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Abstract 

An effective medium model (Polder/van Santen/Böttcher model or PvSB model) was 

considered to describe the dielectric properties of composites as a function of their filler 

dispersion and orientation. The model was experimentally validated using reference samples 

with controlled conditions of dispersion and orientation. 

In addition to the PvSB model, the finite element method (FEM) was applied to simulate the 

dielectric properties of composites. When simulating under the special conditions assumed by 

the PvSB model, both simulations and model agree accurately, except for high concentrations, 

where both start to deviate. Special features that are ignored by the model, like the relative 

distance among fillers or the network formation of fillers, were simulated. Most of these 

features were found to have a negligible impact on the total permittivity of the composite. Only 

the network formation of fillers resulted in a considerable effect. 

Consequently, an extension to the PvSB model (e-PvSB) was proposed to account for the 

contact or networking formation of the fillers in a composite. A new parameter was defined for 

this purpose, the network factor. 

A method was proposed to use the e-PvSB model to obtain morphological information from 

experimental data. The method was applied to estimate, on the basis of permittivity 

measurements, the morphology of polymer nanocomposites with carbon nanotubes and carbon 

black under different conditions of dispersion and alignment. 
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Zusammenfassung 

Ein Effektiv-Medium-Modell (Polder/van Santen/Böttcher-Modell oder PvSB-Modell) wurde 

verwendet, um die dielektrischen Eigenschaften von Verbundwerkstoffen in Abhängigkeit von 

ihrer Füllstoffdispersion und -orientierung zu beschreiben. Das Modell wurde experimentell 

anhand von Referenzproben mit definiert eingestellter Dispersion und Orientierung der 

Füllstoffe validiert. 

Neben der Verwendung des PvSB-Modells, wurde zur Simulation der dielektrischen 

Eigenschaften von Verbundwerkstoffen die Finite-Elemente-Methode (FEM) angewandt. Bei 

geringen Füllstoffkonzentrationen stimmen die Ergebnisse von Simulation und Modell sehr gut 

überein. Bei hohen Konzentrationen beginnen die Ergebnisse voneinander abzuweichen. Die 

vom PvSB Modell nicht berücksichtigten Parameter, wie der relative Abstand zwischen den 

Füllstoffen oder die Netzwerkbildung von Füllstoffen, wurden mit Hilfe der FEM simuliert. Es 

wurde festgestellt, dass die meisten dieser Parameter einen vernachlässigbaren Einfluss auf die 

Gesamtpermittivität des Komposits haben. Lediglich die Netzwerkbildung der Füllstoffe führte 

zu einem erheblichen Effekt.  

Eine Erweiterung des PvSB-Modells (e-PvSB) wurde folglich vorgeschlagen, um die Kontakt- 

oder Netzwerkbildung der Füllstoffe in einem Komposit zu berücksichtigen. Zu diesem Zweck 

wurde ein neuer Parameter definiert, der Netzwerkfaktor. 

Darauf aufbauend wurde eine Methode zur Verwendung des e-PvSB-Modells vorgeschlagen, 

um morphologische Informationen aus experimentellen Daten zu erhalten. Die Methode wurde 

angewandt, um anhand von Messdaten der Permittivität, die Morphologie von Polymer-

Nanokompositen mit Kohlenstoff-Nanoröhren und Ruß unter verschiedenen Zuständen von 

Dispersion und Ausrichtung abzuschätzen. 
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1. Introduction 

1.1 Motivation and goals 

The extraordinary electrical and mechanical properties of nanomaterials like carbon nanotubes 

(CNTs) or graphene make them prime candidates for the development of new nanocomposite 

materials with applications in a wide range of industries [1]–[5]. 

The use of CNTs as high strength, high conductivity, thermoplastic polymer reinforcements has 

been widely reported [6]–[12]. However, the challenge of achieving a good dispersion of CNTs 

in polymeric matrices (due to their tendency to agglomerate) must be overcome in order to fully 

exploit their potential use in such applications. 

The relationship among processing parameters, achieved nanostructure and resulting properties 

of polymer nanocomposites is so far not fully understood [13], [14]. Dielectric spectroscopy is 

a promising volumetric technique to characterise the nanoparticle distribution of polymer 

nanocomposites in industrial environments, as it can be used in a fast and non-destructive way, 

unlike high resolution characterisation techniques, like atomic force microscopy [15] or 

electron microscopy [16]. 

In this thesis, dielectric spectroscopy is explored as a tool to characterize polymer 

nanocomposites with conductive fillers. The experimental requirements and limitations of this 

technique are discussed. A method based on effective medium models is proposed to obtain 

information about the distribution of nanoparticles in polymer composites.  

1.2 Outline 

In chapter 2, the fundamentals of dielectric spectroscopy and effective medium models applied 

to composites are explained. The materials, as well as the fabrication and characterization 

techniques used in this thesis are described in chapter 3. Chapter 4 proposes an effective 

medium model to predict the electrical properties of polymer nanocomposites with conductive 

fillers and provides a method to obtain morphological information from them. In chapters 5 and 

6, this method is applied to experimental data of composites with different degrees of dispersion 

and alignment, respectively. 
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2. State of Research 

2.1 Fundamentals of Dielectric Spectroscopy 

2.1.1 Polarization of Materials 

Dielectric spectroscopy (also known as impedance spectroscopy) is a characterization 

technique in which an alternating electric field is applied to a material. The material’s response 

at different frequencies provides information of its internal structure.  

When an external electric field is applied to a material, there are several mechanisms through 

which it can react to it, creating an internal electric field opposing the external one. Some of 

these mechanisms are [17]: 

• Electronic displacement: The electronic orbitals around atomic nuclei are distorted, so 

that atoms obtain a dipole moment. 

• Ionic displacement: The relative position of anions and cations in a crystalline structure 

changes. 

• Dipole orientation: Molecules or functional groups with a dipole moment get aligned 

or partially aligned to the electric field. 

• Charge migration: Mobile charges (ions, electrons) in the material migrate in the 

direction of the electric filed. 

Each of these mechanisms have a characteristic time scale, i.e., their effect on the material is 

dependent on the frequency of the external electric field. Nowadays, dielectric spectroscopy 

measurements can be performed between 10-6 and 1012 Hz, for which it is often known as 

broadband dielectric spectroscopy [18], [19]. 

When an internal electric field is generated opposing the external electric field, the material is 

effectively storing energy. A measure of how much energy the material can store is permittivity 

(also known as dielectric constant), which directly depends on the mechanisms previously 

described. The frequency dependence of the permittivity of a material can be explained as 

follows (see Figure 1). At low frequencies, all the mechanisms contribute to the permittivity of 

the material. When the frequency is increased, the slower mechanisms can no longer follow the 

electric field and they stop storing energy, thus decreasing permittivity. Eventually, at a high 
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enough frequency, all mechanisms will be unable to follow the electric field and the permittivity 

of empty space will remain.  

 

Figure 1. Characteristic frequency dependence of the real (red) and imaginary (blue) parts of permittivity 

for different dielectric mechanisms. (Reproduced from [20]). 

2.1.2 Maxwell Equations 

Maxwell equations (2-1 to 2-4) must be considered to study the interaction of a material with 

an electric field: 

𝛁 × 𝑬 = −
𝜕𝑩

𝜕𝑡
 2-1 

𝛁 × 𝑯 = 𝒋 +
𝜕𝑫

𝜕𝑡
 2-2 

𝛁 ⋅ 𝑫 = 𝜌𝑒 2-3 

𝛁 ⋅ 𝑩 = 0 2-4 

Where 𝑬  is the electric field, 𝑩  the magnetic induction, 𝑯  the magnetic field, 𝒋  the current 

density and 𝜌𝑒 the density of charges. 

The dielectric displacement (𝑫) is defined as: 

𝑫 = 𝜀∗𝜀0𝑬 2-5 
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Where 𝜀0 is the permittivity of empty space and 𝜀∗ is the complex dielectric function or relative 

permittivity. The relative permittivity is a frequency-dependent magnitude, as described in 

section 2.1.3. In general, 𝜀∗  is a tensor (𝑫  and 𝑬  are vectors), but in this thesis it will be 

considered as a scalar magnitude for the sake of simplicity.  

2.1.3 Mathematical Description  

In dielectric spectroscopy, samples are typically excited with a sinusoidal signal, i.e., an 

alternating voltage1 is applied:  

𝑈(𝜔, 𝑡) = 𝑈0 cos(𝜔𝑡) 2-6 

𝑈(𝜔, 𝑡) is the applied voltage at time 𝑡, 𝑈0 is the amplitude of the signal and 𝜔 is the angular 

frequency, related to frequency (𝑓) by 𝜔 = 2𝜋𝑓. 

In some cases, considering electric field and polarization as input and output, instead of voltage 

and electric current, respectively, is mathematically more convenient (see Table 1). 

The response of the material produces, for linear, causal, time-invariant systems, a sinusoidal 

electric current, with the same frequency but a different amplitude (𝐼0) and phase (𝜙): 

𝐼(𝜔, 𝑡) = 𝐼0 cos(𝜔𝑡 − 𝜙) 2-7 

Most materials behave linearly, or can at least be treated as linear, when applying small 

excitation signals (lower than the thermal voltage, ~25 mV at 25 ºC [21]). 

In Figure 2, sinusoidal input and output signals (voltage and current, respectively) are shown 

versus time. The phase difference, 𝜙, the period or inverse of frequency, 𝑓−1, as well as the 

wave amplitudes, 𝐼0 and 𝑈0, are indicated. 

 
1 From now on, we will consider an applied voltage in a single direction. Therefore, the electric field, 

permittivity and other tensors will be simplified to scalars. 
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Figure 2. Sinusoidal input and output signals (voltage and current, respectively) versus time. The amplitudes 

(𝑼𝟎, 𝑰𝟎), phase difference (𝝓) and period or inverse of frequency (𝒇−𝟏) are indicated. 

It must be noted how the mathematical treatment of dielectric (or impedance) spectroscopy is 

analogous to those of other properties, as shown in Table 1.  

Table 1. Comparison of different experimental methods in the frame of the linear response theory [22]. 

Type of 

experiment 

Disturbance 

𝑥(𝑡) 

Response 

𝑦(𝑡) 

Compliance 

𝐽(𝜏) or 𝐽∗(𝜔) 

Modulus 

𝐺̃(𝜏) or 𝐺∗(𝜔) 

Dielectric 
Electric field 

𝑬 

Polarization 

 𝑷 

Dielectric susceptibility 

𝜒∗(𝜔) = (𝜀∗(𝜔) − 1) 

Electric modulus 

𝑀∗(𝜔) 

Mechanical 

shear 

Shear tension 

𝜎 
Shear angle Shear compliance 𝐽(𝑡) Shear modulus 𝐺(𝑡) 

Isotropic 

compression 

Pressure 

𝑝 

Volume 

𝑉 

Volume compliance 

𝐵(𝑡) 𝑉 

Compression modulus 

𝐾(𝑡) 

Magnetic 
Magnetic field 

𝑯 

Magnetization 

𝑴 

Magnetic susceptibility 

𝝁∗(𝜔) − 1 
- 

Temperature 

change 

Temperature 

𝑇 

Entropy 

𝑆 

Entropy compliance 

𝐽𝑠(𝑡) 

Temperature modulus 

𝐺𝑇(𝑡) 
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2.1.4 Complex Notation and Immitances 

For linear, causal, time-invariant systems, the response to a sinusoidal input can be 

characterized by two magnitudes: the change in amplitude and the change in phase of the 

response with respect to the input. Therefore, it is mathematically convenient to express voltage 

and electric current as complex numbers: 

𝑈∗(𝜔) = 𝑈0𝑒 𝑖𝜔𝑡 2-8 

𝐼∗(𝜔) = 𝐼0𝑒 𝑖𝜔𝑡 2-9 

Impedance is defined as a complex number, similar to the resistance in the Ohm’s law: 

𝑍∗(𝜔) =
𝑈∗(𝜔)

𝐼∗(𝜔)
= 𝑍′(𝜔) + 𝑖𝑍′′(𝜔) 2-10 

Where 𝑍′(𝜔) is the real part of the impedance or resistance and 𝑍′′(𝜔) is the imaginary part of 

the impedance or reactance2. 

Admittance is defined as: 

𝑌∗(𝜔) =
1

𝑍∗(𝜔)
= 𝑌′(𝜔) + 𝑖𝑌′′(𝜔) 2-11 

Where 𝑌′(𝜔) is the real part of the admittance or conductance and 𝑌′′(𝜔) is the imaginary part 

of the admittance or susceptance. The complex conductivity 𝜎∗(𝜔)  is connected with the 

admittance by the sample geometry (for a parallel plate capacitor with distance between 

electrodes (𝑑𝑒) and area (𝐴): 

𝜎∗(𝜔) = 𝑌∗(𝜔)
𝑑𝑒

𝐴
  2-12 

The complex dielectric function or relative permittivity, defined in section 2.1.2, is related to 

impedance through the expression: 

 
2 Reactance is sometimes defined as −𝑍′′, so that it is positive for capacitive systems. 
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𝜀∗(𝜔) =
1

𝜇𝑍∗(𝜔)
=  𝜀′ − 𝑗𝜔𝜀′′  2-13 

Where 𝜇 = 𝑗𝜔𝐶0, with 𝐶0 the capacity of empty space (𝐶0 = 𝜀0
𝐴

𝑑𝑒
for a parallel plate capacitor, 

with 𝜀0 the permittivity of empty space). The complex capacitance 𝐶∗(𝜔) is connected to the 

permittivity through the geometry of the sample: 
𝑑𝑒

𝐴
. 

While the real part of the complex dielectric function (𝜀′) is a measure of how much energy a 

material stores in form of dielectric displacement, the imaginary part ( 𝜀′′, dielectric loss) is a 

measure of how much energy is dissipated through electric currents. 

The electric modulus function (𝑀∗(𝜔)) is defined as the inverse of the complex permittivity. 

The complex functions previously defined are generically called immittances. In Table 2, the 

relationship among the four basic immittance functions is shown. 

Table 2. Relationship among the four basic immittance functions. 𝝁 = 𝒋𝝎𝑪𝟎 with 𝑪𝟎 (empty dielectric cell’s 

capacitance) = 𝜺𝟎𝑨/𝒅𝒆 for a parallel plate capacitor with distance between electrodes 𝒅𝒆 and area 𝑨. 

Function 𝑍∗ 𝑌∗ 𝜀∗ 𝑀∗ 

𝑍∗ 𝑍∗ 𝑌∗−1
 𝜇−1𝜀∗−1

 𝜇−1𝑀∗ 

𝑌∗ 𝑍∗−1
 𝑌∗ 𝜇𝜀∗ 𝜇𝑀∗ −1

 

𝜀∗ 𝜇−1𝑍∗−1
 𝜇−1𝑌∗ 𝜀∗ 𝑀∗−1

 

𝑀∗ 𝜇𝑍∗ 𝜇𝑌∗−1
 𝜀∗−1

 𝑀∗ 

2.1.5 Polarization processes 

Different processes contribute to the complex permittivity of a material [23]: 

• Molecular dipolar fluctuations, known as relaxation processes. They take place, for 

example, in polymers (the effect is measurable when dipolar functional groups are 

present), at temperatures close to the glass transition temperature, when the polymer 

chains have enough mobility to move in response to the electric field. 

• Migration of mobile charges, such as electrons, holes or ions. 

• Separation of charges in an interphase, giving rise to additional polarization. It may 

happen at internal interphases (known as mesoscopic polarization or Maxwell/Wagner 

polarization) or at the surface where the material contacts the electrodes (known as 

macroscopic polarization). Separation of charges are especially important in 
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inhomogeneous materials, like composites, phase separated polymers or crystalline 

polymers [24].  

Each process has different characteristic effects on the complex permittivity, which are shown 

in Figure 3 and will be briefly discussed in the next sections. 

 

Figure 3. Real (blue) and imaginary (red) part of permittivity as a function of angular frequency for a 

material featuring electrode polarization, conductivity and a relaxation process. 

2.1.5.1 Dipolar Fluctuations 

Relaxation processes produce a step-like function in the real part (𝜀′ ) and a peak in the 

imaginary part (𝜀′′) of the complex dielectric function. 

Relaxation processes can be mathematically described by the Debye model, that assumes that 

rigid dipoles, which do not interact with each other, are located in a viscous media, subjected 

to random forces [25]–[27]: 

𝜀∗(𝜔) = 𝜀∞ +  
∆𝜀

1 + 𝑖𝜔𝜏𝐷
 2-14 

With 𝜏𝐷 the Debye relaxation time. The dielectric strength (Δ𝜀) is defined in terms of the static 

permittivity (𝜀𝑠) and the permittivity at the high frequency limit (𝜀∞): 

Δ𝜀 = 𝜀𝑠 − 𝜀∞ 2-15 

𝜀𝑠 = lim
𝜔𝜏𝐷≪1

𝜀′(𝜔)  
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𝜀∞ = lim
𝜔𝜏𝐷≫1

𝜀′(𝜔)  

Most materials do not follow a perfect Debye behaviour, in which log(𝜀′′)  features a 

symmetrical peak versus log(𝜔)as shown in Figure 4. Empirical functions have been proposed 

to account for the discrepancies with experimental data (Cole/Cole function [28], the 

Cole/Davison [29], [30] or the Fuoss/Kirkwood [31] function). The Havriliak-Negami function 

[32], [33] is one of the most broadly used and is a combination of the Cole/Cole and 

Cole/Davidson functions: 

𝜀𝐻𝑁
∗ (𝜔) = 𝜀∞ +  

∆𝜀

(1 + (𝑖𝜔𝜏𝐻𝑁)𝛽)𝛾
 2-16 

Where 𝛽 and 𝛾 are empirical parameters that account for the symmetrical and non-symmetrical 

broadening of the complex dielectric functions, respectively, and are bounded by 𝛽 > 0 

and 𝛽𝛾 ≤ 1. 

 

Figure 4. Complex dielectric permittivity for the Havriliak-Negami function with: (a) 𝜸 = 𝟏   (b) 𝜷 = 𝟏 

(𝝉𝑯𝑵 = 𝟏 [s], 𝚫𝜺 = 𝟏, 𝜺∞ = 𝟏). Reproduced from [23]. 
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It has been reported that dielectric relaxation can be used to study the interphase filler/matrix 

in polymer nanocomposites [34]–[37]. The amorphous phase of polymers with polar functional 

groups presents a relaxation process close to its glass transition temperature [38]–[44], when 

the polymer chains have enough mobility to move in response to the electric field. Some fillers 

may restrict the mobility of those chains and thus suppress the relaxation process in the regions 

of the amorphous phase around the filler. This would allow the quantification of the amount of 

interphase between the amorphous phase and the filler through the dielectric strength (Δ𝜀) of 

the relaxation process. It was a goal of this thesis to reproduce these results to develop a 

technique to quantify the degree of dispersion of nanofillers in a polymer matrix. Experiments 

were made with polylactide and carbon nanotubes, but the results disagreed with the 

abovementioned theory, making it unhelpful for the quantification of dispersion. This approach 

was therefore abandoned in favour of the effective medium approach, that allows a quantitative 

description of the dielectric properties of a composite (in any matrix, not only amorphous 

polymers with polar functional groups) based on its morphological characteristics (see section 

2.2). 

2.1.5.2 Fluctuations of Mobile Charges 

The complex conductivity and the complex dielectric function are related through: 

𝜎∗(𝜔) = 𝜎′(𝜔) + 𝑖𝜎′′(𝜔) = 𝑖𝜔𝜀0𝜀∗(𝜔) 2-17 

And therefore: 

𝜎′(𝜔) = 𝜔𝜀0𝜀′′(𝜔) 2-18 

𝜎′′(𝜔) = 𝜔𝜀0𝜀′(𝜔) 2-19 

For a pure ohmic conductor (𝜎∗ = 𝜎0), only the imaginary part is non-zero: 

𝜀′′(𝜔) =
𝜎𝐷𝐶

𝜀0𝜔
 2-20 

Therefore, the imaginary part of permittivity of a pure ohmic conductor features a straight line 

(with slope -1) in the plot of log(𝜀′′) versus log(𝜔), as represented in Figure 5. 
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Real conductors feature a different behaviour, which is often described using the empirical 

Jonscher function [45], [46]: 

𝜎′(𝜔) = 𝜎𝐷𝐶 + 𝐴𝐽𝜔𝑠 = 𝜎𝐷𝐶[1 + (𝜔𝜏)𝑠] 2-21 

Where 𝜏 is a time constant, while 𝐴𝐽 and 𝑠 are empirical parameters. For 𝜔 ≫ 1/𝜏, a power 

law is obtained, with (0 < 𝑠 ≤ 1). For 𝜔 ≪ 1/𝜏, the DC conductivity, 𝜎𝐷𝐶 , remains. Jonscher 

law fits relatively well experimental data [47]–[49], is not based on any physical interpretation.  

It features a constant DC conductivity at low frequencies, and a frequency-increasing 

conductivity at high frequencies, or alternatively, a high frequency plateau and a low frequency 

constant slope for 𝜀′′, as shown in Figure 5. The critical frequency (𝜔𝐶), which separates both 

regimes, is known to be proportional to the DC conductivity of the material through the 

Barton/Nakajima/Namikawa relationship [50]–[52]: 

𝜔𝑐~𝜎𝐷𝐶  2-22 

 

Figure 5. Imaginary part of permittivity (𝜺′′) for Jonscher processes with 𝒔 = 𝟏 and 𝒔 = 𝟎. 𝟖 and an ohmic 

process (equivalent to a Jonscher process with 𝒔 = 𝟎). 
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2.1.5.3 Separation of Charges: Maxwell/Wagner Polarization 

When mobile charges get blocked at the internal phase boundaries within a material, a 

polarization (known as Maxwell/Wagner polarization or mesoscopic polarization) takes place. 

This polarization produces a strong increase in permittivity at low frequencies. 

The simplest case of Maxwell/Wagner polarization is one in which two layers of different 

materials are in contact (see Figure 6(a)). Both materials are assumed to have frequency-

independent conductivity and permittivity. This case will provide insight into other more 

complex cases and prove that the combination of two materials with frequency-independent 

properties can produce a composite with frequency-dependent properties. 

 

Figure 6. (a) Two layers of different materials in series, with 𝜺𝒊 and 𝝈𝒓𝒊 their permittivity and conductivity, 

respectively. (b) Equivalent circuit, with: 𝑪𝒊, capacity  𝑮𝒊, conductance  𝑨, area of the electrodes  𝑫𝒊, depth 

of the layer 𝒊. Reproduced from [23]. 

The effective properties of the composite can be determined by considering the series 

connection of both materials, as depicted in the circuit in Figure 6(b). The effective permittivity 

of the composite (𝜀(̅𝜔)) can be proved to be: 

𝜀(̅𝜔) = 𝜀∞̅ + 
∆𝜀̅

1 + 𝑖𝜔𝜏𝑀𝑊
 2-23 

For 𝐷1 = 𝐷2 it holds: 

𝜀∞̅ =
𝜀1𝜀2

𝜀1+𝜀2
 2-24 

∆𝜀̅ =
𝜀2𝜎𝑟1+𝜀1𝜎𝑟2

(𝜎𝑟1+𝜎𝑟2)2(𝜀1+𝜀2)
. 2-25 

The relaxation time 𝜏𝑀𝑊 of the interfacial polarization is: 
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𝜏𝑀𝑊 = 𝜀0
𝜀1+𝜀2

𝜎𝑟1+𝜎𝑟2
. 2-26 

It must be noted how equation 2-23 has identical shape to equation 2-14 from the Debye 

model, describing a relaxation process. However, the nature of the process and the physical 

meaning of the terms in the equation are completely different. 

