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Abstract: This work concerns the mathematical and numerical modeling of the heart. The aim is to
enhance the understanding of the cardiac function in both physiological and pathological conditions.
Along this road, a challenge arises from the multi-scale and multi-physics nature of the mathematical
problem at hand. In this paper, we propose an electromechanical model that, in bi-ventricle geometries,
combines the monodomain equation, the Bueno-Orovio minimal ionic model, and the Holzapfel-Ogden
strain energy function for the passive myocardial tissue modelling together with the active strain
approach combined with a model for the transmurally heterogeneous thickening of the myocardium.
Since the distribution of the electric signal is dependent on the fibres orientation of the ventricles, we use
a Laplace-Dirichlet Rule-Based algorithm to determine the myocardial fibres and sheets configuration
in the whole bi-ventricle. In this paper, we study the influence of different fibre directions and
incompressibility constraint and penalization on the compressibility of the material (bulk modulus) on
the pressure-volume relation simulating a full heart beat. The coupled electromechanical problem is
addressed by means of a fully segregated scheme. The numerical discretization is based on the Finite
Element Method for the spatial discretization and on Backward Differentiation Formulas for the time
discretization. The arising non-linear algebraic system coming from application of the implicit scheme
is solved through the Newton method. Numerical simulations are carried out in a patient-specific bi-
ventricle geometry to highlight the most relevant results of both electrophysiology and mechanics and
to compare them with physiological data and measurements. We show how various fibre configurations
and bulk modulus modify relevant clinical quantities such as stroke volume, ejection fraction and
ventricle contractility.
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1. Introduction

The heart has the role of pumping deoxigenated blood to the lungs to get oxygen and,
simultaneously, delivers blood rich of all sort of vital substances to tissues and organs through the
arterial circulatory system [32]. Cardiovascular diseases are the leading cause of death in the global
population, with millions of new patients every year [31]. Despite new experimental discoveries and
improvements in the medical care, we are still distant from fully understanding these pathologies.
Computational modelling has shown to be a potential mean of addressing this problem. Recent
achievements in this field provide additional insights for the understanding of cardiac functions and
disease treatments. However, many difficulties arise when approximating the modelling of cardiac
function (including e.g., the mismatch of model parameters and spatio-temporal scales, associated to
the difficult task of retrieving in-vivo measurements from the tissue) and when trying to simulate their
joint electromechanical behaviour as a coupled multi-physics and multi-scale problem [22]. Advances
in the fields of experimental and theoretical biology, physics, computer science and clinical data allow
the improvement of the mathematical models, allowing numerical simulations in patient-specific
framework [13, 28, 29]. Moreover, application of image segmentation techniques to Magnetic
Resonance Imaging (MRI) and Computed Tomography (CT) scans provide data to proceed with
personalized computational modelling and patient-specific diagnoses and therapies.

The simulations of human heart functioning involve several challenges intrinsically related to its
complexity [11, 12, 16]. At the moment, several cardiac modelling studies at the whole heart level are
still restricted to simulating particular components, such as, e.g., the electrophysiology or the
electromechanics. Only few works presented a fully coupled model taking into account the integrated
electro-mechano-fluid behaviour [17, 44].

Heart physiology can be briefly summarized as follows: an electric potential propagates across the
membrane of the cardiac muscle cells (cardiomyocytes) and induces complex biochemical reactions
inside the cytosol that releases calcium from the sarcoplasmic reticulum, thus resulting in the
generation of force within the sarcomeres (the basic contractile units within cardiac muscle cells),
finally causing the individual cells to contract and the muscle to deform. The contraction of the muscle
yields a rapid increase of pressure inside the ventricular cavities, which allows the heart valves to open
and close in precise sequence and induces the periodic filling and ejection of blood from the ventricles
and the atria [15, 33, 35, 36, 45–47]. This physiological process underline an intrinsic multi-scale
nature. Indeed, the solutions of the corresponding mathematical models feature a wide range of
spatio-temporal scales, which need to be accurately captured by computationally efficient numerical
methods. As a matter of fact, ion channels on the cell membrane and the excitation-contraction
mechanism are typically modelled through systems of ODEs to be solved for each individual cell
(length scales of µm) and are endowed with time scales of 10−4 ms. On the other hand, the description
of fluid dynamics and solid mechanics of the tissue at the organ level (length scales of cm) and of the
propagation of the electrical signal (monodomain) are translated in non-linear partial differential
equations of either parabolic or parabolic-hyperbolic type with time scales of 0.1 ms (for the fluid
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dynamics and solid mechanics) [36].
In this work, we analyse the effect of fibre direction and bulk modulus on the pressure-volume

relationship through electromechanical modelling for both the left and right ventricles [4]. This is an
extension of the model presented in [19, 20] that was however applied to the left ventricle only. We use
state-of-the-art models in passive myocardial tissue modelling (the Holzapfel-Ogden model [23])
together with the active strain approach [1, 2] in combination with a recently proposed model for the
transmurally heterogeneous thickening of the myocardium [5]; the latter is used in the integrated
electromechanics context for both the left (LV) and the right (RV) human ventricles. Once established,
the active mechanics is coupled with the electrophysiology through a model describing the shortening
of the myocardial fibres [41], which is in turn triggered by a change in the ionic concentrations in the
cardiac cells. We use a Laplace-Dirichlet Rule-Based algorithm [6] to reproduce the ventricles fibres
and sheets configuration.

From the numerical point of view, we discretize in space the models by means of the Finite Element
Method (FEM) with piecewise linear polynomials of degree one (P1) for both the myocardium
displacement and the transmembrane potential, while the time discretization is carried out by means of
Backward Differentiation Formulas (BDFs) of order 2 [37]. We then exploit a fully segregated
algebraic problem, where the discretized core models are solved sequentially. This segregated strategy
was proposed in [20] for the LV through a Godunov splitting scheme.

In this work, we successfully use a segregated scheme for the simulation of the full heartbeat, by
realizing pressure-volume loops patient-specific bi-ventricles. We propose an innovative
electro-mechanical model of human ventricles employing an original modelling of transversal and
isotropic mechanical activation. The fluid-structure interaction (FSI) between the blood contained in
each chamber and the endocardial wall is addressed through a simple 0D model (spatially independent)
for the pressure variable tailored for the different phases of the heartbeat [14, 39, 49]; a prestress phase
is also implemented for both the LV and the RV in order to estimate the internal stresses of the
myocardium at the initial time [25, 48], i.e., in the reference configuration of the muscle. It is relevant
to notice that, at telediastole (the final phase of the ventricular diastole), the endocardial pressure is
significantly different in the LV and RV chambers, thus this method has to be able to compute the
response of the tissue to the fluid in the corresponding chamber. All the solvers are implemented in the
open source finite element library LifeV (www.lifev.org) [18].

