
Exploring Graph Traversal Algorithms
for Knowledge Graphs

Bachelor Thesis

by

Sven Bulach
Degree Course: Industrial Engineering and Management B.Sc.

SPO 2015

Institute of Applied Informatics and Formal Description
Methods (AIFB)

KIT Department of Economics and Management

Advisor: Prof. Dr. Harald Sack
Second Advisor: Prof. Dr. J. Marius Zöllner
Supervisor: M.Sc. Russa Biswas
Submitted: February 20, 2021

KIT – The Research University in the Helmholtz Association www.kit.edu

www.kit.edu

Abstract

Knowledge Graphs (KGs) are semantic databases where entities that represent real world
objects are related to each other. The entities are provided with attributes and put into
thematic context or ontologies. Most KGs follow the RDF standard which makes the
knowledge that is stored in such graph machine-understandable. Since KGs like DBpe-
dia pursue the goal of collecting as much information as possible, they take on gigantic
dimensions. The KG that is used for this thesis is DBpedia.

One important aspect of graph theory is graph traversal which is generally very well stud-
ied, but not specifically for Knowledge Graphs. In this thesis, the two algorithms Dijkstra
and A-star are used to find paths between two nodes in a KG. They are compared in terms
of path length and search time.

For the Dijkstra to work, the examined graph will be weighted based on the degrees of
nodes. In order to apply the A-star algorithm, two heuristics are introduced which use
the rdf:type information given by DBpedia. The rdf:type relation assigns entities that
share common characteristics into a corresponding type.

Finally, a feedforward neural network is used to predict the shortest distance between two
nodes of a Facebook graph. Knowing the shortest distance between two nodes can be
useful information that can be exploited for instance by the A-star algorithm.

CONTENTS iv

Contents

1 Introduction 2

1.1 Motivation and Background . 2

1.2 Objective . 3

1.3 Structure . 3

2 Foundations 5

2.1 Semantic Web . 5

2.2 Resourse Description Framework . 5

2.3 Knowledge Graph . 6

2.3.1 Entity . 7

2.3.2 DBpedia . 8

2.4 Type information . 9

2.5 Graph Traversal Algorithms . 9

2.5.1 Dijkstra . 11

2.5.2 A-star . 12

2.6 Deep Learning . 13

2.6.1 Graph Embeddings . 13

2.6.2 node2Vec . 13

2.6.3 Neural Networks . 15

2.6.4 Feedforward Neural Network . 17

2.6.5 Backpropagation . 17

3 Related Work 20

4 Approach 23

4.1 Using Type Information . 23

4.2 Using Node Degree . 26

4.3 Shortest Distance Approximation Using a Neural Network 26

5 Evaluation 29

CONTENTS v

5.1 Dataset . 29

5.2 Approach 1 and 2 . 30

5.3 Approach 3 . 43

6 Conclusion 46

6.0.1 Summary . 46

6.0.2 Future Work . 46

LIST OF FIGURES vi

List of Figures

1 Some statistics of the three popular KGs DBpedia, Yago and Freebase.
The numbers are from [2] [1] [3]. 3

2 Directed Graph from the introduced triples. For better readability the
classes are displayed in rectangles and the entities in ellipses 8

3 Illustration of a small part from the DBpedia ontology 9

4 Example of an undirected graph . 10

5 Example of a directed graph . 11

6 Example of BFS and DFS search strategy from node u with k = 3 (Am-
mended from [9]) . 14

7 Illustration of the random walk procedure. The walk has just transitioned
from u to t (Ammended from [9]) . 15

8 Illustration of a Neuron (Ammended from [15]) 16

9 Illustration of parts of a graph . 24

10 Graph representation of a triple with an entity of type dbo:Scientist as
subject. 29

11 Graph representation of two triples: The object dbr:Switzerland of the
first triple, is the subject of a triple that was added in 4. 29

12 Illustration of two hops with the included rdf:type information 30

13 Average time per path for each approach set A 33

14 Average path length for each approach set A 33

15 Distribution of path lengths for each approach set A 34

16 Average search time per path length for each approach set A 34

17 Average time per path heuristic 1 set A . 34

18 Average time per path heuristic 2 set A . 35

19 Average time per path no heuristic set A 35

20 Average time per path weighted by outdegree set A 35

21 Average time per path weighted by degree set A 36

22 Average time per path for each approach set B 36

23 Average path length for each approach set B 37

24 Distribution of path lengths for each approach set B 37

LIST OF FIGURES vii

25 Average search time per path length for each approach set B 37

26 Average time per path heuristic 1 set B . 38

27 Average time per path heuristic 2 set B . 38

28 Average time per path no heuristic set B 38

29 Average time per path weighted by outdegree set B 39

30 Average time per path weighted by degree set B 39

31 Average time per path for each approach set B2 39

32 Average path length for each approach set B2 40

33 Distribution of path lengths for each approach set B2 40

34 Average search time per path length for each approach set B2 40

35 Average time per path heuristic 1 set B2 41

36 Average time per path heuristic 2 set B2 41

37 Average time per path no heuristic set B2 41

38 Average time per path weighted by outdegree set B2 42

39 Average time per path weighted by degree set B2 42

LIST OF TABLES viii

List of Tables

1 Nodes with Types and the assigned Hierarchy Number 25

2 Statistics of Scientist Dataset . 30

3 Overview of the results based on set A . 31

4 Overview of the results based on set B . 32

5 Overview of the results based on set B cleaned 32

6 Path length distribution . 43

7 Path length distribution 2 . 43

8 Path length distribution . 43

9 Average MAE and RMSE for each training set 44

1 INTRODUCTION 2

1 Introduction

Knowledge Graphs (KGs) are semantic databases. Here, entities are related to each other,
provided with attributes and put into thematic context or ontologies.The initial idea of
knowledge graphs was to use graphs, a discrete mathematical concept, as a representation
of the contents of medical and sociological texts. Accumulation of the knowledge was to
be carried out by constructing larger and larger graphs in such a way that the resulting
structure could function as an expert system. Some of today’s most popular Knowledge
Graphs are for example DBpedia, Freebase, Yago or Googles Knowledge Graph. For
instance DBpedia gathers the information fromWikipedia and represents it in a structured
way to make it machine-understandable. An important aspect of interacting with such
graphs, is the ability to query the connectivity of nodes. Graph traversal algorithms are
mechanisms to traverse edges and vertices in a graph in a systematic way.

1.1 Motivation and Background

Since one of the goals of common Knowledge Graphs is to gather as much information as
possible, they are now taking on gigantic dimensions. Figure 1 gives an overview of the
KGs mentioned earlier. It can be seen, that the number of entities, which are represented
as nodes in the KG, goes up to 39 million in the case of Freebase 1. Graph traversal
becomes a very time consuming task with larger graphs and it is therefore needed to find
efficient algorithms to solve this issue. To know the shortest distance between two nodes
in a graph can be very helpful for graph traversal algorithms. For instance the A-star
algorithm selects nodes based on their approximate distance to the target node. Graph
walk is one of the fundamentals of graph traversal algorithms. A walk is a sequence of
vertices and edges of a graph, with repeated nodes and edges. The walk is a trail if
any edge is traversed at most once. A trail is a path if any vertex is visited at most
once, except possibly the initial and terminal vertices when they are the same. This is a
well-studied problem in the field of Graph Theory [18]. This thesis focuses on exploring
different graph traversal algorithms in the pretext of Knowledge Graphs combined with
a method for approximating shortest distances between nodes using a neural network.

1https://developers.google.com/freebase/guide/basic_concepts

https://developers.google.com/freebase/guide/basic_concepts

1 INTRODUCTION 3

Figure 1: Some statistics of the three popular KGs DBpedia, Yago and Freebase. The
numbers are from [2] [1] [3].