According to equation 2-26, the critical frequency (1/𝜏𝑀𝑊) will increase with the conductivity 

of the materials. Or, in other words, the higher the conductivity, the higher the characteristic 

frequency of the polarization process. 

A more complex model of the Maxwell/Wagner polarization is the Maxwell/Wagner/Sillars 

(MWS) model [53]–[55]. This model assumes spherical particles of a material embedded in a 

matrix of a second material (see Figure 7). 

 

Figure 7. (a) Spherical particle to derive Maxwell´s equations for a suspension. (b) Model to derive the 

mixture equations. The small particles are the same as sketched in (a). Reproduced from [23]. 

The effective permittivity of the composite according to the MWS model is: 

𝜀𝑊𝑀𝑆 = 𝜀1

(2𝜀1 + 𝜀2) − 2𝜈(𝜀1 − 𝜀2)

(2𝜀1 + 𝜀2) + 2𝜈(𝜀1 − 𝜀2)
 2-27 

Where 𝜈 is the volume fraction of the particles. 

Equation 2-27 holds only for low concentrations. Moreover, it only considers the real part of 

permittivity and cannot describe shapes different than perfect spheres. To overcome these 
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limitations, different modifications of these models have been proposed [24], [56]–[61]. In 

section 2.2.3.1, a model that is especially useful to describe the composites considered in this 

thesis is presented. 

2.1.5.4 Separation of Charges: Electrode Polarization 

Electrode polarization is an undesired process that can hide the real properties of a material. It 

may happen with moderately or highly conductive samples. A good electrode/sample contact is 

critical to avoid these effects, as mentioned in section 3.3.1.1. 

Electrode polarization affects the low-frequency region of the spectra. Its magnitude and 

frequency dependency of this polarization depends on the conductivity of the sample. This 

polarization can produce huge values of 𝜀′ and 𝜀′′. The effect of the polarization is often several 

orders of magnitude higher than the real permittivity of the material, making it rarely possible 

to correct the measurements with any mathematical procedure, such as the model described 

hereunder.  

Electrode surfaces have a fractal nature [62]. The following fractal power law has been found 

to describe the electrode polarization: 

𝜀𝐸𝑃
′ (𝜔) − 𝜀𝑠 = 𝐴𝜔−𝜆 2-28 

𝜀𝐸𝑃
′′ (𝜔)~𝜔−𝜆 2-29 

𝜔 >
1

𝜏𝐸𝑃
, 0 < 𝜆 ≤ 1 2-30 

Where 𝜆 (0 < 𝜆 ≤ 1) is a parameter describing the fractal nature of the process and 𝜀𝑠 is the 

static permittivity, due to the orientational polarization [23]. 

2.1.6 Reorientation of CNTs in an Electric Field 

It has been reported [63]–[72] that applying an AC electric field to CNTs in a fluid with a 

relatively low viscosity leads to a reorientation of the CNTs, as well as to the formation of new 

contacts among CNTs due to electrophoretic effects. Based on this, an aligning network-

forming process (described in section 3.2.4) was applied to produce epoxy/CNT composites 

with a certain degree of alignment (see chapter 6). 
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2.2 Fundamentals of Effective Medium Models 

Effective medium models are a type of extended mixture rule for composite materials. In the 

following sections, the fundamentals of effective medium models will be presented. An 

effective medium model will be proposed to predict the permittivity of composites with 

conductive fillers in a non-conductive matrix. 

2.2.1 Mixture Rules for Composites 

Mixture rules describe the macroscopic or effective properties of a composite material as a 

function of: 

• The properties of each component 

• The volume fraction of each component 

• The geometric configuration of the composite 

Theoretical and empirical mixture rules have been proposed for different properties, like 

permittivity, electrical conductivity [73]–[78], thermal conductivity [79]–[82], or elastic 

modulus [83]–[86]. Some of these models are specific for a property, while others are generic 

and can be used for several properties, due to the analogous mathematical treatment of different 

systems (see Table 1 in section 2.1.4). 

2.2.2 Theoretical Bounds: Voigt and Reuss Models 

Every mixture rule must predict properties between two theoretical bounds: the Voigt [87] 

model and the Reuss [88] model, are upper and lower bounds, respectively. 

The Voigt model or upper bound, assumes a parallel distribution of the components with respect 

to the direction of the disturbance (see Figure 8). The effective property (in this case the 

effective permittivity, 𝜀)̅ is calculated as the average of the property of each component (𝜀𝑖), 

weighted with respect to their volume fraction (𝜈𝑖): 

𝜀̅ = ∑𝜈𝑖 𝜀𝑖 2-31 
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Figure 8. Schematic representation of a two-component composite, layered parallel to the disturbance field, 

as stablished in the Voigt model. 

The Reuss model or lower bound, assumes a perpendicular distribution of the components with 

respect to the direction of the disturbance (see Figure 9). The inversed effective property is 

calculated as the average of the inversed property of each component, weighted with respect to 

their volume fraction: 

1

𝜀̅
= ∑

𝜈𝑖 

𝜀𝑖
 2-32 

 

Figure 9. Schematic representation of a two-component composite, layered perpendicular to the disturbance 

field, as stablished in the Reuss model. 



18 2 | State of Research 

2.2.3 Effective Medium Models 

Effective medium models are a type of mixture rule in which a filler is considered to be 

embedded in an effective medium, i.e., in a phase whose properties are equal to the effective 

property of the composite. Embedding the filler in an effective medium allows more exact 

solutions to be derived when the filler concentration is high, in comparison to other models [57]. 

An exact solution for the effective permittivity of a heterogeneous material is impossible to 

achieve (see more details in section 2.2.4). Effective medium models and other mixture rules 

are therefore approximations. 

 

Figure 10. Schematic representation of the effective medium approach. 

2.2.3.1 Polder/van Santen/Böttcher (PvSB) model 

An effective medium model for dielectric properties of a composite with ellipsoidal inclusions 

will be considered in this thesis. The equations were first derived by Böttcher [59] (based on 

the Bruggeman approximation [58]) for spherical fillers, then by Polder and van Santen for 

randomly oriented ellipsoids [60] and alternatively by Hsu [61] for the complex susceptibility. 

From this point, we will refer to this model as the Polder/van Santen/Böttcher model or PvSB 

model. Equations 2-33 and 2-34 represent the PvSB model for oriented and randomly oriented 

ellipsoids, respectively: 

𝜀̅ = 𝜀𝑚 + (𝜀𝑓 − 𝜀𝑚)𝜈
𝜀̅

𝜀 ̅ + (𝜀𝑓 − 𝜀)̅𝐴𝑘
 2-33 
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𝜀̅ = 𝜀𝑚 + (𝜀𝑓 − 𝜀𝑚)
𝜈

3
∑

𝜀̅

𝜀 ̅ + (𝜀𝑓 − 𝜀)̅𝐴𝑘

3

𝑘=1

 2-34 

Where 𝜀,̅ 𝜀𝑚 and 𝜀𝑓 are the permittivities of the composite, matrix and filler, respectively; 𝜈 is 

the volume concentration of the filler; and 𝐴𝑘 is the depolarization factor of the filler in the 𝑘 

direction, which is a function of the aspect ratio of the filler. The case of randomly oriented 

fillers assumes that the fillers are equally aligned with respect to each of the three main 

directions. 

A derivation of these equations is presented in section 2.2.4. 

In equations 2-33 and 2-34, 𝜀 can be substituted by the complex susceptibility, 𝜒∗ [61]: 

𝜒∗̅̅ ̅ = 𝜒𝑚
∗ + (𝜒𝑓

∗ − 𝜒𝑚
∗ )𝜈

𝜒∗̅̅ ̅

𝜒∗̅̅ ̅ + (𝜒𝑓
∗ − 𝜒∗̅̅ ̅)𝐴𝑘

 2-35 

𝜒∗̅̅ ̅ = 𝜒𝑚
∗ + (𝜒𝑓

∗ − 𝜒𝑚
∗ )

𝜈

3
∑

𝜒∗̅̅ ̅

𝜒∗̅̅ ̅ + (𝜒𝑓
∗ − 𝜒∗̅̅ ̅)𝐴𝑘

3

𝑘=1

 2-36 

This formulation is especially convenient when considering conductive fillers in a non-

conductive matrix. In that case, matrix and filler can be entirely described by permittivity (𝜒𝑚
∗ =

𝑖𝜔𝜀𝑚′) and DC conductivity (𝜒𝑓
∗ = 𝜎𝐷𝐶,𝑓), respectively [61]. 

The PvSB model was chosen as the most suitable to describe the composite materials 

considered in this thesis for several reasons:  

- It can model the geometry of typical conductive nanofillers like carbon nanotubes, 

graphene or carbon black, as explained in section 2.2.4. 

- It can predict the dielectric properties of composites with higher concentrations better 

than other kind of models, like mean field models (Wagner/Sillars model [54], [55], 

explained in section 2.1.5.3; Fricke model [62], [89], for conductive fillers covered by 

a non-conductive surface membrane), based on the Maxwell/Garnett approximation 

[90], which is only applicable for dilute composites. 

- It fits well to experimental data: In [57], different methods for calculating the dielectric 

properties of heterogeneous mixtures (including mean field, effective medium and 
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integral methods) are discussed and compared to experimental results. The PvSB model 

fits to experimental data from composites with non-spherical fillers with an error lower 

than 1 % for volume concentrations below 20 %. 

However, there are some known limitations to the applicability of this model. The equations of 

the PvSB are only exact for composites in which the properties of the components are similar 

within two orders of magnitudes and when contact resistance and electron tunnelling are 

negligible [61]. In other words, for composites with conductive fillers in a non-conductive 

matrix, the PvSB model may deviate from an exact solution (deviations in the prediction of the 

percolation threshold are known [61], [91]) due to the lack of consideration of the network 

formation of conductive fillers). Therefore, a modification of the PvSB model is proposed in 

this thesis to account for the neglected effects of filler networks (see section 4.4).  

2.2.4 Derivation of the PvSB Model 

The equations of the PvSB model are derived in this section, as reported by Polder and van 

Santen [60]. 

We assume that a composite material, with one or more fillers, is placed between a parallel 

infinite plate capacitor. The components of the composites will be assumed to be isotropic for 

simplicity. The permittivity of the composite relates the electric field and the electric 

displacement (see section 2.1.2) as follow: 

𝑫̅ = 𝜀 𝑬̅ 2-37 

Where 𝑬̅ and 𝑫̅ are the effective electric field and electric displacement, which are the average 

electric field and electric displacement for an arbitrary volume in the middle of the capacitor, 

whose size is much larger than an individual particle of filler, but much smaller than the distance 

between the plates of the capacitor. 

By multiplying equation 2-37 by the volume (𝑉) of the material and decomposing to into filler 

(𝑓) and matrix (𝑚) we obtain: 

𝑉𝑫̅ = ∫ 𝜀𝑚𝑬𝑑𝑣
𝑉𝑚

+ ∑  

𝑓

∫ 𝜀𝑓𝑬𝑑𝑣
𝑉𝑓

= 𝑉𝜀𝑚𝑬̅ +  ∑  

𝑓

∫ (𝜀𝑓 − 𝜀𝑚)𝑬𝑑𝑣
𝑉𝑓

 
2-38 
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Equation 2-38 can be rewritten as: 

𝑫̅ = 𝜀𝑚𝑬̅ + ∑ 𝜈𝑓

𝑓

(𝜀𝑓 − 𝜀𝑚)
1

𝑉𝑓
∫ 𝑬𝑑𝑣

𝑉𝑓

 
2-39 

In which 𝜈𝑓 is the volume concentration of the filler 𝑓 with permittivity 𝜀𝑓. It can be seen in 

equation 2-39 that a mean value of the electric field in the interior of the fillers must be found. 

There is no exact solution for this equation [60]. An assumption will be made to obtain an 

approximate solution: the particle is surrounded by an effective medium whose permittivity is 

equal to the effective permittivity of the composite, in which the effective electric field 𝑬̅ is 

homogenous at large distances from the particle. 

The mean field inside the particle 𝑬̅𝑖 can be now set to be proportional to 𝑬̅: 

𝑬𝑖
(𝑘)

= ∑ 𝜶𝑘𝑞
(𝑓)

𝑙

(𝜀)̅ 𝐸̅(𝑙), (k, l = 1, 2, 3) 
2-40 

Where 𝜶 is a tensor depending on the effective permittivity (𝜀)̅, the permittivity of the fillers, 

the geometry of the fillers and the orientation of the fillers. 

Assuming that all fillers have the same shape and are randomly oriented, the mean field inside 

the particle can be approximated by: 

1

𝑉𝑓
∫ 𝑬𝑑𝑣

𝑉𝑓

=
1

3
(𝜶11

(𝑓)
+  𝜶22

(𝑓)
+ 𝜶33

(𝑓)
)𝑬̅ = 𝜶(𝑓)(𝜀)̅𝑬̅ 

2-41 

Due to the random orientation, only the diagonal components of 𝜶 are non-zero. Introducing 

2-41 into 2-39 and making use of 2-37, we obtain: 

𝜀′ = 𝜀𝑓 + ∑ 𝜈𝑓(𝜀𝑓 − 𝜀𝑚)𝛼(𝑓)(𝜀)̅ 2-42 

It must be noted that 2-42 cannot be, in general, algebraically solved for 𝜀 ̅(although in some 

cases it reduces to a second or third order polynomial). 
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An expression for 𝛼(𝑓)  can be derived for ellipsoidal3  particles. For an electric field in the 

direction 𝑘 the ellipsoid will be polarized homogenously and 2-40 will give: 

𝐸𝑞
(𝑘)

=
𝐸̅(𝑘)

1 + (
𝜀𝑓

𝜀′
− 1) 𝐴𝑘

 
2-43 

Where 𝐴𝑘 is the depolarization factor in the direction 𝑘. 

Using 2-43, equation 2-42 leads to an expression for the effective permittivity of the composite: 

𝜀̅ = 𝜀𝑚 + (𝜀𝑓 − 𝜀𝑚)
𝜈

3
∑

𝜀̅

𝜀 ̅ + (𝜀𝑓 − 𝜀)̅𝐴𝑘

3

𝑘=1

 2-44 

𝐴𝑘 can be calculated by the elliptical integral for an ellipsoid with semi-axis 𝑎, 𝑏 and 𝑐, in the 

directions 𝑘 = 1, 𝑘 = 2, 𝑘 = 3, respectively [60]. For 𝑘 = 1:  

𝐴1 =
𝑎𝑏𝑐

2
∫

𝑑𝑢

(𝑎2 + 𝑢)√(𝑎2 + 𝑢)(𝑏2 + 𝑢)(𝑐2 + 𝑢)

∞

0

 2-45 

For a prolate ellipsoid (𝑎 > 𝑏 = 𝑐), the depolarization factor is: 

𝐴1 = [−𝐴𝑅/(𝐴𝑅2 − 1)3/2][𝑒𝑝 − 𝑡𝑎𝑛ℎ−1(𝑒𝑝)] 2-46 

Where tanh-1 is the inverse hyperbolic tangent and 𝑒𝑝 is the eccentricity of a prolate ellipsoid: 

𝑒𝑝 = [1 − (1/𝐴𝑅)2]1/2 2-47 

Being 𝐴𝑅 = a/b the aspect ratio of the ellipsoid, here defined as greater than one for prolate 

and lower than one for oblate ellipsoids. 

 
3 An ellipsoid can be seen as a deformed sphere with three different axes (𝑎, 𝑏, 𝑐) in three orthogonal directions 

(𝑥, 𝑦, 𝑧): 
𝑥2

𝑎2 +
𝑦2

𝑏2 +
𝑧2

𝑐2 = 1.When two of those axes are equal, the ellipsoid is called ellipsoid of revolution or 

spheroid. The unequal axis can be longer (𝑎 > 𝑏 = 𝑐) or shorter (𝑎 < 𝑏 = 𝑐) than the others, in which case 

we get prolate and oblate ellipsoids, respectively (see Table 4 in page 25). 
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For an oblate ellipsoid (𝑎 < 𝑏 = 𝑐), the depolarization factor is: 

𝐴1 = [𝐴𝑅/(1 − 𝐴𝑅2)3/2][𝑒𝑜 − 𝑡𝑎𝑛−1(𝑒𝑜)] 2-48 

Where 𝑒0 is the eccentricity of an oblate ellipsoid: 

𝑒𝑜 = [(1/𝐴𝑅)2 − 1]1/2 2-49 

For any ellipsoid, it applies: 

𝐴1 + 𝐴2 + 𝐴3 = 1 2-50 

The depolarization factors of some special geometries are listed in Table 3, while their 

dependence on the aspect ratio of the particle is shown in Figure 11. 

 

Table 3. Depolarization factors for specific geometries. 

Shape Similar filler Aspect ratio 
Depolarization 

factors (𝑨𝟏, 𝑨𝟐, 𝑨𝟑) 

Needle-like Carbon nanotube >>1 (0,
1

2
 ,

1

2
) 

Sphere Carbon black 1 (
1

3
,
1

3
,
1

3
) 

Disc-shaped Graphene <<1 (1,0,0) 
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Figure 11. Parallel (𝑨𝟏) and perpendicular (𝑨𝟐 = 𝑨𝟑) depolarization factors of spheroids as a function of 

the aspect ratio (𝑨𝑹). The convention for orientation described in section  2.2.5 is applied. 

2.2.5 Convention for Orientation 

The alignment of an ellipsoid of revolution or spheroid with respect to the electric field is 

referred to its unequal axis. Following this convention, spheroids will be said to be aligned 

parallel or perpendicular to the electric field as described in Table 4. The convention, which is 

appropriate for the consistency of the equations, might be counterintuitive for the case of oblate 

fillers. 
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Table 4. Convention for parallel and perpendicular orientation for ellipsoids of revolution, with respect to 

an electric field in the vertical direction. 

 Prolate Oblate 

Parallel 

 

 

Perpendicular 
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3. Experimental 

3.1 Materials 

The materials used in this thesis are described hereunder. The mentioned property values were 

provided by the fabricants. 

3.1.1 Multi-Walled Carbon Nanotubes 

Multi-walled carbon nanotubes (MWNT) were provided by Nanocyl: NC7000™. They are 

produced by catalytic chemical vapour deposition. According to the technical specifications of 

Nanocyl [92], NC7000™ have an average diameter of 9.5 nm and an average length of 1.5 μm, 

as measured through transmission electron microscopy (TEM). The carbon purity is 90 % as 

measured through thermogravimetric analysis (TGA). The powder volume resistivity of 

NC7000™ is 1 mΩ·m. 

3.1.2 Single-Walled Carbon Nanotubes 

Single-walled carbon nanotubes (SWNT) were provided by OCSiAl: Tuball™. According to 

the technical specifications [93] of OCSiAl, Tuball™ have an outer diameter of 1.6±0.4 nm and 

an average length of 5 μm as measured through TEM and atomic force microscopy (AFM), 

respectively. They consist of a mixture of metallic and semiconductive SWNT, whose 

proportions are not specified. The carbon purity as measured through TGA is 85 %. 

3.1.3 Carbon Black 

Carbon black (CB) was provided by Unipetrol: Chezacarb AC60. According to the technical 

specifications of Unipetrol [94], Chezacarb AC60 have an powder electrical resistivity equal or 

lower than 0.8 Ω·m. Their carbon purity is around 97 %. 

3.1.4 Polylactide 

Polylactide, also known as polylactic acid (PLA), was provided by Corbion (Total): Luminy 

130 (L130). With respect to chirality, L130 is a poly-L-lactide (PLLA). According to the 

technical specifications [95], the glass transition and melting temperatures of L130 are 57 ºC 

and 175 ºC, respectively. Its melting flow index (MFI) is 25 (flow, 210 ºC/2.16 kg). 
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3.1.5 Epoxy 

The epoxy was provided by Hexion: EPIKOTE RIMR426 (resin) and RIMH433 (curing agent) 

[96]. The resin/curing agent mixture has low viscosity values, 100-900 mPa·s between 15 ºC 

and 50 ºC. The low viscosity facilitates the reorientation of fillers in it, as described in section 

3.2.4.  

3.1.6 Wax 

The wax used was Rubitherm’s RT42 [97]. Due to its low melting point, 42 ºC, it was 

convenient to fabricate the reference samples of section 4.2. After partial melting and 

solidification, a good contact with electrodes can be achieved, which is crucial for the 

reproducibility of dielectric measurements. 

3.2 Production 

3.2.1 Compounding of Composites from PLA with MWNT or CB 

Composites of MWNT or CB in PLA were compounded in a Leistritz Micro 27 mm 40 L/D 

twin-screw extruder by Kevin Moser at Fraunhofer ICT within the Bio4Self project. A 

masterbatch of PLA + 1 wt% MWNT and PLA + 1 wt% composites were kindly provided to 

be used in this thesis.  

 

Figure 12. Leistritz Micro 27 mm 40 L/D Extruder. 

Alternatively, composites with same materials and concentrations were compounded using a 

Thermo Haake™ MiniLab with conical counter-rotating screws. The compounding took place 

in a continuous mode at 190 ºC with a screw speed of 50 rpm. 
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Figure 13. Thermo Haake™ MiniLab with conical counter-rotating screws. 

The compounding with the Haake™ extruder was intentionally performed with a screw 

configuration that provide a suboptimal mixing of matrix and filler. The composites produced 

in this way were labelled as “bad dispersion” composites, in contrast to the ones produced with 

the Leistritz extruder, which operated with optimal processing parameters to produce 

composites with “good dispersion”. 

Masterbatches with both good and bad dispersions were diluted in the Haake™ extruder to 

produce PLA/CB composites with filler concentrations between 0.05 wt% and 0.5 wt% and 

PLA/CNT composites with filler concentrations between 0.01 wt% and 0.5 wt%. Because 

PLA/CNT composites have a lower percolation threshold, they were diluted to lower 

concentrations so that more low-conductive samples were available for the dielectric 

measurements. 

The dilution with the Haake™ extruder did not alter the difference in dispersion between the 

good and bad dispersion composites (see micrographs in section 5.2). 

3.2.2 Sample Preparation of PLA Composites 

Round disk-shaped samples with 40 mm in diameter and 0.5 mm thick were fabricated by 

compression moulding in order to perform the dielectric characterization. A Collin P 200 P/M 

press was used. Pellets of the composites were placed in metallic moulds between plates and 

covered by Kapton® films to avoid adherence to the plates. The compression took place at 
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190 ºC under 2 bar for 3 minutes, followed by 10 bar for 2 minutes and 80 bar for 3 minutes. 

The samples were then removed from the press and rapidly cooled down in water at room 

temperature to produce amorphous phase in the polymer. 

Films with a thickness of 90 μm were produced in a similar way (substituting the metallic 

moulds with Kapton® moulds) to characterize them with transmission optical microscopy. 