The simulations are carried out on a bi-ventricle geometry extracted from a full heart atlas derived
from multiple patients [27]. A set of various fibre orientation and bulk modulus is tested to show the
effect of these changes on the mechanical behaviour of the ventricles. We show the obtained simulated
pressure-volume loops to assess the influence on the various phases of a full heartbeat. Finally, the
numerical results are compared against physiological data and clinical measurements. In our work,
we show the influence of fibre direction on the electro-mechanical computational modelling of human
ventricles.

The article is organized as follows: in Section 2 we introduce the mathematical models for the
electrophysiology, the mechanics and the activation of the myocardium; we then couple them to obtain
a integrated model. We then proceed in Section 3 presenting the characteristics of the cardiac cycle and
the various phases performed by the ventricles composing a single heartbeat. In Section 4 we carry on
the space and time numerical approximations of the single core models and their numerical coupling. In
Section 5 we describe the method used to generate the bi-ventricle geometry and the fibres and sheets
directions. We report and discuss in Section 6 the numerical results obtained with the proposed methods.
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Finally, we draw our conclusions in Section 7.

2. Mathematical modelling

In this section we introduce the mathematical models used to represent the complex behaviour of the
bi-ventricle electro-mechanics.

2.1. Ionic model and monodomain equation

Assuming the same electrophysiological behaviour for both left and right ventricles, we consider
the monodomain equation for the description of the evolution of the cellular transmembrane potential
V [12, 20, 26, 34, 43]. The system of differential equations modelling the electrophysiology reads:



∂V
∂t

+ Iion(V,w) = ∇ · (JF−1DmF−T∇V) + Iapp(t) in Ω0 × (0,T ),

(JF−1DmF−T∇V) · N = 0 on ∂Ω0 × (0,T ),

∂w
∂t

= α(V)(w∞(V) − w) + β(V)w in Ω0 × (0,T ),

V = V0, w = (1, 1, 0)T in Ω0 × {0},

(2.1)

Here, Ω0 is the reference computational domain (represented e.g., by the configuration of the ventricles
at the end of the diastolic phase) and T > 0 is the final time of our simulation. The components
w j, with j ∈ {1, . . . ,M} are M so-called gating variables. F = I + ∇0d is the strain tensor, d the
displacement of the tissue and N is the normal vector. In order to take into account the anisotropic
electrical conductance [42], we define the diffusion tensor as Dm = σt I + (σl−σt) f0⊗ f0, where σt, σl ∈

R+ are the electric conductivities in the directions transversal and longitudinal with respect to the fibres,
respectively. f0 is the local fiber orientation, while s0 is the direction longitudinal to the sheet orientation
in the reference configuration. The function Iapp(t) represents an externally applied current, which stands
for the electric stimulus injected at the endocardium by the terminal fibres of the Purkinje network; for
our purposes, we consider it as a source term which triggers the electrophysiological activity. The terms
Iion(V,w),w∞, α(V), β(V) are peculiar of the ionic model which, in our case, following the approach
of [20], is the Bueno–Orovio minimal model [10].

2.2. Passive and active mechanics

We assume, in this section, the same constitutive laws for both the ventricles to describe both the
active and passive mechanics of the tissue. We will highlight later differences and settings for the RV
and LV. We recall the momentum conservation equation in the reference configuration Ω0, endowed
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with boundary and initial conditions, in the unknown displacement variable d [30]:

ρ
∂2d
∂t2 − ∇0 · P(d, γ f ) = 0 in Ω0 × (0,T ),

q(d,dt) + P(d, γ f ) N = 0 on Γ
η
0 × (0,T ),

P(d, γ f ) N = pendo,LV(t)N on Γendo,LV
0 × (0,T ),

P(d, γ f ) N = pendo,RV(t)N on Γendo,RV
0 × (0,T ),

d = d0,
∂d
∂t

= ḋ0 in Ω0 × {0}.

(2.2)

Figure 1. The patient–specific biventricle geometry used in this work with the Γ
epi,LV
0 , Γ

epi,RV
0 ,

Γendo,RV
0 , Γendo,LV

0 and Γbase
0 boundary subsets highlighted.

where q(d,dt) = (N ⊗ N)
(
Kη
⊥d + Cη

⊥dt
)

+ (I − N ⊗ N)
(
Kη

‖
d + Cη

‖
dt

)
. We denote by Kη

⊥,K
η

‖
,Cη
⊥,C

η

‖
∈ R+

the parameters of generalized Robin conditions on each of these boundary subsets: the symbols ⊥
and ‖ identify either a parameter relative to the normal or the tangential direction, respectively. These
boundary conditions are set to mimic the effect of the pericardium and surrounding tissues on the bi-
ventricular geometry. ρ is the density of the myocardium, γ f denotes the local shortening of the fibres,
d0 and ḋ0 are initial conditions. We notice that pressures pendo,RV(t) and pendo,LV(t) are still prescribed
at this stage; we will explain in the Section 2.3 the manner in which they are determined. Γ

η
0, with

η = {epi, base}, represents the subsets of the boundary corresponding to the epicardium and the base of
the myocardium, while Γendo,LV

0 and Γendo,RV
0 are, respectively, the left and right endocardium, as depicted

in Figure 1. Following [20], we model the myocardium as an hyperelastic material, thus: P(d) =
∂W(C)
∂F .

For more details on the strain-energy density function used, we refer the interested reader to [20]. We
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emphasise that our finalW is obtained by adding to the strain energy function a convex termWvol(J),
where J = det(Fv) = det(F), being det(F) = 1, used to weakly enforce the incompressibility constraint,
such that J = 1 is its global minimum; penalizing large variations in volume. We choose:

Wvol(J) =
B
2

(J − 1) log(J), (2.3)

hence, in this quasi-incompressible formulation, we obtain a “stronger” enforcement of the
incompressibility constraint with a larger bulk modulus B ∈ R+.

We proceed with the active strain approach [40] to take into account the active behaviour of the
myocardial muscle. This formulation consists in a particular decomposition of the strain tensor:

F = FEFA = FvFEFA = J
1
3 FEFA,

where FE is the isochoric component of the elastic (passive) part of the deformation, FA corresponds
instead to the active part. We recall the orthotropic form for the tensor FA

FA = I + γ f f0 ⊗ f0 + γss0 ⊗ s0 + γnn0 ⊗ n0.

Moreover, to take into account the fact that the thickening of the ventricles’ walls is transversely non-
homogeneous, we use the formulation proposed in [5], that is:

γn = k′(λ)

 1√
1 + γ f

− 1

 , γs =
1

(1 + γ f )(1 + γn)
− 1,

k′(λ) = k
′

(
kendo

λ − λepi

λendo − λepi
+ kepi

λ − λendo

λepi − λendo

)
.

Since the cardiomyocites stretching is driven by the sarcomeres dynamics due to the concentration of
the calcium ions (here denoted as w3), we will use the fibres’ shortening model [19]:

µ̂Aw2
3
∂γ f

∂t
− ε∆γ f = Φ(w3, γ f ,d) in Ω0 × (0,T ),

∇γ f · N = 0 on ∂Ω0 × (0,T ),
γ f = 0 in Ω0 × {0}.

where µ̂A represent a quantity to be properly tuned for the case under consideration. For the explicit
form of the term Φ(w3, γ f ,d) we refer to [19].

