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GLOBAL RESULTS FOR A CAUCHY PROBLEM
RELATED TO BIHARMONIC WAVE MAPS

TOBIAS SCHMID

Abstract. We prove global existence of a derivative bi-harmonic wave equation with a non-
generic quadratic nonlinearity and small initial data in the scaling critical space

Ḃ2,1
d
2

(Rd)× Ḃ2,1
d
2
−2

(Rd)

for d ≥ 3. Since the solution persists higher regularity of the initial data, we obtain a small
data global regularity result for the biharmonic wave maps equation for a certain class of target
manifolds including the sphere.

1. Introduction

In the following we consider critical points of an extrinsic (rigid) action functional

Φ(u) =
1

2

∫
R

∫
Rd
|∂tu|2 − |∆u|2 dx dt,(1.1)

for smooth maps u : R×Rd → SL−1 into the round sphere SL−1 ⊂ RL . Taking smooth
variations uδ : R×Rd → SL−1 with uδ − u having compact support and vanishing at δ = 0,
the critcal points satisfy

∂2
t u+ ∆2u ⊥ TuSL−1(1.2)

pointwise on R×Rd. The variation of (1.1) thus gives rise to Hamiltonian equations with
elastic energy functional

E(u(t)) =
1

2

∫
Rd
|∂tu(t)|2 + |∆u(t)|2 dx.(1.3)

Evaluating the Euler-Lagrange equation (1.2), we infer that critical maps u of (1.1) are solutions
of the following biharmonic wave maps equation

∂2
t u+ ∆2u = −|∂tu|2u−∆(|∇u|2)u(1.4)

− (∇ · 〈∆u,∇u〉)u− 〈∇∆u,∇u〉u

= −(|∂tu|2 + |∆u|2 + 4〈∇u,∇∆u〉+ 2〈∇2u,∇2u〉)u,

where ∆2 denotes the bi-Laplacien ∆2 = ∆(∆·) = ∂ij∂
ij and 〈∇2u,∇2u〉 = 〈∂i∂ju, ∂j∂iu〉.

Hence (1.4) is considered to be a fourth order analogue of the (spherical) wave maps equation

−∂2
t u+ ∆u = (|∂tu|2 − |∇u|2)u,

which has been studied intensively in the past concerning wellposedness, regularity and gauge
invariance, see e.g. the surveys [26], [15]. For the general wave maps equation of the form

(1.5) �u = Γ(u)(∂αu, ∂
αu)) = Γ̃(u)(�(u · u)− 2u ·�u)

local wellposedness holds almost optimal for (scaling) subcritical regularity in Hs(Rd) ×
Hs−1(Rd) with s > d

2 . This relies on the null condition for (1.5) as seen in the proof of
Klainerman-Machedon in [12] for d ≥ 3 (and Klainerman-Selberg in [13] for d = 2). In fact,
a counterexample of Lindblad in [18] shows that if this condition is absent in a generic wave
equation, the sharp regularity for local existence is strictly above d/2.

Many advances towards (critical) regularity s = d/2 lead to insights for the wave maps equation
with impact on related equations. For instance, global solutions with small initial data in the
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2 TOBIAS SCHMID

space Ḣ d
2 × Ḣ d

2−1 were constructed by Tao in [22] (d ≥ 5) for sphere targets using a novel
microlocal renormalization procedure. The (2 + 1) dimensional case, i.e. small data in the
energy space Ḣ1(R2) × L2(R2), was for example treated by Krieger in [16] with H2 target
space, Tao in [23] for the sphere target and Tataru [27] for more general targets. Global wave
maps with large initial energy were considered by Krieger-Schlag in [17] (for theH2 target) and
in the analysis of Sterbenz-Tataru in [20], [21]. Since the literature is vast and the list is not
exhaustive, we refer e.g. to [6] for a general overview.

In this article, we study the analogue of the division problem for wave maps with small data
in Ḃ2,1

d
2

(Rd) × Ḃ2,1
d
2−1

(Rd), which has been solved by Tataru in [24] (for d ≥ 4) and in low
dimension [25] (i.e. for d = 2, 3) by the use of null-frame estimates. More recently, the division
problem for wave maps (in dimension d ≥ 2) has also been solved in a U2 based space by
Candy-Herr in [4]. For (1.4), we achieve to solve the division problem in dimension d ≥ 3 using
spaces Z, W = L(Z) which are the analogues of Tataru’s F, �F spaces in [24]. Especially
L : Z → W is a continuous operator. The results in this article are part of the authors PhD
thesis [19].

1.1. The Cauchy problem and outline. We consider the following generalized Cauchy prob-
lem 

∂2
t u+ ∆2u = Qu(ut, ut) +Qu(∆u,∆u) + 2Qu(∇u,∇∆u)

+2Qu(∇∆u,∇u) + 2Qu(∇2u,∇2u) =: Q(u),

(u(0), ∂tu(0)) = (u0, u1)

(1.6)

where

QJ(u) = [Qu]JK,M (∂tu
K∂tu

M ) + [Qu]JK,M (∆uK∆uM ) + 2[Qu]JK,M (∂iu
K∂i∆uM )

+ 2[Qu]JK,M (∂i∆u
K∂iuM ) + 2[Qu]JK,M (∂i∂

juK∂j∂
iuM ),

and {Qx | x ∈ RL} is a smooth family of bilinear forms (in fact required to be analytic at
the origin). Here we contract the derivatives over i = 1, . . . , d and the components of u over
K,M, J ∈ {1, . . . , L}. The bilinear term Q(u) in (1.6) is non-generic for our results, in the
sense that for bilinear interactions, the set of resonances{

((τ1, ξ1), (τ2, ξ2)) | (τ1 + τ2)2 − |ξ1 + ξ2|4 = τ2
1 + τ2

2 − |ξ1|4 − |ξ2|4
}
,

is canceled by Q(u). We use this fact in the form of the following commutator identity for the
operator L = ∂2

t + ∆2

Q(u) =
1

2
Qu(L(u · u)− u · Lu− Lu · u)(1.7)

=
1

2
[Qu]K,M (L(uK · uM )− uK · LuM − uM · LuK).

This will then be exploited following the work of Tataru in [24], [25] for wave maps. To be
precise, the idea used in Tataru’s F, �F spaces from [24] allow to treat Q(u) by continuity of
L. As a consequence, we find a simple way to solve the disvision problem for (1.6) even in low
dimensions compared to the energy scaling (of (1.3)) for biharmonic wave maps (1.4), see e.g.
the remark 1.4 below. However, we do not obtain scattering at t→ ±∞ from this approach.
The main difference to [24] is that we have to use the control of a lateral Strichartz space and a
maximal function bound in order to exploit a smoothing effect for the Schrödinger group. More
details are given below.

The following second Cauchy problem will be solved with the same approach (presented in
the following Sections) and further (in Section 4) applies to solve (1.2) for more general target
manifolds.
The general biharmonic wave maps equation for maps u : [0, T ) × Rd → N into a general
embedded manifold N ⊂ RL reads similarly as to the spherical case

Lu ⊥ TuN on (0, T )× Rd .
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Via the smooth family of orthogonal tangent projector Pu : RL → TuN , this is equivalent to

Lu = (I − Pu)(Lu) = (I − dΠu)(Lu),(1.8)

where Π is nearest point projector Π : Vε(N) → N, |Π(p) − p| = infq∈N |q − p| with
the identity dΠu = Pu in case u maps to N and Vε(N) = {p | dist(p,N) < ε}. Using
(∂t,∇u) ∈ TuN (1.8) is expanded into a semilinear equation, where in contrast to (1.4), tri-
linear and quadri-linear terms appear on the RHS. For the sake of readability, we give the
expansion of (1.8) in Section 4. We hence consider the Cauchy problemLu = L(Π(u))− dΠu(Lu)

(u(0), ∂tu(0)) = (u0, u1),
(1.9)

where Π : RL → RL is smooth and real analytic at x0 = 0. Calculating the series expansion of
Π in the RHS of (1.9), we infer formally

L(Π(u))− dΠu(Lu) =
∑
k≥2

Ckd
kΠ0(L(uk)− kuk−1Lu).

Thus the nonlinearity on the RHS reduces the same non-resonant form (1.7), where it is later
justified, by the spaces we use, to commute L with the series expansion. The resulting theorem
is given below in Corollary 1.2.

At least formally, Duhamel’s formula is given by(
u(t)
ut(t)

)
= S(t) ·

(
u0

u1

)
+

∫ t

0

S(t− s) ·
(

0
Lu(s)

)
ds,(1.10)

where

S(t) =

(
cos((−∆)t) (−∆)−1 sin((−∆)t)

∆ sin((−∆)t) cos((−∆)t)

)
=

1

2
Q−1

(
e−it∆ 0

0 eit∆

)
Q

with

Q =

(
−i∆ 1
i∆ 1

)
.(1.11)

Thus, in the analysis for biharmonic wave maps (1.4), it is in principle possible to exploit
methods developed for derivative Schrödinger equations, which will become apparent below.
Results on the division problem for Schrödinger maps, see e.g. [1], [10], involve versions of
lateral Strichartz estimates in the norm (x 7→ xee+ xe⊥ , e ∈ Sd−1)

‖f‖pLpeLq
t,e⊥

=

∫ ∞
−∞

(∫
[e]⊥

∫ ∞
−∞
|f(t, re+ x)|qdt dx

) p
q

dr,

in order to exploit smoothing effects for Schrödinger equations, see the Appendix A. Especially,
we likewise rely on factoring

L∞e L
2
t,e⊥ · L

2
eL
∞
t,e⊥ ⊂ L

2
t,x,

where the (lateral) energy L∞e L2
t,e⊥ gives additional regularity of order |∇| 12 and the maximal

function bound L2
eL
∞
t,e⊥ is controlled uniform in e ∈ Sd−1. Apart from the usual Strichartz

space Sλ, this will be essential (in one particular frequency interaction) in Section 3.

The operator Lu = ∂2
t u + ∆2u appears in the Euler-Bernoulli beam model (d = 1) and in

effective thin-plate equations (d = 2) such as the Kirchoff- and VonKármán elastic plate models
with small plate deflections if rotational forces are neglected. As a reference wemention e.g. [5],
where this situation has been considered explicitly with (nonlinear) boundary dissipation.

Outline of the article



4 TOBIAS SCHMID

In Section 2.2, we provide (lateral) Strichartz estimatesLpeL
q
t,e⊥

and theL2
eL
∞
t,e⊥ estimate for the

linear Cauchy problem of the operatorL = ∂2
t +∆2. This is a consequence of the corresponding

estimates for e±it∆ which orginally appeared in [9], [10] and [1]. In the Appendix A, we briefly
outline proofs of the Strichartz estimates we need for e±it∆ based on the calculation by Bejenaru
in [1].

In Section 2.3, we construct spaces Z d
2 ,W

d
2 such that

Z
d
2 ⊂ C(R, Ḃ2,1

d
2

(Rd)) ∩ Ċ1(R, Ḃ2,1
d
2−2

(Rd)),(1.12)

‖u‖
Z
d
2
. ‖(u0, u1)‖Ḃ2,1

d
2

×Ḃ2,1
d
2
−2

+ ‖Lu‖
W

d
2
,(1.13)

and similar Zs,W s for s > d
2 with data in Ḣs(Rd)× Ḣs−2(Rd).

Further, we prove the algebra properties

Z
d
2 · Z d

2 ⊂ Z d
2 ,(1.14)

W
d
2 · Z d

2 ⊂W d
2 ,(1.15)

in Section 3. For the higher regularity, we need to provide the following embeddings

(Z
d
2 ∩ Zs) · (Z d

2 ∩ Zs) ⊂ Z d
2 ∩ Zs,(1.16)

(W
d
2 ∩W s) · (Z d

2 ∩ Zs) ⊂W d
2 ∩W s.(1.17)

To be more precise it suffices, as in [24] and [1], to conclude from the dyadic estimates

‖uv‖Zs . ‖u‖Zs ‖v‖Z d
2

+ ‖v‖Zs ‖u‖Z d2 , u, v ∈ Z
d
2 ∩ Zs,(1.18)

‖uv‖W s . ‖u‖W s ‖v‖
Z
d
2

+ ‖v‖Zs ‖u‖W d
2
, u ∈W d

2 ∩W s, v ∈ Z d
2 ∩ Zs,(1.19)

which is outlined in Section 3 for s > d
2 . Finally, we sketch the fixed point argument from [24]

and the application to biharmonic wave maps stated in Corollary 1.2 in Section 4.

We emphasize that the construction of the dyadic blocks Zλ,Wλ are the analogues of Tataru’s
Fλ, �Fλ spaces in [24], since we globally bound Lu in the spaces L1

tL
2
x. In particular, the

operator
L : Zλ →Wλ

is continuous by construction of Zλ andWλ. Combining this with (1.14) and (1.15), it suffices
to estimate Q(u) in (1.6) with the identity (1.7).
As mentioned above, we can not fully rely on the usual Strichartz norm and have to use
the control of the lateral Strichartz norm, which exploits additional smoothing in the proof
of (1.14). This idea has been used in the similar context of the Schrödinger maps flow by
Ionescu-Kenig [9], [10], Bejenaru [1] and Bejenaru-Ionescu-Kenig [2].

