can be designed by enhancing hydrophobic surfaces by addition of 

roughness or a certain kind of morphology [25]. When a droplet impinges a superhydrophobic surface 

with low wetting hysteresis, it deforms under small energy dissipation storing kinetic energy, which 

will make the droplet recoil. Mao et al. [26] were among the first who investigated droplet rebound 

experimentally and concluded that low viscosity, high impact velocity and large contact angle increase 

the tendency for rebound. Later on, detailed experimental visualizations of dynamic droplet impact and 

rebound process were reported by several research groups [27-32]. Antonini et al. [33] highlighted in 

an experimental study the important role of the receding contact angle (𝜃r) for obtaining drop rebound 

which occurs only for 𝜃r > 100°. 

As a powerful complement to experimental approaches, interface-resolving (direct) numerical 

simulations can be used to investigate droplet impact. Although most numerical studies consider 

droplet deposition or splash on hydrophilic surfaces, a few studies on droplet rebound dynamics exist. 

Various numerical methods for interface representation are used to simulate the droplet impact process 

and explore ranges of physical parameters leading to rebound. These include the volume-of-fluid [21], 

moment-of-fluid [34], level-set [32, 35], phase-field [36, 37], Lattice-Boltzmann [38] and Lagrangian-

Eulerian moving mesh [39, 40] approaches. In numerical studies with the latter methods, often 

millimetre-size droplets with moderate impact velocity are considered whereas molecular dynamics 

simulations are restricted to nano-scale droplets [41]. Spray atomization, however, creates UWS 

droplets with diameter in the range 20180 µm [42] and mean wall-normal velocities of the droplets 

up to 20 m s−1 [43]. Similar conditions are encountered in drop-on-demand inkjet printing, where few 

experimental studies on impact dynamics exist for hydrophilic surfaces [44]. Numerically, the 

behaviour of such tiny droplets is seldom investigated and studies are limited to a few representative 

cases [36, 39, 45, 46]. 
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Thus, the focus of the present numerical study is on the impact of UWS droplets in the range of 

practically relevant sizes and velocities. For numerical simulation, we employ a phase-field method 

that solves the coupled Cahn-Hilliard Navier-Stokes equations by a finite volume discretization 

implemented in OpenFOAM [47]. The underlying code phaseFieldFoam developed by the authors 

exhibits very low parasitic currents [48] (which is essential for simulations of sub-millimetre droplet 

sizes) and was validated for various wetting phenomena [47, 49]. In particular, we have carried out 

three-dimensional (3D) simulations of droplet rebound from a structured hydrophobic substrate where 

the micro-grooves are geometrically resolved [50]. Furthermore, the code has been used to study 

conditions where bubble formation during liquid back suction of UWS from the delivery line into the 

UWS storage tank is avoided [51]. Last but not least, the code has been validated for the impact of 

millimetre-size UWS droplets on a hydrophilic surface resulting in deposition [52]. 

To cover a wide parameter range at reasonable computational costs, the following assumptions are 

made: (i) the orthogonal impact of a single droplet on an ideally smooth dry horizontal surface is 

considered, (ii) the conditions are non-evaporative and isothermal with constant physical properties 

corresponding to atmospheric temperature and pressure, and (iii) the entire impingement process is 

axisymmetric. Under these simplifications, the effects of droplet diameter (25800 µm), impact 

velocity (0.01 − 10 m s−1) and surface wettability (equilibrium contact angle 30170°) are 

investigated by a large number of simulations. Impact maps separating deposition and rebound regimes 

are generated in terms of the above parameters. These regime maps can be useful for design and 

optimization of UWS spray impingement so that solid deposit formation is reduced by maximizing 

UWS droplet rebound. 

The remainder of this paper is organized as follows. Section 2 introduces the numerical 

methodology including the governing equations the computational setup. Section 3 presents a thorough 

validation for the impact and rebound of water droplets. In Section 4 impact and rebound of UWS 

droplets are investigated for a wide parameter range. Section 5 is devoted to summary and conclusions. 
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2 Numerical methodology 

2.1 Governing equations 

The phase-field method is particularly suitable for the present study given its capability of properly 

modelling contact line motion [47, 53-55], a central problem involved in the droplet impact and 

rebound process. In this method, an order parameter (𝐶) is used to describe the distribution of the liquid 

(L) and gas (G) phases. For the bulk phases, the order parameter is set to distinct values as 𝐶L = 1 and 

𝐶G = −1 while it varies rapidly but smoothly in a thin transition layer (the diffuse interface). The 

spatial and temporal evolution of the order parameter is governed by the convective Cahn-Hilliard 

equation 

2( )tC C M     u . (1) 

Here, subscript 𝑡 denotes time derivative, 𝐮 the velocity field, 𝑀 the Cahn-Hilliard mobility and  the 

chemical potential 

2 2

2
( 1)C C C


 


    . (2) 

In. Eq. (2),  is the capillary width that determines the thickness of the diffuse interface and  is the 

mixing energy density. For an equilibrium system and a planar interface,  can be related to  and 

surface tension  as [54] 

3 2

4


     (3) 

Since the surface tension  can be known from experiment measurements and  can be determined 

through Eq. (3), an appropriate value for  needs to be chosen only. It is commonly determined in 

relation to a characteristic macroscopic length scale of the flow problem, here the initial drop diameter. 

The ratio of both length scales constitutes the Cahn number 𝐶𝑛 = /𝐷0. 

To ensure that the diffusive flux on the right hand side of the Cahn-Hilliard Eq. (1) is approaching 

to zero as  is approaching zero, i.e. in the sharp interface limit  → 0, the mobility is specified as 

2M  .   (4) 

There,  is a constant pre-factor [56]. In practice,  can be chosen by fitting experimental data [49, 57]. 
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At the solid wall, the diffusive flux in Eq. (1) allows for motion of the contact line in combination 

with a no-slip boundary condition (used here) without giving rise to the singularity of the shear stress 

[53, 58]. Using the wall free energy formulation at local equilibrium, one obtains the following 

Neumann boundary condition for the order parameter that accounts for the solid surface wettability by 

the equilibrium contact angle e [59] 

2e
s

cos2
(1 )

2
C C




  n . (5) 

Here, 𝐧s is the outward unit normal to the solid surface. In the Appendix it is shown, that although the 

equilibrium contact angle is specified as a boundary condition, the actual contact angle of the moving 

contact line may differ from the equilibrium contact angle during the spreading process. This 

observation is in agreement with numerical studies from literature. In references [54, 60] it is found that 

this energy equilibrium boundary condition can recover the hydrodynamic wetting theory of Cox [61], 

which is regarded as a representative dynamic contact angle model [62, 63]. Approaches that explicitly 

model non-equilibrium at the contact line by a time-dependent (relaxation) boundary condition at the 

solid surface [53, 64, 65], as used e.g. in the computations in [66], are not considered here. 

In the present study, the gas and liquid phases are considered as immiscible, incompressible, 

isothermal Newtonian fluids. Therefore, the flow can be described by the continuity equation and 

single-field Navier-Stokes equation 

0 u , (6) 

 T( ) ( )t C C C Cp            
 

u uu u + ( u) + f g . (7) 

Here, 𝑝 is the pressure and 𝐠 the gravity vector. The interface energy term 𝐟 is considered with the 

formulation 

C  f . (8) 

The density and viscosity are computed based on the order parameter using an arithmetic mean 

L G

1 1

2 2
C

C C
  

 
  , 

L G

1 1

2 2
C

C C
  

 
  . (9) 

Here,  𝜌G and  
G

 denote the density and viscosity of the gas phase, respectively. Through Eqs. (8) and 

(9), the Navier-Stokes Eq. (7) and the Cahn-Hilliard Eq. (1) are coupled. 
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The above system of equations was implemented as a top-level solver phaseFieldFoam in the 

platform foam-extend, a community-driven version of the open-source CFD software OpenFOAM®. It 

is solved by a segregated algorithm as described in [51]. For details on numerical implementation and 

validation of phaseFieldFoam, the reader is referred to [47-52] and a forthcoming publication by 

Marschall et al. [67]. 

2.2 Computational setup 

Figure 1 shows a sketch of the computational set-up. All the simulations in the present study are 

carried out assuming axial symmetry. The computational domain is a 3D wedge (angle 4°) of radial 

width 𝑊 and height 𝐻. We have checked for representative cases that results are unaffected by the 

chosen domain size. The drop prior to impact is assumed spherical with diameter 𝐷0 having a spatially 

uniform downward velocity 𝑈0. The droplet centroid is located at 𝐷0/2 above the solid surface so that 

the droplet has point contact with the surface. At the bottom solid surface, the boundary conditions are 

set as no-slip for the velocity field in combination with Eq. (5) for the order parameter. At the right 

boundary (side wall) a no-slip condition applies for the velocity field in combination with a zero 

normal gradient condition for the order parameter (corresponding to a neutral contact angle of 90°, 

although this wall is never wetted in the course of the simulations). At the top boundary (atmosphere in 

Figure 1), a zero normal gradient condition for the order parameter and zero relative pressure are 

combined with an inlet/outlet boundary condition for velocity (flow out of the domain assigns a zero 

normal gradient condition, while flow into the domain assigns a velocity based on the flux normal to 

the boundary). 
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Figure 1: Sketch of computational setup with initial drop position. The orange square in the lower 

right corner serves to illustrate mesh resolution. In this study, most simulations are performed with a 

resolution of the orange square by 10 × 10 uniform grid cells (corresponding to 𝐶𝑛 = 0.02 and 

𝑁di = 8, see below). 