2.3. Prestress

The bi-ventricle geometries in the configuration at t = 0 will not be stress–free since we assume that
Ω0 is at telediastole. Therefore, we have to take into account the pressures pendo,LV(t) and pendo,RV(t) on
each endocardium wall exerted by the blood. We recall that these quantities are always larger than zero
during the cardiac cycle. In fact, from medical measurements (e.g., [9, 38]), one obtains the
approximate values in Table 1, corresponding to an healthy individual. Solving problem (2.2) with
physiological endocardial pressures pendo,LV > 0 and pendo,RV > 0 would give rise to non-physiological
displacements as the internal stresses are not in equilibrium with the intraventricular blood’s pressure
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of the ventricles. We indicate with pendo,LV and pendo,RV the pressure at telediastole and the stressed
ventricles’ configuration is determined in these conditions. To address this issue, we adapt the method
proposed in [19], an extension of the one presented in [25], called pressure prestress [48]. We compute
an internal stresses distribution such that the reference geometry is in equilibrium with the blood
pressures pendo,LV and pendo,RV both in the left and in the right ventricles. With this aim we proceed with
an additive decomposition of the strain tensor P̃ = P(d) + P0, where the prestress tensor P0 is
determined to ensure a null displacement d0 in correspondence of the assigned pressures pendo,LV and
pendo,RV .

Table 1. Characteristic pressure values in the ventricles.

Site Normal pressure range (in mmHg)

Right ventricular pressure
systolic 15–30
diastolic 3–8

Left ventricular pressure
systolic 100–120
diastolic 3–12

In order to compute P0 according to this approach, we proceed by adapting the method proposed
in [25] to our model by first defining the following mechanical problem:

∇0 · P(d) = −∇0 · P0 in Ω0,

(N ⊗ N)Kη
⊥d + (I − N ⊗ N)Kη

‖
d + P(d) N = 0 on Γ

η
0,

P(d) N = pendo,LV(t)N on Γendo,LV
0 ,

P(d) N = pendo,RV(t)N on Γendo,RV
0 .

(2.4)

Moreover, we set

pendo,LV
k =

k
S

pendo,LV and pendo,RV
k =

k
S

pendo,RV , k = 1, . . . , S ,

where S ∈ N is the number of steps of the continuation method that we exploit to gradually increase
the pressure value inside each chamber. We recall that, in our case, the endocardium is subdivided into
two ventricles so we need to initialize our pressures taking physiological values for the right and left
chamber at telediastole. We can do that since we have a particular label for each ventricle. We set
pendo,LV

= 10 mmHg and pendo,RV
= 5 mmHg. Eq (2.4) is the steady, passive version of problem (2.2)

with decomposition of the strain tensor. Then, the fixed point iteration described in Algorithm 1 is
applied to compute P0. First, we compute the approximation
P̃0 = Prestress(100, 10−2, pendo,LV , pendo,RV , 0) and finally we set
P0 = Prestress(1, 10−5, pendo,LV , pendo,RV , P̃0). The additional step is performed to require a smaller
tolerance when the pressures have already reached a closer value of the tensor P̃0 to the target. We
observe that, while ‖P(dm

k ,I)‖∞
‖Pm

0,k‖∞
−→ 0 for m −→ +∞ in Algorithm 1, the displacement dm+1

k does not

converge to 0 but to a vector which we denote by d̂ and will be our initial state for the displacement.
However, we observe that the quantity ‖̂d‖∞ is negligible with respect to the endocardial walls
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thickness, and that this initial displacement ensures that the prestress is in equilibrium with the pressure
at the epicardium. Therefore, we set d0 = d̂ in (2.2).

Algorithm 1 Prestress computation

1: function Prestress(S , tol,pendo,LV , pendo,RV , P0,0)
2: for k = 1, . . . , S do
3: set m = 1, Pm

0,k = P0,k−1;
4: repeat
5: obtain dm+1

k by solving problem (2.4) with
6: pendo,LV = pendo,LV

k = k
S pendo,LV , pendo,RV = pendo,RV

k = k
S pendo,RV and

7: P0 = Pm
0,k;

8: update Pm+1
0,k = Pm

0,k + P
(
dm+1

k , I
)
;

9: set m = m + 1;
10: until ‖P(dm

k ,I)‖∞
‖Pm

0,k‖∞
< tol

11: set P0,k = Pm
0,k;

12: end for
13: return P0,S

14: end function

3. Cardiac cycle

For our simulations we will consider a full heartbeat, by taking the conventional duration of T = 0.8 s.
With this aim, we take into account for the fluid-structure interaction of the endocardium with the blood
by modeling the pressures pendo,LV and pendo,RV as in Eq (2.4). Before introducing the models used to
describe the behaviour of the blood, we first recall that the heartbeat of each ventricle is conventionally
split into four phases (see Figure 2):

(1). an isovolumic contraction phase (the red one in Figure 2) in which the endocardial pressures
pendo,RV(t) and pendo,LV(t) increase from the End Diastolic Pressure (EDP) to the value measured at
the pulmonary artery or at the aorta. This increment is driven by the early stages of the ventricles
contraction;

(2). an ejection phase (the one in yellow) characterized by a decrement in the ventricular volumes
Vendo,LV(t) and Vendo,RV(t) due to the contraction of the ventricles. It is called ejection phase since
the contraction forces the blood to flow out from the ventricular chambers;

(3). an isovolumic relaxation (green one) phase during which pendo,LV(t) and pendo,RV(t) decrease as a
consequence of the ventricles early relaxation;

(4). a filling phase (purple one) starting with the opening of the tricuspid valve or of the mitral valve
causing an increment of the endocardial volume until pendo,LV(t) and pendo,RV(t) reach the EDP
value.
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Figure 2. The Wiggers diagram of both the right (red curve) and the left heart (blu curve)
depicting the ventricular pressures and the ventricular volume, as well as the four phases of
the cardiac cycle. For a more detailed image we refer the reader to [7, Figure 22-1].

Before proceeding it is essential to evaluate the behaviour and interaction of the ventricles. The LV
and RV are asynchronous, moreover the timing of each phase is strictly dependent on the ventricle, as
we can see in Figure 3. Finally, we can rewrite the four phases depicted before to describe the coupled
dynamics of the ventricles:

(1). we begin with the phase in which both ventricles are in the isovolumic contraction phase. The
right ventricular free wall shortens and moves toward the septum, the left ventricular chamber
compresses and shortens [7];

(2). since the pulmonary valve opens before the aortic one (see Figure 3), the RV enters the ejection
phase meanwhile the LV is still in the isovolumic phase;

(3). the opening of the aortic valve determines the beginning of the ejection phase also for the LV. At
this moment, both the chambers are ejecting blood. The ventricles keep contracting until there is
fluid within;

(4). the first valve to close is the aortic one (see Figure 3) and thus the LV enters in the second
isovolumic phase, meanwhile the RV continues the ejection;

(5). when the pulmonary valve closes too both ventricles are in the isovolumic relaxation;

Mathematics in Engineering Volume 2, Issue 4, 614–638.