1.2. The main results. The system (1.6) is largely motivated by biharmonic wave maps,
however the results for (1.6) are based on the structural extension of evolution equtions with a
nonlinearity that, due to (1.7), can be considered non-generic.
We turn to general systems (1.6) and (1.9) for functions u1, . . . , uL with L ∈ N, where we
assume that x 7→ Qx, x 7→ Π(x) are real analytic in the point x0 = 0.

Theorem 1.1. (i) For d ≥ 3 there exists δ > 0 sufficiently small such that the following
holds. Let (u0, u1) ∈ Ḃ2,1

d
2

(Rd)× Ḃ2,1
nd
2 −2

(Rd) with

‖u0‖Ḃ2,1
d
2

(Rd) + ‖u1‖Ḃ2,1
d
2
−2

(Rd) ≤ δ.(1.20)

Then (1.6) and (1.9) have a global solution u ∈ C(R, Ḃ2,1
d
2

(Rd)) ∩ Ċ1(R, Ḃ2,1
d
2−2

(Rd))
with

sup
t≥0

(
‖u(t)‖Ḃ2,1

d
2

(Rd) + ‖∂tu(t)‖Ḃ2,1
d
2
−2

(Rd)

)
≤ Cδ,(1.21)
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for some C > 0. Further, the solution depends Lipschitz on the initial data.

(ii) If additionally (u0, u1) ∈ Ḣs(Rd)×Ḣs−2(Rd) for some s > d
2 , then also (u(t), ∂tu(t)) ∈

Ḣs(Rd)× Ḣs−2(Rd) for all t ∈ R and in fact

sup
t≥0

(
‖u(t)‖Ḣs(Rd) + ‖∂tu(t)‖Ḣs−2(Rd)

)
≤ C(‖u0‖Ḣs(Rd) + ‖u1‖Ḣs−2(Rd)).

This theorem applies to (1.4), however it is not clear if the solution maps to SL−1 for all times.
This is proven within the following (slightly more general) setup. LetN ⊂ RL be an embedded
manifold and such that the nearest point projector Π : Vε(N) → N is analytic on N with a
uniform lower bound on the radius of convergence. An explicit example is a uniformly analytic
pertubation of the round sphere SL−1.

Corollary 1.2. Let (u0, u1) : Rd → TN , i.e. u0 ∈ N, u1 ∈ Tu0
N , be a smooth map such

that supp(∇u0, u1) is compact, d ≥ 3. Then if

‖u0‖Ḃ2,1
d
2

(Rd) + ‖u1‖Ḃ2,1
d
2
−2

(Rd) ≤ δ,

where δ = δ(d,N) > 0 is sufficienty small, then (1.8), i.e.

∂2
t u+ ∆2u ⊥ TuN

has a global smooth solution u : R×Rd → N with (u(0), ∂tu(0)) = (u0, u1).

Remark 1.3. The statement of Corollary 1.2 has to be rigorously corrected to u−p ∈ Ḃ2,1
d
2

(Rd)

for p = limx→∞ u0(x) since u0 : Rd → N has no decay.

In [8] the authors proved local wellposedness of the Cauchy problem for (1.2), resp. the
expansion of (1.8) for general compact target manifolds N , in the Sobolev space Hk ×Hk−2

for k ∈ Z with k > bd2c + 2. Here, the term involving ∇3u in (1.4) did not allow for a direct
energy estimate, but instead required a parabolic regularization similar as to the classical work
of e.g. Bona-Smith.
This approach, however, uses priori energy estimates that rely on the geometric condition
(1.2). In a recent preprint the author proved in a similar mannar via energy estimates that if
(u(0), ∂tu(0)) are smooth with compact support (ie. u(0) is constant outside of a compact
subset of Rd) and d ∈ {1, 2}, then (1.8) has a global smooth solution.
We further mention that Herr, Lamm and Schnaubelt proved the existence of a global weak
solution, see [7], for the case N = SL−1 by a Ginzburg-Landau approximation and the use of
Noether’s law for the sphere.

Remark 1.4. The equation (1.4) has parabolic scaling

uλ(t, x) = u(λ2t, λx), x ∈ Rd, t ∈ R .

Thus it holds
λ4−dE(u(λ2t)) = E(uλ(t))

and d = 4, the (energy) critical dimension, is included in our results Theorem 1.1 and Corollary
1.2. This is due to the larger Strichartz range for the dispersion rate d/2, whereas the low
dimensional case for wave maps is more involved than [24] and has first been solved by Tataru
in [25].

2. Linear estimates and function spaces

2.1. Notation. For realA,B ≥ 0wewriteA . B short forA ≤ cB, where c > 0 is a constant.
Likewise we write A ∼ B if there holds A . B and B . A. The space of Schwartz functions
will be denoted by S and the Fourier transform for u ∈ S(Rd) will be

F(u)(ξ) =

∫
Rd
e−ix·ξu(x) dx,(2.1)
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for which we write û(ξ) = F(u)(ξ). We indicate by Fx′(ξ) that the Fourier transform is taken
over x′ where x = (x′, x̃) if necessary and let ϕ ∈ C∞(R) be a Littlewood-Paley function, i.e.
such that

supp(ϕ) ⊂ (
1

2
, 2), ϕ ∈ [0, 1], and

∑
j∈Z

ϕ(2−js) = 1, for s > 0.(2.2)

We define the multiplier P,Q for u ∈ S ′(Rd), v ∈ S ′(R1+d) and dyadic numbers λ, µ by

P̂λ(∇)u(ξ) = ϕ(|ξ|/λ)û(ξ), P̂λ(D)v(τ, ξ) = ϕ((τ2 + |ξ|4)
1
4 /λ)v̂(τ, ξ),

Q̂µ(D)v(τ, ξ) = ϕ(w(τ, ξ)/µ)v̂(τ, ξ),

P≤λ =
∑
λ̃≤λ

Pλ̃, Q≤µ =
∑
µ̃≤µ

Qµ̃,

where
w(τ, ξ) =

|τ2 − |ξ|4|
(τ2 + |ξ|4)

1
2

∼ ||τ | − ξ2|, (τ2 + |ξ|4)
1
4 ∼ (|τ |+ ξ2)

1
2 .

Further, we write vλ = Pλv = Pλ(D)v, Pλ,≤µ = PλQ≤µ(D) for short and define

Aλ = {(τ, ξ) | λ/2 ≤ (τ2 + ξ4)
1
4 ≤ 2λ}, Adλ = {ξ | λ/2 ≤ |ξ| ≤ 2λ}.

For a distribution f ∈ S ′(Rd+1) we say f is localized at frequency λ ∈ 2Z if f̂ has support
in the set Aλ and a similar notation is used for g ∈ S ′(Rd) and Adλ. In addition, we need to
localize in the sets

Ae :=

{
ξ | ξ · e ≥ |ξ|√

2

}
, e ∈ Sd−1,

in order to exploit the smoothing effect for the linear equation. Thus, as in [1], we choose
M⊂ Sd−1 with e ∈M⇒ −e ∈M such that

Rd =
⋃
e∈M

Ae, ∀e ∈M : #{ẽ ∈M | Ae ∩Aẽ 6= ∅ } ≤ K,(2.3)

with a constant K = Kd > 0. Further we require a smooth partition of unity {he}e∈M
subordinate to {Ae}e∈M, i.e.

he ∈ C∞(Rd), supp(he) ⊂ Ae, he ∈ [0, 1](2.4) ∑
e∈M

he(ξ) = 1, ξ ∈ Rd \{0}.(2.5)

We note that this is possible since in particular for x ∈ Rd \{0} we have x ∈ Ae if and only if
](x, e) ≤ π

4 . We define the respective Fourier multiplier by

P̂e(∇)v(τ, ξ) = he(ξ)v̂(τ, ξ), v ∈ S ′(Rd+1).(2.6)

Finally, we choose χ ∈ C∞(Rd+1) such that

χ(τ, ξ) =

1 |τ2 − |ξ|4| < τ2+|ξ|4
100 ,

0 |τ2 − |ξ|4| > τ2+|ξ|4
10 .

In order to have χ invariant under parabolic scaling, we choose χ(τ, ξ) = η(| τ
2−|ξ|4
τ2+|ξ|4 |), where

η ∈ C∞(R) with 0 ≤ η ≤ 1 and such hat η(x) = 1 if |x| < 1/100 and η(x) = 0 if |x| > 1/10.
We then define

P̂0v(τ, ξ) = χ(τ, ξ)v̂(τ, ξ), ̂(1− P0)v(τ, ξ) = (1− χ(τ, ξ))v̂(τ, ξ).(2.7)
Thus, we have

supp(P̂0v) ⊂
{

(τ, ξ) | ||τ | − ξ2| ≤ |τ |+ ξ2

10

}
,(2.8)

supp( ̂(1− P0)v) ⊂
{

(τ, ξ) | ||τ | − ξ2| ≥ |τ |+ ξ2

100

}
.(2.9)
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Especially, measuring the distance to the characteristic surface P ,

dist((τ, ξ), P ) ∼ ||τ | − ξ2|
(|τ |+ ξ2)

1
2

, P =
{

(τ, ξ) | τ2 = ξ4
}
,

we infer that (1− P0)v (with v being localized at frequency λ) is localized where
dist((τ, ξ), P ) ∼ λ,

such that frequency (τ2 + |ξ|4)
1
4 ∼ λ and modulation ||τ | − ξ2| ∼ µ are of comparable size

µ ∼ λ. For P0v we have localization where
dist((τ, ξ), P ) = O(λ),

with a small constant that suffices to obtain additional smoothing in the linear estimates of the
following sections. Further, we use the homogeneous spaces Ḃ2,p

s (Rd), 1 ≤ p < ∞ given by
the closure of

‖u‖p
Ḃ2,p
s

=
∑
λ∈2Z

λsp ‖Pλu‖pL2
x
, u ∈ S(Rd).

Hence we have Ḣs(Rd) ∼ Ḃ2,2
s (Rd) for s > d

2 and Ḃ2,1
d
2

(Rd) ⊂ L∞(Rd) is a well-defined
Banach space.

Let λ be a fixed dyadic number. Then for b ≤ 1 and p ∈ [1,∞) we set

‖f‖p
Xb,pλ

=
∑
µ∈2Z

µpb ‖Qµ(D)f‖p
L2
t,x
,(2.10)

and denote by Xb,p
λ the closure of the (semi-)norm in S restricted to functions f localized at

frequency λ. This definition is extended as usual to the case p =∞. We observe that f ∈ Xb,p
λ

has the representation

f =
∑
µ.λ2

hµ + h,(2.11)

where h is a solution of Lh = 0 (with initial data localized at frequency λ). Thus f is
only well-defined up to homogeneous solutions Lh = 0. In the following, we will correct
(2.10) by ‖h‖L∞t L2

x
+ ‖∂th‖L∞t Ḣ−2

x
as a limiting dyadic block (µ ↘ 0), where Lh = 0 and

h(0) = f(0), ∂th(0) = ∂tf(0).
More precisely, the atomic decomposition (2.11) has the form

hµ(t, x) =

∫ ∞
−∞

eits

|s|b
hµ(s, x) ds,(2.12)

‖f‖p
Ẋb,pλ

∼
∑
µ.λ2

(∫ ∞
−∞
‖hµ(s, x)‖2L2

x
ds

) p
2

.(2.13)

Here the hµ(s, ·) solves Lhµ(s, ·) = 0 for some L2 × Ḣ−2 initial data and is localized where
s ∼ µ. Further (2.13) only holds up to µ = 0 as mentioned above. We infer (2.12) and (2.13) by
foliation, which also shows that the sum in (2.11) is well-defined distributionally for the cases
b < 1

2 and p ≥ 1 or b = 1
2 and p = 1. We will use the foliation explicitly in the proof of Lemma

2.7.

2.2. Linear estimates. The goal of this section is to develope estimates for the linear equation ∂2
t u(t, x) + ∆2u(t, x) = F (t, x) (t, x) ∈ R×Rd

u[0] = (u(0), ∂tu(0)) = (u0, u1), on Rd,
(2.14)

with data F, u0, u1. In the following we provide lateral Strichartz estimates and a maximal
function estimate for the Cauchy problem (2.14) in case F ∈ L1

tL
2
x. The main results of this

section summarize all necessary homogeneous bounds in Lemma 2.5 and the inhomogeneous
bounds in Lemma 2.6. Further we give a proof of the trace estimate in Lemma 2.7.

First, we start by recalling the classical Strichartz estimate, which follows similar as for the
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linear wave equation. Since we did not find it in the literature for (2.14), we briefly state the
estimate.

Definition 2.1. We say that a pair (p, q) with 1 ≤ p, q ≤ ∞ is admissible in dimension
d ∈ N, d ≥ 2 if there holds

2

p
+
d

q
≤ d

2
.(2.15)

and (p, q) 6= (2,∞) in the case of d = 2.