3.2.3 Three-Roll Milling of Epoxy/SWNT Suspensions 

Epoxy/SWNT suspensions were obtained by three-roll milling by Marco Marcellan at 

Fraunhofer ICT and were kindly provided by Manuel Morais (Fraunhofer ICT). The 

suspensions were made in a regressive program at a fixed roll speed of 180 rpm. A total of 8 

passes were performed with decreasing roll gaps: 2 passes with gaps of 60 μm and 20 μm, 2 

passes with gaps of 30 μm and 10 μm and finally 4 passes with gaps of 15 μm and 5 μm. Resins 

were produced at different SWNT concentrations: 0.0005 wt%, 0.001 wt%, 0.005 wt% and 

0.01 wt%. 

3.2.4 Sample Preparation of Epoxy Composites 

The epoxy/SWNT suspensions were cured for 50 minutes at 100 ºC in the cell shown in Figure 

14. This cell was designed to allow dielectric measurement during the curing process of the 

epoxy. The suspension was poured into silicon ring mould with an internal diameter of 20 mm 

and a thickness of 2 mm, within an aluminium recipient. An aluminium cover enclosed the 

suspension in the ring, so that electrical contact is made at the top and bottom surfaces. Excess 

suspension can flow out and can be later removed.  

 

Figure 14. Profile view of the cell where the epoxy/SWNT suspensions were simultaneously cured and 

characterized. 

The cell was installed in a sample holder for dielectric measurements (see section 3.3.1.1) and 

placed in an oven with a controlled temperature of 100 ºC.  
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This setup allows the monitorization of the dielectric properties of the sample during the curing 

process. Moreover, some samples were subjected to a relatively strong AC electric field 

(100 𝑉rms, for a thickness of 2 mm) at a frequency of 1 MHz to influence the position of the 

SWNT in the resin (as explained in section 2.1.6).  

3.2.5 Reference Samples with Controlled Morphology 

Reference samples were fabricated with controlled shape and orientation of fillers (see Figure 

15). Wax (Rubitherm RT42) was chosen as matrix due to its mouldability. After partial melting 

and solidification, a good contact with the electrodes was achieved, which is crucial for the 

reproducibility of the dielectric measurements. Silver and graphite filaments were chosen as 

conductive fillers. Graphite was chosen as a macroscopic “equivalent” of CNTs. Silver was 

easier to handle during the fabrication process and served to test the effect of different 

conductive materials. 

 

Figure 15. Schematic representation of the reference samples for the cases of parallel (left) and 

perpendicular (right) alignment with respect to the electric field. 

The dielectric properties of the samples were measured in a parallel-plate capacitor 

configuration. The samples were disk-shaped with 20 mm diameter and 2 mm thickness. Due 

to fabrication limitations, the thickness could not be lower. Although these dimensions are not 

optimal for the determination of the dielectric constant (border effects are high, as explained in 

section 3.3.1.2.1), the apparent dielectric constant can be used to compare the samples with the 

model.  

Graphite and silver fillers in form of short fibres (1.7 mm length, 0.6 mm diameter) were 

manually included in the matrix vertically and horizontally, with nominal volume 

concentrations of 2 % and 4 %. They were placed in the middle of the samples to avoid direct 

contact with the electrodes. 
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3.3 Characterization  

3.3.1 Volume versus Mass Concentrations 

Mass concentrations are typically more convenient than volume concentrations for composites, 

as the mass of matrix and fillers can be easily measured and do not change after the 

compounding. However, volume concentrations are more relevant when considering effective 

medium models. Therefore, the volume concentration was calculated for all the composites 

considered in this thesis.  

The density of the filler must be obtained for this purpose. The density of CNTs was calculated 

as follow [98], [99]: 

The average volume of CNTs (𝑉𝐶𝑁𝑇), considering them as cylinders with hemispheres at both 

bases [100], [101], is: 

𝑉𝐶𝑁𝑇 =
𝜋

6
𝐷𝐶𝑁𝑇

3 + 𝐷𝐶𝑁𝑇
2 𝐿𝐶𝑁𝑇 3-1 

With 𝐷𝐶𝑁𝑇 and 𝐿𝐶𝑁𝑇 the average diameter and length of CNTs.  

The average mass of CNTs 𝑚𝐶𝑁𝑇: 

𝑚𝐶𝑁𝑇 = 𝑆𝑡𝑜𝑡𝜎𝐶  3-2 

Where 𝑆𝑡𝑜𝑡 is the total surface of layers and 𝜎𝐶  the surface density of carbon: 

𝑆𝑡𝑜𝑡 = 𝜋𝐿𝐶𝑁𝑇𝑁(𝐷𝐶𝑁𝑇 − 𝑁𝛿) 3-3 

𝜎𝐶 =
4𝑚𝑎

3√3𝑎𝐶−𝐶
2

 3-4 

Where 𝑁 is number of layers in CNTs, 𝛿=0.335 nm is the distance between layers, 𝑚𝑎 is the 

atomic mass of carbon and 𝑎𝐶−𝐶 = 0.142 nm is the distance between carbon atoms. 

Finally, the average density of CNTs is: 
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𝜌𝐶𝑁𝑇 =
𝑚𝐶𝑁𝑇

𝑉𝐶𝑁𝑇
 3-5 

The volume concentration (𝜈) can be obtained as a function of the mass concentration (𝑤): 

𝜈 =
1

1 +
1 − 𝑤

𝑤
𝜌𝑓𝑖𝑙𝑙𝑒𝑟

𝜌𝑝𝑜𝑙𝑦𝑚𝑒𝑟

 
3-6 

Where 𝜌𝑓𝑖𝑙𝑙𝑒𝑟 and 𝜌𝑝𝑜𝑙𝑦𝑚𝑒𝑟 are the densities of the filler and the polymer, respectively. 

3.3.1.1 Dielectric Measurements 

A setup was developed to measure dielectric properties at controlled temperatures from -100 °C 

to 400 °C. The components of the setup are depicted in Figure 16.  

 

Figure 16. Experimental setup for the measurement of dielectric properties at controlled temperatures. 

The sample holder is a Novocontrol BDS1200. The sample cell has a parallel-plate capacitor 

configuration. A metallic shielding covering the sample cell avoids electrical noise. The sample 

cell is designed for temperatures between -200 °C and 400 °C and includes a Pt100 element, to 

measure the temperature below the lower electrode. 
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The impedance analyser is a Novocontrol Alpha Analyser (kindly provided by Dr.-Ing. 

Wolfgang Menesklou, Institut für Angewandte Materialien - Werkstoffe der Elektrotechnik 

(IAM-WET), Karlsruhe Institut für Technologie (KIT)), providing high precision 

measurements of high resistive sample (|Z| ± 0.01 %, phase angle ± 0.002°). 

An oven was adapted to fit the BDS1200 sample holder, where temperatures up to 400 °C can 

be reached.  

Disk-shaped samples were measured in a parallel-plate configuration. Samples were sputtered 

with gold on opposite surfaces to improve the contact with the electrodes of the sample holder. 

In this way, electrode polarization (described in section 2.1.5.4) is avoided and measurements 

are reproducible. 

3.3.1.2 Optimal Sample Dimensions for Dielectric Measurements 

Choosing the appropriate sample dimensions is critical for the determination of permittivity. 

Two opposing effects are playing a role: 

• Border effects are only negligible for thin samples. 

• Too high conductivities, outside of the instrumental range for permittivity 

determination, are obtained for thin samples. 

3.3.1.2.1 Border Effects on Dielectric Measurements 

The determination of the permittivity of a material in a parallel-plate capacitor configuration is 

provided by: 

𝐶 = 𝜀𝜀0

𝐴

𝑑
 3-7 

However, equation 3-7 assumes that the material is placed between infinite parallel electrodes. 

In practice, the finite area of the electrode give rise to border effects (Figure 17). The electric 

field is therefore non-uniform close to the borders, affecting the observed permittivity 

calculated with the previous equation. 
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Figure 17. Representation of an infinite parallel-plate capacitor (left) and border or fringing effects on a 

real finite capacitor (right). 

The border effects were theoretically analysed by Kirchhoff [102] for parallel cylindrical 

electrodes: 

𝐶𝑒𝑑𝑔𝑒

𝐶0
=

2𝑑𝑒

𝜋𝐷𝑒
[ln (

8𝜋𝐷𝑒

𝑑𝑒
) − 3 + 𝑧(𝑥)] 3-8 

𝑧(𝑥) = (1 + 𝑥) ln(1 + 𝑥) − 𝑥 ln(𝑥) , 𝑥 =
𝑡𝑒

𝑑𝑒
 3-9 

𝐶0 = 𝜀0

𝜋
4 𝐷𝑒

2

𝑑𝑒
  3-10 

Where 𝐷𝑒 is the electrode diameter; 𝑑𝑒is the distance between the electrodes; 𝑡𝑒 is the thickness 

of the electrodes; and 𝜀0 is the permittivity of empty space. 

The influence of the border effects was simulated in Comsol Multiphysics® (more details on 

simulations in section 4.3) for a 40 mm diameter electrode (dimensions of the electrodes used 

for the samples in chapter 5) with different thickness. The results of the simulations, as well as 

the predictions of Kirchhoff’s equation, are shown in Figure 18 in terms of the deviation of the 

apparent permittivity with respect to the real permittivity of the material, i.e., the ratio of the 

observed permittivity to the actual material’s permittivity. 
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Figure 18. Relative influence of the border effects for a 40 mm diameter electrode for different thicknesses. 

Comparison of theoretical values with FEM (finite element method) simulations in Comsol Multiphysics®. 

It can be observed that, for samples with thickness over 1mm, the deviation of the apparent 

permittivity with respect to the real permittivity of the material is over 10 %. Therefore, 

thicknesses lower than 1 mm are advisable. These border effects can be quantified and used to 

correct the measurement results. However, if the border effects are in the same order of 

magnitude or higher than the material’s permittivity (deviation in Figure 18 equal or greater 

than 100 %), the precision of the measurement will be considerable reduced. 

3.3.1.2.2 Instrumental Accuracy for Conductive Samples 

In the case of conductive samples, the instrumental accuracy of the impedance analyser might 

be considerable reduced. In Figure 19, the accuracy specification of Novocontrol’s Alpha 

impedance analyser is shown. 



3 | Experimental 37 

 

Figure 19. Novocontrol's Alpha impedance analyzer accuracy specification [103]. 

Samples with impedances lower than 10 Ω at 1 kHz provide phase errors higher than 0.6°, 

which provides unacceptable values of capacitance. 

For the PLA composites of chapter 5, the optimal thickness was found to be 0.5 mm. The 

thickness of the epoxy composites of chapter 6 is 2 mm, implying relatively high errors in the 

determination of the absolute value of permittivity.  

3.3.2 Scanning Electron Microscopy (SEM) 

The PLA composites of chapter 5 were characterised using SEM. Pellets of different composites 

were fractured at cryogenic conditions, in order to expose internal sections of the composites 

without incurring in plastic deformation of the sample, which might alter the position of the 

fillers. 

Secondary electrons were collected with the in-lense detector, using an EHT (extra high tension 

or accelerating tension) of 3 kV. With this configuration, electrons do not penetrate deep into 

the material, i.e., SEM images show features on the surface or very close to it. 

3.3.3 Transmission Optical Microscopy (TOM) 

TOM images were taken of composite films of 90 μm thickness using a Leica DFC295. All 

images were taken with the same conditions of illumination, augmentation and exposure time. 
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The TOM images were analysed using the software ImageJ, in order to quantify the area of 

observable agglomerates in the composite. Pictures were converted to 8-bit images. The area of 

agglomerates was discriminated using the so-called Minimum Method [104]. 

A total of 10 images were taken per material and the average fraction area of agglomerate was 

calculated. 
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4. Modelling and Simulation of Dielectric Properties 

The PvSB model can only be applied to ideal composites, as described in section 2.2.3.1. The 

PvSB model was experimentally validated using composites fabricated with controlled 

morphologies (section 4.2). Additionally, the PvSB model was compared with simulations of 

ideal composites (section 4.3.2). 

In section 4.3.3, simulations of composites with different non-ideal features, typical in real 

composite, are presented. An extended PvSB model is derived from the results of these 

simulations (section 4.4). However, the extended PvSB model could not be experimentally 

validated, due to the complexity of producing real composites with controlled morphologies. 

A methodology is proposed in section 4.5 to obtain morphological information from 

experimental data using the extended PvSB model.  

4.1 PvSB Model for Composites with Conductive Fillers 

4.1.1 Reformulation of the PvSB Model 

The PvSB model (equations 2-33 and 2-34) can be reformulated into a more convenient form 

for the purpose of this thesis: 

𝜀̅ = 𝜀𝑚 + (𝜀𝑓 − 𝜀𝑚) [𝜈𝑓∥

𝜀̅

𝜀 ̅ + (𝜀𝑓 − 𝜀)̅𝐴𝑓∥
+ 𝜈𝑓⊥

𝜀̅

𝜀 ̅ + (𝜀𝑓 − 𝜀)̅𝐴𝑓∥
] 4-1 

Where the fillers have been divided into parallel (∥) and perpendicular (⊥) to the electric field. 

It must be noted that every filler whose main axis is within a plane perpendicular to the electric 

field, has the same depolarization factor, whatever its orientation within that plane. 

It is therefore possible to define an alignment parameter (𝑎) as follows: 

𝑎 =
𝜈∥

𝜈∥ + 𝜈⊥ 
=

𝜈∥

𝜈𝑓
 

4-2 

Which represents the volume fraction of the fillers that are parallel to the electric field. When 

all the fillers are aligned parallel to the electric field, 𝑎 = 1; when all fillers are perpendicular 
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to the electric field, 𝑎 = 0 ; when the fillers are randomly oriented, 𝑎 = 1/3  (in a random 

configuration, the average orientation of the fillers contribute to the three orthogonal directions 

in the same amount). 

 

Figure 20. Definition of the alignment parameter, a, and schematic representation of composites for different 

values of a: 1, 1/3 and 0. 

Introducing the alignment parameter from 4-2 into 4-1, it remains: 

𝜀̅ = 𝜀𝑚 + (𝜀𝑓 − 𝜀𝑚)𝜈𝑓 [𝑎
𝜀̅

𝜀 ̅ + (𝜀𝑓 − 𝜀)̅𝐴𝑓∥
+ (1 − 𝑎)

𝜀̅

𝜀 ̅ + (𝜀𝑓 − 𝜀)̅𝐴𝑓⊥
] 4-3 

Equation 4-3 can be further extended to include the dispersion of the filler in the composite. 

Fillers may form agglomerates with a different shape (aspect ratio) and in general different 

dielectric properties. Agglomerates will be considered as a second kind of filler: 

𝜀̅ = 𝜀𝑚 + (𝜀𝑓 − 𝜀𝑚)𝜈𝑓 [𝑎𝑓

𝜀̅

𝜀 ̅ + (𝜀𝑓 − 𝜀)̅𝐴𝑓∥

+ (1 − 𝑎𝑓)
𝜀̅

𝜀 ̅ + (𝜀𝑓 − 𝜀)̅𝐴𝑓⊥

] 

+(𝜀𝑓 − 𝜀𝑚)𝜈𝑎 [𝑎𝑎
𝜀̅

𝜀̅+(𝜀𝑎−𝜀̅)𝐴𝑎∥
+ (1 − 𝑎𝑎)

𝜀̅

𝜀̅+(𝜀𝑎−𝜀̅)𝐴𝑎⊥
] 

4-4 

Where 𝜈𝑎 , 𝜀𝑎 , 𝐴𝑎∥  and 𝐴𝑎⊥  are the volume concentration, the permittivity and the 

depolarization factors of the agglomerates parallel and perpendicular to the electric field.  𝑎𝑓 

and 𝑎𝑎 are the alignment parameters for fillers and agglomerates, respectively. 

Dispersion (𝑑) is defined as the volume fraction of fillers that are isolated in the matrix: 
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𝑑 =
𝜈𝑓

𝜈𝑎 + 𝜈𝑓 
=

𝜈𝑓

𝜈
 

4-5 

 

Figure 21. Definition of the dispersion parameter, d, and schematic representation of composites for 

different values of d: 1, 1/2 and 0. 

Introducing the dispersion parameter from 4-5 into 4-4, it remains: 

𝜀̅ = 𝜀𝑚 + (𝜀𝑓 − 𝜀𝑚)𝜈𝑑 [𝑎𝑓  
𝜀 ̅

𝜀 ̅ + (𝜀𝑓 − 𝜀)̅𝐴𝑓∥

+ (1 − 𝑎𝑓 )
𝜀 ̅

𝜀 ̅ + (𝜀𝑓 − 𝜀)̅𝐴𝑓⊥

] 

+𝜈(1 − 𝑑) [𝑎𝑎
𝜀̅

𝜀̅+(𝜀𝑎−𝜀̅)𝐴𝑎∥
+ (1 − 𝑎𝑎)

𝜀̅

𝜀̅+(𝜀𝑎−𝜀̅)𝐴𝑎⊥
] 

4-6 

The permittivity of the composite ( 𝜀 ̅) cannot be solved algebraically, as a fourth order 

polynomial is obtained. Numerical methods must therefore be used to solve it. 

Equation 4-6 assumes that an agglomerate is a solid mass, with equal dielectric properties to 

individual fillers but a different aspect ratio. As it will be shown in section 4.4, this assumption 

does not predict correctly the permittivity of composites with agglomerates and a reformulation 

of the PvSB model will be provided to account for it. 

4.1.2 PvSB Model Simplification  

In the special case of conductive fillers in non-conductive matrices at concentrations below the 

percolation threshold, the PvSB can be simplified, so that the permittivity of the composite can 

be solved algebraically.  
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At concentrations below the percolation threshold, we can assume the permittivity of the matrix 

and the composites to be much smaller than the permittivity of the filler: 

εf  ≫  ε𝑚, 𝜀𝑓 ≫ 𝜀 ̅ 4-7 

Equation 4-3 simplifies thus into: 

𝜀̅ = 𝜀𝑚 + 𝜀𝑓𝜈𝑓 [𝑎
𝜀̅

𝜀 ̅ + 𝜀𝑓𝐴𝑓∥
+ (1 − 𝑎)

𝜀̅

𝜀 ̅ + 𝜀𝑓𝐴𝑓⊥
] 4-8 

Assuming 𝜀𝑓𝐴𝑓𝑖 ≫ 𝜀 ̅, (which is true unless 𝐴𝑓𝑖 gets close to 0, or AR close to infinity) 𝜀𝑓 is 

cancelled out of the equation and the permittivity of the composite can be solved algebraically: 

𝜀̅ =
𝜀𝑚

1 − 𝜈𝑓 [
𝑎

𝐴𝑓||

+
(1 − 𝑎)

𝐴𝑓⊥

]

 
4-9 

Analogously, equation 4-6 leads to: 

𝜀̅ =
𝜀𝑚

1 − 𝜈𝑑 [
𝑎𝑓

𝐴𝑓∥
+

(1 − 𝑎𝑓)
𝐴𝑓⊥

] + 𝜈(1 − 𝑑) [
𝑎𝑎

𝐴𝑎||

+
(1 − 𝑎𝑎)

𝐴𝑎⊥

]
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4.2 Experimental Validation of the PvSB Model 

In order to validate the PvSB model, different reference samples were fabricated with controlled 

shape and orientation of fillers (see Figure 22).  

 

Figure 22. Schematic representation of the reference samples for the cases of: parallel (left) and 

perpendicular (right) alignment with respect to the electric field. 

Details about the fabrication of the reference samples are presented in section 3.2.5. 
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4.2.1 Effect of Orientation 

In Figure 23, the calculated and measured real permittivity of wax/silver reference samples is 

shown. The fillers were aligned vertically (electric field parallel to the fillers’ longest axis) and 

horizontally (electric field perpendicular to the fillers’ longest axis) to check the effect of the 

alignment. As the dielectric spectra of the samples were frequency-independent, the average 

real part of permittivity between 10 Hz and 1 MHz was considered. 

 

Figure 23. Modelled and measured permittivity for wax/silver reference samples with different orientations. 

The measurements agree both quantitatively and qualitatively with the PvSB model. It is 

therefore confirmed the effect of increasing permittivity of needle-like conductive fillers when 

they are parallel to the electric field.  

According to the PvSB model, the random orientation is equivalent to the case in which one 

third of the fillers are placed vertically, while two thirds are placed horizontally. The reference 

sample with random orientation was fabricated following this pattern. 

The error bars are calculated from the instrumental error of each variable according to a first 

order propagation of errors. In the case of the simplified PvSB model (equation 4-9), it holds: 

∆𝜀̅ =
𝜕𝜀̅

𝜕𝜀𝑚
∆𝜀𝑚 +

𝜕𝜀̅

𝜕𝜈𝑓
∆𝜈𝑓 +

𝜕𝜀̅

𝜕𝑎
∆𝑎 +

𝜕𝜀̅

𝜕𝐴𝑓‖
∆𝐴𝑓‖ +

𝜕𝜀̅

𝜕𝐴𝑓⊥
∆𝐴𝑓⊥ 4-11 

Analogously, the error of the measured permittivity is: 
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∆𝜀 =
𝜕𝜀

𝜕𝐶
∆𝐶 +

𝜕𝜀

𝜕𝐴
∆𝐴 +

𝜕𝜀

𝜕𝑑
∆𝑑 4-12 

Given the relation 𝐶 = 𝜀𝜀0
𝐴

𝑑
 , where 𝐶  is the measured capacitance; 𝜀  and 𝜀0  are the relative 

permittivity of the sample and the permittivity of the empty space, respectively; 𝐴 is the area of 

the electrodes; and 𝑑 is the separation between the electrodes. 

4.2.2 Effect of Concentration 

In Figure 24, the calculated and measured real permittivity of wax/silver reference samples with 

different filler concentration is shown. 

The agreement between model and measurements is again within the limits of the experimental 

errors. The fabrication process was considerably improved (lower variability of fillers’ length) 

after the samples with 4 % concentration were fabricated. This explains the larger error bars for 

these samples, especially for the one with vertically aligned fillers, for which the permittivity 

is more sensible to variations in the aspect ratio of the filler.  

 

Figure 24. Modelled and measured permittivity for wax/silver reference samples with different filler 

concentrations. 

4.2.3 Effect of Material 

In Figure 25, the calculated and measured real permittivity of wax/silver and wax/graphite 

reference samples is shown. 
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No differences are observed between the silver and the graphite fillers. This supports the idea 

of the effect of the filler being equal for any conductive filler. 

 

Figure 25. Modelled and measured permittivity for wax/silver and wax/graphite reference samples.  

4.3 Simulations 

The model proposed in this thesis for the dielectric properties of composites was derived 

following certain assumptions (see section 2.2.4). Some features of real composites (like the 

inhomogeneous distribution of fillers or the contact between fillers) are not taken into account 

in the model, giving rise to errors in the predicted permittivity. The permittivity of composites 

with different configurations was simulated using Comsol Multiphysics®, in order to quantify 

the relative error due to such features.  

4.3.1 The Finite Element Method 

The finite element method was used to perform the simulations. The Maxwell equations were 

numerically solved for a three-dimensional representation of the composites.  

The composite was represented as a right rectangular prism, setting the matrix as a non-

conductive polymeric material (𝜀′ = 4 , similar to the epoxy analysed in chapter 6) and a 

conductive material (𝜎 = 107 S/m) as ellipsoidal fillers.  