623

(6). since the tricuspid valve opening occurs before than the mitral one (see Figure 3), the RV is the
first to enter the filling phase;

(7). during the filling phase both pressures pendo,LV(t) and pendo,RV(t) are increasing until reaching the
EDP value.

Figure 3 sheds light on the valves’ dynamics in both right and left parts of the human heart.

Figure 3. Valve movements of the right and left ventricles. For a more detailed image we
refer the reader to [7, Figure 22-8].

4. Numerical discretization

We concisely present the numerical discretization of each single continuous core models introduced
in Section 2. We start with the space semi-discrete formulation and we will end up with the full time
discretization. We perform our numerical coupling through a segregated algorithm strategy, instead of
a monolithic approach.

4.1. Space discretization

As already noticed, we will approximate each of the single core models in the computational
domain with a space discretization based on the FEM. We consider a mesh composed of tetrahedrons
Th, with h representing the maximum size of the elements K ∈ Th, such that ∪K∈Th K = Ω0; the mesh
elements are pairwise disjoint and their union Ω0 ⊂ R

3 is the region of the space identified by the
myocardium at the telediastolic phase of the heartbeat. We denote by Ndof

V ,Ndof
w ,Ndof

d , and Ndof
γ f

the
number of Degrees of Freedom (DoF) (i.e., the size of the discretized single core model) for the
potential, ionic variables, displacement, and fibre shortening, respectively. The underlying number of
nodes determined by the mesh Th is indicated as Nh. Firstly we introduce the finite dimensional space
X1

h =
{
v ∈ C0(Ω0) : v|K ∈ P1(K) ∀K ∈ Th

}
, where P1(K) is the set of polynomials of degree equal to 1

in the element K.

We denote with
{
x j

}Ndof
w

j=1
the set of the degrees of freedom and the value of the l-th ionic variable in

x j by wl
j(t). Similarly, we write V j(t) = Vh(x j, t), and finally rearrange the unknowns in the vector wh(t)

as wh(t) =
{
wl

h(t)
}NI

l=1
and wl

h(t) =
{
wl

j(t)
}Ndof

w

j=1
. Moreover, we denote by {ψi}

Ndof
V

i=1 the lagrangian basis of

X1
h with Ndof

V = dim
(
X1

h

)
. The projection of the solution V(t) on the finite element space X1

h can hence

be written as Vh(t) =
∑Ndof

V
j=1 V j(t)ψ j and the weak semidiscrete formulation of the problem reads: given
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wh(t) and dh(t), find, for all t ∈ (0,T ), Vh(t) such that
MV̇h(t) + K(dh(t))Vh(t) + Iion(Vh(t),wh(t)) = Iapp(t) t ∈ (0,T ),
Vh(0) = V0,h,

ẇh(t) + U(Vh(t))wh(t) = Q(Vh(t)),
wh(0) = w0,h,

(4.1)

whereMi j =
∫

Ω0
ψ jψi dΩ0, Ki j(dh) =

∫
Ω0

(JF−1
h DmF−T

h ∇ψ j) · ∇ψi dΩ0, (Iion(Vh,wh))i =∑
q∈{ f i,so,si}

∫
Ω0

Iq (Vh,wh)ψi dΩ0,
(
Iapp(t)

)
i
=

∫
Ω0

Iapp(t)ψi dΩ0, (Q(Vh))m = αl(V j)w∞l (V j),
(U(Vh))mm = αl(V j)−βl(V j) and m = l Ndof

w + j, for l = 1, . . . ,NI , j = 1, . . . ,Ndof
w . We will use in Eq (4.1)

a lumped mass matrixML in place ofM in order to avoid numerical oscillations as presented in [19].
To proceed with the FEM approximation of the momentum equation (2.2) we denote by [X1

h]3 the

finite dimensional subspace of vector valued functions and by {ψi}
Ndo f

d
i=1 its basis. Recall that, in our case,

the endocardium splits right and left ventricle chambers, as defined in Figure 1, so we have to take into
account two different pressure values. Our semi-discrete formulation for the mechanics reads: given
γ f ,h(t), find, for all t ∈ (0,T ), dh(t) ∈ [X1

h]3 such that:ρsMd̈h(t) + Fḋh(t) + Gdh(t) + S(dh(t), γ f ,h(t)) = pendo,LV(t) + pendo,RV(t) t ∈ (0,T ],
dh(0) = d0,h, ḋh(0) = ḋ0,h,

where, in particular,

Fi j =
∑

η∈{epi,base}

∫
Γ
η
0

(
Cη
⊥(N ⊗ N) + Cη

‖
(I − N ⊗ N)

)
ψ j · ψi dΓ0,

Gi j =
∑

η∈{epi,base}

∫
Γ
η
0

(
Kη
⊥(N ⊗ N) + Kη

‖
(I − N ⊗ N)

)
ψ j · ψi dΓ0,

and
Si(dh(t), γ f ,h(t)) =

∫
Ω0

P(dh, γ f ,h) : ∇0ψi dΩ0.

Finally, we once again use the FEM to discretize in space the equation for the unknown γ f : given ch(t)
and dh(t), find, for all t ∈ (0,T ), γ f ,h(t) ∈ Xh such thatMγ̇ f ,h(t) + εK(c(t))γ f ,h(t) +Φ(c(t),γ f ,h(t),d(t)) = 0 t ∈ (0,T ],

γ f ,h(0) = 0.

4.2. Time discrezation

We naturally proceed with the time discretization of each spatially discretized core model, in the
form of a non-linear system of ODEs. Following the notation defined in [19] we denote by
z = (zw, zV , zγ f , zd)T the block vector containing the unknowns of each single core problem and we
write: 

Mz(t) + T(z(t)) = h(t) t ∈ (0,T ],
z(0) = z0,

żd(0) = ḋ0,h,

(4.2)
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where we define the differential operator

M = diag
(

d
dt
,

d
dt
,

d
dt
,

d2

dt2

)
,

This operator permits us to apply a first order time derivative to the ionic variables, the transmembrane
potential and the fibres shortening, while a second order time derivative to the displacement. We use the
BDF for the time approximation of Eq (4.2), in order to obtain a fully discretized formulation. Hence,
we write:

żi(tn+1) ≈
1
∆t

(
ϑ(I)

0 zn+1
i − zRHS

i

)
, zRHS

i =

σ∑
k=1

ϑ(I)
k zn−k+1

i ,

z̈i(tn+1) ≈
1

(∆t)2

(
ϑ(II)

0 zn+1
i − zRHS

i

)
, zRHS

i =

σ+1∑
k=1

ϑ(II)
k zn−k+1

i ,

where ∆t = T
NT

is the timestep, NT being the number of timesteps, while the parameters ϑ(I)
k , ϑ

(II)
k , k =

0, . . . , σ depend on the order σ of the BDF scheme. We will in particular use BDF of order σ = 2. For
the electrophysiology we use a semi-implicit scheme. However, for the mechanical part, we proceed
with an implicit scheme.