Lemma 2.2 (Strichartz). Let u be a weak solution of (2.14) for data u0, u1, F . Then there holds

‖u‖C(R,Ḣγ) + ‖u‖LptLqx . ‖u0‖Ḣγ + ‖u1‖Ḣγ−2 + ‖F‖
Lp̃
′
t L

q̃′
x
,(2.16)

where (p, q), (p̃, q̃) are admissible pairs with q, q̃ <∞ and γ ∈ [0, 2] satisfies
2

p
+
d

q
=
d

2
− γ =

2

p̃′
+
d

q̃′
− 4(2.17)

Proof. We prove the inequality for Pλ(∇)u, Pλ(∇)F , where λ is a dyadic number. Then
(2.16) follows by the Littlewood-Paley theorem since q, q̃ < ∞. Further, (2.16) is invariant
under scaling

uλ(t, x) = u(λ2t, λx), Fλ = λ4F (λ2t, λx),

which follows from (2.17). Especially, since (Pλu)λ−1 = P1uλ−1 , we assume λ ∼ 1. By
Duhamels formula we obtain

u(t) = cos(−t∆)u0 +
sin(−t∆)

(−∆)
u1 +

∫ t

0

sin(−(t− s)∆)

(−∆)
F (s) ds.

Therefore, as used above already, we decompose

sin(−t∆)f =
1

2i
(e−it∆f − eit∆f), cos(−t∆)f =

1

2
(e−it∆f + eit∆f),

and by λ ∼ 1 this can hence be estimated via

Û±(t)f(ξ) = χ{t ≥ 0}e∓itξ
2

ψ(|ξ|)f̂(ξ), f ∈ S(Rd),
where ψ ∈ C∞c ((0,∞)) with ψ(x) = 1 for x ∈ supp(ϕ) and ϕ is a Littlewood-Paley function.
Clearly U±(t) extends to L1(Rd) ∩ L2(Rd) satisfying the energy bound and for the dispersive
estimate, we use

U±(t)f = K±(t, ·) ∗d f, K±(t, x) = χ{t ≥ 0} 1

(2π)d

∫
Rd
eix·ξ∓it|ξ|

2

ψ(|ξ|) dξ.

The kernel then applies to the classical theorem for the decay of the Fourier transform of surface
carried measures on P± = {(τ, ξ) | ± τ + ξ2 = 0}. Especially all principle curvature functions
on P are non-vanishing ((τ, ξ) 6= (0, 0)) and thus

‖U±(t)f‖L∞(Rd) . (1 + |t|)− d2 ‖f‖L1(Rd) .

In particular this implies the homogeneous and the inhomogeneous estimate by theTT ∗ principle
and interpolation (respectively Keel-Tao’s endpoint argument) . Thus (2.16) holds on [0,∞) and
we apply this inequality to u−(t, x) = u(−t, x), F−(t, x) = F (−t, x), which in turn implies
the full estimate. It remains to prove u ∈ CtL

2
x, which follows analogously as for the wave

equation. �

We note that due to (−∆)−1 in Duhamel’s formula, the frequency localization in the proof is
evitable in contrast to the direct decay estimate for the kernel of the Schrödinger group.

Corollary 2.3. Let u have Fourier support in Aλ. Then
‖u‖Sλ . ‖u(0)‖L2 + ‖∂tu(0)‖Ḣ−2 + λ−2 ‖Lu‖L1

tL
2
x
,(2.18)

where
Sλ =

{
f ∈ CtL2

x | supp(f̂) ⊂ Aλ, ‖f‖Sλ = sup
(p,q)

(
λ

2
p+ d

q−
d
2 ‖f‖LptLqx

)
<∞

}
and the supremum is taken over admissible pairs (p, q).
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Proof. From Bernstein’s estimate

‖u0‖Ḣγ + ‖u1‖Ḣγ−2 . λγ(‖u0‖L2 + ‖u1‖Ḣ−2),

which by (2.16) and the gap (2.17) implies the desired estimate for all admissible pairs (p, q)
with q < ∞. For the case q = ∞ in d ≥ 3 we estimate by Soblev embedding (or Bernstein’s
bound) for any q ≥ 2d

d−2

λ−
d−2
2 ‖u‖L2

tL
∞
x
. λ−

d
2 +1+ d

q ‖u‖L2
tL

q
x

. ‖u(0)‖L2 + ‖∂tu(0)‖Ḣ−2 + λ−2 ‖Lu‖L1
tL

2
x
.

�

The Corollary 2.3 is not sufficient for our proof of bilinear estimates in Section 3 and we
additionally need to apply a well known smoothing estimate for the Schrödinger group.

For this reason, we define the following norm (see also A)

‖u‖pLpeLq
t,e⊥

=

∫ ∞
−∞

(∫
[e]⊥

∫ ∞
−∞
|u(t, re+ x)|qdt dx

) p
q

dr, e ∈ Sd−1.(2.19)

In order to introduce the necessary notation, we recall Bejenaru’s calculus from [1] (see also the
Appendix A) for the Cauchy problem (2.14). In the case F = 0 we have

supp(û) ⊂ P = {(τ, ξ) | τ2 − |ξ|4 = 0},

which is a paraboloid in the variables (τ, ξ). More precisely, denoting by Ξ = (τ, ξ) the Fourier
variables, we split the symbol (in case of general F )

F̂ (τ, ξ) = L(Ξ)û(τ, ξ) = −(τ − ξ2)(τ + ξ2)û(τ, ξ).(2.20)

Hence, we further split in the Fourier space into

− (τ + ξ2)−1F̂ (τ, ξ)χ{τ > 0} = (τ − ξ2)û(τ, ξ)χ{τ > 0},(2.21)

(−τ + ξ2)−1F̂ (τ, ξ)χ{τ ≤ 0} = (τ + ξ2)û(τ, ξ)χ{τ ≤ 0}, |ξ| 6= 0,(2.22)

and introduce coordinates adapted to a characteristic unit normal e ∈ Sd−1. That means we use
the change of coordinates

Ξ 7→ (τ, ξ · e, ξ − (ξ · e)e) =: (τ, ξe, ξe⊥) =: Ξe,

and the sets

Ae =

{
ξ | ξe ≥

|ξ|√
2

}
, Be :=

{
(τ, ξ) | ||τ | − ξ2| ≤ |τ |+ ξ2

10
, ξ ∈ Ae

}
(2.23)

B±e :=

{
(τ, ξ) | | ± τ − ξ2| ≤ |τ |+ ξ2

10
, ξ ∈ Ae

}
= Be ∩ {±τ > 0} ∪ {(0, 0)}.(2.24)

Then for any (τ, ξ) ∈ Be, we clearly have

|τ | − ξ2
e⊥ ≥ 0, ξe ∼ (|τ |+ ξ2)

1
2 , ξe +

√
|τ | − ξ2

e⊥
∼ (|τ |+ ξ2)

1
2 ,(2.25)

and similar for ±τ on B±e .

Especially, the latter two quantities in (2.25) are controlled by frequency. Also, if we assume
that supp(û) ⊂ Be, then for |τ |+ ξ2 > 0, we have from (2.21) and (2.22)

−(|τ |+ ξ2)−1

(
ξe +

√
|τ | − ξ2

e⊥

)−1

F̂ (τ, ξ) =

(√
|τ | − ξ2

e⊥
− ξe

)
û(τ, ξ),(2.26)

Now, taking the FT in the variable Ξe, we obtain that (2.14) is equivalent to(
i∂xe +Dt,e⊥

)
ũ(t, xe, xe⊥) = F̃ (t, xe, xe⊥),(2.27)
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where

D̂t,e⊥u(τ, ξe, ξe⊥) =

(√
|τ | − ξ2

e⊥

)
û(τ, ξ),(2.28)

F(F̃ )(τ, ξe, ξe⊥) = −(|τ |+ ξ2)−1

(
ξe +

√
|τ | − ξ2

e⊥

)−1

F̂ (τ, eξe + ξe⊥)(2.29)

F(ũ)(τ, ξe, ξe⊥) = û(τ, ξee+ ξe⊥),(2.30)

Remark 2.4. The calculations above apply to prove inhomogeneous linear estimates for (2.14)
with F ∈ L1

eL
2
t,e⊥ that are based on on the reduction to (2.27). However, using the above

notation for the sets Be and Ae, we only need estimates for F ∈ L1
tL

2
x localized on Be ∩ Aλ.

These estimates follow directly from Corollary A.3 (a) and Lemma A.5 (a) in the Appendix A.

We now state the homogeneous estimates which follow from the Appendix A.

Lemma 2.5 (Linear estimates I). Let u0, u1 ∈ L2(Rd), e ∈ M, λ > 0 dyadic with
supp(û0), supp(û1) ⊂ Adλ ∩Ae. Then the solution u of (2.14) with F = 0 satisfies

‖u‖LpeLq
t,e⊥
≤ Cλ

d
2−

1
p−

(d+1)
q (‖u0‖L2 + ‖u1‖Ḣ−2) ,(2.31)

where (p, q) is an admissible pair. Further if d ≥ 3 and û0, û1 have Fourier support in Adλ,
then the solution u of (2.14) with F = 0 satisfies

sup
e∈M

‖u‖L2
eL
∞
t,e⊥
≤ Cλ

d−1
2 (‖u0‖L2

x
+ ‖u1‖Ḣ−2

x
).(2.32)

‖u‖LptLqx ≤ Cλ
d
2−

2
p−

d
q (‖u0‖L2 + ‖u1‖Ḣ−2) .(2.33)

Proof. By (1.10), we note

u(t) =
1

2
e−it∆(u0 − i(−∆)−1u1) +

1

2
eit∆(u0 + i(−∆)−1u1),

hence (2.31) follows from Corollary A.3 and (2.32) follows from Lemma A.5. Estimate (2.33)
is the classical Strichartz estimate for the Schrödinger group, for which we refer to Corollary
2.3. �

Lemma 2.6 (Linear estimates II). For e ∈ M and λ > 0 a dyadic number let F ∈ L1
tL

2
x be

localized in Aλ ∩Be. Then the solution u of (2.14) with u0 = u1 = 0 satisfies

‖u‖LpeLq
t,e⊥
. λ(d+1)( 1

2−
1
q )− 1

p−
5
2 ‖F‖L1

tL
2
x
,(2.34)

sup
ẽ∈M

(
‖u‖L2

ẽL
∞
t,ẽ⊥

)
. λ

d
2−

5
2 ‖F‖L1

tL
2
x
,(2.35)

where (p, q) is an admissible pair. If F̂ has support in Aλ, then the solution u of (2.14) with
u0 = u1 = 0 satisfies

‖u‖LptLqx . λ
d( 1

2−
1
q )− 2

p−2 ‖F‖L1
tL

2
x
,(2.36)

where (p, q) is an admissible pair.

Proof. The estimate (2.36) is the classical Strichartz estimate, which is stated in Corollary (2.3).
For the remaining bounds (2.34), (2.35), we decompose the solution

u(t) =

∫ t

0

sin(−(t− s)∆)

(−∆)
F (s) ds =

1

2i

∫ t

0

e−i(t−s)∆(−∆)−1F (s) ds

+
1

2i

∫ t

0

ei(t−s)∆(−∆)−1F (s) ds.

Especially, we have the pointwise bound∣∣∣∣∫ t

0

e±i(t−s)∆(−∆)−1F (s) ds

∣∣∣∣ ≤ ∫ ∞
0

|e±i(t−s)∆(−∆)−1F (s)| ds,
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and observe (2.34) and (2.35) by Corollary A.3 (a), Lemma A.5 (a). If X denotes either one
of the spaces on the LHS of (2.36) and (2.35), we estimate∥∥∥∥∫ t

−∞
e±i(t−s)∆(−∆)−1F (s) ds

∥∥∥∥
X

≤
∫ ∞
−∞

∥∥e−±i(t−s)∆(−∆)−1F (s)
∥∥
X
ds

.
∫ ∞
−∞
‖(−∆)−1F (s)‖L2

x
ds.

Herewe note that in order to use theCorollary and the Lemma, we verify that e∓is∆(−∆)−1F (s)
has Fourier support (in ξ) in (Adλ ∪Adλ/2) ∩Ae for all s ∈ R. This follows since F is localized
on Be ∩Aλ and hence also implies for normalized frequencies λ ∼ 1∥∥(−∆)−1F

∥∥
L1
tL

2
x
. ‖F‖L1

tL
2
x
.

�

The next lemma follows from the homogeneous estimates in Lemma 2.5, resp. Corollary
A.3 and Lemma A.5.

Lemma 2.7 (Trace estimate). Let F ∈ X
1
2 ,1

λ for a dyadic number λ.
(a) There holds

sup
e∈M

(
‖F‖L2

eL
∞
te⊥

)
. λ

d−1
2 ‖F‖

X
1
2
,1

λ

(2.37)

‖F‖LptLqx . λ
d
2−

d
q−

2
p ‖F‖

X
1
2
,1

λ

,(2.38)

for any admissible pair (p, q).
(b) We additionally assume F̂ (τ, ·) has support in Ae for some e ∈ M and all τ ∈ R.

