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TANGENTIAL CONE CONDITION AND LIPSCHITZ STABILITY
FOR THE FULL WAVEFORM FORWARD OPERATOR

IN THE ACOUSTIC REGIME

MATTHIAS ELLER AND ANDREAS RIEDER

Abstract. Time-domain full waveform inversion (FWI) in the acoustic regime com-
prises a parameter identification problem for the acoustic wave equation: Pressure waves
are initiated by sources, get scattered by the earth’s inner structure, and their reflected
parts are picked up by receivers located on the surface. From these reflected wave fields
the two parameters, density and sound speed, have to be reconstructed. Mathematically,
FWI reduces to the solution of a nonlinear and ill-posed operator equation involving the
parameter-to-solution map of the wave equation. Newton-like iterative regularization
schemes are well suited and well analyzed to tackle this inverse problem. Their con-
vergence results are often based on an assumption about the nonlinear map known as
tangential cone condition. In this paper we verify this assumption for a semi-discrete
version of FWI where the searched-for parameters are restricted to a finite dimensional
space. As a byproduct we establish that the semi-discrete seismic inverse problem is
locally Lipschitz stable, in particular, it is conditionally well-posed.

1. Introduction

Time-domain full waveform inversion (FWI) is the up-to-date geophysical imaging
technique being capable to exploit the full information content of recorded seismic waves
which have been excited locally by controlled sources or globally by earthquakes, see,
e.g., [9, 28] for a presentation from a geophysical point of view. Mathematically, FWI
entails a parameter identification task for the underlying wave propagation model. In the
acoustic regime, where the medium does not support shear stress, wave propagation is
modeled by the acoustic/compressional wave equation and the searched-for parameters
are pressure wave speed vp and bulk density %. In this paper we rigorously explore a
mathematical aspect of FWI in the acoustic setting.

Let S be the corresponding parameter-to-solution (parameter-to-state) map that maps
(vp, %) to (p,v), the pressure and velocity fields (solution of the acoustic wave equation
with respect to vp and %). Then, FWI in the acoustic regime means the solution of the
(nonlinear) equation

(1.1) ΨS(vp, %) = Ψ(p,v)

where the observation operator Ψ models the measurement process (in the geophysical
language, Ψ(p,v) collects the seismograms). Since the inverse problem (1.1) is locally
ill-posed (in the infinite-dimensional setting, see [15, 16]), it requires to be regularized.
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Newton-like iterative regularization schemes are well-established workhorses for stably
solving nonlinear ill-posed problems like (1.1), see, e.g., [10, 12, 19, 21, 24]. To simplify
the notation let us consider a generic setting where F : D(F ) ⊂ V → W denotes the
underlying nonlinear operator between Banach spaces. Assume we want to solve F (x) = y
for a given y ∈ W by a Newton-like scheme. The generic iteration rule reads: choose a
starting guess x0 ∈ D(F ) and iterate according to

xk+1 = xk + sk where sk is such that F ′(xk)sk ≈ y − F (xk).

Here, F ′ is the Fréchet-derivative (F-derivative) of F . The various methods differ in
how they determine the Newton step sk from the locally linearized equation. Their
convergence analysis, however, often relies on the same structural assumption which is
known under the name tangential cone condition (TCC). It can be traced back to [22]
and reads: F satisfies the TCC at x+ ∈ int(D(F )) if

(1.2) ‖F (v)− F (w)− F ′(w)(v − w)‖W ≤ η ‖F (v)− F (w)‖W for all v, w ∈ Br(x
+)

for an η < 1 (sufficiently small) where Br(x
+) is the open ball in V of radius r > 0

about x+ (sometimes the TCC is formulated in a ball with respect to a Bregman distance).
In the fully continuous (infinite dimensional) setting only a few academic examples

of nonlinear ill-posed problems are known for which TCC holds, see, e.g., [10, Sec. 4]
and [12, Sec. 2.4], but consult [13] for recent developments. However, in a semi-discrete
setting the situation is more relaxed. For instance, a semi-discrete TCC has been derived
for the inverse problem of the complete electrode model in 2D-electrical impedance to-
mography [18]. It turns out that injectivity of F ′(x+) is essentially sufficient not only to
yield a semi-discrete TCC but also a Lipschitz stability like

(1.3) ‖v − w‖W ≤ c‖F (v)− F (w)‖W for all v, w ∈ Br(x
+)

where c > 0 is a constant. We will demonstrate this implication under rather general
assumptions. Semi-discrete Lipschitz estimates and conditional well-posedness for various
inverse problems have already been derived, e.g., in [1, 2, 3, 4, 5] and we add time-domain
FWI in the acoustic regime to this list. In fact, if we confine vp and % to suitable finite
dimensional spaces, the F-derivative of ΨS is one-to-one.

We need to emphasize that, in general, neither (1.3) nor (1.2) carry over to the continu-
ous setting when the finite dimension of the semi-discrete setting is increased. Typically,
the constant in (1.3) blows up while the radius r decreases. This will occur for our FWI
application, since otherwise (1.1) would be locally well-posed in the infinite-dimensional
formulation.