A frequency-dependent electric potential difference was set between parallel faces of the 

prismatic structure. The frequency was set to 1 kHz, well below the characteristic frequency of 
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the polarization process (see section 2.1.5.3), which was found (through simulations) to be 

above 10 GHz for all the systems simulated here. 

A tetrahedral mesh was set in and around the fillers, in order to better account for the curved 

geometry of the ellipsoids. Smaller tetrahedra were set in the proximity of edges, so that sharper 

changes in the electric field could be simulated with more accuracy. A cubic mesh was set away 

from the filler, where the electric field is mainly homogeneous. 

    

Figure 26. Simulated geometry: Prismatic composite with an ellipsoidal filler (left) and its corresponding 

mesh (right). 

Periodical boundary conditions were set at the faces of the prismatic structure, perpendicular to 

the applied electric field. In this way, the structure was treated as unit cell that repeats itself 

infinitely in the two directions perpendicular to the applied electric field, so that the ideal case 

of an infinite parallel plate capacitor can be considered to calculate the permittivity of the 

system. 

4.3.2 Simulating Ideal Conditions 

In this section, composite with the ideal configuration assumed by the model are simulated. The 

case of ellipsoidal fillers with aspect ratios 1 (sphere) and 5 (prolate ellipsoid) are considered. 

Higher aspect ratios (CNTs can reach aspect ratios greater than 100) are computationally too 

expensive to simulate. However, an aspect ratio of 5 is enough to reach conclusions on the effect 

of filler alignment and the congruence of the model with the simulations. 

4.3.2.1 Spherical fillers 

The relative permittivity of a composite with spherical fillers was simulated and compared with 

the prediction of the model (see Figure 27). The different volume concentrations were set by 
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changing the relative size of the filler with respect to the size of the unit cell. The filler was 

always centred in the rectangular prism. 

At volume concentrations below 7 %, model and simulation agree. At higher concentrations, 

where the composite approaches percolation and the value of permittivity increases, model and 

simulation start to disagree.  

 

Figure 27. Relative permittivity of composites with different volume concentrations of conductive spherical 

fillers. 

4.3.2.2 Ellipsoidal fillers 

To test the effect of filler alignment on the permittivity of the composite, ellipsoidal fillers with 

an aspect ratio of 5 were simulated. Three different alignments of the fillers were simulated: 

parallel, perpendicular and at an angle 𝛼 =63.43º with respect to the electric field4.  

In Figure 28, the simulated permittivity is compared to the one predicted by the model at 

different concentrations. At low concentrations, model and simulation agree. At concentrations 

close to the percolation threshold, model and simulation start to disagree. It must be noted that 

 
4For a composite with randomly oriented fillers, the fillers have the same probability to be oriented in each of the 

three orthogonal directions. The alignment parameter is 𝑎 =
1

3
=

cos 𝛼

cos 𝛼+sin 𝛼
. The angle is therefore 𝛼 =

tan−1(2) ≅ 63.43º. 
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the percolation threshold with ellipsoids of aspect ratio 5 happens at lower concentrations than 

with spheres, as expected. 

 

Figure 28. Relative permittivity of composites with different volume concentrations of conductive prolate 

ellipsoidal fillers oriented: parallel (top), randomly (middle) and perpendicular (bottom) with respect to the 

electric field. 
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4.3.3 Simulating Non-Ideal Features 

The following features, that might be present in real composites but are not considered in the 

model, were simulated: 

• Gap between fillers 

• Distance to electrodes  

• Number of layers 

• Curvature 

• Network of fillers 

When appropriate, the features were simulated in composites with equal concentration (1 %), 

filler aspect ratio (5) and filler alignment (parallel to electric field). The formation of networks, 

which happens to be the feature with the highest influence, was studied both for ellipsoidal and 

spherical fillers. 

4.3.3.1 Gap between Fillers 

An inhomogeneous distribution of particles is not considered in the PvSB model. In this section, 

the permittivity of composites with different relative distances between fillers is simulated. Four 

fillers particles are distributed in a unit cell. Two limiting cases, which are equivalent due to the 

periodical boundary conditions, are considered: all particles are evenly distributed; particles are 

united in bundles of four units (Figure 29).  

    

Figure 29. Simulated composites with different filler distances. Cases in left and right are equivalent. 

In Figure 30, the simulated permittivity of the composite is plotted versus the relative closeness 

among fillers. The relative closeness is defined to be 0 when the fillers are evenly distributed, 

and ±1 when the fillers make contact, varying linearly between both limits.  
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Figure 30. Permittivity of the composites described in Figure 29. The fillers are evenly distributed when the 

relative closeness is 0, and make contact when its value is ±1. The line is a visual guidance. 

It is to be noted that, due to the periodic conditions of the simulations, the case in which the 

particles are united at the centre of the unit cell (relative closeness = -1) is equivalent to the case 

in which the particles are placed at the edges of the unit cell (relative closeness = +1). The 

deviation of permittivity with respect to the ideal case (fillers uniformly distributed, considered 

by the PvSB model and represented by the configuration in the middle in Figure 29, relative 

closeness = 0) due to the relative distance between fillers is, at most, 9 % for the simulated 

conditions. 

The effect of network formation is analysed in section 4.3.3.5. 

4.3.3.2 Distance to Electrodes 

In previous simulations, the fillers were placed in a parallel layer evenly placed between the 

two electrodes. In this section, the permittivity of the composite is simulated for different 

distances between four equally distributed filler particles and the electrodes. Two limiting cases 

are considered: the fillers are placed equidistant to both electrodes; the fillers make contact with 

one electrode. (Figure 31). 
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Figure 31. Simulated composites with different distances between fillers and electrodes. 

In Figure 32, the simulated permittivity of the composite is plotted versus the relative distance 

to the electrodes. The relative distance is defined to be 0 when the fillers make contact with an 

electrode and 1 when the fillers are equidistant to both electrodes, varying linearly between 

both limits. 

 

Figure 32. Permittivity of the composites showed in Figure 31. The line is a visual guidance. 

For the simulated conditions, the deviation of permittivity due to the distance to the electrode 

is negligible when the fillers are away from the electrodes. When the relative distance to the 

electrodes is 0.5 %, the deviation with respect to the ideal case (fillers equidistant to both 

electrodes, considered by the PvSB model and represented by the configuration in the left in 

Figure 31, relative distance to electrode = 1) is 7 %. When the fillers make contact with the 
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electrode, the deviation is 27 %. That means that this feature is only significant when the filler 

is very close to the electrode. Moreover, in a macroscopic nanocomposite (in which the 

thickness of the sample is much larger than the size of the fillers) the number of fillers in contact 

– or close to contact – with the electrodes is small with respect to the number of fillers in the 

bulk, thus reducing the overall effect of this feature in a composite. 

The conductive fillers behave as internal electrodes. Fillers and electrode behave as a capacitor 

whose dielectric is the polymer. Only when the distance filler/electrode is small, the capacitance 

is high enough to be significant. When the conductive filler makes contact with the electrode, 

both stay at the same voltage, making the filler a prolongation of the original electrode into the 

composite.  

4.3.3.3 Number of Layers 

So far, all the fillers were placed in a single layer between the electrodes. In this section, the 

fillers are located in a varying number of layers. The number of layers is changed from 1, as in 

previous sections, to 15. (Figure 33). The concentration is the same for every number of layers. 

Simulating additional layers is computationally more and more expensive and would have a 

lower and lower effect on the permittivity of the composite. 

     

Figure 33. Simulated composites with different number of layers of fillers. The filler concentration remains 

constant. 

In Figure 34, the simulated permittivity of the composite is plotted versus the number of layers. 

The permittivity increases asymptotically with the number of layers, reaching a maximum value 

which represent an increase of 8 % with respect to the one-layer composite. 
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Figure 34. Permittivity of the composites described in Figure 33. The line is a visual guidance. 

4.3.3.4 Curvature 

Carbon nanotubes are ideally assumed to be straight tubes. However, CNTs do bend in 

nanocomposites (see the SEM images in section 5.2.1). To account for the effect of CNT 

curvature, composites with curved tubes (portions of a torus) with different curvature angles 

(𝛼𝑚𝑎𝑥) were simulated (see Figure 35). The angle of curvature is defined as the ratio of the 

tube’s length to its radius of curvature, in radians. All fillers have the same length and diameter 

(and hence the same volume). The angle of curvature was set to values between 0º and 90º, 

being the filler with 0º straight and parallel to the electric field, with an aspect ratio of 5. 

             

Figure 35. Simulated fillers with different curvature angles (𝜶𝒎𝒂𝒙 ), for an electric field in the vertical 

direction. 

The curved tubes can be considered in the PvSB model as a linear combination of ellipsoids 

(with equal aspect ratio and volume as the straight tubes) parallel and perpendicular to the 

electric field. 
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In order to calculate the 𝜈∥  and 𝜈⊥  parameters of the PvSB model (see definition in section 

4.1.1), the curved filler was decomposed (as done with straight fillers) in two components: 

parallel and perpendicular to the electric field. as follows. 

Given the geometry described in Figure 35, the vertical component of the tangent of an arbitrary 

point along the tube axis, is: 

ν∥ = cos(𝛼) 4-13 

The differential form of equation 4-16 is: 

dν∥ = d(cos(𝛼)) = − sin(𝛼)d𝛼 4-14 

And therefore, the average vertical component of the tube (𝜈̅∥) is: 

𝜈̅∥ =
1

𝛼𝑚𝑎𝑥
∫ − sin(𝛼)d𝛼

𝛼𝑚𝑎𝑥

0

=
1

𝛼𝑚𝑎𝑥

[cos(𝛼𝑚𝑎𝑥) − 1] 4-15 

In Figure 36, the permittivity of the composites with curved fillers as obtained from simulations 

and the PvSB model are shown. Both values agree within a 1 % error. The discrepancies, 

especially for the straight filler (𝛼𝑚𝑎𝑥 = 0) can be explained in terms of the different geometries 

assumed for the fillers by simulation (cylinder) and model (ellipsoid).  
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Figure 36. Simulated and modelled permittivity of the composites with curved fillers described in Figure 35 

for different values of the curve angle (𝜶𝒎𝒂𝒙). 

Therefore, we can conclude that the curvature of CNTs is already accounted for in the PvSB 

model through the 𝜈∥ and 𝜈⊥ parameters. 

4.3.3.5 Network of Fillers 

In this section, the effect of the formation of networks of fillers on the effective permittivity of 

the composite is simulated. 

The connection of spherical or ellipsoidal fillers was considered for different kinds of networks: 

• Spherical fillers are aggregated in spheroidal or elongated agglomerates. 

• Ellipsoidal fillers are connected forming unidirectional chains parallel or perpendicular 

to the electric field. 

4.3.3.5.1 Agglomerates of Spherical Particles 

Spherical fillers were simulated to be aggregated into spheroidal agglomerates (see Figure 37 

(left)) and elongated agglomerates (see Figure 37 (right)). Both agglomerates have the same 

number of equally sized spheres. 
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Figure 37. Simulated composites with spherical fillers forming spheroidal (left) and elongated (right) 

agglomerates. Both agglomerates have the same number of equally sized spheres. 

In Figure 38, the permittivity of composites with volume concentration of 1 % of spherical filler 

in different configurations (isolated fillers, spheroidal agglomerates and elongated 

agglomerates) is shown. It can be observed how the permittivity of the composites with 

agglomerates is higher than the one with the isolated filler.  

 

Figure 38. Permittivity of composites with volume concentration of 1 % of spherical filler in different 

configurations: isolated fillers, spheroidal agglomerates and elongated agglomerates. 



4 | Modelling and Simulation of Dielectric Properties 57 

The spheroidal agglomerate, with an aspect ratio close to one, produces a smaller increase in 

permittivity with respect to the isolated filler than the elongated agglomerate, whose aspect 

ratio is much higher. 

The permittivity of the composites with spheroidal and elongated agglomerates were equivalent 

to the permittivity predicted by the PvSB model for ellipsoidal fillers, parallel to the electric 

field, with aspect ratios 1.55 and 3.00, respectively. This result suggests that the increase of 

permittivity due to agglomeration (also observed in section 4.3.3.1) is influenced by the aspect 

ratio of the agglomerate. Thus, agglomerates can be considered in the PvSB model as ellipsoids 

with an apparent aspect ratio, as it will be discussed later in this chapter. 

4.3.3.5.2 Chains of Ellipsoidal Fillers 

The formation of unidirectional chains of ellipsoidal fillers, parallel or perpendicular to the 

electric field, was also simulated (see Figure 39). All simulations were performed for a 0.1 % 

volume concentration of fillers, with chains including between one and twenty fillers. 

 

 

Figure 39. Chains of ellipsoidal fillers arranged parallel (left) and perpendicular (right) to the electric field. 

In Figure 40, the permittivity of composites with different unidirectional chains of fillers is 

shown as a function of the number of fillers per chain. It can be observed how the permittivity 

of vertical chain increases with the number of fillers in the chain (which increases the aspect 

ratio of the chain). For the horizontal chain, the value of permittivity remains almost constant. 

These results agree with the behaviour observed (experimentally (section 4.2.1) and in 

simulations (section 4.3.2.2) for isolated ellipsoids, suggesting that agglomerates follow a 

similar pattern: elongated shapes give rise to a major increase in permittivity when parallel to 

the electric field, and a lower increases in permittivity when perpendicular to it. 

... 
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Figure 40. Permittivity of composites with different unidirectional chains of fillers as a function of the 

number of fillers per chain for a given volumetric concentration of 0.1 %. 

4.4 Extended PvSB Model (e-PvSB) 

Attending to the results of the simulations in the previous section, most non-ideal features 

produce negligible effects on the permittivity of composites. Only the formation of conductive 

networks through contact between fillers give rise to relevant effects that must be incorporated 

into the model. 

To account for the networking features of composites, a modification of the PvSB model is 

proposed, which will be described in this section. 

The following hypothesis will be verified: 

The contribution of a given network of fillers to the permittivity of a composite equals the 

contribution of an isolated ellipsoid (with equal volume concentration and aspect ratio), 

which is a function of the geometry5 of the network.  

 
5 The number of contacts among fillers, the aspect ratio and orientation of individual fillers, as well as the 

effective aspect ratio and orientation of the network as a whole, are key elements of the geometry of the 

networks. It is therefore hard to provide a detailed equation to accounts for those elements. 
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In other words, a network of fillers can be substituted by a so-called equivalent ellipsoid. 

Figure 41 shows two different networks (already simulated in section 4.3.3.5.1) and their 

equivalent ellipsoids, as calculated from the results of simulations. The equivalent ellipsoid was 

considered to be parallel to the electric field. The network on the left (with spheroidal shape) is 

equivalent to an ellipsoid with aspect ratio 1.4, while the network on the right (elongated shape) 

has a higher aspect ratio, 2.7. 

Spheroidal agglomerate Elongated agglomerate 

 

 

𝐴𝑅𝑒𝑒∥ = 1.4 𝐴𝑅𝑒𝑒∥ = 2.7 

Figure 41. Spheroidal (left) and elongated (right) agglomerates. The aspect ratio of their equivalent 

ellipsoids parallel to the electric field (𝑨𝑹𝒆𝒆∥), as calculated with the PvSB model, are indicated.  

In order to incorporate this idea into de PvSB model, a new parameter is included, the network 

factor (𝐹𝑛). It is defined as the ratio between the aspect ratio of the equivalent ellipsoid (parallel 

to the electric field) and the aspect ratio of the original filler: 

𝐹𝑛  =
𝐴𝑅𝑒𝑒∥

𝐴𝑅𝑓
 4-16 

Where 𝐴𝑅𝑒𝑒∥ and 𝐴𝑅𝑓 are the aspect ratios of the equivalent ellipsoid and the isolated filler, 

respectively. 

It is important to note that the equivalent ellipsoid has been defined to be parallel to the electric 

field. Therefore, values of network factor (𝐹𝑛) greater than one represent equivalent prolate 

ellipsoids parallel to the electric field, while values lower than one represent equivalent oblate 

ellipsoids parallel to the electric field (an oblate is said to be parallel to the electric field when 

its shorter axis is parallel to the electric field, i.e., when its plane is perpendicular to the electric 

field, as established in section 2.2.5).  
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The extended Polder/van Santen/Böttcher model (it would be referred to as e-PvSB) can be thus 

expressed as follows: 

𝜀̅ = 𝜀𝑚 + (𝜀𝑓 − 𝜀𝑚)𝜈𝑑 [𝑎𝑓  
𝜀 ̅

𝜀 ̅ + (𝜀𝑓 − 𝜀)̅𝐴𝑓∥

+ (1 − 𝑎𝑓 )
𝜀 ̅

𝜀 ̅ + (𝜀𝑓 − 𝜀)̅𝐴𝑓⊥

] 

+(𝜀𝑓 − 𝜀𝑚)𝜈(1 − 𝑑)
𝜀̅

𝜀̅+(𝜀𝑛−𝜀̅)𝐴𝑛
 

4-17 

𝐴𝑛 = 𝑓(𝐴𝑅𝑓𝐹𝑛) 4-18 

Where 𝐴𝑛 is introduced as the depolarization factor of the equivalent ellipsoid, parallel to the 

electric field. 

For conductive fillers in a non-conductive matrix below the percolation threshold, the e-PvSB 

can be simplified (see section 4.1.2) and the permittivity of the composite can be solved: 

𝜀̅ =
𝜀𝑚

1 − 𝜈𝑑 [
𝑎𝑓

𝐴𝑓∥
+

(1 − 𝑎𝑓)
𝐴𝑓⊥

] +
𝜈(1 − 𝑑)

𝐴𝑛

 

4-19 

The equivalent ellipsoid that represents the network has been defined as parallel to the electric 

field, in order to minimize the number of parameters of the model. Otherwise, a new parameter 

must have been included: the alignment of the network. The model would then have been 

overparameterized.  

In Table 5, different networks made of prolate ellipsoids are shown. Their respective equivalent 

ellipsoids and values of the network factor, as obtained from the results of simulations through 

the e-PvSB model, are included in Table 5 and plotted in Figure 42. 
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Table 5. Representation of the equivalent ellipsoid and their respective value of the network factor for 

different networks of prolate ellipsoids (𝑨𝑹 = 𝟓 ): (a) 8 vertical fillers in a vertical arrangement (b) 8 

horizontal fillers in a vertical arrangement (c) an isolated vertical filler (d) 8 vertical fillers in a horizontal 

arrangement (e) 8 horizontal fillers in a horizontal arrangement. The equivalent ellipsoid of (a) is not to 

scale due its large aspect ratio. 
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Figure 42. Network factor, in logarithmic scale, of the networks shown in Table 5. 

It must be noted that the network factor 𝐹𝑛 does not only include information about the global 

aspect ratio of the network, but also from its orientation. A same network has different values 

... ... 
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of 𝐹𝑛 when rotated, as it is the case of networks (a) and (e), as well as networks (b) and (d), 

from Table 5. 

It is also important to note that, although a given network has only one equivalent ellipsoid, a 

given equivalent ellipsoid does represent an infinite number of possible networks. A value of 

𝐹𝑛  can therefore not be associated to a specific network, but provides insights about its 

morphology: larger values of 𝐹𝑛 imply networks elongated along the direction of the electric 

field. 

In Table 6 different networks made of spheres are shown. Their respective equivalent ellipsoids 

and values of the network factor, as obtained from the results of simulations through the e-PvSB 

model, are included in Table 6 and plotted in Figure 43. 

Table 6. Representation of the equivalent ellipsoid and their respective value of the network factor for 

different networks of spheres: (a) 9 fillers in a vertical chain (b) 9 fillers in a vertical plane (c) an isolated 

filler (d) 9 fillers in a horizontal plane (e) 9 fillers in a horizontal chain. 
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Figure 43. Network factor of the networks represented in Table 6. 

When the spheres associate themselves in structures that grow in the direction of the electric 

field, a value of the network factor 𝐹𝑛 greater than one is obtained. On the contrary, when the 

spheres associate themselves in structures that grow in a direction perpendicular to the electric 

field, a value of 𝐹𝑛 less than one than one is obtained. 

Networks with values of 𝐹𝑛  greater than one provide a larger increase of permittivity than 

networks with values of 𝐹𝑛 less than one, as can be deduced from the depolarization factors of 

their equivalent ellipsoids. 

4.5 Method to Obtain Morphological Information from Experimental Data 

The method to obtain morphological information of real composites using the e-PvSB model 

will be described in this section.  

The e-PvSB model computes the dielectric properties of a composite as a function of the 

dielectric properties of filler and matrix, as well as the concentration, geometry, alignment and 

dispersion of the filler.  
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Figure 44. Visual representation of the e-PvSB model (equations 4-17 and 4-18), featuring examples of fillers. 

In typical experimental conditions, the dielectric properties of each material, as well as the 

concentration and geometry of the filler, are known. We will assume that experimental data of 

the permittivity of the composites at different concentrations of the filler are available. The 

permittivity of the composite and the filler concentration are therefore variables. Dispersion, 

alignment and network factor are unknown parameters, while other magnitudes are known 

constants (see Figure 45). 

 

Figure 45. Method to obtain morphological information from experimental data using the e-PvSB model. 

Dispersion, alignment and network factor will be determined by fitting the measured data to the 

model. We are considering a nonlinear regression problem with 2 variables, 3 unknown 

parameters and 3 constants. The generalized reduced gradient method [105] was used to 

minimize the coefficient of determination, 𝑅2: 

𝑅2 = 1 −
∑(𝑦𝑖 − 𝑦̂𝑖)

2

∑(𝑦𝑖 − 𝑦̅)2
 4-20 
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Where 𝑦𝑖 represents the experimentally observed values (observed permittivity), 𝑦̂𝑖 represents 

the predictions of the model (permittivity given by the e-PvSB model), and 𝑦̅ =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  is the 

average of the 𝑛 observed values. The closer the coefficient of determination is to 1, the better 

the model reproduces the experimental values. 

An assumption must be made in order to do the regression analysis: the values of dispersion, 

alignment and network factor do not change with concentration. It is assumed that, because all 

composites are compounded and processed with the same parameters, the obtained alignment 

and dispersion will be at least similar. 

It must also be noted that the values of some magnitudes, like filler aspect ratio, alignment or 

dispersion, may be different for different regions of the composites or for individual units of 

filler. We always consider average or effective values of these magnitudes. The lower the 

standard deviation of these average values, the more exact the predictions of these analysis will 

be. 

4.5.1 Method Applied to Simulated Composites 

The e-PvSB model will be tested with data obtained from simulations. A nonlinear regression 

analysis will be performed as previously mentioned, using the values typically known from 

experimental conditions: the permittivity of the composite is measured for different values of 

filler concentration, while the dielectric properties of the materials and the aspect ratio of the 

filler are known constants.  

4.5.1.1 Spherical Fillers with Varying Degrees of Dispersion 

In the first example, we will apply the model to spherical fillers (similar to the PLA/CB 

composites in chapter 4). Due to the meaninglessness of the alignment of spherical fillers, only 

dispersion and network factor are unknown variables. We will simulate the case in which the 

spherical fillers aggregate to form chains of six spheres that align parallel to the electric field 

(see Figure 46). Composites with different degrees of dispersion (0, 0.5, 1) were simulated. 
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Figure 46. Spherical fillers: isolated (grey) and forming chains (blue). Simulated composites with different 

degrees of dispersion: 0, 0.5 and 1. 