Then there holds

‖F‖LpeLq
t,e⊥
. λ

d
2−

d+1
q −

1
p ‖F‖

X
1
2
,1

λ

,(2.39)

where (p, q) is an admissible pair, p ≥ 2.

Remark 2.8. In the following, we often use the dual estimates of (2.38) - (2.39), i.e.

‖F‖
X
− 1

2
,∞

λ

. λ
d
2−

d
q−

2
p ‖F‖

Lp
′
t L

q′
x
,

‖F‖
X
− 1

2
,∞

λ

. λ
d
2−

d+1
q −

1
p ‖F‖

Lp
′
e L

q′

t,e⊥
,

Proof of Lemma 2.7. For F ∈ X
1
2 ,1

λ , we have the representation

F =
∑
µ≤4λ2

QµF + h,

whereLh = 0 as mentioned in the previous section. Wewant to use (2.12) and (2.13). However,
here we split over sign(τ) and write∑
µ∈2Z

QµF =
∑
µ∈2Z

∫ ∫
eix·ξ+itτϕ(w(τ, ξ)/µ)F̂ (τ, ξ) dτ dξ

=
∑
µ∈2Z

∫ ∫
χ(s+ ξ2 > 0)eix·ξ+it(s+ξ

2)ϕ(w(s+ ξ2, ξ)/µ)F̂ (s+ ξ2, ξ) ds dξ

+
∑
µ∈2Z

∫ ∫
χ(−s+ ξ2 > 0)eix·ξ+it(s−ξ

2)ϕ(w(s− ξ2, ξ)/µ)F̂ (s− ξ2, ξ) ds dξ

=
∑
µ∈2Z

∫
eit(s−∆)h+

µ (s) ds+
∑
µ∈2Z

∫
eit(s+∆)h−µ (s) ds,

where

h±µ (s) = χ
{
µ/2

3
2 ≤ |s| ≤ 2µ

}∫
eix·ξχ(±s+ ξ2 > 0)ϕ(w(s± ξ2, ξ)/µ)F̂ (s± ξ2, ξ) dξ,
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and we used

µ/2 ≤ w(τ, ξ) = ||τ | − ξ2| |τ |+ ξ2

(τ2 + |ξ|4)
1
2

≤
√

2||τ | − ξ2| ≤
√

2w(τ, ξ) ≤ 2
√

2µ.

Now we assume there holds
∥∥eiθe±it∆f∥∥

X
. ‖f‖L2

x
for some space X and all θ, t ∈ R , then

∑
µ

∑
±

∥∥∥∥∫ eit(s∓∆)h±µ (s) ds

∥∥∥∥
X

.
∑
µ

∑
±
µ

1
2

(∫ ∥∥h±µ (s)
∥∥2

L2
x

ds

) 1
2

∼
∑
µ

∑
±
µ

1
2

∥∥∥χ(±τ > 0)ϕ(w(±τ, ξ)/µ)F̂ (τ, ξ)
∥∥∥
L2
ξ,τ

.
∑
µ

µ
1
2 ‖QµF‖L2

t,x
.

Hence (2.38) follows from the Strichartz estimate for Schrödinger groups and Lemma A.5, since
(for the limiting dyadic block µ = 0 with Lh = 0) we have (see Lemma 2.3, resp. Lemma 2.5)

‖h‖X . ‖h(0)‖L2 + ‖∂th(0)‖Ḣ−2 ,(2.40)

where X = λ
d
2−

2
p−

d
qLptL

q
x. For (2.37), (2.39), we use the decomposition

F = Q≤λ216
F + (1−Q≤λ216 )F.

Then we check that calculating h±µ (s) in the above argument for Q≤λ216 F , the function

ξ 7→ ĥ±µ (s)(ξ)

has support in Adλ/2 ∪A
d
λ for all s ∈ R. Hence, following the argument with

X = λ
d
2−

1
p−

(d+1)
q LpeL

q
t,e⊥

, X =
⋂
e

λ
d−1
2 L2

eL
∞
t,e⊥ ,

we obtain (2.37), (2.39) by Corollary A.3 and Lemma A.5 for Q≤λ216 F on the LHS. For (2.39),
we further note that by assumption h±µ (s) localizes inAe for all s ∈ R. The remaining estimates
for (1−Q≤λ216 )F are equivalent to

‖(1−Q≤λ216 )F‖X . λ‖(1−Q≤λ216 )F‖L2
t,x
,

which follow from Sobelev embedding (thus the restriction to p ≥ 2). As above, we obtain the
estimates for the Lh = 0 part of the limiting dyadic block µ = 0 by Lemma 2.5. �

2.3. Function spaces. We now define the dyadic building blocks of the function spaces
Z
d
2 , W

d
2 and use the convention

‖·‖λBλ = λ−1 ‖·‖Bλ .

We set

Zλ = X
1
2 ,1

λ + Yλ,(2.41)

where Yλ is the closure of

{f ∈ S | supp(f̂) ⊂ Aλ, ‖f‖Yλ <∞ },

‖f‖Yλ = λ−2 ‖Lf‖L1
tL

2
x

+ ‖f‖L∞t L2
x
,

and the norm of Zλ is given by

‖u‖Zλ = inf
u1+u2=u

(
‖u1‖

X
1
2
,1

λ

+ ‖u2‖Yλ
)
.

For the nonlinearity, we constructWλ = L(Zλ), i.e.

Wλ = λ2
(
X
− 1

2 ,1

λ + (L1
tL

2
x)λ
)

(2.42)

where (L1
tL

2
x)λ is the closure of

{F ∈ S | supp(F̂ ) ⊂ Aλ, ‖F‖L1
tL

2
x
<∞ },
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and
‖F‖Wλ

= λ−2 inf
F1+F2=F

(
‖F1‖

X
− 1

2
,1

λ

+ ‖F2‖L1
tL

2
x

)
.

Then, we define

‖u‖Z =
∑
λ∈2Z

λ
d
2 ‖Pλ(D)u‖Zλ ,(2.43)

‖F‖W =
∑
λ∈2Z

λ
d
2 ‖Pλ(D)F‖Wλ

,(2.44)

and

‖u‖2Zs =
∑
λ∈2Z

λ2s ‖Pλ(D)u‖2Zλ for s >
d

2
.(2.45)

‖F‖2W s =
∑
λ∈2Z

λ2s ‖Pλ(D)F‖2Wλ
for s >

d

2
.(2.46)

2.3.1. Embeddings, linear estimates and continuous operator. In this section, we provide some
useful embeddings and multiplier theorems concerning Zλ and Wλ. We also show that the
solution of (2.14) satisfies u ∈ Zs if Lu ∈W s with the correct initial regularity Ḃ2,1

d
2

× Ḃ2,1
d
2−2

or Ḣs × Ḣs−2, respectively for s > d
2 .

At the end of this section, we show that Zλ bounds

λ−
1
2L∞e L

2
t,e⊥ ,

⋂
e

λ
d−1
2 L2

eL
∞
t,e⊥ ,

in a suitable sense. Therefore, we apply the following heurstic argument, used similarly in [1]
for Schrödinger maps. For solving (2.14) by u = V (F ) with u0 = u1 = 0, we rely on the
inhomogeneous Strichartz estimate Lemma 2.6

‖V (F )‖
λ−

1
2 L∞e L

2

t,e⊥
. λ−2 ‖F‖L1

tL
2
x
, (τ, ξ) ∈ supp(P̂0F )

and otherwise on inverting the symbol of L

V (F ) = F−1
( F̂ (τ, ξ)

τ2 − |ξ|4
)
, (τ, ξ) ∈ supp( ̂(1− P0)F ).

We first consider the following Lemma, which clearifies how the the spaces Zλ,Wλ behave
under modulation cut-off and is essentially from [24] (adapted to the paraboloid τ2 = |ξ|4).

Lemma 2.9. The following operator are continuous for 1 ≤ p < ∞ with norms that are
uniformly bounded in µ ≤ 4λ2.

(a) Pλ,≤µ, PλP0 : LptL
2
x → LptL

2
x, µ ≤ 4λ2

(b) (1−Q≤µ)Pλ : Yλ → µ−1L1
tL

2
x, µ ≤ 4λ2.

Proof. We first recall the following version of Tataru’s argument in [24], stated in [6, chapter
2.4, Lemma 2.8].
Let C > 0 andM = F−1(m(τ, ξ)F(·)) be a Fourier multiplier such that the following holds.

(i) For any ξ, there holds supp(τ 7→ m(τ, ξ)) ⊂ Aξ, where Aξ has measure ≤ C.
(ii) For N ≥ 2 there exists CN > 0 such that

‖m‖L∞τ,ξ + CN
∥∥∂Nτ m(τ, ξ)

∥∥
L∞τ,ξ
≤ CN .

Then the operator

M : LptL
2
x → LptL

2
x, 1 ≤ p ≤ ∞,(2.47)

is continuous and ‖M‖ . CN .
By Plancherel (in ξ) and Young’s inequality (in t), it suffices to proofK ∈ L1

tL
2
ξ , where

K(t, ξ) =

∫
eitτm(τ, ξ) dτ.
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However by (i), (ii) it follows ‖K‖L1
tL

2
ξ
. CNC and by (ii) and integration by parts

|K(t, ξ)| =
∣∣∣∣ (−1)N

|t|N iN

∫
eitτ∂Nτ m(τ, ξ) dτ

∣∣∣∣ . CN
CN |t|N

,

by which

|K(t, ξ)| . CNC

(1 + C|t|)N
.

This argument applies, similar to [24], to Pλ,≤µ with multiplier

mµ,λ(τ, ξ) =
∑
µ̃≤µ

ϕ((τ2 + ξ4)
1
4 /λ)ϕ(w(τ, ξ)/µ̃),

since there holds for N ∈ N and ξ ∈ Rd fixed

|∂Nτ mµ,λ(τ, ξ)| .N µ−N , supp(mµ,λ) ⊂ {(τ, ξ) | ||τ | − ξ2| ≤ 4µ}.(2.48)

For the second operator

PλP0u = F−1(ϕ((τ2 + ξ4)
1
4 /λ))χ(τ, ξ)û(τ, ξ))

in (a), we note that χ is invariant under scaling and hence the claim reduces to continuity of
P1P0 : LptL

2
x → LptL

2
x. This follows directly from the above argument.

Now for part (b), we write

F(1−Q≤µ)Pλu)(τ, ξ) =
(
1−

∑
µ̃≤µ

ϕ(w(τ, ξ)/µ̃)
)
ϕ((τ2 + ξ4)

1
4 /λ)û(τ, ξ)

= µ−1λ−2
(
1−

∑
µ̃≤µ

ϕ(w(τ, ξ)/µ̃)
)ϕ((τ2 + ξ4)

1
4 /λ)µλ2

w(τ, ξ)(τ2 + ξ4)
1
2

L̂u(τ, ξ)

=: µ−1λ−2m̃µ,λ(τ, ξ)L̂u(τ, ξ).

It hence suffices to prove continuity of the operator F−1(m̃µ,λF(·)) on L1
tL

2
x. This follows

similarly as in the proof for the cone in [24]. We sketch the argument following the proof
in [6, chapter 2.4]. There holds

||τ | − ξ2|m̃µ,λ(τ, ξ) + ||τ | − ξ2|3∂2
τ m̃µ,λ(τ, ξ) . µ.(2.49)

Hence, considering the support

{(τ, ξ) | ||τ | − ξ2| ≥ µ/
√

2, |τ |+ ξ2 ≤ 4
√

2λ2 },

we infer ∣∣∣∣∫ eitτm̃µ,λ(τ, ξ) dτ

∣∣∣∣ . µ log(λ2/µ),

∣∣∣∣t2 ∫ eitτm̃µ,λ(τ, ξ) dτ

∣∣∣∣ . µ−1.

Integration gives boundedness of the following terms (uniform in µ, λ)

‖K‖L1
tL

2
ξ
.
∫
|t|≤ 1

4
√

2λ2

‖K(t, ·)‖L∞ dt+

∫
|t|≥

√
2
µ

‖K(t, ·)‖L∞ dt+

∫
1

4
√

2λ2
≤|t|≤

√
2
µ

‖K(t, ·)‖L∞ dt.

For the last term, we estimate

‖K(t, ·)‖L∞ .
∫
µ√
2
≤||τ |−ξ2|≤ 1

|t|

µ

||τ | − ξ2|
dτ +

1

t2

∫
||τ |−ξ2|≥ 1

|t|

µ

||τ | − ξ2|3
dτ . µ(1− log(|t|µ)),

and hence ∫
1

4
√

2λ2
≤|t|≤

√
2
µ

‖K(t, ·)‖L∞ dt . 1.