The presentation of our findings is organized as follows. In the next section we set the
stage by introducing the acoustic wave equation as a first order system and by recalling
existence and uniqueness results. Then, in Section 3 we define our semi-discrete model
where sources are fired in one part Σ of the propagation medium D and the resulting
wave fields are recorded at a possibly different part Ω of D. Here, sound speed and bulk
density are expressed as linear combinations of smooth basis functions which are locally
independent in D: if a linear combination vanishes on an open subset of D it vanishes
globally in D. For this model we formulate the seismic inverse problem and characterize
the F-derivative of the forward map by a different but akin acoustic wave equation. For
this wave equation we show a fundamental property in Proposition 3.1: there is a source
supported in Σ such that the wave field of the F-derivative does not vanish identically
on Ω. The proof is based on Holmgren’s uniqueness theorem and the propagation of
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singularities along bicharacteristics of the wave operator. Finally, Section 4 presents the
main result (Theorem 4.1) which originates from a local uniqueness statement that even
holds when only one single source is fired (Remark 4.4).

So as not to distract the reader from the overall picture we kept the main part of
the paper rather short by moving technical and auxiliary material to three appendices:
Appendix A contains the proof of Proposition 3.1. In Appendix B we prove Lipschitz
continuity of the F-derivative of the forward map within an abstract setting. Therefore,
Theorem B.2 covers other first order systems as well. The final Appendix C includes
likewise an auxiliary statement which is nevertheless interesting in its own right: a semi-
discrete mapping whose F-derivative is injective and continuous, satisfies the TCC and
is locally Lipschitz stable (Lemma C.1).

2. The setting

We consider the acoustic wave equation as a first order system. Let p : [0,∞) ×D → R
and v : [0,∞) ×D → Rd, d ∈ {2, 3}, be the pressure and the velocity field, respectively,
where D ⊂ Rd is a bounded, connected domain with a piecewise C1-boundary. Then,

c(x) ∂tp(t, x) = div v(t, x) + f(t, x) in [0,∞)×D,(2.1)

%(x)∂tv(t, x) = ∇p(t, x) in [0,∞)×D,(2.2)

with initial values p(0, ·) = p0 and v(0, ·) = v0. Here, f : [0,∞) × D → R denotes the
source wavelet which initiates wave propagation in case the initial values are zero which
holds for geophysical exploration. Further, c, % : D → (0,∞) where % is the bulk density
and 1/c = % v2

p is the P-wave or bulk modulus. We work with c rather than with vp, only
to simplify the presentation.

The wave equation (2.1)-(2.2) can be written as initial value problem

(2.3) B∂tu = −Au+ f̃(t), u(0) =

(
p0

v0

)
=: u0,

where u(t) =
(
p(t, ·),v(t, ·)

)
, f̃(t) =

(
f(t, ·), 0

)
,

(2.4) B =

(
c 0
0 % Id

)
, and A = −

(
0 div
∇ 0

)
.

Let us define the space X = L2(D)× L2(D,Rd) and its subset

(2.5) D(A) :=
{

(p,v) ∈ H1(D)×H1(div, D) : n · v|∂DN
= 0, p|∂DD

= 0
}

with ∂D = ∂DD ∪̇ ∂DN . The operator A : D(A) ⊂ X → X is maximal monotone, see the
beginning of Appendix B for a definition.

If (p0,v0) ∈ D(A), f ∈ W 1,1
(
[0,∞), L2(D)

)
,1 and

(2.6) c, % ∈ P := {λ ∈ L∞(D) : 0 < λ− < λ(·) < λ+ <∞ a.e.}

then (2.1)-(2.2) admit a unique classical solution (p,v) ∈ C
(
[0,∞),D(A)

)
∩C1

(
[0,∞), X

)
,

see, e.g., [16].

1For a Banach space Y , let W 1,1
(
[0, T ], Y

)
=
{
v ∈ C

(
[0, T ], Y

)
: v′ ∈ L1

(
[0, T ], Y

)}
. Recursively, one

defines W k,1
(
[0, T ], Y

)
for k ∈ N, k ≥ 2.
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If (p0,v0) ∈ X, f ∈ L1
loc

(
[0,∞), L2(D)

)
then (2.1)-(2.2) admit a unique mild/weak

solution u ∈ C
(
[0,∞), X

)
which – in the notation of (2.3) – satisfies

(2.7) Bu(t) = Bu0 + A

∫ t

0

u(s)ds+

∫ t

0

f̃(s)ds,

see, e.g., [23, Prop. 2.15].

3. The semi-discrete full waveform forward map

Let (p0,v0) ∈ D(A) and f ∈ W 1,1
(
[0, T ], L2(Σ)

)
where Σ ⊂ D is an open set where

the sources can be initiated. As we can recover only finitely many degrees of freedom we
restrict the parameters of (2.1)-(2.2) to a finite dimensional space. To this end we set

V := span{ϕj : j = 1, . . . ,M} ⊂ C1(D)

where the functions {ϕj : j = 1, . . .M} are locally independent over D, that is, if a linear
combination vanishes on a nonempty open subset Ω of D then the linear combination
must be trivial:

(3.1)
M∑
j=1

ajϕj|Ω = 0 =⇒ aj = 0, j = 1, . . . ,M.

Concrete examples for V include:

(1) Polynomials: V = ΠN(Rd), the space of d-variate polynomials of total degree N .
Here, the dimension of V is M =

(
N+d
d

)
.