1.2 Objective

The objective of this thesis is to explore and evaluate different graph traversal techniques
as well as a method for approximating shortest distances between two nodes using a
neural network. More precisely, two algorithms Dijkstra and A-star are investigated in
detail. Dijkstra is measured on a weighted graph and A-star is executed with two created
heuristics.

1.3 Structure

Following structure is given to the thesis: In chapter 2, background information and
relevant terms are introduced, which are important for a good understanding of the rest
of the thesis. Chapter 3 presents related work that sets this thesis in perspective and
gives further research work for the interested reader. Chapter 4 describes the approaches
developed in the course of the thesis, followed by a presentation, and evaluation of the
results in chapter 5. Finally, chapter 6 concludes the thesis and presents future directions
of research.

2 FOUNDATIONS 5

2 Foundations

2.1 Semantic Web

The Semantic Web is built on top of the current Web and does not link documents but
facts with each other. It has the purpose of providing a possibility to combine and ag-
gregate resources on the Web so they could be collectively useful. Furthermore, it is
machine-understandable, so machines can understand the meaning of given information
and can then respond, using structure and rules embedded in the Semantic Web docu-
ment. Tim Berners Lee defined it as follows:
“The Semantic Web will bring structure to the meaningful content of Web pages, creating
an environment where software agents roaming from page to page can readily carry out
sophisticated tasks for users”[4].
Another definition is given by the World Wide Web Consortium(W3C):
“The Semantic web is a major research initiative of the worldWideWeb Consortium(W3C)
to create a metadata-rich Web of resources that can describe themselves not only by how
they should be displayed(HTML) or syntactically(XML), but also by the meaning of the
metadata”[11].

2.2 Resourse Description Framework

The Resource Description Framework (RDF) is a wide used standard for encoding data
and knowledge representation. It is deployed in the Knowledge Graphs that are examined
in this thesis. RDF was originally developed by the World Wide Web Consortium (W3C)
as a standard to describe metadata. However, it is now seen as a fundamental component
within the Semantic Web. It allows to represent information about resources and their
relations of the real world in a structured and machine-understandable way by dividing
this information into statements with a clearly defined form.

In the RDF model, each statement is formulated from three units which form a triple.
These three units are the subject the predicate and the object with the given form <subject,
predicate, object>. The subject and the object are resources between which the predicate
defines a relationship. Resources are seen as unique terms that always stand for a certain
thing [21].

Relationships specify how entities in an ontology are related to other entities. Usually
these relations are of a special type that defines the meaning of the relation of the
two entities. Some relations of the DBpedia KG are for example: rdfs:subClassOf,
dbo:influencedBy, dbo:influenced, dbo:parent, dbo:foundedBy or the very common

2 FOUNDATIONS 6

rdf:type which is further described in 2.4.

In RDF statements, the subject and the predicate have to be identified by a unique
internationalised resource identifier (IRI), while the object may contain an IRI or a literal.
In the case of being a literal, it describes data values that do not have a separate existence.

RDF statements can represent information but not yet the meaning of it. Since the
Semantic Web is meant to enable machines to understand the meaning (semantics) of
information on the Web, an extension of the RDF vocabulary the RDF Schema (RDFS)
was introduced. "RDFS is an extendable knowledge representation language that one
can use to create a vocabulary for describing classes, sub-classes and properties of RDF
resources"[27]. It provides mechanisms for dividing related resources into groups called
classes and describing the relationships between them. "The RDF Schema class and
property system is similar to the type systems of object-oriented programming languages
such as Java" [10]. The members of a class are known as instances of the class and the
classes themselves are resources as well. Classes can be subordinated to other classes with
the property rdfs:subClassOf, leading to a hierarchical structure.

2.3 Knowledge Graph

The structured knowledge bases (KBs) that are considered in this thesis, foremost DB-
pedia, but also Freebase can be described as Resource Description Framework (RDF)
graphs. They are both derived from the Web encyclopedia Wikipedia and are made avail-
able via web applications and services. As defined by the W3C Recommendation, a RDF
document or KB is a graph, consisting of a set of RDF triples [16]. Wikipedia is consid-
ered a semi-structured KB: It contains unambiguous entities, but most of the information
is composed of unstructured data, e.g. the natural language text of the articles describing
each entity. In the following only fully structured Knowledge Bases are examined. These
structured KBs are called Knowledge Graph (KG) – a term that became popular due to
Google’s “Knowledge Graph”, which serves the entity search result of Googles web search.

A Knowledge Graph is a graph constructed by representing all entities as nodes, and
linking those nodes via edges that represent the relationships between them. Accordingly
it captures the semantic knowledge of data by modelling information in a structured way.
Knowledge Graphs have abundant natural semantics and can contain various and more
complete information. Its expression mechanism is close to natural language. The entities
that are described in the examined Knowledge Graphs are about real-world objects [8].

It has a long history in logic and artificial intelligence but more recently it has been used
in the Semantic Web community with the intention of creating a "web of data" which is
machine-readable [4].

2 FOUNDATIONS 7

The focus of this thesis lies on the Open Knowledge Graph DBpedia which follows the
RDF standard [16]. This results in the following description: Given a Knowledge Graph
G = (E,R), where E is the set of entities, and R is the set of relations between them. A
fact in a KG is represented by a triple in the form < s, r, o >, here s, o ε E, r ε R, where s
and o are the subject and object respectively and r is the relation between them. There-
fore, KG is a graph in which each edge has a value. A Knowledge Graph is a directed
graph. Consider the following RDF triples from DBpedia:

<dbr:Albert_Einstein rdf:type dbo:Scientist>

<dbr:Albert_Einstein dbo:deathPlace dbr:Princeton,_New_Jersey>

<dbr:Albert_Einstein dbo:birthPlace dbr:Ulm>

<dbr:Albert_Einstein dbo:doctoralAdvisor dbr:Alfred_Kleiner>

<dbr:Princeton,_New_Jersey rdf:type dbo:Town>

<dbr:Princeton,_New_Jersey dbo:timeZone dbr:Eastern_Time_Zone>

<dbr:Ulm rdf:type dbo:Town>

<dbr:Ulm dbo:Country dbr:Germany>

<dbo:Scientist rdfs:subClassOf dbo:Person>

<dbo:Person rdfs:subClassOf dbo:Agent>

<dbo:Town rdfs:subClassOf dbo:Settlement>

<dbo:Settlement rdfs:subClassOf dbo:PopulatedPlace>

<dbo:PopulatedPlace rdfs:subClassOf dbo:Place>

These triples say that:
dbr:Albert Einstein is of type dbo:Scientist.
The dbo:birthPlace of dbr:Albert Einstein is dbr:Ulm.
The dbo:deathPlace of dbr:Albert Einstein is in New Jersey.
dbr:Ulm is of type dbo:town.
dbr:Ulm is located in the dbo:country dbr:Germany.
It can also be deducted, that:
dbo:Scientist is a sub-class dbo:Person and dbo:Person is a sub-class of dbo:Agent
and therefore dbr:Albert Einstein is also of type dbo:Person and dbo:Agent.
This is based on the hierarchical structure of the underlying ontology of DBpedia as
described in 2.4. The graph which can be created from these triples is shown in figure 2.

2.3.1 Entity

From the point of view of the KG, entities are the atomic units, like e.g. the city db:Ulm,
that the KG makes statements about. In AI, the need for a proper knowledge repre-
sentation, and thus an understanding of what an “entity” is, was mainly driven by the

2 FOUNDATIONS 8

Figure 2: Directed Graph from the introduced triples. For better readability the classes
are displayed in rectangles and the entities in ellipses

insight that for matching human performance in tasks such as natural language under-
standing, but also for building expert systems, the accumulation and use of large amounts
of problem-specific knowledge is essential. For most KGs also for DBpedia, an entity is
everything one can make statements about[17].