�

Lemma 2.10. We have

Wλ ⊂ λ3L2
t,x, Zλ ⊂ λ

d
2L∞t,x(2.50)

X
1
2 ,1

λ ⊂ Zλ ⊂ X
1
2 ,∞
λ .(2.51)
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Proof. For (2.51), we note that X
1
2 ,1

λ ⊂ Zλ follows by definiton and Zλ ⊂ X
1
2 ,∞
λ is proven as

follows.
The norm of X

1
2 ,∞
λ is estimated against the norm of the X

1
2 ,1

λ part and further, for the L1
tL

2
x

part in Yλ, we deduce from Lemma 2.7

‖uλ‖
X

1
2
,∞

λ

. λ−2 ‖Luλ‖
X
− 1

2
,∞

λ

+ ‖u(0)‖L2
x

+ ‖∂tu(0)‖H−2
x

. λ−2 ‖Luλ‖L1
tL

2
x

+ ‖uλ‖L∞t L2
x
,

which reads as

‖uλ‖
X

1
2
,∞

λ

. ‖uλ‖Yλ , uλ ∈ Yλ.

Concerning (2.50) in the Lemma, we note

‖uλ‖L2
t,x
. λ ‖uλ‖L1

tL
2
x
∼ λ3 ‖uλ‖λ2L1

tL
2
x
, uλ ∈ L1

tL
2
x,

where we used that ûλ(·, ξ) is localized (in τ ) on an interval on length∼ λ2. Hence, since also,

‖uλ‖L2
t,x
. λ

∑
µ.λ2

µ−
1
2 ‖Qµ(uλ)‖L2

t,x
, uλ ∈ X

− 1
2 ,1

λ ,

we obtain the first claim. For the L∞t,x embedding, we estimate similarly by Lemma 2.7

‖uλ‖L∞t,x . λ
d
2 ‖uλ‖

X
1
2
,1

λ

.

For the Yλ part, we obtain by a direct application of the classical Strichartz estimate

‖uλ‖L∞t,x . ‖u(0)‖
Ḣ
d
2

+ ‖∂tu(0)‖
Ḣ
d
2
−2 + λ

d
2−2 ‖Lu‖L1

tL
2
x
. λ

d
2 ‖uλ‖Yλ .

from Lemma 2.5 and Lemma 2.6 for p = q =∞. �

Proposition 2.11. There holds

Z
d
2 ⊂ C(R, Ḃ2,1

d
2

) ∩ Ċ1(R, Ḃ2,1
d
2−2

)(2.52)

Zs ⊂ C(R, Ḣs) ∩ Ċ1(R, Ḣs−2)(2.53)

Further we have

‖u‖
Z
d
2
. ‖(u(0), ∂tu(0))‖Ḃ2,1

d
2

×Ḃ2,1
d
2
−2

+ ‖Lu‖
W

d
2
,(2.54)

‖u‖Zs . ‖(u(0), ∂tu(0))‖Ḣs×Ḣs−2 + ‖Lu‖W s , s >
d

2
,(2.55)

‖Lu‖
W

d
2
. ‖u‖

Z
d
2
, ‖Lu‖W s . ‖u‖Zs , s >

d

2
.(2.56)

Proof. The claim (2.56) follows from the definition of Zλ,Wλ since λ2L1
tL

2
x = LYλ and for

the X
1
2 ,p

λ part, we use
‖Lu‖

X
− 1

2
,1

λ

. λ2 ‖u‖
X

1
2
,1

λ

.

For (2.52) and (2.53), if suffices to show

‖Pλ(D)u‖L∞t Ḃ2,1
d
2

+ ‖Pλ(D)∂tu(t)‖L∞t Ḃ2,1
d
2
−2

. λ
d
2 ‖Pλ(D)u‖Zλ ,

where by Bernstein

‖Pλ(D)∂tu(t)‖L∞t Ḃ2,1
d
2
−2

. ‖Pλ(D)u‖L∞t Ḃ2,1
d
2

.(2.57)

Then, since

‖Pλ(D)u‖L∞t Ḃ2,1
d
2

≤
∑
λ̃≤λ

(
λ̃/λ

) d
2 λ

d
2

∥∥Pλ(D)Pλ̃(∇)u
∥∥
L∞t L

2
x
,(2.58)

the embedding and the continuity in time follow from Zλ ⊂ Sλ ⊂ CtL
2
x and we proceed

similarly for the emdedding of Zs using square sums. Now for (2.54) and (2.55), we use
Duhamel’s formula

u = S(u(0), ∂tu(0)) + V (Lu),
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where S(u0, u1) solves (2.14) for F = 0 and V F solves (2.14) for u0 = u1 = 0. The
homogeneous solution is estimated by the Strichartz bound in Lemma 2.5 in the energy case
p =∞, q = 2. This is also directly verified by

Fx(Pλ(D)S(u(0), ∂tu(0)))(t, ξ) = ϕ(2
1
4 |ξ|/λ)(cos(|ξ|2t)û(0)(ξ)+|ξ|−2 sin(|ξ|2t)∂̂tu(0)(ξ)),

and hence

‖PλS(u(0), ut(0))‖Zλ . ‖PλS(u(0), ut(0))‖L∞t L2
x
. ‖uλ(0)‖L2 + ‖∂tuλ(0)‖H−2 .

For the inhomogeneous solution V (Lu) we estimate the X
1
2 ,p

λ part by

‖V (Luλ)‖
X

1
2
,1

λ

. λ−2 ‖Luλ‖
X
− 1

2
,1

λ

,(2.59)

and for Yλ, we use Lemma 2.6 in order to conclude

‖V (Luλ)‖Yλ = λ−2 ‖Luλ‖L1
tL

2
x

+ ‖uλ‖L∞t L2
x
. λ−2 ‖Luλ‖L1

tL
2
x
.

�

We further estimate the lateral Strichartz norm and establish the maximal function estimate.

Proposition 2.12. For any dyadic number λ ∈ 2Z we have

Zλ ⊂ Sλ ∩
∑
e∈M

Seλ,(2.60)

Zλ ⊂
⋂
e∈M

λ
n−1
2 L2

eL
∞
t,e⊥ .(2.61)

where Seλ is the closure of{
f ∈ S | supp(f̂) ⊂ Aλ, ‖f‖Seλ = sup

(p,q)

(
λ

1
p+

(d+1)
q − d2 ‖f‖LpeLq

t,e⊥

)
<∞

}
with (p, q) ranging over all admissible pairs with p ≥ 2.

Proof. For (2.60), we first consider the embedding Zλ ⊂ Sλ. Thus, the X
1
2 ,1

λ part satisfies for
any admissible pair (p, q)

λ
2
p+ d

q−
d
2 ‖uλ‖LptLqx . ‖uλ‖X

1
2
,1

λ

,

by Lemma 2.7. Likewise, we obtain the same bound against the Yλ part by Lemma 2.5 and
Lemma 2.6. For the Seλ embedding, we decompose as follows

uλ =
∑
e∈M

ueλ, u
e
λ = Pe(∇)uλ,(2.62)

which suffices to obtain (2.60) for the X
1
2 ,1

λ part directly from Lemma 2.7. Now, considering
the Yλ part of Zλ, we further write

ueλ = P0u
e
λ + (1− P0)ueλ.

Then, P0u
e
λ is localized in Be and (by definition of P0, 1− P0)

P0u
e
λ = S(ueλ(0), ∂tu

e
λ(0)) + V (P0L(ueλ)), (1− P0)ueλ = V ((1− P0)L(ueλ)).

Hence by Lemma 2.5 and Lemma 2.6 we have

λ
1
p+

(d+1)
q − d2 ‖P0u

e
λ‖LpeLq

t,e⊥
. λ−2 ‖P0Lu

e
λ‖L1

tL
2
x

+ ‖ueλ(0)‖L2 + ‖∂tueλ(0)‖H−2(2.63)

. ‖uλ‖Y eλ ,

by Lemma 2.9 and continuity of Pe(∇) on L1
tL

2
x. Similarly, by Lemma 2.7, we infer

λ
1
p+

(d+1)
q − d2 ‖(1− P0)ueλ‖LpeLq

t,e⊥
. ‖V (1− P0)(Lueλ)‖

X
1
2
,1

λ

. λ−2 ‖(1− P0)Lueλ‖
X
− 1

2
,1

λ

. λ−2 ‖(1− P0)Lueλ‖
X
− 1

2
,∞

λ

. ‖uλ‖Y eλ ,
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where we used (1− P0)X
1
2 ,1

λ ∼ (1− P0)X
1
2 ,∞
λ uniform in the frequency λ ∈ 2Z and the dual

trace inequelity from Lemma 2.7 in the last step. Hence we sum over e ∈ M and take the
infimum over uλ =

∑
e u

e
λ with ueλ ∈ Seλ. The L2

eL
∞
t,e⊥ embedding (2.61) follows similarly

using Lemma 2.7, the decomposition (2.62) and Lemma 2.5, 2.6. Especially

sup
ẽ

(
λ

1−d
2 ‖P0u

e
λ‖L2

ẽL
∞
t,ẽ⊥

)
. ‖uλ‖Yλ ,(2.64)

sup
ẽ

(
λ

1−d
2 ‖(1− P0)ueλ‖L2

ẽL
∞
t,ẽ⊥

)
. λ−2 ‖Luλ‖

X
− 1

2
,∞

λ

. ‖uλ‖Yλ(2.65)

Again the estimate for the X
1
2 ,1

λ part follows directly by Lemma 2.7. �

3. Bilinear estimates

For the bilinear interaction, we write

u · v =
∑

λ1,λ2,λ

(uλ1
vλ2

)λ

=
∑

λ2�λ1

[
(uλ1

vλ2
)λ2/2 + (uλ1

vλ2
)λ2

+ (uλ1
vλ2

)2λ2

]
(3.1)

+
∑

λ1�λ2

[
(uλ1vλ2)lambda2/2 + (uλ1vλ2)λ1 + (uλ1vλ2)2λ1

]
(3.2)

+
∑

| log2(λ1/λ2)|∼1

∑
λ.max{λ1,λ2}

(uλ1
vλ2

)λ.(3.3)

Due to symmetry, we restrict (3.1) - (3.3) to∑
λ2�λ1

[
(uλ1vλ2)λ2/2 + (uλ1vλ2)λ2 + (uλ1vλ2)2λ2

]
+
∑
λ1∼λ2

∑
λ.λ2

(uλ1
vλ2

)λ,

and thus further reduce to the interactions
λ1 � λ2 : (uλ1

vλ2
)λ2

, and λ1 ≤ λ2 : (uλ2
vλ2

)λ1
.

Lemma 3.1.

(a) ‖uλ1
vλ2
‖Zλ2 . λ

d
2
1 ‖uλ1

‖Zλ1 ‖vλ2
‖Zλ2 , λ1 � λ2(3.4)

(b) ‖(uλ2
vλ2

)λ1
‖Zλ1 . λ

d
2
2 ‖uλ2

‖Zλ2 ‖vλ2
‖Zλ2 , λ1 ≤ λ2.(3.5)

Proof. For part (a), we decompose
(uλ1vλ2)λ2 = Q≤4λ1λ2(uλ1vλ2)λ2 + (1−Q≤4λ1λ2)(uλ1vλ2)λ2 ,(3.6)

Here splitting the modulation by µ = λ1λ2 (instead of e.g. the natural choice λ2
1) is necessary

in order to handle
L(uλ1

(1−Q≤λ1λ2
)vλ2

)λ2
∈ L1

tL
2
x

and specifically the worst interaction ∇xuλ1
· ∇3

xvλ2
which is done below. The smoothing is

then exploited via
L2
eL
∞
t,e⊥ · L

∞
e L

2
t,e⊥ ⊂ L

2

for the term Q≤4λ1λ2(uλ1vλ2)λ2 as follows . First, we place Q≤4λ1λ2(uλ1vλ2)λ2 ∈ X
1
2 ,1

λ2
by

estimating

‖(uλ1
vλ2

)λ2
‖L2

t,x
. λ

d−1
2

1 λ
− 1

2
2 ‖uλ1

‖Zλ1 ‖vλ2
‖Zλ2 .(3.7)

Then, from X
1
2 ,1

λ2
⊂ Zλ2

, (3.7) gives

‖Q≤4λ1λ2(uλ1vλ2)λ2‖Zλ2 . ‖Q≤4λ1λ2(uλ1vλ2)λ2‖
X

1
2
,1

λ2

.
( ∑
µ≤4λ1λ2

µ
1
2 (λ1λ2)−

1
2

)
λ
d
2
1 ‖uλ1

‖Zλ1 ‖vλ2
‖Zλ2 .
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For (3.7), we write uλ1
vλ2

=
∑
e∈M uλ1

veλ2
where veλ2

∈ Seλ2
. Hence∥∥(uλ1

veλ2
)λ2

∥∥
L2
t,x
≤ ‖uλ1

‖L2
eL
∞
t,e⊥

∥∥veλ2

∥∥
L∞e L

2

t,e⊥
(3.8)

≤ λ
d−1
2

1 ‖uλ1‖
λ
d−1
2

1

⋂
ẽ L

2
ẽL
∞
t,ẽ⊥

λ
− 1

2
2

∥∥veλ2

∥∥
λ
− 1

2
2 L∞e L

2

t,e⊥

.