In Figure 47, the simulated permittivity for different values of dispersion is plotted versus the 

filler concentration. The simulated data were fitted to the e-PvSB model by nonlinear 

regression, considering the dispersion as a known input (which is typically not the case in 

experimental conditions). In all three cases the model reproduces the simulated data within a 

4 % error. A value of the network factor of 5.1±0.3 was found (through non-linear regression) 

to describe the simulated network. 

 

Figure 47. Simulated and modelled permittivity for the composite represented in Figure 46. The values of 

dispersion (shown in this figure) were inputs to the e-PvSB model. A value of 𝑭𝒏 = 𝟓. 𝟏 ± 𝟎. 𝟑 was found for 

the network (for 𝒅 = 𝟏 there is no network and 𝑭𝒏 is therefore not defined). 

However, the value of dispersion is typically unknown in experimental conditions, so that two 

parameters, dispersion and network factor, are to be found through the nonlinear regression. 

Unfortunately, different combinations of the values of dispersion and network factor can 
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provide the same permittivity versus concentration curve (as proved in Appendix A). This 

means that it is impossible to determine the real values of dispersion and network factor from 

experimental data. Instead, only the set of all the possible solutions can be found. 

In order to find the different solutions to the fitting problem, the coefficient of determination 

(𝑅2 ) of the e-PvSB model with respect to the simulated data was calculated for different 

combinations of dispersion and network factor (see Figure 48), for composite simulated with a 

degree of dispersion of 0.5). Each square represents a combination of values for dispersion 

(vertical axis) and network factor (horizontal axis), while its colour represents the value of the 

coefficient of determination, ranging from red (𝑅2≤ 0.7, insufficient fitting) to green (𝑅2= 1, 

perfect fitting), going through yellow (𝑅2= 0.9 , acceptable fitting). Thus, hybrid colours 

between yellow and green represent values of the coefficient of determination between 0.9 and 

1. 

 

Figure 48. Matrix of coefficients of determination (𝑹𝟐) of the e-PvSB model with respect to a simulated 

composite (with 𝒅 = 𝟎. 𝟓) for different combinations of dispersion (𝒅) and network factor (𝑭𝒏). Colours 

represent the value of the coefficient of determination, ranging from red (𝑹𝟐 ≤ 𝟎. 𝟕, insufficient fitting) to 

green (𝑹𝟐 = 𝟏, perfect fitting), going through yellow (𝑹𝟐 = 𝟎. 𝟗, acceptable fitting). 

The green line that emerges in Figure 48 represents the combination of possible solutions to the 

regression problem. In Figure 49, the line of possible solutions of the three simulated 
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composites of Figure 46 is shown. The line was obtained by selecting the value of dispersion 

that provides the greatest value of 𝑅2  for each considered value of 𝐹𝑛 .The matrices of 

coefficients of determination for the composites with dispersion 0 and 1 can be found in 

Appendix B. 

 

Figure 49. Different possible combinations of dispersion and network factor that fit the simulated 

composites of Figure 46 (with 𝒅 = 𝟎, 𝒅 = 𝟎. 𝟓 and 𝒅 = 𝟏) according to the e-PvSB model. The real solutions 

are indicated (dashed lines). The value of 𝑭𝒏𝟎 (network factor for 𝒅 = 𝟎) is also indicated. 

In the next section, the reference network factor (𝐹𝑛0) will be introduced and its potential to 

provide information from composites with unknown morphology will be discussed. 

4.5.1.2 Reference Network Factor  

In the previous case (Figure 49), the real values of dispersion cannot be determined, but the 

locus of solutions are clearly different for the three composites. Each curve can be 

unequivocally described by the value of the network factor when the dispersion is 0 (proof in 

Appendix A), i.e., when no isolated fillers are present in the composite: 

𝐹𝑛0 ≡ 𝐹𝑛(𝑑 = 0) 

The reference network factor (𝐹𝑛0) of a composite is defined as the network factor of a fictitious 

composite with null dispersion and identical properties to the original composite. In other 

words, if the network factor (𝐹𝑛) represents an equivalent ellipsoid that describes the average 
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effect of all the networks in a composite, 𝐹𝑛0 represents an equivalent ellipsoid that describes 

the average effect of both the networks and the isolated fillers in a composite. 

The method previously proposed (Figure 45) to obtain morphological information from 

experimental data using the e-PvSB model can thus be updated by introducing the reference 

network factor. 

 

Figure 50. Updated method to obtain morphological information from experimental data using the e-PvSB 

model. The reference network factor (𝑭𝒏𝟎) includes the effects of alignment (𝒂), dispersion (𝒅) and network 

factor (𝑭𝒏). 

4.5.1.3 Ellipsoidal Fillers with Varying Degrees of Alignment 

In this case, we will apply the model to prolate ellipsoidal fillers (similar to the composites with 

CNTs in chapters 5 and 6). Unlike the case of spherical fillers, the orientation of the fillers is a 

relevant factor in this case. We will assume that the ellipsoidal fillers do not aggregate (𝑑 = 1). 

Different values of the alignment parameter (𝑎) will be considered (see Figure 51): 1 (parallel 

to electric field), 1/3 (random orientation) and 0 (perpendicular to electric field). The case of 

random orientation is equivalent to an angle of 63.43º (as derived in footnote 4 in page 47). 

     

Figure 51. Simulated composites with ellipsoidal fillers with different values of the alignment parameter 

(𝒂): 1, parallel to electric field (left)  1/3, random orientation (middle)  and 0, perpendicular to electric field 

(right). 
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In Figure 52, the simulated permittivity for different values of alignment is plotted versus the 

filler concentration. The simulated data were fitted to the e-PvSB model by nonlinear 

regression, considering the alignment as a known input and assuming a perfect dispersion. In 

all three cases the model reproduces the simulated data within a 0.4 % error. 

 

Figure 52. Simulated and modelled permittivity for the composite represented in Figure 51. The values of 

alignment (shown in the figure) and dispersion (𝒅 = 𝟏) were inputs to the e-PvSB model. 

However, analogously to the example in the previous section, the values of alignment and 

dispersion are typically unknown in experimental conditions, so that three parameters 

(dispersion, alignment and network factor), are to be found through the nonlinear regression. In 

this case, different triplets of values of (dispersion, alignment, network factor) are solutions to 

the regression problem, i.e., the real values of these parameters cannot be determined. 

In order to obtain useful information from the measured (in this case simulated) data of 

permittivity, the 𝐹𝑛0  will be calculated. Thus, the different degrees of alignment of the 

simulated composites will be described in terms of equivalent ellipsoids. 

In Figure 53, the locus of the possible solutions (with 𝑎 = 1) for the three simulated composites 

is shown. Using any other value of 𝑎 (alignment of the dispersed fillers) would have no effect 

in the determination of 𝐹𝑛0, as it is defined for a null dispersion, i.e., it is defined for a fictitious 

composite in which there are no dispersed fillers.  
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Figure 53. Different possible combinations of dispersion and network factor that fit the simulated 

composites of Figure 51 (with 𝒂 = 𝟏, 𝒂 = 𝟏/𝟑 and 𝒂 = 𝟎) according to the e-PvSB model. The value of 𝑭𝒏𝟎 

(reference network factor) is also indicated. 

It must be noted how lower values of 𝐹𝑛0 are associated perpendicular alignment, while higher 

values of 𝐹𝑛0 are associated with parallel alignment. 

In Table 7, the values of 𝐹𝑛0 are related to their corresponding effective ellipsoids. 

Table 7. Effective ellipsoids corresponding to each degree of alignment. 

Real filler 𝑎 = 0 𝑎 = 1/3 𝑎 = 1 

 

 

  

Effective ellipsoid 𝐹𝑛0 = 0.30 (𝐴𝑅 = 1.5) 𝐹𝑛0 = 0.54 (𝐴𝑅 = 2.7) 𝐹𝑛0 = 1 (𝐴𝑅 = 5) 

 

 
 

 

The relation between 𝐹𝑛0 and 𝑎 observed in Figure 53 is derived in Appendix A (equation A-4). 
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4.6 Discussion 

An effective medium model – Polder/van Santen/Böttcher (PvSB) model [59], [60] – has been 

considered to predict the dielectric properties of composites as a function of filler dispersion 

and orientation.  

The PvSB model can incorporate the geometry of typical conductive nanofillers like carbon 

nanotubes, graphene or carbon black. It can predict the dielectric properties of composites with 

higher concentrations better than other kind of models, like mean field models (Wagner/Sillars 

model [54], [55]; Fricke model [62], [89]), based on the Maxwell/Garnett approximation [90], 

which is only applicable for dilute composites. 

The model was reformulated and two parameters, alignment and dispersion, were defined in 

terms of the components of the model. 

The PvSB model was experimentally validated. Macroscopic composite materials, in which 

conductive fillers were deliberately placed to obtain controlled values of concentration, 

orientation and dispersion, were fabricated. Their measured dielectric properties agree 

accurately with the prediction of the PvSB model. These results complement previous findings 

[57], where the PvSB model agree with experimental data from composites with non-

conductive fillers. 

The PvSB model was compared to simulations. Composites with the ideal dispersion 

characteristics assumed by the PvSB model were simulated using Comsol Multiphysics®. The 

results of simulations with different filler concentrations, shapes and orientations agree 

accurately with the predictions of the PvSB model, except for high concentrations, where the 

results of model and simulations start to deviate.  

The observed deviations at high concentrations is a known limitation of the PvSB model [106]. 

The PvSB model only considers the ideal condition in which the fillers are evenly distributed 

in a matrix, with no contact among them. These contacts become more and more probably as 

the concentration of fillers rises.  

Several non-ideal features (see section 4.3.3), which are ignored in the PvSB model, were 

simulated. Most of the considered features resulted in negligible effects on the dielectric 

properties of the composites. Only the connection between conductive fillers to form networks 
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produced relevant effects that must be incorporated into the model. These conductive networks 

produce a strong alteration in the electric field inside composites with respect to the electric 

field considered by the PvSB model. 

An extension of the PvSB is proposed in this thesis to include the effect of network formation 

of fillers. Based on the simulations of non-ideal composites, a mathematical representation of 

conductive networks is introduced: networks are represented as equivalent ellipsoidal fillers 

that have the same effect on the permittivity of the composite (see section 4.4). A new parameter 

is introduced, namely the network factor. The network factor is determined by the geometry of 

the network and relates it to an equivalent ellipsoidal filler. The so modified PvSB model will 

be referred to as the extended Polder/van Santen/Böttcher (e-PvSB) model. 

Percolation and fractal theories are alternative theories that can accurately describe the 

properties of composites with conductive fillers. However, their applicability to infer 

morphological information from experimental data is limited (this is extensively analysed by 

Nan in [107]). Percolation theories assumes that fillers are randomly distributed, while fractal 

theories imply that filler form self-similar networks, which is not always the case. McLachlan 

[76] proposed an empirical equation combining percolation theories with effective medium 

theories (thus overcoming the random nature of percolation theories). However, this equation 

applied only to the resistivity of composites. 

In this chapter, a methodology is proposed to use the e-PvSB model to obtain morphological 

information from experimental data. The concept of reference network factor is introduced, in 

order to synthesize the information of orientation, alignment and network factor in a single 

parameter. The reference network factor can be obtained by a nonlinear regression analysis of 

experimental data and can be used to compare the morphology of similar composites. 

Different filler morphologies result in the same values of permittivity versus concentration. This 

implies that the real morphology of a composite cannot be unequivocally deduced from 

experimental data. However, the method proposed is this chapter has practical applications in 

analysing composites with conductive fillers, as discussed in section 7. 

The method was successfully tested on data obtained from simulations to study composites with 

different degrees of dispersion and orientation. In the next sections, the method is applied to 

experimental data of composites with different degrees of dispersion (section 5) and alignment 

(section 6).   
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5. Analysis of dispersion 

In this chapter, the e-PvSB model will be applied to obtain morphological information from 

composites with different degrees of filler dispersion.  

5.1 Nanocomposites 

PLA/MWNT and PLA/CB composites were produced with good and bad dispersion (see 

chapter 3) and the e-PvSB model was applied to detect the difference in dispersion. MWNTs 

and CB, which can be modelled as prolate ellipsoids and spheres, respectively, were chosen in 

order to study the effect of different aspect ratios on the permittivity of composites. 

5.2 Microscopy 

Scanning electron microscopy (SEM) and transmission optical microscopy (TOM) were used 

in order to obtain information on the morphology of the fillers in the composites. 

5.2.1 Scanning Electron Microscopy 

The composites were characterized using SEM. The sample preparation and the microscope 

settings are specified in section 3.3. 

5.2.1.1 PLA/MWNT Composites 

In Figure 54 and Figure 55, SEM images of PLA composites with mass concentration of 1 % 

on MWNTs with good and bad dispersion are shown at different magnifications. Agglomerates 

with sizes in the order of tens of micrometres can be observed as bright (conductive) regions. 

Individual bright tubular structures can be observed within and outside agglomerates. The 

tubular structures feature an apparent diameter that was measured to be in the order of 80 nm. 

The diameter of MWNT according to the provider lies around 9.5 nm. Hence, the observed 

structures are arguably bundles of MWNTs, rather than individual MWNTs.  
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Figure 54. SEM images of PLA composites with a MWNT mass concentration of 1 % and good dispersion. 

 

Figure 55. SEM images of PLA composites with a MWNT mass concentration of 1 % and bad dispersion. 

The long tubular structures observed on the bottom left corner of the image on the left are polymer 

structures produced during the sample fracturing. 

In the composite with bad dispersion, larger agglomerates are observed. A mesh of MWNT 

bundles are observed within these agglomerates. In comparison, agglomerates in the composite 

with good dispersion feature better dispersed MWNTs. No alignment of the filler is observed 

in both composites. 

5.2.1.2 PLA/CB Composites 

In Figure 56 and Figure 57, SEM images of PLA composites with mass concentration of 1 % 

on CB with good and bad dispersion are shown at different magnifications. Agglomerates with 

sizes in the order of tens of micrometres can be observed as bright (conductive) regions. 

Individual bright spherical structures can be observed within and outside agglomerates, 

corresponding to individual particles of carbon black. 
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Figure 56. SEM images of PLA composites with a CB mass concentration of 1 % and good dispersion. 

 

Figure 57. SEM images of PLA composites with a CB mass concentration of 1 % and bad dispersion. 

In the composite with bad dispersion, larger agglomerates are observed. A mesh of CB particles 

is observed within these agglomerates. In comparison, agglomerates in the composite with good 

dispersion show better dispersed CB particles. In some cases, small networks of tens of CB 

particles are observed. 

5.2.2 Transmission Optical Microscopy 

The composites were characterized using TOM. The sample preparation and the microscope 

settings are specified in section 3.3. 

5.2.2.1 PLA/MWNT Composites 

In Figure 58 and Figure 59, TOM images of PLA composites with mass concentration of 1 % 

on MWNTs with good and bad dispersion are shown. Black regions represent agglomerates. 

Individual filler particles are too small to be detected. Light regions represent zones where no 
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agglomerates of detectable size are present, i.e., they may contain isolated particles or non-

observable agglomerates. 

   

Figure 58. TOM images of PLA composites with a MWNT mass concentration of 1 % and good dispersion: 

(left) original image and (right) image after computer analysis to detect agglomerates. 

   

Figure 59. TOM images of PLA composites with a MWNT mass concentration of 1 % and bad dispersion: 

(left) original image and (right) image after computer analysis to detect agglomerates. 

For each composite, ten images where computationally analysed according to the method 

described in section 3.3.3 to detect agglomerates (see right images of Figure 58 and Figure 59). 

The fraction of observable agglomerate area was found to be 0.5±0.3 % and 7±2 % for the 

composites with good and bad dispersion, respectively. Although the fraction of agglomerate 

area cannot be directly translated into a volume fraction, it is safe to state that the sample with 

bad dispersion has more agglomerates, or at least larger agglomerates. The results agree with 

the morphology expected for the fabrication process of each composite. 

5.2.2.2 PLA/CB Composites 

In Figure 60 and Figure 61, TOM images of PLA composites with mass concentration of 1 % 

on CB with good and bad dispersion are shown. Black regions represent agglomerates. 
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Individual filler particles are too small to be detected. Light regions represent zones where no 

agglomerates of detectable size are present, i.e., they may contain isolated particles or non-

observable agglomerates. 

   

Figure 60. TOM images of PLA composites with a CB mass concentration of 1 % and good dispersion: (left) 

original image and (right) image after computer analysis to detect agglomerates. 

   

Figure 61. TOM images of PLA composites with a CB mass concentration of 1 % and bad dispersion: (left) 

original image and (right) image after computer analysis to detect agglomerates. 

For each composite, ten images where computationally analysed according to the method 

described in section 3.3.3 to detect agglomerates (see right images of Figure 60 and Figure 61). 

The fraction of observable agglomerate area was found to be 3±1 % and 14±1 % for the 

composites with good and bad dispersion, respectively. The results agree with the morphology 

expected for the fabrication process of each composite. 

5.3 Dielectric Spectroscopy 

In this section, the results of dielectric spectroscopy are presented and discussed. The dielectric 

spectra were measured as described in section 3.3.1.1, between 1 Hz and 1 MHz.  
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5.3.1 Dielectric Spectra 

In Figure 62, the dielectric spectra of PLA and PLA composites with 0.1 % MWNT and 0.1 % 

CB mass concentrations and good dispersion are plotted versus frequency. It can be observed 

how the values of relative permittivity are almost flat, with a slightly decreasing slope with 

respect to frequency and are parallel for the three materials. The composites have a higher value 

of relative permittivity than the unfilled polymer, which can be explained in terms 

Maxwell/Wagner polarization processes (see section 2.1.5.3 for more details). The magnitude 

of the increase in permittivity of the composite with respect to the pure polymer can be 

accounted for by the e-PvSB model. This increase is a function of the filler’s dielectric 

properties, geometry and concentration, as discussed in chapter 4. 

 

Figure 62. Dielectric spectra of PLA and PLA composites with 0.1 % MWNT and 0.1 % CB mass 

concentrations and good dispersion. 

5.3.2 Permittivity versus Concentration 

In Figure 63, the permittivity of PLA composites with MWNT and CB is shown as a function 

of concentration, for good and bad dispersion. The values of permittivity were considered at an 

arbitrary frequency (10 kHz) for convenience. Due to the parallel and almost flat dielectric 

spectra shown in Figure 62, choosing other frequencies does not alter the conclusions of this 

chapter. 
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PLA/MWNT composites were measured for volume concentrations between 0.01 % and 

0.15 %, while PLA/CB composites were measured for volume concentrations between 0.03 % 

and 0.69 %. The volume concentrations were calculated as described in section 3.3.1. The 

highest measurable concentration is determined by the percolation threshold of each composite, 

as discussed in section 3.3.1.1. 

 

Figure 63. Measured permittivity of PLA composites with MWNT and CB, with good and bad dispersion, 

for different volume concentrations. Error bars are the standard deviation of 4 samples and are visible when 

the error is larger than the marker size. Lines are a visual guidance. 

It can be observed how the permittivity increases with concentration, especially when 

approaching the percolation threshold, where the measuring errors increase until the 

determination of the permittivity is no longer possible. The shape of the curve is compatible 

with the e-PvSB model, as shown in the next section. 

It must be noted that the percolation threshold is higher for the PLA/CB than for the PLA/CNT, 

as expected by for CB’s lower aspect ratio [12], [108]–[111]. 

The composites with bad dispersion show higher values of permittivity than the composites 

with good dispersion. This effect will be explained in the next section by fitting the measured 

data to the e-PvSB model. 
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5.3.3 Analysis with e-PvSB Model 

In this section, the e-PvSB model will be applied to obtain morphological information from the 

measured dielectric values, using the method described in section 4.5. 

5.3.3.1 PLA/MWNT Composites 

The reference network factor (𝐹𝑛0) for the PLA/MWNT composites was calculated by fitting 

the experimental data from Figure 63 to the e-PvSB model. In Figure 64, the set of combinations 

of dispersion and network factor that reproduces the experimental data, for both good and bad 

dispersion, is represented (the corresponding matrices of coefficients of determination are 

shown in Appendix B.) As discussed in section 4.5, it is not possible to discern which of all the 

possible solutions most accurately describe the real morphology of the composites. Instead, the 

𝐹𝑛0 is calculated. For the elaboration of Figure 64, it was assumed that isolated MWNTs were 

randomly oriented. However, it has no influence on the value of 𝐹𝑛0 (as previously defined, 𝐹𝑛0 

is the equivalent network factor of a fictitious composite with null dispersion, i.e., when no 

individual MWNT is isolated in the matrix). 

 

Figure 64. Different possible combinations of dispersion d (vertical axis) and network factor Fn (horizontal 

axis) that describe the measured permittivity of the PLA/MWNT composites of Figure 63. 

The observed values of 𝐹𝑛0 were 2.44±0.01 and 2.99±0.01, for the composites with good and 

bad dispersion, respectively. As expected, the 𝐹𝑛0 of the composite with bad dispersion is larger 
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than the 𝐹𝑛0  of the composite good dispersion. It must be remembered that any possible 

orientation of the fillers or agglomerates is included in the observed value of 𝐹𝑛0. However, due 

to the fabrication process, the orientation in both composites is expected to be similar and 

probably close to a random orientation. 

In Figure 65, the experimental data and the corresponding values provided by the e-PvSB model 

are represented. The coefficients of correlation are 0.99 and 0.82 for the composite with good 

and bad dispersion, respectively. 

 

Figure 65. Measured (squares) and modelled (lines) permittivity of PLA/MWNT composites, with good and 

bad dispersion, for different volume fractions. Error bars are the standard deviation of 4 samples and are 

visible when the error is larger than the marker size. 

5.3.3.2 PLA/CB Composites 

The reference network factor (𝐹𝑛0) for the PLA/CB composites was calculated by fitting the 

experimental data from Figure 63 to the e-PvSB model. In Figure 66, the set of combinations 

of dispersion and network factor that reproduces the experimental data, for both good and bad 

dispersion, is represented (the corresponding matrices of coefficients of determination are 

shown in Appendix B). As discussed in section 4.5, it is not possible to discern which of all the 

possible solutions most accurately describe the real morphology of the composites. Instead, the 

𝐹𝑛0  is calculated. Due to the sphericity of individual CB particles, their orientation is 
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meaningless, and the alignment parameter has no influence on the permittivity of the 

composites. 

 

Figure 66. Different possible combinations of dispersion (vertical axis) and network factor (horizontal axis) 

that describe the measured permittivity of the PLA/CB composites of Figure 63. 

The observed values of 𝐹𝑛0 were 17.4 ±0.1 and 18.0±0.1, for the composites with good and bad 

dispersion, respectively. As expected, the 𝐹𝑛0 of the composite with bad dispersion is larger 

than the 𝐹𝑛0 of the composite good dispersion.  

In Figure 67, the experimental data and the corresponding values provided by the e-PvSB model 

are represented. The coefficients of correlation are 0.99 and 1.00 for the composite with good 

and bad dispersion, respectively. 
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Figure 67. Measured (circles) and modelled (lines) permittivity of PLA/CB composites, with good and bad 

dispersion, for different volume concentrations. Error bars are the standard deviation of 4 samples and are 

visible when the error is larger than the marker size. 