2.3.2 DBpedia

In this thesis, DBpedia is regularly used as a Knowledge Graph. It is a project that
extracts information from Wikipedia and makes it accessible on the Web. Wikipedia is
a multilingual encyclopedia on the Web where each page usually refers to a single entity
and is manually classified in a number of categories. DBpedia represents those entities
in a machine-readable RDF version of Wikipedia. It is organised as an RDF graph that
contains millions of entities connected with fine-grained explicit semantic relations. It is
also well-known for being the central entity repository authority within the linked open
data (LOD) world.

It was first established in 2007 and since then, multiple releases have been published. This
thesis uses the English release version from 2016-10.

The DBpedia ontology defines several classes and properties that help to structure the
resources. It was created by manually arranging the most commonly used infobox tem-
plates within the English version of Wikipedia into a subordination based hierarchy of
about 760 classes, forming a 7-level-class hierarchy. Infoboxes are the property summa-
rizing tables found on many Wikipedia pages [21][5]. These classes, also called types, are
further described in section 2.4.

2 FOUNDATIONS 9

2.4 Type information

In the DBpedia KG there exists a relation (rdf:type; URI: http://www.w3.org/1999/
02/22-rdf-syntax-ns#type) that denotes that the entity (the subject) is an instance
of a certain type (the object).Types can also be regarded as ontology classes (semantic
categories) that group together entities with similar properties as described in 2.2. For
example, Albert Einstein is or respectively has been a Scientist in the real world, and
therefore in the DBpedia KG the following triple exists:

<dbr:Albert_Einstein, rdf:type, dbo:Scientist>

This statement assigns the entity Albert_Einstein into the class Scientist. As de-
scribed in 2.2, ontology classes are arranged in hierarchical structure, so that entities of
type Scientist are also of type Person. This results in a type path like:
Thing/Agent/Person/Scientist with Scientist being the most fine-grained type and
Thing being the coarse-grained type. Hierarchical structure in this case means, that the
class Scientist is a sub-class of Person, which in turn is a sub-class of Agent, which
is a sub-class of Thing. Figure 3 illustrates a part of the DBpedia ontology. The whole
ontology can be seen at [7]. The property that entities are grouped into classes of different
hierarchical levels is exploited in approach 4.1.

Figure 3: Illustration of a small part from the DBpedia ontology

2.5 Graph Traversal Algorithms

The problem of graph traversal in graph theory refers to the mechanism of traversing
every edge and vertex in a graph in a systematic way. In the following some definitions
are introduced which are important for a better understanding of the rest of the thesis.

Graph:
A graph is formed by vertices and edges connecting the vertices. Formally, a graph is a

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

2 FOUNDATIONS 10

pair of sets (V,E), where V is the set of vertices and E is the set of edges formed by pairs
of vertices. E is a multiset, its elements can occur more than once [18].

Figure 4: Example of an undirected graph

Figure 4 shows a graph with the vertices V = {v1, ..., v2} and the edges E = {(v1, v2),
(v2, v3), (v3, v3,), (v3, v4), (v3, v4), (v3, v5), (v4, v5)}. The edges can also be labelled with
letters as in figure 4: e1, e2, Note that the two edges (u, v) and (v, u) are the same
which means the pair is not ordered.

Labelled Graph:
By a labelling of edges of the graph, a mapping β : E → B is meant, where B is the label
set. If these labels are numbers, then they are called weights of the edges and the graph
is called weighted graph [18].

Directed Graph:
A directed graph or digraph is formed by vertices connected by directed edges. In directed
graphs without multiple edges E forms a subset of all pairs (u, v) resulting from the
Cartesian product V × V . The elements of E are now ordered pairs and (u, v) is now the
oppositely directed edge to (v, u). An example of a directed graph is shown in figure 5
[18].

Walk:
A walk in the graph G = (V,E) is a finite sequence of the form

vi0 , ej1 , vi1 , ej2 , ..., ejk , vik , (2.1)

which consists of alternating vertices and edges of G and has to start at a vertex. k is the
length of the walk. A zero length walk is just a single vertex vi0 . It is allowed to visit a
vertex or go through an edge more than once [18].

Path:
A walk is a path if any vertex and any edge is visited or gone through at most once except

2 FOUNDATIONS 11

Figure 5: Example of a directed graph

possibly the initial and terminal vertices when they are the same. A path is a circuit if
the initial vertex vi0 and the terminal vertex vik are the same(vi0 = vik) [18].

2.5.1 Dijkstra

Dijkstra algorithm calculates the costs of the cheapest walks from a starting node to all
other nodes in a graph. It starts from a starting node and selects step by step the cheapest
walk via the next reachable nodes. It can also make improvements. It does this until all
nodes have been visited and no better walk has been found. Because it gradually chooses
the next node that promises the greatest gain (in this case the lowest distance from the
root) it is called a greedy algorithm.
At the beginning, the algorithm has to be initialised:

• The path to the start node has zero cost

• The path to the other nodes is not known yet, therefore the costs to them are eval-
uated with infinite. During the algorithm these costs are to be improved, whereby
the algorithm always stores the shortest path to every node

• The start node is added to the queue

Now the front-most node is taken from the queue. At the beginning this can only be
the start node. Then all neighbouring nodes of the taken node are considered with their
respective edges and checked for the following condition: Is the node included in the
queue and are the costs over the new edge lower than the previous costs?

If this is the case, the costs for this node are reduced to the new value. Otherwise, the
system checks for another condition: Has the node not been visited yet? If yes, it is now

2 FOUNDATIONS 12

added to the queue, so that later on, the edges leaving it can be viewed. In addition, this
node receives the costs which result from the sum of the costs to its predecessor node and
the costs of the newly discovered edge to itself.

Now nodes are taken out of the queue and their neighbouring nodes are checked for these
two conditions until there are no more nodes in the queue. When the queue is empty, the
algorithm is completed and has found the most favourable ways from the starting node
to all other nodes.
In this thesis a modified version of dijkstra is used. This version stops as soon as the
target node is found, calculating only the path form the source node to the target node.
This is known as a Single-Pair-Shortest-Path problem [25].

2.5.2 A-star

The A-star search algorithm is one of the best and popular techniques used in graph
traversals. It aims to find a path from the starting node to the goal node with the lowest
possible cost. Cost can mean least distance travelled, shortest time etc. In the following,
a path with lowest possible cost means a path between two nodes, which traverses as few
nodes as possible, also called a "shortest path". It fulfils this task by examining vertices
first that probably lead fast to the destination. To determine promising nodes, each known
node x is assigned with a value f(x) which is calculated using a task specific heuristic.
The value indicates a best-case approximation of the distance to the destination when
using the considered node. The node with the lowest value is examined first. The value
f(x) is calculated as follows:

f (x) = g (x) + h (x) (2.2)

For a node x, g(x) designates the costs to reach x from the starting node which can be
calculated exactly because the path to x is known. H(x) designates the approximated
costs to reach the goal node from x. To calculate this cost a heuristic is used.

Functionality:

• unknown nodes have not yet been found during the search. There is no known path
to them. At the beginning of the algorithm, all nodes except the starting node are
unknown.

• known nodes have been already found and there exists a (possibly sub optimal) path
to them. Every known node is stored together with its f -value in the Open List.
From that list, the node with the lowest f -value is chosen and further examined

2 FOUNDATIONS 13

• finally examined nodes are stored in the Closed List, so that they are not examined
repeatedly. A shortest path to those nodes is known.

At each step of the algorithm, the node with the lowest f -value is removed from the Open
List and the f and g values of its neighbours are updated using the specified heuristic,
and added to the Open List. The nodes in the Open List can be updated if there is a
shorter path to them. To receive the found path after terminating, each examined node
has to keep track of its predecessor, by keeping a pointer to it. When the node gets
updated, the pointer is updated as well [24].