Summing over e ∈M, the claim follows from Proposition 2.12. Secondly, we note for λ2
1 � µ

Qµ(uλ1
vλ2

)λ2
= Qµ

(
uλ1

∑
|j|≤2

Q2jµvλ2

)
(3.9)

Hence we write

(1−Q≤4λ1λ2
)(uλ1

vλ2
)λ2

= (1−Q≤4λ1λ2
)(uλ1

(1−Q≤λ1λ2
)vλ2

)λ2

In order to estimate the remaining part in (3.6), using Lemma 2.9, it thus suffices to prove

‖(uλ1
(1−Q≤λ1λ2

)vλ2
)λ2
‖
X

1
2
,1

λ2

. ‖uλ1
‖Zλ1 ‖vλ2

‖
X

1
2
,1

λ2

(3.10)

‖(uλ1
(1−Q≤λ1λ2

)vλ2
)λ2
‖Yλ2 . ‖uλ1

‖Zλ1 ‖vλ2
‖Yλ2 .(3.11)

The estimate (3.10) and the L∞t L2
x summand of (3.11) follow from the embedding Zλ1

⊂
λ
d
2
1 L
∞
t,x by factoring off the L∞t,x norm of uλ1

. For the second estimate (3.11), we further
calculate

L(uλ1
(1−Q≤λ1λ2

)vλ2
)λ2

= uλ1
L(1−Q≤λ1λ2

)vλ2
+ ∂tuλ1

∂t(1−Q≤λ1λ2
)vλ2

+ ∂2
t uλ1(1−Q≤λ1λ2)vλ2 + ∆2(uλ1(1−Q≤λ1λ2)vλ2)

− uλ1
∆2(1−Q≤λ1λ2

)vλ2
),

hence we estimate

‖L(uλ1
(1−Q≤λ1λ2

)vλ2
)λ2
‖L1

tL
2
x

. ‖uλ1
L(1−Q≤λ1λ2

)vλ2
‖L1

tL
2
x

+ ‖∂tuλ1
∂t(1−Q≤λ1λ2

)vλ2
‖L1

tL
2
x

+
∥∥∂2

t uλ1(1−Q≤λ1λ2)vλ2

∥∥
L1
tL

2
x

+
∥∥∆2(uλ1

(1−Q≤λ1λ2
)vλ2

)− uλ1
∆2(1−Q≤λ1λ2

)vλ2
)
∥∥
L1
tL

2
x
.

Calculating the expression in the latter norm and factoring off the derivatives of uλ1 in L∞, we
infer (using Bernstein’s inequality)

‖L(uλ1
(1−Q≤λ1λ2

)vλ2
)λ2
‖L1

tL
2
x

. ‖uλ1
L(1−Q≤λ1λ2

)vλ2
‖L1

tL
2
x

+ λ1 ‖uλ1
‖L∞ λ

3
2 ‖(1−Q≤λ1λ2

)vλ2
‖L1

tL
2
x

≈ ‖uλ1
L(1−Q≤λ1λ2

)vλ2
‖L1

tL
2
x

+ ‖uλ1
‖L∞ λ1λ

3
2(λ1λ2)−1 ‖(1−Q≤λ1λ2

)vλ2
‖(λ1λ2)−1L1

tL
2
x

where we note λ1 � λ2. We now proceed by Lemma 2.9 (b) (for µ = λ1λ2)

λ−2
2 ‖L(uλ1

(1−Q≤λ1λ2
)vλ2

)λ2
‖L1

tL
2
x

. λ
d
2
1 ‖uλ1‖Zλ1 (λ−2

2 ‖Lvλ2‖L1
tL

2
x

+ ‖vλ2‖Yλ2 ),

which gives the claim. The proof part (b) follows similarly, in fact easier, since we can directly
place (uλ2

vλ2
)λ1
∈ X

1
2 ,1

λ1
by estimating

‖uλ2
vλ2
‖L2

t,x
. λ

d
2−1
2 ‖uλ2

‖Zλ2 ‖vλ2
‖Zλ2 .(3.12)

Then, from X
1
2 ,1

λ1
⊂ Zλ1

, (3.12) gives

‖(uλ2vλ2)λ1‖Zλ1 .
∑
µ≤4λ2

1

(
µ

λ2
1

) 1
2

λ2 ‖uλ2vλ2‖L2
t,x

. λ2(λ
d
2−1
2 ‖uλ2‖Zλ2 ‖vλ2‖Zλ2 ).
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For (3.12), we write uλ2
vλ2

=
∑
e∈M ueλ2

vλ2
where ueλ2

∈ Seλ2
. Hence∥∥ueλ2

vλ2

∥∥
L2
t,x
≤
∥∥ueλ2

∥∥
L∞e L

2

t,e⊥
‖vλ2
‖L2

eL
∞
t,e⊥

≤ λ−
1
2

2

∥∥ueλ2

∥∥
λ
− 1

2
2 L∞e L

2

t,e⊥

λ
d−1
2

2 ‖vλ2‖
λ
d−1
2

2

⋂
ẽ L

2
ẽL
∞
t,ẽ⊥

.

Summing over e ∈M, we infer the claim.
�

FromLemma 3.1, we obtain (1.14) as outlined above by summation according to the definiton
of Z d

2 and W d
2 . Note that the estimates for the remaining frequency interactions in (3.1) and

(3.3) follow the same arguments provided in Lemma 3.1.

Similarly, for the embedding (1.15) we prove the subsequent estimates.

Lemma 3.2.

‖uλ2
vλ1
‖
W

d
2
. λ

d
2
1 λ

d
2
2 ‖uλ2‖Zλ2 ‖vλ1

‖Wλ1
, λ1 ≤ λ2(3.13)

‖uλ2vλ1‖Wλ2
. λ

d
2
1 ‖uλ2‖Wλ2

‖vλ1‖Zλ1 , λ1 � λ2(3.14)

Proof. We first estimate by Sobolev embedding

λ−2
2 ‖uλ2vλ1‖L1

tL
2
x
. λ−2

2 ‖uλ2‖
L2
tL

2d
d−2
x

‖vλ1‖L2
tL

d
x

. λ−2
2 ‖uλ2

‖
L2
tL

2d
d−2
x

λ
d−2
2

1 ‖vλ1
‖L2

t,x

. ‖uλ2
‖Sλ2 λ

d
2−3
1 ‖vλ1

‖L2
t,x

. ‖uλ2‖Zλ2 λ
d
2
1 ‖vλ1‖Wλ1

where we used Lemma 2.10 forWλ1
⊂ λ3

1L
2
t,x. Thus from∥∥ueλ2

vλ1

∥∥
W

d
2
. λ

d−4
2

2 ‖uλ2vλ1‖L1
tL

2
x
. λ

d
2
2 λ

d
2
1 ‖uλ2‖Zλ2 ‖vλ1‖Wλ1

,

we obtain the claim (3.13). Estimate (3.14) is implied by

λ
− d2
1 Zλ1

· L1
tL

2
x ⊂ L1

tL
2
x,(3.15)

λ
− d2
1 Zλ1 ·X

− 1
2 ,1

λ2
⊂Wλ2λ

−2
2 ,(3.16)

where the first embedding follows fromZλ1 ⊂ λ
d
2
1 L
∞
t,x. For (3.16), we note that since we restrict

to λ1 � λ2, we only consider λ1 ≤ λ2

C for a large, fixed constant C > 0. We thus decompose

uλ2 = Q≤C2λ2
1
uλ2 + (1−Q≤C2λ2

1
)uλ2 .

In particular, each dyadic piece Qµuλ2
in (1 − Q≤C2λ2

1
)X
− 1

2 ,1

λ2
satisfies λ2

1 � µ ≤ λ2
2. We

then estimate (note that we use (3.9))∥∥∥vλ1
(1−Q≤C2λ2

1
)uλ2

∥∥∥
X
− 1

2
,1

λ2

∼
∑

C2λ2
1≤µ≤4λ2

2

µ−
1
2 ‖vλ1

Qµuλ2
‖L2

t,x

.
∑

C2λ2
1≤µ≤4λ2

2

µ−
1
2 ‖vλ1

‖L∞t,x ‖Qµuλ2
‖L2

t,x

. λ
d
2
1 ‖vλ1

‖Zλ1 ‖uλ2
‖
X
− 1

2
,1

λ2

.
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Further

λ2
2

∥∥∥vλ1
Q≤C2λ2

1
uλ2

∥∥∥
Wλ2

.
∥∥∥vλ1

Q≤C2λ2
1
uλ2

∥∥∥
L1
tL

2
x

. ‖vλ1
‖L2

tL
∞
x

∥∥∥Q≤C2λ2
1
uλ2

∥∥∥
L2
t,x

. λ
d
2
1 ‖vλ1‖

λ
d−2
2

1 L2
tL
∞
x

∑
µ≤C2λ2

1

µ−
1
2 ‖Qµuλ2‖L2

t,x

. λ
d
2
1 ‖vλ1‖Zλ1 ‖uλ2‖

X
− 1

2
,1

λ2

,

which follows from Zλ1
⊂ Sλ1

. �

We now infer (1.14) and (1.15) by the summation argument provided in the beginning of the
section.

3.1. Higher regularity. The percisteny of higher regularity of the Ḃ2,1
d
2

× Ḃ2,1
d
2−2

solution as
stated in Theorem 1.1 follows as in [24] and [1] from (1.18) and (1.19). We will briefly outline
how to employ these estimates for the proof of Theorem 1.1 and Corollary 1.2 in the next Section
4.

For (1.18), we rely again on Lemma 3.1 and the decomposition

uv =
∑

λ1�λ2

uλ2vλ1 +
∑

λ2�λ1

uλ2
vλ1

+
∑
λ1∼λ2

uλ2
vλ1

,

from the beginning of the Section 3. However, we now sum as follows(∑
λ

λ2s ‖(uv)λ‖2Zλ

) 1
2

.
∑
λ1

(∑
λ

λ2s

∥∥∥∥( ∑
λ1�λ2

uλ2
vλ1

)
λ

∥∥∥∥2

Zλ

) 1
2

+
∑
λ2

(∑
λ

λ2s

∥∥∥∥( ∑
λ2�λ1

uλ2
vλ1

)
λ

∥∥∥∥2

Zλ

) 1
2

+
∑
λ1∼λ2

‖uλ2
vλ1
‖Zs .

Hence, we need to estimate the three terms

∑
λ1

( ∑
λ1�λ

λ2s‖(uλvλ1
)λ‖2Zλ

) 1
2

,
∑
λ2

( ∑
λ2�λ

λ2s‖(uλ2
vλ)λ‖2Zλ

) 1
2

,
∑
λ1∼λ2

‖uλ2
vλ1
‖Zs ,

where for s > d
2 , the latter sum is treated by Lemma 3.1 (b) similar as before via (note that we

identify λ1 and λ2 for simplicity)∑
λ2

∑
λ.λ2

λs ‖(uλ2
vλ2

)λ‖Zλ .
∑
λ2

(λ2s
2 ‖uλ2

‖2Zλ2 )
1
2λ

d
2
2 ‖vλ2

‖Zλ2 . ‖u‖Zs ‖v‖Z d2 .

The LHS of this inequality now bounds the l2(Z) norm (wrt λ) and for the first two sums above
we directly estimate the squares via Lemma 3.1 (a). For (1.19), we sum in the same way and
use the following dyadic estimates∑

λ1.λ2

λs1 ‖(uλ2vλ2)λ1‖Wλ1
. λ

s+ d
2

2 ‖uλ2‖Zλ2 ‖vλ2‖Wλ2
,

‖(uλ2vλ1)λ2‖Wλ2
. λ

d
2
1 ‖uλ2‖Wλ2

‖vλ1‖Zλ1 , λ1 � λ2

‖(uλ2
vλ1

)λ2
‖Wλ2

. λ
d
2
1 ‖uλ2

‖Zλ2 ‖vλ1
‖Wλ1

, λ1 � λ2

which are the same as in (or follow from) Lemma 3.2.
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4. Proof of the main theorem

The proof of Theorem 1.1 follows straight forward perturbatively by convergence of

uk+1 = Su[0] + V (Q(uk)), k ≥ 0, u0(t, x) = 0(4.1)

in the space Z d
2 , where Su[0] = S(u0, u1) solves (2.14) with F = 0 and V F solves (2.14) with

vanishing initial data. To be more precise, we combine Lemma 2.11, i.e.

‖uk+1‖
Z
d
2
. ‖u0‖Ḃ2,1

d
2

+ ‖u1‖Ḃ2,1
d
2
−2

+ ‖Q(uk)‖
W

d
2

(4.2)

sup
t∈R

(
‖u(t)‖Ḃ2,1

d
2

+ ‖∂tu(t)‖Ḃ2,1
d
2
−2

)
. ‖u‖

Z
d
2
,(4.3)

with the Lipschitz estimate

‖Q(uk)−Q(vk)‖
W

d
2
. C(‖uk‖

Z
d
2
, ‖vk‖

Z
d
2

) ‖uk − vk‖
Z
d
2
.(4.4)

This is a direct consequence of (1.14), (1.15) combined with the identity (1.7), i.e.

