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1
Chapter 1

Introduction

Light is not only a basic necessity for all life on earth but also one’s most important
tool for getting information about our environment. Our eyesight might be our
most important sense and losing it has the most severe implications in everyday
life. It is no surprise, that optics is one of the oldest disciplines in physics, driven
by the urge to understand our universe on all scales. Light microscopy has allowed
us to investigate cells and explore the workings of our body, while telescopes have
been used to grasp knowledge about our solar system and beyond. Trusting in
what one sees is crucial for decision making and orientation. A prime example
are x-ray-based diagnostics that have allowed doctors for more than a century to
make non-invasive assessments.

However, detecting something might not always be the main goal. Certain
applications require to guide light around objects – in certain fields even hide
them. But what would be the implications if one cannot tell the difference between
an object and its surrounding? For a long time, invisibility cloaks were only the
content of tales and science fiction stories. But with new advances in research, one
has to start questioning the trustworthiness of what one sees, as the foundation
for modern real life invisibility cloaks is already reality.

A pioneering paper was published in 2006 by J. Pendry et al., in which the au-
thors introduced the concept of what was later termed “transformation optics” [1].
Here, starting from a virtual coordinate transformation, the physical properties
of a material are derived. In this fashion, the behavior of a physical system can
be purposefully tailored to obtain a desired functionality. As an example, this
allows for guiding the propagation of light at will – even around objects, enabling,
within certain limits, the realization of real invisibility cloaks.

With this tool at hand, not only the research on cloaking devices for free space
optics [2–10] but also research in other fields of physics was triggered. The beauty
of transformation optics in general is, that it is not limited in its approach to
the field of free-space optics, but can be applied as transformation physics to
many other fields with small modifications. Transformation physics has therefore
enabled research in many other fields like acoustics [11–13], elastomechanics
[14–20], electric conduction [21–23], magnetostatics [24–26], and heat conduction
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1 introduction

[27–29].
A particularly impressive kind of invisibility cloak was published in the field of

diffuse-light propagation [30]. More importantly, the diffuse-light regime is by no
means an academic paper exercise but has real-world applications as can be seen
in diffuse optical mammography [31–33].

Although transformation optics enables bending the flow of light to will, all
cloaking devices have their limits. Most prominently, broad band free space
invisibility cloaks are limited by special relativity: The group velocity of light
cannot be accelerated beyond the vacuum speed of light to make up for the detour
around a cloaked object [34]. In the diffuse-light regime, however, we are no
longer bound by this fundamental limit for free-space propagation, as the effective
speed of propagation is significantly slowed down due to multiple scattering in
diffusive media.

Furthermore, for most free-space cloaking approaches the transition from a
theoretical design to a real-world device is often limited by a very complicated or
impossible fabrication of constituent materials.

In the field of diffuse optics, however, much simpler designs can achieve enor-
mous effects. The simple concept of the core-shell cloak published in 2014 by
R. Schittny et al. [30] shows precisely this. The authors used the concept of
neutral inclusion which has been known long before transformation optics [35–38].
These cloaks are relatively easy to fabricate and work perfectly for homogeneous
illumination for all visible wavelengths, all directions, and all polarization.

But even these cloaking designs have their Achilles’ heel. During my master’s
thesis, I performed transient experiments on a core-shell cloak and within this
study, we discovered that all diffuse-light cloaks lack proper transient cloaking [39].
While this effect can be exploited in time-domain measurements in diffuse optical
mammography for better diagnostics, it poses a fundamental challenge in the
field of cloaking.

Besides this limit, there is little known about the limitations of this kind of
invisibility cloak. Still an open question is whether it is possible to improve the
core-shell cloak by using a more advanced design from transformation optics.
The revised cloak would benefit from an improved performance under inhomo-
geneous illumination. And while the cloak is working fine under white light
illumination still no research had been done on the performance of diffuse-light
cloaks illuminated by just one wavelength, hence, coherent light.

To change the core-shell cloak to a more advanced design, one would have
to use a higher number of laminate layers in order to gain anisotropic material
properties typically demanded by transformation optics. Thus, a general study on
laminates in diffusive optics has been carried out in this work. Furthermore, the
core-shell cloak is not designed for illumination with coherent light, as diffusion
theory does not account for any wave phenomena. To investigate the impact of
coherent light, experiments on a core-shell cloak with coherent light and partially
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coherent light have been realized.
In addition to that, a complex coherent transmission matrix of the cloak is

measured in order to obtain more information from the sample imperceptible by
other means.

Insights into the behavior of light in scattering media do not only lead to
designs of more advanced invisibility cloaks for special purposes as for example
for cloaking contact grids on OLEDs [40], but also to a deeper understanding
of optics in the unexplored light regime in between ballistic and diffusive light
propagation.

Finding possible flaws and general limitations of cloaking helps to not only
improve the design of such cloaks but foster also improved diagnostics. For
instance, using short light pulses in a time-of-flight measurement to get an insight
into human tissue therefore ensures, that nothing can be perfectly hidden from a
doctor’s diagnosis.

Ultimately, the proof that there is no perfect cloaking device might be good for
everyone’s good night sleep.

Outline of this thesis

In the following Chapter 2, an introduction is given into the most important
basics necessary to understand the work that has been done in the subsequent
chapters. Textbook knowledge is condensed to the scope that is needed, important
variables are introduced, and some simulation as well as measurement techniques
are presented.

Bending the flow of light in diffusive optics is usually based on one simple
idea: The light will always follow the path of minimal "resistance". Laminates are
using this idea and are a wonderful tool for many physics applications. But in
diffusive light, there are some special limitations on how laminates may be used.
These limits are simulated by a Monte Carlo ray-tracing software and discussed
in Chapter 3.

To examine the performance of the core-shell cloak under coherent illumination,
in Chapter 4, the statistics of the transmission under coherent illumination are
investigated by experiments and corresponding simulations as well as theoretical
work. With partially coherent light, one exploits a limitation already utilized to
reveal the cloak by transient illumination to uncloak the cloak once again.

Going one step further in Chapter 5, extracting information out of the scatter-
ing device is realized by recording a complex transmission matrix of the cloak
sample in an interferometric experimental setup. By scanning the cloak with
multiple illumination angles, a look at the statistical behavior of the transmission
eigenchannels is possible.

At the end of this thesis, all findings are summarized and discussed in Chapter 6.
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2
Chapter 2

Fundamentals

Within this chapter, theoretical knowledge is refreshed to ease the transition into
the following chapters. Additionally, several variables used in those chapters are
introduced.

The basis for all projects within this work is a solid knowledge on light scattering
in diffuse media and an understanding of invisibility cloaking in this regime,
which are given in Sections 2.1 and 2.3. In addition to these general topics,
project specific fundamentals as the Monte Carlo method for photon transport
(Section 2.4), laminate theory (Section 2.2), coherent light scattering (Section 2.6),
and complex field measurement methods (Section 2.7) are outlined as well.

Parts of the projects in this thesis were joint works with my colleagues R. Schittny
and S. Mannherz. As we were working together on the theoretical fundamentals,
their theses [41, 42] provide similar fundamental chapters on light scattering,
core-shell cloaking, and laminates.

2.1 Light Scattering

In this thesis light is the most important tool to examine the manufactured
samples. Therefore an introduction into light scattering and the boundaries in
which diffusive light transport is present, is given. The introduction starts from
ray optics, and therefore without any interference effects, as this will be discussed
later (see Sections 2.6 and 2.7).

2.1.1 Ballistic and Diffuse Light Propagation

Light propagation in a medium with randomly distributed scattering particles
can be divided into three regimes, as shown in Figure 2.1. The first one is the so
called “ballistic regime”. In this regime, most of the light will propagate through
the sample without any interaction with the scattering particles. In everyday life,
we see this kind of light transport in air, transparent windows, or clear water.

If the distance between two (isotropic) scattering events is in the length scale of
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2 fundamentals

the wavelength, “localization” might occur [43–45], which is the second regime.
In between these two extremes, there is the “diffusive regime”. Most of the
transmitted light is scattered several times inside the medium. Everyday examples
are dense fog, clouds, a glass of milk, or a piece of paper. In this work, the
transition between the diffusive regime and the ballistic regime will be observed
by simulations and in experiments.

localized diffusive ballistic

lt
Lλ

Dmin Dmax D

focus of this work

Figure 2.1: Regimes of light propagation. With increasing transport mean free path
length lt, transition from the localized regime, where the transport mean free path
length is in the order of the wavelength (lt ≈ λ), to the ballistic regime, where the
transport mean free path length is in the order of the dimensions of the medium
(lt ≈ L), is shown. In between these two extremes light travels according to the
diffusion equation and a diffusivity D can be introduced. The focus of this work lays
on the transition between the diffusive and the ballistic regime.

2.1.2 Absorption and Scattering

In the following section, the mathematical and physical fundamentals of light
propagation in scattering media are explained briefly as they are necessary to
understand the central formula in diffusive light propagation, the diffusion equa-
tion for light. However, for a complete introduction, reading the references is
inevitable. This section is based on the book "Light propagation through biological
tissue and other diffusive media" [46].

Hereafter, a dielectric, transparent medium with refractive index n is given, in
which dielectric scattering centers with a different refractive index are embedded
randomly. The only two possible interactions between light and this medium
are either elastic scattering at the scattering centers or absorption within the
background medium. This simple model for light-matter interaction is a very
crude simplification that has the advantage to avoid getting into more complex
phenomena of light-matter interaction and will lead to relatively simple analytical
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2 .1 light scattering

solutions.
In this work, absorption and scattering are the main phenomena of light-matter

interaction [46]. Light propagation is described as the propagation of single
photons in a direction Ñs . A scattering event will change the initial direction Ñs
to a new direction Ñs ′. The angular dependence of this scattering event is given
by the scattering phase function (also called scattering function) p

(
Ñs ,Ñs ′

)
. By

considering polarized light and spherical particles, the scattering function only
depends on the scattering angle θ between Ñs and Ñs ′:

p
(
Ñs ,Ñs ′

)
= p (θ) . (2.1)

As everything is rotational symmetric around the propagation direction of light,
the scattering function is independent of the azimuthal angle φ. Thus φ is uni-
formly distributed and the probability function fφ, is given by

fφ =
1

2π
. (2.2)

Its normalization becomes
2π∫
0

fφ dφ = 1. (2.3)

The same holds true for the normalization fθ

π∫
0

fθ dθ = 1, (2.4)

resulting in the probability function

fθ = 2π p(θ) sin(θ), (2.5)

where p(θ) is given by the Henyey-Greenstein phase function [47]

p(θ) =
1

4π

1− g2

(1 + g2 − 2g cos θ)3/2 . (2.6)

This equation can be deduced from Mie theory [48]. Here, g = 〈cos θ〉 is the
scattering asymmetry factor.

As the number of photons will stay the same and all photons will scatter in
arbitrary directions, the scattering function can be normalized by integrating over
the solid angle dΩ:

∫
4π

p(θ)dΩ = 2π

π∫
0

p(θ) sin θ dθ = 1. (2.7)

9



2 fundamentals

For multiple scattering processes, calculating the exact scattering phase function
is not necessary. Calculating one parameter, the asymmetry factor (or anisotropy
factor) g, is sufficient [49]:

g = 〈cos θ〉 = 2π

π∫
0

cos θp(θ) sin θ dθ. (2.8)

This asymmetry factor is an easy measure for the kind of scattering event
that is happening inside of the medium. Its value reaches from −1 to 1 and is
mainly dependent on the ratio between wavelength λ and the diameter of the
scattering particle d. A material with g = −1 has only scattering events where
the direction of light is redirected by 180◦, also called backscattering. If the
material is dominated by Rayleigh scattering, the average angle is θ = π/2, which
corresponds to isotropic scattering [50]. Rayleigh scattering is prominent when
the diameter of the scattering particles is smaller than the wavelength (d � λ).
A medium with large scattering particles (d � λ) results in geometric forward
scattering with g close to 1. The regime in between these two extremes with d ≈ λ
and 0 < g < 1 is best described by Mie theory [48, 51].

2.1.3 Scattering Coefficient

Describing a scattering medium in an intuitive way leads to the question "How
strongly does the medium scatter the light?" or in a negative way "How far does
light travel before it is scattered in this medium?". To answer the second question,
the scattering mean free path length ls is introduced. Its inverse is the scattering
coefficient µs that might give an answer to the first question.

ls =
1
µs

, [ls] = mm. (2.9)

The scattering coefficient µs describes the mean number of scattering events per
length element and is connected to the number of scattering particles per unit
volume Np and their scattering cross section Cs,p by:

µs = NpCs,p , [µs] = mm−1. (2.10)

Just as the scattering coefficient, the absorption coefficient µa can be defined.
It is the ratio of light power absorbed per unit volume divided by the incident
power per unit area and is given in the unit of mm−1. In the same manner, the
absorption length la is defined as the inverse of the absorption coefficient la = 1

µa
,

which describes the average path length a photon travels before it is absorbed.
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2 .1 light scattering

Added up, the scattering coefficient and the absorption coefficient will give the
extinction coefficient µex:

µex = µs + µa. (2.11)

This coefficient describes the decrease of intensity of unscattered light in the initial
direction.

2.1.4 Beer-Lambert-Law

If a beam of light with the incident power P0 is propagating in the direction of
z, the remaining power P(z) of the light beam at the position z is given by the
Beer-Lambert law:

P(z) = P0 exp

− z∫
0

µex(z′)dz′

 . (2.12)

For homogeneously allocated scattering particles (µex (z) = const.), Equa-
tion 2.12 simplifies to

P(z) = P0 exp [−µexz] . (2.13)

With Equation 2.12, the probability distribution fz along z can be derived. The
probability that a photon with a starting point at z0 = 0 is scattered or absorbed
between 0 and z is given by

fz = µex exp

− z∫
0

µex(z′)dz′

 , (2.14)

or once again in a homogeneous medium, with µex = const., it may be simplified
to

fz = µex exp [−µexz] . (2.15)

Out of these considerations, the mean free path length lex a photon is moving
in average before it is scattered or absorbed can be derived. For an infinitely
extended, homogeneous medium the mean free path length is

lex =

∞∫
0

z fzdz =
1

µex
. (2.16)

2.1.5 Reduced Scattering Mean Free Path Length

As mentioned in Section 2.1.3, the most intuitive variable to describe the scattering
of light in a medium is the scattering mean free path length ls. To describe
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the overall behavior of light in a scattering medium, the transport mean free
path length lt was used in Section 2.1.2. The transport mean free path length
lt is a measure for the distance in a medium until the propagation direction is
randomized. The connection between these two quantities is the anisotropy factor
that is the average of the cosine of the scattering angle g = 〈cos(θ)〉

lt =
ls

1− g
. (2.17)

For a better understanding of lt, let’s take a look at the extreme cases of g:
In the case of isotropic scattering, the anisotropy factor will be zero, thus, the
transport and the scattering mean free path length will be just the same, lt = ls.
If a medium has solely forward scattering, the path of light will not be changed
due to scattering events, although the scattering mean free path length ls might
be very small and a lot of scattering events may happen. In this case, lt accounts
for the forward scattering and as stated in Equation 2.17, lt will become infinite.
In Chapter 3, the transport mean free path length will be the main measure for
scattering media.

Just like the scattering mean free path length, the scattering coefficient has its
counterpart as well:

lt =
1
µt

(2.18)

and thus:
µt = µs(1− g). (2.19)

2.1.6 Radiometric Quantities

To have all tools in hand to follow the derivation of energy transport on the next
couple of pages, some radiometric quantities have to be introduced. First, the
main radiometric quantity to describe energy propagation by light in transport
theory is the radiance L:

L(Ñr, ŝ, t) , [L] = W m−2 sr−1 . (2.20)

The radiance L is defined as the average power that flows through a unit area
facing the direction of Ñs at position Ñr and at time t.

Integration over the entire solid angle leads to the irradiance or fluence rate Φ:

Φ(
Ñr, t) =

∫
4π

L(Ñr, ŝ, t)dΩ , [Φ] = W m−2 . (2.21)

The irradiance Φ is a measure for the power that flows through a unit area at
position Ñr and at time t from any possible direction. Division by the speed of
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2 .1 light scattering

light in the medium v = c0/n (where n is the refractive index of the background
medium) or the photon energy hν gives us the density u and the photon density
np respectively:

u(Ñr, t) =
Φ(
Ñr, t)
v

, [u] = J m−3 (2.22)

and

np(
Ñr, t) =

u(Ñr, t)
hν

, [np] = m−3 . (2.23)

The direction and the amount of net flux of power is given by the energy flux
vector:

Ñ

Je(
Ñr, t) =

∫
4π

L(Ñr, ŝ, t) ŝ dΩ , [
Ñ

Je] = W m−2 . (2.24)

2.1.6.1 Radiative Transfer Equation

The radiative transfer equation (RTE) describes the transport of radiative energy
in a turbid medium in a phenomenological way. It lacks a complete formulation
accounting for all effects involved in light propagation. Effects like interference,
polarization, or wavelength dependencies are neglected. Nevertheless, it is a
useful model for many practical problems. The RTE is an integro-differential
equation that can be understood as a formula that gives insight into the simple
scattering and absorption processes, that might change the radiance in a certain
region. The time-dependent RTE reads as

1
v

∂

∂t
L (
Ñr ,Ñs , t)︸ ︷︷ ︸

1.

+∇ · (Ñs L (
Ñr ,Ñs , t))︸ ︷︷ ︸

2.

+ (µa + µs) L (
Ñr ,Ñs , t)︸ ︷︷ ︸

3.

= µs

∫
4π

p
(
Ñs ,Ñs ′

)
L
(
Ñr ,Ñs ′, t

)
dΩ′

︸ ︷︷ ︸
4.

+ q (Ñr ,Ñs , t)︸ ︷︷ ︸
5.

,
(2.25)

with the source term q (Ñr ,Ñs , t).

• Term (1.) describes the total temporal change of energy in the volume
element dV, solid angle dΩ and time interval dt along the propagation
direction Ñs . The origins of the change in energy are described by the
following terms. In case of a stationary source term (1.) disappears.

• Term (2.) accounts for the energy propagating away from Ñr in the direction
of Ñs .
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• Term (3.) represents the photon loss due to absorption and scattering in
dV dΩ dt. µa and µs are the time-independent and direction-independent
absorption and scattering coefficients, respectively.

• Term (4.) accounts for the energy which comes from an arbitrary direction
Ñs ′ and is scattered in dV into the direction Ñs .

• And lastly, term (5.) is the source term which considers sources in the
volume element dV that generate light along the propagation direction Ñs .

Unfortunately, solving the RTE is not an easy task. But there are two possible
paths: Either this equation can be solved numerically or some approximations can
be applied to find an analytical solution. Solving this equation numerically will be
discussed in Section 2.4. There, a Monte Carlo algorithm will be introduced which
is quite efficient but still lacks the benefits of an analytical solution. The other
path will be discussed on the next couple of pages. With some approximations,
the RTE can be transformed into the Light Diffusion Equation, which opens a lot
of opportunities for designing devices that control the flow of light in scattering
media.

2.1.6.2 Dependency on Absorption of the RTE

Changing the modeling of absorption is the first simplification of the RTE. If it is
possible to find a solution for Equation 2.25 without absorption (L(Ñr ,Ñs , t, µa = 0)),
it is also possible to change this solution to one that accounts for absorption as
long as it is homogeneous (µa(

Ñr ) = const.). As photons do not interact with
each other, we can set the source term q (Ñr ,Ñs , t) to be a Dirac delta function.
Solutions for other source terms can be added up [52]. Therefore, the solution
with absorption is

L(Ñr ,Ñs , t, µa) = L(Ñr ,Ñs , t, µa = 0) exp(−µavt), (2.26)

with µa as the absorption coefficient of the medium and v as the speed of light in
the medium. Like this, the lifetime τ = − 1

µavt can be introduced. As mentioned
before, this kind of absorption results from the assumption, that scattering does not
influence the absorption. Only the overall path length in the background medium
determines the absorption. As long as the refractive index is homogeneous in the
background medium, all photons released at the same time t = 0 by the source
will travel the same distance l = vt within a certain time t > 0. As it is used
later, we can already define the diffusion length that is a measure for the distance
photons travel before they are absorbed:

lD =
√

Dτ (2.27)

Without absorption (τ → ∞ and lD → ∞), both measures, the lifetime τ and the
diffusion length lD that mimic the influence of absorption become infinite.
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2 .1 light scattering

2.1.6.3 Static and Time-Dependent Light Diffusion Equation

The diffusion approximation [53] is one approach to simplify the integro-differential
RTE as it cannot be solved analytically. This diffusion approximation manly con-
sists out of two individual approximations that have to be applied to the RTE to
obtain the diffusion equation. These two simplifications and the conversion of the
RTE to the diffusion equation will be shown in the following.

The first assumption is about the radiance L. If the radiance is almost isotropic,
one can stop a series expansion after two orders in spherical harmonics:

L(Ñr ,Ñs , t) =
1

4π
Φ(
Ñr , t) +

3
4π

Ñ

Je(
Ñr , t) ·Ñs . (2.28)

This holds true for multiple scattering, as for a randomized propagation, the
radiance becomes almost isotropic. This simplification is not applicable if either
the medium is too small or the absorption is too high as in these cases, there is no
chance photons being scattered multiple times.

The second assumption is about the time variation of the energy flux vector
Ñ

Je.
If the time variance is small compared to the vector itself, one can write:

lt
v

∣∣∣∣∣∂
Ñ

Je(
Ñr , t)

∂t

∣∣∣∣∣� ∣∣∣ÑJe(Ñr , t)
∣∣∣ . (2.29)

This restriction is fulfilled as well if scattering is the dominant process in light
transport. As a summary, a simple checklist in terms of sample properties, will be
provided here [46]:

• Scattering has to dominate over absorption: µt
µa

> 10.

• The smallest dimension of the medium Lmin has to be at least 10 times larger
than the transport mean free path length lt: Lmin ≥ 10lt.

• Every photon has to have a path length of at least 4lt inside the medium and
therefore, undergo & 4/(1− g) scattering events before detection.

If one ore more points are not accomblished, light transport can not be descibed
by the diffusion equation. Designing a device for diffusive light that obeys these
rules will always lead to a low transmission, as there will always be a lot of back
reflection. The goal in Chapter 3 is to investigate how fast the behavior of light
changes when these rules are broken.

With these assumptions, the RTE can be rewritten as the diffusion equation.
First, we get the continuity equation by integrating the RTE without absorption
over the complete solid angle:

1
v

∂

∂t
Φ(
Ñr , t) +

Ñ

∇ ·
Ñ

Je(
Ñr , t) =

∫
4π

q(Ñr ,Ñs , t)dΩ. (2.30)
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By using the two diffusion approximations mentioned above and integrating
over the whole solid angle, Fick’s first law is deduced from the RTE (see Equa-
tions 2.28 and 2.29). As a result, Fick’s first law is obtained as

Ñ

Je(
Ñr , t) = − lt

3

Ñ∇Φ(
Ñr , t)− 3

∫
4π

q(Ñr ,Ñs , t)Ñs dΩ

 , (2.31)

which connects the energy flux to the gradient of the fluence rate. Next, we
introduce the photon flux vector

Ñ

J (Ñr, t) =
Ñ

Je(
Ñr, t)
hν

, [
Ñ

J ] = m−2 s−1 , (2.32)

which is a measure for the amount of photons traveling in a certain direction at a
given time and position.