Eventually, in the implicit case, we obtain the following non-linear system:

A(zn+1) = bn+1 n = σ, . . . ,NT − 1, (4.3)

with zk assigned for k = 0, . . . , σ and we set for simplicity ḋ0,h = 0. Problem (4.3) is solved by exploiting
the Newton method [37] at each timestep.

4.3. Fully segregated strategy

We proceed by solving a fully segregated scheme proposed in [20], instead of the previous monolithic
approach used in [4] for the same electromechanical model of both ventricles.

In Figure 4 we graphically represent the time advancement. During each timestep tn, the algorithm
performs in order, for m = 1, ...,Nsub, the following steps:

(1). find wn+ m
Nsub by solving (I): (

ϑI
0

∆t
+ U(v)

)
wn+ m

Nsub =
1
τ

wI + Q(v); (4.4)

(2). use wn+ m
Nsub , obtained from Eq 4.4, to find vn+ m

Nsub by solving (E):(
ϑI

0

∆t
M + K(d) + Iion

v (v,wn+ m
Nsub )

)
vn+ m

Nsub

=
1
τ
MvIIion(v,wn+ m

Nsub ) − Iion
w (v,wn+ m

Nsub )wn+ m
Nsub +MIapp(tn+ m

Nsub );
(4.5)

(3). use wn+ m
Nsub and vn+ m

Nsub , obtained from Eq. 4.4 and Eq. 4.5, to find γ
n+ m

Nsub
f by solving (A):(

ϑI
0

∆t
M + εK(wn+ m

Nsub ) + P
γ f
v (wn+ m

Nsub ,γ f ,d)
)
γ

n+ m
Nsub

f

=
1
τ
MγI

f +Φ(wn+ m
Nsub ,γ f ,d);

(4.6)
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Figure 4. Graphical representation of the time advancement. Image taken from [20].

After Nsub steps, we solve at tn+1, with the Newton method, the implicit mechanics problem (M):

(
ρs

ϑII
0

(∆t)3M +
ϑI

0

∆t
F + G

)
dn+1 + S(dn+1,γn+1

f )

= ρs
1

(∆t)3MdII +
1
∆t
FdI + pendo(tn+1) − S0;

(4.7)

We decided to use a staggered strategy since this has mainly two advantages that result in a faster
computational solution of our problem. First, in a monolithic scheme, the time advancement must
be carried out using the same timestep size ∆t for all the core models involved. Therefore, the small
timestep size required by the electrophysiology is going to be used for the mechanics too, thus solving
the latter more often than “necessary”. Second, we will need both a large amount of memory since
we have to store a highly dense Jacobian matrix and processes to assemble it. In order to overcome
these issues, we follow a segregated algorithm exploiting the Godunov splitting scheme [21]. The latter
consists of properly uncoupling the core problems solving the final system in two consecutive steps at
each timestep.
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4.4. Discretization of the cardiac cycle

We can now proceed with the description of the models used to reproduce the pressure and volume
behaviour inside the ventricles. We will adapt the procedure presented only for the left ventricle in [19]
to the case of both the ventricles. As we have seen rewriting the four phases for the bi-ventricle, we have
to define a model which has to be able to take into account the fact that the ventricles are not aligned
during the cardiac cycle, thus they can be in different phases modelled in a completely distinct way. We
compute the volumes Vendo,LV(t) and Vendo,RV(t) of each chamber at time n by exploiting the formula

Vendo,LV; n =

∫
Γ

endo,LV
0

J(dn
h)ξLV · F−T (dn

h)N dΓ0, (4.8)

Vendo,RV; n =

∫
Γ

endo,RV
0

J(dn
h)ξRV · F−T (dn

h)N dΓ0, (4.9)

which is rigorously derived in [39] and where ξLV and ξRV are vectors spanning the endocardium surface
directed as the centerline of the LV and RV, respectively. We point out that the formulas 4.8 and 4.9 are
valid only in the case in which the base is flat and orthogonal to the centerline.

We then model the endocardial pressures pendo,LV(t) and pendo,RV(t) with different 0D models,
proposed in [14, 19, 39, 49], for each one of the phases presented above (in the following, we drop the
“endo” superscript for simplicity and we leave “LV” or “RV” depending on the ventricle):

(1). Both ventricles in isovolumic phase: We assume that both ventricles begin this phase at t = 0.
At the beginning the endocardial pressures are pLV = 10 mmHg and pRV = 5 mmHg. At each
timestep, we update the pressure in the following manner:

pi,n+1
k+1 = pi,n+1

k −
∆t
ζ i (V i,n+1

k − V i,n) k = 0, . . . (4.10)

here we iterate on k until convergence, with pi,n+1
0 = pi,n, V i,n+1

0 = V i,n, i ∈ {LV,RV}, until the

condition |V i,n+1
k −V i,n |

∆t < ε is satisfied. The parameter ζ i < 0 has to be tuned, it has to be
“sufficiently” large in order for the fixed point algorithm to converge but small “enough” to allow
a quick convergence.The first ventricle to start the second phase is the right one, this happens
when the pressure pRV,n+1

k+1 reaches the value pRV = 15 mmHg.
(2). RV in ejection phase and LV in isovolumic: For the RV ejection phase we will use a two-element

Windkessel model [51] of the form:
CRV dpRV

dt
= −

pRV

RRV −
dVRV

dt
t ∈ (T RV,1,T RV,2]

pRV(T RV,1) = pRV

(4.11)

which is solved in the pressure variable, for simplicity, with a BDF scheme of orderσ = 1 while the
term dVRV

dt is approximated at time n + 1 as VRV,n−VRV,n−1

∆t , for simplicity. T RV,1 and T RV,2 are the initial
and final time of this phase, for the right ventricle in this case, while the parameters CRV ,RRV > 0
represent the capacitance and resistance of the equivalent electric circuit respectively. At the same
time the left ventricular pressure keeps increasing till it reaches the value pLV = 85 mmHg.
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(3). Both ventricles in ejection phase: Here both the pressures are updated through the Windkessel
model: 

Ci dpi

dt
= −

pi

Ri −
dV i

dt
t ∈ (T i,1,T i,2]

pi(T i,1) = pi

(4.12)

where i ∈ {LV, RV}. This phase ends when the (initially negative) term dVLV

dt changes sign.
(4). LV in isovolumic and RV in ejection phase: The second isovolumic phase for the left ventricle is

modelled as the first isovolumic phase. Meanwhile, the RV ejection continues until the (initially
negative) term dVRV

dt changes sign.
(5). Both ventricles in isovolumic phase: This phase is modelled as the first isovolumic phase and ends

when the right ventricular pressure reaches the minimal value of pRV = 5 mmHg.
(6). RV in filling and LV isovolumic phase: At each time step the right ventricular pressure is, for

simplicity, linearly increased so that is reaches the EDP value at the final time T . The LV

isovolumic phase finishes when pLV = 5 mmHg.
(7). Both ventricles in filling phase: At each time step the pressures are linearly increased so that they

reach the EDP value at the final time T .