Phase-field methods require adequate resolution of the diffusive interface. For a planar interface at 

static equilibrium, the solution of Eq. (1) follows a hyperbolic tangent profile where the variation of 𝐶 

between 0.9 occurs over a distance of about 4. Here, we discretize the computational domain by a 

uniform grid with equal mesh size ℎ in radial (𝑟) and vertical (𝑧) direction. The diffuse interface is thus 

resolved by 𝑁di = 4/ℎ mesh cells. Experience from previous studies indicates that simulation results 

become insensitive on  and ℎ when the conditions 𝐶𝑛  0.02 and 𝑁di ≥ 6 are met simultaneously. 

Here, the effects of Cahn number 𝐶𝑛 and diffuse interface resolution 𝑁di are investigated in Section 

3.1.1 and quantified by comparison with experimental data. In all present simulations, the mobility pre-

factor is set to  = 1 m s kg−1. In a previous study [50] it was shown that reducing 𝜒 to 0.4 m s kg−1 

has only a slight effect on spreading dynamics and maximum spreading. 

For the present computations, the following numerical schemes are used. A high-resolution scheme 

(Gauss Gamma [68]) is employed for spatial derivatives. For time integration, a second-order two-

time-level backward scheme is generally used while for high impact velocities a first order Euler 

bounded schemes has proved to be favourable. The time step Δ𝑡 is adaptive during the simulation and 

limited by an upper bound of the Courant number 𝐶𝑜 = 𝑢maxΔ𝑡/ℎ ≤ 0.05, where 𝑢max denotes the 

magnitude of the maximum velocity in the computational domain. The physical properties of both 

phases vary slightly from case to case as given in Sections 3 and 4. 
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The numerical results are physically interpreted in terms of the relevant non-dimensional groups. 

These are the impact Weber number (𝑊𝑒 = 
L

𝐷0𝑈0
2/ ) describing the ratio between inertial and 

capillary forces and the impact Reynolds number (𝑅𝑒 = 
L

𝐷0𝑈0/
L
) constituting the ratio between 

inertial and viscous forces. A further (dependent) non-dimensional number is the Ohnesorge 

number 𝑂ℎ = 
L

/√
L
 𝐷0 = √𝑊𝑒/𝑅𝑒. The Ohnesorge number is especially useful in combination 

with 𝑊𝑒. As 𝑂ℎ does not involve a velocity scale, it is a constant for a drop of given diameter. 

3 Validation for rebound of water droplets 

The purpose of this section is to validate the numerical method and code for the normal impact of a 

single droplet on a hydrophobic surface. Possible outcomes of the impingement process are complete 

rebound, partial rebound and deposition. Experiments with rebound of sub-millimetre size single 

droplets are not available in literature to the best of our knowledge. Therefore, three experiments from 

literature for droplets of mm size are used for validation. All experiments show complete rebound but 

differ with respect to gas entrapment. The experiment of Shen et al. [69] is used to study the influence 

of numerical parameters. Having the numerical parameters fixed, experiments from Lin et al. [70] 

showing bubble entrapment are recalculated. Often, droplet rebound is characterized by the contact (or 

rebound) time 𝑇ct, which is measured between the drop/surface first contact and take off from the 

substrate. As further validation, simulations for sub-millimetre droplets are performed to compare the 

contact time of the droplet with correlations of Richard et al. [71] obtained for larger droplets. 

3.1 Temporal evolution of droplet morphology and spreading ratio 

During spreading, the drop morphology changes. This is illustrated by comparing drop shapes at 

different instants in time. Furthermore, the process is quantified by the time evolution of the spreading 

ratio  = (𝑡) = 𝐷wet(𝑡)/𝐷0, where 𝐷wet(𝑡) is the instantaneous diameter of the wetted circular area 

(contact diameter). Of special interest for technical applications are the maximum spread ratio 
max

=

 (𝑡max) at the end of the advancing spreading phase and the corresponding time 𝑡max since both are 

important for estimating the heat transfer with the solid surface (a subject of future study). 



12 

3.1.1 Experiment of Shen et al. (2018) 

Shen et al. [69] studied the impact of deionized water droplets (𝐷0 = 2 mm) on a 

superhydrophobic surface (𝜃e = 161°) focusing on the influence of temperature and impact velocity. 

Here, an experiment at room temperature with impact velocity 𝑈0 = 0.5 m s−1 is chosen for validation. 

The simulations are performed with  𝜌L = 996 kg m−3,  
L

= 1 mPa s,   = 71 mN m−1 resulting 

in 𝑊𝑒 = 7. The dimensions of the computational domain are 𝑊/𝐷0 = 1.5 and 𝐻/𝐷0 = 3. Keeping 

 = 1 m s kg−1 fixed, we study the influence of Cahn number (𝐶𝑛 = 0.01 and 0.02) and grid 

resolution (𝑁di = 8 and 16). Note that with fixed value of , the variation of 𝐶𝑛 results in a variation of 

mobility as well, namely 𝑀 = 4  10−10 m3 s kg−1 and 𝑀 = 16  10−10 m3 s kg−1, respectively. For 

further reference, this test case is denoted as Case A. 

The numerical and experimental results are compared in Figure 2. Figure 2 a) shows experimental 

and computed drop shapes (𝐶𝑛 = 0.02, 𝑁di = 8) for different instants in time. For 𝑡 = 2 ms and 𝑡 =

3.6 ms, the droplet shapes are very similar. While 𝑡 = 2 ms corresponds to the advancing phase of 

spreading and 𝑡 = 3.6 ms to the receding phase, the experimental spreading ratio for both instants in 

time is almost identical, see dashed red lines in Figure 2 (a). For the later instants in time, 𝑡 = 7.2 ms 

and 𝑡 = 11 ms, some differences of droplet shape in experiment and simulation can be observed. 

The comparison of the spreading ratio in Figure 2 (b) includes numerical results for three cases. In 

order to calculate the spreading ratio, a radial sampling line at a vertical position  𝑧 = 𝐷0/100 above 

the surface is considered. The instantaneous wetting diameter 𝐷wet(𝑡) is calculated from the maximum 

radial position along the sampling line where the order parameter is zero. Up to 𝑡 ≈ 8 ms, simulations 

with different parameters yield very similar results and the spread factor  is in good agreement with 

experimental data. For larger times, deviations from the experimental contact time of about 10.4 ms 

are observed depending on Cahn number. For a fixed Cahn number 𝐶𝑛 = 0.02, doubling interface 

resolution (by reducing ℎ by a factor of 2) has only a very small effect on the time evolution of the 

spread ratio yielding a contact time of about 9 ms. Reducing the Cahn number to 𝐶𝑛 = 0.01 while 

keeping the interface resolution 𝑁di = 8 fixed reduces contact time to about 8 ms.  



13 

The reason for this difference in contact time can be understood by a detailed comparison of the 

time evolution of the droplet shapes provided in the Supplemental Material A. It turns out that the 

reduced contact time in the simulation with 𝐶𝑛 = 0.01 is related to a temporary dewetting (dryout) of 

the impact centre, which is not observed for 𝐶𝑛 = 0.02. As consequence, the droplet in the simulations 

with 𝐶𝑛 = 0.01  temporarily adopts a ring shape (torus) with subsequent formations of one bubble 

being attached to the surface and one bubble floating in the bouncing drop, cf. Figure 3 (a) and 

Subsection 3.1.2. No such bubble entrapment is observed in the experiment [69] or in the simulations 

with 𝐶𝑛 = 0.02. While the overall behaviour of the drop impact and rebound process in simulations 

with 𝐶𝑛 = 0.01 and 𝐶𝑛 = 0.02 is very similar, some details such as rupture of the central liquid film 

resulting in dewetting are captured only for 𝐶𝑛 = 0.01, where the thickness of the diffuse interface is 

reduced. 