Now, Fick’s law can be expressed in terms of the photon density

Ñ

J (Ñr , t) = −D

Ñ∇np(
Ñr , t)− 3

hν

∫
4π

q(Ñr ,Ñs , t)Ñs dΩ

 . (2.33)

D is called the photon diffusivity which is something like a “photon-conductivity”
of the material. It is only dependent on the refractive index and the transport
mean free path length of the medium:

D =
1
3

c0

n
lt, [D] = m2 s−1 . (2.34)

By plugging Equation 2.33 into Equation 2.30, the diffusion equation for the
photon density is obtained as

Ñ

∇ · (D
Ñ

∇np(
Ñr , t))−

∂np(
Ñr , t)

∂t
= q0(

Ñr ,Ñs , t), (2.35)

with q0 = 1
v·hν

(
3∇ ·

[
D
∫

4π qÑs dΩ
]
−
∫

4π qdΩ
)

being the new source term. As
mentioned above, it is easy to introduce absorption once again (as long as it is
much smaller than the scattering counterpart). As we see in Equation 2.26, an
exponential factor is used to simulate absorption. This results in the additional
term µavnp(

Ñr , t) for the diffusion equation:

Ñ

∇ · (D
Ñ

∇np(
Ñr , t))−

∂np(
Ñr , t)

∂t
= µavnp(

Ñr , t) + q0(
Ñr ,Ñs , t). (2.36)
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2 .1 light scattering

Looking closely at the time-dependent light-diffusion equation without a source
term:

Ñ

∇ · (D
Ñ

∇np(
Ñr , t))−

∂np(
Ñr , t)

∂t
= 0, (2.37)

similarities to other equations, as for example the equation for heat conduction

Ñ

∇ ·
(
κ
Ñ

∇T(Ñr, t)
)
− cρ

∂T(Ñr, t)
∂t

= 0 , (2.38)

are obvious. This can be neat when thinking of designs and applications for
devices of diffuse-light transport. With some translation of temperature to photon
density etc. one can transfer ideas from one topic to the other.
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2.2 Laminates in Diffuse Light

One of the basic ideas to control the flow of light in a scattering medium are
laminates. The simplest laminate structure is formed by a repetitive stack of
two layers A and B with different material properties. Laminates are a simple
way to generate anisotropy in an effective material, as the directions in plane
of the layers has different effective material properties than the direction out of
plane. Laminate structures are known from many other fields of physics. If
heat conduction should be low in one specific direction, one can use a stack of
different materials to prevent for example heat loss [54]. In mechanics, aviation
is using laminate structures to achieve anisotropic material parameter [55]. In
the following, I will give a short introduction to the usage of simple laminates in
diffuse optics. A more detailed description of laminate properties can be found in
the textbook of G. Milton [56].

In Figure 2.2 a structure out of two different isotropic materials A and B is
shown. A laminate period a consists of two layers and the layer thickness of both
media is equal, a/2 = LA = LB. The diffusivity of those layers are DA and DB,
respectively. As it might be easier to imagine what is happening in a laminate
structure in electrostatics, the diffusivity can be seen as the electric conductivity
σ and the photon density np as the electrostatic potential Φ(

Ñr). Simplifying this
problem further, one of the two diffusivities in the laminate is equal to zero, for
instance DA = 0. In electron transport this means that the material is an isolator.
Translating this to light diffusion, Laminate A would be a diffuse reflector and
any photon current normal to the layers would be zero. The current parallel to
the layers, however, is finite. In this extreme case it is obvious, that with very
simple means, we created a structure with anisotropic material properties. For
thin laminates, the effective diffusivity can be written as a tensor.

By aligning the layers parallel to the coordinate system, the diffusivity tensor is
given by [56, 57]

Ø

D =

Dxx 0 0
0 Dyy 0
0 0 Dzz

 . (2.39)

The effective diffusivities in y and z-direction, which are parallel to the laminates,
are given by

Dyy = Dzz =
DA + DB

2
(2.40)

and in x-direction perpendicular to the layers by

1
Dxx

=
1
2

(
1

DA
+

1
DB

)
. (2.41)
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DA DB

Lz

Lx

Ly

LA LB

x

yz

a

Figure 2.2: Schematic illustration of a laminate. The structure consists of two equidis-
tant layers, A and B, with layer widths LA and LB and diffusivities DA and DB. The
dimensions of the structure are Lx, Ly and Lz. Figure adapted from [42].

These formulas have the same form as the formulas to calculate the resistance or
the electric conductivity of resistors that are connected in parallel or in series. The
ratio of diffusivity in y-direction to diffusivity in x-direction is given as

Dyy

Dxx
=

(1 + s)2

4s
, (2.42)

with s = DB/DA. With this basic knowledge on laminates in diffusive media,
the transition from diffuse to ballistic light transport in such devices will be
investigated in Chapter 3.
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2.3 Core-Shell Cloaking

In this section, an invisibility cloak design will be introduced, allowing the cloaking
in diffusive media. The design of the cloak can be explained by two approaches:
The more simple approach is the theory of neutral inclusions developed by
E. Kerner [35, 36] in his two papers about elastic and electrical properties of
composite media. The other more general approach is using transformation optics
introduced in 2006 by J. Pendry [1] and U. Leonhard [58].

First, however, invisibility cloaking and some of its limits are explained.

2.3.1 Invisibility Cloaking and its Limits

surrounding

obstacle

cloak

surroundingsurrounding

obstacleobstacle

a) b) c)

Figure 2.3: Concept of invisibility cloaking. a) Without any object, light travels from
the light source, left, to the observer in the right. b) If there is an obstacle, the light
rays are diverted and the observer sees a difference, as the density of light rays on
the right side of the sample is altered by the obstacle. c) If there is a cloak around the
obstacle, that guides the light around it, the observer would notice no difference to
a).

In principle, an optical invisibility cloak is a device which hides an object in a
way that the observer is unable to see it. In Figure 2.3 a schematic illustration of
such a device is shown. Here, the black arrows show the bent path of light around
the obstacle, if hidden by a cloak.
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2 .3 core-shell cloaking

Without the obstacle and cloak (see left panel of Figure 2.3) the light rays go
straight through the sample area. Here, the very first limitation of free space
cloaking is obvious: If light is guided around an object (see right panel of Fig-
ure 2.3), the detour around the object always adds up to the light path it would
have without the cloaking device [34]. The only way to hide this detour and
the corresponding time delay is to speed up the light in the cloak area. In free
space, light is already traveling with c0 and cannot be accelerated. There are
exceptions, if we only look at a small frequency band in resonant structures [2],
but in general, designing time accurate invisibility cloaking devices for a broad
frequency spectrum in vacuum is impossible [34].

The general limitation by the special relativity theory is not present in other
areas of physics, for instance in heat transport [28] or mechanics [59]. However,
a solution to circumvent this limitation is to decrease the light velocity in the
surrounding medium. In diffusive media, there is no fixed speed for the overall
light propagation, as light propagation is not ballistic due to multi-scattering.
The time a photon stays in the medium is higher, because the path length of the
individual photons in the sample is dependent on the number of scattering events.
Therefore, the upper limit of the speed of light c0 is not a problem for cloaks in the
regime of diffuse-light transport. Still there are limitation concerning the transient
cloaking in diffuse-light [39].

2.3.2 Realization of a Core-Shell Cloak

In 1956, E. Kerner had a closer look at the behavior of the effective electric con-
ductivity of different materials [35, 36]. He came up with a material, that consists
solely out of so-called neutral inclusions. He defined these neutral inclusions as a
circular shaped area1 with conductivity σ1 surrounded by a ring-shaped area with
conductivity σ2. Filling a sample area with these neutral inclusions by scaling
them to fill the whole area, one gets the desired material (see Figure 2.4).

For this material, he showed that it behaves the same as a homogeneous material
with a conductivity σ0. Following this line of reasoning, one does not change the
behavior of the sample area by replacing most of the constituent material with a
homogeneous material with conductivity σ0. Having only one neutral inclusion
left (see Figure 2.5), one ends up with a local variation in the conductivity in the
sample area that is “invisible” as the overall conductivity does not change.

As the static basic equations for light diffusion and electric conductivity are
quite similar, one can translate this phenomena from electric conductivity to

1 For simplicity we have a look at the 2D case only. When translating to the 3D case, the findings
are valid for cylindrical shapes instead of circular shapes in 2D.
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σ2

σ1

Figure 2.4: Area randomly filled with neutral inclusions. Different colors correspond
to different conductivities σ1 and σ2. An area filled like this behaves just the same as
an area with a homogeneous distribution of a single conductivity σ0.

diffusive light transport again.
The equation for electric conductivity reads:

Ñ

∇ ·
(
σ
Ñ

∇Φ(
Ñr)
)
= 0, (2.43)

where σ is the electric conductivity and Φ(
Ñr) the electrostatic potential. The

static diffusion equation looks very much alike:

Ñ

∇ ·
(

D
Ñ

∇n(Ñr)
)
= 0. (2.44)

Therefore, it is possible to translate the line of reasoning E. Kerner presented
in 1956 to diffusive light transport. All conductivities have to be replaced by
diffusivities resulting in a neutral inclusion in diffuse-light with diffusivities D1
in the core of the inclusion, D2 in the shell of the neutral inclusion and D0 in the
surrounding area (see Figure 2.6).

Using the Hashin-Shtrikman formula [37, 56], it is possible to find an analytical
formula connecting the diffusivities and the radii. The only additional prerequisite
is a constant gradient of the photon density (

Ñ

∇p = const.). This translates to a
homogeneous illumination in our case. Under these circumstances one finds:

R2

R1
=

√
(D2 + D0)(D2 − D1)

(D2 − D0)(D2 + D1)
. (2.45)
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σ0

σ2

σ1

Figure 2.5: One neutral inclusion in electric conductivity. The rest of the area is
filled with a material of homogeneous conductivity σ0. The electrical behavior of this
device is the very same as the one shown in Figure 2.4.

D0

D2

D1

R1

R2

Figure 2.6: One invisible neutral inclusion in diffuse-light. The streamlines of light
are bent due to higher or lower diffusivity. After crossing the neutral inclusion, the
streamlines are evenly spaced and parallel. Hence, the inclusion does not affect the
flow of light outside of the inclusion itself.

As in electric conductivity, the translated neutral inclusion in diffuse-light is
invisible to the observer. In diffuse-light optics, that means, that the photon flux
outside of the neutral inclusion is not affected by the inclusion. Invisibility is only
the first step towards a successful design of an invisibility cloak. An invisibility
cloak has to be able to hide things that are not invisible itself. To achieve that,
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one can use the fact, that until now, there are three free variables and only one
equation to fulfill (Equation 2.45). If one sets D1 = 0, the inner core of the neutral
inclusion will have a transport mean free path length of lt = 0 and thus the light
will not penetrate the area as the core will act as a diffuse reflector. If the light
does not penetrate the core, one can cut out a circular hole in the middle of the
inclusion where objects can be hidden. As there is no light in the core, this does
not change the photon flux of the overall sample area (see Figure 2.7).

D0

D2
D1

R1

R2

Figure 2.7: Diffuse-light invisibility cloak. With diffusivity D1 = 0, there is no light
flow at all in the core of the neutral inclusion. Hence a hole can be cut out of this core
area. By providing an area to hide things, the invisible neutral inclusion becomes an
invisibility cloak.

Fixing D1 to zero changes Formula 2.45 to

R2

R1
=

√
D2 + D0

D2 − D0
. (2.46)

Equation 2.46 can be used as a recipe to design diffuse-light cloaks. For fixed
radii and surrounding diffusivity D0 the shell diffusivity D2 can be calculated.
Please note, that for a very thin shell (R1 ≈ R2) Equation 2.46 results in D2 � D0.
As mentioned in Section 2.1 that might harm the diffusion approximation. Hence,
one has to be careful when designing a diffuse-light cloak as not only Equation 2.46

but also the diffusion approximations have to be met.

2.3.3 Transformation Optics

As stated earlier, a more general approach to invisibility cloaks or bending the light
in general is transformation optics. The concept of neutral inclusions introduced
in Section 2.3.2 can be interpreted as an extremely simplified version of a cloak
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2 .3 core-shell cloaking

originating from transformation optics. In this section a small introduction into
transformation optics in the context of diffuse-light is given, to lay the foundation
for some general conclusions about all diffuse-light cloaks.

Transformation physics enabled the design of many cloaking devices, for exam-
ple for electro-magnetic waves [2–10], acoustic waves [11–13], elasto-mechanical
waves [14–20], static electrical currents [21–23], magnetostatics [24–26], and in heat
transport [24–26].

In this section, we will have a look at the mathematical basis for transformation
optics in diffuse-light. We will not deduct a specific cloaking device with the
core-shell cloak introduced in Section 2.3.2, there already is a capable, relatively
easy to fabricate candidate. Cloaks deducted from transformation optics with less
tradeoffs would need more shells around the core. The flaws connected to this
design will be discussed in Chapter 3.

Invisibility cloaks based on transformation optics are designed in two steps.
First, a set of new material parameters is calculated based on a virtual spatial
coordinate transformation. This is feasible as long as the underlying physical
equations are form-invariant under transformation. As these newly obtained
parameters are in general anisotropic, the second step of finding the right materials
to realize an invisibility cloak is a challenging one as well. Here the first step and
the mathematical consequences for cloaks in diffuse-light are outlined.

To start, the stationary (∂/∂t = 0), source-free (q0 = 0), and absorption-free
(µa = 0) diffusion equation (see Equation 2.36) for the photon density np is:

Ñ

∇ ·
(

D0
Ñ

∇np
)
= 0. (2.47)

If one performs a spatial transformation that maps the coordinates (x, y, z) onto
(x′, y′, z′), we get

Ñ

∇
′ ·
(
Ø

D
Ñ

∇
′np

)
= 0. (2.48)

Here, the diffusivity is a tensor given by

Ø

D = D0
Ø

J
Ø

J
T 1

det
Ø

J
. (2.49)

The Jacobian matrix
Ø

J consists of the first-order partial derivatives:

Ø

J =


∂x′
∂x

∂x′
∂y

∂x′
∂z

∂y′
∂x

∂y′
∂y

∂y′
∂z

∂z′
∂x

∂z′
∂y

∂z′
∂z

 . (2.50)

In general, the diffusivity is a tensor and its anisotropy material parameters are
calculated by this transformation. Usually, these anisotropic material parameters
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can only be met by composite media, for example laminates. Some basics on
laminates and their features in diffuse-light can be found in Section 2.2 and in
Chapter 3.

If we have a closer look at the time-dependent, absorption-free and source-free
diffusion equation, the procedure is almost the same [60]. In the diffusion equation
(Equation 2.47), there is an additional time-dependent term

Ñ

∇ ·
(

D0
Ñ

∇np
)
−

∂np

∂t
= 0. (2.51)

Performing once again a coordinate transformation from (x, y, z)→ (x′, y′, z′), we
get:

Ñ

∇
′ ·
(

D0
Ø

J
Ø

J
T 1

det
Ø

J

Ñ

∇
′np

)
− 1

det
Ø

J

∂np

∂t
= 0. (2.52)

Just as before, we can map the new variables behind D0 into a new diffusivity
tensor. Though, there is no variable in front of the second, time dependent
term. The change of 1

det
Ø

J
cannot be hidden by changing a material parameter.

Therefore, perfect time dependent cloaking in diffuse-light can only be achieved
with 1

det
Ø

J
= 1, and thus, det

Ø

J = 1. This, however, is only the case when the
Jacobian is unimodular under spatial transformations, which means that the
transformation does not stretch or compress space.

Nevertheless, an invisibility cloak always needs to have an area that is hidden.
This area can only be created by compressing space somewhere else. Attempts to
circumvent this fact have also been published [60] but in the end these cloaks work
only for a very small illumination window, as the authors shifted the compression
far away from the center of the cloak.

As a consequence, in general, all cloaks designed for diffuse-light can be revealed
by transient illumination and detection [39].
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2.4 Monte Carlo Raytracing

In Section 2.1.6.1, approximations had to be applied to find analytical solutions
for the RTE (see Equation 2.25). As mentioned at that point, there is another
possibility to solve this problem. Due to the amount of scattering events and
particles as well as the large span between the smallest and largest length scale
that have to be considered in the problem, most common numerical approaches
fail due to the huge amount of data that is necessary to define the media one
is looking at. A nice way to circumvent this problem is, to avoid defining the
scattering structure in a classical way. Usually, one roles the dice for the position
of each scattering particle in the observed medium. The Monte Carlo method
takes another approach: There are no fixed scattering particles. There is only a
scattering coefficient defined for each medium. Therefore, the dice is rolled for
every scattering event and not for every scattering particle.

In this section, an overview of the working principle of the Monte Carlo method
of raytracing will be given in Section 2.4.1. Afterwards, an implementation
programmed by R. Schittny and F. Mayer [40] will be briefly introduced in Sec-
tion 2.4.2.

2.4.1 Working Principle of the Monte Carlo Method

We consider a point source (see Section 2.1.6.1) that emits photons in one specific
direction and is described by the probability functions fφ, fθ and fz that were
introduced in Sections 2.1.2 and 2.1.3. With this assumption the Monte Carlo
method consists of five steps repeated for every photon simulated:

(i) The starting position Ñr p and direction Ñv p are chosen according to the
characteristics of the defined light source.

(ii) A random step length l is derived from fz as defined in Equation 2.14.

(iii) The photon propagates from position Ñr p to
Ñ

r′ p =
Ñr p + l ·Ñv p.

(iv) The scattering angles θ and φ are chosen randomly by using fθ and fφ

(Equations 2.2 and 2.5). The direction of the photon after the scattering event
Ñv p is updated.

(v) Steps (ii)-(iv) are iterated until either the photon leaves the medium or is
absorbed. Afterwards, the exit position, the overall path length and the
number of scattering events is saved and another photon is initiated (step
(i)).

Repeating this for millions of photons and storing their exit positions leads to a
solution resembling the radiative transfer equation, although, said equation is not

27



2 fundamentals

directly implemented in the algorithm itself. Using the overall path length of the
photons, one can even derive time-resolved information by exploiting the fact that
the speed of light in the scattering medium is only dependent on the refractive
index of the host material.

Light sources emitting light over a finite solid angle or within a finite area can
be constructed by adding up the results derived for multiple tilted or shifted point
sources.

A crucial point in implementing the algorithm into a code that can be run
on a computer is the generation and conversion of random variables to their
specific probability distribution. For every loop in the Monte Carlo method
mentioned above, one needs three random numbers denoted as ξ1 , ξ2 and ξ3.
Computers usually give you a random number in the interval of [0, 1) with an
equal distribution. These random numbers then have to be scaled to fit the wanted
parameters. For the step length l and the scattering angle φ this is not a problem.
The step length ls from one scattering position to the next one is calculated by

l(ξ1) = −ls ln(1− ξ1). (2.53)

The azimuth angle φ can be found through

φ(ξ2) = 2πξ2. (2.54)

The scattering polar angle θ is a little bit more complicated as there exist
only numerical solutions to the defining equation. The best way to quickly
generate random values for θ is by using an approximation of the phase function
allowing for a minimization of the calculations expenses. Therefore, the scattering
angle θ(ξ3) is determined by inverting the Henyey-Greenstein phase function
(Equation 2.6) and reads

(cos θ)(ξ3) =

 1
2g

[
1 + g2 −

(
1−g2

1−g+2gξ3

)2
]

for g 6= 0

1− 2ξ3 for g = 0
(2.55)

here g = 〈cos(θ)〉 is the anisotropy factor, that influences the scattering angle θ
(see Section 2.1.5).

2.4.2 Implementation of the Algorithm

In the context of my master thesis, R. Schittny and I were facing the challenge to
reproduce experimental data with simulations based on the diffusion equations. It
turned out that a ray optics approach help to understand the findings. Due to the
lack of software packages suitable for our purpose, we decided to program our
own software. In 2015, R. Schittny and F. Mayer started from scratch and designed
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FRODO (Fast Raytracing fOr Diffusive Optics) [40]. This piece of software uses the
programming language C++ and the programming interface CUDA to simulate
the path of photons through random media. The most important feature is the
possibility to parallelize the calculation. As the photons do not interact with each
other, one can start the calculation for multiple photons at the same time and
combine the results. This huge amount of parallel computations is done way faster
on a GPU than on a CPU and the CUDA package enables the use of the GPU in a
graphics card for computations like this.

The goal of the new software was to implement a fast algorithm that is able
to simulate light propagation in diffuse-light devices as well as in devices where
the diffusion approximation is not met. Restricting the geometry of these devices
to simple geometric sections enabled a huge performance boost in comparison
to mesh based Monte Carlo software [61]. The geometry is defined by boxes,
cylinders, spheres and combinations of these shapes formed by Boolean operators.
Every geometry section in the simulation is characterized by a refractive index n,
a scattering coefficient µs, an anisotropy factor g and an absorption coefficient µa.
The starting point for photons are given by a point source or an area that emits
photons. The photons exit the simulation at a surface that is called the screen. This
screen can be subdivided into areas where each exiting photon can be counted
individually to derive spatial information.
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2.5 Probability Theory

Simulating a single photon path as explained in Section 2.4 works fine but does
not reveal any relevant information about the medium or device that is simulated.
Simulating a lot of photons, on the other hand, does provide a lot of information.
This effect known as the “law of large numbers” [62] states, that the average of the
outcome of an experiment that is repeated a large number of times will approach
the expected value. Based on this effect billions of single photons are simulated in
this work to reproduce the expected values observed in real world experiments.

This section, follows the lines of the “Handbook of Mathematics” by I. Bron-
shtein and K. Semendyayev [63] and will give a short introduction to distribution
densities, expected values and variances. The goal is to lay a foundation for the
discussion of Gaussian and Lorentzian distribution functions in Section 3.4.

2.5.1 Probability Density Functions

A probability density function (PDF) can be used to construct probability distri-
butions P via integration. To calculate the probability for a value between a and
b, one integrates the PDF from a to b [64]. PDFs are real, non-negative and their
total integral from minus to plus ∞ is normalized to one. Given a PDF f (x) the
probability distribution P for a value X in the interval [a, b) can be calculated as

P(a ≤ X < b) :=
b∫

a

f (x)dx. (2.56)

A cumulative distribution function of a random variable X with a PDF fX is given
by

FX(x) =
x∫

−∞

fX(t)dt. (2.57)

Using this distribution function, the expected value E[X] with its distribution
described by the PDF fX can be calculated by

E[X] =

∞∫
−∞

x fX(x)dx. (2.58)

xmed can be calculated by exploiting the fact that the probability to find a value
smaller than xmed is one half:

xmed∫
−∞

f (x)dx =
1
2

. (2.59)
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Accordingly, the probability to find a value above xmed is also one half

∞∫
xmed

f (x)dx =
1
2

. (2.60)

For an existing expected value E(X) = x0 of a PDF fX, one can calculate the
variance as

Var(X) = E(X2)− (E(X))2 =

∞∫
−∞

(x− x0)
2 fX(x)dx. (2.61)

The variance is a measures for the average width of the spread of the distribution
around its mean. The well known standard deviation σ is the square root of the
variance:

σ(X) =
√

Var(X). (2.62)

2.5.2 Estimators

An estimator is a rule for calculating the estimate of a quantity given by the
observed data [65]. The goal is to predict characteristics of the underlying distri-
butions even with a finite sample set. The distribution of a random sample set
with variable Xi describes the probability of a certain outcome at the i-th draw.
Estimator functions are dependent on their random sample set and hence are ran-
dom measures themselves. For a given mathematical sample set (X1, ..., Xn), the
function gn = g(X1, X2, ..., Xn) is called the estimator function if g is a measurable
function.

To find an estimator one needs to calculate some parameters of the given
population [66]:

First, the expected value of the sample set has to be calculated

x̄ =
1
n

n

∑
i=1

xi. (2.63)

Here, (x1, .., xi) is a concrete sample set. The estimator for the empirical variance
Var = σ2 of this sample set is

σ2 =
1

n− 1

n

∑
i=1

(xi − x̄)2 . (2.64)

Here, the factor 1
n−1 is used instead of 1

n to get an unbiased estimator. Otherwise,
a sample set of just one sample would have a variance of zero. This is known as
Bessel’s correction [67].