5.4 Discussion 

The dielectric properties of composites of PLA with MWNT or CB with good or bad dispersion 

at different concentrations were measured. Results agree with previous observations: Pötschke 

et al. [112] have reported a decrease in electrical conductivity and permittivity of 

MWNT/polymer composites with increasing dispersion. Alig et al. [113] use percolation theory 

to quantitatively describe this effect. However, percolation theories lack of any direct relation 

between dielectric properties and morphological characteristics of the composites like filler 

aspect ratio, dispersion or alignment. The quantitative description proposed in this thesis takes 

into account all of these factors. 

The method described in section 4.5 to obtain morphological information of a composite using 

the e-PVSB model was successfully applied to experimental data. The observed values of 

reference network factor (𝐹𝑛0 ) qualitatively agree with the results of optical transmission 

microscopy and scanning electron microscopy: composites with bad dispersion show a greater 

value of 𝐹𝑛0 than composites with good dispersion, as expected.  
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The reference network factor (𝐹𝑛0) can therefore be used as a parameter to compare similar 

composites with different expected degrees of dispersion. 

In a fabrication process where no filler alignment is expected or detected by other techniques, 

the reference network factor can be used as a parameter representing the quality of the filler 

dispersion in the composite. The reference network factor could be used, e.g., to compare the 

quality of the dispersion obtained with different combinations of process parameters during 

extrusion. 
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6. Analysis of Alignment 

In this chapter, the e-PvSB model will be applied to obtain morphological information from 

composites with different degrees of alignment and network factor. 

6.1 Nanocomposites 

Epoxy/SWNT composites were produced with an electric field treatment (see section 3.2.4) that 

is expected to induce alignment and the formation of networks of SWNT. The e-PvSB model 

is applied in this chapter to detect those features. 

6.2 In-situ Characterization 

The dielectric properties of epoxy/SWNT composites were measured before and during curing 

with the setup described in chapter 3. 

6.2.1 Monitorization of the Electric Treatment 

A dispersion of SWNT in epoxy resin (without curing agent) was characterized under electric 

fields of different magnitudes to observe the change in electric properties due to the 

reorientation and/or migration of SWNTs. In Figure 68, the change over time in permittivity 

and conductivity in response to electric fields of different magnitudes (0 V, 20 mV, 10 V, 100 V 

over a distance of 2 mm) is shown. The voltage was applied at 1 MHz (it has been reported that 

the electric field treatment is more efficient at higher frequencies [63]) and was used to induce 

alignment and measure the electric properties at the same time (for this reason, no measured 

values of conductivity and permittivity are available when the voltage is 0). The magnitude of 

the electric field was changed in steps of approximately 5 minutes in a continuous 

measurement. 
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Figure 68. Time evolution of permittivity and conductivity at 1 MHz of an epoxy resin with a SWNT mass 

concentration of 0.005 %. Different voltages were applied over a distance of 2 mm. 

It can be observed how the lowest voltage (20 mV) induces only a slight increase in permittivity 

and conductivity, while the higher voltages (10 V and 100 V) make them almost double and 

increase one order of magnitude, respectively. The DC conductivity may have increased more 

than the measured conductivity at 1 MHz (see conductivity spectra in Appendix C). For values 

of permittivity over 70, the measurements become noisy when measured with low voltages 

(20 mV). 

Each time the voltage is increased, the conductivity increases to what seems to be an 

equilibrium value. Once this value is achieved, the conductivity does not decrease after 

reducing or even removing the electric field. This might be due to the formation of percolating 

networks of SWNTs, which are relatively stable [67], [113], [114]. 

6.2.2 Monitorization of the curing process 

The curing of the epoxy composites was monitorized by dielectric measurements. An electric 

field was applied in order to perform the measurements and induce alignment, at the same time. 

In Figure 69, the change over time in permittivity and conductivity at 1 MHz during the curing 

of an epoxy composite with a SWNT mass concentration of 0.005 % is shown.  
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Figure 69. Time evolution of permittivity and conductivity at 1 MHz during the curing of epoxy composites 

with a SWNT mass concentration of 0.005 % under 100 V (electric field treatment) and 20 mV. 

In view of the results in Figure 68 (with 20 mV changes in permittivity and conductivity are 

negligible), the voltage of the dielectric measurement was set to 100 V or 20 mV, to induce or 

avoid alignment of the SWNT, respectively. The time scale at which the alignment takes places 

(tens of seconds, see Figure 68), is much lower than the time scale of the curing (hundreds of 

seconds). Therefore, the alignment process is expected to happen to a sufficient extent before 

the epoxy becomes too viscous due to the curing. 

It must be noted that the value of conductivity is measured at 1MHz and is not proportional to 

the DC conductivity, making it less significant (see Appendix C, where the conductivity spectra 

of epoxy/SWNT composites are shown; samples with different DC conductivity have similar 

values of conductivity at 1 MHz). 

When curing epoxy without SWNTs, a decrease in permittivity is observed (Figure 70), due to 

the decrease of viscosity, and hence, the decrease of mobility of polar groups. 



90 6 | Analysis of Alignment 

 

Figure 70. Time evolution of permittivity and conductivity at 1 MHz during the curing of epoxy without 

SWNTs. 

6.3 Ex-situ characterization 

In this section, the results of dielectric spectroscopy are presented and discussed. The dielectric 

spectra were measured as described in section 3.3.1.1, between 1 Hz and 1 MHz  

In Figure 71 and Figure 72, the dielectric spectra of composites cured without and with electric 

field treatment (which will be called aligned and non-aligned composites for the sake of 

simplicity, although it may not represent the real morphology of the composites), respectively, 

are shown. A reference sample of unfilled epoxy (black, Figure 71), as well as aligned samples 

with multi-walled carbon nanotubes (blue, Figure 72) and carbon black (purple, Figure 71) are 

shown for comparison.  
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Figure 71. Dielectric spectra of non-aligned composites for SWNT mass concentrations between 0.0005 % 

and 0.01 %. The spectra of unfilled epoxy (white) and an aligned epoxy/CB composite are also included. 

Data are split in two plots to visualize the different magnitudes of 𝜺′(a logarithm scale would hide important 

features). 

It must be noted how the dielectric spectra of the non-aligned composites are mostly flat, 

especially for low concentrations. Only the composites at higher concentrations features 

dielectric steps, similar to the aligned composites of Figure 72. At frequencies lower than 10 Hz 

the measurement was noisy for the samples with higher permittivity, which might be an effect 

of electrode polarization, characteristic of conductive samples (see section 2.1.5.4). 

 

Figure 72. Dielectric spectra of aligned composites for SWNT mass concentrations between 0.0005 % and 

0.01 %. The spectrum of a composite of epoxy/MWNT (purple) after electrical treatment is also included. 
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The aligned 0.1 % MWNT composite in Figure 72 shows a much smaller increase in 

permittivity with respect to the unfilled epoxy than the aligned composites with up to 

0.01 % SWNT. This suggest that the SWNT are much more influenced by the electric field 

treatment than the MWNT [115]. 

The aligned 0.1 % CB composite shows an even smaller increase permittivity with respect to 

the unfilled epoxy (Figure 71). This suggest that the low aspect ratio of CB (around 1) greatly 

hinders the effect of the electric field treatment in forming networks.  

The dielectric spectra of the aligned composites feature two dielectric steps (one around 

100 Hz-1 kHz and one around 100 kHz-1 MHz), which represent two Maxwell/Wagner 

polarization processes (see section 2.1.5.3). Two dielectric steps imply the presence of two 

different interphases, i.e., two fillers with different conductivity. SWNTs are typically produced 

as a mix of semiconductive and metallic SWNTs [116], [117]. 

The mechanism of both Maxwell/Wagner dielectric steps is therefore hypothesized as coming 

from a metallic SWNT/epoxy interphase (for the step at high frequencies) and a semiconductive 

SWNT/epoxy interphase. The presence of a single dielectric step in the spectrum of the 

composite with MWNTs supports this hypothesis, but its demonstration goes beyond the scope 

of this thesis. A quantification of the ratio metallic SWNT / semiconductive SWNT from the 

dielectric spectra would be challenging, due to the number of factors influencing the size of the 

dielectric step, including possible different degrees of alignment of metallic and semiconductive 

SWNTs. 

6.4 Analysis with e-PvSB Model 

In Figure 73, the permittivity of the cured composites is shown as a function of concentration. 

The values of permittivity were considered at an arbitrary frequency (10 kHz) for convenience. 

Choosing other frequencies higher than 100 Hz (at 10 Hz or lower frequencies the measurement 

was noisy for the samples with higher permittivity) does not alter the conclusions of this chapter. 
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Figure 73. Permittivity at 10 kHz for aligned (squares) and non-aligned (circles) epoxy/SWNT composites. 

Error bars are the standard deviation of 4 samples and are visible when the error is larger than the marker 

size. Lines are a visual guidance. 

A huge increase in permittivity is observed for the aligned composites with respect to the non-

aligned composites.  

In Figure 74 the conductivity of the cured composites is shown as a function of concentration. 

The values of conductivity were considered at the lowest available frequency (1 Hz), for which 

the conductivity corresponds to the DC conductivity (except for the samples with conductivity 

lower than 10−10 S/m at 1 Hz (see the conductivity spectra in Appendix C for more details)). 
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Figure 74. Conductivity at 1 Hz for aligned (squares) and non-aligned (circles) epoxy/SWNT composites. 

Error bars are the standard deviation of 4 samples and are visible when the error is larger than the marker 

size. Lines are a visual guidance. 

It must be noted the huge effect of the electric field treatment on conductivity, making the 

conductivity apparently independent of concentration. This suggest that during the electric field 

treatment, SWNTs make new contacts and create thus percolating networks (this effect has been 

reported before [63], [64]). Composites without the electric field treatment do not create this 

percolating network until the concentration exceed the percolation threshold, which in this case 

happens at volume concentrations between 0.001 % and 0.005 %. 

The electric field treatment can therefore be considered as a method to induce percolation in 

composites at low concentrations. 

It must be noted that, unlike in previous chapters, some values of permittivity are measured 

above the percolation threshold. However, when applied above the percolation threshold, the 

e-PvSB model cannot be simplified (as in section 4.1.2) and hence the permittivity of the 

composites must be solved numerically. The matrix of possible solutions is therefore 

computationally expensive to calculate and is not provided in this thesis. The value of reference 

network factor (𝐹𝑛0) can be however calculated by a single nonlinear regression. 

The values of (𝐹𝑛0) were found (by non-linear regression) to be 5.5 and 2.1 (Figure 75) with 

coefficients of regression of 0.82 and 0.89, for the aligned and non-aligned composites, 
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respectively. The coefficients of regression indicate a rather inaccurate fitting to the 

experimental data. The inaccuracy stems, on one hand, from the higher deviations in the 

observed values. But on the other hand, the process of alignment and formation of new networks 

is chaotic and cannot be assumed to provide the same values of 𝐹𝑛0 for every concentration of 

SWNT.  

 

Figure 75. Measured (squares and circles) and modelled (lines) permittivity of aligned and non-aligned 

composites for different volume concentrations. 

The value of 𝐹𝑛0 increases highly with the electric treatment: it increases more than a 150 %, 

when it increases only around a 20 % for the PLA/MWNT composites of chapter 5. This high 

increase suggests that the SWNT are forming new networks along the direction of the electric 

field treatment. The e-PvSB model therefore describes the expected behaviour.  

The morphology suggested by this analysis is compatible with the hypothesis of alignment and 

network formation due to the electric field treatment. 

6.5 Discussion 

The e-PvSB was used to compare composites with different degrees of alignment and network 

formation. 
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The dielectric properties of composites of epoxy with SWNTs were measured at different 

concentrations. The samples were prepared with and without an electric treatment that is 

thought to induce some degree of alignment and/or form new contacts between SWNTs. The 

inducement of alignment by an electric field is theoretically based on the dielectrophoretic 

effects experimented by carbon nanotubes [63] and other particles [118] in an electric field, and 

experimentally supported in [64], [71], [119], [120]. 

For this purpose, a setup was developed that allowed the dielectric monitorization of the curing 

process of the composite. 

The dielectric spectra of the composites feature two relaxation processes that might originate 

from the presence of a mixture of metallic and semiconductive SWNTs. However, quantifying 

the ratio of this mixture is challenging and goes beyond the scope of this thesis. 

The method described in section 4.5 to obtain morphological information of a composite using 

the e-PVSB model was successfully applied to the experimental data. The observed values of 

reference network factor (𝐹𝑛0) support the idea of the electric treatment inducing SWNTs to 

form new connections and/or aligning along the electric field. Moreover, networks are expected 

to be more aligned and/or larger in the direction of the electric field.  

The reference network factor (𝐹𝑛0) can therefore be used as a parameter to compare similar 

composites with different expected degrees of alignment. It could therefore be used as a 

parameter representing the degree of filler alignment.   
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7. Conclusions 

An effective medium model (PvSB) has been considered to predict the dielectric properties of 

composites of conductive fillers in a non-conductive matrix as a function of their filler 

dispersion and orientation. Two parameters, alignment and dispersion, were defined in terms of 

the components of the model. The model was experimentally validated using reference samples 

with controlled conditions of dispersion and orientation. 

An extension to the PvSB model (e-PvSB) has been proposed to account for the contact or 

networking formation of the fillers in a composite. A methodology is proposed to use the 

e-PvSB model to obtain morphological information from experimental data. A parameter, the 

reference network factor, was introduced to account for the effects of the network formation 

and orientation. 

Percolation theories have been widely used to describe the electrical properties of 

nanocomposites. However, percolation theories lack of any direct relation between dielectric 

properties and morphological characteristics of the composites like filler aspect ratio, dispersion 

or alignment. The quantitative description proposed in this thesis takes into account all of these 

factors. 

The method was applied to experimental data of polymer composites with carbon nanotubes 

and carbon black. The values of the reference network factor predicted by the e-PvSB model 

qualitatively agree with the results of microscopic techniques and the expected morphology of 

the composites. 

Due to the volumetric nature of the dielectric measurements, this method provides a general or 

averaging picture of the morphology of a composite. That is, the method considers effective 

properties that describe the behaviour of the sample as a whole and provides no direct 

information of local effects. 

Due to the simple sample preparation and the short measurement times of dielectric 

measurements, relative to existing characterization techniques, this method constitutes a tool 

for a fast estimation of the morphological properties of composites.  

The characterization method proposed in this thesis can be used to complement other 

characterization techniques, like scanning electron microscopy, that can provide detailed 

information about the morphology of a composite, but typically in a small region of a 
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macroscopic sample. Once the morphology of a composite, produced with a given fabrication 

process, is analysed with the assistance of other characterization techniques, the value of the 

reference network factor can be used as a quality control parameter for mass production. 

Potentially, the method could be used in in-line measurements during the fabrication of a 

composite, so that the reference network factor could be used in a Shewhart chart or control 

chart as a quality control tool. 

The reference network factor can therefore be used as a parameter to compare similar 

composites with different expected degrees of dispersion or alignment. 

In a fabrication process where no filler alignment is expected or detected by other techniques, 

the reference network factor can be used as a parameter representing the quality of the filler 

dispersion in the composite. The reference network factor could be used, e.g., to compare the 

quality of the dispersion obtained with different combinations of process parameters during 

extrusion. 

When a process is expected to induce filler alignment, the reference network factor can be used 

as a parameter representing the degree of filler alignment. The reference network factor could 

be used, e.g., to compare the degree of filler alignment induced by flow effects in injection 

moulding or the filler alignment induced by an electrical field, as described in Chapter 6.



References  99 

References 

[1] B. Bhushan, Ed., Encyclopedia of Nanotechnology. Dordrecht: Springer Netherlands, 

2012, DOI: https://doi.org/10.1007/978-90-481-9751-4. 

[2] S. A. Curran, P. M. Ajayan, W. J. Blau, D. L. Carroll, J. N. Coleman, A. B. Dalton, A. P. 

Davey, A. Drury, B. McCarthy, S. Maier, et al., “A Composite from Poly(m-

phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and Carbon Nanotubes: A 

Novel Material for Molecular Optoelectronics,” Adv. Mater., vol. 10, no. 14, pp. 1091–

1093, Oct. 1998, DOI: https://doi.org/10.1002/(SICI)1521-

4095(199810)10:14<1091::AID-ADMA1091>3.0.CO;2-L. 

[3] M. S. P. Shaffer and A. H. Windle, “Fabrication and Characterization of Carbon 

Nanotube/Poly(vinyl alcohol) Composites,” Adv. Mater., vol. 11, no. 11, pp. 937–941, 

Aug. 1999, DOI: https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<937::AID-

ADMA937>3.0.CO;2-9. 

[4] B. Vigolo, P. Poulin, M. Lucas, P. Launois, and P. Bernier, “Improved structure and 

properties of single-wall carbon nanotube spun fibers,” Appl. Phys. Lett., vol. 81, no. 7, 

pp. 1210–1212, Aug. 2002, DOI: https://doi.org/10.1063/1.1497706. 

[5] M. Cadek, B. Le Foulgoc, J. N. Coleman, V. Barron, J. Sandler, M. S. P. Shaffer, A. 

Fonseca, M. van Es, K. Schulte, and W. J. Blau, “Mechanical and Thermal Properties of 

CNT and CNF Reinforced Polymer Composites,” in AIP Conference Proceedings, Oct. 

2002, vol. 633, no. 1, pp. 562–565, DOI: https://doi.org/10.1063/1.1514183. 

[6] P. Pötschke, A. R. Bhattacharyya, and A. Janke, “Carbon nanotube-filled polycarbonate 

composites produced by melt mixing and their use in blends with polyethylene,” Carbon 

N. Y., vol. 42, no. 5– 6, pp. 965–    969, Jan. 2004, DOI: https://doi.org/10.1016/j.carbon.2

003.12.001. 

[7] F. Nanni and M. Valentini, “11 – Electromagnetic properties of polymer–carbon 

nanotube composites,” in Polymer–Carbon Nanotube Composites, Cambridge: Elsevier 

(Woodhead Publishing United Kingdom), 2011, pp. 329–346, DOI: 

https://doi.org/10.1533/9780857091390.2.329. 

[8] S. C. Tjong, G. D. Liang, and S. P. Bao, “Electrical behavior of 

polypropylene/multiwalled carbon nanotube nanocomposites with low percolation 

threshold,” Scr. Mater., vol. 57, no. 6, pp. 461–464, Sep. 2007, DOI: 

https://doi.org/10.1016/j.scriptamat.2007.05.035. 

[9] S. Paszkiewicz, A. Szymczyk, X. M. Sui, H. D. Wagner, A. Linares, T. A. Ezquerra, and 

Z. Rosłaniec, “Synergetic effect of single-walled carbon nanotubes (SWCNT) and 

https://doi.org/10.1007/978-90-481-9751-4
https://doi.org/10.1002/(SICI)1521-4095(199810)10:14%3c1091::AID-ADMA1091%3e3.0.CO;2-L
https://doi.org/10.1002/(SICI)1521-4095(199810)10:14%3c1091::AID-ADMA1091%3e3.0.CO;2-L
https://doi.org/10.1002/(SICI)1521-4095(199908)11:11%3c937::AID-ADMA937%3e3.0.CO;2-9
https://doi.org/10.1002/(SICI)1521-4095(199908)11:11%3c937::AID-ADMA937%3e3.0.CO;2-9
https://doi.org/10.1063/1.1497706
https://doi.org/10.1063/1.1514183
https://doi.org/10.1016/j.carbon.2003.12.001
https://doi.org/10.1016/j.carbon.2003.12.001
https://doi.org/10.1533/9780857091390.2.329
https://doi.org/10.1016/j.scriptamat.2007.05.035


100  References 

graphene nanoplatelets (GNP) in electrically conductive PTT-block-PTMO hybrid 

nanocomposites prepared by in situ polymerization,” Compos. Sci. Technol., vol. 118, 

pp. 72–77, Oct. 2015, DOI: https://doi.org/10.1016/j.compscitech.2015.08.011. 

[10] K. Tsuchiya, A. Sakai, T. Nagaoka, K. Uchida, T. Furukawa, and H. Yajima, “High 

electrical performance of carbon nanotubes/rubber composites with low percolation 

threshold prepared with a rotation–revolution mixing technique,” Compos. Sci. Technol., 

vol. 71, no. 8, pp. 1098– 1104, May 2011, DOI: https://doi.org/10.1016/j.compscitech.2

011.03.015. 

[11] M. Cadek, J. N. Coleman, V. Barron, K. Hedicke, and W. J. Blau, “Morphological and 

mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous 

polymer composites,” Appl. Phys. Lett., vol. 81, no. 27, p. 5123, Dec. 2002, DOI: 

https://doi.org/10.1063/1.1533118. 

[12] C. Schilde, M. Schlömann, A. Overbeck, S. Linke, and A. Kwade, “Thermal, mechanical 

and electrical properties of highly loaded CNT-epoxy composites – A model for the 

electric conductivity,” Compos. Sci. Technol., vol. 117, pp. 183–190, Sep. 2015, DOI: 

https://doi.org/10.1016/j.compscitech.2015.06.013. 

[13] M. Monti, I. Armentano, G. Faiella, V. Antonucci, J. M. Kenny, L. Torre, and M. 

Giordano, “Toward the microstructure–properties relationship in MWCNT/epoxy 

composites: Percolation behavior and dielectric spectroscopy,” Compos. Sci. Technol., 

vol. 96, pp. 38–46, May 2014, DOI: https://doi.org/10.1016/j.compscitech.2014.03.008. 

[14] P. Pötschke, A. R. Bhattacharyya, and A. Janke, “Morphology and electrical resistivity 

of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate,” 

Polymer (Guildf)., vol. 44, no. 26, pp. 8061–8069, Dec. 2003, DOI: 

https://doi.org/10.1016/j.polymer.2003.10.003. 

[15] K. Trommer and C. Petzold, “Visualization of CNT-distribution in a polymer matrix by 

atomic force microscopy,” in Annual Conference NanoCarbon (Network NanoCarbon, 

Würzburg), Poster [Not published], 2016. 

[16] B. McCarthy, J. N. Coleman, R. Czerw, A. B. Dalton, M. in het Panhuis, A. Maiti, A. 

Drury, P. Bernier, J. B. Nagy, B. Lahr, et al., “A Microscopic and Spectroscopic Study 

of Interactions between Carbon Nanotubes and a Conjugated Polymer,” J. Phys. Chem. 

B, vol. 106, no. 9, pp. 2210–2216, Mar. 2002, DOI: https://doi.org/10.1021/jp013745f. 

[17] J. P. Runt and J. Fitzgerald, Dielectric spectroscopy of polymeric materials: 

Fundamentals and Applications. American Chemical Society, Professional Reference 

Book, 1999, ISBN: 9780841233355. 

[18] A. A. Volkov and A. S. Prokhorov, “Broadband Dielectric Spectroscopy of Solids,” 

https://doi.org/10.1016/j.compscitech.2015.08.011
https://doi.org/10.1016/j.compscitech.2011.03.015
https://doi.org/10.1016/j.compscitech.2011.03.015
https://doi.org/10.1063/1.1533118
https://doi.org/10.1016/j.compscitech.2015.06.013
https://doi.org/10.1016/j.compscitech.2014.03.008
https://doi.org/10.1016/j.polymer.2003.10.003
https://doi.org/10.1021/jp013745f


References  101 

Radiophys. Quantum Electron., vol. 46, no. 8/9, pp. 657–665, Aug. 2003, DOI: 

https://doi.org/10.1023/B:RAQE.0000024994.15881.c9. 