2.6 Deep Learning

2.6.1 Graph Embeddings

The key idea in the concept of graph embedding is to represent components of the graph
(i.e., nodes and edges) as k-dimensional vectors in a continuous vector space in order
to simplify manipulation while preserving the structure of the graph. One example of
creating vectors from a graph is its own adjacency matrix. The adjacency matrix is a
square matrix used to represent a finite graph. The elements reveal whether pairs of
vertices are adjacent or not in the graph. Given a simple graph with a vertex set V , the
adjacency matrix is a square |V |×|V | matrix A, such that each element Aij is one if there
is an edge from vertex i to vertex j and zero if there is no edge. Each column and each
row in the matrix present a node. With n nodes in the graph, a vector representation of
a node has n dimensions. The idea of graph embedding however is, to map the graph and
its elements to low-dimensional embeddings. The embedding method which was used for
this thesis is called node2vec. The idea is to find embeddings of nodes to d-dimension so
that "similar" nodes in the graph have embeddings that are close together. The goal is to
encode nodes so that similarity in the embedding space (e.g. dot product) approximates
similarity in the original network.

2.6.2 node2Vec

Node2vec is an algorithm introduced by Grover and Leskovec [9] that works for di-
rected/undirected and weighted/unweighted graphs. It takes short random walks in a
graph and interprets the sequence of nodes seen on such random walks as if they were
words appearing together in a sentence. From these walks a corpus is created. After gen-
erating the corpus, node2vec uses word2vec’s Skip-gram model with Negative Sampling
to obtain vector representations of the nodes.

The authors designed a flexible neighborhood sampling strategy which allows to smoothly

2 FOUNDATIONS 14

interpolate between BFS and DFS which play a key role in producing representations that
reflect either homophily or structural equivalence. They state, that "under the homophily
hypothesis nodes that are highly interconnected and belong to similar network clusters
or communities should be embedded closely together" [9]. For instance, the nodes s1 and
u in figure 6) belong to the same network neighbourhood. The structural equivalence
hypothesis however, says that the embedding of nodes with similar structural roles in
networks should be similar (e.g., nodes u and s6 in figure 6).

Figure 6: Example of BFS and DFS search strategy from node u with k = 3 (Ammended
from [9])

Importantly, unlike homophily, structural equivalence does not emphasise connectivity;
nodes could be far apart in the network and still have the same structural role. In
real-world, these equivalence notions are not exclusive; networks commonly exhibit both
behaviours where some nodes exhibit homophily while others reflect structural equiva-
lence" [9]. BFS is a sampling strategy which generates a neighbourhood Ns(u) of a source
node u with a maximum of k nodes. The neighbourhood is restricted to nodes which are
immediate neighbours of the source node. For example in Figure 1 for a neighbourhood
of size k = 3, BFS samples nodes s1, s2, s3. The neighbourhood created by DFS consists
of nodes sequentially sampled at increasing distances from the source node. In Figure 1
with k = 3, DFS samples s4, s5, s6.

Neighbourhoods that are sampled by BFS, result in embeddings that correspond closely
to structural equivalence. The nodes sampled by DFS reflect more of a macro-view of the
neighbourhood which is essential for deriving homophily similarities. It can be seen that
both DFS and BFS both capture essential characteristics of the graph structure. To ex-
ploit both strategies, the authors of node2vec propose an algorithm which generates biased
random walks which perform DFS and BFS simultaneously. Therefore two parameters to
control the random walk are introduced. The return parameter p for controlling the
probability of returning to the previous node in the walk and the In-out parameter q
for controlling the probability of visiting nodes that are further away from the source node.

2 FOUNDATIONS 15

Figure 7: Illustration of the random walk procedure. The walk has just transitioned from
u to t (Ammended from [9])

Using these two parameters, a search bias αpq is introduced. Consider a part of a graph as
shown in figure 7 and a random walk that has just transitioned from node t to node v. For
every edge (v, x) leading out of vertex v, a transition probability πvx is given. πvx gives
the probability of choosing node x as the successor of v in the walk. The unnormalised
probability is defined as πvx = αpq(t, x)wvx with wvx being the weight of edge (v, x). α is
defined as

αpq(t, x) =


1
p

if dtx = 0

1 if dtx = 1

1
q

if dtx = 2

(2.3)

dtx indicates the shortest path distance between nodes t and x.
A high value for p (> max(q,1)) ensures that it is less likely to traverse an already visited
node in the following two steps. If p is set to a low value (< min(q,1)) the probability of
walking back is higher and the walk is kept "local" to the starting node.
If q is set to a value q > 1, the walk approximates BFS behaviour and if q < 1 the walk
represents a more DFS like structure, leading the walk further away from the source node.
The random walks are then fed into the Skip-Gram model to update previously randomly
generated node embeddings. Skip-Gram is a model originally designed for NLP, to predict
the surrounding context words for a given target word. The model relies on the concept
of a text corpus. This corpus however is displayed by the random walks which are treated
as sentences.

2.6.3 Neural Networks

Artificial neural networks try to imitate the functioning of the human brain. They are
trained for a special behaviour and are afterwards able to react appropriately both to the
training situations and beyond them to new situations. This ability is achieved by the

2 FOUNDATIONS 16

interconnection of many (several hundred to several thousand) neurons.

Figure 8: Illustration of a Neuron (Ammended from [15])

A neuron is a processing unit, which summarises the incoming values of the weighted
connections in a suitable way (propagation function) and determines an activation state
by means of an activation function considering a threshold value. From this activation
an output function determines the output of the neuron. A basic structure is shown in
figure 8. Each neuron includes the following values and functions:

• The input information ok, which neuron j receives from other neurons that are
connected with it. This input information is regulated by the respective weights
wkj of the connections. The weighted information can also be received from the
environment of the network as input values.

• A propagation function netj which links the input information with the weights
of the connections to a net input. A net input combines the information coming
from the net into the neuron: netj =

∑
k wkj ∗ ok

• The activation function fact determines from the net input, the new activity aj
under consideration of a threshold value bj: aj = fact(netj, bj).

• An output function fout determines from the activity aj of the neuron, the output
value oj, which is passed on to the following neurons: oj = fout(aj). The identity
f(x) = x is very often used as output function which leads to oj = fout(aj) = aj.
Although other functions are not excluded, the identity is assumed in the following
for simplification purposes.

• A local storage contains the activity aj and the threshold value bj of the neuron.

If several neurons of the type described above are linked together, a network of neurons
is created. A connection between two neurons i and j is characterised by a connection
weight wij 6= 0. The definition of a network is thus obtained by defining the connections
and the connection weights. Neural networks are used to perform supervised learning and

2 FOUNDATIONS 17

prediction tasks. Input data is provided to the neural network. This input data is named
a training dataset. A training dataset contains labelled data, which means that the result
is known [15].

2.6.4 Feedforward Neural Network

Feedforward neural networks consist of several layers of neurons, but at least of one input
and one output layer. One or more inner layers (hidden layers) can be interconnected. It
is important that only neurons of different layers are linked together, however only in the
direction of the output layer. Feedforward neural networks are monitored and trained by
means of error feedback [15]. If the neurons of a layer receive input from all neurons of
its previous layer, it is called a dense layer and is therefore deeply connected. Usually
a neural network is used with non linear activation functions and dense layers, as it is
done in this thesis. Common non linear activation functions are the rectified linear unit
(ReLu) or softplus. ReLu is defined as

f(x) = max(0, x) (2.4)

and softplus which is a smoother version of ReLu as:

f(x) = ln(1 + ex) (2.5)

2.6.5 Backpropagation

A common feature of all neural network models is that a large number of simple units,
neurons or particles, together have a task to solve. The interconnection of these units
can be realised by weighted connections and/or by a processing function. The goal of
the interconnection is to solve tasks that cannot be explicitly described by an algorithm,
but whose solution is described by examples. From the examples a network behaviour
is trained, which is then able to process unknown inputs as desired. Backpropagation
is a common method for teaching artificial neural networks. Let x be a training input,
then y = y(x) is the desired output. The neural network has to be trained, so that it
approximates y(x). The backpropagation algorithm achieves this by finding weights and
biases so that the output of the network approximates y(x) for all training inputs x. To
quantify how well this goal is achieved, a cost function is defined:

C(w, b) =
1

2n

∑
x

||y(x)− aL(x)||2 (2.6)

Here, w denotes the collection of all weights in the network, b all the biases, n the total
number of training inputs, L the number of layers in the network and aL = aL(x) the

2 FOUNDATIONS 18

vector of activation output when x is the input. C is well known as the mean squared
error (MSE). The cost C(w, b) becomes small, i.e. C(w, b) ≈ 0, precisely when y(x) is
approximately equal to the output a, for all training inputs x. The training algorithm has
done a good job if it can find weights and biases so that C(w, b) ≈ 0 and it has done a
bad job if C(w, b) is large, meaning y(x) is not close to the output a for a large number of
inputs. The idea of backpropagation is to use gradient descent to find the weights wk and
biases bl which minimise the cost in equation 2.6. It does this by computing the partial
derivatives ∂C

∂w
and ∂C

∂b
of the cost function C with respect to any weight w or bias b in

the network [15].