31



2 fundamentals

2.5.3 Gaussian Distribution

The Gaussian distribution is one of the most common distributions in mathematics
and in nature. Hence, it is also called normal distribution and it can be found for
example in the distribution of random errors. The probability density function f
of the Gaussian distribution reads as

f (x) =
1√

2πσ2
exp

(
− (x− x0)

2

2σ2

)
. (2.65)

Its mean is given by x = x0 and as it is a symmetrical function, its median is
x = x0 as well. Conveniently, the variance σ2 can be directly found in the exponent
of the function. Normalization of the function f (x) sets the total integral to one.
The cumulative distribution function of the Gaussian distribution is

F(x) =
1
2

[
1 + er f

(
x− x0

σ
√

2

)]
, (2.66)

with the error function er f (x) which is defined as

er f (x) =
2√
π

x∫
0

exp(−t2)dt. (2.67)

The full width at half the height of the maximum (FWHM) of the Gaussian
distribution is

FWHM = 2
√

2 ln 2σ ≈ 2.35482σ. (2.68)

The variance of the Gaussian distribution is calculated using Equation 2.61.
In case of the Gaussian distribution 68% of all values are found within an

interval of ±σ around the mean value x0. Within ±3σ, 99.7% of all values are
found. This indicated that the Gaussian distribution has very light tails in contrast
to other functions like the Lorentz distribution.

2.5.4 Confidence Intervals

The confidence interval is a statistical property that gives the possibility to present
the uncertainty of an estimator in an easy-to-understand way. With a certain
probability (in this work α = 90% are used) the confidence interval contains the
real value of the unknown population parameter. Note, that the mean value does
not have to lie within the confidence interval. In Chapters 3 and 5, confidence
intervals are used to illustrate the errors on measured variables. For samples that
originate from a Gaussian distribution, the upper limit of the confidence interval
bmax is given by

bmax = x0 + t(1−α/2;n−1)
σ√
n

, (2.69)
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with α the confidence level, x0 the mean of the sample, σ the standard deviation
and n the number ob observations. t(1−α/2;n−1) is the “Student’s t-distribution”
with ν = n − 1 being the degrees of freedom [68]. The lower border of the
confidence interval bmin reads as

bmin = x0 − t(1−α/2;n−1)
σ√
n

. (2.70)

2.5.5 Lorentz Distribution

Just as the Gaussian distribution, the Lorentz distribution is a continuous proba-
bility distribution described by the PDF

f (x) =
1

πγ

γ2

γ2 + (x− x0)2 =
1

πγ

1

1 +
(

x−x0
γ

)2 , (2.71)

for x ∈ (−∞, ∞). The scale factor γ, with γ > 0, can be considered as an
equivalent to the standard deviation σ in the Gaussian distribution. This scale
factor marks half the width at half the maximum, hence, FWHM = 2γ. Just as for
the Gaussian distribution x = x0 marks the peak of the distribution.

Its cumulative distribution function is

F(x) =
1
π

arctan
(

x− x0

γ

)
+

1
2

. (2.72)

In contrast to the light tailed Gaussian distribution, the Lorentz distribution is a
so-called heavy tailed distribution. This can be expressed as

∞∫
−∞

exp(tx)dF(x) = ∞, (2.73)

for all t > 0. In other words, the tails of the Lorentz distribution drop slower than
an exponential function rises [69].

Due to these heavy tails, the mean, the variance and the standard variation are
not defined for the Lorentz distribution. Nevertheless, its median is well defined
and is equal to the mean x0 for symmetric boundaries.

2.5.6 Measure for Gaussian and Lorentzian Distributions

In Chapter 3, the transmission of a scattering medium is observed. Diffusive
transmission leads to a spatial distribution of photons on the observed screen
that follows a Gaussian distribution, whereas ballistic transmission leads to a
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Lorentzian distribution of photons. In between these two extremes, the spatial
distribution of exiting photons can be described as a superposition of the two
distributions. As it is necessary to find a measure for the width of all respective
distributions that is valid in both regimes, a new measure is introduced in this
section.

To measure the width of both the Gaussian and the Lorentzian distribution, we
use a measure similar to the root mean square σ(x), but to lower the impact of
the heavy tails, we use the square root of the mean denoted as w(x) given by:

w(x) =

 ∞∫
−∞

√
|x| f (x)dx

2

. (2.74)

For only n samples, this distribution can be approximated by

w(x) ≈
(

1
n

n

∑
i=1

√
|xi − x0|

)2

. (2.75)

Here, x0 is the mean value of all samples.
To prove the convergence of this measure for both distributions, a Gaussian

distribution can be inserted into Equation 2.74:

w(x) =

 1√
2πσ2

∞∫
−∞

√
|x| exp(− x2

2σ2 )dx

2

=

√
2

π
Γ
(

3
4

)2

σ

≈ 0.676 σ,

(2.76)

And the same can be shown for the Lorentzian distribution

w(x) =

 1
π

∞∫
−∞

√
|x| γ

γ2 + x2 dx

2

= 2γ.

(2.77)

As both distributions lead to a finite value as long as σ and γ are finite, the w-
measure can be used for both distributions.
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2.6 Laser Speckles

Scattering samples will be illuminated by coherent light in Chapters 4 and 5. Due
to multiple scattering events in the samples and the interference of the light, an
interference phenomenon called speckles will emerge. In this section, we will have
a closer look at the origin of speckle patterns and how to characterize them.

Two waves are perfectly coherent, if they match in frequency and waveform and
if their phase difference is constant. [50]. The coherence length of a light source is
a measure to quantify the distance in which said restrictions are still valid.

2.6.1 Origin of Speckles

In the 1960’s, shortly after continuous-wave lasers became commercially available,
researchers discovered something strange in their labs [70]: Whenever a laser
beam was reflected on a rough surface or transmitted through a diffuse medium,
the light formed a granular pattern that seemed to be quite random. The reason is
the constructive and destructive interference of light on the observation screen or
in the eye of the observer. Let us have a look at a very simple speckle setup.

LASER

light path A

light path B

Figure 2.8: Interference in scattering media. Coherent laser light shines on a scattering
medium from the left. The red light path A is scattered 9 times and exits the medium.
The green light path B is scattered 3 times and exits the medium at the same position.

In Figure 2.8 the schematic origin of laser speckles is shown. Due to different
path lengths lA and lB, light rays A and B have a path difference of lA − lB = l.
This path difference can be translated into a phase difference by a Euclidean
division,

l = k · λ +
λ

2π
φ, (2.78)
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where k is a integer number, λ is the wavelength of light and φ is the phase
difference of the two light rays. For a phase difference of φ = 0, we have
constructive interference and with a phase difference of φ = π the result is
destructive interference. This results in a bright respectively a dark spot in the
speckle pattern. Of course, this effect doesn’t only occur for two light rays, but to
all scattered light that is falling onto a spot on the detection plane.

There are some reasons why detected speckle patterns are usually not 100%
pure.

• There might be some incoherent stray light that creates a constant back-
ground in the data.

• There might be different polarizations that do not interfere with each other.

• There might be electrical noise on the detection camera.

• The coherence length might be shorter than the path length difference ∆l of
the scattering paths.

In a speckle experiment one tries to minimize the first three reasons for an
imperfect speckle pattern by blocking all light sources that do not contribute to
the interference with sheets and curtains by putting a polarizer in front of the
camera and by subtracting a so called background image from the data that is
recorded without any light on the camera. After excluding all the other reasons
for an imperfect speckle pattern, the following theory may be applied to connect
the speckle contrast to the path length distribution of the scattered light rays [71,
72].

2.6.2 Speckle Contrast

In Chapter 4 the speckle contrast CI of the transmitted light is recorded in de-
pendence of the coherence length lcoh. In order to find a connection between the
speckle contrast and the path length distribution p(l) (that is different for the
cloak and reference sample), a deviation is presented, that connects the speckle
contrast to the coherence length and the path length distribution.

The reasoning below follows the lines of a paper by C. A. Thompson et al. [73]
with some adaptations to fit our needs in the context of Chapter 4.

We consider a transmission experiment as shown in Figure 2.8. The incident
beam is propagating along the z-axis and we want to have a closer look at a small
domain at the front side of the sample (z = zi) centered around xi0, yi0. Here, the
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incident optical power spectral density S(λ, xi, yi) in
[

W
m3

]
is

Iinc(xi, yi) =

∞∫
0

S(λ, xi, yi)dλ. (2.79)

Iinc depends on the position (xi, yi) within the illumination spot on the sample
and its integral over the whole area gives the total incident power.

Corresponding to the power density, we have the complex field spectral ampli-
tude, which depends on the position and the wavelength,

U(xi, yi, λ) = Ur(xi, yi, λ) + iUi(xi, yi, λ) (2.80)

and has a real and an imaginary part. For a large number of scattering events,
the real and the imaginary part are uncorrelated and their values follow a Gaussian
probability density function with zero mean. When writing the complex field
spectral amplitudes in polar coordinates as

U(xi, yi, λ) = Um(xi, yi, λ) exp [−iφ(xi, yi, λ)] , (2.81)

the field magnitude parameter Um is distributed according to a Rayleigh prob-
ability density function. The values of the random phase φ follow a uniform
probability density as long as the path length differences are larger than the
wavelength, l � λ. Note the connection between phase and path length difference
at a given position:

φ(xi, yi, λ) =
2π

λ
l(xi, yi). (2.82)

Equation 2.82 only holds true as long as the coherence length is a lot larger than
the wavelength lc � λ.

The normalized intensity random variable In is the intensity at position xi , yi
for a spectral power density of S(λ) = 1 and can be calculated from the square of
the field amplitude Um as follows:

Um
2(xi, yi, λ) = S(λ)In(xi, yi, λ) = I(xi, yi, λ). (2.83)

Assuming a weak dependence of In on the wavelength for small changes in λ, we
find the intensity probability density function for monochromatic speckles p(I, λ)
as

p(I, λ) =
exp

[
−I/2σ2

I
]

2πσ2
I

. (2.84)

Here σ2
I is the variance. In the case, that the observation time is large compared to

the coherence time[74], the expected value of the optical power spectral density
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can be written as an incoherent superposition:

〈I(xi, yi)〉 =
∞∫

0

S(λ) 〈In(xi, yi, λ)〉 dλ. (2.85)

The expected value of the normalized intensity at a given wavelength 〈In(xi, yi, λ)〉
can be written as

〈In(xi, yi, λ)〉 =
∞∫

0

S(λ)In(xi, yi, λ)p(I, λ)dI. (2.86)

Here, the probability density function p(I, λ) from Equation 2.84 is used. The
second moment of I(xi, yi, ) is

〈
I2(xi, yi)

〉
=

∞∫
0

∞∫
0

S(λ)S(λ′)
〈

In(xi, yi, λ)In(xi, yi, λ′)
〉

dλ dλ′. (2.87)

In this equation we find the normalized first-order intensity auto-correlation

ΓI(λ, λ′) =
〈

In(xi, yi, λ)In(xi, yi, λ′)
〉

. (2.88)

Therefore, Equation 2.87 can be rewritten with second order statistics:

〈
I(xi, yi)I(x′i, y′i)

〉
=

∞∫
0

∞∫
0

S(λ)S(λ′)
〈

In(xi, yi, λ)In(x′i, y′i, λ′)
〉

dλ dλ′. (2.89)

With Equation 2.83 in mind, one can replace In(xi, yi, λ) = Un(xi, yi, λ)U∗n(xi, yi, λ)
and thus get the following:

〈
In(xi, yi, λ)In(x′i, y′i, λ′)

〉
=
〈
Un(xi, yi, λ)U∗n(xi, yi, λ)Un(x′i, y′i, λ′)U∗n(x′i, y′i, λ′)

〉
(2.90)

for expected values of variables wi following a Gaussian probability distribu-
tion [75],

〈w∗1w∗2w3w4〉 = 〈w∗1w3〉 〈w∗2w3〉+ 〈w∗2w3〉 〈w∗1w4〉 (2.91)

we can rearrange Equation 2.90 to find:

〈
In(xi, yi, λ)In(x′i, y′i, λ′)

〉
= 〈In(xi, yi, λ)〉

〈
In(x′i, y′i, λ′)

〉
+
∣∣〈Un(xi, yi, λ)U∗n(x′i, y′i, λ′)

〉∣∣2 .
(2.92)

38



2 .6 laser speckles

Next, to calculate the variance of the first-order intensity statistics given by

σ2
I (xi, yi) = 〈I2(xi, yi)〉 − 〈I(xi, yi)〉2 , (2.93)

we need to combine Equation 2.93 with Equations 2.85, 2.87 and 2.92. For
xi = x′i and yi = y′i we find:

σ2
I (xi, yi) =

∞∫
0

∞∫
0

S(λ)S(λ′)
∣∣〈Un(xi, yi, λ)U∗n(xi, yi, λ′)

〉∣∣2 dλ dλ′. (2.94)

Suitable sizes for sample areas are limited by two things: First, the sample area
has to be small enough so that the speckle statistics (especially the mean intensity
〈I〉 = µI and the standard deviation of the intensity σI) do not change in this area.
Second, the sample area has to be big enough that a good amount of speckles
feeds into the statistics. In general, µI and σI will be dependent on the scanning
position xi, yi. Using Equations 2.81 and 2.94 to rearrange, leads to

σ2
I (xi, yi) =

∞∫
0

∞∫
0

S(λ)S(λ′)
∣∣∣〈I1/2

n (λ)I1/2
n (λ′) exp

{
−i
[
φ(λ)− φ(λ′)

]}〉∣∣∣2 dλ dλ′.

(2.95)
As Um and φ are independent variables, as long as there are enough scattering

events, we can separate the two terms in Equation 2.95

σ2
I (xi, yi) =

∞∫
0

∞∫
0

S(λ)S(λ′)
∣∣∣〈I1/2

n (λ)I1/2
n (λ′)

〉∣∣∣2
·
∣∣〈exp

{
−i
[
φ(λ)− φ(λ′)

]}〉∣∣2 dλ dλ′

=

∞∫
0

∞∫
0

S(λ)S(λ′)
∣∣ΓU(λ, λ′)

∣∣2 dλ dλ′

(2.96)

and find the normalized auto correlation function of the complex field spectral
amplitude given by ΓU(λ, λ′) = 〈Un(λ)U∗n(λ′)〉. For a small bandwidth S(λ) the
scattering properties are independent of the wavelength λ. Consequently, one can
write

〈In(λ)〉 = I0. (2.97)

Using this and feeding Equation 2.82 into Equation 2.96 results in

σ2
I (xi, yi) = I2

0

∞∫
0

∞∫
0

S(λ)S(λ′)
∣∣∣∣〈exp

{
−i2πl

[
1
λ
− 1

λ′
)

]}〉∣∣∣∣2 dλ dλ′. (2.98)
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Simplifying the expected value from Equation 2.85 we get the mean intensity as

µI = I0

∞∫
0

S(λ)dλ. (2.99)

Finally, we can calculate the contrast ratio of a speckle pattern:

σI

µI
(xi0, yi0) =

(∫ ∞
0

∫ ∞
0 S(λ)S(λ′)

∣∣∣〈exp
{
−i2πl

[
1
λ −

1
λ′ )
]}〉∣∣∣2 dλ dλ′

)1/2

∫ ∞
0 S(λ)dλ

(2.100)

with the expected value of the exponential phase term given by:

〈
exp

{
−i2πl

[
1
λ
− 1

λ′

]}〉
=

∞∫
0

p(l) exp
{
−i2πl

[
1
λ
− 1

λ′

]}
dl. (2.101)

Here, p(l) is the probability density function of the path length. Note, that
Equation 2.101 is the Fourier transform of p(l).

With these formulas at hand, we are well equipped to tackle the experimental
challenges in Chapter 4 and will be able to check the experimental results by
combining simulations (see Section 2.4) and this theory.

40



2 .7 measuring complex fields

2.7 Measuring Complex Fields

In optics usually the intensity of light is the important observable that is measured
(see Section 2.1 and Section 2.6). For some applications, a deeper knowledge
of the light and its wave nature are desired. For a monochromatic propagating
electromagnetic wave, the intensity I is proportional to the square of the absolute
value of the complex amplitude of the electric field E:

I =
c0nε0

2
|E|2. (2.102)

Here, c0 is the vacuum speed of light, n is the refractive index of the medium and
ε0 is the vacuum permittivity. By only taking into account the absolute value of
the electric field, all the information of the angular component of the electric field
is lost. To recover this complex angular information, which is necessary to predict
the interference behavior of coherent light, a special light measurement setup can
be used. The basic idea and the principal of operation will be outlined in this
section. The measurement setup itself is used in Chapter 5 and will be introduced
there in detail related to the actual measurements.

The key idea to obtain the complex field of light is to evoke interference between
the “sample”-electric field Es that has to be examined and another “reference”-
electric field Er that is known. As complex electric fields simply add up, one can
write

I =
c0nε0

2
|Es + Er|2

=
c0nε0

2
{|Es|2 + |Er|2︸ ︷︷ ︸

pure terms

+ 2 [<(Es)<(Er) +=(Es)=(Es)]︸ ︷︷ ︸
mixed terms

}. (2.103)

If one can separate the mixed term of the two electric fields at the end of
Equation 2.103 from the first two terms, one is one step closer to connect the
measured intensity to the complex electric field. An extensive mathematical
derivation of this procedure can be found in a review article [76]. Here, I will only
outline the derivation and focus on the application of this method, as well as its
advantages and disadvantages.

By using a tilted plane wave as a reference and applying a Fourier transforma-
tion onto Equation 2.103, the centers of the three terms separate in the 2D Fourier
plane. The terms |Er|2 only leads to a sharp peak at (0, 0) in the Fourier plane, as a
plane wave has no other contribution. |Er|2 leads to an intensity spot around (0, 0)
with a outer radius that in reality is limited by the numerical aperture (NA) of the
detection optics used in an experiment. Only light with angles within the NA can
be captured by a microscope objective and hence contribute to the interference.
Thus, the maximal angular contribution is two times the NA and only angles
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up to the twice the NA can be found in the Fourier plane. The mixed terms in
Equation 2.103 lead to a spot around the tilt angle between the reference and the
sample wave. This spot is limited by the NA as well. As only interference between
the reference and the sample waves contribute to this spot, the maximum angle
is just 1× the NA. Real experimental data that graphically show these borders
introduced by the NA can be found in Section 5.3 in Figure 5.7.

As this explanation is quite abstract, an artificial sample will be discussed briefly
to illustrate the procedure:

Starting with two coherent light beams that interfere with each other on a
camera chip with tilt angle of γ depicted in Figure 2.9.

camera sensor

wavelength λ

{

Figure 2.9: Two electromagnetic plane waves interfering on a camera sensor. The
reference beam is tilted with respect to the sample beam. Hence there are areas of
positive and negative interference on the camera sensor. The tilt angle is connected
to the period of the pattern a = λ/ sin γ with the wavelength λ.

In two dimensions this leads to a striped pattern on the camera chip with the
period of the pattern a being connected to the tilt angle γ and the wavelength λ of
the light:

a =
λ

sin γ
. (2.104)

This exemplary striped pattern is depicted in Figure 2.10 in Panel a). By
introducing a very simple sample as depicted in Panel b) of the same figure, some
light of the sample beam is blocked and hence, this light cannot interfere with the
other beam. The resulting “striped A” can be seen in Panel c) of Figure 2.10.
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Figure 2.10: Interference pictures. The striped interference pattern of two tilted
plane waves emerging under the configuration illustrated in Figure 2.9 is shown in
Panel a). Panel b) shows the “A” shaped sample under ambient illumination. The
sample is actually an inverted photograph of a felt A in order to have some noise on
this picture. Panel c) shows the interference pattern of the reference wave and the
sample wave without any phase delay pattern. Diagonal stripes are only visible in
the area the sample beam and reference beam contribute to the interference pattern.
In Panel d), the phase delay checkerboard pattern (32× 32 squares) is added and the
diagonal stripes are shifted by a/2 for every second area in checkerboard due to the
phase delay of π. Note, that for illustration purposes the tilt angle for this figure was
lowered by a factor of 4 to increase the visibility of the stripes.

Adding a checkerboard shaped phase delay by half a wavelength in the sample
arm would not cause any changes when blocking the reference arm. One would
essentially find the pattern illustration in Panel b) again. But with the reference
arm the pattern in Panel d) is found, which is easily distinguishable from the
one in Panel c). Due to the phase delay in the reference arm, the striped pattern
in Panel d) is slightly changed. For the squares that have a delayed phase, the
position of bright and dark stripes is shifted. For samples with more random
patterns like the speckle patterns that are examined in Chapter 5, the shifting of
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the interference stripes does not offer insight into the complex field as easily as
this and hence, a more advanced analysis, namely a Fourier transformation gives
insight into the phase distribution.

As mentioned in the beginning of this section, the Fourier transformation is an
excellent tool to disassemble the intensity pattern into its single contributions. In
wave optics, the Fourier transformation can be interpreted as a transformation
from position space to angular space. As the interference contributions to the
intensity pattern are well separated from the rest of the contributions by the tilt
angle, these contributions can be cut out of the Fourier plane.

This is demonstrated in Figure 2.11. The checkerboard-A-sample is illuminated
and the picture depicted in Figure 2.10 d) is Fourier transformed by a two dimen-
sional fast Fourier transformation. This results in a complex 2D image in Fourier
space. This image is shifted in order to center the (0, 0) point in the middle.
In Figure 2.11 Panel a), the repetitive checkerboard pattern is clearly visible by
evenly spaced dots in the Fourier plane. In addition, the contribution of the “A”
to the magnitude of the complex image is clearly visible. Lines emerging from
the center of the plane perpendicular to the original corner of the “A” contain
the information of the shape of the original letter. In the upper left and the lower
right corner this pattern is repeated. Panel b) shows the magnitude of a cutout of
the Fourier plane.

This cutout is shifted by exactly the tilt angel from the (0, 0) position. Performing
an inverse fast Fourier transformation on this complex cutout results in a complex
image in position space that has a decreased resolution but contains all complex
information. Panel c) of Figure 2.11 shows the magnitude of the recovered image.
The shape of the “A” is recovered completely and no diagonal stripes are left.
Panel d) shows the angular component of the complex values of the individual
pixels. The checkerboard is nicely visible in the area of the “A” and the phase
shift between the two areas is π as expected. The algorithm tries to find a complex
angle for all areas in the picture and thus, the outer area is filled with noisy
angular information.

The measurement procedure outlined in this section is used in Chapter 5 in
order to reconstruct the complex electric field of speckle patterns that evolve when
scattering samples are illuminated by coherent light.
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Figure 2.11: Interference evaluation. Panel a) shows the Fourier transformation of
the picture shown in Panel d) of Figure 2.10. The Fourier plane is shifted to center
the (0, 0) point in the middle. The two individual contributions to the pattern shown
are quite good distinguishable: the diagonal lines correspond to the contours in the
“A” that are perpendicular to said lines. The evenly distributed dots correspond to
the borders between the checkerboard squares. Note that as this is only simulated
date, no boundary due to the effective NA is visible. Panel b) shows the cutout
of the lower right corner of Panel a) indicated by the black dashed lines. In this
panel one can clearly see the diagonal lines that correspond to the letter shaped
sample. An inverse Fourier transformation of the data shown in Panel b) leads to a
complex picture that is shown in the lower panels. Panel c) shows the magnitude off
the reconstructed picture. Expect for a couple of artifacts that origin in the infinite
NA of this simulation, the original “A” shape is reconstructed. In addition to this,
Panel d) reveals the phase shifting checkerboard pattern, that was hidden under
normal illumination shown in Figure 2.10 Panel d).
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3
Chapter 3

Limits of Laminates in

Diffuse-light

Laminates are an intuitive way to manipulate the propagation of light in the
context of the diffusion equation. They enable a straightforward way to introduce
anisotropic material parameters to an otherwise isotropic medium. Laminates
are a well-known concept in other fields of physics as well. In heat conduction,
electrical conduction, electrostatics, and magnetostatics laminates are an often-
used tool to achieve desired anisotropic properties. In diffuse-light propagation,
laminates enable the possibility to realize anisotropic diffusivity tensors (see
Section 2.3.3) and thus, they seem to offer the easiest way to guide light around
an object. But in contrast to heat conduction [28, 29] or electric conduction [21]
the boundary conditions in diffuse optics are different: To design and to present a
cloak for diffuse-light, one has to present it in a non-diffusive surrounding. This
situation would compare to presenting a cloak for electric conduction embedded
in a superconductor. To make the effect of the diffuse-light cloak visible, one has
to increase the transmission of the cloaking device as far as possible to obtain
respectable results. But by increasing the transmission one runs into problems
with the approximation of the diffusion equation.