[19] A. Schönhals and F. Kremer, “Broadband Dielectric Measurement Techniques (10-6 Hz 

to 1012 Hz),” in Broadband Dielectric Spectroscopy, Berlin, Heidelberg: Springer Berlin 

Heidelberg, 2003, pp. 35–57, DOI: https://doi.org/10.1007/978-3-642-56120-7_2. 

[20] K. A. Mauritz, “Dielectric Spectroscopy (An illustration of the frequency response of 

various dielectric mechanisms in terms of the real and imaginary parts of the 

permittivity.),” 2008, Accessed: Apr. 03, 2019. [Online]. Available: https://commons.wi

kimedia.org/wiki/File:Dielectric_responses.svg. 

[21] E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy. Hoboken, NJ, USA: John 

Wiley & Sons, Inc., 2005, DOI: https://doi.org/10.1002/0471716243. 

[22] A. Schönhals and F. Kremer, “Theory of Dielectric Relaxation,” in Broadband Dielectric 

Spectroscopy, Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 1–33, DOI: 

https://doi.org/10.1007/978-3-642-56120-7_1. 

[23] A. Schönhals and F. Kremer, “Analysis of Dielectric Spectra,” in Broadband Dielectric 

Spectroscopy, Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 59–98, DOI: 

https://doi.org/10.1007/978-3-642-56120-7_3. 

[24] P. A. M. Steeman and J. van Turnhout, “Dielectric Properties of Inhomogeneous Media,” 

in Broadband Dielectric Spectroscopy, Berlin, Heidelberg: Springer Berlin Heidelberg, 

2003, pp. 495–522, DOI: https://doi.org/10.1007/978-3-642-56120-7_13. 

[25] C. J. F. Böttcher, O. C. van. Belle, P. Bordewijk, and A. Rip, Theory of electric 

polarization. Amsterdam: Elsevier Scientific Pub. Co, 1973, ISBN: 0444415793. 

[26] P. Debye, Polar molecules. [New York]: Dover, Book, 1929, Accessed: Apr. 03, 2019. 

[Online]. Available: https://www.worldcat.org/title/polar-molecules/oclc/6771812. 

[27] H. Fröhlich, “Theory of dielectrics.” Clarendon Press, Book, 1949, Accessed: Apr. 03, 

2019. [Online]. Available: http://cds.cern.ch/record/107973. 

[28] K. S. Cole and R. H. Cole, “Dispersion and Absorption in Dielectrics I. Alternating 

Current Characteristics,” J. Chem. Phys., vol. 9, no. 4, pp. 341–351, Apr. 1941, DOI: 

https://doi.org/10.1063/1.1750906. 

[29] D. W. Davidson and R. H. Cole, “Dielectric Relaxation in Glycerine,” J. Chem. Phys., 

vol. 18, no. 10, pp. 1417–1417, Oct. 1950, DOI: https://doi.org/10.1063/1.1747496. 

[30] D. W. Davidson and R. H. Cole, “Dielectric Relaxation in Glycerol, Propylene Glycol, 

and n ‐Propanol,” J. Chem. Phys., vol. 19, no. 12, pp. 1484–1490, Dec. 1951, DOI: 

https://doi.org/10.1023/B:RAQE.0000024994.15881.c9
https://doi.org/10.1007/978-3-642-56120-7_2
https://commons.wikimedia.org/wiki/File:Dielectric_responses.svg
https://commons.wikimedia.org/wiki/File:Dielectric_responses.svg
https://doi.org/10.1002/0471716243
https://doi.org/10.1007/978-3-642-56120-7_1
https://doi.org/10.1007/978-3-642-56120-7_3
https://doi.org/10.1007/978-3-642-56120-7_13
https://www.worldcat.org/title/polar-molecules/oclc/6771812
http://cds.cern.ch/record/107973
https://doi.org/10.1063/1.1750906
https://doi.org/10.1063/1.1747496


102  References 

https://doi.org/10.1063/1.1748105. 

[31] R. M. Fuoss and J. G. Kirkwood, “Electrical Properties of Solids. VIII. Dipole Moments 

in Polyvinyl Chloride-Diphenyl Systems,” J. Am. Chem. Soc., vol. 63, no. 2, pp. 385–

394, Feb. 1941, DOI: https://doi.org/10.1021/ja01847a013. 

[32] S. Havriliak and S. Negami, “A complex plane analysis of α-dispersions in some polymer 

systems,” J. Polym. Sci. Part C Polym. Symp., vol. 14, no. 1, pp. 99–117, Mar. 1966, 

DOI: https://doi.org/10.1002/polc.5070140111. 

[33] S. Havriliak and S. Negami, “A complex plane representation of dielectric and 

mechanical relaxation processes in some polymers,” Polymer (Guildf)., vol. 8, pp. 161–

210, Jan. 1967, DOI: https://doi.org/10.1016/0032-3861(67)90021-3. 

[34] P. Pissis, D. Fragiadakis, A. Kanapitsas, and K. Delides, “Broadband dielectric relaxation 

spectroscopy in polymer nanocomposites,” Macromol. Symp., vol. 265, pp. 12–20, 2008, 

DOI: https://doi.org/10.1002/masy.200850502. 

[35] P. Klonos, A. Kyritsis, L. Bokobza, V. M. Gun’ko, and P. Pissis, “Interfacial effects in 

PDMS/titania nanocomposites studied by thermal and dielectric techniques,” Colloids 

Surfaces A Physicochem. Eng. Asp., vol. 519, pp. 212–222, Apr. 2017, DOI: 

https://doi.org/10.1016/j.colsurfa.2016.04.020. 

[36] P. Klonos, Z. Terzopoulou, S. Koutsoumpis, S. Zidropoulos, S. Kripotou, G. Z. 

Papageorgiou, D. N. Bikiaris, A. Kyritsis, and P. Pissis, “Rigid amorphous fraction and 

segmental dynamics in nanocomposites based on poly(l–lactic acid) and nano-inclusions 

of 1–3D geometry studied by thermal and dielectric techniques,” Eur. Polym. J., vol. 82, 

pp. 16–34, Sep. 2016, DOI: https://doi.org/10.1016/j.eurpolymj.2016.07.002. 

[37] P. Klonos, S. Kripotou, A. Kyritsis, G. Z. Papageorgiou, D. Bikiaris, D. Gournis, and P. 

Pissis, “Glass transition and segmental dynamics in poly(l-lactic acid)/graphene oxide 

nanocomposites,” Thermochim. Acta, vol. 617, pp. 44–53, Oct. 2015, DOI: 

https://doi.org/10.1016/j.tca.2015.08.020. 

[38] P. J. Purohit, D.-Y. Wang, A. Wurm, C. Schick, and A. Schönhals, “Comparison of 

thermal and dielectric spectroscopy for nanocomposites based on polypropylene and 

Layered Double Hydroxide – Proof of interfaces,” Eur. Polym. J., vol. 55, pp. 48–56, 

Jun. 2014, DOI: https://doi.org/10.1016/j.eurpolymj.2014.03.005. 

[39] F. Kremer and A. Schönhals, Eds., Broadband Dielectric Spectroscopy. Berlin, 

Heidelberg: Springer Berlin Heidelberg, 2003, DOI: https://doi.org/10.1007/978-3-642-

56120-7. 

[40] J. S. Sedita and J. M. O’Reilly, “A Thermally Stimulated Depolarization Current Study 

https://doi.org/10.1063/1.1748105
https://doi.org/10.1021/ja01847a013
https://doi.org/10.1002/polc.5070140111
https://doi.org/10.1016/0032-3861(67)90021-3
https://doi.org/10.1002/masy.200850502
https://doi.org/10.1016/j.colsurfa.2016.04.020
https://doi.org/10.1016/j.eurpolymj.2016.07.002
https://doi.org/10.1016/j.tca.2015.08.020
https://doi.org/10.1016/j.eurpolymj.2014.03.005
https://doi.org/10.1007/978-3-642-56120-7
https://doi.org/10.1007/978-3-642-56120-7


References  103 

of Polymers in the Glass Transition Region,” Polym. Eng. Sci., vol. 41, no. 1, pp. 15–22, 

2001, DOI: https://doi.org/10.1002/pen.10704. 

[41] G. Floudas, “Dielectric Spectroscopy,” in Polymer Science: A Comprehensive Reference, 

Amsterdam: Elsevier, 2012, pp. 825–845, DOI: https://doi.org/10.1016/B978-0-444-

53349-4.00057-1. 

[42] F. Henry, L. C. Costa, and M. Devassine, “The evolution of poly(lactic acid) 

degradability by dielectric spectroscopy measurements,” Eur. Polym. J., vol. 41, no. 9, 

pp. 2122–2126, 2005, DOI: https://doi.org/10.1016/j.eurpolymj.2005.03.006. 

[43] Z.-M. Dang, J.-K. Yuan, J.-W. Zha, T. Zhou, S.-T. Li, and G.-H. Hu, “Fundamentals, 

processes and applications of high-permittivity polymer–matrix composites,” Prog. 

Mater. Sci., vol. 57, no. 4, pp. 660– 723, May 2012, DOI: https://doi.org/10.1016/j.pmat

sci.2011.08.001. 

[44] T. A. Ezquerra, J. Majszczyk, F. J. Baltà-Calleja, E. López-Cabarcos, K. H. Gardner, and 

B. S. Hsiao, “Molecular dynamics of the α relaxation during crystallization of a glassy 

polymer: A real-time dielectric spectroscopy study,” Phys. Rev. B, vol. 50, no. 9, pp. 

6023–6031, Sep. 1994, DOI: https://doi.org/10.1103/PhysRevB.50.6023. 

[45] A. K. Jonscher, “The ‘universal’ dielectric response,” Nature, vol. 267, no. 5613, pp. 

673–679, Jun. 1977, DOI: https://doi.org/10.1038/267673a0. 

[46] A. K. Jonscher, “The universal dielectric response and its physical significance,” IEEE 

Trans. Electr. Insul., vol. 27, no. 3, pp. 407– 423, Jun. 1992, DOI: https://doi.org/10.110

9/14.142701. 

[47] C. T. Moynihan, “Analysis of electrical relaxation in glasses and melts with large 

concentrations of mobile ions,” J. Non. Cryst. Solids, vol. 172–174, pp. 1395–1407, Sep. 

1994, DOI: https://doi.org/10.1016/0022-3093(94)90668-8. 

[48] J. C. Dyre and T. B. Schrøder, “Universality of ac conduction in disordered solids,” Rev. 

Mod. Phys., vol. 72, no. 3, pp. 873– 892, Jul. 2000, DOI: https://doi.org/10.1103/RevM

odPhys.72.873. 

[49] A. S. Nowick and B.S. Lim, “Analysis of ac conductivity data for Na2O·3SiO2 glass by 

stretched exponential and Jonscher power-law methods,” J. Non. Cryst. Solids, vol. 172–

174, pp. 1389–1394, Sep. 1994, DOI: https://doi.org/10.1016/0022-3093(94)90667-X. 

[50] J. L. Barton, “Dielectric relaxation of some ternary alkali-alkaline earth-silicate glasses,” 

Verres Refract, vol. 20, p. 328, 1966. 

[51] T. Nakajima, “Annual Report,” in Conference on Electric Insulation and Dielectric 

Phenomena (National Academy of Sciences, Washington D.C.), 1972, p. 168. 

https://doi.org/10.1002/pen.10704
https://doi.org/10.1016/B978-0-444-53349-4.00057-1
https://doi.org/10.1016/B978-0-444-53349-4.00057-1
https://doi.org/10.1016/j.eurpolymj.2005.03.006
https://doi.org/10.1016/j.pmatsci.2011.08.001
https://doi.org/10.1016/j.pmatsci.2011.08.001
https://doi.org/10.1103/PhysRevB.50.6023
https://doi.org/10.1038/267673a0
https://doi.org/10.1109/14.142701
https://doi.org/10.1109/14.142701
https://doi.org/10.1016/0022-3093(94)90668-8
https://doi.org/10.1103/RevModPhys.72.873
https://doi.org/10.1103/RevModPhys.72.873
https://doi.org/10.1016/0022-3093(94)90667-X


104  References 

[52] H. Namikawa, “Characterization of the diffusion process in oxide glasses based on the 

correlation between electric conduction and dielectric relaxation,” J. Non. Cryst. Solids, 

vol. 18, no. 2, pp. 173–195, Sep. 1975, DOI: https://doi.org/10.1016/0022-

3093(75)90019-8. 

[53] J. C. Maxwell, “ELECTRICITY AND MAGNETISM,” in A Treatise on Electricity and 

Magnetism, Cambridge: Cambridge University Press, 1873, pp. xxxi–xxxiv, DOI: 

https://doi.org/10.1017/CBO9780511709333.002. 

[54] K. W. Wagner, “Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund 

Maxwellscher Vorstellungen,” Arch. für Elektrotechnik, vol. 2, no. 9, pp. 371–387, Sep. 

1914, DOI: https://doi.org/10.1007/BF01657322. 

[55] R. W. Sillars, “The properties of a dielectric containing semiconducting particles of 

various shapes,” J. Inst. Electr. Eng., vol. 80, no. 484, pp. 378–394, Apr. 1937, DOI: 

https://doi.org/10.1049/jiee-1.1937.0058. 

[56] R. R. Bilboul, “A note on the permittivity of a double-layer ellipsoid,” J. Phys. D. Appl. 

Phys., vol. 2, no. 6, pp. 921–923, Jun. 1969, DOI: https://doi.org/10.1088/0022-

3727/2/6/420. 

[57] G. Bánhegyi, “Comparison of electrical mixture rules for composites,” Colloid Polym. 

Sci., vol. 264, no. 12, pp. 1030– 1050, Dec. 1986, DOI: https://doi.org/10.1007/BF0141

0321. 

[58] D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von 

heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der 

Mischkörper aus isotropen Substanzen,” Ann. Phys., vol. 416, no. 7, pp. 636–664, 1935, 

DOI: https://doi.org/10.1002/andp.19354160705. 

[59] C. J. F. Böttcher, “The dielectric constant of crystalline powders,” Recl. des Trav. Chim. 

des Pays- Bas, vol. 64, no. 2, pp. 47– 51, 1945, DOI: https://doi.org/10.1002/recl.194506

40205. 

[60] D. Polder and J. H. van Santen, “The effective permeability of mixtures of solids,” 

Physica, vol. 12, no. 5, pp. 257–271, Aug. 1946, DOI: https://doi.org/10.1016/S0031-

8914(46)80066-1. 

[61] W. Y. Hsu, T. D. Gierke, and C. J. Molnar, “Morphological effects on the physical 

properties of polymer composites,” Macromolecules, vol. 16, no. 12, pp. 1945–1947, 

Dec. 1983, DOI: https://doi.org/10.1021/ma00246a028. 

[62] H. Fricke, “A Mathematical Treatment of the Electric Conductivity and Capacity of 

Disperse Systems I. The Electric Conductivity of a Suspension of Homogeneous 

https://doi.org/10.1016/0022-3093(75)90019-8
https://doi.org/10.1016/0022-3093(75)90019-8
https://doi.org/10.1017/CBO9780511709333.002
https://doi.org/10.1007/BF01657322
https://doi.org/10.1049/jiee-1.1937.0058
https://doi.org/10.1088/0022-3727/2/6/420
https://doi.org/10.1088/0022-3727/2/6/420
https://doi.org/10.1007/BF01410321
https://doi.org/10.1007/BF01410321
https://doi.org/10.1002/andp.19354160705
https://doi.org/10.1002/recl.19450640205
https://doi.org/10.1002/recl.19450640205
https://doi.org/10.1016/S0031-8914(46)80066-1
https://doi.org/10.1016/S0031-8914(46)80066-1
https://doi.org/10.1021/ma00246a028


References  105 

Spheroids,” Phys. Rev., vol. 24, no. 5, pp. 575–587, Nov. 1924, DOI: 

https://doi.org/10.1103/PhysRev.24.575. 

[63] A. I. Oliva-Avilés, F. Avilés, V. Sosa, and G. D. Seidel, “Dielectrophoretic modeling of 

the dynamic carbon nanotube network formation in viscous media under alternating 

current electric fields,” Carbon N. Y., vol. 69, pp. 342–354, Apr. 2014, DOI: 

https://doi.org/10.1016/j.carbon.2013.12.035. 

[64] C. Park, J. Wilkinson, S. Banda, Z. Ounaies, K. E. Wise, G. Sauti, P. T. Lillehei, and J. 

S. Harrison, “Aligned single-wall carbon nanotube polymer composites using an electric 

field,” J. Polym. Sci. Part B Polym. Phys., vol. 44, no. 12, pp. 1751–1762, Jun. 2006, 

DOI: https://doi.org/10.1002/polb.20823. 

[65] J. Shang, Y. Zhang, L. Yu, B. Shen, F. Lv, and P. K. Chu, “Fabrication and dielectric 

properties of oriented polyvinylidene fluoride nanocomposites incorporated with 

graphene nanosheets,” Mater. Chem. Phys., vol. 134, no. 2–3, pp. 867–874, Jun. 2012, 

DOI: https://doi.org/10.1016/j.matchemphys.2012.03.082. 

[66] S. Wu, R. B. Ladani, J. Zhang, E. Bafekrpour, K. Ghorbani, A. P. Mouritz, A. J. Kinloch, 

and C. H. Wang, “Aligning multilayer graphene flakes with an external electric field to 

improve multifunctional properties of epoxy nanocomposites,” Carbon N. Y., vol. 94, pp. 

607–618, Nov. 2015, DOI: https://doi.org/10.1016/j.carbon.2015.07.026. 

[67] P. S. Goh, A. F. Ismail, and B. C. Ng, “Directional alignment of carbon nanotubes in 

polymer matrices: Contemporary approaches and future advances,” Compos. Part A 

Appl. Sci. Manuf., vol. 56, pp. 103– 126, 2014, DOI: https://doi.org/10.1016/j.composite

sa.2013.10.001. 

[68] C. Park and R. E. Robertson, “Alignment of particles by an electric field,” Mater. Sci. 

Eng. A, vol. 257, no. 2, pp. 295–311, Dec. 1998, DOI: https://doi.org/10.1016/S0921-

5093(98)00848-X. 

[69] T. I. W. Schnoor, G. Smith, D. Eder, K. K. K. Koziol, G. Tim Burstein, A. H. Windle, 

and K. Schulte, “The production of aligned MWCNT/polypyrrole composite films,” 

Carbon N. Y., vol. 60, pp. 229– 235, 2013, DOI: https://doi.org/10.1016/j.carbon.2013.0

4.016. 

[70] R. J. Castellano, C. Akin, G. Giraldo, S. Kim, F. Fornasiero, and J. W. Shan, 

“Electrokinetics of scalable, electric-field-assisted fabrication of vertically aligned 

carbon-nanotube/polymer composites,” J. Appl. Phys., vol. 117, no. 21, p. 214306, Jun. 

2015, DOI: https://doi.org/10.1063/1.4921948. 

[71] C. A. Martin, J. K. W. Sandler, A. H. Windle, M.-K. Schwarz, W. Bauhofer, K. Schulte, 

and M. S. P. Shaffer, “Electric field-induced aligned multi-wall carbon nanotube 

https://doi.org/10.1103/PhysRev.24.575
https://doi.org/10.1016/j.carbon.2013.12.035
https://doi.org/10.1002/polb.20823
https://doi.org/10.1016/j.matchemphys.2012.03.082
https://doi.org/10.1016/j.carbon.2015.07.026
https://doi.org/10.1016/j.compositesa.2013.10.001
https://doi.org/10.1016/j.compositesa.2013.10.001
https://doi.org/10.1016/S0921-5093(98)00848-X
https://doi.org/10.1016/S0921-5093(98)00848-X
https://doi.org/10.1016/j.carbon.2013.04.016
https://doi.org/10.1016/j.carbon.2013.04.016
https://doi.org/10.1063/1.4921948


106  References 

networks in epoxy composites,” Polymer (Guildf)., vol. 46, no. 3, pp. 877–886, Jan. 

2005, DOI: https://doi.org/10.1016/j.polymer.2004.11.081. 

[72] O. Osazuwa, M. Kontopoulou, P. Xiang, Z. Ye, and A. Docoslis, “Electrically conducting 

polyolefin composites containing electric field-aligned multiwall carbon nanotube 

structures: The effects of process parameters and filler loading,” Carbon N. Y., vol. 72, 

pp. 89–99, Jun. 2014, DOI: https://doi.org/10.1016/j.carbon.2014.01.059. 

[73] R. Landauer, “Electrical conductivity in inhomogeneous media,” in AIP Conference 

Proceedings, Jul. 1978, vol. 40, no. 1, pp. 2–45, DOI: https://doi.org/10.1063/1.31150. 

[74] K. S. Mendelson and M. H. Cohen, “The effect of grain anisotropy on the electrical 

properties of sedimentary rocks,” Geophysics, vol. 47, no. 2, pp. 257–263, Feb. 1982, 

DOI: https://doi.org/10.1190/1.1441332. 

[75] D. S. McLachlan, C. Chiteme, W. D. Heiss, and J. Wu, “Fitting the DC conductivity and 

first order AC conductivity results for continuum percolation media, using percolation 

theory and a single phenomenological equation,” Phys. B Condens. Matter, vol. 338, no. 

1–4, pp. 261–265, Oct. 2003, DOI: https://doi.org/10.1016/j.physb.2003.08.003. 

[76] D. S. McLachlan, M. Blaszkiewicz, and R. E. Newnham, “Electrical Resistivity of 

Composites,” J. Am. Ceram. Soc., vol. 73, no. 8, pp. 2187–2203, Aug. 1990, DOI: 

https://doi.org/10.1111/j.1151-2916.1990.tb07576.x. 

[77] D. S. McLachlan, “Analytical Functions for the dc and ac Conductivity of Conductor-

Insulator Composites,” J. Electroceramics, vol. 5, no. 2, pp. 93–110, 2000, DOI: 

https://doi.org/10.1023/A:1009954017351. 

[78] D. S. McLachlan, C. Chiteme, C. Park, K. E. Wise, S. E. Lowther, P. T. Lillehei, E. J. 

Siochi, and J. S. Harrison, “AC and DC percolative conductivity of single wall carbon 

nanotube polymer composites,” J. Polym. Sci. Part B Polym. Phys., vol. 43, no. 22, pp. 

3273–3287, Nov. 2005, DOI: https://doi.org/10.1002/polb.20597. 

[79] X. Tian, M. E. Itkis, E. B. Bekyarova, and R. C. Haddon, “Anisotropic Thermal and 

Electrical Properties of Thin Thermal Interface Layers of Graphite Nanoplatelet-Based 

Composites,” Sci. Rep., vol. 3, no. 1, p. 1710, Dec. 2013, DOI: https://doi.org/10.1038/

srep01710. 

[80] S. Y. Kim, Y. J. Noh, and J. Yu, “Thermal conductivity of graphene nanoplatelets filled 

composites fabricated by solvent-free processing for the excellent filler dispersion and a 

theoretical approach for the composites containing the geometrized fillers,” Compos. 