3 RELATED WORK 20

3 Related Work

A series of recent studies has focused on RDF Graph traversals. In this chapter, some
related work is presented.

Weighted Shortest Paths for RDF Graphs (WiSP) [23] focus on techniques to find paths
between nodes which are likely to be of interest to a user. Various existing methods often
rely on enumerating all such paths (up to a fixed length or number) before ranking is
applied. In this paper, they instead propose applying a shortest path search on weighted
versions of the graph in order to directly compute the most relevant path(s) between two
nodes without fixed-length bounds, further obviating the need to enumerate irrelevant
paths. They investigate weighting based on node degree, PageRank and edge frequency.

In prior research multiple hops using SPARQL, has been exploited to find paths between
two entities or nodes in a Knowledge Graph [20]. RelFinder [12] is another interactive
visualized tool which reveals relationships between two objects and displays them as a
graph. They focus more on visualization and user experience. Another paper is about
discovering unknown connections in the DBpedia Knowledge Graph [13]. Therefore, the
tool RelFinder is used.
Other graph traversal algorithms that were not used in this thesis are briefly introduced
below.
Depth-first search:
A DFS algorithm traverses the depth of any graph before exploring its breadth. It begins
at the root node from where it iteratively transitions from the current node to an adjacent
unvisited node. The algorithm does this, until there is no unexplored node to transition
to from the current node. It then backtracks along previously visited vertices until it finds
a node that is connected to an unexplored node and repeats the previous procedure. It
does this until no unvisited nodes are left. Essentially the algorithm picks nodes starting
from the root node in a systematic way, where it prefers child nodes over siblings.
Breadth-first search:
Unlike DFS, the Breadth-first search visits sibling nodes before child nodes. It starts
with a source node and traverses the graph layerwise by exploring all the nodes that are
directly connected to the source node. After the first layer is explored, it moves on to the
nodes at the next depth level.

Bellman-Ford algorithm:
The algorithm calculates the cost of the cheapest paths from a starting node to all other
nodes in a weighted graph. It can thus construct the cheapest paths itself. The algorithm
proceeds iteratively: it starts from a very bad estimate of the costs and improves them
until the correct values are found. At the beginning the start node has cost 0 and the

3 RELATED WORK 21

remaining nodes have infinite costs. Then it checks all edges for the following condition:
Are the costs of the starting node i of edge (i, j) plus the costs of using the edge (i, j)

lower than the costs of the target node j? If this is the case, a shortcut is found and the
costs of target node j are updated [22].

Floyd Warshall algorithm:
The Floyd Warshall algorithm solves the All-Pairs-Shortest-Path problem, i.e. it calcu-
lates the shortest paths between all node pairs for a given graph. It is based on the
principle of dynamic programming. All possible paths between all pairs of nodes are
compared step by step, with only the best values being stored.The algorithm assumes
the following observation: if the shortest path from u to v passes through w, then the
sub paths from u to w and from w to v are also minimal. The Floyd-Warshall algorithm
works iteratively [26].

In this thesis, the two graph traversal algorithms Dijkstra and A-star are used. The
Dijkstra algorithm is usually performed on weighted graphs. Knowledge Graphs, although
labelled, are not weighted. Therefore this thesis introduces a weighting of edges based
on the degree of nodes. The A-star algorithm needs an heuristic to work properly, but
without knowing the distances between nodes at all, this becomes a hard task. This
thesis presents two different heuristics that use the rdf:type information that is given in
Knowledge Graphs. A third approach presents a method for distance approximation using
a neural network, that could potentially be used as a heuristic for the A-star algorithm.

4 APPROACH 23

4 Approach

Approach 4.1 and 4.2 describe techniques to find paths between two nodes in Knowledge
Graphs. Approach one tries to use the type information of the nodes, while in approach
two the graph is precomputed, so that edges are weighted based on the degrees of the
nodes they end in.
In approach 4.3 node embeddings are exploited and with the use of a neural network,
shortest distances between nodes are approximated.

4.1 Using Type Information

The objective of this approach is to use the type information of the nodes as guidance for
the A-star algorithm to find a shortest path between the starting node and the target node.
This is achieved by comparing the ontology classes of the target node with the ontology
classes of the traversed nodes and thereby preferring nodes which have common ontology
classes. Traversed nodes are the nodes, that are examined by the algorithm in order to
find a shortest path to the target node. The nodes that share the most fine-grained type
are preferred most, while nodes that share no type except owl:Thing are given the lowest
priority.

To achieve this goal, the following steps were carried out:

1. The hierarchy of the existing ontology classes has been extracted

2. Each ontology class has been assigned with a hierarchy number:

a For each step deeper in the hierarchy or as described in 2.4: one step further on
the typepath towards the more fine-grained type, the hierarchy number has been
increased by one. Consider for example the typepath: Agent/Person/Scientist,
where Scientist is a sub-class of Person and Person is a sub-class of Agent.
Agent however has no super-class and is therefore assigned with the hierarchy
number 1. Person will be assigned with 2 and Scientist with 3

b A dictionary has been created, which assigns each ontology class with its hier-
archy number

3. Each node in the Knowledge Graph has been equipped with a list called typeinfo.
This list has been filled with all the ontology classes (and the respective hierar-
chy numbers) that have been assigned to this node. The tuples were in the form:
(ontology class, hierarchy number)

4. The A-star algorithm has been executed for each pair of nodes. As described in
2.5.2, an heuristic to calculate the expected costs to reach the value is used for each

4 APPROACH 24

examined node. In this thesis, two different heuristics have been created to value
the similarity of the type information between the target node and the traversed
node.

Heuristic 1:
Prior to the execution of the A-star algorithm coupled with the heuristic, a single operation
has to be done: The typeinfo list of the target node must be sorted by the hierarchy
number, so that the types with higher hierarchy number come first in the list.

When the heuristic is called by the A-star, it iterates over the typeinfo list of the target
node. Because the list is sorted, it iterates over the types with the highest hierarchy
number first. For each iteration, it compares the current type from the list of the target
node with the whole typeinfo list of the traversed node, and if it finds the type of the
target node in the typeinfo list of the traversed node, it stops and returns 1

hierarchynumber

back to the A-star. This results in returning the value (meaning: 1
hierarchynumber

) of the
most fine-grained type the two nodes have in common. Because the hierarchy number
of more fine-grained types is higher, this leads to the fact, that nodes that have more
fine-grained types in common will be valued lower and therefore be preferred by the
algorithm.

Figure 9: Illustration of parts of a graph

Example: Consider the nodes as depicted in table 9. As start node dbr:Albert Einstein

and as target node dbr:Niels Bohr with the types dbo:Agent, dbo:Person,

dbo:Scientist.