(2) Real-analytic radial basis functions: Let ϕ : Rd → R be a positive definite and
radially symmetric function, see, e.g., [29, Chap. 6]. For pairwise different knots
ξj ∈ D, j = 1, . . . ,M , the translates {ϕ(· − ξj) : j = 1, . . .M} are linear inde-
pendent over D. If ϕ is additionally real-analytic then these translates are also
locally independent. In fact, any linear combination of these translates is itself an
analytic function and as such zero everywhere in D if it vanishes on a nonempty
open subset.

For instance, the Gaussian ϕ(x) = exp(−γ|x|2), γ > 0, and the multiquadrics
ϕ(x) = 1/(1 + |x|2)β, β > 0, have the required properties and are, moreover,
positive.

With V+ := V ∩ P we define the parameter-to-solution (parameter-to-state) map by

F : V 2
+ ⊂ V 2 → C

(
[0, T ], X

)
, (c, %) 7→ (p,v),

where (p,v) solves (2.1)-(2.2). Note that F is well defined and F-differentiable. Its
F-derivative F ′ : V 2

+ ⊂ V 2 → L
(
V 2,C

(
[0, T ], X

))
is given by

F ′(c, %)[h1, h2] = (p,v)

where (p,v) ∈ C
(
[0, T ], X

)
is the mild solution of

c(x) ∂tp(t, x) = div v(t, x)− h1(x) ∂tp(t, x) in [0, T ]×D,(3.2)

%(x) ∂tv(t, x) = ∇p(t, x)− h2(x) ∂tv(t, x) in [0, T ]×D,(3.3)

with p(0, ·) = 0, v(0, ·) = 0 and (p,v) = F (c, %), see, e.g., [16].

In seismic exploration only part of the wave field can be measured. To model this fact, we
introduce the observation (restriction) operator Ψ: C

(
[0, T ], X

)
→ C

(
[0, T ], XΩ

)
, XΩ :=

L2(Ω)×L2(Ω,Rd), Ψ(p,v) = (p|Ω,v|Ω), where Ω ⊂ D is open, nonempty and connected.
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The following property of the wave system (3.2)-(3.3) is fundamental for our main
result in Theorem 4.1 below. Its technical and somewhat lengthy proof is content of
Appendix A. For its formulation we introduce the space

W 2,1
0 :=

{
f ∈ W 2,1

(
[0, T ], L2(Σ)

)
: f(0) = f ′(0) = 0

}
and the Riemannian distance function

(3.4) dist(x, y) = inf
γ

∫ β

α

|γ′(t)|
vp(γ(t))

dt

in D, where the infimum is taken over all smooth curves γ in D satisfying γ(α) = x and
γ(β) = y. For E ⊂ D open and nonempty, let

dist(x,E) = inf
y∈E

dist(x, y) and dist(D,E) = sup
x∈D

dist(x,E).

Proposition 3.1. Suppose that h ∈ V 2\{0}. If

(3.5) T > dist(D,Σ),

then there exists an f ∈ W 2,1
0 with supp f ⊂ (0, T ) × Σ such that the mild solution

(p|Ω,v|Ω) of (3.2)-(3.3) is not identically zero in (0, T ). This f depends on ‖vp‖C1(D) but
not on h.

Remark 3.2. If D is convex, then we have the estimate

dist(x, y) ≤ |x− y|
infz∈D vp(z)

for all x, y ∈ D.

Hence, in this case, we can replace the condition on T in the proposition above by the
stronger condition

T > sup
x∈D

inf
y∈Σ

|x− y|
infz∈D vp(z)

,

which is easier to check than (3.5) when there is a lower bound for vp. Basically, T must
be large enough so that the wave triggered in Σ reaches the whole of D in the observation
period.

We set Φ = Ψ ◦ F . Then, FWI in a semi-discrete acoustic regime consists in finding
(c, %) ∈ V 2

+ such that

Φ(c, %) ≈ (p̃, ṽ)

for the measured wave field (p̃, ṽ) ∈ XΩ. Actually, above inverse problem coincides with
(1.1) via the relation vp = 1/

√
c%.

Note that

Φ′(c, %)[h1, h2] = ΨF ′(c, %)[h1, h2] = (p|Ω,v|Ω).

Remark 3.3. From a numerical point of view, our choice of global basis functions for
discretizing c and % seems a bit far-fetched. The straightforward approach would be, for
instance, to take indicator functions subordinate to the mesh of the used finite element
discretization of (2.1)-(2.2). In Remark A.3 of Appendix A we will address this issue in
greater detail.
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4. Injectivity, Lipschitz stability, and tangential cone condition

In a first step towards the tangential cone condition we verify injectivity of Φ′(c, %).
We cast the injectivity problem into an operator framework by setting

(4.1) p0 = 0 and v0 = 0

(the environment is at rest before we fire the source). Then the map f 7→ (p,v) is linear
and we redefine Φ by

(4.2) Φ̃ : V 2
+ ⊂ V 2 → L

(
W 2,1

0 ,C
(
[0, T ], XΩ

))︸ ︷︷ ︸
=: W

, (c, %) 7→
(
f 7→ Ψ(p,v)

)
,

that is, Φ̃(c, %)f = (p|Ω,v|Ω) where (p,v) solves (2.1)-(2.2), i.e., Φ̃(c, %) is the source-to-

state map. The F-derivative Φ̃′(c, %) ∈ L(V 2,W) is still given via (3.2)-(3.3). Indeed,

(4.3) Φ̃′(c, %)[h]f = (p|Ω,v|Ω)

where h = (h1, h2) ∈ V 2.
We right away state our main result of this work, namely that a Lipschitz estimate like

(1.3) and a TCC like (1.2) hold for Φ̃.

