Software Impacts 8 (2021) 100057

journal homepage: www.journals.elsevier.com/software-impacts

Contents lists available at ScienceDirect

Software Impacts

SOFTWARE
IMPACTS

Original software publication

iviz: A ROS visualization app for mobile devices™ m

Antonio Zea *, Uwe D. Hanebeck

Check for
updates

Intelligent Sensor-Actuator-Systems Laboratory (ISAS), Karlsruhe Institute of Technology (KIT), Adenauerring 2 Geb. 50.20, 76131 Karlsruhe, Germany

ARTICLE INFO ABSTRACT

Keywords:
Robotics

Data visualization
Augmented reality

In this work, we introduce iviz, a mobile application for visualizing data in the Robot Operating System (ROS).
In the last few years, the popularity of ROS has grown enormously, making it the standard platform for robotic
programming. However, the availability of this environment is generally restricted to PCs with the Linux
operating system. Thus, users wanting to see what is happening in the system with a smartphone or a tablet

are stuck with solutions such as screen mirroring or web browser versions of rviz, making newer visualization
modalities such as Augmented Reality impossible. Our application iviz, based on the Unity engine, addresses
these issues by providing a visualization platform designed from scratch to be usable in mobile platforms such
as i0S, Android, and UWP, and including native support for Augmented Reality for all three platforms. If
desired, it can also be used in a PC with Linux, Windows, or macOS without any changes.

Code metadata

Current code version

Permanent link to code/repository used for this code version
Permanent link to Reproducible Capsule

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual

Support email for questions

v1.0 devel
https://github.com/Softwarelmpacts/SIMPAC-2021-1

MIT

git

C#

Unity Engine 2019.4 or greater, .NET Standard 2.0 or greater
https://github.com/KIT-ISAS/iviz/tree/devel/iviz
antonio.zea@Xkit.edu

1. Introduction

Since its inception in 2007, the Robot Operating System (ROS) [1]
has been gaining ground as the premiere middleware platform for robot
programming. Nowadays, ROS can be seen in every field of robotics,
from tiny vacuum cleaners [2] to lawn tractors [3], from underwater
vehicles [4] to deployments in outer space [5] and even for decon-
tamination of hazardous environments [6]. Traditionally, visualization
of robotic data has been limited to static two-dimensional displays,
such as computer monitors. However, being able to visualize this
data next to the real-world place where it was generated can provide
precious contextual information that would otherwise be missed in a
2D display. This motivates an emphasis on Augmented Reality (AR)
and Virtual Reality (VR) technologies, capable of displaying arbitrary
three-dimensional information in any point in space.

Multiple projects in literature have combined ROS with VR [7-9]
and AR [10-14], especially in an industrial setting [15]. While AR in
robotics is not exactly new, it has seen an explosion in growth in the
last five to seven years following the appearance of affordable, off-the-
shelf devices with accurate and robust user tracking, such as the (rather
pricey) Microsoft Hololens. More affordable alternatives exist in the
form of Apple’s ARKit and Google’s ARCore, which can turn everyday
smartphones and tablets into AR presentation devices. Unfortunately,
mobile devices do not intersect with the platforms that ROS has tra-
ditionally supported, i.e., PCs with Linux using C++ or Python — a
notable exception being [16] from 2012. However, the increasing data
processing power of mobile devices, together with the advantages of
AR (such as reduced cognitive load [17]), are causing a reevaluation
from the ROS community, showing the need for appropriate software
platforms that can take advantage of these new capabilities.

* Funding: This work was supported by the Federal Ministry of Education and Research of Germany (BMBF) in the framework of ROBDEKON [project number

13N14675].
* Corresponding author.

E-mail addresses: antonio.zea@kit.edu (A. Zea), uwe.hanebeck@kit.edu (U.D. Hanebeck).

https://doi.org/10.1016/j.simpa.2021.100057
Received 1 January 2021; Accepted 23 January 2021

2665-9638/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.1016/j.simpa.2021.100057
http://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2021.100057&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2021-1
https://github.com/KIT-ISAS/iviz/tree/devel/iviz
mailto:antonio.zea@kit.edu
mailto:antonio.zea@kit.edu
mailto:uwe.hanebeck@kit.edu
https://doi.org/10.1016/j.simpa.2021.100057
http://creativecommons.org/licenses/by/4.0/

A. Zea and U.D. Hanebeck

(a) AR visualization of a robotic excavator
from Fraunhofer IOSB.

(c¢) Armar6 robot from KIT with mesh
markers.

Software Impacts 8 (2021) 100057

14 (0He Okbra | 0 drop

56736 gl 0 il

Coormap
 Colormap P i
Show s Tetued Plane

nnnnnnn Fhow ks bas

(b) GUI example for topic selection.

(d) AR teleoperation of a GammaBot
robotic platform with on-screen joysticks.