The A-star starts with Albert Einstein and has then to choose which node with its outgoing
edges to examine next. For both nodes the heuristic is called and returns values depending

4 APPROACH 25

Table 1: Nodes with Types and the assigned Hierarchy Number
Node Types Hierachy Number
Niels Bohr

Agent 1
Person 2
Scientist 3

Switzerland
Place 1
Located Place 2
Country 3

Heinrich Friedrich Weber
Agent 1
Person 2
Scientist 3

on the node types. Since Switzerland does not have any common types with Niels Bohr,
the heuristic returns a fix value which is set to two. For Heinrich Friedrich Weber it
returns 1

hierarchynumber
of the type with the highest hierarchy number that it shares with

the target node Niels Bohr, which in this case is Scientist with hierarchy number 3. As
described in 2.5.2, it calculates the f -value with the following formula:

f (x) = g (x) + h (x) (4.1)

Since the graph is unweighted, each traversed edge from the start node to the actual
node, g(x) is increased by one. Both nodes are exactly one edge away, so g(x) for both
is 1. H(x) of Heinrich Friedrich Weber is 1

3
and for Switzerland it is 2, resulting in

f(HeinrichFriedrichWeber) = 1 + 1
3
and f(Switzerland) = 1 + 2. Thus as a next step

the node Heinrich Friedrich Weber is chosen to be examined. This shows, that nodes that
are of type Scientist will be preferred by the algorithm.

Heuristic 2:
This heuristic as well iterates over the typeinfo list of the target node. For each match
between the list of the target node and the traversed node, a counter will be increased by
the respective hierarchy number. When the for loop is finished, 1

counter
will be returned.

This leads to:

• The more types the target node and the traversed node have in common, the lower
the returned value

• The higher the hierarchy number of the types that are equal, the lower the returned
value

4 APPROACH 26

4.2 Using Node Degree

The degree of a node is the number of edges adjacent to it. For a directed graph it is
further divided into indegree and outdegree. Indegree is the number of edges ending in
the node and outdegree is the number of edges starting at the node.
These properties were exploited in the following for finding paths between nodes. There-
fore the modified Dijkstra algorithm, as described in 2.5.1, has been applied.
Before the algorithm could be executed, the graph had to be edited in advance. All edges
have been weighted based on the outdegree of the nodes they end in.

Given a graph G = (V,A), where V is the set of nodes and A is the set of directed
edges. For v1, v2 ε V , the outdegree of v1 is denoted as d+(v1). For a directed edge a ε A
that ends in v1, e.g. (v2, v1) the weight W (a) of the edge will be calculated as follows:

W (a) =
1

d+(v1)
(4.2)

This is done for every edge and will cause, that edges with an end in nodes with higher
outdegree have lower weights. Consider an edge a1 that ends in a node v1 with d+(v) = 10

and an edge a2 that ends in a node v2 with d+(v) = 1. The introduced method will label
edge a1 with the weight W (a1) =

1
10

and edge a2 with the weight W (a2) =
1
1
= 1. Since

the Dijkstra algorithm is a greedy algorithm and therefore follows the edge which promises
the lowest section from the start node, this means, that edges which end in a node with
high outdegree are chosen over edges that end in nodes with lower outdegree.

4.3 Shortest Distance Approximation Using a Neural Network

This approach is a reproduction of a paper from Rizi and Granitzer [19]. Let G = (V,E)

be an unweighted undirected graph with n nodes and m edges. The used embedding
technique node2vec creates a real-valued vector embedding φ(v)εRd for every node vεV .
The goal of this approach is to approximate the real shortest distance du,v, between a pair
of nodes u, vεV . This distance d̂ is approximated using a feedforward neural network. d̂
is defined as a function

d̂ : φ(u)× φ(v)→ R+ (4.3)

that maps a pair of vector embeddings to a real-valued shortest path distance du,v. Before
the neural network can predict those distances, it has to be trained with training pairs
from the graph G. Therefore a small number l of nodes as landmarks are chosen. From
these landmarks to all other nodes in the graph, the actual shortest distance is computed
using BFS. With n nodes in total, this leads to l(n− l) training pairs. For each training
pair < φ(u), φ(v) > a joint representation as input for the neural network is created using

4 APPROACH 27

concatenation: (φ(u), φ(v)).
The feedforward network consists of an input layer, a hidden layer, and an output layer.
The input layer requires 2d neurons. For the first two layers, the rectified unit (ReLU)
activation function is set. The output layer uses a single unit of softplus. The quality of
the predictor is evaluated by Mean Squared Error (MSE).
With n nodes in the graph, learning vector embeddings takes O(n) time. For each land-
mark a BFS tree has to be computed, to receive the shortest distances to all remaining
nodes. With l(n − l) training pairs and time complexity of BFS for unweighted sparse
graphs being O(n + m), this results in consuming O(l(n + m)) time. A trained feed-
forward neural network can process an input of two concatenated vector embeddings
< φ(u), φ(v) > in a small amount of time independent of the graph size, i.e. O(1) time.
This means that calculating the shortest path distance from a starting node u to all
remaining nodes takes O(n).

Approximation Quality
The results of the prediction are rounded because shortest path distances are discrete real
values. Two metrics, namely Mean of Relative Error (MRE) and Mean Absolute Error
(MAE) are used to measure the accuracy of the used method. MRE is defined as,

MRE =
1

n
∗

n∑
i=1

|d̂− d|
d

(4.4)

with d being the actual distance, d̂ the approximation and n the number of approximated
values. Since the MRE is smaller for larger distance values which is not perfectly fair, the
second metric MAE is used which is defined as

MAE =
1

n
∗

n∑
i=1

|d̂i − di| (4.5)

being independent of the target value.

5 EVALUATION 29

5 Evaluation

5.1 Dataset

For the approaches 1 and 2, the following dataset was used:

1. First, all entities of the type dbo:Scientist have been extracted. Number of enti-
ties: 24948

2. Next, all triples, that contained the entities from 1. as a subject, have been ex-
tracted. Number of triples: 174339

Figure 10: Graph representation of a triple with an entity of type dbo:Scientist as
subject.

3. The objects of the triples from 2. have been selected and multiple occurrences
removed. Number of objects: 51635

4. Triples that embody the selected entities(the former objects) from 3. as subjects
have been extracted. Number of Triples: 164044

Figure 11: Graph representation of two triples: The object dbr:Switzerland of the first
triple, is the subject of a triple that was added in 4.

5. The triple from 2. and 4. have been merged together in a dataset and the types
of all entities have been added. Triples that occured more than once have been
reduced to only one occurrence and types which are not contained in the used type
hierarchy from DBpedia [7] were deleted.

The created dataset contains 441868 triples.

Essentially the dataset consists of all the entities of type Scientist with two hops starting
from each of the scientists. Additionally the rdf:type information is included. Table 2
gives an overview.

5 EVALUATION 30

Figure 12: Illustration of two hops with the included rdf:type information

Table 2: Statistics of Scientist Dataset
Number of scientists 24948
Number of triples from first hop 174339
Number of triples from third hop 164044
Total number of triples 441868

5.2 Approach 1 and 2

At this section, the approaches 4.1 and 4.2 will be evaluated. This includes the A-
star algorithm with the heuristics from section 2.5.2, which will further simply be called
"Heuristic 1" and "Heuristic 2". It also includes the modified Dijkstra algorithm which
was performed on the graph with modified edge weights. This will be called "Weighted
by Outdegree" and "Weighted by Degree". As a baseline the modified Dijkstra algorithm
was executed on the "raw" unedited graph. It will be called "No Heuristic" since it was
implemented like an A-star algorithm but without a heuristic.
The used dataset is explained in section 5.1. From this dataset two sets of nodes have
been created. For each set, the algorithms had to find paths between all the containing
nodes. With n nodes this has led to n ∗ (n− 1) pairs of nodes between which paths have
been searched. The sets had 200 nodes each, resulting in 200 ∗ 199 = 39800 pairs. Set A
contained 200 randomly selected scientists, meaning 200 entities of type dbo:Scientist.
Set B contained 200 randomly picked entities from the given dataset.
Between the pairs of set A exist 9993 paths, whereas between the pairs of set B only
665 exist. Only the baseline was guaranteed to find a actual shortest path. To compare
the used sets (e.g. set A, set B) based on the average shortest path length, one has to
compare the path lengths of "No Heuristic".