Theorem 4.1. For (c+, %+) ∈ V 2
+ there exist an open ball Br(c

+, %+) ⊂ V 2
+ such that

(4.4) ‖(c1, %1)− (c2, %2)‖V 2 .
∥∥Φ̃(c1, %1)− Φ̃(c2, %2)

∥∥
W

and ∥∥Φ̃(c1, %1)− Φ̃(c2, %2)− Φ̃′(c2, %2)[(c1, %1)− (c2, %2)]
∥∥
W

. ‖(c1, %1)− (c2, %2)‖V 2

∥∥Φ̃(c1, %1)− Φ̃(c2, %2)
∥∥
W

(4.5)

for all (ci, %i) ∈ Br(c
+, %+), i = 1, 2.

Please observe that the TCC (4.5) is slightly stronger than the generic formulation (1.2)
insofar as the involved constant decreases with the distance of the arguments (c1, %1) and
(c2, %2).

The proof of Theorem 4.1 is based upon two preparatory results which allow us to

apply Lemma C.1 of Appendix C to Φ̃. First, we show a local uniqueness result as an
immediate consequence of Proposition 3.1.

Corollary 4.2. The F-derivative Φ̃′(c, %) ∈ L(V 2,W) is an injective mapping and we
have that

(4.6) min
{
‖Φ̃′(c, %)[h]‖W : h ∈ V 2, ‖h‖V 2 = 1

}
> 0.

Proof. Assume the minimum to be zero. As V 2 is finite dimensional and Φ̃′(c, %) is

continuous, there is a normalized h ∈ V 2 such that Φ̃′(c, %)[h]f = 0 for all f ∈ W 2,1
0 . But

then h = 0 by Proposition 3.1 contradicting ‖h‖V 2 = 1. �

Second, we present a continuity result for Φ̃′ whose proof is given in Appendix B.

Theorem 4.3. We have Lipschitz continuity of the F-derivative V 2
+ 3 (c, %) 7→ Φ̃′(c, %) ∈

L(V 2,W), that is,

(4.7) ‖Φ̃′(c1, %1)− Φ̃′(c2, %2)‖L(V 2,W) . ‖(c1, %1)− (c2, %2)‖V 2 .2

2The notation A . B indicates the existence of a generic constant c > 0 such that A ≤ cB.
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The involved constant only depends on T , λ−, and λ+.

Finally, we are able to verify Theorem 4.1: Apply Lemma C.1b) with Θ = Φ̃, D(Θ) =
V 2

+, X = V 2, and Y = W. The necessary assumptions are satisfied according to Corol-
lary 4.2 and Theorem 4.3 with α = 1 due to (4.7).

Remark 4.4. At the end of Section 3 we have introduced the parameter-to-solution map

Φ: V 2
+ ⊂ V 2 → C

(
[0, T ], X

)
, (c, %) 7→ (p|Ω,v|Ω),

for one fixed source f in (2.1)-(2.2). In the language of the geophysical community, Φ

models a one-shot experiment whereas Φ̃ describes a multi-shot experiment.
The local uniqueness result of Corollary 4.2 holds accordingly for Φ provided the fired

single source f coincides with one of those whose existence for (c, %) is guaranteed by
Proposition 3.1. Further, Theorem 4.1 carries over to the single-source experiment as
well (provided the ’right’ source is fired).

5. Conclusion

In this paper we have verified that the full waveform forward operator Φ̃, see (4.2),
satisfies the tangential cone condition. Thus, the local convergence of many Newton-like
iteration schemes is guaranteed for recovering discrete approximations to the wave speed
and density from seismic recordings.

Our achievement should be improved by future research in several ways:
1. As already indicated by Remark 3.3, local basis functions have some advantages over

global functions for representing wave speed and density. Therefore, it would be desirable
to extend the tangential cone condition to this setting. In Remark A.3 we discuss the
resulting challenge in more detail.

2. A further goal is to incorporate more realistic wave propagation models like the elastic
or viscoelastic wave equations where the latter equation is the most accurate model right
now accounting for attenuation and dispersion. Both models fit in the abstract framework
of Appendix B, see [17]. Hence, a version of Theorem 4.3 holds for them as well. It
remains to verify local injectivity via an adapted version of Proposition 3.1, which we are
confident is valid for the linear elastic model. Moreover, a local Holmgren theorem for
visoelasticity was recently reported in [6].

3. The Lipschitz estimate (4.4) is local, that is, it holds in a neighborhood of (c+, %+)
only. We would like to extend it to an estimate which holds globally in V 2

+ since then
we would have a global uniqueness result for the semi-discrete seismic inverse problem in
the acoustic regime.

Appendix A. Proof of Proposition 3.1

The proof of Proposition 3.1 is based on the unique continuation and on the propagation
of singularities for our system. It will be advantageous to reduce the system (2.1)-(2.2)
to two second-order systems with scalar principal part:

c ∂2
t p = div

(1

%
∇p
)

+ ∂tf,

% ∂2
t v = ∇

(1

c
div v

)
+∇f

c
.