In this chapter, we will investigate the transition from diffuse to ballistic-light
transport and the performance of laminate structures in the respective regime of
light transport.

To access the region of light scattering that lies in between the diffusive regime
and the ballistic regime, we used a Monte Carlo based ray tracing software
(FRODO) (see Section 2.4) that was developed by R. Schittny and F. Mayer in
2015 [40].

In the following sections, the layout of the simulation setup will be explained
and the results of these simulations and their significance to the design for past
and future invisibility cloaks in the diffuse-light regime will be discussed. This
chapter is based on a paper [77] that was published in the context of a master thesis
I supervised in 2018. In her thesis [42], S. Mannherz investigated the behavior of
laminate structures in the context of an advanced cloaking design by B. Orazbayev
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3 limits of laminates in diffuse-light

et al. [60].

3.1 Introduction

Until now, most architectures of invisibility cloaks for diffuse-light have been
rather simple with piecewise homogeneous sections in terms of the diffusivity
Ø

D [30, 39, 40]. More advanced designs for diffuse-light devices usually require
anisotropic material parameters just as in other fields of physics [26, 60, 78, 79].
To realize an anisotropic tensor

Ø

D for diffuse-light propagation, dual laminate
structures are the easiest solution. Stacked layers of alternating material A and B
with corresponding diffusivities DA 6= DB form a laminate structure. This stack
allows for light propagation within the direction of the layers that is dominated by
the scattering properties of the constituent material that has the higher diffusivity.
Perpendicular to the planes, light propagation is dominated by the material with
the lower diffusivity.

To bring this easy concept to perfection, the laminate thickness of laminate A
and B should be as small as possible to homogenize the resulting light propagation.
Consequently, laminates should be infinitesimal thin. For real life applications,
this is not only impractical, but also either leads to vanishing transmission of the
sample or the anisotropy effect of the laminate structure vanishes. This depends
on the amount of scattering one introduces: Either one increases the amount
of scattering in the laminates to stay within the diffusion approximation (see
Section 2.1.6.3) but loses transmission or one holds on to a fixed transmission,
thus does not increase the amount of scattering particles. This leads to a violation
of the approximation of the diffusion equation and in the end (with very fine
laminates) leads to the complete loss of the anisotropy effect of the laminates.

To investigate this transition from diffuse-light propagation to ballistic-light
propagation, we will use a Monte Carlo ray tracing software (FRODO, see Sec-
tion 2.4). This software does not assume any of the violated diffuse-light approx-
imations, but simulates the scattering of the photons according to the radiative
transfer equation (see Equation 2.1.6.1). Hence the transition from diffuse-light to
ballistic-light can be covered within one simulation setup.

Note, that this kind of simulation does not take into account effects that originate
from the wave nature of light. Interference or localization cannot be simulated
with the software used. Simulating these effects, one would have to do a full
wave simulation following Maxwell’s equations, but simulations like these for big,
complex samples are way out of reach for the computing power that is available
to us.
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3 .2 experimental setup

3.2 Experimental Setup

The basic idea to measure the performance of laminates is to illuminate an AB-
laminate structure on the back side (that means parallel to the laminate layers,
see Figure 3.1). Following diffusion theory, this point illumination will spread
through the laminate and the light that will exit the laminate structure on the front
side will form a spot with an elliptical intensity shape. The ellipticity is connected
to the ratio of the diffusivities of the constituent laminate layers.

2 LA = 2 LB = a

Lx

Ly

Lz

A

B

Figure 3.1: Sample to investigate laminate performance. The dimensions are Ly =
Lx = 8Lz. 100 layers of AB-laminate are stacked in z-direction. Photons are started
from the center of the back side. The marked area with black dashed lines is shown
in Figure 3.2. Figure adapted from [77].

To achieve a maximal effect, the thickness of laminate A and laminate B are the
same: LA = LB = a/2 with a the laminate period [14, 53]. As explained in more
detail in Section 2.2 the diffusivity tensor in laminates is

Ø

D =

Dxx 0 0
0 Dyy 0
0 0 Dzz

 . (3.1)
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3 limits of laminates in diffuse-light

For the orientation in Figure 3.1, the effective diffusivities for each direction are

Dyy = Dzz =
DA + DB

2
(3.2)

for the two directions in plane with the laminates. The diffusivity in the direction
perpendicular to the planes is given by

1
Dxx

=
1
2

(
1

DA
+

1
DB

)
. (3.3)

Defining the ratio of the constituent diffusivities as DA/DB = s , the ratio of
effective diffusivities becomes:

Dyy

Dxx
=

(1 + s)2

4s
. (3.4)

During the simulation, we will fix the ratio of DA and DB to s = 10 (and change
it later to s = 25 and s = 5 in additional simulations). This ratio of constituent
material parameters leads to the following ratios of the effective parameters.

s 10 25 5
Dyy
Dxx

3.025 6.76 1.8
(3.5)

Note that this description does not take into account any finite size individual
laminate layers.

In the following several length scales will be discussed. Hence, a short mention-
ing of the important length scales is suitable. For a more detailed introduction
into the individual scattering length scales read Section 2.1.

• lt: The transport mean free path length is connected directly to the diffusivity
via the energy velocity of light in the medium: D = 1

3 velt.

• ls: On the one hand, the scattering mean free path length is connected to
the transport mean free path length via the anisotropy g of the individual
scattering events: lt = ls 1

1−g . On the other hand, it is connected to the density

of scatterers ns and the scattering cross section cs via ls = 1
csns

.

• lD: The diffusion length is the average path length a photon travels through
a scattering medium before it is absorbed. As we do not take into account
absorption in our simulation we get: lD = ∞.

• a: The laminate period defined by the layer thicknesses. The thicknesses LA
and LB of the two individual laminate layers A and B (LA = LB) add up to
the laminate period: a = LA + LB.
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3 .2 experimental setup

• Li: The outer dimensions shown in Figure 3.1. These dimensions have to be
chosen carefully in order to minimize light leakage to the sides as well as
computation time and to maximize the quality of the measured data.

With all these length scales in hand, the restrictions that lead to a “good
laminate” and hence to a effective medium, can be discussed. In terms of the
diffusion equation there are two restrictions: The laminate layers have to be thin in
respect to the spot size of the transmitted light. This leads to a smooth distribution
of the transmitted light intensity. Choosing the outer dimensions of the laminate
device to contain the complete spot size, we end up with L/a � 1. The second
restriction is that the diffusion length has to be a lot longer than the thickness of
the laminates: lD/a� 1. In our simulation with lD = ∞ the second restriction is
always fulfilled.

In terms of the diffusion equation, there are no more restrictions for a laminate
to perform perfectly. But of course, the restrictions for the diffusion approximation
have to be met as well. In general, these restrictions were introduced in Section 2.1.
Translated to the laminate structure, the remaining restriction reads as: lt/a� 1.
In diffuse-light propagation, light has to be scattered several times before it exits a
medium. As laminate A and B have different scattering properties, they count as
different media in this sense. Consequently, the transport mean free path length
has to be short enough to allow a couple of scattering events in both, material A
and B before the photons have a chance to change the laminate.

So far, there are no contradictions in this line of restrictions: L � a � lt.
This has to hold true for all lt, hence in laminate A and in laminate B. The only
problem is, that fulfilling these restrictions leads to very small laminate layers
and to even smaller transport mean free path lengths. These strongly scattering
laminates will have a very low transmission, as the transmission of a material
decreases with stronger scattering or shorter transport mean free path length.
As a consequence, one has to find a compromise between a good laminate with
lt � a and a vanishingly low transmission and a violation of the restrictions of
the laminate or the diffusion equation to get a decent transmission on the cost of
performance of the laminate.

One might ask why there is no such problem in the fields of physics mentioned
above like particle diffusion or heat conduction. As the mathematics behind these
physics is almost the same, the same problems have to be faced here as well.
But in contrast to light diffusion, the transport mean free path length in particle
diffusion in the case of molecules diffusing in ambient conditions in air is on the
order of some tens of nanometers. The same holds true for electrons diffusing in
ordinary metal at room temperature. In contrast to these very short wavelengths,
the transport mean free path length in light diffusion, for us, is in the range from
several micrometers to some millimeters. Due to this difference in lt of at least
some orders of magnitude, the problem discussed in this chapter is far more
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3 limits of laminates in diffuse-light

relevant to light diffusion than to other diffusion like processes. Of course, the
same problems will arise in other fields of physics for the same ratios of sample
size to transport mean free path length L/lt, hence for laminates with a total size
in the micrometer range.

To connect the shape of the transmitted light spot to the effective diffusivities
Dxx and Dyy in the laminate, we will have a short look at an isotropic medium
with diffusivity D once again. The mean square displacement σ = σx = σy = σz
of a random walk in 3D is [46]

σ2 = Dt (3.6)

with the diffusion time t.
As a reminder, one can try to arrange this equation in the form of s = v · t to

find something like a velocity for the spread of photons in a diffusion process.
But this leads to σ =

√
D ·
√

t and one sees, that the displacement of light is
proportional to the square root of the time and hence the expansion of diffusion
processes seems to slow down in time. Using the proportionality of the diffusivity
to the square of the mean square displacement will be the main idea to evaluate
the performance of laminates in Section 3.4.

Looking at the ratios between two effective diffusivities into different directions
(Dxx and Dyy) in the laminate leads to a form without any time dependence.

σ2
y

σ2
x
=

Dyy

Dxx
(3.7)

A alternative way to find this connection without using time dependence is
using the diffusion equation (Equation 2.47) and a simple spatial coordinate trans-
formation as shown in Section 2.3.3. For a transformation (x, y, z)→ (x′, y′, z′) =
( f x, y, z) with the stretching factor f , one can apply this for the mean squared
displacement like: (σx, σy, σz)→ (σ′x, σ′y, σ′z) = ( f σx, σy, σz). In contrast to this, the
diffusivity transforms like: (Dxx, Dyy, Dzz)→ (D′xx, D′yy, D′zz) = ( f 2Dxx, Dyy, Dzz).
The square in the second transformation originates from the fact, that there is a
second-order derivative with respect to space in the diffusion equation. So once

again, we find
σ2

y

σ2
x
=

Dyy
Dxx

.

3.3 Monte Carlo Simulations

After introducing the Monte Carlo method for ray tracing in light-scattering media
in Section 2.4, some specific settings that apply to the experimental simulation in
this chapter and some features that are important in this context will be discussed
here.
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3 .4 simulation results

A vital feature that will be used in the simulations ahead is the possibility to
simulate not only diffuse-light conditions but also to reproduce the behavior of
ballistic-light propagation. Due to that, the algorithm can not only handle a wide
span of scattering coefficients but also accounts for Fresnel reflections, refraction
and other ballistic-light effects. Another feature that is stressed in the following
kind of simulation a lot, is the ability to change precalculated path lengths on
the fly if the photon hits the interface between laminate A and B. Intersection
positions of light paths and edges of light-scattering media are calculated in a fast
manner, as only simple geometries are allowed. When hitting the surface of a
laminate, the path length that is left will be changed according to the scattering
coefficient in the new medium and the direction will be updated according to
Fresnel reflections.

On the one hand, an obvious downside of the Monte Carlo method is the fact
that photons may not be propagated backwards because the randomness of the
individual scattering processes breaks symmetry of light paths. Hence, under
diffuse conditions, most of the simulated photons will not exit the medium on the
detection side and will be lost. As the transmission goes down to about 0.1%, one
has to simulate 1000 times more photons to get the same statistical uncertainty as
for ballistic conditions.

On the other hand, one has to emphasize again why a Monte Carlo ray tracer
is the best kind of simulation solution for our experiment: By not defining the
material with all its scattering particles and their locations, a huge amount of data,
that otherwise had to be saved somewhere, does not have to be stored. In a ray
tracing simulation with well-defined scattering centers or in a real live experiment,
the number of scattering particles would be in the order of 1018 (for the lowest
lt/a in Figure 3.7 ). As the information for every of these randomly distributed
scattering particles has to be accessible very fast, this would impose a big problem
for data storage. This trouble is circumvented by not defining the position of the
scatterers but rather using the Monte Carlo method.

3.4 Simulation Results

Choosing the optimal geometry for the laminate device is crucial for efficient
simulation times and good statistics for the results. As we want to investigate the
impact of coarser and finer laminates on the performance of laminate structures,
one might think that a fixed simulation geometry might not do the job. But as
mentioned, there are no fixed spatial scales in the simulation.

Hence, tuning the ratio lt/a does just what we want. One can either read this
as: We fix the geometry with the number of laminate layers and its sizes and
tune the scattering coefficient from a high amount of scattering (low lt/a) to a
small amount of scattering (high lt/a) in order to stress the diffusion equation
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3 limits of laminates in diffuse-light

approximation. Or one can read that as: We fix the mean free path length of the
constituent materials and tune the geometry from very coarse laminates (huge a
corresponds to low lt/a) to very fine laminates (small a corresponds to high lt/a).

To minimize light leakage to the sides of the laminate structure, the device
has to be rather big in x and y-direction. We chose a ratio of Lx = Ly = 8Lz in
order to lower the losses and still have a reasonable number of bright laminate
layers on the front side with a finite overall number of laminate layers. The
ratio between Lx and a also has to be discussed: The more laminate layers we
simulate, the smaller the errors due to the overlayed laminate structure will be
in the analysis afterwards. But the more layers we simulate, the more time it
will take to compute these simulations. We found 100 periods to suit our needs
and still have reasonable simulation times and thus: LA + LB = a = Lx/100. To
investigate laminate structures that are also possible to fabricate, we chose the
ratio of the transport mean free path length to be lA

t /lB
t = 10 for our first group of

measurements and then repeated these simulations for a ratio of 25 and 5. These
ratios can also be interpreted as the inverse ratio of the number of scattering
particles, as lt ∝ ls ∝ 1/Np.

In the following, we will perform several groups of simulations: In order to
investigate one set of fixed lA

t /lB
t parameters, we will vary lA

t /a from 103 to
about 4 · 10−2 in a logarithmic manner to grasp a large variety of ratios with 23

individual simulations.
The laminate device is illuminated by a quasi point source located in the middle

of the back side of the sample. It has an isotropic emission which results in half
the photons to never enter the laminate structure. This loss of 50% is accounted
for in the transmission calculated below. It is only a quasi point source because
putting the light source exactly in the middle of the laminate would lead to
numerical problems, as there is an interface between two laminate layers A and
B at the intended position of the point source. To circumvent this problem,
we implemented a dual illumination: half of the light is emitted at a position
x = x0 + 0.01a and the other half is emitted at x = x0 − 0.01a. For most of our
simulations we chose n = 1.0 as the light yield will slightly change for a higher
refractive index.

For diffuse-light, the chosen ratio of lA
t /lB

t can be translated to a ratio in diffu-
sivities:

lA
t

lB
t
=

DA

DB
= 10. (3.8)

Following diffusion theory, the result of a point-like source on the back side of
a structure (see Figures 3.2 and 3.3) should be a spot of transmitted light on the
front side with an elliptical shape. As the effective diffusivity in y-direction is
higher than in x-direction, the spot should be more elongated in the y-direction
than in the x-direction.
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Figure 3.2: Simulated transmission pictures. Intensity plots of the transmission
through the sample shown in Figure 3.1 and simulated by Monte Carlo ray tracing
are shown. Only the center region of the front side is shown here, indicated by a black
dashed line in Figure 3.1. The transport mean free path lengths of the constituent
materials have a ratio of lA

t /lB
t = 10. Diffusion theory predicts an effective ratio

of Dyy/Dxx = σ2
y /σ2

x ≈ 3. Panel a) shows the transmission for a ratio lA
t /a ≈ 0.25,

which leads to the effectively anisotropic behavior that is expected within the regime
of diffuse-light propagation. The elongation of the light spot in y-direction is clearly
bigger than in x-direction. The individual laminate structure is visible as light
tends to exit through the laminates that have a larger mean free path length. For
lA
t /a = 1000, the light-diffusion approximation is no longer valid. As a result, due

to ballistic-light propagation through the sample, an isotropic intensity pattern is
observed on the front side of the sample, depicted in Panel b). Individual laminate
layers are not visible. Note, the amount of simulated photons that lead to these
results was about ten times higher for the simulation shown in Panel a) than for the
simulation shown in Panel b). These simulations are part of a group of simulations
that leads to Figure 3.6. There, correspondent data points are indicated by blue
circles. Figure adapted from [77].

In Figure 3.2 a region of interest of the light intensity on the front surface of the
simulated laminate sample is shown. The laminate sample (shown in Figure 3.1)
is illuminated with a point source on the back side. The left Panel a) shows
diffusion-like scattering conditions: with lA

t /a = 0.25 the transport mean free
path length is a little bit smaller than the thickness of one laminate in the less
scattering laminate A. For laminate B with lB

t /a = 0.025, the scattering is well in
the diffusive regime.

As expected, the transmitted light spot on the surface has an elliptical shape,
more elongated in the y-direction. In addition to the elliptical shape, one can see
a vertical striped pattern with the periodicity of a. As the laminate B is more
strongly scattering, less photons exit the laminate structure out of the B laminate
than out of the A laminate.

Panel b) shows the exit positions for the simulated photon propagation for a
laminate structure that is barely scattering. Just like in Panel a) it only depicts a
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3 limits of laminates in diffuse-light

region of interest of the front side of the laminate structure indicated by a black
dashed line shown in Figure 3.1. In contrast to Panel a), the ratio lA

t /a = 1000 is
about 4000 times higher. As a consequence, there is barely scattering in laminate
A and almost no scattering as well in laminate B. Hence, the laminate orientation
has no influence on the light distribution and the light propagation appears to be
isotropic.

(b)

x

y

x

y

5 a 5 a

×2

(a)

Figure 3.3: Numerical solutions of the diffusion equation for the photon density
obtained by Comsol Multiphysics for comparison to Figure 3.2. Panel a) shows the
photon density for the transmission through a laminate structure with DA/DB = 10.
Note, that the ratio lA

t /a is not of interest here, as we assume the diffusion description
to be valid in the first place. As a result, the shape of the transmitted light spot is
independent from lA

t /a. Panel b) shows the photon density on the front side of a
cuboid with an anisotropic diffusivity Tensor

Ø

D. Anisotropy ratio is just the same as
for Panel a): Dyy/Dxx ≈ 3. To compare the brightness of Panel a) and b), note that
Panel b) is displayed two times brighter. Figure adapted from [77].

To compare the results depicted in Figure 3.2 to the light distribution predicted
by the diffusion equation, simulations base in the diffusion equation are presented
in Figure 3.3. Herein, the diffusion equation was solved using Comsol Multi-
physics. The similarity between Panel a) in Figure 3.2 and Panel a) in Figure 3.3
indicates that the corresponding Monte Carlo simulations in Panel a) of Figure 3.2
were in the diffusive regime as well. In Panel b) of Figure 3.3 instead of a lami-
nate structure a homogeneous material with anisotropic diffusivity is simulated.
To compare the shapes of the transmitted spots, the brightness of the image in
Panel b) has been increased by a factor of 2.

3.4.1 Measuring the Ellipticity

To quantify the observation done with the bare eye in Figure 3.2, we have a closer
look at the intensity I(x, y) of light on the front side of the laminate structure.
Its shape is in general continuous and thus, its mean squared displacement in
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x-direction is calculated as

σx =

√∫
I(x, y)(x− x̄)2 dx dy∫

I(x, y)dx dy
, (3.9)

and the same holds true for the y-direction:

σy =

√∫
I(x, y)(y− ȳ)2 dx dy∫

I(x, y)dx dy
. (3.10)

But as the Monte Carlo simulation simulates discrete photons and thus discrete
exit positions, in our case, the integrals become sums and the mean squared
displacements in x and y-direction read:

σx ≈

√
∑Nt

i=1(xi − x̄)2

Nt
(3.11)

and

σy ≈

√
∑Nt

i=1(yi − ȳ)2

Nt
. (3.12)

With discrete exit positions, the mean squared displacement will always have an
statistical error, as there are N photons and thus N photon positions to sum up to
get the mean squared displacement.

To get the mean exit position, we evaluate

x̄ =
1

Nt

Nt

∑
i=1

xi (3.13)

and

ȳ =
1

Nt

Nt

∑
i=1

yi. (3.14)

Using these sums to calculate the ratio σ2
y /σ2

x for small lA
t /a gives us, within

statistical accuracy, the expected values for Dyy/Dxx already calculated in Equa-
tion 3.5. This agreement approves our choice of dimensions and measures (see
Figures 3.2 and 3.3). Hence, the laminate structure shown in Figure 3.1 is a good
choice to investigate laminate performance in the diffusive regime.

Tuning the material parameters from diffuse-light propagation to ballistic-light
propagation, we run into a mathematical problem: The shape of the spot on the
front side of the sample changes from a Gaussian ellipse to a Lorentzian (also
called Cauchy) round spot. Defining a mean squared displacement for this kind of
distribution is problematic: The Lorentzian distribution has heavy tails and thus
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3 limits of laminates in diffuse-light

the standard deviation is only defined for a finite interval. As a result, the standard
deviation depends on the chosen interval. As we are inspecting the square front
side of our laminate sample, the intervals in x and in y-direction are fixed and they
are the same. Therefore, the factor that depends on the chosen interval, should
drop out as soon as we look at the ratio σy/σx. For most of our simulations, we
will be looking at a mixture of Gaussian and Lorentzian distributions and the
ratio of the influence of these to extreme cases might even be different in x and
in y-direction. To stay on the safe side, we look for a measure of the anisotropy
of the laminate device that is well-defined in both, the diffusive and the ballistic
regime. Using the full width half maximum (FWHM) to quantify the width of
the ellipse seems to be an easy way to solve the problem. Unfortunately, without
any curve fitting, this method would be very noisy. However, curve fitting is not
an option, as the mix of Gaussian and Lorentzian distribution does not give us a
model to fit to.

Instead of the mean squared displacement, we introduce an alternative measure
w to quantify the anisotropy of the transmitted light spot, the square of the mean
square root of the absolute values of x and y.

wx =

(∫
I(x, y)

√
|x− x̄|dx dy∫

I(x, y)dx dy

)2

(3.15)

wy =

(∫
I(x, y)

√
|y− ȳ|dx dy∫

I(x, y)dx dy

)2

(3.16)

This measure can be translated into a form of sums as well and then reads as

wx ≈
(

∑Nt
i=1
√

xi − x̄
Nt

)2

(3.17)

wy ≈
(

∑Nt
i=1
√

yi − ȳ
Nt

)2

. (3.18)

As shown in the fundamentals Chapter 2.5.6, this measure is well-defined for
both, Gaussian and Lorentzian distributions. For Gaussian distributions, the
two measures w and σ are proportional: wx,y =

√
2

π Γ(3/4)2σx,y ≈ 0.676σx,y. The
proportionality factor drops out as soon as we look at ratios and thus we have:

w2
y

w2
x
=

σ2
y

σ2
x

. (3.19)

For Lorentzian profiles, we get w = 2γ, where 2γ is the FWHM of the Lorentz
distribution. As w takes exit positions that are far away from the middle not as
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3 .4 simulation results

much into account as σ, statistical errors will be different for these two measures.
We noticed a small systematical difference that occurs due to these statistical
differences for noisy data and results in w2

y/w2
x > σ2

y /σ2
x for Lorentzian profiles.