Fig. 1. Examples of the iviz application in use [18,19].

In this paper, we introduce iviz, a new platform for ROS data
visualization in mobile devices, in particular Android/iOS smartphones
and tablets, and the Microsoft Hololens. We have the following goals
for our platform: (i) being able to visualize a wide variety of ROS data,
from point clouds to interactive markers, (ii) with fast update rate and
(relatively) low latency, and (iii) with direct support for AR (as in
Fig. 1(a)). Our application is based on the Unity engine and written
in C#, which allows us to target many operating systems and devices
with no changes in the code. The central motivation is to have a mobile
app that allows a user to simply pull out a tablet or smartphone at
any moment, enter a ROS network, and with a couple of taps be able
to see what is going on with a robot (Fig. 1(b)), without requiring
special nodes or services in the system. Additionally, by enabling the
AR module, the 3D view can be projected onto the real world with just
a single tap.

2. Challenges

ROS is a quasi-operating system with its own drivers, modules,
and utilities. Fortunately, we do not need to rewrite them into our
mobile app in order to benefit from them, as ROS provides interfaces
that allow their entire functionality to be accessed remotely from the
network. Thus, in order to ‘talk’ to a ROS system, all we need to do is
to implement its network layer. However, this task yields three main
challenges. First, we need a message serialization mechanism that can
be used easily from C# in a mobile device. Second, we require an im-
plementation of the ROS API that lets us talk to other ROS nodes. And
third, robot visualization requires assets such as meshes and textures
located on the ROS hub. Thus, we need some way to automatically
transfer them to the mobile device as needed. Implementing the ROS
API is not an easy task, and for this reason mobile ROS program-
mers have traditionally preferred the Rosbridge suite [20] instead,
for example in [9,12-14]. However, the centralized architecture and
JSON-based message serialization quickly lead to issues of scalability

and performance. To alleviate this issue, Unity has introduced its
own serialization mechanism [21], which unfortunately still requires a
centralized node, thus leaving the bottleneck issue unresolved. The new
version of ROS, called ‘ROS 2’, aims to address these issues of platform
portability. However, while there are already experimental libraries for
C# and Unity [22,23], ROS 2 is not backwards-compatible, and thus,
most existing code will still require ROS 1 for the foreseeable future.

3. The iviz suite

Thus, we are left with the more challenging (but more rewarding)
option: reimplementing the ROS API in C# from scratch, aiming for
a code base that is usable not only by our visualization app, but also
by any other project based on C#. Furthermore, none of the modules
require a full ROS installation, and thus, installing them on a computer
consists simply of copying a directory. The iviz suite is divided into the
following submodules.

Message parser: Similar to the roscpp library, the iviz msgs gen module
takes ROS message definition files and builds C# code from them,
encapsulating the dependencies as class constants.

ROS client: The iviz roslib module implements topics, services, access
to the parameter server, and an experimental action client. It is based
on the ROS# interface [24], widely known by Rosbridge users.

Asset loader: An important challenge when visualizing data from a
robot is how to show the robot itself. We need not only the robot
definition, but also its meshes, textures, pose information, and so on.
While it is possible to copy this information by hand, it is preferrable
to have an automated routine that transfers only the necessary files.
To achieve this, we introduce the iviz loader service, an optional stand-
alone ROS node written in C# that runs on the PC with the assets. It
communicates automatically on the background with the visualization
app, without requiring input from the user.

Visualization app: This is the main application, based on the Unity
engine. Similar to rviz [25] (the ‘standard’ visualization program for



A. Zea and U.D. Hanebeck

ROS), iviz relies heavily on the concept of ‘displays’, i.e., reusable
and recyclable code modules tasked with rendering entities such as
lines, point clouds, duplicated meshes, etc. For instance, a module
in charge of displaying a PointCloud2 message can also be reused to
‘unproject’ depth images from a Image topic, or to display a Point
List marker. Implemented displays include pointclouds, laser scans,
(interactive) markers (Fig. 1(c)), occupancy grids, among others. A
module for on-screen joysticks (Fig. 1(d)) is also included, allowing
for quick teleoperation with Twist messages. Of interest is the module
for augmented reality. Activating it is straightforward: first, set up the
scene by adding topics as necessary, and then enable AR. Look for a
suitable surface, like the floor or a table, and finally, click on the ‘Start’
button. The scene will appear on that surface. Finally, the user can
rotate, translate, and scale the scene as necessary.