(A.1)
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The principal part of the equation of p is the second-order hyperbolic operator ∂2
t−v2

p(x)∆.

Recall that v2
p = 1/(c%). By (2.2) with zero initial data (4.1) we have that ∇× (%v) = 0.

Hence,

∇
(1

c
div v

)
= ∇

(1

c
div v

)
− 1

c%
∇× (∇× (%v))

=
1

c
∆v +

(
∇1

c

)
div v − 1

c%

[
∇%× (∇× v) +∇× (∇%× v)

]
,

which shows that the second-order system for v has also the second-order hyperbolic
operator ∂2

t − v2
p(x)∆ as its principal part.

After this preparation we can formulate a precise result on unique continuation for our
system, see [8, Theorem 1.1]. For that we recall also the definition of the Riemannian
metric (3.4).

Lemma A.1. Suppose that (p,v) ∈ L2((0, T )×D) is a weak solution to the homogeneous
system

c(x) ∂tp(t, x) = div v(t, x)

%(x) ∂tv(t, x) = ∇p(t, x)
in [0, T ]×D,

with coefficients c, % ∈ V 2
+. Let E ⊂ D be open. If T > 2 dist(D,E) and

(p,v) ≡ 0 in (0, T )× E,
then the function (p,v) vanishes at ‘half time’, that is,

(p,v)(T/2, x) = 0 for all x ∈ D.
Moreover, for any T1 > 0 with T > T1 + 2 dist(D,E), we have that

(p,v)(t, x) = 0 for all (t, x) ∈
(
T − T1

2
,
T + T1

2

)
×D.

The proof of this result consist of two distinct parts. At first one proves a local
uniqueness theorem (Holmgren uniqueness theorem), i.e., the unique continuation across
non-characteristic surfaces. In the second step, one uses geometry to produce a global
result, see [20].

Remark A.2. Our approach using the second-order system has the advantage that we
could invoke Tataru’s uniqueness theorem which proves local uniqueness even for coeffi-
cients which are analytic in time and C1 in space or vice versa [25, 26]. However, Tataru’s
result applies only to scalar second-order operators.

Even though (A.1) is a second-order system, its principal part is a scalar second-order
hyperbolic operator. With a small adjustment, Tataru’s approach can be applied [7].

Now we turn to the actual proof of Proposition 3.1 which is divided into two steps.
First, we will show that there exists a forcing term f such that for T > dist(D,Σ), the

wave field u = (p,v) does not vanish in (0, T )× Ω. We argue by contradiction. Suppose
that u ≡ 0 in (0, T )× Ω. Then, by Lemma A.1 there exists ε > 0 such that

(A.2) u ≡ 0 in

(
T − ε

2
,
T + ε

2

)
× (D\Σ).

Replacing the t variable by t− (T − ε)/2, we work in the space time cylinder (0, ε)×D
instead of

(
T−ε

2
, T+ε

2

)
×D.
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Let f(t, x) = λ(t)g(x) where λ ∈ C∞0 (0, ε) and g ∈ H1(D) with support in Σ, and
consider the initial-boundary value problem

(A.3) c ∂2
t p̃ = div

(1

%
∇p̃
)

in (0, ε)×D,

with initial data p̃(0, x) = g(x)/c(x), ∂tp̃(0, x) = 0, and boundary data

p̃ = 0 on (0, ε)× ∂DD and ∂ν p̃ = 0 on (0, ε)× ∂DN .

The boundary data are inferred from (2.1)-(2.2). This problem has a unique solution
p̃ ∈ C([0, ε], H1(D)). Furthermore, we define

(A.4) ṽ(t, x) :=
1

%

∫ t

0

∇p̃(s, x) ds.

Then ũ = (p̃, ṽ) satisfies system (2.1)-(2.2) with f = 0.
We will use propagation of singularities to establish that ũ is not zero in (0, ε)×(D\Σ).

Indeed, the singularities of the initial data g will travel along the null bicharacteristics of
the hyperbolic operator q(x, τ, ξ) = ∂2

t − v2
p(x)∆ which is the principal part of (A.3), see,

e.g., [27] or [11, Chap. 23]. We point out that this result is true as long as vp ∈ C∞(D).
The null bicharacteristics γ : R → ((0, ε) × D) × (R × Rd) are integral curves of the

vector field (∇τ,ξq,−∇t,xq) satisfying q ◦γ = 0. Setting γ(s) = (t(s), x(s); τ(s), ξ(s)), this
gives

dt

ds
= 2τ,

dx

ds
= −2v2

p(x)ξ,
dτ

ds
= 0,

dξ

ds
= ∇xv

2
p(x)|ξ|2,

so that q(x, τ, ξ) = τ 2 − v2
p(x)|ξ|2 = 0. Let

t(0) = 0, x(0) = x, τ(0) = τ , ξ(0) = ξ.

From q(x; τ , ξ) = 0 we infer that τ = ±|ξ|vp(x). Hence, over each point (x, ξ) at t = 0
there are two bicharacteristics. Furthermore, from the ODE we infer that τ(s) = τ for
all s and thus, t = 2τs = ±2|ξ|vp(x)s. So, in both bicharacteristics one can introduce t
as a parameter, that is, γ±(t) = (t, x±(t),±vp(x)|ξ|, ξ±(t)). By the chain rule

(A.5)
dx±
dt

= ∓vp(x)
ξ

|ξ|
and

dξ±
dt

= ±∇xvp(x)|ξ|.