Set A:
Table 3 gives an overview of the average time and path lengths for each technique. Figures
13 to 21 show detailed results for set A.

5 EVALUATION 31

Table 3: Overview of the results based on set A

Technique
Average time
per path

Average length
of paths

Average time per
path compared to
"No Heuristic"

Heuristic 1 0.112s 13,64 55%
Heuristic 2 0.109s 13,64 53%
No Heuristic 0.203s 9,97 100%
Weigthed by
Outdegree

0.122s 10,53 60%

Weigthed by
Degree

0.115s 10,53 56%

It can be seen, that heuristic 1 and heuristic 2 performed fastest. For heuristic 2, the av-
erage required time per path was only 53% of what was needed for the baseline. However,
for both heuristics, the path was in average 3.67 steps longer than the shortest possible
path (average shortest path: 9.97 compare "No Heuristic"). The approaches which were
based on the node degree, performed slightly slower than the heuristics, but still signif-
icantly faster than the baseline. They also found paths which are in average 3.11 steps
shorter than the heuristics and only 0.56 steps longer than the average shortest path.
For example in figure 15 and 16 it can be seen, that the heuristics came up with some
paths that are longer than 30 steps, up to 43, whereas the rest of the techniques had a
maximum length of 30. The occurrence of paths of this length is very low as shown in
figure 15. Nevertheless, figure 15 also shows a slight shift of the curve to the right for the
two heuristics. This explains the larger average of the path lengths.
The node degree based approaches show an increase in search time that is strongly pro-
portional to the increase in path lengths, up to a length of about 18 (compare figure 20
and 21. The baseline also shows a proportionality between path length and search time,
but it flattens earlier. The search time of the heuristics does not rise that evenly but also
up to a path length of about 14 an increase with higher path length is visible. From a
path length of maximum 18, the curves of all approaches show an irregular course but
remain within a limited area. The number of paths decreases with increasing path length.
This leads to the fact that trends are difficult to recognise with increasing path length,
because outliers get more weight.

Set B:
Table 4 gives an overview of the average time and path lengths for each technique. Figures
22 to 30 show detailed results for set B.

5 EVALUATION 32

Table 4: Overview of the results based on set B

Technique
Average time
per path

Average length
of paths

Average time per
path compared to
"No Heuristic"

Heuristic 1 0.225s 14.33 150%
Heuristic 2 0.232s 14.33 154%
No Heuristic 0.150s 12.75 100%
Weigthed by
Outdegree

0.196s 13.19 131%

Weigthed by
Degree

0.191s 13.34 127%

Compared to set A, all techniques except the baseline performed slower. The A-star tech-
niques performed worse, both in terms of time required and path length. The baseline
was faster and the actual shortest paths between pairs of set B are 2.78 steps longer than
the ones from set A. The curves which are shown from figure 26 to 30 to a very irregular.

Since the nodes for set B have been chosen completely randomly, it contained 90 nodes
which were not assigned into a type. Therefore heuristic 1 and heuristic 2 could not be
performed on pairs that included one of the 90 nodes as a target. For that reason all the
algorithms were run again on the same set but without the mentioned nodes. With 110
remaining nodes this lead to 110 ∗ 109 = 11990 pairs which resulted in 431 found paths.
Table 5 gives an overview of the average time and path lengths for each technique. Figures
31 to 39 show detailed results for the cleaned set B.

Table 5: Overview of the results based on set B cleaned

Technique
Average time
per path

Average length
of paths

Average time per
path compared to
"No Heuristic"

Heuristic 1 0.165s 14.14 124%
Heuristic 2 0.173s 14.14 130%
No Heuristic 0.133s 12.81 100%
Weigthed by
Outdegree

0.121s 13.20 91%

Weigthed by
Degree

0.123s 13.38 92%

It is visible, that both, the A-star approaches and the node degree approaches had a

5 EVALUATION 33

significant performance increase after cleaning set B. Performance of heuristic 1 increased
by 26.67%, heuristic 2 by 25.43%, outdegree by 38.27%, degree by 35,6% and the baseline
by 11.33 %. The node degree approaches performed fastest and the heuristics slowest.

Figure 13: Average time per path for each approach set A

Figure 14: Average path length for each approach set A

5 EVALUATION 34

Figure 15: Distribution of path lengths for each approach set A

Figure 16: Average search time per path length for each approach set A

Figure 17: Average time per path heuristic 1 set A

5 EVALUATION 35

Figure 18: Average time per path heuristic 2 set A

Figure 19: Average time per path no heuristic set A

Figure 20: Average time per path weighted by outdegree set A

5 EVALUATION 36

Figure 21: Average time per path weighted by degree set A

Figure 22: Average time per path for each approach set B

5 EVALUATION 37

Figure 23: Average path length for each approach set B

Figure 24: Distribution of path lengths for each approach set B

Figure 25: Average search time per path length for each approach set B

5 EVALUATION 38

Figure 26: Average time per path heuristic 1 set B

Figure 27: Average time per path heuristic 2 set B

Figure 28: Average time per path no heuristic set B

5 EVALUATION 39

Figure 29: Average time per path weighted by outdegree set B

Figure 30: Average time per path weighted by degree set B

Figure 31: Average time per path for each approach set B2

5 EVALUATION 40

Figure 32: Average path length for each approach set B2

Figure 33: Distribution of path lengths for each approach set B2

Figure 34: Average search time per path length for each approach set B2

5 EVALUATION 41

Figure 35: Average time per path heuristic 1 set B2

Figure 36: Average time per path heuristic 2 set B2

Figure 37: Average time per path no heuristic set B2

5 EVALUATION 42

Figure 38: Average time per path weighted by outdegree set B2

Figure 39: Average time per path weighted by degree set B2

5 EVALUATION 43

5.3 Approach 3

The graph on which this technique was performed, was a real-world social network graph
from Facebook. It was collected from survey participants using a Facebook app and
represents a network of connections between friends [14]. It includes 4039 nodes, from
which training pairs and test pairs have been created. It was performed three times with
three different training and test sets. In order to get a balanced training set, the path
lengths were limited differently each time. The originally imbalanced distribution of path
lengths occurs, because a shortest path for a given pair carries nodes by keeping shortest
distance between them. Respecting that fact, the BFS search also retrieves nodes that are
included in the shortest path for the given training pair. Tables 6 to 8 give an overview
of the distribution for each training set.

Table 6: Path length distribution
Path length Number of paths
2 389079
3 318832
4 210796
5 71726
6 19747

Table 7: Path length distribution 2
Path length Number of paths
4 227948
5 81958
6 18732

Table 8: Path length distribution
Path length Number of paths
4 222186
5 86943
6 24001
7 7461
8 437

5 EVALUATION 44

Table 9: Average MAE and RMSE for each training set
2≤ length≤6 4≤ length≤6 4≤ length≤8

MAE 0.642 0.336 0.319
RMSE 0.931 0.659 0.635

Table 9 shows the average MAE and the RMSE for each training set. It can be seen,
that the errors are very low for all sets. However, the set with a limited path length of
4 ≤ length ≤ 8 performed best with an average MAE of 0.319 and a RMSE of 0.635.

6 CONCLUSION 46

6 Conclusion

6.0.1 Summary

In this work, the problem of graph traversal in Knowledge Graphs has been addressed,
particularly for DBpedia.