For Gaussian profiles, w2
y/w2

x = Dyy/Dxx = σ2
y /σ2

x holds true. With the square
of the mean square root w we found a measure that is well-defined and we can
faithfully derive the shape of the transmitted light spots on our laminate sample.

To give an overview over the simulations presented within the next pages, all
simulations with their key parameters are listed in the table below.

Laminate Refractive
Section Contrast Anisotropy Index Keyword

#1 3.4.2 lA
t /lB

t = 10 g = 0 n = 1 realistical contrast ratio
#2 3.4.3 lA

t /lB
t = 25 g = 0 n = 1 high contrast

#3 3.4.4 lA
t /lB

t = 5 g = 0 n = 1 low contrast
#4 3.4.5 lA

t /lB
t = 10 g = 0.5 n = 1 more forward scattering

#5 3.4.6 lA
t /lB

t = 10 g = 0 n = 1.4 realistic refractive index

3.4.2 Results for Realistically Manufacturable Laminate Contrast

Figure 3.4 graphically shows the evaluation of the data contained in Figure 3.2
with some additional information (fit curves) for clarity. The main plot shows
two histograms: In red, the x-component of the exit position of every photon
is binned in order to get a histogram that shows the distribution of photons in
x-direction. In blue, the same is done for the y-coordinate of the exit positions.
Both histograms are fitted to a Gaussian distribution that is plotted onto the data
in dashed line in the corresponding color. The agreement of the simulated data
and the fitted curve is quite good in y-direction. In x-direction the laminates pose
a modulation onto the expected Gaussian distribution. The fitted curve seems to
be lying just in the middle of the high and low points of the data.

Figure 3.5 gives an insight into the light distribution of Panel b) of Figure 3.2.
As in Figure 3.4, the individual x- and y-components of the exit positions of the
transmitted photons are analyzed separately in two histograms. The data was
simulated using lA

t /a = 1000. That corresponds to a very low probability of
scattering.

In contrast to Figure 3.4, there is no anisotropy visible. The only difference
between the red curve (x-direction) and the blue curve (y-direction) is a small
deviation of the red curve in the center. This can be explained within some
short steps: lA

t /a = 1000 is equal to lB
t /a = 100. Having a look at the overall

dimensions: 100a = Lx = 8Lz → a = Lz/12.5. Combining these two thoughts
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Figure 3.4: Evaluation of the diffuse-light simulation shown in Figure 3.2 Panel a)
(once again depicted in the upper right corner). On the vertical axis, the normalized
photon number per bin is displayed, and on the horizontal axis, the x-coordinate (red)
and the y-coordinate (blue) is displayed. In red, the x-coordinates of the individual
exit positions of the photons are displayed in form of a histogram (solid line). The
red dashed line shows a Gaussian fit to the data. In the background, the individual
laminate layers are displayed (only applicable for the x-direction in red). In blue,
the y-coordinates of the exit positions of the simulated photons are displayed as a
histogram. The blue dashed line is a Gaussian fitted to the data. Note the different
width of the curves, the dashed blue and the dashed red line indicate. Figure adapted
from [42].

gives lB
t = 8Lz. This might give an intuitive understanding why there is a dip of

about 8% for the B laminate layer in the center. Light that is emitted in parallel the
laminate layer has a higher chance to be scattered and most of it is scattered into
the neighboring laminate layer A. Except for this little wiggle in the center, both,
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Figure 3.5: Evaluation of the ballistic-light simulation shown in Figure 3.2 Panel b)
(once again depicted in the upper right corner). The axis are the same as in Figure 3.4.
In red, the x-coordinates of the photons are displayed in form of a histogram (solid
line). In blue, the y-coordinates are displayed. The dashed lines are Lorentzian fits to
the data. The ratio of lA

t /a = 1000 leads to almost no scattering and thus a perfect
Lorentzian shape of the transmission. The only influence of scattering one can see
clearly is a small deviation from the Lorentz curve in x-direction in the middle. For
high lA

t /a the Lorentzian model seems to describe the photon distribution quite well.
Figure adapted from [42].

x- and y-components of the exit positions form a perfect Lorentzian distribution.
That fits are shown in blue and red dashed lines on the sample data in Figure 3.5.

Please note that these models were fitted only for visualization purposes. In the
following analysis, the width of these curves are not pure Gaussian or Lorentzian
distributions but rather a mixture of these two and thus the calculation of the
width in x and y-direction from Equations 3.11, 3.12, 3.17, and 3.18 is a great
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3 limits of laminates in diffuse-light

advantage over fitting the results to the data.
In Figure 3.6 results of 23 individual simulations are presented. The vertical axis

of the upper panel indicates the ratio of the two measures that were introduced
before: σ2

y /σ2
x and w2

y/w2
x. They both are a measure for the shape of the transmitted

light spot and thus a measure for the performance of the laminate. The full dots
relate to the ordinary measure σ2

y /σ2
x and the position of the circles indicates

the ratio of the newly defined measure w2
y/w2

x. The dashed line indicates the
expected value for σ2

y /σ2
x and w2

y/w2
x following diffusion theory. On the horizontal

axis, the simulation parameters lA,B
t /a are indicated. On the lower horizontal

axis lA
t /a gives the ratio between the transport mean free path length in the less

scattering laminate material A lA
t and the laminate period a. Additionally, on the

upper horizontal axis one can find the same ratio for the more strongly scattering
laminate B. The vertical error bars indicate the ±90% confidence level that was
introduced in Section 2.5.

The simulations range from diffusion-like light propagation (low lA
t /a) to

ballistic-light propagation (high lA
t /a). On the left the Monte Carlo simulations

resemble the expectations from the diffusion theory, as the anisotropy ratios
are almost three σ2

y /σ2
x ≈ w2

y/w2
x ≈ 3. By increasing the parameter lA

t /a, the
simulation results start to differ from diffusion theory. The ratio of σ2

y /σ2
x and

w2
y/w2

x starts to decrease. This decrease corresponds to a rounder light spot on
the front side of the laminate structure. This happens due to a less pronounced
anisotropy in the effective scattering parameters of the laminate structures. The
performance of the laminate structure is flawed for lB

t /a ≥ 10−2 and lA
t /a ≥ 10−1.

For lA
t /a ≈ 1, half of the performance is lost and the simulations show σ2

y /σ2
x ≈

w2
y/w2

x ≈ 2. In this regime, neither diffusive nor ballistic-light propagation
solely dominates the behavior of light propagation in the simulated laminate
structure. Further increasing lA

t /a finally leads to a ballistic transmission through
the laminate sample with no anisotropy of the sample hence σ2

y /σ2
x ≈ w2

y/w2
x ≈ 1.

Note that the maximal transmission is T = 88% because of the geometry. For
Lx = Ly = 8Lz the missing 12% of the ballistic-light leave the sample through the
sides.

The conclusion of these simulations with this line of reasoning seems to be
straight forward: keep lA

t /a below 0.1 and you get the desired anisotropy. But as
mentioned before lA

t /a can not only be interpreted as a variable lA
t with a fixed a

but also the other way around. If there is a laminate with fixed lA
t and one would

have to decide for a laminate period a, one can have a different look at the problem.
In order to get an effective material, usually small laminate periods are desirable
to homogenize the light distribution in the direction of the alternating laminates
(in our sample the x-direction). But the findings above ask for high laminate
periods a in order to get low lA

t /a and to achieve good laminate performance.
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Figure 3.6: Results of 23 Monte Carlo simulations with fixed lA
t /lB

t = 10 and varying
lA
t /a. The upper panel shows the anisotropy ratio σ2

y /σ2
x with full dots and w2

y/w2
x

with open dots on a linear vertical axis and the corresponding ratio of the transport
mean free path length of laminate A to the laminate period lA

t /a on the lower
logarithmic horizontal axis. Note that for the clarity, the upper logarithmic axis
shows the ratio of the transport mean free path length in laminate B to the laminate
period lA

t /a. The dashed line indicates the expected anisotropy ratio following
the diffusion equation. Only small lA

t /a lead to a diffusion equation like behavior.
Large lA

t /a lead to no anisotropy (σ2
y /σ2

x = 1). Vertical error bars indicate the ±90%
confidence level. The lower panel shows the transmission of the laminate structure
on the same horizontal axis as the panel above. The black vertical axis on the left
with the full black dots indicate the transmission on a linear scale. To improve the
visibility of changes despite a very low transmission, the right vertical axis with the
cross shaped data points indicates the transmission on a logarithmic scale in blue.
Blue circles indicate the simulation results discussed in more detail in Figures 3.2, 3.4
and 3.5. Figure adapted from [77].

The consequence of this would be a strongly inhomogeneous transmission in one
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3 limits of laminates in diffuse-light

direction. This effect can be seen in Figure 3.2 and in more detail in Figure 3.4 in
red. In addition to this effect, the transmission of the sample changes drastically
within the range of simulated lA

t /a.
In the lower panel of Figure 3.6 the transmission is depicted on both, a linear

and a logarithmic scale.
In this context, the transmission is defined as the amount of photons that leave

the laminate sample on the front side Nt divided by the amount of photons that
enter the sample on the back side N (half of the photons started as we have an
isotropic light source). It is plotted on the left vertical axis on a linear scale that
corresponds to the full black dots. The right vertical axis shows the transmission
on a logarithmic scale in blue. On the horizontal axis, the same ratios lA

t /a and
lB
t /a as in the upper panel are depicted.

For the diffusive regime (lA
t /a ≤ 10−1), the transmission is well below 1%.

To showcase a device for diffuse-light propagation, one usually aims for a high
transmission. For 5% of transmission, a ratio of the transport mean free path length
to the laminate period of about lA

t /a ≈ 1.8 is required. This set of simulation
parameters leads to an anisotropy of about σ2

y /σ2
x ≈ w2

y/w2
x ≈ 1.75 and thus not

at all to the desired anisotropy of about three.
This behavior of laminate structures seems to be unfortunate in the sense of

designing devices with high transmission as well as a strong anisotropy that
behave like an effective material. The decline in anisotropy for increasing ratios of
lA
t /a is rather fast. To check whether this behavior is due to the fixed simulation

parameters we chose, the ratio of lA
t /lB

t = 10 is varied to 25 and 5 in the next set
of simulations.

3.4.3 Results for Increased Laminate Contrast

Figure 3.7 shows the results of 23 simulations with a corresponding ratio of
transport mean free path length of lA

t /lB
t = 25. Note that while the range of lA

t /a
is the same as in the simulations for Figure 3.6, the range of lB

t /a is different and
hence the upper horizontal axis is shifted. In order to compare Figures 3.6 and 3.7
in a meaningful way, it is good to fix the range of lA

t /a as laminate layer A is the
less scattering layer and thus, the ratio of lA

t /a will determine the decrease of the
anisotropy ratio as the diffusion approximation will be violated in layer A more
likely than in layer B.

For a ratio of transport mean free path length lA
t /lB

t or a ratio of the density
of scatterers in the constituent materials of nB

s /nA
s , diffusion theory predicts an

anisotropy ratio of almost seven: σ2
y /σ2

x = w2
y/w2

x = 6.76 (see Equation 3.5). This
prediction is indicated with a dashed line and it is confirmed for very short
transport mean free path lengths compared to the laminate period. The difference
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Figure 3.7: Same parameters as in Figure 3.6 but for lA
t /lB

t = 25. Due to the higher
difference in mean free path length a much larger anisotropy can be reached. Dif-
fusion theory predicts an anisotropy ratio of 6.76 and the simulations confirm this
value for low lA

t /a. The higher anisotropy drops down to 1 within the same range of
lA
t /a as in Figure 3.6. The transmission is overall a little bit smaller as laminate B is

more strongly (back) scattering. Figure adapted from [77].

between the circles and the full dots can be traced back to the different measure
they represent. The size of the transmitted spot on the front surface is rather small
compared to the laminate period a for lA

t /lB
t = 25 and lA

t /a ≤ 1. As a consequence,
the influence of the imperfection (ups and downs in contrast to the fitted Gaussian
in Figure 3.4) of the intensity in x-direction increases. This imperfection is handled
differently by the square root of the mean squared displacement σ and the square
of the mean square root displacement w. The σ measure is influenced more by
exit positions far away from the center of the light spot. The w measure does not
weight these exit positions that much and thus is influenced more by exit positions
within the first couple of laminate periods. In consequence, the above-mentioned
deviation due to the finite spot size is stronger for the w measure than for the σ
measure and thus the results differ a little bit for low lA

t /a.
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3 limits of laminates in diffuse-light

The overall decline of the anisotropy ratio in Figure 3.7 is similar to the one
shown in Figure 3.6. For lA

t /a ≤ 10−1 a behavior close to the one predicted by the
diffusion equation is shown. This high ratio of σ2

y /σ2
x ≈ w2

y/w2
x ≈ Dyy/Dxx =

6.76 decreases to about half of its value for lA
t /a ≈ 1. Almost ballistic behavior of

light is resembled by lA
t /a ≥ 102. In this regime almost no anisotropy is visible

although the transmission is still below 50%. The overall transmission in these
simulations is lower, as laminate layers B are more strongly scattering. To achieve
a transmission of about 5%, the transport mean free path length in laminate A lA

t
has to be 2.5 times longer than the laminate period a. This leads to an anisotropy
ratio of this laminate device of about σ2

y /σ2
x ≈ w2

y/w2
x ≈ 2.75 which is below half

of the desired σ2
y /σ2

x = w2
y/w2

x ≈ 6.76.
In consequence, increasing the ratio of transport mean free path length of the

constituent materials does not change the overall behavior of the laminate structure
in regard to the loss of anisotropy performance for higher values of lA

t /a and thus
higher transmissions. To check these findings as well for a lower difference in
transport mean free path length, these results are compared to simulations with
lA
t /lB

t = 5.

3.4.4 Results for Decreased Laminate Contrast

In analogy to Figure 3.6, Figure 3.8 shows the anisotropy ratios σ2
y /σ2

x and w2
y/w2

x

in dependence of lA
t and lB

t , but for lA
t /lB

t = 5. Within the diffusion approximation
an anisotropy ratio of σ2

y /σ2
x ≈ w2

y/w2
x ≈ Dyy/Dxx = 1.8 is expected following

Equation 3.5. This value is marked by a dashed horizontal line and its prediction is
almost met within the Monte Carlo simulations for lA

t /a ≤ 10−1. In the transition
regime 10−1 ≤ lA

t /a ≤ 102, the relative decrease in anisotropy ratio follows the
lines of the simulations before. For transport mean free path lengths lA

t longer
than 100 laminate periods, the anisotropy of the transmitted light spot almost
vanishes. The transmission of these simulations is slightly higher than the ones
depicted in Figures 3.6 and 3.7. Picking a transmission of T = 5% again, the
transport mean free path length of a photon in laminate A has to be about 1.05
times longer than the width of the laminate period. The corresponding set of
simulation parameters leads to an anisotropy ratio of about σ2

y /σ2
x = w2

y/w2
x ≈ 1.3

which is once again below the desired anisotropy ratio of 1.8.
In comparison, the three groups of simulations depicted in Figures 3.6, 3.7 and

3.8 show a lot of similarities. There seems to be a limit at about lA
t = a/10 for

diffusion like light transport. Hence above this limit, the effective anisotropy of the
laminate device is smaller than predicted by the diffusion equation. Within three
orders of magnitude (10−1 ≤ lA

t /a ≤ 102), the anisotropy effect of the laminate
structure is decreasing and for larger ratios of lA

t /a, there is almost no scattering
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Figure 3.8: Same parameters as in Figure 3.6, but lA
t /lB

t = 5. According to the
diffusion equation, the anisotropy ratio of σ2

y /σ2
x = w2

y/w2
x = Dyy/Dxx = 1.8 is

expected. This is only true for very small lA
t /a. Larger lA

t /a lead to a less pronounced
anisotropy and finally to isotropic ballistic-light propagation. The transmission is
a little bit higher than in Figure 3.6, as laminate layers B are less scattering. Figure
adapted from [77].

and hence ballistic-light transport without any anisotropy takes place.
Other than the ratio of the transport mean free path lengths in the constituent

materials lA
t /lB

t also some other simulation parameters might influence the relation
between transport mean free path length in laminate layers A divided by the
laminate period lA

t and the anisotropy ratios of the transmitted light spot σ2
y /σ2

x
and w2

y/w2
x.

3.4.5 Results for Anisotropic Scattering

In the beginning of this chapter, the anisotropy factor g of the individual scattering
events was mentioned and subsequently set to g = 0 (i.e. isotropic scattering).
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3 limits of laminates in diffuse-light

In Section 2.1.5 this factor is explained in more detail. The transport mean free
path length lt (i.e. the average distance after which the direction of a photon is
randomized) is only equal to the scattering mean free path length ls (average
distance traveled between two scattering events) for isotropic scattering (g = 0).
In general, they are connected by lt = ls

1−g . In the following simulations, we set
g = 0.5 and thus lt = 2ls. As we are looking at the same range of lA

t /a, the amount
of scattering events will go up by a factor of about two.

Comparing Figure 3.9 to Figure 3.6, both have a ratio of ten in their transport
mean free path lengths lA

t /lB
t = 10. The only difference in the set of simulation

parameters is the anisotropy of the individual scattering events. The result of
these simulations is almost identical to the ones with g = 0 for the upper panel.
The decrease of anisotropy ratios σ2

y /σ2
x and w2

y/w2
x resembles the behavior in

Figure 3.6. Also the transmission in the lower panel does not show any significant
difference.

The only difference is the simulation time, that is not shown here. As the Monte
Carlo simulation calculates the path of photons step by step, the overall number
of scattering events is crucial for the simulation time. With g = 0.5, the number of
scattering per transport mean free path length lt doubles and thus, the simulation
time increases as well by almost a factor of two as well. By this simulation, the
assumption that lt is the length scale that is crucial for the spread of light is once
more confirmed.

3.4.6 Results for Realistic Refractive Index

In order to simulate a laminate structure more close to a real life experiment, we
repeat once again the first set of simulations but with a refractive index of n = 1.4
(see Figure 3.10). For most of our real life experiments, we use polydimethylsilox-
ane (PDMS) as a host material for titanium dioxide (TiO2) scattering particles. As
the refractive index for PDMS is about n ≈ 1.4, this set of simulations is even
closer to reality than the ones before.

Once again, the simulation with n = 1.4 resembles predicted results for small
ratios of transport mean free path in laminate layers A and the laminate period
lA
t /a. Just as in Figure 3.6, the anisotropy ratios decrease within about three

orders of magnitude to almost 1 and consequently, the ballistic-light behavior is
resembled.

In the lower panel of Figure 3.10 there is a clear difference to Figure 3.6. The
transmission does not reach 88% but rather decreases for very low scattering
(high lA

t /a). This effect is due to total internal reflection. For no scattering in the
laminate structure, ballistic-light can only escape the structure within an angle
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Figure 3.9: Same parameters as in Figure 3.6 but with g = 0.5. The change of the
anisotropy of the individual scattering events g is taken in account by the choice
of fixed simulation parameter: lA

t /a. Hence, the behavior in this plot is (within the
statistical errors) just the same as for g = 0. Figure adapted from [77].

that is below the angle for total internal reflection (about 45◦). This results in only
a small circle of exit positions around the middle of the front surface with radius
r ≈ Lz tan(45◦) = Lz = Lx/8. The rest of the light is reflected back and leaves
the laminate device through the side surfaces. This effect only occurs for photons
that have not been scattered and the effect vanishes for more diffusion like light
transport. Besides the effect of total internal reflection, there is no difference
between the simulations shown in Figure 3.6 and in Figure 3.10. Our findings are
quite general as they are not bound to a certain ratio transport mean free path
lengths of the constituent materials, to the anisotropy factor of the individual
scattering events or to the refractive index of the laminate structure.
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Figure 3.10: Same parameters as in Figure 3.6, but with refractive index n = 1.4
instead of n = 1.0. There is no change in anisotropy compared to Figure 3.6 (upper
panel). However, there is a change in transmission. The maximal transmission is
reached for lA

t /a ≈ 60. Increasing lA
t /a further results in lower transmission, as total

internal reflection prohibits the photons from exiting through the front surface of the
laminate structure. Figure adapted from [42].

3.5 Discussion

For transport mean free path lengths a lot longer than the laminate period, lt � a,
the influence of the laminate structure vanishes. This effect can be explained by
an intuitive explanation: Imagine a scattered photon, that has an average step size
lt for lA

t > lB
t � a the path length will most likely exceed several laminate layers.

As the path length will be calculated by the individual scattering probabilities of
the passed layers, the result will be an average of the individual laminates. As the
photons tend to average over a lot of laminate layers, the individual orientation of
the laminates, that only change the absolute number of passed laminates, does
not affect the laminates anymore and the scattering behavior becomes isotropic as
seen in Figure 3.2 Panel b) and the lamination is not visible in the intensity.
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3 .6 conclusion

For very short transport mean free path lengths lt in relation to the thickness
of the laminate period a, the Monte Carlo method resembles the predictions of
the diffusion equation. As discussed, lA

t /a� 1 does not only lead to a very low
transmission but also to a pronounced striped image of the intensity as seen in
Panel a) of Figure 3.2 and in Figure 3.4.

It seems like there is no perfect set of parameters but one has to choose a set
to its needs: either one gets a high transmission with fine lamination or one gets
high anisotropy.

Still, there are some tricks one can learn from the simulations above. To reach an
anisotropy of 1.8 one can either try to fulfill the diffusion approximation and go
for the very left simulation point in Figure 3.8 with a ratio in transport mean free
paths of lA

t /lB
t = 5 and a transmission of about 0.2% or one can go for a higher

ratio of the constituent materials like lA
t /lB

t = 25 and then harm the diffusion
approximation by using less scatterers. As shown in Figure 3.7, with an lA

t /a ≈ 6.5
one still gets the desired anisotropy of σ2

y /σ2
x = 1.8 but the transmission will be at

about 10.5%. In real world experiments there are limits to the number of scattering
particles per unit volume (see Section 2.1.2). Hence, this trick cannot be applied
indefinitely. But in fact, this is a way how cloaking devices in our group were
optimized. When a laminate like structure (in a core-shell cloak) did not work as
diffusion equation predicted, because the diffusion approximation was harmed,
the solution was to lower the number of scatterers in the shell and thus increasing
the ratio of lA

t /lB
t until perfect cloaking was achieved. With the results of this

work in hand, it might be a bit easier to estimate the performance of laminate like
structures and thus be more efficient in designing devices for diffuse-light.

3.6 Conclusion

Within this chapter, we systematically characterized exemplary light-scattering
laminate structures within the aim of realizing effective materials with tailored
anisotropic diffusivities. Using a Monte Carlo method based simulation algo-
rithm, finite transport mean free path lengths and thus finite density of scatterers
were simulated. The scattering conditions simulated range from diffuse-light
propagation conditions to ballistic-light propagation conditions.

For small transport mean free path lengths or coarse laminates, the predictions
of the diffusion equation were confirmed. In the limit of fine laminates (a �
1 → lt/a � 1) there is no effect of the lamination visible in the shape of the
transmitted light spot. The limit of fine lamination will always harm the diffusion
approximation and thus fine laminate structures for light diffusion will not work.