We have here presented an adaptation of a model previously proposed for the left ventricle only [20],
to the bi-ventricle case, in which the behaviour and the implementation of the various phases of the
heartbeat are asynchronous.

5. Patient–specific mesh and fibres generation

Our geometry has been generated by image segmentation. We will take advantage of a complete
human heart atlas presented in [24]. Since we are interested in modelling only the ventricles, we have
extracted them from the whole heart, so obtaining the patient-specific mesh presented in Figure 5 with
7’718 vertices and 27’636 tetrahedra.

Figure 5. The biventricle 3D mesh.

Mathematics in Engineering Volume 2, Issue 4, 614–638.



629

To generate the fibres configuration we follow the Laplace–Dirichlet Rule-Based (LDRB) algorithm
of [6], which is derived from histological and DTI data. The algorithm consists in extracting the
transmural and apicobasal directions throughout the entire myocardium solving four Laplace equations
with prescribed Dirichlet boundary conditions. The orthotropic fibers direction is obtained by a
continuous interpolation throughout the myocardium passing through a straight-forward adaptation of
quaternion spherical linear interpolation. Following the fibres orientation presented in [3], for a similar
patient-specific bi-venticle geometry, we take different settings for αendo, αepi, βendo and βepi, these will
result similar to the one found in human ventricles (see for examples the fibres obtained in [50]):

(1). αendo = 60◦, αepi = −60◦, βendo = 90◦, βepi = 80◦;
(2). αendo = 55◦, αepi = −55◦, βendo = 90◦, βepi = 80◦;
(3). αendo = 65◦, αepi = −65◦, βendo = 90◦, βepi = 80◦;
(4). αendo = 70◦, αepi = −70◦, βendo = 90◦, βepi = 80◦.

By applying this method with the first set of angles to our geometry we obtain fibres and sheets
displayed in Figure 6.

Figure 6. Fibres (top) and sheets (bottom) on patient-specific mesh with angles αendo = 60◦,
αepi = −60◦, βendo = 90◦, βepi = 80◦.
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6. Numerical results

For our numerical simulations we employ LifeV∗, an open–source finite element library. We apply
the numerical methods implemented in a High Performance Computing framework and the
computation are performed using Piz Daint, a Cray XC50/XC40 supercomputer installed at the Swiss
National Supercomputing Center (CSCS)†. In Table 2 we present the common parameters used
throughout the electromechanical simulations.

Table 2. Parameters used in the electromechanical simulation: transversal and longitudinal
conductivities (mm2

s ); transmurally heterogeneous wall thickening model parameters in
Eq (2.2); activation model coefficients α (µM−2), c0, and µ̂A (µM2 · s) in the four cardiac
phases in Eq (2.2); density ρ ( g

mm3 ); Robin boundary condition coefficients ( kPa
mm and kPa·s

mm ) in
Eqs (2.2)–(2.3); bulk modulus B (kPa), relaxation parameter for the two isochoric phases CI

p

and CII
p ( kPa

mm3 ) in Eq (4.10); Windkessel model parameters C and R (mm3

kPa and kPa·s
mm ) in Eq (4.12).

σt σl λepi λendo kepi kendo k
′

α c0 µ̂1
A µ̂2

A µ̂3
A µ̂4

A ρ

17.61 120.4 0.8 0.5 0.75 1.0 −7.0 −5.0 0.05 2.1 7.0 12 500 10−3

Kepi,LV
⊥ Kepi,RV

⊥ Kbase
⊥ Kepi,LV

‖
Kepi,RV
‖

Kbase
‖

Cepi,LV
⊥ Cepi,RV

⊥ Cbase
⊥ Cepi,LV

‖

12 13 1700 0 0 10−4 5 5 1 0

Cepi,RV
‖

Cbase
‖

CLV,I
p CLV,II

p CRV,I
p CRV,II

p CLV RLV CRV RRV

0 0 −0.045 −0.06 −0.005 −0.06 3.5 0.035 6.0 0.01

We trigger the contraction of the ventricles simulating the propagation of the cardiac action potential
along the myocardium. In physiological conditions the electrical wave follows the pathways prescribed
by the fast conducting Purkinje fibres. To model this behaviour we decided to set delayed stimuli in five
points in the bi-ventricle. The first stimulus is set at t = 0 ms at the centre of the septum, followed by
an impulse next to the apex of each ventricle at t = 2.5 ms and one at the upper part of each free wall at
t = 5.0 ms. In Figure 7 we can see the spreading of the transmembrane potential along the myocardium
at different time steps.

Figure 7. Spreading of the action potential along the myocardium. From left to right the
screenshots are taken at t = 2.0 ms, t = 3.7 ms and t = 6.4 ms.

∗https://www.lifev.org/
†https://www.cscs.ch/
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The electrical activation causes consequent changes in the Ca2+

concentration resulting in mechanical
stretching. We can notice how in Figure 8 the ion concentration and/or the fraction of open ionic
channels on the cellular membrane follows clearly the transmembrane potential spreading along the
cardiac tissue.

Figure 8. Ca2+

concentration at t = 2.9 ms, t = 4.3 ms and t = 6.9 ms.

The presence of calcium in the myocardium drives the mechanical activation and the consequent
contraction and relaxation. In Figure 9 we present the time evolution of both endocardial pressure and
ventricular internal volume together with the pressure-volume (pV) loops using different fibre setting.

Figure 9. Evolution of pressures and volumes vs time and pV loops for different fibres
settings.
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Furthermore, we decided to show the End Systolic Pressure-Volume Relationship (ESPVR), a feature
representing the end-systolic elastance or inotropy, which provides a measure of the tissue contractility.
This quantity is computed as the ratio between the ventricular pressure and volume at the end of the
systolic phase. It can be easily evaluated as the slope of the tangent in the upper left corner of the pV
loop. Even if ESPVR should be computed over different preloads and several heartbeats, we deem this
biomarker to provide meaningful indications even in our simplified setting. In Figure 10 we find the pV
loops together with the value of ESPVR of the left ventricle. It is worth to notice the effect of varying
the fibre orientation on the slope of the ESPVR. We obtained the flattest slope with a fibre direction of
60◦, −60◦, this means that we have a decreased inotropy and so less contractility. All the other settings
showed a steeper ESPVR, therefore varying the fibre orientation resulted in an increased contractility.

Figure 10. The pV loops and the ESPVR for different fibres settings.

Additionally, we wanted to see how an increasing bulk would affect the pressure and volume
evolution along the heart beat, having the same fibre direction (in this case we chose 60◦, −60◦). In
Figure 11 we therefore report the pV loops and the bi-ventricle pressure/volume changes with three
different bulk modulus (B = 1, B = 1.5 and B = 2). We highlight in Figure 12 the behaviour of the
ESPVR with respect to the bulk modulus. As we expected, a lower bulk results in an increased
contractility, since we are enforcing less our incompressibility constraint.

