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Abstract

This thesis is concerned with the time integration of certain classes of nonlinear evolution equations in
Hilbert spaces by exponential integrators. We aim to prove error bounds which can be established by
including only quantities given by a wellposedness result. In the first part, we consider semilinear wave
equations and introduce a class of first- and second-order exponential schemes. A standard error analysis
is not possible due to the lack of regularity. We have to employ appropriate filter functions as well as
the integration by parts and summation by parts formulas in order to obtain optimal error bounds. In
the second part, we propose two exponential integrators of first and second order applied to a class of
quasilinear wave-type equations. By a detailed investigation of the differentiability of the right-hand side
we derive error bounds in different norms. In the framework we can treat quasilinear Maxwell’s equations
in full space and on a smooth domain as well as a class of quasilinear wave equations. In both parts, we

include numerical examples to confirm our theoretical findings.
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CHAPTER 1

Motivation and Introduction

In the natural sciences many phenomena are modeled by ordinary (ODEs) and partial differential equa-
tions (PDEs). They arise from physical models and describe how certain processes take place. This
means that, once we know the solution of the differential equation, we have a precise knowledge of
what will happen in the considered system. In this thesis we focus on a specific class of PDEs, namely
wave-type problems, in particular on the wave equation and Maxwell’s equations. Wave equations model
for example the propagation of sound or the vibration of a membrane and the foundations of classical
electromagnetism are laid by Maxwell’s equations.

Because of these important applications, scientists and engineers have been encouraged for centuries
to predict the physical processes by finding the solutions of the given equations. For the specific models
this can sometimes be done even analytically, i.e., one can derive an explicit formula for the solution.
Typical strategies are separation of variables as well as the application of Fourier and Laplace transforms,
respectively.

However, in most cases such a direct approach is not possible and only an approximation of the exact
solution can be found. To do this on a computer, we need to turn the problems, which are continuous
in space and time, into finite dimensional problems. Often the method of lines technique is used where
first the spatial domain is discretized and the time variable remains continuous. This leads to a generally
large system of ODEs which in a second step has to be discretized in time. In this thesis we restrict
ourselves to the discretization in time and work in an abstract function space which is an important
first step towards the analysis of fully discrete methods. We note that for practical implementations a
discretization in space is necessary.

The thesis comprises two parts where we treat different classes of nonlinear evolution equations.
However, both parts share two common features:

We aim at error bounds that only rely on the regularity of the solution which can be directly derived
from the problem. This means given certain data of the problem, we first conclude uniqueness and

existence of a solution and derive its regularity and a priori bounds. This information then enters the
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error analysis where all appearing constants can be traced back to known data. This approach is usually
referred to as an error analysis in terms of the data.

Moreover, we only study exponential integrators which have become quite popular in the last decades.
They are constructed from the variation-of-constants formula and treat the linear part of the equation
exactly. Hence, more information of the exact solution is incorporated in the numerical method which

improves the numerical approximation even if the exact solution is not smooth.

1.1 Semilinear problems

In the first part we are interested in solving abstract wave equations such as for example the cubic wave
equation or the sine-Gordon equation. In particular, we study the time integration in an abstract Hilbert
space framework and focus on error bounds that can be established under physically realistic assumptions,
in particular finite-energy conditions.

If the equation is posed on a finite dimensional space, for example after the discretization by finite
differences, there is some literature available, see e.g., [35, Chap. XIIL] for an overview. Garcia-Archilla,
Sanz-Serna and Skeel [21], Grimm and Hochbruck [30], Hochbruck and Lubich [38], and Sanz-Serna [66]
studied exponential (or trigonometric) integrators for such equations. These methods were shown to be
second-order convergent and unconditionally stable, i.e., the constants do not depend on the Lipschitz
constant of the discretized differential operator. Remarkably, the error analysis is performed under a
finite-energy condition only and does not make use of bounds on the second time derivative. The key
ingredient are certain matrix functions that act as filters which remove resonances in the local error. If
these filters are chosen appropriately, they ensure cancellations in the global error such that the local
error is of the same order as the global error.

In the recent paper [8] by Buchholz et al. and the PhD thesis [10] by Buchholz, a completely new
technique was introduced to prove and extend the above mentioned results in the ODE case. The
trigonometric integrator was reformulated as a Strang splitting applied to a modified problem and the
proof was divided into two steps. First, the error introduced from the modified problem is bounded.
Afterwards, using ideas from [46] by Jahnke and Lubich and [54] by Lubich, a specific representation
of the defect was derived that separates terms of order three from the leading error terms which are of
order two. The order three terms are then summed up in the standard way and the filters are employed
for the leading error terms. In this way, a modified Lady Windermere’s fan argument together with the
above-mentioned cancellations lead to the global error of order two.