The two extremes were well-known before this work but with the results
presented here in hand, the transition from diffuse-light propagation to ballistic-
light propagation is accessible with the very same simulation tool.
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The findings of this work can be relevant to the design of almost all diffuse-light
devices, that aim for a high transmission and anisotropic material parameters at
the same time.
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4
Chapter 4

Speckle Analysis of

Diffuse-Light Cloaks

Invisibility cloaks are one of the most fascinating devices in optics. Turning
something invisible for an observer is not only an impressive achievement but also
usable for other issues. With the help of invisibility cloak technology for example,
contact wires on OLEDs or on solar cells can be cloaked [40, 80].

One needs different cloaks to hide something depending on the surrounding:
Maybe the most prominent invisibility cloaks are free space cloaks. Hiding
something in the ballistic light regime is possible but has some fundamental limits.
As light in general cannot be accelerated beyond the speed of light in vacuum, the
detour around an object will always be connected to a time delay for free space
cloaks. There are ways around this problem for small bandwidths of light but
then these cloaks will lose their cloaking ability for other wavelengths [2–10]. In
general, every cloak is designed for a specific purpose and optimized to perform
as good as possible in this context: Even a perfect cloak for diffuse-light will
be visible in ballistic light conditions and vice versa. As all cloaks have their
advantages and their flaws, finding the limits of cloaks is an important part of
improving research on cloaks and in optics in general.

In context of the stationary diffusion equation, it is possible to design almost
ideal invisibility cloaks for diffuse-light. These devices can hide an object in a
light-scattering environment by convincing the observer that the flow of light in
the scattering environment is not changed by its presence. These cloaks work for
any polarization, all colors of light, and any illumination direction. But the basis
of these cloaks is the validity of the diffusion equation. In the context of coherence,
the diffusion equation is only valid in the limit of very short coherence length. As
the diffusion approximation does not take into account any coherence effects, one
might assume that a cloak for diffuse-light might be uncloaked by coherent light.

In this chapter, the diffuse-light cloak designed by R. Schittny [81] is put to test
with coherent laser light. Experiments reveal a good performance of the cloak
for perfectly coherent light. Then again tuning the coherence length gives insight
into the scattering process and consequently reveals the cloak. These findings are
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4 speckle analysis of diffuse-light cloaks

supported by theoretical work. Large parts of the work in this chapter have already
been published in 2017 within the scope of a collaboration between our group at
KIT and the research group of Professor Yamilov at Missouri S&T, USA [82].

The samples used in this chapter and their properties were first published
in 2015 [81] and a former water based sample was published in 2014[30]. The
improvement of the samples from water based surrounding to a rather solid,
rubber like material is crucial for this work. Moving particles in the samples
would annihilate any coherence effects visible, as the shutter time of the camera
usually is much longer than the time a stable speckle picture is visible.

4.1 Experimental Setup and First Results

4.1.1 Reference, Obstacle and Cloak Samples

The set of samples presented in 2015 [81] consist out of three individual samples.
There is the reference sample (see Figure 4.1), a plain cuboid with dimensions Lx =
150 mm, Ly = 80 mm, and Lx = 30 mm. This cuboid is made up of the clear rubber
like material polydimethylsiloxane (PDMS), doped with Titania nanoparticles
(DuPont R700 TiO2 particles, diameter ≈ 340 nm). The concentration of these
scattering particles leads to a transport mean free path length of l0

t = 1.67 mm.
This corresponds to a diffusivity of D0 = 11.9× 108 cm2/s. For a wavelength of
λ = 780 nm and a refractive index of the PDMS of about n = 1.42, the scattering
of light at the scattering particles has preferred forward scattering, leading to an
anisotropy factor of g = 〈cos θ〉 = 0.544 and thus, the scattering mean free path
length in this sample is l0

s = 0.76 [57, 81].
The second sample is the so-called obstacle sample, depicted in Figure 4.2.

Additionally to the same surrounding as the reference sample, the obstacle sample
contains a high reflective cylinder that is located in the middle of the xz-plane,
oriented in the y-direction. This hollow cylinder with an outer diameter of
R1 = 8 mm has a near zero diffusivity D1 � D0. The low diffusivity of this core
is realized by a special ceramic material (Accuratus Corporation, Accuflect B6).

The cloak sample shown in Figure 4.3 contains an additional PDMS layer around
the core of the obstacle sample. The outer radius of this shell around the core
is R2 = 12 mm and the concentration of scattering particles is 3.9 times lower
than in the surrounding. This corresponds to a diffusivity of D2 = 3.9× D0 ≈
46× 108 cm2/s. The high diffusivity makes up for the low diffusivity of the core
and thus, the overall flow of light is not disturbed by the core and the shell turning
them invisible (see Section 2.3). As the core is hollow and the low diffusivity D1
does not allow any light to enter the core material, small objects can be placed in
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z x 2 cm

Figure 4.1: Reference sample under coherent illumination. The sample shown is called
the reference sample. It is a simple cuboid with size Lx = 150 mm , Ly = 80 mm,
and Lz = 30 mm. It consists of a clear host material (polydimethylsiloxane - PDMS)
and scattering particles randomly distributed within the volume (DuPont R700

TiO2 particles, diameter ≈ 340 nm). The picture shown is a combination of two
photographs. First, a white light illumination picture is taken to make the contour
visible, then the illumination is changed to a coherent illumination centered on the
middle of the back side of the sample (Gaussian shape FWHM ≈ 4 cm) and another
picture is taken. These two pictures are added up pixel by pixel. The black line
shows the intensity variation of pixels with the same height over the width of the
sample. The white line shows the same as the black line but it averages the pixels
in y-direction for plus minus two centimeters. The black line shows the intensity
variation of the speckles and as the white line averages over the speckles and hence,
a smooth intensity curve is received. Figure adapted from [82].

the middle of the cloak sample making it not only an invisible device but a real
invisibility cloak.

4.1.2 First Experiments

First experiments with coherent light are shown in Figures 4.1, 4.2, and 4.3. A
coherent laser beam (Toptica, DL100 λ = 780 nm) with a coherence length of more
than 60 m is slightly diverged and centered onto the back side of the samples. The
black lines are intensity cuts at the front side along a horizontal line at half the
height of the samples. These lines show the strongly varying intensity due to the
speckles emerging (more on the origin of speckles in Section 2.6). The white line
shows the average brightness of the transmitted light starting from 25% up to 75%
height of the sample. Here, the individual speckle patterns average out.

Comparing the obstacle sample in Figure 4.2 to the reference sample in Fig-
ure 4.1, a pronounced shadow in the middle of the sample is visible. This region in
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y

z x 2 cm

Figure 4.2: Obstacle sample under coherent illumination. Same as Figure 4.1 but the
obstacle sample is shown. The obstacle sample has the same surrounding material
as the reference sample but with a cylindrical hole in the center of it (oriented in
y-direction, radius 8 mm). This hole is partially filled with a white ceramic cylinder
(height Ly = 80 mm, outer radius R1 = 8 mm, inner radius R0 = 4 mm). This
cylinder consists of a high reflective material to act like a diffuse mirror (Accuratus
Corporation, Accuflect B6). The ceramic core casts a diffuse shadow onto the front
surface of the sample. Hence, the white line has a dent in the middle. Figure adapted
from [82].

the middle of the obstacle front surface with less red speckles reveals the presence
of an object (the core and whatever is within this core) to an observer.

In contrast to the obstacle sample, the additional shell around the core in the
cloak sample (see Figure 4.3) allows the light to circuit the core and to resemble the
average light distribution of the reference sample. Hence the average brightness
on the front side of the cloak sample is the same as the average brightness of the
reference sample on the front side (see white lines in Figures 4.1 and 4.3).

One might think that due to the difference in the individual speckle pattern
the cloak might be unmasked, but even a second reference sample with the same
material parameters would have a different speckle pattern compared to the
original reference sample as the positions of the scattering particles are random
and hence the speckle pattern is random as well. Thus, only statistical measures
might be consulted to find a way to uncloak the cloak.
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y

z x 2 cm

Figure 4.3: Cloak sample under coherent illumination. Same as Figure 4.1 and
Figure 4.2 but the cloak sample is depicted. In addition, to the obstacle sample, the
cloak sample features not only the hollow core but also a shell around this core (inner
radius R1 = 8mm, outer radius R2 = 12mm). The material in the shell is the same
as in the surrounding of all samples but with a lower concentration of scattering
particles (see Section 2.3). The shell guides light around the core and the shadow
visible in Figure 4.2 is not visible anymore. The black line that shows the speckle
pattern in one row is unique but the white line that averages over the individual
speckles resembles the behavior of Figure 4.1. Figure adapted from [82].

4.1.3 Improved Setup and Statistical Analysis

To investigate the statistics of the transmitted light in more detail, the measurement
setup is changed. As a first improvement, we use a microscope objective (Olympus,
605339, 10×, NA = 0.25) to magnify the studied area for better speckle resolution.
The size of speckles mainly depends on the imaging system. Larger magnifications
give better insight into the size and the brightness of individual speckles.

If there is a difference in the statistical distribution of the coherent transmission
of the cloak sample compared to the reference sample, this effect will be maximal
right in the middle behind the core-shell geometry. Therefore the microscope
objective is placed in the middle of the xy-plane to image about 1 mm2 of the front
surface onto the camera chip (Point Grey, BFLY-PGE-50H5M-C, 12 bits dynamic
range). In addition, the illumination is changed to a collimated beam with a
FWHM of about 2 mm. To maximize brightness at the observed area on the front
side, the laser is set to illuminate the sample at the center of the back side. In
addition and there is a linear polarizer directly in front of the camera, as without
this polarizer one would capture the incoherent superposition of two individual
speckle patterns. To put the degree of development of speckles in a number, we
use the speckle contrast CI that was introduced in Section 2.6

CI =
σI

µI
=

σI

〈I〉 . (4.1)
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To calculate the speckle contrast, the mean of the intensity

〈I〉 =
∑i,j Ii,j

N
(4.2)

and the intensity standard deviation

σI =
∑i,j(Ii,j − 〈I〉)2

N
(4.3)

have to be known. The number of pixels N of the camera chip is 2448× 2048.
Saturated pixels pose a problem to these calculations as they would distort the
speckle statistics. To avoid saturation, the exposure time of the camera is set quite
low to limit the average intensity to about 〈I〉 ≈ Isat/15. To minimize the influence
of electric noise on the camera chip, a series of background images without any
illumination is recorded before the actual measurement and later, the mean image
of these background images is subtracted from every individual picture taken.
This can result in an effective negative brightness for some individual pixels, but
does improve the overall image quality.

Two pictures obtained like this are depicted in the upper panels of Figure 4.4.
The left one shows the reference sample and the right one shows the cloak sample.
Note that in this configuration the individual speckles can be resolved. Although
the individual speckle patterns look different (Ii,j

ref 6= Ii,j
clk), the histogram anal-

ysis in the lower panel shows, that the pictures obtained have the very same
behavior within their statistical fluctuation. Most of the pictures is dark and there
are only some very bright pixels. The speckle contrast of both pictures is 95% and
the reason for the speckle contrast not being 100% is mostly the electrical noise on
the camera. Subtraction of the background image reduces this problem but the
electric noise still lowers the contrast by about 5%.

This experiment so far shows that diffuse-light cloaks, although only designed
for white light, cannot be revealed by perfectly coherent light by simply looking
at their transmission. There has been theoretical work on uncloaking the cloak
via the long-range contribution of the second-order intensity correlation function
C2 [83]. But in our case, the difference between cloak and reference would be as
small as

|∆Cmax
2 | ≈ 1

2
λ

l0
t

R2
2

L2
z
≈ 4× 10−5. (4.4)

This small difference would be very difficult to measure for realistic signal to
noise ratios and statistics. Thus, once again we find the presented cloak to be
quite robust. Experimentally, the cloak works fine for incoherent white light
illumination and for perfectly coherent illumination.
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Figure 4.4: Coherent illumination analysis. In the upper panels pictures of the center
(1 mm2) of the front side of the reference sample (left) and the cloak sample (right) are
shown. The samples are illuminated via the center of the back side with a collimated
beam of perfectly coherent light. A background image (no illumination) is subtracted
from these pictures pixel by pixel. The lower panel shows the histogram of the
brightness of the pictures. Due to the subtraction negative values are possible as
well. Both, the reference and the cloak sample lead to the same result: Most of the
pixels are dark, but there are a few very bright pixels as well. The speckle contrast
of both pictures is CI = 0.95 and thus, the cloak cannot be distinguished from any
other reference sample with this kind of illumination.

4.2 Speckle Contrast for Semi-Coherent Light

A possible way to uncloak the diffuse-light cloak has been discussed in 2015 [39].
Diffuse-light cloaks can always be uncloaked via a time-of-flight measurement. The
principal behind this statement is illustrated in Section 2.3.3. The cylindrical core-
shell cloak can be revealed by its different transmission time distribution compared
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to the reference. This finding about temporal differences can be translated to a
difference in length, as all photons have the same speed vph = c0/n in the sample
with the refractive index of n = 1.42 and the vacuum speed of light c0. Knowing
that the path lengths p(l) traveled through the cloak are different from the path
length traveled through the reference sample is a promising way to reveal the cloak
without using a complicated setup with a pulsed laser and a single photon counter
with picosecond accuracy. There have been works on the study of scattering media
with semi coherent light [72, 73, 84, 85]. These works use the speckle contrast CI
to get some information about the path length distribution of their samples. This
approach was used to reveal the internal structure of a medium, buried objects
within the scattering medium and it was even used in biomedical optics [32, 84,
86]. As this is a promising way, we try to go one step further to reveal a cloak that
is perfectly hidden in terms of the stationary diffusion equation.

4.2.1 Illumination with Shorter Coherence Lengths

Figure 4.5 shows pictures illuminated with a finite coherence length. To realize a
semi coherent illumination, we sweep the frequency of the laser via a sawtooth
voltage at the piezo that changes the laser cavity. Integrated over time, this leads
to a box-shaped frequency profile of the laser. This has to be repeated much faster
than the shutter time of the camera. The sweeping is monitored via a Fabry-Perot
interferometer (Toptica, FPI 780).

The left panels in Figure 4.5 show pictures of the reference (upper panel) and the
cloak (lower panel) with a coherence length lcoh = 0.5 m. With the bare eye, these
pictures still look as crisp as the ones for perfectly coherent light in Figure 4.4. The
panels on the right side of Figure 4.5 show speckles that emerge at the front side
of the reference and the cloak when illuminated by laser light with an effective
coherence length lcoh = 0.05 m. The ten times shorter coherence length has an
obvious influence on the pictures: With shorter coherence length, the pictures
start to look blurry. There are no black areas and no bright spots anymore.

It is hard to see a difference between the pictures of the reference and the
cloak sample within the same illumination. However, the histogram in Figure 4.6
shows clear differences. The dashed curves correspond to the illumination with
a coherence length of half a meter, the solid lines correspond to an illumination
with a coherence length of only five centimeters. Comparing the dashed lines
the difference in the very left of the histogram is most obvious. The picture
of the cloak (red) has more dark black pixels than the reference. For the solid
lines we see a clear trend as well: The cloak has more dark pixels once again
and even more bright ones as well. In contrast, the reference has more pixels
with a brightness close to the mean value of the brightness. These findings
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cloak cloak

reference reference

coherence length lcoh = 0.5 m coherence length lcoh = 0.05 m

coherence length lcoh = 0.5 m coherence length lcoh = 0.05 m

Figure 4.5: Partially coherent illumination analysis. Four pictures taken with the
same configuration as the pictures in Figure 4.4 but with different coherent length of
the illumination. The left panels show illuminations with lcoh = 0.5 m. The panels on
the right show pictures of an illumination with lcoh = 0.05 m. The granular structure
of the speckle pattern decreases with shorter coherence length, as the pictures on the
right look more gray than the black and white pictures on the left. With the bare eye
one cannot see a statistical difference between the reference (upper pictures) and the
cloak (lower pictures). Figure partially adapted from [82].

are confirmed by the difference in speckle contrast depicted in the legend of
Figure 4.6. The cloak sample seems to have a higher contrast than the reference
sample when illuminated by semi coherent light. To solidify this finding, a series
of measurements are taken with different coherence lengths on different days.
This method seems to be inevitable as these measurements are very sensitive to
several of disturbances.

Of course, light leakage onto the camera chip within a measurement will alter
the speckle contrast, but also small vibrations of the sample changes the outcome
of the experiment. If the speckle pattern changes during the shutter time of the
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Figure 4.6: Histogram of the pictures shown in Figure 4.5. The dashed lines cor-
respond to an illumination with coherence length of lcoh = 0.5 m, the solid lines
correspond to an illumination with coherence length of lcoh = 0.05 m. In contrast to
Figure 4.4, the histogram analysis reveals a difference between reference (blue) and
cloak (red). In comparison to the reference, the cloak sample has a wider distribution
of brightness in both cases of coherence length. The reference sample has more
pixels with the same brightness what leads to a higher peak in the histogram. These
findings are condensed in the value of the speckle contrast. For the same kind of
illumination, the speckle contrast CI is higher for the cloak than for the reference.
Figure partially adapted from [82].

camera, the speckle contrast will be lowered. Getting a stable speckle pattern
poses a challenge as there are a couple of reasons that the sample might move and
even the slightest movement will lead to a completely different speckle pattern.
Placing the samples onto the optical table always leads to tensions in the rubbery
material. It takes about half an hour for these tensions to dissolve. Despite the air
damped optical table, vibration from construction works anywhere in the building
or harsh footsteps on the hallway next to the lab influence the speckle pattern
as well. Last but not least, the air flow of the air conditioner shakes the samples
a tiny bit and thus, the air conditioner has to be turned off for the time of the
measurements. This list of known issues is certainly not complete and thus, we
make sure via repetition that our measurements are valid.

4.2.2 Measurements on Multiple Coherence Lengths

In Figure 4.7, four groups of measurements are shown. Between those measure-
ments, the samples have been moved and they were recorded on different days.
The vertical axis depicts the speckle contrast CI and the horizontal axis indicates
the corresponding inverse coherence length lcoh

−1. The first measurements (see
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Figure 4.7: Speckle contrast of 150 pictures for reference (blue) and cloak (red) sample
versus the inverse coherence length of their illumination. The setup is the same as
for Figures 4.4 and 4.5. The pictures were taken in four experiments that took place
on different days. The arrows indicate the measurements that were separately shown
in Figures 4.5 and 4.6. The blue and red lines are guides to the eye. Figure adapted
from [82].

Figure 4.4) with perfectly coherent light (lcoh ≥ 60 m ≡ lcoh
−1 ≤ 1/60 m−1) are

added to this graph in the upper left corner. The results shown in Figures 4.5 and
4.6 are marked with horizontal arrows for lcoh = 0.5 m and with vertical arrows
for the illumination with lcoh = 0.05 m. The trend of the speckle contrast of the
two samples is quite similar. With smaller coherence length, the speckle contrast
drops down as well. The relative split between the two trends seems to rise with
the decrease in coherence length as well.

These measurements support the assumption stated before: The cloak sample
can be uncloaked by partially coherent light. The speckle contrast behaves signifi-
cant and systematically different for illumination with light of different coherence
length.

4.2.3 Theoretical Analysis

This finding can be approved by some theoretical calculations. In Section 2.6.2,
the mathematical derivation of the speckle contrast is demonstrated. After some
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Figure 4.8: Simulated path length distributions for reference and the cloak sample.
The dimensions and material parameter of the real samples are fed into the simulation.
The illumination is a directional Gaussian source in the middle of the back side. The
detection area is 10× 10 mm2 large. The path lengths through the cloak sample (red)
are shorter than the path lengths through the reference sample (blue).

calculations, we end up with the speckle contrast CI:

CI =

(∫ ∞
0

∫ ∞
0 S(λ)S(λ′)

∣∣∣∫ ∞
0 p(l) exp

{
−i2πl

[
1
λ −

1
λ′

]}
dl
∣∣∣2 dλ dλ′

)1/2

∫ ∞
0 S(λ)dλ

. (4.5)

Here, the speckle contrast depends on the spectral profile S(λ) and the path
length distribution p(l). The term in the square of the absolute value is simply
the Fourier transform of the path length distribution p(l).

To calculate the speckle contrast according to Equation 4.5, we use the spectral
profile that is equivalent to the coherence length we want to examine. The path
length distribution is simulated by FRODO, the Monte Carlo ray tracing software
introduced in Section 2.4. We use a Gaussian shaped collimated illumination
with a FWHM of 2 mm centered in the middle of the backside of the samples.
Next, we only collect the photons that exit the sample in an area of the center
of the front side. The detection area is set to be 10× 10 mm2. This is larger than
the real experiment, but still reasonably small and like this, the simulation times
were bearable. In contrast to simulations for Chapter 2.2, not the exit position
but the path length of the individual photons is stored. Next, a histogram of
the distribution of path lengths is created and depicted in Figure 4.8. Figure 4.8
shows that there are no photons arriving at the detector with a optical path length
below approximately four centimeter. This is due to the ballistic path length: The
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Figure 4.9: Simulated speckle contrast for both reference (blue) and cloak (red) with
a batch of discrete coherence lengths. The path length distributions were obtained
from diffusion equation simulations and from Monte Carlo simulations. The trend
and the split of the curves confirm the experimental findings presented in Figure 4.7.
The speckles on the front side of the cloak sample have a higher contrast than the
speckles on the reference sample when illuminated with partially coherent light.
Figure adapted from [82].

photons have to travel through three centimeters of PDMS that as a refractive
index of 1.42. The big difference of the cloak sample in comparison to the reference
sample is the bigger amount of shorter light paths. Thereby, the FWHM of the
path length distribution is smaller for the cloak than for the reference sample.

Using the path length distribution p(l) simulated by the Monte Carlo method
for ray tracing, we can calculate the speckle contrast via Equation 4.5 with discrete
coherence lengths within the same span of inverse coherence length that was
examined experimentally. In addition, we also show the data obtained by the
path length distribution simulated from diffusion equation, with and without
absorption. The results of all simulations are presented in Figure 4.9.

In contrast to Figure 4.7, the speckle contrast reaches 100% for perfectly coherent
light, whereas for finite coherence lengths, the trend of the simulations looks very
similar to the trend of the experimental data. The speckle contrast of the cloak
is consistently higher than the speckle contrast of the reference sample. The
three different methods of path length simulation lead to almost the same speckle
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contrast CI.
Using again Formula 4.5, we can have a look at the extremes of the speckle

contrast: For an infinite small variation of the frequency or in other words infinitely
long coherence lengths, we find

lcoh → ∞ CI → 1. (4.6)

For very small coherence length, one can show that the width of the path length
distribution ∆s influences the speckle contrast like:

lcoh → 0 CI ∝
√

lcoh/∆s (4.7)

Not only does the limit in Equation 4.7 confirm the limit for incoherent light
illumination with no difference in speckle contrast (CI

ref = CI
clk = 0) but it also

confirms a difference in speckle contrast over a wide range of coherence length
for samples with different widths ∆s of their path length distributions.

4.3 Conclusion

With a simple experimental setup consisting out of a tunable laser, a microscope
objective, a linear polarizer and a camera, we are able to scan over a wide range
of coherence lengths and the connected statistics of the speckle patterns. We
find no difference in speckle contrast for perfectly coherent light and thus no
possibility to reveal the cloak with this approach. In good agreement to the
theoretical simulations, we find a significant difference in speckle contrast between
the reference sample and the cloak sample for partially coherent light. Even
without knowing the complete path length distribution, we can reveal the diffuse-
light cloak using partially coherent light and the contrast of the emerging speckles.
This cannot be done solely for this specific cloaking device but, as carried out
in Section 2.3, it is possible to uncloak all diffuse-light cloaks as they all have
the same limit when it comes to transient cloaking or path length distributions
respectively.
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Chapter 5

Eigenchannel Analysis

In order to collect as many information of a scattering medium as possible,
measuring the transmission matrix has become an established approach within
the last years [87–91]. In principle, a perfect transmission matrix contains all
scattering information about a scattering medium. It connects all possible vectors
(position and angle) of input light to all possible vectors of complex transmitted
light. By detecting the complex transmitted fields of light rather than the intensity
of light, coherent interference effects can be predicted by a transmission matrix.