Other important quantities that are commonly exploited in clinical practice are stroke volume (SV)
and ejection fraction (EF). The SV is computed by taking the difference between end-systolic volume
(ESV) and end-diastolic volume (EDV) for a given ventricle. The EF is simply obtained dividing the
SV with the EDV. In formula:

SV = EDV − ESV, EF =
SV

EDV
.

In Tables 3 and 4 we report the values of SV, EF and ESPVR for the different fibre settings and the
various bulk modulus. We notice how for LV the EF is increasing by varying the fibre direction from
−55◦, 55◦ to −70◦, 70◦. However, we obtained the highest value of EF for the right ventricle with a
fibre orientation of −60◦, 60◦. From the simulations keeping fixed the fibres and changing the bulk
modulus, we noticed an opposite behaviour happening in the two ventricles. Incrementing the bulk
modulus resulted in a higher EF in LV and a smaller EF in RV.
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Figure 11. Evolution of pressures and volumes over time and pV loops for different bulk
modulus.

Figure 12. The pV loops and the ESPVR for different bulk modulus.
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Table 3. SV and EF for both left and right ventricles and ESPVR for the left ventricle for
different fibre setting.

Fibre setting
−55◦, 55◦ −60◦, 60◦ −65◦, 65◦ −70◦, 70◦

SVLV [ml] 60.1 60.2 60.5 61.1
SVRV [ml] 49.7 50.6 50.0 49.9
EFLV 45.2% 45.2% 45.5% 46.0%
EFRV 39.8% 40.6% 40.0% 40.0%
ESPVR [mmHg/ml] 1.64 1.58 1.63 1.69

Table 4. SV and EF for both left and right ventricles and ESPVR for the left ventricle for
different bulk modulus.

B
1 1.5 2

SVLV [ml] 60.2 60.4 60.5
SVRV [ml] 50.6 50.5 50.3
EFLV 45.2% 45.4% 45.5%
EFRV 40.6% 40.4% 40.3%
ESPVR [mmHg/ml] 1.58 1.57 1.53

7. Conclusions

In this work, we successfully implemented a segregated method for the electro-mechanical modelling
of both human ventricles in which we exploited a transversal and isotropic model for the mechanical
activation. We simulated one full heartbeat in a bi-ventricular geometry varying both active and passive
mechanical parameters, such as fibre orientation and bulk, realizing pressure-volume loops.

We simulated the action potential propagation across the myocardium solving the monodomain
equation coupled with the minimal ionic model. This leads to mechanical activation and contraction
along the fibres following the action strain approach. We prestressed the geometry and solved a 0D
circulatory models to take into account the blood-endocardium interaction.

We modelled a full heartbeat taking into consideration that the ventricles are asynchronous between
each other, as a consequence each phase of the cardiac cycle is dependent on the ventricle. This complex
joint behaviour is mutually influencing both ventricles through the septum. Future works should better
address the filling stages to represent the full heartbeat in a detailed fashion including in the model both
atria and the muscle contraction.

We performed our numerical simulations in a patient-specific geometry obtaining results
qualitatively comparable with physiological data in healthy patients. Furthermore, we showed how
changing fibres and bulk modulus influenced the pressure and volume evolutions over time of both
ventricles in a different way.

We conclude that macroscopic mechanical indicators like pressure-volume loops, stroke volume,
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ejection fraction, etc. are hardly affected by fibers’ orientation and values of bulk modulus (in a
sufficiently wide range of values). Our findings somehow confirm the results of [8] regarding the
pressure-volume loops of the left ventricle. We expect, however, that fibers direction and bulk modulus
do have a large impact on local mechanical quantities in the tissue, such as stresses and strains.

Acknowledgments

We gratefully acknowledge the Swiss National Supercomputing Center (CSCS) for providing the
CPU resources for the numerical simulations under projects ID s635 and s796. We would like to thank
MER S. Simone Deparis for the support he gave us regarding the LifeV library.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. Ambrosi D, Arioli G, Nobile F, et al. (2011) Electromechanical coupling in cardiac dynamics: The
active strain approach. SIAM J Appl Math 71: 605–621.

2. Ambrosi D, Pezzuto S (2012) Active stress vs. active strain in mechanobiology: constitutive issues.
J Elasticity 107: 199–212.

3. Arevalo HJ, Vadakkumpadan F, Guallar E, et al. (2016) Arrhythmia risk stratification of patients
after myocardial infarction using personalized heart models. Nature Commun 7: 1–8.

4. Azzolin L, Quarteroni A, Dedè L, et al. (2018) Electromechanical modelling of the human heart in
bi-ventricle geometries. MSc thesis, Politecnico di Milano, Italy.

5. Barbarotta L, Rossi S, Dedè L, et al. (2018) A transmurally heterogeneous orthotropic activation
model for ventricular contraction and its numerical validation. Int J Numer Meth Bio 34: 2040–
7939.

6. Bayer J, Blake R, Plank G, et al. (2012) A novel rule-based algorithm for assigning myocardial fiber
orientation to computational heart models. Ann Biomed Eng 40: 2243–2254.

7. Boron W, Boulpaep E (2012) Medical Physiology, Saunders.

8. Bovendeerd PHM, Huyghe J, Arts T, et al. (1994) Influence of endocardial-epicardial crossover of
muscle fibers on left ventricular wall mechanics. J Biomech 27: 941–951.

9. Brenner JI, Baker KR, Berman MA (1980) Prediction of left ventricular pressure in infants with
aortic stenosis. Heart 44: 406–410.

10. Bueno-Orovio A, Cherry E, Fenton F (2008) Minimal model for human ventricular action potentials
in tissue. J Theor Biol 253: 544–560.

11. Chabiniok R, Wang V, Hadjicharalambous M, et al. (2016) Multiphysics and multiscale modelling,
data–model fusion and integration of organ physiology in the clinic: Ventricular cardiac mechanics.
Interface Focus 6: 15–83.

12. Colli Franzone P, Pavarino LF, Savaré G (2006) Computational electrocardiology: Mathematical
and numerical modeling, In: Complex Systems in Biomedicine, Springer, 187–241.

Mathematics in Engineering Volume 2, Issue 4, 614–638.



636

13. Coupé P, Manjón JV, Fonov V, et al. (2011) Patch-based segmentation using expert priors:
Application to hippocampus and ventricle segmentation. NeuroImage 54: 940–954.

14. Eriksson T, Prassl A, Plank G, et al. (2013) Influence of myocardial fiber/sheet orientations on left
ventricular mechanical contraction. Math Mech Solids 18: 592–606.

15. Fedele M, Faggiano E, Dedè L, et al. (2017) A patient specific aortic valve model based on moving
resistive immersed surfaces. Biomech Model Mechan 16: 1779–1803.