A criterion for dryout of the central liquid film formed during drop impact on flat hydrophobic 

surfaces derived from numerical simulations is given by Renardy et al. [72]. Accordingly, dewetting 

occurs provided the Weber number exceeds a critical value given by 

dry 1.49

1590
2 3.62

(0.5 )
We

Re

 
  

 
. (10) 

For the present case (𝑊𝑒 = 7, 𝑅𝑒 = 996), Eq. (10) yields 𝑊𝑒dry = 7.5 indicating no dryout. As the 

difference between both Weber numbers is small, the conditions of Case A may correspond to the 

transition range between dryout and no dryout. Interesting with respect to dryout are also findings of a 

recent experiment by Chantelot et al. [73]. There, dewetting of the impact center is enforced by a 

dedicated point-like superhydrophobic spherical macro-defect. Puncture of the liquid film occurs when 

the size of the defect is close to the film thickness. The collision between opposing rims creates upward 

momentum leading to torus like bouncing and reduced contact time, similar as observed in the present 

simulations. 
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Figure 2: Comparison of numerical results with experiment from Shen et al. [69] (𝜃e = 161°, 𝐷0 =

2 mm, 𝑊𝑒 = 7, 𝑅𝑒 = 996). (a) Droplet shape at different instants in time (left: exp., right: 

simulation with 𝐶𝑛 = 0.02, 𝑁di = 8), (b) time evolution of spreading ratio. The sudden decrease of 

𝛽 at 8 ms in the simulation with 𝐶𝑛 = 0.01 is related to a temporary dewetting of the impact center 

which is not observed in the simulations with 𝐶𝑛 = 0.02 where the diffuse interface is thicker. 

3.1.2 Experiment of Lin et al. (2018) 

Chen et al. [74] experimentally investigated the effects of surface wettability on bubble entrapment 

during droplet impingement on solid surfaces for relatively low impact velocities. Figure 3 (a) shows 

the obtained regime map as function of Weber number and surface wettability. The authors report that 

bubble entrapment occurs only on sufficiently hydrophobic surfaces within a narrow range of impact 

velocities. For drop impact on hydrophobic surfaces, the entrapped bubble stays attached to the surface 

(red bullets). For drop impact on superhydrophobic surfaces resulting in rebound, the bubble is trapped 

in the top of the bouncing droplet (blue bullets). For symbols other than “blue bullet”, i.e., red bullet 

and star, the impact outcome is not apparent from Figure 3 (a). Depending on conditions, it may be a 

full or partial rebound or deposition. 

In this subsection, we reproduce the different bubble entrapment behavior numerically and validate 

the results against experiments of Lin et al. [70], who report a series of experimental studies on impact 

dynamics of glycerol-water mixture droplets on surfaces of different wettability. Here, the 
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impingement of a pure water droplet (𝐷0 = 2 mm) is considered for three distinct cases. For Cases B 

and C, the contact angle is 161° with impact velocities of 0.3 and 0.65 m s−1, respectively. For case D, 

it is 𝜃e = 106° and 𝑈0 = 0.52 m s−1. The simulations are performed with  𝜌L = 997 kg m−3,  
L

=

0.9 mPa s,  = 71.8 mN m−1 yielding Weber numbers 2.5, 11.7 and 7.5 for cases B, C and D, 

respectively. The dimensions of the computational domain are 𝑊/𝐷0 = 1.5 and 𝐻/𝐷0 = 3. The 

numerical parameters are 𝐶𝑛 = 0.02 and 𝜒 = 1 m s kg−1 with interface resolution 𝑁di = 8. Table 1 

gives a concise comparison of the parameters in the different cases. 

Table 1: Comparison of conditions for Cases A-D. Parameters which are identical for all cases 

are 𝐷0 = 2 mm, 𝜌G = 1 kg m−3, 
G

= 1.48 10−5 Pa s, 𝜒 = 1 m s kg−1, 𝑊/𝐷0 = 1.5,  𝐻/𝐷0 = 3. 

Case 𝑈0 𝑊𝑒 𝑅𝑒 𝜃e 𝐶𝑛 𝑀 𝑁di 

  m s−1 - - ° -  m3 s kg−1 - 

A 0.50 7.0 996 161 0.01 4  10−10 8 

 0.50 7.0 996 161 0.02 16  10−10 8 

 0.50 7.0 996 161 0.02 16  10−10 16 

B 0.30 2.5 665 161 0.02 16  10−10 8 

C 0.65 11.7 1440 161 0.02 16  10−10 8 

D 0.52 7.5 1152 106 0.02 16  10−10 8 

 

Figure 3 (b) displays the time evolution of the droplet shape for Case B. Overall, the deformation 

and rebound is very similar to that of case A. Owing to the smaller Weber number of Case B, the 

dimple in the impact center at time of maximum spreading is less pronounced as compared to Case A, 

cf. Figure 2 (a) for 𝑡 = 3.6 ms. In Figure 3 (c) and (d), the time evolution of droplet shapes in 

experiment [70] and simulation are compared for cases C and D, respectively. For case C, capillary 

waves travel to the top of the drop [75] yielding a pyramidal structure [72, 76] with several stair-like 
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steps (𝑡 = 1.44 ms). As the drop spreads on the surface, these steps merge and form a pancake 

structure with a dimpled air cavity inside (𝑡 = 3.44 ms). Close to maximum spreading, the air cavity in 

the center of the drop is close to cylindrical with dewetting of the surface (𝑡 = 3.84 ms). During the 

receding stage, the liquid is rushing back, the interface in the cavity adhering to the surface (𝑡 =

4.24 ms). As the upper part of the cavity collapses, a bubble is entrapped accompanied by ejection of a 

thin liquid jet (𝑡 = 4.64 ms). The entrapped bubble rises within the drop (𝑡 = 9.44 ms) which then 

rebounds from the surface (𝑡 = 13.5 ms). While the capillary width (𝜀) is too large to reproduce the 

thin jet, all other main phenomena during the drop impact on the surface are captured reasonably well 

in the simulation. Some difference between numerical and experimental results on the bubble size can 

be attributed to the optical effect from the light refraction by the curved interface of the droplet in the 

experimental study [70]. 

A behavior very similar to Figure 3 (c) and (d) was already described almost 50 years ago by 

Elliott & Ford [77]. These authors performed experiments of drop impact on smooth paraffin wax 

surfaces (𝜃e = 103°) and divided the process in eight stages. For Stage III (Involution) it is noted: “The 

central tip involuted and drained a central area within the drop and, as retraction forces operated, the 

liquid closed over the drained area trapping a small air bubble within the drop”. This is exactly what is 

observed for Case C in the period 𝑡 = 3.444.64 ms and for Case D in the period 𝑡 = 5.256.2 ms. 

For case D, the entrapped bubble sticks to the solid surface (𝑡 = 7.25 ms) similar to the sketches in 

Fig. 2 in [77]. For Stage IV (Retraction) Elliott & Ford [77] note: “With larger drops and/or heights of 

fall the air bubble was broken up and a portion rose to the drop surface”. This is similar to what is 

observed here for Case C at 𝑡 = 9.44 ms, and in the simulation for Case A with 𝐶𝑛 = 0.01. While 

Elliott & Ford [77] did not observe drop rebound for the contact angle 𝜃e = 103° used in their 

experiments, the superhydrophobic surface of Case C (𝜃e = 161°) results in rebound so that for 𝑡 =

9.44 ms the floating bubble within the bouncing drop is observed. 

As mentioned before in the discussion of Case A, dryout of the central liquid film (without 

subsequent floating bubble) was also observed in [72]. Furthermore, in this reference a correlation for 

the critical Weber number (𝑊𝑒dry) under which the centre of the drop dries out was proposed. 
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Evaluation of Eq. (10) predicts no dryout for Case B (𝑊𝑒dry = 7.8 > 𝑊𝑒 = 2.5) and dryout for Case 

C (𝑊𝑒dry = 7.4 < 𝑊𝑒 = 11.7) in agreement with the present results. For Case D it is by 

chance 𝑊𝑒dry = 𝑊𝑒 = 7.5. In the present simulation, dryout is observed for Case D. 

The described bubble entrapment mechanism during recoil with or without drop rebound is 

confirmed by more recent experiments, see e.g. [78, 79] and references therein. Note that this 

mechanism is completely different from the bubble entrapment mechanism occurring in the very early 

stage of impact [80-82]. In the latter mechanism, the drop deforms as it approaches the wall and a 

dimple appears underneath due to compression of the ambient gas between the droplet and the surface 

[83]. After the initial contact is made, the air under the dimple is entrained and contracts into a bubble 

[84]. 

We close this validation by a remark concerning numerical accuracy. Achieving numerical 

convergence for drop impact simulation is a hard challenge because of moving contact-line dynamics 

and the small structures created by the impact [85]. We are not aware of any study where numerical 

convergence is proven for such complex impact dynamics as considered here and do not claim it for 

our study. However, the present simulations for Cases A-D accurately reproduce the overall 

experimental dynamics, while small deviations (thus as emission of a thin central jet) can be attributed 

to spatial resolution. As model parameter of the phase field method such as capillary width and 

mobility pre-factor have been kept fixed for the various cases, this good agreement points on the 

predictive capabilities of the phase field method for numerical simulation of drop rebound phenomena. 
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Figure 3: (a) Experimental regime map on bubble entrapment behaviour from ref. [74] with graphical 

legend displayed to the right. Star symbols: no optically detectable bubble; red bullets: bubble is 

attached to hydrophobic surface; blue bullet: bubble is floating in the drop bouncing from a 

superhydrophobic surface. Green open squares indicate the present simulation cases A-D. (b) – (d): 

Temporal evolution of droplet shapes (𝐷0 = 2 mm). b) Case B (𝜃e = 161°, 𝑊𝑒 = 2.5, 𝑅𝑒 = 665). 