The goal in this chapter is to measure a transmission matrix for both the cloak
and the reference sample and use the vast amount of information stored within
these matrices to reveal the presence of the cloak. By successfully uncloaking the
cloak sample in this manner, the constrain discovered in Chapter 4, that the cloak
cannot be reviled by perfectly coherent light (there with a static illumination),
might be overcome by using several different illumination vectors and processing
the data.

There are a couple of challenges along the way to realize this goal. First, in
contrast to former measurements, the complex transmission of samples has to be
recorded. To do so, an interferometric setup is built and the complex transmission
can be reconstructed by a Fourier analysis of the interference of said transmission
with a tilted reference beam. This basic idea is explained in more detail in
Section 2.7.

Second, a perfect transmission matrix would require an almost infinite amount
of individual illumination vectors to be recorded one after the other. To limit the
amount of data and to make the setup as sturdy and simple as possible, we restrict
the validity of the transmission matrix to a single position and vary only the angle
of the input vector of light. This configuration can still be optimized to about
8000 independent illuminations that have to be recorded in order to construct a
transmission matrix.

An additional challenge is to have a robust sample. The transmission matrix
at one illumination point differs from the transmission matrix a little bit to the
side. If the sample moves a little bit to the side after half of the measurement, the
transmission matrix recorded would be a mix of the two original transmission
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matrices. In order to prevent this kind of movement, the samples used in Chapter 4

are revised, as these soft PDMS samples tend to creep during the measurement as
discussed in Section 4.1. The new samples are not only smaller by a factor of ten
but also out of a hard resin in order to avoid any movement in the sample itself.

The last challenge is to find a significant difference between the respective
transmission matrices. This is done by rewriting the transmission matrix into a
diagonal form by performing a singular value decomposition (SVD) and subse-
quently analyzing the singular values of the resulting matrix [87].

The findings in this chapter are the result of a collaboration with the research
group of professor W. Choi. As they are experts in the field of measuring trans-
mission matrices [89, 92, 93], we got together with them to realize the ambitious
project of measuring the transmission matrix of a diffuse-light cloak.

5.1 Sample Preparation

Preparing new and improved samples to measure the transmission matrix is
crucial as the PDMS-samples [81] used in Chapter 4 were already on the edge
of being stable for a single illumination that takes less than a second. Ideally
the new samples should be stable for hours. Hence, a less viscous host material
instead of polydimethylsiloxane (PDMS) is desirable. But still, the material has to
be transparent for the visible light, scattering particles should be easily dispersed
in it, hence it should be castable.

All these requirements are met by the clear polyester resin “SKresin 2420 (TS)”
by the company “S u. K Hock GmbH”. In addition to the increased temporal
stability, the size of the samples is changed. It is a lot easier to handle smaller
samples in an interferometric setup. For one thing the path length distribution
p(l), see Figure 4.8, is more narrow and thus small, unwanted deviations from
perfect coherence do not affect the experiment. For another thing, the complex
fields necessary to reconstruct the transmission matrix are measured in an inter-
ferometer. In the interferometric setup used, the samples need to fit in-between
the illumination and collection microscope objective, which are separated by twice
the working distance of the objectives. This imposes a further limitation on the
sample thickness.

All in all, the sample host material is changed from PDMS to a resin and
all dimensions of the samples are lowered to a tenth of the original size. In
order to emphasize the quality of the new samples and to document the modified
fabrication of these samples in contrast to the PDMS samples in [81], the individual
manufacturing steps are pointed out in this section.

All three samples, the reference, the obstacle and the cloak sample consist of
the same reference material in the surrounding. In order to stay in the same
ballpark of about 5% transmission and to have the same lt/a ratio (where a is the
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thickness of the shell R2 − R1, see Chapter 3 and Section 2.3), the diffusivities and
the corresponding transport mean free path lengths have to be lowered by a factor
of ten. Hence the concentration of scatterers has to be increased by a factor of ten.
In order to minimize imperfections in the concentration of the scatterers and to
circumvent problems due to shrinkage during the curing process, first, 20 reference
samples are cast in one manufacturing step. 100 ml of resin is mixed with 390 mg
of Titania dioxide (TiO2). This mixture is cast into a 15 mm× 80 mm× 80 mm
mold (see Figure 5.1). Out of the inner center of this big block, 5× 4 = 20 small
samples are milled out. These samples have a size of Lx = 15 mm, Ly = 8 mm and
Lz = 3 mm. The samples were taken out of the middle of the big block in order to
avoid possible inhomogeneities on the walls of the mold due to air bubbles or other
imperfections. As a smooth surface is inevitable for meaningful measurements
of the scattering properties of the insight of the samples, the surfaces have been
polished by a diamond polishing mill. Otherwise, surface roughness effects would
have led to scattering on its own and this effect would have disturbed further
measurements.

Figure 5.1: Picture of the sample preparation. Left, one can see the aluminum cast to
mold the big resin blocks. The resin (not depicted) is mixed with titanium dioxide
(TiO2). A pile of the powder is sown in the middle left of the picture. The big blocks
are milled down to 20 reference samples. One of these is placed in the middle right.
Right, a retainer is shown that is used to clamp and center the samples in order to
drill vertical holes into them to process them to obstacle and cloak samples.

19 out of the 20 reference samples are further processed in order to fabricate
the samples for cloak and obstacle. The remaining sample is the reference sample
depicted in Figures 5.1 and 5.2. One of these 19 samples is processed in order
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Figure 5.2: Picture of the three samples. Left, the reference sample out of a clear resin
mixed with titanium dioxide (TiO2). In the middle, the obstacle sample is shown
that has the same surrounding as the reference but in addition a hole is drilled in the
center of the xy plane. This hole is filled by a mixture of two parts of Titania and one
part of resin. On the right, the cloak sample is shown. In addition to the obstacle,
this sample has a shell around the inner cylindrical core. This shell is lower in TiO2
concentration and thus guides the light around the strongly reflecting core of the
sample. The dimensions are: Lx = 15 mm, Ly = 8 mm and Lz = 3 mm.

to become the obstacle sample. Therefore, it is clamped into the retainer shown
in Figure 5.1 and a hole is drilled exactly in the middle of the xy-plane with a
radius of R1 = 0.8 mm. As the diffusivity of the core has to be lowered by a
factor of ten as well, the ceramic material used as an obstacle in the samples
of Chapter 4 cannot be used anymore. Here, the very same resin mixed with a
very high amount of TiO2 is used as a diffuse reflector in the samples. The core
material is fabricated by mixing one part of resin with two parts of TiO2. After a
lot of stirring this results in a very thick and viscous dough like material. This
dough like material is formed to long cylindrical threads with a diameter of about
1 mm. One of these strings is threaded into the cylindrical hole of the obstacle
sample. Next, as much of the core material as possible is pushed into the hole of
the sample to fill it completely. After 12 hours of curing time, the obstacle sample
is finished and it is depicted in Figure 5.2.

The remaining 18 unprocessed reference samples are destined to become cloak
samples. As the correct ratio of concentration of scatterers in the surrounding
in contrast to the shell is crucial, the remaining 18 samples are used to optimize
the ratio between the two concentrations. Just as the obstacle sample, the cloak
samples are clamped into a retainer in order to drill a centered hole into the
sample. The hole for the cloak samples has a radius R2 = 1.2 mm. Hence the
remaining thickness of the surrounding is only 0.3 mm and thus, the center points
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of the samples have to be met very precisely. This hole is then filled with the shell
material. As already discussed in Chapter 3, the theoretically calculated ratio of
concentrations (see Equation 2.10) of D0/D2 = Np,2/Np,0 = 2.7 does not lead to
perfect cloaking. Instead, an increased ratio of about 3.9 leads to the desired light
propagation and hence perfect cloaking [81]. With this knowledge in mind, an
optimal ratio of 4.1 in the concentration of the two areas is found for the cloak
sample (optimized for homogeneous illumination). Optimization for point like
illumination leads to an even higher contrast of 4.6.

The resin for the shell material is mixed with the corresponding amount of
TiO2 and poured into the drilled hole in the middle of the sample. After 12 hours
of curing time, the hole for the core is drilled into the cloak sample. Next, the
procedure is the same as for the obstacle sample described above. After a final
curing step, the cloak sample is finished and can be seen in Figure 5.2.

5.1.1 Sample Characterization and Optimization

The performance of the samples under homogeneous illumination and under point
like illumination is displayed in Figure 5.3. Homogeneous white light illumination
from the back side is shown in the upper row of pictures. The pictures show a
part of the front side of the sample. The dashed lines indicate the area from 25%
to 75% of height and width of the samples. In this area edge effects play only a
minor role. The average transmission of the samples in dependence on the x-axis
is displayed by a solid white line. For the reference the transmission is almost
unity in this area indicating that light leaking to the sides, as well as to the bottom
and top plays only a minor role. The newly designed core of the obstacle sample
casts a pronounced shadow onto the front side of the sample and the transmission
drops down to about 50% in the middle of the sample. The cloak 1 sample almost
perfectly resembles the behavior of the reference sample. There is only a minor
asymmetry that might occur due to a small misalignment in x-direction when
the two holes were drilled into the sample. The second cloak sample transmits to
much light under homogeneous illumination, as it is optimized to the point like
illumination.

In the second row of Figure 5.3, under point like illumination, the reference
transmits a Gaussian shaped spot onto the front side of the sample [46]. The
shadow on the front side of the obstacle sample is even more pronounced com-
pared to the homogeneous illumination. The local minimum in the middle of
the solid white line, that averages in y-direction over the area limited by the
dashed lines, is at about 35% of the corresponding transmission of the reference
sample. As expected, the performance of the core-shell cloaks is not perfect under
point like illumination [41]. For cloak 1, the amount of light that is transmitted is

91



5 eigenchannel analysis

reference obstacle cloak 10.0

0.5

1.0

0.0

0.5

1.0

b
ri

g
h

tn
es

s
b

ri
g

h
tn

es
s

0.0

0.5

1.0

0.0

0.5

1.0

cloak 2

Figure 5.3: White light characterization of the samples under homogeneous illumi-
nation (top) and point-like illumination (bottom) from the rear side of the samples.
In the background, photographs of the samples are shown. The regions of interest
(marked by dashed white lines) are centered on the front side of the samples and
cover 50% of the width and 50% of height for homogeneous illumination and 5% of
height in the case of point like illumination. The solid white lines correspond to the
average brightness of the region of interest over the height of the region of interest.
For homogeneous illumination, the reference sample has an almost homogeneous
transmittance. The strongly scattering core of the obstacle leads to a shadow on
the front side with only about 50% brightness. Cloak 1 performs quite good for
homogeneous illumination, as the white line is almost flat and reaches the same
brightness level as the reference. The shell of cloak 2 transmits to much light and
hence, under homogeneous illumination, there is a small peak in the white curve.
Point like illumination leads to a Gaussian-like shape of brightness on the front
surface of the sample for the reference. The impact of the core is even bigger under
this illumination, as the obstacle sample transmits only about 35% of light in contrast
to the reference. Cloak 1 transmits the same amount of light as the reference, but the
distribution is different. While cloak 1 transmits more light at side of the center, the
middle of the cloak 1 sample is too dark. The overall transmission of cloak 2 is to
large but only looking at the middle of the cloak sample, the performance of cloak 2

is much better than the performance of cloak 1.

the very same as for the reference sample but the distribution is different to the
reference. The peak intensity is at only about 75%. In the following experiments
this flaw would not play a role as the transmission of the samples is normalized
and hence the absolute transmission is not taken into account. In addition, the
observed area on the front side will be very small, hence the shape of the light
distribution is negligible as well.

With the set of samples costing out of the reference sample, the obstacle sample
and the cloak 1 sample, the samples used in Chapter 4 [81] are recreated and
optimized. To further optimize the cloak sample to the point like illumination and
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detection in this chapter (see Figure 5.5), cloak 2 has a lower concentration of TiO2
in its shell. As cloak 2 is optimized for point like illumination and detection only
at the middle of the sample, the peak of the light distribution at the front side of
this sample is almost one. In the following experiments, only cloak 2 will be used
and called cloak.

5.2 Interferometric Setup

To measure the complex transmission field of the samples in order to construct a
transmission matrix, an interferometric setup has to be built. This setup, depicted
in Figure 5.4, has to fulfill a couple of requirements.

First of all, the setup has to provide two light paths of a coherent light source
and a detection camera in order to measure the tilted interference described
in Section 2.7. The two light paths have to be about the same length in order
to maximize the interference potential. This requirement was met by a Laser
(Toptica, DL 100, λ = 780 nm, lcoh ≥ 60 m), a CCD camera (Point Grey, BFLY-PGE-
50H5M-C, 2448× 2048 pixels) and two beam splitter cubes that first divide the
illumination in two separate arms and later join these arms again. Note that both
beam splitters have a ratio of 10% transmission to 90% reflection. Thereby, the
light loss due to the scattering samples in the sample arm is accounted for and
both arms of this interferometric setup will have the same intensity on the camera
chip. For fine adjustments, a rotational ND filter in the reference arm can be used.
To induce a tilt angle between the two light paths, the components in the reference
arm are elevated (out of the plane in Figure 5.4) about 1 cm in order to hit the
camera with an incline. This corresponds to a tilt angle in y-direction. The tilt
angle in x-direction can be changed by rotating the second beam splitter cube.
Furthermore, the collimated reference beam passes through a telescope in order
to increase the beam diameter to illuminate the entire camera chip. In theory, the
light passing through the reference arm should be a plane wave. By adjusting
the distance of the telescope lenses, the wavefront is optimized and monitored by
measurements using a wavefront sensor. To increase the beam quality, a pinhole
is mounted between two lenses in order to clean the mode and beam profile of
the laser. Just as in Chapter 4, a linear polarizer is mounted right in front of the
camera to increase the speckle contrast.

The second requisite is the possibility to change the illumination of the sample
in a fast and convenient way. As carried out in the beginning of this chapter,
we decided to change the illumination by varying the angle of the illumination.
Using a 2D mems mirror (Mirrorcle Technologies Inc., A5M24.2-2400AL-TINY20.4)
is a very convenient way to tilt the illumination in both x and y-direction. The
diameter of the mirror is limited to 2.4 mm as we are using an integrated mirror,

93



5 eigenchannel analysis

L
A

S
E

R

T=10%

R
=9

0%
2-D mems-mirror

f=
75

 m
m

 
CCD

Camera

b
ea

m
 s

p
li
�

er
 o

n
ro

ta
ti

o
n

 s
ta

g
e

f=
20

0 
m

m

f=-9 mm

ad
ju

st
ab

le
N

D
 fi

lt
er

sample

reference arm

sample arm
linear 
polarizer

f=
50

 m
m

f=
75

 m
m

50
 µ

m
 p

in
h

o
le

b
ea

m
 s

p
li
�

er
 

50x
NA=0.6

50x 
NA=0.6

f=
10

0 
m

m

Figure 5.4: Sketch of the experimental setup. The laser beam (Toptica, DL 100,
λ = 780 nm, lcoh ≥ 60 m) is cleaned by a 50 m pinhole and then split into the two
arms of the interferometer by a beam splitter (R = 90%, T = 10%). In the reference
arm (upper left), the beam intensity can be regulated by an adjustable ND filter. Via
two mirrors, the height of the reference beam is risen by 1 cm. Next, the beam is
widened in order to illuminate the hole camera chip. By another mirror, the slope
of the beam is changed to hit the camera at an angle on the original beam height.
After a detour introduced by three mirrors to match the path length of sample arm
and reference arm, the light going through the sample arm hits the 2D mems mirror.
After passing through a lens and the illumination objective (Leitz Wetzlar, ∞/0,
50× /0.6), the sample beam hits the sample. The transmitted light is collected by a
second objective (same type as illumination objective) and after passing through a
second lens, a beam splitter (R = 90%, T = 10%) on a rotation stage reflects most of
the light onto the camera.

because its pivot point is just underneath the reflecting surface. This is quite
crucial as this prevents the setup from defocusing for bigger angular changes. This
mirror is able to scan in very small and fast steps, in other words, the precision of
the mirror is not the limiting factor for angular resolution. The illumination setup
of the sample arm is covered in more detail in Section 5.2.1.
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As a last requirement, the measurement setup has to be as stable as possible in
time and as sturdy as possible in terms of environmental influences. To achieve
this, the setup itself is built on a breadboard on an air damped optical table and
all components are mounted on thick posts as close as possible to this breadboard
resulting in a beam height of 52 mm. In addition to this, an enclosure is built
around the entire setup to block light and air flow that might influence the
measurement. To further decrease environmental influences, most measurements
were performed over night. Just as the measurements in Chapter 4, the results
were confirmed by repeating all measurements several times.

5.2.1 Sample Illumination

The big challenge of this setup is to realize as many independent illuminations
as possible, as with more illuminations, the transmission matrix contains more
and more information. Figure 5.5 shows the lower part of the setup once again
in more detail. Two exemplary beam paths are illustrated in blue and red, each
corresponding to a different tilt angle of the mems mirror. The arrangement of
the lenses and objectives leads to two 4f systems. To explain the path of light in
detail, first a single angle of the mems mirror and the resulting foci are reviewed,
then the behavior of light for different tilt angles is discussed.

Considering only one tilt angle of the mems mirror (e.g. the beam depicted in
red), on the right side of Figure 5.6 the pivot point of the movable mems mirror is
at the same time the focal point of the f = 75 mm lens next to it. This lens focuses
the previously collimated beam onto the back focal plan (BFP) of the illumination
objective. The right objective, that illuminates the sample diffracts the focused
beam from its BFP to a collimated beam, that points towards the sample front side.
Together, the lens and the objective act as a telescope that decreases the beam
width by a factor of 15. Hence the illuminated area in the sample plane is about
100 µm in diameter. Without any sample, the focal planes of the two objectives are
the same and hence, the detection objective focuses the collimated beam onto its
back focal plane. The second lens ( f = 100 mm) completes the second 4f system
with its front focal plane lying within the back focal plane of the second objective
and its rear focal plane lying on the camera chip.

Considering the sheaf of beams emerging by different tilt angles of the mems
mirror, they are all well collimated and at the same center position at the mirror.
The increasing lateral displacement induced by different tilt angles is converted to
a constant lateral displacement by the f = 75 mm lens. For different tilt angles, the
sample beam hits the back focal plane of the first objective at different positions,
that correspond to different illumination angles at the sample surface. This tilt is
once again converted to a constant lateral displacement by the second objective
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Figure 5.5: Sketch of the sample illumination. This sketch illustrates the sample
illumination already shown in Figure 5.4 in more detail. There is a 4f imaging system
between the mirror and the sample plane and another 4f imaging system between
the sample plane and the camera. At the mems mirror, the beam is collimated and
centered in the optical axis. By tilting the mems mirror to another angle, the following
beam paths change. Two of these beam paths are illustrated in red and blue. At the
f = 75 mm lens, both beams are still collimated but they are off center. At the back
focal plane (BFP) of the first objective, both beams are focused and parallel to the
optical axis. At the sample plane, both beams are collimated and centered at the
middle of the optical axis. In the case of no sample, the two beams are collected by
the second objective and once more individually focused in its BFP. Another lens
refracts the beams onto the camera chip where they hit the same spot but under a
different angle. By rotating the beam splitter in front of the camera, the tilt between
the sample arm light and the reference arm light can be adjusted.

and furthermore converted back to a (smaller) tilt by the f = 100 mm lens. All
illumination angles (without any sample) hit the camera at the same position but
with different incident angles.

Recording a transmission matrix demands as many independent illuminations
as possible [87]. As in this experiment, we restricted ourselves to varying the
angle of the illumination, we have to make sure, that the illumination angles are
well separated. This angle separation can be checked intuitively in the BFP of the
illumination objective. Well separated foci in the BFP correspond to well separated
illumination angles on the sample front surface.

To confirm the independence of each illumination angle, an additional pre-
experiment is performed. Without any sample, N = 7845 different illumination
angles are recorded. In order to minimize the influence of the tilt angle to the
transmission, not the complete aperture and hence not the complete NA of the
objective NA = 0.6 but rather only NA ≈ 0.4 is used. This illumination setup
leads to a angular range from −23.5◦ to +23.5◦ in both x and y-direction. Within
this span of 47◦, 100 individual illumination angles are driven by the mems mirror.
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Figure 5.6: Summed up magnitude of the Fourier transform to check angle separation.
As explained in Section 2.7, a region of interest in the Fourier plane is shown. To check
whether the individual illumination angles overlap, Panel a) shows 21 subsequent
illumination angles with an angular spacing of 0.47◦. As the peaks (only individual
pixels) are separated, the angles at the sample plane are clearly distinguishable.
Panel b) shows all 7845 angles in an add-up picture of the Fourier plane with the
same angular spacing of 0.47◦ in both x and y-direction between neighboring angles.
The brighter area in the upper right corner arises due to the fact, that in this direction
the (0, 0) peak of the Fourier plane is located. By adding up constant stray light
artifacts, these areas sum up to magnitudes of nearly the same order as a single
measurement peak.

Combining these angles in x and y-direction leads to a total of 7845 angles.
Recording the back focal plane directly is impossible without moving the

objectives, hence the separation of the focal points and the angles respectively is
checked via the field in the camera plane. Performing a Fourier transformation
onto a picture taken with no sample in the setup leads to a small peak in the
Fourier plane that resembles the tilt angle between the reference beam and the
sample beam. This procedure is outlined in more detail in Section 2.7. For two
perfect plane waves, the peak in the Fourier plane will be infinitesimal small.

Adding up the experimentally measured and Fourier transformed pictures
of 21 illumination angles with varying x-angle leads to the picture depicted in
Figure 5.6, Panel a). Note, that only the magnitude of the complex numbers is
shown. The difference in illumination angle is 47◦/100 = 0.47◦.

The individual illumination angles are well separated from each other, hence
the angular spacing of about 0.47◦ is sufficient to create independent illuminations.
Recording images for all N = 7845 angles and adding up the magnitude of
the resulting Fourier transformed pictures results in the picture depicted in
Panel b) of Figure 5.6. Panel b) shows a cutout of the lower left Fourier plane
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(compare Figures 2.11 and 5.7). The outer circle corresponds to the full NA of the
detection objective. The reduced illumination NA is clearly visible as the circle
of illumination does not reach the outer borders of this cutout. In addition, a
deviation of the expected circular shape of the illumination angles is visible. Most
likely this occurs due to a minor alignment flaw of the two objectives. Here, not
using the full NA ensures that all light is picked up, even with small flaws like this.
The brighter region on the upper right of the Panel b) in Figure 5.6 is connected to
some constant coherent light that is part of a tail of the center maximum of the
Fourier plane and adds up over the measurement series.

The result in Figure 5.6 confirms that the we succeeded in installing a setup
that is capable of illuminating a sample with about 7845 independent illumination
angles. This is the starting point for measurements on the reference and the cloak
sample.

5.3 Coherent Analysis

With the experimental setup ready, the samples developed can be placed in the
designated position between the two objectives. As the calibration of the setup is
very sensitive, the 4f system on the detection side is not moved to image the back
side of the sample. Like this, the calibration that is checked by a measurement
without any sample is still intact. Although imaging the rear side of the samples
would be the intuitive way to collect light, the fact that the speckle statistics do not
change by imaging another plane of the sample enables us to keep the original
setup as it is. The goal for the following experiments is to find possible differences
between the cloak and the reference, hence only these two samples are measured
in the setup.

In the following, a short explanation of the processing of the pictures taken
is shown. For a more general introduction with less complex samples, read
Section 2.7.