16. Formaggia L, Quarteroni A, Veneziani A (2010) Cardiovascular Mathematics: Modeling and
Simulation of the Circulatory System, Springer Science & Business Media.

17. Gerbi A (2018) Numerical approximation of cardiac electro-fluid-mechanical models: Coupling
strategies for large-scale simulation. PhD thesis, Ecole Polytechnique Fédérale de Lausanne,
Switzerland.

18. Gerbi A, Dedè L, Deparis S, et al. The lifev finite elements library: Recent developments and
cardiovascular applications, In: ENUMATH 2017, Voss, Norway.

19. Gerbi A, Dedè L, Quarteroni A (2019) A monolithic algorithm for the simulation of cardiac
electromechanics in the human left ventricle. Mathematics in Engineering 1: 1–37.

20. Gerbi A, Dedè L, Quarteroni A (2018) Segregated algorithms for the numerical simulation of cardiac
electromechanics in the left human ventricle, MOX Report No. 28.

21. Godunov S (1959) A difference method for numerical calculation of discontinuous solutions of the
equations of hydrodynamics. Mat Sbornik 89: 271–306.

22. Goldberger AL, Amaral LAN, Glass L, et al. (2000) Physiobank, physiotoolkit, and physionet:
Components of a new research resource for complex physiologic signals. Circulation 101: e215–
e220.

23. Holzapfel G, Ogden R (2009) Constitutive modelling of passive myocardium: a structurally based
framework for material characterization. Philos T Roy Soc A 367: 3445–3475.

24. Hoogendoorn C, Duchateau N, Sanchez-Quintana D, et al. (2013) A high-resolution atlas and
statistical model of the human heart from multislice CT. IEEE T Med Imaging 32: 28–44.

25. Hsu M, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure
interaction simulation. Finite Elem Anal Des 47: 593–599.

26. Hunter P, Nash M, Sands G (1997) Computational electromechanics of the heart. Comput Biol Heart
12: 347–407.

27. Isgum I, Staring M, Rutten A, et al. (2009) Multi–atlas–based segmentation with local decision
fusion–application to cardiac and aortic segmentation in CT scans. IEEE T Med Imaging 28: 1000–
1010.

28. Krishnamurthy A, Villongco CT, Chuang J (2013) Patient-specific models of cardiac biomechanics.
J Comput Phys 244: 4–21.

29. Lee H, Codella N, Cham M, et al. (2010) Automatic left ventricle segmentation using iterative
thresholding and an active contour model with adaptation on short-axis cardiac mri. IEEE T Biomed
Eng 57: 905–913.

30. Ogden RW (1997) Non-linear Elastic Deformations, Courier Corporation.

Mathematics in Engineering Volume 2, Issue 4, 614–638.



637

31. Organization WH, Cardiovascular diseases (cvds), 2017, Available from:
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).

32. Otto CM (1995) Hurst’s the Heart: Arteries and Veins. JAMA 274: 1640–1641.

33. Pennacchio M, Savaré G, Colli Franzone P (2005) Multiscale modeling for the bioelectric activity
of the heart. SIAM J Math Anal 37: 1333–1370.

34. Potse M, Dubé B, Richer J, et al. (2006) A comparison of monodomain and bidomain reaction–
diffusion models for action potential propagation in the human heart. IEEE T Biomed Eng 53: 2425–
2435.

35. Quarteroni A, Dede’ L, Manzoni A, et al. (2009) Mathematical Modelling of the Human
Cardiovascular System: Data, Numerical Approximation, Clinical Applications, Cambridge
University Press.

36. Quarteroni A, Lassila T, Rossi S, et al. (2017) Integrated heart–coupling multiscale and multiphysics
models for the simulation of the cardiac function. Comput Method Appl M 314: 345–407.

37. Quarteroni A, Sacco R, Saleri F (2010) Numerical Mathematics, Springer Science & Business
Media.

38. Redington AN, Gray HH, Hodson ME, et al. (1988) Characterisation of the normal right ventricular
pressure-volume relation by biplane angiography and simultaneous micromanometer pressure
measurements. Heart 59: 23–30.

39. Rossi S (2014) Anisotropic modeling of cardiac mechanical activation. PhD thesis, EPFL,
Switzerland.

40. Rossi S, Ruiz-Baier R, Pavarino L, et al. (2012) Orthotropic active strain models for the numerical
simulation of cardiac biomechanics. Int J Numer Meth Bio 28: 761–788.

41. Ruiz-Baier R, Gizzi A, Rossi S, et al. (2014) Mathematical modelling of active contraction in
isolated cardiomyocytes. Math Med Biol 31: 259–283.

42. Saffitz J, Kanter H, Green K, et al. (1994) Tissue-specific determinants of anisotropic conduction
velocity in canine atrial and ventricular myocardium. Circ Res 74: 1065–1070.

43. Sainte-Marie J, Chapelle D, Cimrman R, et al. (2006) Modeling and estimation of the cardiac
electromechanical activity. Comput Struct 84: 1743–1759.

44. Santiago A, Aguado-Sierra J, Zavala-Aké M, et al. (2018) Fully coupled fluid-electro-mechanical
model of the human heart for supercomputers. Int J Numer Meth Bio 34: e3140.

45. Smith N, Nickerson D, Crampin E, et al. (2004) Multiscale computational modelling of the heart.
Acta Numer 13: 371–431.

46. Tagliabue A, Dedè L, Quarteroni A (2017) Complex blood flow patterns in an idealized left ventricle:
A numerical study. Chaos 27: 093939.

47. Tagliabue A, Dedè L, Quarteroni A (2017) Fluid dynamics of an idealized left ventricle: The
extended Nitsche’s method for the treatment of heart valves as mixed time varying boundary
conditions. Int J Numer Meth Fl 85: 135–164.

48. Takizawa K, Bazilevs Y, Tezduyar T (2012) Space–time and ale-vms techniques for patient-specific
cardiovascular fluid–structure interaction modeling. Arch Comput Method E 19: 171–225.

Mathematics in Engineering Volume 2, Issue 4, 614–638.



638

49. Usyk T, LeGrice I, McCulloch A (2002) Computational model of three-dimensional cardiac
electromechanics. Comput Visual Sci 4: 249–257.

50. Vadakkumpadan F, Arevalo H, Ceritoglu C, et al. (2012) Image-based estimation of ventricular
fiber orientations for personalized modeling of cardiac electrophysiology. IEEE T Med Imaging 31:
1051–1060.

51. Westerhof N, Lankhaar J, Westerhof B (2009) The arterial windkessel. Med Biol Eng Comput 47:
131–141.

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematics in Engineering Volume 2, Issue 4, 614–638.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Mathematical modelling
	Ionic model and monodomain equation
	Passive and active mechanics
	Prestress

	Cardiac cycle
	Numerical discretization
	Space discretization
	Time discrezation
	Fully segregated strategy
	Discretization of the cardiac cycle

	Patient–specific mesh and fibres generation
	Numerical results
	Conclusions