(c) Case C (𝜃e = 161°, 𝑊𝑒 = 11.7, 𝑅𝑒 = 1440). (d) Case D (𝜃e = 106°, 𝑊𝑒 = 7.5, 𝑅𝑒 = 1152). 

The upper rows of subfigures c) and d) show experiments of Lin et al. [70] (white scale bar = 1 mm) 

while the lower rows show present simulation results. 
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3.2 Contact time 

In this section, we compare the contact time from numerical simulations with experimental results 

obtained for water drops impinging onto a superhydrophobic surface. In the experiments of Richard et 

al. [71], the initial drop diameter and impact velocity are varied between 0.2 8 mm and 0.22.3 m s−1 

while the Weber number is in the range 0.3  𝑊𝑒  37. The value 0.2 mm is close to the upper range 

of UWS droplet diameters. Richard et al. [71] found the contact time being proportional to the inertia-

capillary time scale following the scaling law 

 

3

L 0
ct ct

8

D
T a




  (11) 

The pre-factor was determined as 𝑎ct = 2.60.1. Notably, the contact time does not depend on the 

impact velocity. 

In our simulations, we consider a superhydrophobic surface with contact angle 170° in 

combination with physical properties representative of water chosen as  𝜌L = 1000 kg m−3,  
L

=

1 mPa s,  = 72 mN m−1 in combination with   𝜌G = 1.118 kg m−3,   
G

= 1.82  10−5 Pa s. 

Computations are performed for four distinct values of the drop diameter (100, 200, 400, 800 m) 

and five distinct impact velocities (1, 1.5, 2, 2.5, 3 m s−1) yielding Weber numbers in the range 1100 

and Reynolds numbers in the range 1002400. Figure 4 displays the numerical contact times as 

evaluated from these 20 simulations as function of impact velocity. For each droplet size, 𝑇ct is almost 

constant indicating that contact time does not depend on impact velocity in agreement with [71]. As the 

droplet diameter in the present simulation increases from 100 to 800 µm, the corresponding values of 

 𝑎ct decrease from 2.74 to 2.32. They are in reasonable agreement with  𝑎ct = 2.60.1 obtained in [71] 

and the wider range  𝑎ct = 1.63.2 reported in [86] for various technical and natural substrates. Values 

of 𝑎ct as low as 1.6 or even 1.25 [73] imply a significant reduction of contact time which is achieved 

by macro-texturing the superhydrophobic surface [86]. 
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Figure 4: Contact time evaluated from numerical simulations with 𝜃e = 170° for four droplet 

diameters under five different impact velocities (1 ≤ 𝑊𝑒 ≤ 100, 100 ≤ 𝑅𝑒 ≤ 2400). The dashed 

lines represent the averaged contact time for each droplet size. 

 

Figure 4 indicates that the contact time increases with increasing initial drop size. To analyze this 

relation quantitatively, Figure 5 displays the contact time as function of 𝐷0, where numerical values for 

each diameter are averaged over the five impact velocities. As can be seen, the present numerical 

results from Figure 4 are in good agreement with the experimental data and correlation from Richard et 

al. [71]. The same holds for the present numerical results from Figure 2 (b) with 𝐷0 = 2 mm. A similar 

increase of contact time with increase of diameter in the more narrow range 1.9 mm ≤ 𝐷0 ≤ 3 mm is 

reported in [32].  

In addition to the latter comparison with the experiment of Richard et al. [71], our investigation is 

extended to the influence of surface wettability on contact time. For that purpose, five additional 

simulations with drop diameter 200 µm and impact velocity 2 m s−1 are performed for contact 

angles 130, 140, 150, 160 and 180°. As demonstrated by the inset graphics in Figure 5, the contact 

time decreases from 0.375 to 0.3 ms as the equilibrium contact angle is increased from 130° to 180°. 

This arises because as the solid becomes more hydrophobic, its energetic repellence against the water 

droplet gets stronger so that the contact time is shortened. 
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Figure 5: Contact time as function of initial droplet diameter: comparison of present numerical 

results (open circles) with experimental data (filled squares) [71]. The dashed line represents the 

scaling law of Eq. (11) with  𝑎ct = 2.6 reported in [71]. The orange bar for 𝐷0 = 2 mm shows the 

range of  𝑇ct in the simulations for Case A, see Figure 2 (b). The inset shows the influence of contact 

angle on contact time for present numerical results (𝐷0 = 200 m,  𝑈0 = 2 m s−1). 

 

4 Impingement of UWS droplets 

In this section, we study the normal impact of single UWS droplets on a flat horizontal surface 

numerically. The physical properties correspond approximately to those of AdBlue (a eutectic 

32.5 wt% urea-water solution also named Diesel Exhaust Fluid) at atmospheric temperature and 

pressure (𝜌L = 1090 kg m−3,   
L

= 1.526 mPa s,   𝜌G = 1 kg m−3,  
G

= 1.82  10−5 Pa s,  =

73.26 mN m−1) [87]. The ranges of investigated initial droplet diameter and impact velocity are chosen 

by consideration of typical hydrodynamic operating conditions in the exhaust gas tailpipe. 

Liao et al. [43] investigated the spray characteristics of four commercially available UWS injectors 

under typical SCR conditions with temperature up to 300°C and maximum velocity of the gas cross-

flow up to 26 m s−1. In the experiments, water sprays were used since previous studies proved that the 

injected fluid water and AdBlue show similar behavior in terms of the bulk spray properties and droplet 
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size distribution [4]. Droplet sizes are typically in the range of 20180 µm [42], with Sauter mean 

diameter between 6080 µm for pressure-driven injectors and mean wall-normal velocities of the 

droplets up to 20 m s−1 [43]. Droplets larger than 90 µm have an increased probability to impinge on 

walls of the SCR system [42]. From the trailing edges of the mixer blades, however, drops up to 

millimetre size may be shed [88]. Thus, in the following simulations, the investigation range of the 

initial droplet diameter is 25800 µm and that of the impact velocity is 0.01 − 10 m s−1. 

In recent experiments, equilibrium contact angles of sessile UWS droplets in the range 45° ≤ 𝜃e ≤

107° were measured on various substrates [7]. Here, the equilibrium contact angle is varied in the 

range 30170°. In terms of the three parameters 𝐷0, 𝑈0 and 𝜃e, the aim here is to identify conditions 

favorable to rebound occurrence. For this purpose, we first study the effects of these three parameters 

on the dynamic impact process. Thereafter, the maximum spread ratio is analyzed in detail. Finally, 

exploiting a large number of simulations, we present regime maps for deposition and rebound. 

4.1 Effects of single parameter variations on dynamic impact process 

The dynamics of the impact and spreading process is usually characterized by the spread ratio. The 

time evolution of the spread ratio 𝛽 = 𝛽(𝑡) can be described as a sequence of four distinct phases: 

kinematic, spreading, relaxation and wetting/equilibrium [89]. In this section, we study the influence of 

variation of one parameter of the set (𝜃e, 𝑈0, 𝐷0) on 𝛽 = 𝛽(𝑡) while keeping the two other parameters 

fixed. 

4.1.1 Influence of equilibrium contact angle 

To study the influence of wettability on the impact process, simulations with fixed droplet diameter 

and impact velocity are performed. The chosen droplet size of 68.3 µm represents a typical Sauter 

mean diameter of industrial pressure-driven UWS injectors [43, 90]. A typical injection velocity in 

SCR systems is 27 m s−1 [91] while typical spray velocities are about 20 m s−1 [90]. In practice, the 

UWS spray is injected with a certain inclination angle with respect to the flow direction, e.g. 50° in 

[91]. The wall-normal component of the drop velocity at impact is therefore much smaller than 
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20 m s−1. As in this study the normal axisymmetric impact of a single UWS droplet is considered for 

simplicity, the impingement velocity is set arbitrarily to 7.23 m s−1. These conditions correspond 

to 𝑊𝑒 = 53.1, 𝑅𝑒 = 352.6 and 𝑂ℎ = 0.021. 