Part A Appl. Sci. Manuf., vol. 69, pp. 219– 225, Feb. 2015, DOI: https://doi.org/10.1016

/J.COMPOSITESA.2014.11.018. 

https://doi.org/10.1016/j.polymer.2004.11.081
https://doi.org/10.1016/j.carbon.2014.01.059
https://doi.org/10.1063/1.31150
https://doi.org/10.1190/1.1441332
https://doi.org/10.1016/j.physb.2003.08.003
https://doi.org/10.1111/j.1151-2916.1990.tb07576.x
https://doi.org/10.1023/A:1009954017351
https://doi.org/10.1002/polb.20597
https://doi.org/10.1038/srep01710
https://doi.org/10.1038/srep01710
https://doi.org/10.1016/J.COMPOSITESA.2014.11.018
https://doi.org/10.1016/J.COMPOSITESA.2014.11.018


References  107 

[81] M. Gresil, Z. Wang, Q.-A. Poutrel, and C. Soutis, “Thermal Diffusivity Mapping of 

Graphene Based Polymer Nanocomposites,” Sci. Rep., vol. 7, no. 1, p. 5536, Dec. 2017, 

DOI: https://doi.org/10.1038/s41598-017-05866-0. 

[82] R. Pal, “On the Lewis–Nielsen model for thermal/electrical conductivity of composites,” 

Compos. Part A Appl. Sci. Manuf., vol. 39, no. 5, pp. 718–726, May 2008, DOI: 

https://doi.org/10.1016/J.COMPOSITESA.2008.02.008. 

[83] T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials 

with misfitting inclusions,” Acta Metall., vol. 21, no. 5, pp. 571–574, May 1973, DOI: 

https://doi.org/10.1016/0001-6160(73)90064-3. 

[84] Y. Benveniste, “A new approach to the application of Mori-Tanaka’s theory in composite 

materials,” Mech. Mater., vol. 6, no. 2, pp. 147–157, Jun. 1987, DOI: 

https://doi.org/10.1016/0167-6636(87)90005-6. 

[85] M. M. Shokrieh, S. M. Ghoreishi, and M. Esmkhani, “Toughening mechanisms of 

nanoparticle-reinforced polymers,” in Toughening Mechanisms in Composite Materials, 

Cambridge: Elsevier (Woodhead Publishing United Kingdom), 2015, pp. 295–320, DOI: 

https://doi.org/10.1016/B978-1-78242-279-2.00011-1. 

[86] D. Lee and Y. S. Song, “Modeling the effects of elastic modulus and thermal expansion 

coefficient on the shrinkage of glass fiber reinforced composites,” Compos. Part B Eng., 

vol. 146, pp. 98– 105, Aug. 2018, DOI: https://doi.org/10.1016/J.COMPOSITESB.2018

.03.047. 

[87] W. Voigt, “Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper 

Körper,” Ann. Phys., vol. 274, no. 12, pp. 573– 587, Jan. 1889, DOI: https://doi.org/10.1

002/andp.18892741206. 

[88] A. Reuss, “Berechnung der Fließgrenze von Mischkristallen auf Grund der 

Plastizitätsbedingung für Einkristalle,” ZAMM - Zeitschrift für Angew. Math. und Mech., 

vol. 9, no. 1, pp. 49–58, Jan. 1929, DOI: https://doi.org/10.1002/zamm.19290090104. 

[89] H. Fricke, “The Electric Permittivity of a Dilute Suspension of Membrane‐Covered 

Ellipsoids,” J. Appl. Phys., vol. 24, no. 5, pp. 644– 646, May 1953, DOI: https://doi.org/

10.1063/1.1721343. 

[90] J. C. M. Garnett, “Colours in Metal Glasses and in Metallic Films,” Philos. Trans. R. 

Soc. A Math. Phys. Eng. Sci., vol. 203, no. 359–371, pp. 385–420, Jan. 1904, DOI: 

https://doi.org/10.1098/rsta.1904.0024. 

[91] M. Wang and N. Pan, “Predictions of effective physical properties of complex multiphase 

materials,” Mater. Sci. Eng. R Reports, vol. 63, no. 1, pp. 1–30, Dec. 2008, DOI: 

https://doi.org/10.1038/s41598-017-05866-0
https://doi.org/10.1016/J.COMPOSITESA.2008.02.008
https://doi.org/10.1016/0001-6160(73)90064-3
https://doi.org/10.1016/0167-6636(87)90005-6
https://doi.org/10.1016/B978-1-78242-279-2.00011-1
https://doi.org/10.1016/J.COMPOSITESB.2018.03.047
https://doi.org/10.1016/J.COMPOSITESB.2018.03.047
https://doi.org/10.1002/andp.18892741206
https://doi.org/10.1002/andp.18892741206
https://doi.org/10.1002/zamm.19290090104
https://doi.org/10.1063/1.1721343
https://doi.org/10.1063/1.1721343
https://doi.org/10.1098/rsta.1904.0024


108  References 

https://doi.org/10.1016/J.MSER.2008.07.001. 

[92] Nanocyl SA, “Technical data sheet NC7000-V08.” Accessed: Apr. 03, 2019. [Online]. 

Available: https://www.nanocyl.com/product/nc7000/. 

[93] OcSiAl, “Technical information Tuball.” Accessed: Apr. 03, 2019. [Online]. Available: 

http://tuball.com/en/about-tuball. 

[94] Unipetrol, “Product Sheet Chezacarb.” Accessed: Apr. 03, 2019. [Online]. Available: 

http://www.unipetrol.cz/en/OurProducts/PetrochemicalProducts/CarbonBlackCHEZAC

ARB/Pages/default.aspx. 

[95] Total-Corbion, “Technical sheet Luminy PLA neat resins.” Accessed: Apr. 03, 2019. 

[Online]. Available: https://www.total-corbion.com/downloads/. 

[96] Hexion Inc., “Technical data sheet EPIKOTE Resin MGS RIMR426.” Accessed: Apr. 

03, 2019. [Online]. Available: https://www.hexion.com/en-GB/brand/EPIKOTE/. 

[97] Rubitherm Technolgies GmbH, “RT42 data sheet.” Accessed: Apr. 03, 2019. [Online]. 

Available: https://www.rubitherm.eu/media/products/datasheets/Techdata_- RT42_EN_

06082018.PDF. 

[98] C. Laurent, E. Flahaut, and A. Peigney, “The weight and density of carbon nanotubes 

versus the number of walls and diameter,” Carbon N. Y., vol. 48, no. 10, pp. 2994–2996, 

Aug. 2010, DOI: https://doi.org/10.1016/J.CARBON.2010.04.010. 

[99] G. Liu, Y. Zhao, K. Deng, Z. Liu, W. Chu, J. Chen, Y. Yang, K. Zheng, H. Huang, W. 

Ma, et al., “Highly Dense and Perfectly Aligned Single-Walled Carbon Nanotubes 

Fabricated by Diamond Wire Drawing Dies,” Nano Lett., vol. 8, no. 4, pp. 1071–1075, 

Apr. 2008, DOI: https://doi.org/10.1021/nl073007o. 

[100] L. D. Filip and V. Filip, “Influence of electron quantum confinement on the strength of 

carbon nanotube bundles,” Solid State Electron. Lett., vol. 1, no. 1, pp. 1–9, Jan. 2019, 

DOI: https://doi.org/10.1016/J.SSEL.2018.09.001. 

[101] C. J. Edgcombe, S. M. Masur, E. B. Linscott, J. A. J. Whaley-Baldwin, and C. H. W. 

Barnes, “Analysis of a capped carbon nanotube by linear-scaling density-functional 

theory,” Ultramicroscopy, vol. 198, pp. 26– 32, Mar. 2019, DOI: https://doi.org/10.1016

/J.ULTRAMIC.2018.11.007. 

[102] G. Kirchhoff, “Zur Theorie des Condensators,” Berlin Verl. d. Kgl. Akad. d. Wiss., vol. 

March, p. 144, 1877, Accessed: Apr. 03, 2019. [Online]. Available: http://histmath-

heidelberg.de/txt/bbaw-kirchhoff.htm. 

[103] NOVOCONTROL Technologies GmbH & Co. KG, “Alpha and Beta Analyzers User’s 

https://doi.org/10.1016/J.MSER.2008.07.001
https://www.nanocyl.com/product/nc7000/
http://tuball.com/en/about-tuball
http://www.unipetrol.cz/en/OurProducts/PetrochemicalProducts/CarbonBlackCHEZACARB/Pages/default.aspx
http://www.unipetrol.cz/en/OurProducts/PetrochemicalProducts/CarbonBlackCHEZACARB/Pages/default.aspx
https://www.total-corbion.com/downloads/
https://www.hexion.com/en-GB/brand/EPIKOTE/
https://www.rubitherm.eu/media/products/datasheets/Techdata_-RT42_EN_06082018.PDF
https://www.rubitherm.eu/media/products/datasheets/Techdata_-RT42_EN_06082018.PDF
https://doi.org/10.1016/J.CARBON.2010.04.010
https://doi.org/10.1021/nl073007o
https://doi.org/10.1016/J.SSEL.2018.09.001
https://doi.org/10.1016/J.ULTRAMIC.2018.11.007
https://doi.org/10.1016/J.ULTRAMIC.2018.11.007
http://histmath-heidelberg.de/txt/bbaw-kirchhoff.htm
http://histmath-heidelberg.de/txt/bbaw-kirchhoff.htm


References  109 

Manual,” 2005. Accessed: Apr. 03, 2019. [Online]. Available: https://www.novocontrol

.de/php/request.php. 

[104] J. M. S. Prewitt and M. L. Mendelsohn, “The Analysis of Cell Images,” Ann. N. Y. Acad. 

Sci., vol. 128, no. 3, pp. 1035–1053, Dec. 2006, DOI: https://doi.org/10.1111/j.1749-

6632.1965.tb11715.x. 

[105] L. S. Lasdon, R. L. Fox, and M. W. Ratner, “Nonlinear optimization using the generalized 

reduced gradient method,” Rev. française d’automatique, informatique, Rech. 

opérationnelle. Rech. opérationnelle, vol. 8, no. V3, pp. 73–103, Mar. 1974, DOI: 

https://doi.org/10.1051/ro/197408V300731. 

[106] G. Banhegyi, “Numerical analysis of complex dielectric mixture formulae,” Colloid 

Polym. Sci., vol. 266, no. 1, pp. 11– 28, Jan. 1988, DOI: https://doi.org/10.1007/BF0145

1527. 

[107] C.-W. Nan, “Physics of inhomogeneous inorganic materials,” Prog. Mater. Sci., vol. 37, 

no. 1, pp. 1–116, Jan. 1993, DOI: https://doi.org/10.1016/0079-6425(93)90004-5. 

[108] S. Pfeifer, S.-H. Park, and P. R. Bandaru, “Modeling the Relative Dielectric Permittivity 

and Impedance of Carbon Nanotube Constituted Polymer Composites in the Sub-GHz 

Regime,” ECS Solid State Lett., vol. 2, no. 1, pp. M5–M7, Oct. 2012, DOI: 

https://doi.org/10.1149/2.006301ssl. 

[109] H. Pang, L. Xu, D.-X. Yan, and Z.-M. Li, “Conductive polymer composites with 

segregated structures,” Prog. Polym. Sci., vol. 39, no. 11, pp. 1908–1933, Nov. 2014, 

DOI: https://doi.org/10.1016/j.progpolymsci.2014.07.007. 

[110] T. Villmow, S. Pegel, P. Pötschke, and U. Wagenknecht, “Influence of injection molding 

parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon 

nanotubes,” Compos. Sci. Technol., vol. 68, no. 3–4, pp. 777–789, Mar. 2008, DOI: 

https://doi.org/10.1016/j.compscitech.2007.08.031. 

[111] T. Villmow, P. Pötschke, S. Pegel, L. Häussler, and B. Kretzschmar, “Influence of twin-

screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a 

poly(lactic acid) matrix,” Polymer (Guildf)., vol. 49, no. 16, pp. 3500–3509, Jul. 2008, 

DOI: https://doi.org/10.1016/j.polymer.2008.06.010. 

[112] P. Pötschke, S. M. Dudkin, and I. Alig, “Dielectric spectroscopy on melt processed 

polycarbonate—multiwalled carbon nanotube composites,” Polymer (Guildf)., vol. 44, 

no. 17, pp. 5023–5030, Aug. 2003, DOI: https://doi.org/10.1016/S0032-3861(03)00451-

8. 

[113] I. Alig, P. Pötschke, D. Lellinger, T. Skipa, S. Pegel, G. R. Kasaliwal, and T. Villmow, 

https://www.novocontrol.de/php/request.php
https://www.novocontrol.de/php/request.php
https://doi.org/10.1111/j.1749-6632.1965.tb11715.x
https://doi.org/10.1111/j.1749-6632.1965.tb11715.x
https://doi.org/10.1051/ro/197408V300731
https://doi.org/10.1007/BF01451527
https://doi.org/10.1007/BF01451527
https://doi.org/10.1016/0079-6425(93)90004-5
https://doi.org/10.1149/2.006301ssl
https://doi.org/10.1016/j.progpolymsci.2014.07.007
https://doi.org/10.1016/j.compscitech.2007.08.031
https://doi.org/10.1016/j.polymer.2008.06.010
https://doi.org/10.1016/S0032-3861(03)00451-8
https://doi.org/10.1016/S0032-3861(03)00451-8


110  References 

“Establishment, morphology and properties of carbon nanotube networks in polymer 

melts,” Polymer (Guildf)., vol. 53, no. 1, pp. 4–28, Jan. 2012, DOI: 

https://doi.org/10.1016/j.polymer.2011.10.063. 

[114] C. A. Martin, J. K. W. Sandler, M. S. P. Shaffer, M.-K. Schwarz, W. Bauhofer, K. Schulte, 

and A. H. Windle, “Formation of percolating networks in multi-wall carbon-nanotube–

epoxy composites,” Compos. Sci. Technol., vol. 64, no. 15, pp. 2309–2316, Nov. 2004, 

DOI: https://doi.org/10.1016/j.compscitech.2004.01.025. 

[115] P. L. McEuen and M. S. Fuhrer, “Single-walled carbon nanotube electronics,” IEEE 

Trans. Nanotechnol., vol. 1, no. 1, pp. 78– 85, Mar. 2002, DOI: https://doi.org/10.1109/

TNANO.2002.1005429. 

[116] E. A. Laird, F. Kuemmeth, G. A. Steele, K. Grove-Rasmussen, J. Nygård, K. Flensberg, 

and L. P. Kouwenhoven, “Quantum transport in carbon nanotubes,” Rev. Mod. Phys., 

vol. 87, no. 3, pp. 703– 764, Jul. 2015, DOI: https://doi.org/10.1103/RevModPhys.87.70

3. 

[117] L. Xin and Z. Chen, “Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of 

Small Fullerenes and Single-Walled Carbon Nanotubes,” Chem. Rev., vol. 105, no. 10, 

pp. 3643–3696, 2005, DOI: https://doi.org/10.1021/CR030093D. 

[118] M. P. Hughes, “AC electrokinetics: applications for nanotechnology,” Nanotechnology, 

vol. 11, no. 2, pp. 124–132, Jun. 2000, DOI: https://doi.org/10.1088/0957-

4484/11/2/314. 

[119] T. Prasse, “Electric anisotropy of carbon nanofibre/epoxy resin composites due to 

electric field induced alignment,” Compos. Sci. Technol., vol. 63, no. 13, pp. 1835–1841, 

Oct. 2003, DOI: https://doi.org/10.1016/S0266-3538(03)00019-8. 

[120] F. Lionetto, E. Calò, F. Di Benedetto, D. Pisignano, and A. Maffezzoli, “A methodology 

to orient carbon nanotubes in a thermosetting matrix,” Compos. Sci. Technol., vol. 96, 

pp. 47–55, 2014, DOI: https://doi.org/10.1016/j.compscitech.2014.02.016. 

 

 

https://doi.org/10.1016/j.polymer.2011.10.063
https://doi.org/10.1016/j.compscitech.2004.01.025
https://doi.org/10.1109/TNANO.2002.1005429
https://doi.org/10.1109/TNANO.2002.1005429
https://doi.org/10.1103/RevModPhys.87.703
https://doi.org/10.1103/RevModPhys.87.703
https://doi.org/10.1021/CR030093D
https://doi.org/10.1088/0957-4484/11/2/314
https://doi.org/10.1088/0957-4484/11/2/314
https://doi.org/10.1016/S0266-3538(03)00019-8
https://doi.org/10.1016/j.compscitech.2014.02.016


List of Publications  111 

List of Publications 

J. F. Blanco-Villalba, I. Recio, J. Gómez-Cordón, C. Hübner, “Improving the processability of 

graphene nanoplatelets in polyamide 6 during melt compounding extrusion,” in AIP 

Conference Proceedings, 2019, vol. 2055, no. 1, pp. 090010, DOI: 

https://doi.org/10.1063/1.5084888. (Peer-reviewed article). 

J. F. Blanco-Villalba, I. Mikonsaari, C. Hübner, “Dielectric spectroscopy and effective medium 

models to characterize polymer nanocomposites,” in NanoCarbon Annual Conference 

2018, Würzburg, February 2018 (Presentation and poster). 

J. F. Blanco-Villalba, I. Recio, J. Gómez-Cordón, C. Hübner, “Improving the processability of 

graphene nanoplatelets in polyamide 6 during melt compounding extrusion,” in 

Europe/Africa Conference, Polymer Processing Society PPS, Dresden, June 2017. 

(Presentation). 

J.F. Blanco-Villalba, R. Valente, D. Vlasveld, I. Mikonsaari, C. Hübner, “Effect of the fluid flow 

on the distribution of carbon nanotubes during the injection moulding of polymer 

nanocomposites,” in Programme and Book of Abstracts of the 9th International 

Conference on Broadband Dielectric Spectroscopy and its Applications, 2016, p. 171, 

ISBN: 97888652283547, Pisa, September 2016. (Abstract and poster). 

 

 

https://doi.org/10.1063/1.5084888


112  Appendix A 

Appendix A: Proof of the Multiplicity of Solutions in the 

Regression Analysis on the e-PvSB Model 

Given a composite with a dispersion 𝑑 and agglomerates described by the network factor 𝐹𝑛 

(with corresponding depolarization factor 𝐴𝑛 = 𝑓(𝐹𝑛)), it can be proved that there are infinite 

other composites, dispersion 𝑑2 and agglomerates described by the network factor 𝐹𝑛2 (with 

corresponding depolarization factor 𝐴𝑛2 = 𝑓(𝐹𝑛2) ), that feature an identical experimental 

curve of composite permittivity (𝜀)̅ versus filler volume concentration (𝜈). 

Given the e-PvSB model (equation 4-19), assuming that both composites share the same matrix 

(𝜀𝑚̅) and filler (𝑎𝑓, 𝐴𝑓∥, 𝐴𝑓⊥), and imposing identical values of composite permittivity (𝜀)̅ and 

filler volume concentration (𝜈), we obtain: 

𝜀̅ =
𝜀𝑚

1 − 𝜈𝑑 [
𝑎𝑓

𝐴𝑓∥
+

(1 − 𝑎𝑓)
𝐴𝑓⊥

] +
𝜈(1 − 𝑑)

𝐴𝑛

=
𝜀𝑚

1 − 𝜈𝑑2 [
𝑎𝑓

𝐴𝑓∥
+

(1 − 𝑎𝑓)
𝐴𝑓⊥

] +
𝜈(1 − 𝑑2)

𝐴𝑛2

 

A-1 

The denominators in the second and third members of previous equality are equal: 

1 − 𝜈𝑑 [
𝑎𝑓

𝐴𝑓∥
+

(1 − 𝑎𝑓)

𝐴𝑓⊥

] +
𝜈(1 − 𝑑)

𝐴𝑛
= 1 − 𝜈𝑑2 [

𝑎𝑓

𝐴𝑓∥
+

(1 − 𝑎𝑓)

𝐴𝑓⊥

] +
𝜈(1 − 𝑑2)

𝐴𝑛2
 A-2 

Solving for 𝐴𝑛2 we obtain: 

𝐴𝑛2 =
1 − 𝑑2

(𝑑 − 𝑑2) (
𝑎𝑓

𝐴𝑓∥
+

(1 − 𝑎𝑓)
𝐴𝑓⊥

) +
1 − 𝑑

𝐴𝑛

 
A-3 

Equation A-3 provides an infinite number of combinations of 𝐴𝑛2  and 𝑑2  that provides 

composites with identical permittivity to the original composite if 𝐴𝑛 and 𝑑 (Q.E.D.). 

The value of reference network factor (𝐹𝑛(𝑑 = 0) ≡ 𝐹𝑛0) and the corresponding depolarization 

factor (𝐴𝑛0) can unequivocally describe a set of equivalent composites. It can be proved by 

imposing 𝑑2 = 0 in equation A-4: 
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𝐴𝑛0 =
1

𝑑 (
𝑎𝑓

𝐴𝑓∥
+

(1 − 𝑎𝑓)
𝐴𝑓⊥

) +
1 − 𝑑

𝐴𝑛

 
A-4 

Equation A-4 provides the curves that emerge in the matrices of coefficients of determination 

of Appendix B. 
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Appendix B: Matrices of Coefficients of Determination 

Matrices of coefficients of determination (𝑅2) of the e-PvSB model with respect to data of 

experimental or simulated composites. Colours represent the value of the coefficient of 

determination, ranging from red (𝑅2 ≤ 0.7 , insufficient fitting) to green (𝑅2 = 1 , perfect 

fitting), going through yellow (𝑅2 = 0.9, acceptable fitting). 

 

Figure 76. Matrix of coefficients of determination (𝑹𝟐) of the e-PvSB model with respect to a simulated 

composite (Figure 46, 𝒅 = 𝟎) for different combinations of dispersion (𝒅) and network factor (𝑭𝒏). 
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Figure 77. Matrix of coefficients of determination (𝑹𝟐) of the e-PvSB model with respect to a simulated 

composite (Figure 46, 𝒅 = 𝟏) for different combinations of dispersion (𝒅) and network factor (𝑭𝒏). 

 

Figure 78. Matrix of coefficients of determination (𝑹𝟐) of the e-PvSB model with respect to PLA/MWNT 

composites with good dispersion for different combinations of dispersion (𝒅) and network factor (𝑭𝒏). 
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Figure 79. Matrix of coefficients of determination (𝑹𝟐) of the e-PvSB model with respect to PLA/MWNT 

composites with bad dispersion for different combinations of dispersion (𝒅) and network factor (𝑭𝒏). 

 

Figure 80. Matrix of coefficients of determination (𝑹𝟐 ) of the e-PvSB model with respect to PLA/CB 

composites with good dispersion for different combinations of dispersion (𝒅) and network factor (𝑭𝒏). 
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Figure 81. Matrix of coefficients of determination (𝑹𝟐 ) of the e-PvSB model with respect to PLA/CB 

composites with bad dispersion for different combinations of dispersion (𝒅) and network factor (𝑭𝒏). 
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Appendix C: Conductivity Spectra of Epoxy Composites 

 

Figure 82. Conductivity spectra of two aligned composites with a significant different in DC conductivity 

(low-frequency limit). The values of conductivity at 1 MHz do not represent that different. 

 

Figure 83. Conductivity spectra of non-aligned composites for SWNT mass concentrations between 

0.0005 % and 0.01 %. The spectra of unfilled epoxy (black) and an aligned epoxy/CB composite are also 

included. The DC conductivity cannot be determined for the samples without a low-frequency plateau. 
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