We close with a brief overview of further work on exponential integration schemes for the time inte-
gration of semilinear wave equations. Baumstark, Faou and Schratz [7] studied the time integration of a
sine-Gordon equation that depends on a parameter ¢ — oo which induces high oscillations in time. They
construct methods that allow for error bounds independent of ¢. A spatially discretized wave equation
with periodic boundary conditions is considered by Gauckler in [22]. The right-hand side is chosen as a
polynomial such that the smooth coefficients together with the algebra structure allow for optimal error
bounds. Gauckler et al. extended the approach in [23] to the quasilinear case. For linear and semilinear
evolution equations in [36, 37] exponential splitting methods are analyzed by Hansen and Ostermann
where the error bounds rely on commutator bounds of the splitting operators. Crouseilles, Einkemmer

and Massot [17] compare the stability of different types of exponential integrators applied to Vlasov-
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Poisson and drift-kinetic equations. In a recent preprint, Caliari et al. [13] apply rational exponential

integrators to hyperbolic and oscillatory PDEs.

Aim and main results

We present rigorous error bounds for the time discretization of abstract wave equations with exponential
integrators under low regularity assumptions on the data in the first part of this thesis. Due to this lack
of regularity we do not consider higher order methods. We note that most of the material has already
been published in [9].

The methods are constructed as follows. We introduce filter functions and replace the right-hand side
of the equation by a filtered variant which leads to an averaged equation. We then take an exponential
method, which we call the underlying scheme, and apply it to the averaged equation. This new method
is the averaged scheme which is analyzed in the first part of this thesis. For the underlying schemes
we refer to the papers by Celledoni, Cohen and Owren [15] and Hochbruck and Ostermann [39, 40] on
exponential Runge-Kutta methods, by Hochbruck, Leibold and Ostermann [45] on Lawson methods and
by Wang, Wu and Xia [71, 72] on extended Runge-Kutta—Nystrom methods.

The analysis is performed on a whole scale of Sobolev spaces and covers different boundary conditions.
Thus, we can treat a large class of examples, and we included all computations to verify that they fit into
the abstract framework. In particular, our framework covers non-constant coefficients for the differential
operator and power bounded nonlinearities for which the admissible polynomial degree is determined
by the spatial dimension and the corresponding Sobolev embeddings. Most importantly, the framework
admits for a classical wellposedness result which is the only regularity that enters the constants in the
error bounds. Up to our knowledge this has only been done before by Gauckler [22] for periodic boundary
conditions where a far richer structure is available.

The error analysis applies to a large class of first- and second-order exponential integrators. For the
presented error bounds of the second-order methods we first provide a detailed characterization of the
filter functions, the averaged solution, as well as for the defects. This allows us to derive the estimates in
a unified way. Finally, we obtain the error bounds of the first-order methods under even lower regularity

assumptions for the approximation of mild solutions.

Outline

The first part of the thesis is organized as follows. In Chapter 2, we introduce the analytical framework,
discuss the wave equation in the second-order formulation and briefly illustrate it with an example. We
reformulate the equation as a first-order system and recall some basic semigroup theory which leads us
to a standard wellposedness result. We conclude this chapter by introducing a functional calculus for
skew-adjoint operators in Hilbert spaces.

We proceed with a review on exponential integrators in Chapter 3. We first explain the general
construction of such schemes and derive the two simplest methods of first order. Further, we present the
second-order methods which serve as the underlying schemes for our averaged methods.

The core of the first part is Chapter 4. We begin with an informal overview of the main concepts
appearing in the error analysis and sketch the main results. For the purpose of illustration we added

a numerical experiment and a class of examples which are covered by the presented theory. In the
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subsequent sections we refine the analytical framework, introduce the filter functions and estimate the
error stemming from the averaging procedure. We finally establish the desired error bounds for the
different methods in different norms.

All technical calculations which are necessary to fit the concrete examples into the abstract framework

are collected in Appendix A.

1.2 Quasilinear problems

The second part of the thesis is concerned with the time integration of the quasilinear evolution equations
posed in a Hilbert space by exponential integrators.

In a very general framework, Kato proved in [50, 51] the wellposedness of such equations. This
generality does not only cover symmetric hyperbolic system of first order, but also the wave equation,
the Kortweg-de Vries equation and many more interesting examples. In order to relax the assumptions
on the initial data and make the results of Kato easier to apply, the framework was refined in the PhD
thesis [61] by Miiller with a focus on certain quasilinear wave and Maxwell’s equations. Due to the wide
range of applications of quasilinear equations in the modeling of different phenomena, a large literature
on their numerical treatment emerged over the last few years which we will present in the following.