The simulations encompass six different values of the equilibrium contact angle, namely 30,  65, 

100, 120, 135, and 170°. The corresponding temporal evolutions of the spreading ratio are shown in 

Figure 6. The individual behaviour of 𝛽 = 𝛽(𝑡) is governed by a competition between three forces 

(inertia, surface tension, viscosity) and associated energies. At the very beginning (𝑡  10 s), the 

equilibrium contact angle 𝜃e exhibits almost no effect on the spreading process, since during this initial 

stage inertial effects largely dominate over capillary effects so that the influence of wettability is 

negligible. After this very short kinematic phase, the subsequent spreading, relaxation and 

wetting/equilibrium phases are strongly affected by wettability. 

For all contact angles displayed in Figure 6, inertia causes the droplet to spread beyond the 

equilibrium state. The maximum spread factor 
max

 and the time 𝑡max of maximum spreading decrease 

with increase of 𝜃e. At maximum spreading, a part of the initial kinetic energy is already dissipated by 

viscosity. The energy loss during the advancing phase of spreading increases with 
max

 and thus 

decreases with increase of  𝜃e. The difference between surface energy at maximum spreading and the 

equilibrium state causes the droplet to recoil for 𝑡 > 𝑡max. Figure 6 shows that recoil is strongly 

affected by the contact angle and two cases can be distinguished. In the case of deposition ( 𝜃e ≤

100°), the spread factor approaches a finite terminal value corresponding to partial wetting conditions, 

whereas in the case of rebound ( 𝜃e ≥ 120°) the spread factor becomes zero at 𝑡 = 𝑇ct. 

Even for droplets undergoing deposition, the recoil process is greatly affected by wettability [92] as 

it depends on the amount of excess surface energy which increases with increase of  𝜃e. If excess 

surface energy is relatively low (as is the case for contact angles 30° and 65°), the recoil process is 

smoothly with a monotonic decrease of the spreading factor toward the equilibrium spread ratio 


. 

The time required to reach the final equilibrium spread ratio 


 is very short for 𝜃e = 30°, as 
max is 

only slightly larger than 


, but increases for 𝜃e = 65°. If the excess surface energy is higher, the recoil 

process is faster (the slope of 𝛽 in Figure 6 increases with  𝜃e) and inertia causes the spreading factor to 
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decrease below the equilibrium value. In the case with  𝜃e = 100°, the motion of the receding contact 

line slows down and eventually stops so that a relative minimum of 𝛽 is reached at 𝑡 ≈ 72ms. 

Thereafter, 𝛽 increases again causing an oscillation around the equilibrium spreading factor. This 

oscillation is damped in time by viscous forces. This oscillation is in agreement with experimental 

observations. As noted by Kim and Chun [92], droplet deposition on a poor wetting substrate (𝜃e =

87.4°) gives rise to oscillations of the wetted area before the equilibrium sessile form is reached. For 

the UWS simulations, the value of the Bond number 𝐵𝑜 = 𝑔(
L

− 
G

)𝐷0
2/ is always below 0.1. 

Therefore, gravitational effects are negligible. Accordingly, droplets undergoing deposition adopt a 

terminal equilibrium shape in form of a truncated sphere. As in [52], the computed terminal spread 

factor in the present simulations is in good agreement with the analytical spread factor of a spherical 

cap [89, 93]. 

For contact angles 120° and above, the excess surface energy is sufficiently large to cause drop 

rebound off the solid surface at the end of the receding phase. As the equilibrium contact angle 

increases further, the rebound occurs earlier decreasing the contact time 𝑇ct. This trend matches with 

the results displayed in the inset of Figure 5. In addition, larger equilibrium contact angles result in a 

smaller maximum spreading ratio. Thus, the area wetted during drop impact gets smaller, reducing the 

chance of film formation. 
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Figure 6: Influence of contact angle on dynamic droplet impact process for fixed values of droplet 

diameter and impact velocity (𝐷0 = 68.3 µm,  𝑈0 = 7.23 m s−1, 𝑊𝑒 = 53.1, 𝑅𝑒 = 352.6, 𝑂ℎ =

0.021). The small vertical bars indicate 𝑡max, i.e., the instant in time for which the spreading ratio 

attains its maximum value 
max

. 

 

4.1.2 Influence of impact velocity 

To study the influence of impact velocity, the droplet diameter is again fixed to 68.3 µm while the 

equilibrium contact angle is set to 130°. Six distinct values of the impact velocity in the range 0.1 −

10 m s−1 are considered corresponding to 0.01 ≤ 𝑊𝑒 ≤ 102 and 4.9 ≤ 𝑅𝑒 ≤ 488 and constant 

Ohnesorge number 𝑂ℎ = 0.021. Figure 7 shows that a variation of the impact speed affects the entire 

impact process from the very beginning. For  𝑈0 ≤ 1 m s−1 the droplet spreads out and deposits on the 

surface while for  𝑈0 ≥ 1.5 m s−1 rebound occurs. For bouncing droplets, the contact time  𝑇ct is 

notably affected by the impact velocity in a non-monotonic manner. The observed dependence of  𝑇ct 

on  𝑈0 in Figure 7 deviates from the findings in Section 3.2, where the contact time shows, at least in 

the semi-logarithmic representation of Figure 4, almost no dependence on impact velocity. There are 

two potential reasons to explain this contrasting behavior: the different contact angles (130° versus 

170°) and the differences in Reynolds number. While the range of 𝑊𝑒 is similar, the range of 𝑅𝑒 in this 
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section is much smaller than that studied in Section 3.2. Thus, viscous effects are much more important 

here so that the scaling by the inertia-capillary time scale found in Eq. (11) may not be valid. 

 

 

Figure 7: Effect of impact velocity on spreading ratio for fixed values of droplet diameter and contact 

angle (𝐷0 = 68.3 µm,  𝜃e = 130°, 𝑂ℎ = 0.021, 4.9 ≤ 𝑅𝑒 ≤ 488). 

 

4.1.3 Influence of droplet diameter 

To study the effect of droplet size, simulations for drop diameters of 100, 200, 400, and 800 µm 

are performed with fixed impact velocity (5 m s−1) and equilibrium contact angle (130°). With 

increase of drop diameter, the Ohnesorge number decreases from 0.017 to 0.006. As Figure 8 shows, a 

smaller droplet reaches its maximum spread factor  
max

 earlier, yet the value of  
max

 is lower than 

that of a larger droplet. With larger 𝐷0, the contact time increases; this agrees with the previous results 

in Figure 5. For diameter values 400 µm and below, the spread factor gradually approaches to zero 

before the droplet rebounds from the solid wall. However, for diameter 800 µm, the spread factor 

suddenly jumps to zero at 𝑡 ≈ 1.64 ms. This is related to an air film formed below the drop as the drop 

impinges the surface, similar to case A with 𝐶𝑛 = 0.01. Whether the droplet punctures the air film or 
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not during spreading on a real surface, is likely to depend on surface roughness [93]. As the solid 

surface in the present simulations is ideally smooth, the air layer persists. 

The results of Figs. 6  8, where one of the parameters (𝜃e, 𝑈0, 𝐷0) is varied while the other two 

are fixed, can be summarized as follows. The time of maximum spreading (𝑡max) decreases with 

equilibrium contact angle and impact velocity but increases with drop diameter. Thus, opposite trends 

on the dependence of 𝑡max on 𝑊𝑒 are observed in Figure 7 and Figure 8. The maximum spreading ratio 

(𝛽max) decreases with contact angle and drop diameter but increases with impingement velocity. In the 

next subsection, results for the maximum spread ratio will be compared in a quantitative manner. 

 

Figure 8: Influence of drop diameter on dynamic rebound process for fixed values of impact velocity 

(𝑈0 = 5 m s−1) and contact angle ( 𝜃e = 130°). 

 

4.2 Maximum spreading ratio 

During the impact process, the droplet initially spreads out until it reaches a maximum diameter. 

Thereafter, the drop recoils resulting either in deposition or bouncing. In this subsection, we discuss 

results for the maximum and terminal spreading ratio for non-bouncing droplets undergoing deposition. 

The maximum spreading ratio  
max

= (𝑡max) of non-bouncing droplets is of particular interest here, 

as coalescence of neighboring impinging droplets may initiate UWS film formation. Additionally, the 
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size of the wetted area affects the evaporative cooling of the wall. If 
max

 can be reduced, the 

probability of droplet interaction and UWS liquid film formation might decrease. The knowledge of 

 
max

 is also of interest for predicting bouncing. Mao et al. [26] e.g., proposed a model that predicts the 

tendency to rebound as a function of maximum spread and static contact angle. 

Spreading is governed by the balance between kinetic, gravitational and surface energy of the drop, 

in combination with the energy loss due to viscous dissipation. Therefore, energy balance approaches 

are commonly used to predict maximum spreading or rebound conditions theoretically [26, 94-101]. A 

main difficulty of such simplified models is the adequate modelling of dissipation [100]. While 

dissipation during drop impact can hardly be quantified experimentally, it is amenable by direct 

numerical simulation [102]. In addition to energy-based models, simplified theoretical models based on 

force balances or mass and momentum equations are quite common [103, 104]. 