Two graph traversal algorithms namely Dijkstra and A-star have been analysed and com-
pared in terms of search time and path length. For the Dijkstra algorithm to work, the
KG of the given dataset was weighted based on the degree of nodes beforehand. The two
heuristics that were designed for the A-star algorithm exploited the entity types and the
hierarchical structure of the DBpedia classes [7]. Depending on the test set, both ap-
proaches could eventually outperform the baseline in search time, but had higher average
path lengths.

The introduced method from 4.3 produces shortest distances for the large majority of
node pairs, matching the ground truth only with a very small deviation. It is a method
that can possibly be applied for large graphs since it returns the results in linear time.

6.0.2 Future Work

Possible future directions of the current work are:

• Perform BFS, DFS, Floyd Warshall and Bellman-Ford on Knowledge Graphs such
as DBpedia.

• Perform the suggested methods from 4.1 and 4.2 on other KGs than DBpedia.

• Perform the technique from 4.3 on larger graphs such as the one which was used for
approach 4.1 and 4.2.

• Use the technique from 4.3 with different parameters such as embedding size or
different node embedding techniques like e.g. HARP [6].

REFERENCES 48

References

[1] Databases and Information Systems. Max Planck Institute for
Informatics, URL: https://www.mpi-inf.mpg.de/departments/

databases-and-information-systems/research/yago-naga/yago, 2018.

[2] Facts and Figures. DBpedia URL: https://wiki.dbpedia.org/about/

facts-figures, 2020.

[3] Bast, H., Bäurle, F., Buchhold, B., and Haussmann, E. Easy access to the
freebase dataset. pp. 95–98.

[4] Berners-Lee, T., Hendler, J., and Lassila, O. The Semantic Web. Scientific
American (2001).

[5] Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak,

R., and Hellmann, S. Dbpedia - a crystallization point for the web of data.
Journal of Web Semantics 7, 3 (2009), 154 – 165. The Web of Data.

[6] Chen, H., Perozzi, B., Hu, Y., and Skiena, S. Harp: Hierarchical representation
learning for networks, 2017.

[7] DBpedia. Ontology Classes, 2016. URL: http://mappings.dbpedia.org/server/
ontology/classes/.

[8] Duan, Y., Shao, L., Hu, G., Zhou, Z., Zou, Q., and Lin, Z. Specifying archi-
tecture of knowledge graph with data graph, information graph, knowledge graph and
wisdom graph. In 2017 IEEE 15th International Conference on Software Engineering
Research, Management and Applications (SERA) (2017), pp. 327–332.

[9] Grover, A., and Leskovec, J. node2vec: Scalable feature learning for networks.
In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining (2016), pp. 855–864.

[10] Hawke, S., Herman, I., Archer, P., and Prud’hommeaux, E. RDF Schema
1.1, 2013.

[11] Hawke, S., Herman, I., Archer, P., and Prud’hommeaux, E. W3c semantic
web activity. URL: https://www.w3.org/2001/sw/, 2013.

[12] Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., and Stegemann, T.

Relfinder: Revealing relationships in rdf knowledge bases. vol. 5887, pp. 182–187.

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
https://wiki.dbpedia.org/about/facts-figures
https://wiki.dbpedia.org/about/facts-figures
http://mappings.dbpedia.org/server/ontology/classes/
http://mappings.dbpedia.org/server/ontology/classes/
https://www.w3.org/2001/sw/

REFERENCES 49

[13] Lehmann, J., Schüppel, J., and Auer, S. Discovering unknown connections -
the DBpedia relationship finder. In Proceedings of 1st Conference on Social Semantic
Web. Leipzig (CSSW’07), 24.-28. September (September 2007), vol. P-113 of GI-
Edition of Lecture Notes in Informatics (LNI), Bonner Köllen Verlag.

[14] Leskovec, J., and Mcauley, J. J. Learning to Discover Social Circles in Ego
Networks. In Advances in Neural Information Processing Systems 25, F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2012, pp. 539–547.

[15] Lämmel, U., and Cleve, J. Künstliche Intelligenz. Carl Hanser Verlag, 2012.

[16] McBride, B., Klyne, G., and Caroll, J. J. Resource Description Framework
(RDF): Concepts and Abstract Syntax, 2004.

[17] Mirza, A., Nagori, M., and Kshirsagar, V. Constructing knowledge graph
by extracting correlations from wikipedia corpus for optimizing web information re-
trieval. In 2018 9th International Conference on Computing, Communication and
Networking Technologies (ICCCNT) (2018), pp. 1–7.

[18] Ruohonen, K. Graph Theory, Lecture notes for TUT Finlandia. 2013.

[19] Salehi Rizi, F., Schloetterer, J., and Granitzer, M. Shortest path distance
approximation using deep learning techniques. pp. 1007–1014.

[20] Savenkov, V., Mehmood, Q., Umbrich, J., and Polleres, A. Counting to k or
how sparql1.1 property paths can be extended to top-k path queries. In Proceedings
of the 13th International Conference on Semantic Systems (New York, NY, USA,
2017), Semantics2017, Association for Computing Machinery, p. 97–103.

[21] Sofronova, R. Fine-grained Type Prediction of Entities using Knowledge Graph
Embeddings. KIT, Karlsruhe.

[22] Stotz, R. Der Bellman-Ford-Algorithmus. Technischen Universität München URL:
https://www-m9.ma.tum.de/graph-algorithms/spp-bellman-ford/index_de.

html, 2013.

[23] Tartari, G., and Hogan, A. Wisp: Weighted shortest paths for rdf graphs. In
VOILA@ISWC (2018), V. Ivanova, P. Lambrix, S. Lohmann, and C. Pesquita, Eds.,
vol. 2187 of CEUR Workshop Proceedings, CEUR-WS.org, pp. 37–52.

[24] Velden, L. Der A* Algorithmus. Technischen Universität München URL: https:
//www-m9.ma.tum.de/graph-algorithms/spp-a-star/index_en.html, 2014.

https://www-m9.ma.tum.de/graph-algorithms/spp-bellman-ford/index_de.html
https://www-m9.ma.tum.de/graph-algorithms/spp-bellman-ford/index_de.html
https://www-m9.ma.tum.de/graph-algorithms/spp-a-star/index_en.html
https://www-m9.ma.tum.de/graph-algorithms/spp-a-star/index_en.html

REFERENCES 50

[25] Velden, L. Der Dijkstra-Algorithmus. Technischen Universität München
URL: https://www-m9.ma.tum.de/graph-algorithms/spp-dijkstra/index_de.

html, 2014.

[26] Voroncovs, A. Der Floyd-Warshall-Algorithmus. Technischen Uni-
versität München URL: https://www-m9.ma.tum.de/graph-algorithms/

spp-floyd-warshall/index_de.html, 2015.

[27] Yu, L. A Developer’s Guide to the Semantic Web. Springer, Berlin, 2011.

https://www-m9.ma.tum.de/graph-algorithms/spp-dijkstra/index_de.html
https://www-m9.ma.tum.de/graph-algorithms/spp-dijkstra/index_de.html
https://www-m9.ma.tum.de/graph-algorithms/spp-floyd-warshall/index_de.html
https://www-m9.ma.tum.de/graph-algorithms/spp-floyd-warshall/index_de.html

Assertion

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel
vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten
anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT
zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu
haben.

Karlsruhe, November 2, 2020 VORNAME NACHNAME

	Introduction
	Motivation and Background
	Objective
	Structure

	Foundations
	Semantic Web
	Resourse Description Framework
	Knowledge Graph
	Entity
	DBpedia

	Type information
	Graph Traversal Algorithms
	Dijkstra
	A-star

	Deep Learning
	Graph Embeddings
	node2Vec
	Neural Networks
	Feedforward Neural Network
	Backpropagation

	Related Work
	Approach
	Using Type Information
	Using Node Degree
	Shortest Distance Approximation Using a Neural Network

	Evaluation
	Dataset
	Approach 1 and 2
	Approach 3

	Conclusion
	Summary
	Future Work