If (x, ξ) is in the wave front set of g, then the segments of the two null bicharacteristics

γ± in ((0, ε)×D)× (R×Rd), with initial (x, ξ) at t = 0, will be in the wave front set of
ũ. The x component of the bicharacteristic is a geodesic of the metric (3.4).

There exist points (x, ξ) ∈ Σ × Rd such that at least one of the two bicharacteristics

with the initial data (x, ξ) will satisfy x+(t) ∈ D\Σ or x−(t) ∈ D\Σ for some 0 < t < ε.
This can be seen as follows. Let δ > 0 and let F ⊂ Σ with a smooth boundary such
that there exists x ∈ ∂F such that infz∈D\Σ |x − z| < δ. Choose ξ = νx. Then the

bicharacteristic starting at (x, ξ) satifies x−(t) ∈ D \ Σ for some t ∈ (0, ε). Note that
δ > 0 depends on ‖vp‖C1(D) in view of (A.5) and also on ε > 0.

Suppose now that g is supported in Σ and that its wave front set contains such the
point (x, ξ). Then the projection of the wave front set of the solution ũ = (p̃, ṽ) into
(0, ε) × D) must contain the points (t, x−(t)) and thus, the solution cannot vanish in
(0, ε)× (D\Σ).
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The solution of (2.1)-(2.2) can now be expressed by Duhamel’s principle via

u(t, x) = (p,v)(t, x) =

∫ t

0

λ(t− s)ũ(s, x) ds.

Indeed, one computes

∂tu(t, x) = λ(0)ũ(t, x) +

∫ t

0

λ′(t− s)ũ(s, x) ds

=

∫ t

0

λ(t− s)∂sũ(s, x) ds+ λ(t)ũ(0, x)

where we used that λ(0) = 0. Moreover, in view of (A.3) and (A.4) we have that

c ∂tp̃ =

∫ t

0

div

(
1

%
∇p̃(s, ·)

)
ds =

∫ t

0

div ∂sṽ(s, ·) ds = div ṽ and % ∂tṽ = ∇p̃,

which yield

∂tp =
1

c
div v +

1

c
f and ∂tv =

1

%
∇p.

Since ũ(t, x) is not identically zero for all x ∈ D\Σ and t ∈ (0, ε), there exists a function
λ ∈ C∞0 (0, ε) such that u will not vanish in (0, ε) × (D\Σ). After reversing the shift in
time, this contradicts (A.2) and we have proved that u cannot vanish in (0, ε)× Ω.

In the final step of the proof we validate that the solution (p,v) of (3.2)-(3.3) does not
vanish identically on (0, T ) × Ω. Assume the contrary. Then, it follows from (3.2)-(3.3)
(or, more precisely, from its integrated version (2.7)) that

0 = h1(x)∂tp(t, x) and 0 = h2(x)∂tv(t, x) in [0, T ]× Ω.

Thus, we must have that

∂tp(t, x) = 0 and ∂tv(t, x) = 0 in [0, T ]× Ω

since h1 and h2 cannot be identically zero restricted to Ω (otherwise they would vanish
on D as well by our assumption (3.1) on the ansatz functions). Recalling the zero initial
conditions (4.1) we must have (p,v) = 0 in [0, T ]×Ω which contradicts our first finding.

Remark A.3. We come back to the issue raised in Remark 3.3 of local vs. global basis
functions for discretizing c and %.

Suppose we split D into open, connected subsets {Dj}j with piecewise C1-boundaries:

D =
M⋃
j=1

Dj, Dj ∩Dk = ∅, j 6= k.

Let Vloc := span{pjχDj
: j = 1, . . .M} where χDj

denotes the indicator function of Dj

and pj is a polynomial.
If we now represent c and % in Vloc, we can prove, by a slight modification of our

arguments from above, that for any h ∈ V 2
loc there is a forcing term f and a time T > 0

such that the solution (p,v) of (2.1)-(2.2) does not vanish in (0, T )× (supph1∪ supph2).
Thus, for each h we can guarantee that at least one of the forcing terms in (3.2)-(3.3) is
active. This result is, however, not sufficient to carry over Proposition 3.1 (and hence
Theorem 4.1) to Vloc. It remains to show that for each h there is one forcing term f
for (2.1)-(2.2) such that the induced forcing terms in (3.2)-(3.3) guarantee (p,v) not to
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vanish in (0, T )×Ω. We strongly conjecture this to be a fact, unfortunately, we are unable
to give rigorous arguments at present.

Even if we succeed, Theorem 4.1 might hold only for the multi-shot operator Φ̃ since
the applied source f depends on h and one source might not serve all h ∈ V 2

loc. This is
then in contrast to the global ansatz functions where we could verify the TCC also for the
one-shot operator Φ, see Remark 4.4.