For predicting the maximum spreading ratio 
max

, several correlations and relationships have been 

proposed. Studies in the literature have reported scaling laws for the viscous regime (
max

∝ 𝑅𝑒1/5 ) 

[105] and the capillary-inertial regimes (
max

∝ 𝑊𝑒1/2  or 𝑊𝑒1/4 ) [23, 106]. However, the 

applicability of scaling laws is often limited to certain liquids and that of empirical correlations to 

certain experimental ranges. Lee et al. [102] for example found that the scaling of maximum spread 

ratio as suggested by Clanet et al. [106], although predicting the behavior for water, does not predict 

maximum spreading for ethanol and glycerol droplets. Börnhorst et al. [52] recently compared 

experimental and numerical data for the maximum spread ratio of UWS droplets impacting on a 

hydrophilic surface ( 𝜃e = 50.3°) with the empirical correlation 
max

= 0.62(𝑅𝑒2 𝑂ℎ)0.166  proposed 

by Scheller & Bousfield [103]. For millimetre-size UWS droplets and moderate impact velocities 

comparable to the experimental conditions in [103] with droplets consisting of glycerol-water-ethanol 

mixtures, good agreement was obtained. A numerical simulation for a much smaller droplet, however, 

indicated that this correlation for  
max

 is not valid for submillimetre-size droplets of UWS sprays in 

technical applications [52]. No consensus on which formulation should be used under which conditions 

has been reached so far and the quantitative prediction of  
max

 for a wide range of 𝑊𝑒 (or 𝑅𝑒) is a 

challenging problem. Lin et al. [70], e.g., note that none of the existing theoretical models can well 
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describe the maximum spreading ratio observed in their experiments. Accordingly, improved empirical 

models are developed for certain liquids [107]. 

Figure 9 shows the maximum spreading ratio as a function of Weber number for the simulations 

from Section 4.1. To investigate the influence of surface wettability on maximum spread factor in more 

detail, the figure is supplemented by simulation results for contact angles 52° and 100°. Similar to 

Section 4.1.3, the impact velocity is fixed (𝑈0 = 7.23 m s−1). The set of initial UWS droplet diameters 

is 25, 50, 100 and 200 µm. The corresponding ranges of the Weber, Reynolds, and Ohnesorge 

numbers are 19.4155.5, 1291033, and 0.0120.034, respectively. 

From impact experiments with millimetre-sized droplets, Antonini et al. [108] identified two 

regimes: a moderate Weber number regime (30 < 𝑊𝑒 < 200), in which wettability affects both drop 

maximum spreading and spreading characteristic time, and a high Weber number regime (𝑊𝑒 > 200), 

in which wettability effect is secondary, because capillary forces are overcome by inertial effects. With 

exception of the simulation with 𝐷0 = 800 µm where 𝑊𝑒 = 297.6, all present cases for sub-millimetre 

UWS droplets belong to the low Weber regime. In agreement with [108], a notable influence of 

wettability is identified in Figure 9. For fixed 𝑈0 and 𝐷0, an increase of  𝜃e results in a decrease of 


max

, cf. Section 4.1.1. For fixed 𝑈0 and  𝜃e, an increase of 𝐷0 results in a strong increase of 
max

, cf. 

Section 4.1.3. Notably, the scenarios with fixed parameters (𝜃e = 100°, 𝑈0 = 7.23 m s−1) and (𝜃e =

130°, 𝑈0 = 5 m s−1) have almost the same values of 
max

 over the entire Weber number range. The 

comparison of cases for 𝜃e = 130° where either 𝑈0 = 5 m s−1 or 𝐷0 = 68.3 µm is fixed is also 

interesting, as in the Weber number range 25 − 100 values of 
max

 do not collapse on a single curve. 

This shows that 
max

 does not only depend on Weber number but also on Reynolds number. The 

scaling with Weber number is illustrated by two power laws in Figure 9. For simulations where the 

impact velocity 𝑈0 is fixed and where the Weber number varies due to change of 𝐷0, the power law 

exponent is between 0.25 and 0.5, in agreement with scaling laws proposed in literature. The scaling 


max

∝ 𝑊𝑒1/2  arises under the assumption that the kinetic energy in the drop is converted to surface 

energy [72]. This implies that dissipation is negligible, which is not realistic here where in most cases 

very small droplets are impinging with high velocity. 
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Figure 9: Numerical results for maximal spread factor of UWS droplets as function of 𝑊𝑒. Black 

symbols (without line) correspond to Figure 6 where both 𝐷0 and 𝑈0 are fixed. Symbols connected 

by dashed lines correspond to cases where 𝐷0 is varied while 𝑈0 is fixed. Symbols connected by 

solid lines correspond to cases where 𝑈0 is varied while 𝐷0 is fixed. 

4.3 Drop rebound regime maps 

In this subsection, numerical regime maps for bouncing/non-bouncing droplets are presented. As 

rebound is governed by an inertia-capillary interplay, the Weber number plays a prominent role in 

predicting conditions for bouncing. Mao et al. [26] derived a semi-empirical model for rebound criteria 

as an implicit function of equilibrium contact angle, Weber number and Reynolds number. This model 

is valid when both 𝑊𝑒 and 𝑅𝑒 are relatively high.  

Caviezel et al. [35] derived a criterion for drop adherence, respectively rebound, by considering the 

difference in surface energy before impact (where the drop is spherical) and at equilibrium (where the 

drop adheres to the surface in the form of a spherical cap). By this approach, the critical Weber number 

for rebound  𝑊𝑒cr = 
L

𝐷0𝑈cr
2 /  depends on equilibrium contact angle  𝜃e as 

3

e e
cr 2 2/3

e e e

2 3cos cos
12 1

[2(1 cos )(2 cos cos )]
We

 

  

  
  

   
 (12) 

(see Supplemental Material B and [109]). The model is claimed to be valid for small 𝑊𝑒 (when surface 

tension effects dominate inertia) and moderate 𝑅𝑒, as viscous dissipation is neglected. 
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Reyssat et al. [27] argued that drop rebound on a superhydrophobic surface happens when the drop 

kinetic energy is larger than its surface energy, so the critical impact velocity to observe rebound is 

cr

L 0

U
D




. (13) 

The pre-factor in Eq. (13) quantifies the effect of contact angle hysteresis [27], which we do not 

account for here. The relation in Eq. (13) can be expressed in terms of a critical Weber number 𝑊𝑒cr =


L

𝐷0𝑈cr
2 / . Rioboo et al. [110] performed drop impact experiments on a porous superhydrophobic 

polymer surface and determined a quantitative relation for 𝑊𝑒cr in terms of advancing and receding 

contact angles. More recently, Bange [40] derived by numerical simulations a regime map in 𝑊𝑒 − 𝑅𝑒 

space to predict the bouncing and non-bouncing droplets on a superhydrophobic surface ( 𝜃e ≈ 155°). 

For a given liquid such as UWS, such a regime map is of limited use since it is not possible to vary 𝑊𝑒 

and 𝑅𝑒 independently. In the following we therefore show regime maps mainly in terms of dimensional 

parameters. 

Results from Section 4.1 have shown that drop diameter, drop impact velocity and contact angle 

are important parameters determining whether droplet bouncing occurs or not. In order to clarify the 

effects, a large number of simulations are carried out and three maps for deposit and rebound regimes 

are formulated based on these parameters. 

First, the combined effects of the equilibrium contact angle and initial droplet diameter on the 

deposit/rebound regimes are studied. With 𝜃e being varied from 60° to 120° and 𝐷0 from 50400 µm, 

a series of numerical simulations for a fixed impact velocity (7.23 m s−1) are carried out. As presented 

in Figure 10, droplets deposit for 𝜃e ≤ 75° and rebound for 𝜃e ≥ 110°, irrespectively of initial 

diameter. A transition region exists within the range 75° < 𝜃e < 110°, where a dependence of droplet 

deposit/rebound or partial rebound behavior on 𝜃e and 𝐷0 is observed. For partial rebound, the drop 

does not have enough kinetic energy to rebound completely from the surface in recoil stage. Thus, in 

the interaction of different forces acting on droplet including capillary, inertia forces and gravity, a 

neck forms in the upper part of the droplet, which narrows over time and eventually breaks, splitting 

the droplet into two parts. The upper daughter droplet bounces off while the lower one deposits on the 
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surface. From Figure 10 it can be seen, that for a given droplet diameter an increase of 𝜃e results in a 

transition from deposition to partial rebound and complete rebound. For droplet sizes 𝐷0 ≤ 100 µm, 

the partial rebound occurs over a range of 𝜃e of about 20 − 30°. For droplet sizes 𝐷0 ≥ 200 µm, this 

range is only about 10 − 20°. For 𝐷0 = 50 µm droplets, complete rebound is obtained for 𝜃e ≥ 110°, 

whereas for droplet sizes 𝐷0 ≥ 100 µm it is obtained for 𝜃e ≥ 95°. An exception is drop 

diameter 𝐷0 = 400 µm, where complete rebound is observed already for 𝜃e = 90°. However, it is 

important to remark that in the transition region with partial rebound, results on impact outcome have 

to be interpreted with care since the pinch-off process leading to drop splitting is likely to depend on 

Cahn number. In the following regime maps, partial rebound will not be considered separately, but will 

be attributed to deposition regime. 