4. Impact

The iviz platform is, to the authors’ knowledge, the first generic
ROS visualization app for mobile devices with native support for AR.
While nowhere near as fully-featured as rviz, it has the advantage of
being usable in every major desktop and mobile OS. This, together with
AR, allows for a wide array of new, more intuitive visualization and
interaction modalities. For example, planning the motion of a robotic
arm does no longer require looking at a monitor. Instead, a planned
path can be rendered directly on top and around the robot, together
with interactive markers shown on their real 3D positions, which can
be dragged with a simple finger movement. And unlike Rosbridge
solutions, iviz does not require changing the ROS system by installing a
new node. Thus, a user with a tablet only requires a login to the robot
network, the IP of the master, and can immediately start teleoperating
a robot with the joysticks. Momentarily, iviz is used primarily in the
context of the ROBDEKON project [6], and is tasked with teleoperating
remote tractors and humanoid robots [26] in hazardous environments.
A predecessor was used for indoor localization [27] with the Microsoft
Hololens, in cooperation with the German company PFW Aerospace.
This work will soon be expanded into an AR-based classification system
for industrial pipes, combining ROS image-processing nodes with the
Hololens 2.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.simpa.2021.100057.

References

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A.Y.
Ng, ROS: an open-source robot operating system, in: ICRA Workshop on Open
Source Software, vol. 3, no. 3.2, Kobe, Japan, 2009, p. 5.

[2] A. Aratjo, D. Portugal, M.S. Couceiro, R.P. Rocha, Integrating arduino-based
educational mobile robots in ROS, J. Intell. Robot. Syst. 77 (2) (2015) 281-298.

[3] N.O. Lleras, S. Brennan, D. Murphy, M.J. Klena, P.M. Garvey, H. Sommer Iii,
Development of an open-source tractor driving simulator for tractor stability
tests, J. Agric. Saf. Health 22 (4) (2016) 227-246.

[4] K. DeMarco, M.E. West, T.R. Collins, An implementation of ROS on the yellowfin
autonomous underwater vehicle (AUV), in: OCEANS’11 MTS/IEEE KONA, IEEE,
2011, pp. 1-7.

[5]

[6]

[7]

[8]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

Software Impacts 8 (2021) 100057

J. Badger, D. Gooding, K. Ensley, K. Hambuchen, A. Thackston, ROS In space:
A case study on robonaut 2, in: Robot Operating System (ROS), Springer, 2016,
pp. 343-373.

J. Petereit, J. Beyerer, T. Asfour, S. Gentes, B. Hein, U.D. Hanebeck, F. Kirchner,
R. Dillmann, H.H. Gotting, M. Weiser, et al., ROBDEKON: Robotic systems
for decontamination in hazardous environments, in: 2019 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR), IEEE, 2019,
pp. 249-255.

J.J. Roldén, E. Pefia-Tapia, D. Garzén-Ramos, J. de Leén, M. Garzén, J. del Cerro,
A. Barrientos, Multi-robot systems, virtual reality and ROS: developing a new
generation of operator interfaces, in: Robot Operating System (ROS), Springer,
2019, pp. 29-64.

D. Whitney, E. Rosen, D. Ullman, E. Phillips, S. Tellex, Ros reality: A virtual
reality framework using consumer-grade hardware for ros-enabled robots, in:
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2018, pp. 1-9.

F. Muhammad, A. Hassan, A. Cleaver, J. Sinapov, Creating a shared reality
with robots, in: 2019 14th ACM/IEEE International Conference on Human-Robot
Interaction (HRI), IEEE, 2019, pp. 614-615.

L. Peppoloni, F. Brizzi, C.A. Avizzano, E. Ruffaldi, Immersive ROS-integrated
framework for robot teleoperation, in: 2015 IEEE Symposium on 3D User
Interfaces (3DUI), IEEE, 2015, pp. 177-178.

D. Lee, Y.S. Park, Implementation of augmented teleoperation system based on
robot operating system (ROS), in: 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 5497-5502.

L. Kastner, J. Lambrecht, Augmented-reality-based visualization of navigation
data of mobile robots on the microsoft hololens-possibilities and limitations, in:
2019 IEEE International Conference on Cybernetics and Intelligent Systems (CIS)
and IEEE Conference on Robotics, Automation and Mechatronics (RAM), IEEE,
2019, pp. 344-349.

L. Manring, J. Pederson, D. Potts, B. Boardman, D. Mascarenas, T. Harden, A.
Cattaneo, Augmented reality for interactive robot control, in: Special Topics
in Structural Dynamics & Experimental Techniques, vol. 5, Springer, 2020,
pp. 11-18.

J. Guhl, S. Tung, J. Kruger, Concept and architecture for programming industrial
robots using augmented reality with mobile devices like microsoft hololens, in:
2017 22nd IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), IEEE, 2017, pp. 1-4.

E. Sita, C.M. Horvath, T. Thomessen, P. Korondi, A.G. Pipe, Ros-unity3d
based system for monitoring of an industrial robotic process, in: 2017
IEEE/SICE International Symposium on System Integration (SII), IEEE, 2017,
pp. 1047-1052.