Q(u) =
1

2
Qu(L(u · u)− u · Lu− Lu · u)

and Lemma 2.11 provided Q is analytic (at x0 = 0), δ > 0 is small enough and (1.20) holds.
This is necessary to expand the coefficients of Q, which then converge uniformely near x0 = 0

hence in Z d
2 . Especially, for δ > 0 sufficiently small (4.1) converges to a solution of (1.6) in

the δ-ball of Z d
2 centered at u = 0. For higher regularity, we proceed as in [24] and construct a

solution for (1.6) in the space Z d
2 ∩ Zs with norm

‖u‖
Z
d
2 ∩Zs

=
1

M
‖u‖Zs +

1

δ̃
‖u‖

Z
d
2
,

where aditionally (u0, u1) ∈ Ḣs(Rd)× Ḣs−2(Rd) for some s > d
2 . Then, provided δ̃ < δ, the

estimates (1.18) and (1.19) imply a Lipschitz estimate similar to (4.4) forW s on the LHS and
Z
n
2 ∩ Zs on the RHS. More precisely, there holds

‖Q(u)−Q(v)‖W s . ‖u− v‖Zs (‖u‖
Z
d
2

+ ‖v‖
Z
d
2

) + ‖u− v‖
Z
d
2

(‖u‖Zs + ‖v‖Zs).

Especially, with the corresponding linear estimates as above, (4.1) converges in the unit ball of
Z
d
2 ∩ Zs (in the above norm), where we take

M ∼ ‖u0‖Ḣs(Rd) + ‖u1‖Ḣs−2(Rd) .

In order to obtain the Lipschitz estimate and the fact that the fixed point operator maps the unit
ball into itself, we note that from (1.18) (combined with (1.14)) there holds by induction over
k ∈ N for u, v ∈ Z d

2 ∩ Zs∥∥uk∥∥
Zs
. k ‖u‖k−1

Z
d
2
‖u‖Zs ,∥∥(u− v)uk−1

∥∥
Zs
. ‖u− v‖Zs ‖u‖

k−1

Z
d
2

+ (k − 1) ‖u‖k−2

Z
d
2
‖u− v‖

Z
d
2
‖u‖Zs .

In particular, the smallness assumption is only necessary in Z d
2 in order to estimate the series

expansion of Q(u), Q(v) in (1.4). Thus from (1.19) and (1.15) we infer

‖V (Q(u))‖Zs . ‖u‖Zs ‖u‖Z d2 . δ̃ ‖u‖Zs ,

‖V (Q(u))‖
Z
d
2
.
∥∥u2
∥∥
Z
d
2
. δ̃ ‖u‖

Z
d
2
.

Similarly, for the difference u − v of u, v ∈ Zs ∩ Z d
2 , we infer the Lipschitz estimate. Since

δ̃ < δ, any such solution also lies in the δ-ball in Z d
2 and thus coincides with the solution in this

space.

The second problem (1.9) is treated similarly, i.e. we expand

Π(x) =

∞∑
k=0

1

k!
dkΠ(x)|x=0

(xk),(4.5)
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where dkΠ(x) are k-tensors with the notation for l = 1, . . . , L. Especially we have for any
v ∈ RL

dΠx(v) =

∞∑
k=1

1

(k − 1)!

L∑
l=1

dk−1∂xlΠ(x)|x=0
(xk−1)vl(4.6)

=

∞∑
k=1

1

k!

L∑
l=1

dk−1∂xlΠ(x)|x=0
(xk−1)kvl.

Since now considerN (u) = L(Π(u))−dΠu(Lu)we note that by continuity ofL : Z
d
2 →W

d
2 ,

i.e.
‖Lv‖

W
d
2
. ‖v‖

Z
d
2
. δ,

and by convergence of the series in BZ
d
2 (0, δ), we justify to pull L into the series expansion

and all terms in the series expression of N (u) are at least quadratic. More precisely

N (u) =
∑
k≥2

1

k!
(dkΠ(x))|x=0

(L(uk)− kuk−1Lu),

converges absolutely in W d
2 if u ∈ BZ

d
2 (0, δ) and δ > 0 is small enough. Similarly for the

difference we have

N (u)−N (v) =
∑
k≥2

k−1∑
l=0

1

k!
(dkΠ(x))|x=0

(L(vlwuk−1−l)− kvlwuk−2−lLu− kvk−1Lw),

where for themiddle term, weonly sum l = 0, . . . , k−2. In this notation e.g. (dkΠ(x))|x=0
(vlwuk−l−1)

captures all terms of the form∑
l1+...lm=l

lm+2···+lL=k−1−l

Cl1,...,lL(∂l1xi1 · · · ∂
lL
xiL

Π(0))vl1i1 · · · v
lm
im
wim+1u

lm+2

im+2
· · ·ulLiL , ij ∈ {1, . . . , L}.

Then the argument above applies and we now want to construct a global solution of (1.8), which
reads as

∂2
t u+ ∆2u = dPu(ut, ut) + dPu(∆u,∆u) + 4dPu(∇u,∇∆u) + 2dPu(∇2u,∇2u)

+ 2d2Pu(∇u,∇u,∆u) + 4d2Pu(∇u,∇u,∇2u)

+ d3Pu(∇u,∇u,∇u,∇u),

where

d2Pu(∇u,∇u,∇2u) = d2Pu(∂iu, ∂ju, ∂i∂
ju),

d3Pu(∇u,∇u,∇u,∇u) = d3Pu(∂iu, ∂
iu, ∂ju, ∂

ju),

and dPu, d2Pu, d
3Pu are derivatives of the orthogonal tangent projector Pp : RL → TpN for

p ∈ N . We extend this equation via Π (dΠu = Pu for u ∈ N ) to functions that only map to
the neighborhood Vε(N). By direct calculation or comparison to (1.8), this can be verified for
(1.9) and hence we solve

Lv = L(Π(v + p))− dΠv+p(Lv),

for v = u− p where p := lim|x|→∞ u0(x) via the Z d
2 ∩ Zs-limit of

vk+1 = Sv[0] + V (N (vk)), k ≥ 0, v0(t, x) = 0, N (v) = L(Π(v))− dΠv(Lv).(4.7)

In particular, the smoothness of the solution follows from the persistence of higher regularity
in the fixed point argument from above. Since for δ > 0 small enough, we obtain (note that in
Ḃ2,1
d
2

we have C0 data)

sup
t∈R

dist(u,N) ≤ ‖u− p‖L∞t,x . ‖v‖L∞t B2,1
d
2

. ‖v‖
Z
n
2
. δ,(4.8)

the map Π and thus (1.9) is welldefined in a B(0, Cδ) ball in Z d
2 . The only thing left to show

is that u(t) ∈ N for t ∈ R, such that in particular, (1.9) implies (1.8).
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If v = u − p ∈ B(0, Cδ) ⊂ Z
d
2 , then Π(u) − p = Π(v + p) − p ∈ Z

d
2 and Π(u) − u =

Π(v + p)− p− v ∈ Z d
2 with

‖Π(u)− u‖
Z
d
2

+ ‖Π(u)− p‖
Z
d
2
. ‖v‖

Z
d
2
,

provided δ > 0 is small. We now have

L(u−Π(u)) = L(v −Π(v + p)) = −dΠv+p(Lv) = −dΠv+p(N (v)).(4.9)

Since Π(u) ∈ N , we haveN (Π(u)−p) ⊥ TΠ(u)N and from Im(dΠu) ⊂ TΠ(u)N , u = v+p,
we obtain

dΠv+p(N (Π(u)− p)) = 0.

At this point, however, we mention, that we cancel the linear part in series expansions for
L(Π(v+ p)) inN (v) and of L(Π(u)− p) = L(Π(v+ p)− p) inN (Π(u)− p) at v = 0 (Thus
the constant part of dΠ vansihes in N ). We then obtain

L(u−Π(u)) = −dΠv+p

(
(dΠ(Π(u)−p)+p − dΠv+p)L(Π(u)− p)(4.10)

+ dΠv+p(L(Π(u)− p− v))

+ L(Π(v + p)−Π((Π(u)− p) + p))
)
.

Note that we don’t want to use Π2 = Π, since technically we want the identity for the series
expressions for Π, dΠ with missing linear parts. Especially, all terms appearing on the RHS
are at least quadratic.
This implies (note that u(0) = Πu(0), ut(0) = ∂t(Πu)(0) by assumption)

‖u−Π(u)‖
Z
d
2
. (1 + ‖v‖

Z
d
2

)
∥∥(dΠ(Π(u)−p)+p − dΠv+p)L(Π(u)− p)

∥∥
W

d
2

+ (1 + ‖v‖
Z
d
2

) ‖dΠv+p(L(Π(u)− p− v))‖
W

d
2

+ (1 + ‖v‖
Z
d
2

) ‖L(Π(v + p)−Π((Π(u)− p) + p))‖
W

d
2

. (1 + ‖v‖
Z
d
2

) ‖u−Π(u)‖
Z
d
2
‖L(Π(u)− p)‖

W
d
2

+ (1 + ‖v‖
Z
d
2

) ‖v‖
Z
d
2
‖L(Π(u)− p− v)‖

W
d
2

+ (1 + ‖v‖
Z
d
2

)(‖v‖
Z
d
2

+ ‖Π(u)− p‖
Z
d
2

) ‖u−Π(u)‖
Z
d
2

. (1 + ‖v‖
Z
d
2

) ‖v‖
Z
d
2
‖u−Π(u)‖

Z
d
2
.

In particular, if ‖v‖
Z
d
2
≤ δ is sufficiently small, we have u = Π(u) ∈ N .

Appendix A. Local Smoothing & lateral Strichartz inequalities

In this section, we recall the local smoothing effect (i.e. lateral Strichartz estimateswith localized
data) and a maximal function estimate for the linear Cauchy problem{

i∂tu(t, x)±∆u(t, x) = f(t, x) (t, x) ∈ R×Rd

u(0, x) = u0(x) x ∈ Rd
(A.1)

in the lateral space LpeL
q
t,e⊥

for e ∈ Sd−1 with norm

‖f‖pLpeLq
t,e⊥

=

∫ ∞
−∞

(∫
[e]⊥

∫ ∞
−∞
|f(t, re+ x)|qdt dx

) p
q

dr.(A.2)

The norm (A.2) was used by Kenig, Ponce, Vega, see e.g. [11], in order to establish local
smoothing estimates for nonlinear Schrödinger equations.
The estimates for LpeL

q
t,e⊥

, L1
eL

2
t,e⊥ , L2

eL
∞
t,e⊥ in Corollary A.3 and Lemma A.5 below are

substantial in the wellposedness theory of Schrödinger maps and were proven by Ionescu, Kenig
in [9], [10] (see also the work of Bejenaru in [1] and Bejenaru, Ionescu, Kenig in [2]).
Similar ideas (however more involved due to the absence of the L2

eL
∞
t,e⊥ estimate in d = 2) have

been used by Bejenaru, Ionescu, Kenig and Tataru in [3] for global Schrödinger maps into S2 in
dimension d ≥ 2 with small initial data in H d

2 .
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Here we follow Bejenaru’s calculation in [1], which recovers the smoothing effect for (A.1)
provided the data u0, f is sufficiently localized in the sets

Ae =
{
ξ | ξ · e ≥ |ξ|√

2

}
,

B±e =

{
(τ, ξ) | | ± τ − ξ2| ≤ |τ |+ ξ2

10
, ξ ∈ Ae

}
Aλ = {(τ, ξ) | λ/2 ≤ (τ2 + |ξ|4)

1
4 ≤ 2λ},

as defined in Section 2. Especially for (τ, ξ) ∈ B±e ∩Aλ, there holds

±τ − ξ2
e⊥ ≥ 0, ξe ∼ λ, ξe +

√
±τ − ξ2

e⊥
∼ λ.(A.3)

Remark A.1. We note that our definition of B±e slightly differs from [1].

Taking the FT (in t, x) of (A.1), with u being localized in B±e ,

f̂(τ, ξ) = (τ ∓ |ξ|2)û(τ, ξ) = ±
(√
±τ − ξ2

e⊥
− ξe

)(√
±τ − ξ2

e⊥
+ ξe

)
û(τ, ξ).(A.4)

Hence, considering (A.3), we proceed by taking the (inv.) FT in the coordinates t, xe⊥ ,

±F−1(f̂(ξe, τ,ξe⊥)
(√
±τ − ξ2

e⊥
+ ξe

)−1
)(A.5)

= F−1

(√
±τ − ξ2

e⊥
û(ξe, τ, ξe⊥)

)
− ξeû(ξe, t, xe⊥).

Thus, (A.1) is equivalent to an intial value problem of the following type(i∂r +D±t,x)v(t, r, x) = f,

v(t, 0, x) = u(t, x),
(A.6)

where D̂±t,xv(τ, ξ) =
√
±τ − |ξ|2v̂(τ, ξ). Thus (at least formally) the homogeneous solution

of (A.6) is represented as
v(t, r, x) = eirD

±
t,xu(t, x).