 

Figure 10: Outcomes of numerical impingement events under variation of drop diameter and 

equilibrium contact angle. 𝐷0 − e regime map for 𝑈0 = 7.23 m s−1. 

 

Figure 11 presents a regime map in terms of impact velocity and equilibrium contact angle. With 

fixed droplet diameter (68.3 µm),  𝜃e and 𝑈0 are systematically varied in the ranges 80  170° and 

0.01 − 10 m s−1. As shown in Figure 11, when  𝜃e < 120° the droplet will deposit on the wall for all 

the investigation range of the impact velocity. On the other hand, for  𝜃e > 150° the droplet rebounds 

irrespective of the value of 𝑈0. A dependence of rebound versus non-rebound behavior on 𝑈0 is only 
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observed for the contact angle range 120° ≤ 𝜃e ≤ 150°. As  𝜃e increases within this range, the 

threshold impact velocity for achieving rebound decreases. This can be explained by the dependence of 

𝛽max and 𝑡max on 𝜃e for fixed diameter and impact velocity: as  𝜃e increases, both 𝛽max and 𝑡max 

decrease, cf. Figure 6. Accordingly, less of the drop’s initial kinetic energy is dissipated with increase 

of  𝜃e during the advancing phase of spreading (𝑡 < 𝑡max). If kinetic energy is assumed approximately 

zero at 𝑡 = 𝑡max, and if dissipation during recoil is considered negligible, then with increase of  𝜃e 

more of the initial kinetic energy is available in the late phase of recoil. Therefore, with increase of  𝜃e, 

droplets of given diameter rebound at lower 𝑈0, as observed in Figure 11 for the range 120° ≤ 𝜃e ≤

150°. 

In Figure 11, the Weber number criterion from Eq. (12) is plotted for the range 90° ≤ 𝜃e ≤ 150°. 

The curve shows the same qualitative trend as the numerical simulations: as the contact angle increases, 

a smaller critical Weber number is needed for rebound occurrence. Quantitatively, the critical Weber 

number obtained by the simulations is larger than predicted by Eq. (12). This is reasonable as in the 

derivation of Eq. (12) viscous dissipation has been neglected.  

 

 

Figure 11: Outcomes of numerical impingement events under variation of impact velocity and 

equilibrium contact angle. 𝑈0 − e regime map for 𝐷0 = 68.3 µm (𝑂ℎ = 0.021). The solid line 

corresponds to the adherence criterion of Caviezel et al. [35] given by Eq. (12). 
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Figure 12 illustrates the rebound  no-rebound behavior on the 𝑈0 − 𝐷0 plane. While the initial 

drop diameter and impact velocity are varied in the ranges 25   800 µm and 0.5 − 10 m s−1, 

respectively, the equilibrium contact angle is kept fixed at  𝜃e = 130°. It is evident that as the droplet 

size increases, the critical impact velocity to achieve rebound decreases. On the log-log scale, a plot of 

relation (13) results in a straight line with slope 1/2. The corresponding deposition/rebound criterion 

for 𝑊𝑒cr = 3 is displayed in Figure 12 as black solid line; it describes the demarcation of the 

impingement outcomes in the present simulations for  𝜃e = 130° reasonably well. As additional 

information, the fill colour of the symbols in Figure 12 indicates the Reynolds number. Accordingly, a 

rebound is always observed for Reynolds numbers larger than 200. 

 

Figure 12: Outcomes of numerical impingement events on a smooth hydrophobic surface (𝜃e =

130°) under variation of drop diameter and impact velocity. 

 

4.4 Maximum bounce height 

The regime maps presented in the previous subsection indicate if rebound is observed in the 

simulation or not. To quantify rebound, in this subsection the maximum rebound (bounce) height ℎreb 

is considered, which is defined as the maximum vertical distance between the surface and the bottom of 
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the bouncing drop. Experimental results for water droplets of size 𝐷0 = 1.97 mm show that ℎreb 

increases with Weber number [111]. Even for the smallest Weber number (𝑊𝑒 = 9) considered in that 

study, the normalized maximum bounce height takes a value of ℎreb/𝐷0 ≈ 3.7 for an initially spherical 

droplet. For micrometre droplets, no experimental data for ℎreb are reported in literature to our 

knowledge.  

To study maximum bounce height, additional simulations for UWS drop impact on a hydrophobic 

surface ( 𝜃e = 130°) have been performed for nine distinct drop diameters in the range 50 − 800 µm 

and impact velocities in the range 0.2 − 0.7 m s−1. The simulations have been performed with reduced 

Cahn number 𝐶𝑛 = 0.01 and  = 1 m s kg−1. The dimensions of the computational domain are 

𝑊/𝐷0 = 1.75 and 𝐻/𝐷0 = 2.75. The impact velocities are kept relatively low in order to keep 

rebound height limited, so that the droplet stays always inside the computational domain. While in 

previous sections, simulations have been stopped shortly after rebound, the simulations here are 

continued over an extended time until the bouncing drop begins falling downward again due to gravity. 

Figure 13 displays the normalized maximum rebound height ℎreb/𝐷0 over the 𝑈0 − 𝐷0 plane. 

Within this plane, the solid line indicates 𝑊𝑒cr = 3 which was found to be good discrimination for the 

regimes in Figure 12. Here, it serves less well for indicating rebound. For comparison, 𝑊𝑒cr = 1 is 

included as dashed line. Appreciable values of the relative rebound height ℎreb/𝐷0 > 0.1 are only 

observed for impact velocities 𝑈0 ≥ 0.4 m s−1 regardless of droplet diameter. For a fixed droplet 

diameter, the relative rebound height increases with impact velocity as expected. For fixed impact 

velocities 𝑈0 > 0.5 m s−1, the normalized rebound height ℎreb/𝐷0 increases as the drop diameter 

increases from 50µm to 400 µm. This behaviour may be related to the fact that with increased drop 

diameter, a lower fraction of liquid volume is within the viscous boundary layer. Therefore, one may 

expect the viscous dissipation being relatively lower for larger drops given the same impact velocity. 

However, with further increase of 𝐷0, the relative rebound height decreases again. Now we have no 

explanation for this behaviour. We point out that results for the rebound height must be considered 

preliminary and the reported findings have to be interpreted with care. 
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Figure 13: Normalized maximum rebound height ℎreb/𝐷0 from a hydrophobic surface (𝜃e = 130°) 

for various combinations of drop diameter and impact velocity. Square columns indicate cases with 

rebound while cases without rebound are marked by circles. Colours serve to distinguish different 

droplets diameters. The solid and dashed lines indicate critical Weber numbers of 3 and 1, 

respectively. 

 

5 Summary and conclusions 

In the first part of this paper, a phase-field method has been thoroughly validated for impact and 

rebound of millimetre-sized water droplet on hydrophobic surfaces. Numerical results for instantaneous 

droplet shape, spread factor and contact time obtained by axisymmetric computations have been 

compared against experiments from literature showing good agreement in general. However, a slight 

influence of numerical parameters such as thickness and resolution of the diffuse interface on 

maximum spreading and contact time has to be noted. 

In the second and main part of the paper, a comprehensive numerical study on the impact dynamics 

of urea-water-solution (UWS) droplets on substrates of varying wettability (equilibrium contact angle 

30° ≤ 𝜃e ≤ 170°) has been performed. The axisymmetric simulations cover a wide range of sub-

millimetre droplet sizes (25 µm ≤ 𝐷0 ≤ 800 µm) at various impact speeds (0.01 m s−1 ≤ 𝑈0 ≤
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10 m s−1), corresponding to typical hydrodynamic operating conditions in exhaust after-treatment, 

albeit under isothermal ambient conditions. In terms of relevant non-dimensional groups, simulation 

results cover maximum values of Weber number and Reynolds numbers of about 300 and 2900, 

respectively. These numerical simulations are unique as, to the knowledge of the authors, no 

experimental data for impingement behaviour of single sub-millimetre UWS droplets are available in 

literature. However, the good agreement obtained between numerical predictions and millimetre-scale 

experiments does not mean that the numerical results obtained by the code for the submillimetre scale 

are valid without restriction. Factors that are not included in the model are evaporation, roughness and 

inhomogeneity of the surface and the potential presence of any surface-active substances. While these 

factors might already effect phenomena at millimetre scale, they become more and more important for 

smaller length scales, until ultimately the line tension matters as well [112]. 