A. Zimmermann, Rviz for Android, 2012, URL http://wiki.ros.org/rviz for_
android.

J. Baumeister, S.Y. Ssin, N.A. ElSayed, J. Dorrian, D.P. Webb, J.A. Walsh, T.M.
Simon, A. Irlitti, R.T. Smith, M. Kohler, et al., Cognitive cost of using augmented
reality displays, IEEE Trans. Vis. Comput. Graph. 23 (11) (2017) 2378-2388.
T. Emter, C. Frese, A. Zube, J. Petereit, Algorithm toolbox for autonomous mobile
robotic systems, ATZoffhighway Worldw. 10 (3) (2017) 48-53.

T. Asfour, L. Kaul, M. Wichter, S. Ottenhaus, P. Weiner, S. Rader, R. Grimm,
Y. Zhou, M. Grotz, F. Paus, et al., Armar-6: A collaborative humanoid robot for
industrial environments, in: 2018 IEEE-RAS 18th International Conference on
Humanoid Robots (Humanoids), IEEE, 2018, pp. 447-454.

C. Crick, G. Jay, S. Osentoski, B. Pitzer, O.C. Jenkins, Rosbridge: ROS for
non-ROS users, in: Robotics Research, Springer, 2017, pp. 493-504.

C. Greene, J. Platin, M. Pifiol, A. Trang, V. Vij, Robotics simulation in unity is
as easy as 1, 2, 3!, 2020, URL https://blogs.unity3d.com/2020/11/19/robotics-
simulation-in-unity-is-as-easy-as-1-2-3/.

S. Lindgren, ROS2 for unity, 2019, URL https://github.com/DynoRobotics/
UnityRos2.

E. Fernandez, S. Kelly, ROS2 for .NET, 2019, URL https://github.com/ros2-
dotnet/ros2_dotnet.

M. Bischoff, Ros#, 2018, URL https://github.com/siemens/ros-sharp.

D. Hershberger, D. Gossow, J. Faust, RViz, a 3D visualization tool for ROS, 2019,
URL http://wiki.ros.org/rviz.

C. Pohl, K. Hitzler, R. Grimm, A. Zea, U.D. Hanebeck, T. Asfour, Affordance-
based grasping and manipulation in real world applications, in: Proceedings of
the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2020), Las Vegas, USA, 2020.

A. Zea, U.D. Hanebeck, Refining pose estimation for square markers using shape
fitting, in: Proceedings of the 22nd International Conference on Information
Fusion (Fusion 2019), 2019, pp. Ottawa, Canada.


https://doi.org/10.1016/j.simpa.2021.100057
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb1
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb1
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb1
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb1
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb1
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb2
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb2
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb2
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb3
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb3
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb3
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb3
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb3
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb4
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb4
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb4
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb4
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb4
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb5
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb5
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb5
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb5
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb5
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb6
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb6
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb6
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb6
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb6
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb6
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb6
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb6
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb6
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb7
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb7
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb7
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb7
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb7
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb7
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb7
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb8
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb8
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb8
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb8
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb8
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb8
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb8
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb9
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb9
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb9
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb9
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb9
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb10
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb10
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb10
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb10
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb10
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb11
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb11
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb11
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb11
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb11
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb12
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb12
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb12
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb12
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb12
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb12
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb12
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb12
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb12
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb13
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb13
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb13
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb13
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb13
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb13
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb13
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb14
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb14
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb14
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb14
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb14
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb14
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb14
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb15
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb15
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb15
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb15
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb15
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb15
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb15
http://wiki.ros.org/rviz_for_android
http://wiki.ros.org/rviz_for_android
http://wiki.ros.org/rviz_for_android
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb17
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb17
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb17
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb17
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb17
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb18
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb18
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb18
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb19
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb19
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb19
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb19
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb19
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb19
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb19
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb20
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb20
http://refhub.elsevier.com/S2665-9638(21)00005-1/sb20
https://blogs.unity3d.com/2020/11/19/robotics-simulation-in-unity-is-as-easy-as-1-2-3/
https://blogs.unity3d.com/2020/11/19/robotics-simulation-in-unity-is-as-easy-as-1-2-3/
https://blogs.unity3d.com/2020/11/19/robotics-simulation-in-unity-is-as-easy-as-1-2-3/
https://github.com/DynoRobotics/UnityRos2
https://github.com/DynoRobotics/UnityRos2
https://github.com/DynoRobotics/UnityRos2
https://github.com/ros2-dotnet/ros2_dotnet
https://github.com/ros2-dotnet/ros2_dotnet
https://github.com/ros2-dotnet/ros2_dotnet
https://github.com/siemens/ros-sharp
http://wiki.ros.org/rviz

	iviz: A ROS visualization app for mobile devices
	Introduction
	Challenges
	The iviz suite
	Impact
	Declaration of competing interest
	Appendix A. Supplementary data
	References