We first mention the papers by Kanda [47], Kobayashi [52], and Takahashi [69], where the wellposed-
ness of general nonlinear evolution equations is studied. The aim was to construct solutions via difference
approximations which are in principle the implicit and semi-implicit Euler method. The nonlinear semi-
groups are generated by multi-valued, dissipative operators on some Banach space. For the special case
of quasilinear problems, Crandall and Souganidis [16] give a different proof of Kato’s results also via
difference approximations. However, the convergence rates in these papers are only of order 1/2. The
first results for the time integration of quasilinear hyperbolic problems with optimal order were derived
by Hochbruck and Pazur in [41]. They employed completely new techniques and proved error bounds
of order one for the mentioned variants of the Euler method. Building upon this, Hochbruck, Pazur
and Schnaubelt [44] and Kovdcs and Lubich [53] extended the techniques to coercive and algebraically
stable Runge-Kutta methods. A similar framework was used by Maier in the thesis [56] where finite
element methods were combined with the leapfrog method and Runge-Kutta schemes in order to prove
full discretization error bounds.

In the case of the one-dimensional quasilinear wave equation equipped with periodic boundary con-
dition, Gauckler et al. [23] used trigonometric integrators for the time integration. By a sophisticated
stability analysis, the authors proved second-order error bounds in time and further treated the full dis-
cretization with pseudo-spectral methods. The Westervelt equation in two and three dimensions was
studied by Antonietti et al. [6] and Nikoli¢ and Wohlmuth [62] where the discretization in space was
performed with continuous and discontinuous Galerkin (dG) methods. Absorbing boundary conditions
for this equation were treated in [60] by Muhr, Nikoli¢ and Wohlmuth. For parabolic problems, Casas
and Chrysafinos [14] combined linear finite elements in space with a dG method of order zero in time
and showed error bounds under low regularity assumptions.

Before we turn to our contributions, we emphasize the influence of the following two series of papers.
The original Kato framework was used by Kovdcs and Lubich in [53] and the refined Kato framework,

which is also the basis of our error analysis, was used by Hochbruck, Pazur and Schnaubelt in [41, 44].
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In these related frameworks, the time integration by algebraically stable and coercive Runge-Kutta
schemes was considered and error bounds were derived. In particular, their stability estimates were the
starting point for our stability analysis. The idea for the method and the idea how to represent the local
error comes mainly from the papers [26-28] by Gonzdlez and Thalhammer. They considered quasilinear
parabolic equations and constructed and analyzed several exponential integration schemes. However, the
analyticity of the semigroup is a key ingredient in their analysis such that we cannot apply it to wave-type

equations where the semigroup usually is generated by a skew-adjoint operator.

Aim and main results

In the second part of this thesis we present rigorous error bounds for the time discretization of quasilinear
wave-type evolution equations with exponential integrators. In this framework we treat quasilinear wave
equations and Maxwell’s equations simultaneously. We extend the framework of possible examples and
thus provide an extension of the wellposedness result by Miiller [61] to more general right-hand sides.
We propose two exponential integrators which are of first and second order and derive error bounds in
different norms. Similar to the first part of the thesis our main error bounds only rely on the regularity
obtained from the wellposedness result. Compared to the methods from Hochbruck, Pazur and Schnaubelt
[41, 44] and Kovécs and Lubich [53], we hence relax the assumptions on the regularity of the exact solution.
A key ingredient is the precise knowledge of the differentiability of the data evaluated at smooth functions,
which we formulate as assumptions. For the specific examples, we postpone the proofs to the appendix.
Up to our knowledge there are only two papers that treat exponential integrators for quasilinear
wave-type equations. Pototschnig et al. [64] consider an application from physical optics and perform
numerical experiments. Gauckler et al. [23] only treat the one-dimensional wave equation with periodic
boundary conditions. Hence, this is the first result concerning error bounds on exponential integrators

for this general class of quasilinear wave-type evolution equations.

Outline

The second part of the thesis is structured as follows. In Chapter 5, we introduce the analytical framework
and explain the two main examples fitting into it. All necessary assumptions for the error analysis are
presented in an abstract way in order to treat the examples at once. We conclude the chapter with the
extension of a known wellposedness result which is the foundation of the following error analysis.

Next, we review some numerical methods for quasilinear problems in Chapter 6. In the first two
sections, we present the methods for wave-type problems by Hochbruck, Pazur and Schnaubelt [41, 44]
and Kovécs and Lubich [53] and for parabolic problems by Gonzédlez and Thalhammer [26-28]. Further,
we explain the error bounds derived by Gauckler et al. [23] for the special case of the quasilinear wave
equation in one spatial dimension. We also comment on a numerical comparison by Pototschnig et al.
[64] of exponential integrators and classical time integration schemes for quasilinear Maxwell’s equations
which clearly indicates that exponential integrators can be highly competitive.