Trends identified in the numerical simulations for UWS droplets follow the behaviour observed for 

water droplets of mm-size. After the initial kinematic phase, a strong influence of wettability on droplet 

dynamics is identified. The maximum spreading ratio (𝛽max) decreases with contact angle and drop 

diameter but increases with impingement velocity. For 𝛽max, no consistent scaling in terms of Weber 

number could be identified, indicating that Reynolds number and Ohnesorge number are important too. 

A further focus of the present study was identifying conditions where UWS droplets rebound from the 

surface after first contact. As for other liquids, the key for obtaining rebound is hydrophobicity of the 

surface. A notable rebound for a wide range of droplet sizes and impact velocities is obtained only for 

equilibrium contact angles 𝜃e ≥ 120°. On such hydrophobic surfaces, increase of droplet size and 

impact velocity favors rebound. A rebound criterion in terms of a critical Weber number of about 3 has 

been found to describe the impact outcomes of numerical simulations reasonably well. The present 

results may be useful for development of more advanced drop-wall interaction models as they are 

required in CFD codes relying on the Euler-Lagrange approach for engineering computations of UWS 

sprays. 

The findings of the present fundamental study give useful hints for improvement of technical SCR 

systems relying on injection of UWS. Even if contact angles 𝜃e ≥ 120° may not be realized in 
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tailpipes, changing the contact angle by surface treatment from about 50° (which is a representative 

value for today’s exhaust pipe materials) towards 90° may still significantly reduce maximum 

spreading. Thereby, local cooling of the exhaust pipe wall and liquid formation due to coalescence of 

droplets impinging at neighboring sites are reduced. The reduction of both effects may contribute to 

minimize or avoid the formation of solid deposits impairing exhaust after-treatment. 

The present study was limited to the normal impact of single droplets under axisymmetric conditions 

without splashing. Next, the interaction of multiple UWS droplet impinging on a dry or pre-wetted wall 

will be investigated. Furthermore, the numerical method is currently extended towards conjugate heat 

transfer between droplet and solid wall. 

Acknowledgement 

OD, BF, HM and MW kindly acknowledge the financial support from the German Research 

Foundation (Deutsche Forschungsgemeinschaft, DFG) through project 237267381 – TRR 150. The 

authors also want to thank Marion Börnhorst for useful suggestions concerning the manuscript. 

  



39 

Appendix 

In this Appendix, the contact angle during spreading and recoil process is illustrated for drop 

impact on a hydrophobic surface. The parameters of the simulation are selected so that the deviation of 

the actual contact angle from the equilibrium contact angle can be readily visualized and recognized. 

The drop diameter 𝐷0 = 2.1 mm, the impact velocity 𝑈0 = 0.61 m s−1 and the fluid properties are 

similar to those of Case C, while the equilibrium contact angle is set to 𝜃e = 120°. Furthermore it is 

𝐶𝑛 = 0.02 and 𝑁di = 6 for this case. 

Figure 14 presents droplet profiles (thick lines) at representative time instants covering the 

advancing phase (blue and light blue line) and the receding phase (orange and red line). The dark-grey 

curve shows the droplet shape at the time of maximum spreading (𝑡max = 4.42 ms). The thin straight 

black lines in Figure 14 illustrate the equilibrium contact angle 𝜃e = 120°. Shortly after maximum 

spreading, at 𝑡 = 5.32 ms, the drop shape is similar to a “pancake” with uniform thickness in the center 

and a thickened outer toroidal rim. The thickness of the pancake corresponds to the height where the 

drop surface first collides with the boundary layer where the radial flow created by impact adjusts to 

the no-slip condition at the wall [113]. After that instant in time, surface tension causes the drop to 

retract inwards. 

The time instants 𝑡 = 1.12 ms and 𝑡 = 9.60 ms are selected because the contact line has the same 

radial position. For each of these two instants in time, the inset in Figure 14 shows a zoom-in of the 

local region near the contact line. During the advancing phase (𝑡 = 1.12 ms) when the contact line 

moves with high speed, the contact angle is notably larger than the equilibrium value  𝜃e = 120° 

adopted in the receding phase (𝑡 = 9.60 ms). This result confirms the findings in [54] that in phase-

field methods employing the equilibrium contact angle as a boundary condition, cf. Eq. (5), the actual 

contact angle in the simulation may nevertheless deviate from this equilibrium value. The dependence 

of contact angle on contact line speed resembles a dynamic contact angle model. However, so far the 

detailed relation between contact angle and contact line speed has not been explored for our code. 

Accordingly, the dynamic contact angle is more an implicit feature and not comparable to dynamic 
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contact angle models in other approaches, where an explicit relation between dynamic contact angle 

and contact line speed is prescribed. 

 

Figure 14: Droplet shape and apparent contact angle during different stages of the impact process. 

The time of maximum spreading is 𝑡max = 4.42 ms. The figure also illustrates that for impact on 

hydrophobic surfaces the maximum radial dimension of the drop can be larger than the maximum 

wetted radius. 

 

Nomenclature 

𝐵𝑜  Bond number (), 𝐵𝑜 = 𝑔(
L

− 
G

)𝐷0
2/ 

𝐶  order parameter () 

𝐶𝑛  Cahn number () 

𝐷0  initial drop diameter (m) 

𝐷wet  diameter of wetted circular area (m) 

𝐠  gravity vector (m s2) 

𝑔  gravitational acceleration (m s2) 

ℎ  mesh size (m) 

𝐻  height of computational domain (m) 

𝐻  contact angle hysteresis (°) 

𝑀  mobility (m3 s kg1) 

𝐧s  unit normal vector to the solid surface () 
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𝑁di  number of mesh cells across diffuse interface 

𝑂ℎ  Ohnesorge number (), 𝑂ℎ = 
L

/√L
 𝐷0 

𝑝  pressure (N m2) 

𝑟  radial coordinate (m) 

𝑅𝑒  Reynolds number (), 𝑅𝑒 = 
L

𝐷0𝑈0/
L
 

𝑡  time (s) 

𝑇ct  contact time (s) 

𝑈0  drop impact velocity (m s1) 

𝐮  velocity field (m s1) 

𝑊  width of computational domain (m) 

𝑊𝑒  Weber number (), 𝑊𝑒 = 
L

𝐷0𝑈0
2/ 

𝑧  vertical coordinate (m) 

 

Greek symbols 

𝛽  spreading ratio () 

  capillary width (m) 

  mixing energy parameter (J m1) 

  dynamic viscosity (Pa s) 

𝜙  Cahn-Hilliard chemical potential (J m3) 

  density (kg m3) 

  coefficient of surface tension (N m1) 

𝜃a  advancing contact angle () 

𝜃e  equilibrium contact angle () 

𝜃r  receding contact angle () 

  pre-factor in mobility relation (m s kg1) 

 

 

Subscripts 

0 initial value 

G gas phase 

L liquid phase 

max maximum value 
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Supplemental Material A 

Comparison of computed drop shapes for Case A. Left column: 𝐶𝑛 = 0.01, right column: 𝐶𝑛 = 0.02. 
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Bubble formation in simulation with 𝐶𝑛 = 0.01. Left column: 𝐶𝑛 = 0.01, right column: 𝐶𝑛 = 0.02. 
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Drop bouncing in simulation with 𝐶𝑛 = 0.01. Left column: 𝐶𝑛 = 0.01, right column: 𝐶𝑛 = 0.02. 
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Drop bouncing in simulation with 𝐶𝑛 = 0.02. Left column: 𝐶𝑛 = 0.01, right column: 𝐶𝑛 = 0.02. 
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Supplemental Material B: Model of Caviezel et al. [1] 

Neglecting gravity, the total equilibrium energy of a free spherical drop with radius  consists only 

of surface energy and is given by 

  (1) 

The equilibrium surface energy of a drop adhering to the wall in the form of a spherical cap is 

  (2) 

Introducing Young’s equation  

  (3) 

into Eq. (2) gives 

  (4) 

It is  

  (5) 

where  is the spherical cap radius and  the height of the spherical cap1. Furthermore, it is  

  (6) 

where  is the radius of the circular solid-liquid interface. Introducing Eq. (5) and Eq. (6) into Eq. 

(4) gives 

  (7) 

The height and wetted radius of the spherical cap can also be written as 

  (8) 

  (9) 

Introducing the latter two equations into Eq. (7) gives 

  (10) 

The difference in surface energy is then given by 

  (11) 

Assuming the volume of the spherical cap given by  

                                                 
1 Note that is nomenclature is in contrast to Caviezel et al. where  denotes the height of the missing segment of the 

spherical cap. Both quantities are related as . 
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  (12) 

being equal to the sphere volume  yields 

  (13) 

and 

  (14) 

so that 

  (15) 

which corresponds to Eq. (8) of Caviezel et al. [1]. Introducing Eq. (15) into Eq. (11) yields 

  (16) 

This corresponds to Eq. (B.5) in the master thesis of Wu [2]. 
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