Appendix B. A continuity result

In this appendix we verify that Φ̃′ : V 2
+ ⊂ V 2 → L(V 2,W) defined in (4.3) is a Lipschitz

continuous mapping. We first provide a result for the abstract evolution equation

(B.1) Bu′(t) + Au(t) = f(t), t ∈ [0, T ], u(0) = u0,

in the spirit of [16]. The assumptions are T > 0, X Hilbert space,

B ∈ L∗(X) = {J ∈ L(X) : J∗ = J} satisfying

〈Bx, x〉X = 〈x,Bx〉X ≥ β‖x‖2
X

for some β > 0 and for all x ∈ X,

A : D(A) ⊂ X → X is maximal monotone: 〈Ax, x〉X ≥ 0 for all x ∈ D(A) and
I + A : D(A)→ X is onto (I is the identity),

f ∈ L1
(
[0, T ], X

)
, u0 ∈ X.

Using standard techniques one sees that (B.1) admits a unique mild solution u ∈ C([0, T ], X)
satisfying

(B.2) ‖u‖C([0,T ],X) . ‖u0‖X + ‖f‖L1([0,T ],X)

where the constant depends on T , ‖B‖ and ‖B−1‖.
The following regularity result has been obtained in [16, Theorem 2.6] under more

general assumptions on f and u0.

Theorem B.1. For some k ∈ N, let f ∈ W k,1([0, T ], X) with f (`)(0) = 0, ` = 0, . . . , k−1
(note that f (`) is continuous). Let u be the unique mild solution of (B.1) with u0 = 0.
Then u ∈ Ck([0, T ], X) ∩ Ck−1([0, T ],D(A)) and

(B.3) ‖u‖Ck([0,T ],X) . ‖f‖Wk,1([0,T ],X)

where the constant depends on T , ‖B‖, and ‖B−1‖.

From now on let u0 = 0. We define the following parameter-to-source-to-solution map
related to (B.1):

(B.4) F̃ : D(F̃ ) ⊂ L∗(X)→ S, B 7→ (f 7→ u),

where

S := L
(
W 2,1

0 ([0, T ], X),C([0, T ], X)
)
,

W 2,1
0 ([0, T ], X) := {f ∈ W 2,1([0, T ], X) : f(0) = f ′(0) = 0},

and

D(F̃ ) := {B ∈ L∗(X) : β−‖x‖2
X ≤ 〈Bx, x〉X ≤ β+‖x‖2

X}
for given 0 < β− < β+ <∞.
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Theorem B.2. The map F̃ is F-differentiable at B ∈ int(D(F̃ )) where

F̃ ′(B)[H]f = u for H ∈ L∗(X)

with u ∈ C
(
[0, T ], X

)
being the mild (in fact the classical) solution of

(B.5) Bu′(t) + Au(t) = −Hu′(t), t ∈ [0, T ], u(0) = 0,

where u is the classical solution of (B.1) with respect to f .

Moreover, F̃ ′ is Lipschitz continuous, that is,

‖F̃ ′(B1)− F̃ ′(B2)‖L(L∗(X),S) . ‖B1 −B2‖L(X).

The involved constant only depends on T , β−, and β+.

Proof. We can be brief in proving F-differentiability as we will rely on results from [16].
A close inspection of the proofs of Lemma 3.3 and Theorem 3.6 of [16] yields, for H
sufficiently small, that

1

‖H‖L(X)

‖F̃ (B +H)f − F̃ (B)f − F̃ ′(B)[H]f‖C([0,T ],X) . ‖H‖L(X) ‖f‖W 2,1([0,T ],X)

which is the claimed differentiability.

Now we check the Lipschitz continuity of F̃ ′. To this end let u = F̃ ′(B)[H]f and

v = F̃ ′(B + δB)[H]f . By the regularity assumptions on f , v and u are the classical
solutions of

(B + δB)v′(t) + Av(t) = −Hv′(t), t ∈ (0, T ), v(0) = 0,

Bu′(t) + Au(t) = −Hu′(t), t ∈ (0, T ), u(0) = 0,

where u solves (B.1) and v solves (B.1) with B replaced by B + δB. Hence, d = v − u
mildly solves

Bd′(t) + Ad(t) = −H(v′(t)− u′(t))− δBv′(t), t ∈ (0, T ), d(0) = 0.

By the continuous dependency of d on the right hand side, see (B.2), we get

(B.6) ‖d‖C([0,T ],X) . ‖H‖L(X) ‖v − u‖C1([0,T ],X) + ‖δB‖L(X) ‖v‖C1([0,T ],X).

Next we apply the regularity estimate (B.3) to v − u which solves

B(v′(t)− u′(t)) + A(v(t)− u(t)) = −δBv′(t) t ∈ (0, T ), v(0)− u(0) = 0.

Thus,

‖v − u‖C1([0,T ],X) . ‖δB‖L(X) ‖v‖C2([0,T ],X) . ‖δB‖L(X) ‖f‖W 2,1([0,T ],X)

where the right bound comes from the regularity of v. In a similar way we get

‖v‖C1([0,T ],X) . ‖H‖L(X) ‖v‖C2([0,T ],X) . ‖H‖L(X) ‖f‖W 2,1([0,T ],X).

Plugging these bounds into (B.6) we end up with

sup
H∈L∗(X)

sup
f∈W 2,1

0 ([0,T ],X)

‖v − u‖C([0,T ],X)

‖H‖L(X)‖f‖W 2,1([0,T ],X)

. ‖δB‖L(X)

which is the claimed Lipschitz continuity. �
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To establish the connection of Φ̃ to F̃ we return to the concrete settings of the previous
sections for (2.3) where X = L2(D) × L2(D,Rd) and B and A are given by (2.4) and

(2.5). Now Φ̃ = Ψ ◦ F̃ ◦ P with the mapping

P : V 2
+ ⊂ V 2 → L∗(X), (c, %) 7→

(
c 0
0 % Id

)
.