In the following, we only consider homogeneous estimates for (A.1), wich imply all linear
estimates we need in Section2. Inhomogeneous bounds for the biharmonic problem (2.14) with
F ∈ L1

eL
2
t,e⊥ can be proven similarly as for the Schrödinger equation using the calculation in

Section 2.

The equation (A.6) has the scaling vλ(t, r, x) = v(λ2t, λr, λx), λ > 0 and we now prove the
following Strichartz estimate.

Lemma A.2 (Strichartz estimate). Let u ∈ S ′(R×Rd−1), f ∈ S ′(R×(R×Rd−1)) have
Fourier support in

{±τ ≥ ξ2} ∩Aλ
for some dyadic λ ∈ 2Z. Then there holds∥∥∥eirD±t,xu(t, x)

∥∥∥
LprL

q
t,x

. λ
d+1
2 −

1
p−

d+1
q ‖u‖L2

t,x
,(A.7)

∥∥∥∥∫ r

−∞
ei(r−s)D

±
t,xf(s, t, x) ds

∥∥∥∥
LprL

q
t,x

. λ
1
p̃′−

1
p+(d+1)( 1

q̃′−
1
q )−1 ‖f‖

Lp̃
′
r L

q̃′
t,x
,(A.8)

where (p, q), (p̃, q̃) are admissible, i.e. 1 ≤ p, q ≤ ∞, (p, q) 6= (2,∞) if d = 2 and
2

p
+
d

q
≤ d

2
.(A.9)

Proof. We use a Littlewood-Paley decomposition

P̂λ(u)(τ, ξ) = ϕ((τ2 + |ξ|4)
1
4 /λ)û(τ, ξ),
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and by scaling of (A.6), we have P1(uλ−1) = (Pλu)λ−1 . Thus we reduce the estimate (A.7) to∥∥∥eirD±t,xP1u(t, x)
∥∥∥
LprL

q
t,x

≤ Cd,p,q
∥∥∥ϕ((τ2 + |ξ|4)

1
4 )û(τ, ξ)

∥∥∥
L2
τ,ξ

.(A.10)

We further have eirD
±
t,xP1u(t, x) = K ∗t,x P1u, with kernel

K(t, r, x) =

∫ ∫
ei(x,t,r)·(ξ,τ,

√
±τ−ξ2)ψ(τ, ξ) dτdξ,(A.11)

where ψ ∈ C∞c (R×Rd−1) with ψ(τ, ξ) = 1 for (τ, ξ) ∈ supp((τ, ξ) 7→ ϕ((τ2 + |ξ|4)
1
4 ))).

which is the Fourier transform of a (compactly supported) surface carried measure on the
hypersurface

S =
{(
ξ, τ,

√
±τ − ξ2

)
| ξ ∈ Rd−1, τ ∈ R, ξ2 ≤ ±τ

}
,

and S has d non-vanishing principal curvature functions in the relevant coordinate patch. Thus
we observe

|K(t, r, x)| . (1 + |r|)− d2 , t ∈ R, x ∈ Rd−1,(A.12)

which gives ∥∥∥eirD±t,xP1u(t, x)
∥∥∥
L∞t,x

. (1 + |r|)− d2 ‖P1u‖L1
t,x
.(A.13)

Now in the endpoint case (p, q) = (2, 2d
d−2 ), we need to applyKeel-Tao’s argument and otherwise

we can use direct interpolation. More precisely, combining (A.13) and the fact that eirD
±
t,x is a

group on L2
t,x with a classical TT ∗ argument and the Christ-Kiselev Lemma, we deduce (A.7)

and (A.8) for P1u. �

We remark that Lemma A.2 is valid if u, f have Fourier support in e.g. in Aλ/2 ∪Aλ ∪A2λ,
i.e. as long as frequency is controlled by λ. For a dyadic number λ ∈ 2Z, we recall the definition
of Adλ = {ξ | λ/2 ≤ |ξ| ≤ 2λ}. An immediate consequence of the Strichartz estimate is the
following Corollary.

Corollary A.3. Let u0 ∈ L2(Rd), e ∈ Sd−1, λ > 0 dyadic with supp(û0) ⊂ Adλ ∩ Ae. Then
there holds ∥∥e±it∆u0

∥∥
LpeL

q

t,e⊥
≤ Cλ

d
2−

1
p−

(d+1)
q ‖u0‖L2

x
,(A.14)

where (p, q) is an admissible pair. Let u ∈ S ′(R×Rd), e ∈ Sd−1, λ > 0 dyadic such that

supp(û) ⊂
{

(τ, ξe⊥) | (τ, ξ) ∈ B±e ∩Aλ
}

Then there holds∥∥∥∥eixeD±t,xe⊥ u(t, xe⊥)

∥∥∥∥
LptL

q
x

≤ Cd,p,qλ
d+1
2 −

2
p−

d
q ‖u(t, xe⊥)‖L2

t,x
e⊥
,(A.15)

where (p, q) is an admissible pair.

Proof. For the first statement, we identify ξ = (ξ · e)e + ξe⊥ 7→ (ξe, ξe⊥) and proceed as
follows. By the change of coordinates

√
±τ − ξ2

e⊥
= ξe, we have∫

Rd
eix·ξe±it|ξ|

2

û0(ξ) dξ

=

∫
[e]⊥

∫
{±τ≥ξ2

e⊥
}
e±itτeixe⊥ξe⊥ e

ixe
√
±τ−ξ2

e⊥ û0(
√
±τ − ξ2

e⊥
e+ ξe⊥)

dτ

2
√
±τ − ξ2

e⊥

dξe⊥ .

Now we set

û(τ, ξe⊥) = û0(
√
±τ − ξ2

e⊥
e+ ξe⊥)

(
2
√
±τ − ξ2

e⊥

)−1

, if ± τ ≥ |ξe⊥ |2,

and û(τ, ξe⊥) = 0 elsewhere. By assumption on û0, we have u ∈ S ′(R×Rd−1) (upon the
identification of [e]⊥ = Rd−1) and for (τ, ξe⊥) ∈ supp(û) there holds

√
±τ − ξ2

e⊥
= ξe ∼ λ
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and λ/2 ≤
√
|τ |+ ξ2

e⊥
≤ 4λ (since in particular u0 localizes in Ae ∩ Adλ). Thus, we apply

Lemma A.2 and conclude∥∥e±it∆u0(x)
∥∥
LpeL

q

t,e⊥
=

∥∥∥∥∫
Rd
eix·ξe±it|ξ|

2

û0(ξ) dξ

∥∥∥∥
LpeL

q

t,e⊥

=

∥∥∥∥∥
∫

[e]⊥

∫
{±τ≥ξ2

e⊥
}
e±itτeixe⊥ξe⊥ e

ixe
√
±τ−ξ2

e⊥ û(τ, ξe⊥)dτdξe⊥

∥∥∥∥∥
LpeL

q

t,e⊥

. λ
d+1
2 −

1
p−

d+1
q

∥∥∥∥∥û0(
√
τ − ξ2

e⊥
e+ ξe⊥)

(
2
√
±τ − ξ2

e⊥

)−1

χ{±τ > ξ2
e⊥}

∥∥∥∥∥
L2

τ,e⊥

. λ
d
2−

1
p−

d+1
q ‖u0‖L2

x
,

where, for the last inequality, we reverse the coordinate change and estimate the Jacobian. For
the second statement, the estimate follows from Strichartz estimates for the Schrödinger group
and from the above coordinate transform in the backward direction. To be more precise, we
estimate∥∥∥∥e−ixeD±t,xe⊥ u(t, xe⊥)

∥∥∥∥
LptL

q
x

=

∥∥∥∥∫
Rd
eix·ξe±it|ξ|

2

û(±|ξ|2, ξe⊥) 2(ξ · e)dξ
∥∥∥∥
LptL

q
x

. λ
d+1
2 −

2
p−

d
q

∥∥∥(ξ · e) 1
2 û(±|ξ|2, ξe⊥)χ{ξ · e ≥ 0}

∥∥∥
L2
x

. λ
d+1
2 −

2
p−

d
q ‖u(t, xe⊥)‖L2

t,x
e⊥
.

�

Remark A.4. In the case supp(û0) ⊂ Adλ, we obtain from Corollary A.3

sup
e∈M

∥∥e±it∆Pe(∇)u0

∥∥
LpeL

q

t,e⊥
≤ Cλ

d
2−

1
p−

(d+1)
q ‖u0‖L2

x
,(A.16)

and especially the LpeL∞t,e⊥ estimate for q =∞, pd ≥ 4, d ≥ 3.

The next Lemma (from [1]) shows that the Pe(∇) localization on the LHS of (A.16) is not
necessary in the case q =∞ if dp > 4.

Lemma A.5. Let u0 ∈ L2(Rd) such that supp(û0) ⊂ Adλ for some dyadic λ ∈ 2Z. Then there
holds

sup
e∈M

∥∥e±it∆u0

∥∥
LpeL

∞
t,e⊥
≤ Cd,pλ

d
2−

1
p ‖u0‖L2

x
,(A.17)

where 1 ≤ p ≤ ∞ and dp > 4. Let u ∈ S ′(R×Rd), such that

supp(û) ⊂ {(τ, ξẽ⊥) | (τ, ξ) ∈ B±ẽ ∩Aλ}

for some λ ∈ 2Z and ẽ ∈M. Then there holds

sup
e∈M

∥∥∥e−irD±t,xeu(t, xe⊥)
∥∥∥
LprL

∞
t,x
e⊥

≤ Cd,pλ
d+1
2 −

1
p ‖u(t, xẽ⊥)‖L2

t,x
ẽ⊥
,(A.18)

where (d, p) are as above.

Proof. By scaling we reduce again to the unit frequency λ = 1. Then estimate (A.17) is a
consequence of the TT ∗ argument for the Schrödinger group in the space LpeL∞t,e⊥ and Young’s
inequality. As mentioned before, we obtain the decay∣∣∣∣∫

Rd
eix·ξe±it|ξ|

2

ϕ(|ξ|)dξ
∣∣∣∣ . (1 + |x · e|)− d2 ,

which implies (for dp > 4)∥∥∥∥∫
Rd
eix·ξe±it|ξ|

2

ϕ(|ξ|)dξ
∥∥∥∥
L
p
2
e L
∞
t,e⊥

. 1.
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Then by Young’s inequality∥∥∥∥∫ e±i(t−s)∆f(s) ds

∥∥∥∥
LpeL

∞
t,e⊥

. ‖f‖
Lp
′
e L

1

t,e⊥
,

which implies (A.17) by TT ∗. For (A.18), we use again (note û is localized in B±e , thus (A.3)
holds)∫

Rd
eix·ξe±it|ξ|

2

ϕ(|ξ|)dξ

=

∫
[e]⊥

∫
±τ≥ξ2

e⊥

eixe
√
±τ−ξ

e⊥ ei(xe⊥ ,t)·(ξe⊥ ,±τ)ϕ0(
√
±τ)

dτ

2
√
±τ − ξe⊥

dξe⊥

and thus we obtain (A.18) also from TT ∗ and Young’s inequality for exp(−iD±
t,e⊥

). �

Remark A.6. The first estimate in Lemma A.5 holds more general by the same argument in the
following sense. Let u0, u as above in Lemma A.5 and further 1 ≤ p, q ≤ ∞ such that q > 4
and {

4q
q−4 < dp, q <∞

4 < dp, q =∞.
(A.19)

Then there holds

sup
e∈M

∥∥e±it∆u0

∥∥
LpeL

q

t,e⊥
≤ Cd,p,qλ

d
2−

d+1
q −

1
p ‖u0‖L2

x
,(A.20)

Provided (A.19) holds, it is verified that∫ ∞
∞

(∫ ∞
0

(1 + |xe|+ r)−
dq
4 rd−1 dr

) p
q

dxe <∞,

which is required by the argument in the proof of Lemma A.5, if we use∣∣∣∣∫
Rd
eix·ξe±it|ξ|

2

ϕ(|ξ|)dξ
∣∣∣∣ . (1 + |xe|+ |(t, xe⊥)|)− d2 .

Under the assumption (A.19), we especially infer
2

p
+
d

q
<

2d(q − 4) + 4d

4q
=
d(q − 2)

2q
<
d

2
,

so that (p, q) is admissible. This is a natural requirement, since typically Strichartz bounds with
bounded frequency rely on estimating the truncated dispersion factor via Young’s inequality.

Remark A.7. We apply the estimates to Lemma 2.5 and Lemma 2.6 in Section 2. Also, in
Section 2, we need to use Corollary A.3 and Lemma A.5 for functions on Rd that have Fourier
support in Adλ/2 ∪ A

d
λ ∪ Ad2λ. This is observed (for all t ∈ R) e.g. for functions on Rd+1

localized (in (τ, ξ)) in Be ∩ Aλ, which have Fourier support in Adλ ∪ Adλ/2, and this poses no
problem to the proof.
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