Placing the reference sample into the setup with its front surface (xy-plane) at
the working distance of the illumination objective leads to an illumination spot on
its front surface that does not move for different angles. An exemplary image that
is recorded by the CCD camera is shown in Figure 5.7, Panel a). The recorded
image shows the speckles emerging from the reference sample. In the magnified
area, one can see that the speckles are resolved, as they have a size of about
10 pixels in x and in y-direction. In addition, one can see the diagonal stripes,
originating from the tilt angle between the reference beam and the sample beam,
from the upper left to the lower right. As mentioned in Section 2.7, for samples
as complex as this, it is hard to see a deviation in the striped pattern that would
indicate a change in phase of the sample light.
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Figure 5.7: Exemplary picture analysis. Panel a) shows the raw camera picture with
a magnified area. The coherent interference forms speckles on the camera chip.
These speckles are superimposed by a striped pattern that originates from the tilt
between reference arm and sample arm. The random phase of the speckles bends
the otherwise straight lines. Performing a fast Fourier transformation (FFT) on this
image leads to a complex Fourier image. The magnitude of this image is displayed
in Panel b). Interference of the reference arm with itself leads to a bright spot in the
middle at (0, 0), the interference of the sample arm with itself leads to the round
spot in the middle of the plane. Due to the tilt angle between the two light arms,
the interference of the reference beam with the sample beam is found in the lower
left and upper right corner of the Fourier plane. The region of interest (marked by
a dashed white line) is limited by the NA of the second objective. Cutting out the
marked region of interest and performing an inverse fast Fourier transformation
(IFFT) yields to a complex speckle image. The magnitude of this image is shown in
Panel c) and the complex angle of this image is shown in Panel d).

Panel b) shows the shifted fast Fourier transform (FFT) of the picture recorded
and shown in Panel a). The (0, 0) position is shifted to the center of the picture.
Here, the superposition of the interferences of the two light paths with themselves
is found. The plane wave of the reference beam by itself leads to a bright red peak
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in the very center of the FFT, as there is no tilt at all. The light passing through
the sample arm by itself causes the big round spot in the middle of the FFT. As
all angles of light that pass through the detection microscope might interfere
with each other, a maximal tilt angle of 2×NA between the interfering waves
is possible. Hence the spot in the middle has quite a large radius compared to
the outer circular spots. These spots emerge from the interference between the
reference beam and the sample beam. The angle between the reference beam and
light traveling through the sample arm is always the tilt angle plus the angular
variation of the trasmitted light through the sample (limited by the NA of the
objective). This limitation leads to a rather sharp border of the circular areas in
the upper right and the lower left with their radius corresponding to the NA of
the objective.

To only process the information that emerged from the interference of the
reference beam with the sample beam, the circle marked by a dashed white line
in the lower left of Panel b) of Figure 5.7 is cut out and shifted to the center
of the Fourier plane. An inverse fast Fourier transformation of the cut out and
shifted region results in a speckle picture with a decreased resolution (originally
norig.

x × norig.
y = 2448× 2048 pixels to ncomp.

x × ncomp.
y = 361× 361 = 130321 = M

pixels). Although the resolution is decreased by a factor of about six in both
dimensions, the speckles are still resolved, as their average original size was larger
than six pixels.

The resulting complex image is displayed in Panels c) and d) of Figure 5.7. The
magnitude of the complex numbers is plotted in Panel c), the angle of the complex
numbers is displayed in Panel d). This resulting complex picture is a measure for
the complex field transmitted through the sample.

5.4 Transmission Matrix and Eigenchannels

5.4.1 Singular Value Decomposition

In order to construct a transmission matrix, a series of pictures had to be recorded
and processed. To decrease the amount of memory used by this procedure, the
processing described in Section 5.3 is done on the fly while the mirror is moving to
the next position. The process of taking a picture, evaluating the steps described
above in order to acquire the complex picture and moving the mirror to the next
position takes about 0.9 seconds. This leads to a total measurement time of about
two hours.

For reasons of clarity and comprehensibility, each 361 × 361 pixel complex
picture is stored in a single column vector Ti (1× 130321) with the length of the
number of pixels M = nx × ny. To built up the transmission matrix these complex
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“vector-pictures” are stored side by side to form the transmission matrix
Ø

T .

Ø

T =



T1
1 T2

1 T3
1 TN

1
T1

2 T2
2 T3

2 TN
2

T1
3 T2

3 T3
3 TN

3

T1
M T2

M T3
M TN

M


M

=130321
row

s

N=7845 columns

(5.1)

The marked column correspond to the first complex picture calculated. There
are N = 7845 columns and M = 130321 lines in this matrix. The huge matrix

Ø

T
contains all the information that is collected. As it stores the complex field infor-
mation, this matrix might be used to predict the transmission of the superposition
of two illumination angles that were measured in this experiment. But as the
information is not sorted yet, it is hard to extract information about the scattering
properties of the samples.

To sort the information gathered, we perform a singular value decomposition
(SVD) [94, 95]. A SVD splits a matrix into a unitary rotation matrix

Ø

U, a rectangular
diagonal matrix Øσ and the conjugate transpose of another unitary rotation matrix
Ø

V:

Ø

T =
Ø

U
Ø

σ
Ø

V
∗ (5.2)

Just as a the eigendecomposition of a matrix finds the eigenvalues and the
eigenvectors, in the singular value decomposition, one finds the singular values
and the singular vectors. A set of a singular value and a singular vector is called
eigenchannel. The singular vectors are located in the rotation matrices

Ø

U and
Ø

V
∗ and the singular values are located on the diagonal of the matrix Øσ . To give

reason for the next steps of the evaluation, the individual matrices are annotated
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in more detail:

Ø

U =



U1
1 U2

1 U3
1 UN

1 UM
1

U1
2 U2

2 U3
2 UN

2 UM
2

U1
3 U2

3 U3
3 UN

3 UM
3

U1
M U2

M U3
M UN

M UM
M



130321
row

s

130321 columns

(5.3)

The unitary matrix
Ø

U is the matrix connected to detection and it has a size of
M×M ≈ 17 · 109 entries. The physical meaning of the individual columns with
a length of M = 130321 = 361× 361 is revealed when these singular values are
reshaped. The marked vector in Equation 5.3 of the reference sample is shown
in Panel a) of Figure 5.8 and corresponds to the expected transmission pattern of
the first eigenchannel. Any j-th column is normalized by ∑M

i=1 |U
j
i |

2 = 1. Starting
from the left, only N vectors have said physical meaning, all entries U j>N contain
only numerical artifacts.

Ø

σ =



SV1 0 0 0
0 SV2 0
0 0 SV3

0
0 0 SVN
0 0

0 0



130321
row

s

7845 columns

(5.4)

The diagonal matrix Øσ contains the singular values SVi. It has N = 5845
columns and M = 130321 rows. But only the diagonal elements contain nonzero
numbers. Hence all rows below the N-th row are only filled with zeros. The rest
of the matrix is filled with zeros as well. Øσ is connected to

Ø

T via the normalization

N

∑
i=1
|SVi|2 =

N

∑
i=1

M

∑
j=1
|Ti

j |2. (5.5)
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The singular values are all real positive numbers and they are sorted by their
value. The largest singular value SV1 is marked and corresponds to the other
marked singular vectors in

Ø

U and
Ø

V
∗. The singular values of several measurements

are depicted in Figure 5.9.

Ø

V
∗
=


V1

1 V2
1 V3

1 VN
1

V1
2 V2

2 V3
2 VN

2
V1

3 V2
3 V3

3 VN
3

V1
N V2

N V3
N VN

N



7845
row

s

7845 columns

(5.6)

Ø

V
∗ is the illumination matrix. Just as

Ø

U, it is a square unitary matrix that
consists of singular vectors. The individual rows with a length of N = 7845
correspond to the number of illumination angles. The

Ø

V
∗ matrix is a kind of recipe

as the singular vectors in this matrix describe the illumination. This illumination
is connected to the transmission that is stored in the Øσ matrix and the transmitted
pattern stored in

Ø

U. The normalization of every j-th row reads as ∑N
i=1 |V

j
i |

2 = 1.

5.4.2 Singular Vectors

Figure 5.8 shows the marked complex, reshaped vectors of
Ø

U and
Ø

V. As these
vectors are connected to the first singular value SV1, which is the largest singular
value in Ø

σ . These pictures show the situation for one would get the highest
transmission, if one would seek a way to increase the transmission of the sample.

Rearranging the singular vectors into a 2D form facilitates the understanding
of the physical meaning of the vectors. The rows in matrix

Ø

V
∗ can be rearranged

to a circular shape just as the illumination angles on the sample surface or at
the mems-mirror were driven. The complex vector then can be split into its
magnitude (see Figure 5.8 upper left) and its complex angle (see Figure 5.8 lower
left). Reading this vector as a recipe, the magnitude fixes the partial intensity
per illumination angle and the complex angle fixed the additional phase every
illumination angle has to have while illuminating the sample.

The column vectors of the
Ø

U matrix can be reshaped into complex square
361× 361 images. These images predict the complex field at the camera when
the sample is illuminated by the corresponding illumination given by

Ø

V
∗. As the

goal of this work is to find out whether there is a difference in the statistics of the
eigenchannels of the reference and the cloak sample, this route of controlling the
light via the eigenchannels [93, 96, 97] is not perused any further.
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Figure 5.8: 2D notation exemplary complex singular vectors. The left row shows the
first row of the

Ø

V
∗

matrix of the reference sample, rearranged into the shape the
illumination angles were driven by the mems-mirror. The upper picture shows the
magnitude of the picture, the lower panel indicates the angular phase for each of the
illumination angles. On the right side, the first row of the

Ø

U matrix is displayed. The
130321 entries are reshaped into a 361× 361 square picture. The upper panel shows
the magnitude, the lower panel shows the complex angle.

5.4.3 Singular Value Distributions

As the square of the singular values corresponds to the transmission of the
expected illumination situation given by its singular vectors found in

Ø

U and
Ø

V
∗,

one can deduct expectations for the distribution of singular values in the case of
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5 .4 transmission matrix and eigenchannels

no sample: Without any sample and with independent illumination situations,
the normalized singular values should all be unity. If they differ from one, that
means, that a certain configuration of angles transmits more light than another
configuration. Due to real life imperfections, there will always be a deviation
from this constant transmission. Hitting the objective lens off-center will always
decrease the transmission a little bit. As mentioned in Section 5.2.1, the individual
illumination settings are clearly distinguishable but they still have a small overlap.
Last but not least, small variations in the laser intensity will directly be visible
in the distribution of the singular values as well. If the laser intensity drops
down to 95% for one second, the algorithm will connect this to the currently
illuminated angle. The prediction within the transmission matrix would say, that
if one illuminates the same angle again, 5% of the light will be lost.

Figure 5.9 shows the distribution of singular values normalized to the mean of
their square. Hence the overall average transmission does not enter this analysis at
all. On the vertical axis the diagonal elements of matrix Øσ , the singular values are
plotted. On the horizontal axis the corresponding number of the row and column
is plotted, hence the number of the eigenchannel. As the singular values in Øσ are
sorted by size, the curve shown in Figure 5.9 is decreasing. The measurement with
no sample between the objective lenses is depicted in blue and the measurements
for reference and cloak sample are shown in red and yellow.

As expected, the singular values without sample differ from a theoretical
flat 1. The reasons discussed above lead to values that are between 1.2 and
1.1 for the first 1000 eigenchannels and between 1.1 and 0.9 for the next 5500
eigenchannels. The last 1500 eigenchannels lead to singular values below 0.9.
In comparison to the distribution of singular values of the reference and cloak
sample, the singular values without sample are closer to a flat 1 and the curves
are clearly distinguishable. The curves for reference and cloak sample are almost
indistinguishable.

But in fact, the presented results are very reliable, since repeating the measure-
ments yielded qualitatively and quantitatively similar results. This is illustrated
nicely by standard deviations of the individual singular values that are on the
order of the line thickness in Figure 5.9.

As the individual measurements are not visible and the confidence intervals are
thinner than the line thickness in Figure 5.9, this intuitive way of presenting the
singular values is not suitable for the purpose of distinguishing the cloak sample
from the reference sample.

To not only demonstrate the repeatability of our results, but also the repro-
ducibility, additional measurements at several nominally identical samples posi-
tions have been performed. The confidence intervals already mentioned are only
a statistical method for the reliability to measure the same singular value again
for the same sample. Samples that should behave nominally the same might still
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Figure 5.9: Normalized singular values measured and calculated for no sample,
reference sample and cloak sample. The graph shows the 7845 singular values
decomposed of the corresponding transmission matrices. The mean of the squares
of the singular values is set to 1. Like this, all singular values above one indicate
increased transmission and all singular values below one indicate lower transmission
than average. The blue line indicating the “no sample” case is clearly distinguishable
from the other two lines. The red (reference sample) and the blue (cloak sample)
lines are almost indistinguishable. Every visible line is composed out of five to ten
individual lines each representing a complete measurement. The average of the
individual SVs is taken and the 90% confidence interval is shown as well.

differ more from each other due to fabrication imperfections. To get a measure
for the difference in singular values for nominally the same but actually slightly
different samples, the reference sample is moved by 3 mm to the side. More
precisely, moving the sample to the side leads to an off-center illumination and,
at the same time, an off-center detection. As the surrounding material of the
cloak is the same as the material of the reference, also the shifted cloak sample is
measured and expected to reproduce the behavior of the reference.

To better resolve possible differences between cloak and reference sample in
the context of this eigenchannel analysis, the normalization of the singular values
is changed. In Figure 5.11, all singular values are divided by the mean value of
the reference singular values for every eigenchannel. This leads to a flat 1 for the
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Figure 5.10: Sketch of the reference sample and the cloak sample with color coded
illumination spots. The colors match the correspondent singular value lines in
Figures 5.9 and 5.11.

mean of the reference sample itself and therefore, the small deviations between
measurements at nominally identical become visible, but more importantly, also
the differences between cloak and reference.

The information presented is the same as in Figure 5.9 with the additional
measurements at the positions depicted in Figure 5.10. In Figure 5.11, only a small
fraction of the singular values without a sample are shown, as the difference of
these singular values is much larger than the difference between the cloak sample
and the reference sample.

The measurements performed at the side of the reference sample (±3 mm,
depicted in dark red) and at the side of the cloak (±3 mm depicted in light blue
and ±1.5 mm depicted in green) lead to almost the same singular values as the
original centered measurement of the reference. Hence the difference between
these four groups of measurements is a good measure of the uncertainty of
measuring different references one after the other.

The yellow line indicating the singular values of the cloak is clearly distin-
guishable from the reference line and the singular values recorded at the side of
the cloak sample. In addition to the centered illumination, the singular values
measured at ±0.5 mm of the cloak, depicted in purple, lead to an intermediate
slope with respect to the two center measurements.

By changing the normalization of the singular values, it is possible to resolve
deviations in the slope of the singular values in the order of 0.1%. Measuring
singular values of the reference in the center and at the ±3 mm position as
well as measuring the singular values of the cloak at ±1.5 mm and ±3 mm all
results in almost the same singular values. The experimental deviation of these
measurements can be observed in the different slope of the curves. The difference
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Figure 5.11: Representation of singular values normalized to the mean of the singular
values of the reference measurement. To resolve the small difference between the
singular values of the reference sample and the singular values of the cloak sample,
all singular values are divided by the mean of the reference singular values. The blue
“no sample” line is only visible in the middle of the graph, as its slope is far different
from the two samples. All three measurements on the reference sample as well as
the measurements on the cloak sample with ±1.5 mm and ±3.0 mm lead to almost
the same distribution of singular values. All these results are found in the middle
of the graph with almost no incline. The measurements on the center of the cloak
within ±0.5 mm lead to a higher slope in this representation.

in slope of the singular values for nominally identical references is only about 0.2%.
This seems to be the maximal experimental accuracy of our method. Samples
showing smaller slope deviations cannot be distinguished unambiguously.

To our surprise shifting the cloak to the side by 1.5 mm is enough to resemble
the behavior of the reference although this illumination is centered only 0.3 mm
next to the border of the shell (see Figure 5.10). Measuring the singular values
at the center of the cloak sample yields to a different slope in singular values.
The slope of the singular values measured at the center of the cloak is about 1%
higher and hence clearly distinguishable from the measurements discussed before.
Measuring the singular values at ±0.5 mm at the cloak still leads to almost the
same slope in the singular values as illumination at the center of the cloak does.

The first 50 and the last 100 singular values tend to deviate more from the
average behavior than the rest of the singular values. Even within two series of
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measurements on the same sample without moving it, the trend of these singular
values deviates from each other. Reasons for this might be intensity fluctuations
of the laser or even dust particles that float through the collimated laser beam.
The singular vectors that correspond to the low singular values contain more
of these low transmitting illumination angles. As position and the numbers of
these angles changes from measurement to measurement, the trend of the singular
value curves in this area changes as well.

Comparing the slope of the curves in Figure 5.11 one can differentiate three
groups of measurements. First, the measurement without any sample. Second,
the measurements of the cloak with an (almost) centered illumination. And third,
the reference-like measurements performed on the reference sample itself and on
the shifted cloak sample. As theoretical work on the behavior of these curves is
still at an early stage and most of the publications are one- or two-dimensional
samples [98, 99], we cannot tell for sure why the singular values of the centered
cloak and the reference behave differently. Light passing through the middle of
the cloak sample does not only travel on shorter paths than the light transmitting
through the reference [39] but also undergoes fewer scattering events. Following
these arguments, the trends depicted in Figure 5.11 are at least plausible.

Monte Carlo simulations (not depicted) revealed the fact, that light passing
through the reference sample and exiting at the center position on the other side
was scattered about 150 times. In contrast to that, light passing through the cloak
sample is only scattered about 85 times.

The slope of the singular values seems to be connected to the amount of scat-
tering taking place in the sample. No scattering leads to the blue line, indicating
the no sample case. A high amount of scattering leads to the behavior of red
line indicating the measurement on the reference and an intermediate amount of
scattering events leads to an intermediate slope of the curve of singular values,
the yellow line depicting the singular values of the cloak measurement.

In analogy to a game of pool one can relate to this behavior. The more interme-
diate bumps or reflections a billiard ball undergoes, the more small deviations in
the incident angle change the outcome of the hit. As there are fewer scattering
events happening in the cloak sample, the possible angle variation of an incoming
beam for getting the same transmission should be a little bit bigger than for the
reference as in the reference, more scattering events take place. This increased
possible acceptance angle of the cloak leads to a slightly lower number of possible
combinations of independent angles to build a very high or low transmission
eigenchannel. Hence the singular values of the cloak have a flatter curve in
Figure 5.9 that translates to a steeper curve in Figure 5.11.

This line of reasoning is only a preliminary explanation that would need more
experimental and theoretical investigation.
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5.5 Conclusion

Within this project, a new sample generation was developed and its features
were fitted to fulfill the needs of this sensitive interferometric setup. Ten times
smaller samples compared to Chapter 4 and [81] made it possible to perform
interferometric measurements. A big benefit was the possibility to place the
samples into the setup without realigning it. This was only possible thanks to the
decreased thickness by a factor of ten. Using a hard resin made the samples more
stable in time and simplified the overall handling of the samples.

Setting up a simple, rigid interferometric setup enabled us to measure the
complex transmitted field of scattering media. Changing the illumination angle via
a MEMS-mirror generated several thousand independent illumination scenarios on
the scattering samples. Recording the transmission of these different illuminations
leads to the complex transmission Matrix

Ø

T .
The singular value decomposition

Ø

T =
Ø

U
Ø

σ
Ø

V
∗ arranged the information con-

tained in the transmission in a more accessible way. Hence, a closer look at Øσ
revealed the distribution of singular values associated to the transmission of the
sample examined.

Comparing the distribution of singular values of the cloak sample with the
distribution of singular values of the reference sample revealed a small but
significant and reproducible difference between the two samples. In contrast to the
findings under static illumination in Chapter 4, we found a possibility to uncloak
the cloak sample by perfectly coherent light. Note, that this is only possible by
changing the static illumination of Chapter 4 to a variable illumination in this
chapter.
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6
Chapter 6

Conclusions and Outlook

The goal of this thesis was to investigate the limits of cloaking in diffuse-light.
With respect to this question, three major findings have been made within this
work.

The basic concept of laminates in diffuse-light devices, that is used only in a
minimal way by a core-shell cloak was examined in Chapter 3 in detail. Here,
a 100 fold AB-laminate illuminated by an isotropic point source was simulated
using the Monte Carlo method for photon transport in order to sweep over the
complete transition regime between ballistic and diffusive light transport. The
transmission and the laminate performance were measured while the amount of
scattering per laminate layer was changed. Extensive simulation concluded in the
finding, that there always has to be made a compromise between fine lamination,
good laminate performance and high transmission through the device. On one
hand, the core-shell cloak neglects fine lamination at all and hence only works
for homogeneous illumination. Therefore, on the other hand, it benefits from
decent laminate performance and high transmission. While it might have been
intuitive in the start that with more complex laminate designs, one can push the
cloaking performance further and further, my thorough study via Monte Carlo
simulations clearly shows that increasing the number of layers around the core of
the cloak would come at the cost of lower laminate performance or lower overall
transmission. Additionally, the findings can serve as a basis for future designs for
devices in light-scattering media. Using the information obtained by this study,
guidelines for increased laminate contrast in order to meet the wanted effective
properties can be deducted.

Putting the core-shell cloak to test with coherent illumination in Chapter 4

revealed an additional feature of the cloak, as perfectly coherent light does not
reveal the cloak under static illumination. The evaluated speckle contrast was
unchanged when comparing the reference sample to the cloak sample. While
intuitively this might be obvious, the original theoretical design does not take
the wave properties into account, thus making this a very important analysis.
In the same way, however, the finite coherence length properties have not been
considered when designing these cloaks. Experimentally I demonstrated, that by
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decreasing the coherence length of the illumination the presence of the cloak was
revealed, as the length of average photon paths through the cloak differ compared
to the ones through the reference sample. This experiment was supported by
numerical calculations of the path length distributions and theoretical derivations
of the speckle contrast. Altogether, this is an important finding as it shows that
information hidden for the bare eye in light-scattering media can be revealed
in a relatively easy and cheap way via finite coherence length. This might have
everyday applications like encoded bar-codes in credit cards as a security feature,
since the readout is feasible with only a laser pointer and a camera.

As described in Chapter 5, an interferometric setup was built to measure the
complex transmitted field under coherent illumination. This yields a complex
transmission matrix for a certain design which then allows to also calculate the
expected speckle pattern for arbitrary illumination patterns. In principle, this
would allow to enhance the transmission through the sample via eigenchannel
analysis and a corresponding wavefront shaping. These more complex measure-
ments, however, also set up challenges for the sample preparation as cloak and
reference needed to be miniaturized and more stable – this was obtained by a new
set of samples out of a clear resin doped with titanium dioxide.

Obtaining a transmission matrix was realized by illuminating the samples from
different angles and recording the corresponding complex transmission. Even
though each measurement itself with coherent illumination would not reveal the
cloak, a sweep over different illumination angles followed by a singular value
decomposition of the obtained transmission matrix and comparing the trend of
the singular values revealed the cloak in its surrounding. This is no contradiction
to the previous experiments where the cloak had not been revealed under coherent
illumination, but demonstrates the power of the complex field measurement and
the eigenchannel analysis.

Overall, the findings in this thesis demonstrate limitations of cloaking designs
in light-scattering media. While with the obtained results I do not see easy
steps forward in circumventing these limitations, building on these properties to
optimize light guiding or detection of hidden structures in light-scattering media
still is a field with a lot of research potential.

Beyond cloaking, it is already evident that a better understanding of light prop-
agation in scattering media has many applications. Diffuse-light mammography,
for example, is an active field of research. The findings in this thesis show, that
other methods in illumination, detection, or post-processing also reveal hidden
objects and could therefore be used in future medical applications. Furthermore,
the intense study on laminates in diffuse-light simplifies the design process of
future devices that require anisotropic material parameters.
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