Note that the image of P is in D(F̃ ) by an appropriate choice of β− and β+ in terms of
λ− and λ+ from (2.6).

Now, the Lipschitz continuity (4.7) follows immediately from Theorem B.2 by the chain
rule using P ′(c, %)[h] = P (h1, h2).

Appendix C. Lipschitz stability and tangential cone condition in a
semi-discrete setting

The following lemma is of interest independent of its use in this paper, since it provides
elementary criteria that imply TCC and Lipschitz stability for semi-discrete mappings.

Lemma C.1. Let Θ: D(Θ) ⊂ X → Y be an F-differentiable mapping between Banach
spaces where X is finite dimensional. Denote by x+ an interior point of D(Θ) and assume
that Θ′(x+) has a trivial null space.

a) If Θ′ is continuous in Br(x
+) up to the boundary then there is a ρ > 0 such that

Lipschitz stability holds, that is,

(C.1) ‖v − w‖X . ‖Θ(v)−Θ(w)‖Y for all v, w ∈ Bρ(x
+).

Moreover, the TCC holds as well

‖Θ(v)−Θ(w)−Θ′(w)(v − w)‖Y ≤ η(v, w) ‖Θ(v)−Θ(w)‖Y
for all v, w ∈ Bρ(x

+)
(C.2)

where η : Br(x
+) × Br(x

+) → [0,∞) is a continuous function which vanishes on the
diagonal: η(w,w) = 0.

b) If Θ′ is even Hölder continuous of order α ∈ (0, 1], i.e.,

(C.3) ‖Θ′(x)−Θ′(y)‖L(X,Y) ≤ L‖x− y‖αX for all x, y ∈ Br(x
+),

for one L > 0, then a stronger TCC holds

‖Θ(v)−Θ(w)−Θ′(w)(v − w)‖Y . ‖v − w‖αX ‖Θ(v)−Θ(w)‖Y
for all v, w ∈ Bρ(x

+).
(C.4)

c) Conversely, if both, (C.1) and continuity of Θ′, or (C.2) hold and Θ(x+) is isolated,
that is, Θ(x+) 6∈ Θ

(
Bρ(x

+)\{x+}
)
, then Θ′(x+) has to have a trivial null space.

Part c) is essentially known in the literature [12, Prop. 2.1].

Proof. a) By injectivity of Θ′(x+), continuity of Θ′, and finite-dimensionality of X there
is an r1 ∈ (0, r] and an m > 0 such that

‖Θ′(x)v‖Y ≥ m‖v‖X for all x ∈ Br1(x
+) and all v ∈ X.

For E(v, w) := Θ(v)−Θ(w)−Θ′(w)(v − w) we have that, for all v, w ∈ Br(x
+),

‖E(v, w)‖Y =
∥∥∥∫ 1

0

(
Θ′(w + t(v − w))−Θ′(w)

)
(v − w) dt

∥∥∥
Y
≤ σ(v, w)‖v − w‖X



14 M. ELLER AND A. RIEDER

with
σ(v, w) = sup{‖Θ′(w + t(v − w))−Θ′(w)‖ : t ∈ [0, 1]}.

Choose ρ ∈ (0, r1] such that σ(v, w) ≤ m/2 for all v, w ∈ Bρ(x
+). We proceed – using

the reverse triangle inequality – with

‖Θ(v)−Θ(w)‖Y = ‖E(v, w)−Θ′(w)(w − v)‖Y
≥
∣∣‖E(v, w)‖Y − ‖Θ′(w)(w − v)‖Y

∣∣
≥ m ‖v − w‖X − σ(v, w) ‖v − w‖X.

Hence,

(C.5) ‖Θ(v)−Θ(w)‖Y ≥
m

2
‖v − w‖X for all v, w ∈ Bρ(x

+)

which is (C.1). Finally,

‖E(v, w)‖Y ≤ σ(v, w) ‖v − w‖X
(C.5)

≤ η(v, w) ‖Θ(v)−Θ(w)‖Y
and (C.2) is verified with η = 2σ/m.

b) Under (C.3) we estimate

η(v, w) ≤ 2L

m
‖v − w‖αX

so that (C.2) yields (C.4).

c) As continuity and (C.1) together imply (C.2), it suffices to assume the latter condition.
Suppose there is a z ∈ N(Θ′(x+))\{0}. Then, vλ := x+ +λz ∈ Bρ(x

+) for 0 < λ < %/‖z‖X
and

‖Θ(vλ)−Θ(x+)‖Y = ‖Θ(vλ)−Θ(x+)− λΘ′(x+)z‖Y
. η(x+ + λz, x+) ‖Θ(vλ)−Θ(x+)‖Y.

Thus, Θ(vλ) = Θ(x+) for λ > 0 small enough which contradicts the isolation of Θ(x+). �

Finally, we want to emphasize that we can replace the injectivity assumption in the
above lemma by Lipschitz stability. Indeed, continuity and (C.1) imply (C.2). Note that
Lipschitz stability is known for a variety of semi-discrete inverse problems. We refer, e.g.,
to [1, 2, 3, 4, 5].
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