Finally, in Chapter 7 we propose our new methods, state the main results and prove them in the
subsequent sections. Further, we provide a numerical example where we combine our methods with a
finite element method in space. As a possible further application of the technique used in the proofs we

establish error bounds also in stronger norms. However, they cannot be derived from the wellposedness
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result proven earlier but need additional regularity.
As in part I, we postpone the calculations to show that the wave equation and Maxwell’s equations

fit into the abstract framework to Appendix B.

Notation

In this section, we introduce the notation used throughout the thesis.

Differential operators Let 2 C R be some domain with d € {1,2,3} and consider sufficiently smooth
functions f: Q — R and ¢g: Q C R? — R3. We define for = = (961 .. -CEd) the gradient

d
Vi(z) = Zamif@).

Further, for g = ( 91,92, 93 )T we define the divergence by
leg = 8%191 + aibng + 81’393 )

and the curl-operator by
0,93 — Ozy 92
curlg = | Oz,91 — Oz, 93
02,92 — Oz, 01
The Laplacian A is given by

d
Af=div(Vf)=> 02 f.
i=1

Spaces For Banach spaces X,Y, |||y denotes the norm on X and £(X,Y) the set of all bounded
operators T: X — Y equipped with the standard operator norm ||T||y«x. We use the abbreviation
E(X) = [,(X, X). If X is a Hilbert space (-, ) x denotes the scalar product on X.

We denote for a radius r > 0 the ball around zero in X by

Bx(r) ={z e X |[zlx <r},

and if X can be written as a product X = X; x X5 we denote by denote by m;: X — X the projection

onto the i-th component of the product space X, ¢ = 1,2, i.e., for z = (xl, To )T eX

X1 0
X = s Tk = .
0 T2

Further, C*(X,Y) is the space of all k-times Fréchet-differentiable functions from X to Y. We write
WHP(Q), k € Ny, 1 < p < oo, for the Sobolev space of order k with all (weak) derivatives in LP(2) and
abbreviate H*() := W*2(Q). For multi-indices a, 8 € N’ we write « < S if a; < 3; foralli=1,... .

Calculus on Banach spaces We use several times the theory of differentiation and integration in
Banach spaces. We refer the reader to [4, Section IV.3] for results concerning the differentiation. Since

all integrals can be understood as Riemann integrals, the necessary theory can be found in [5, Chapter
VIJ.



Part 1

On averaged exponential integrators
for semilinear wave equations with

solutions of low regularity






CHAPTER 2

Analytical framework - semilinear problems

In this chapter we lay the foundations of the first part of this thesis. After recalling some basic facts from
functional analysis, we introduce the semilinear wave equation in first- and second-order formulation. The
last section contains the most important properties of the functional calculus for self-adjoint operators.
Since we deal with differential operators, we need to extend the classical operator theory concerning
bounded linear operators. The proper generalization is given by closed linear operators. Such operators
A are in general not defined on the full space but rather only on a subset D(A) of a Hilbert space X
which we call the domain of A. We further say that an operator is densely defined if D(A) = X holds.

Definition 2.1. Let A: D(A) C X — X be a linear operator. We call A a closed operator if the following
implication holds:

For any sequences (xy,), in D(A) and (yn)n in X given by y, = Ax, with
Tn —>x and Y, — Y

for some x,y € X it holds
x €D(A) and Az =y.

For such operators one can also define the adjoint operator. This has to be done slightly more carefully

compared to the bounded operator case.

Definition 2.2. Let A: D(A) — X be a closed, linear and densely defined operator and consider the set
DA ={ye X |Fze X : (Az,y)x = (x,2)x}.

(a) We define A* : D(A*) — X for any y € D(A*) by A*y := 2. Note that z is unique and the map is
well-defined. We call A* the adjoint of A.

(b) A is called self adjoint if D(A*) = D(A) and A* = A.

(¢) A is called skew adjoint if D(A*) = D(A) and A* = —A.
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This next definition recalls the well-known concepts of the spectrum and the resolvent set.

Definition 2.3. Let A: D(A) — X be a linear, closed operator.
(a) The resolvent set of A is given by

p(A) ={AeC| N - A: D(A) —» X is invertible} .

(b) The spectrum of A is given by o(A) = C\ p(A).

(¢) The operator A is called strictly positive if there is some ca > 0 such that (Az,z)x > ca Hx||§(

We finally introduce the concept of compact operators which often appears in the context of embed-

dings.

Definition 2.4. LetT: Y — X be a linear operator. We call T a compact operator if the following holds:
For any bounded sequence (yn)n in'Y, there exists a subsequence (yn;); such that the sequence (T'yn,);

converges in X.

2.1 Wave equation

The equation of interest in this first part of the thesis is the semilinear wave equation. We naturally
consider it in a second-order formulation. Hence, we present the equation and all imposed assumptions
on the data in this formulation. Since we prove a wellposedness result with the aid of semigroup theory,
we reformulate the equation afterwards as a first-order system. In addition, all methods we propose for
the time integration are applied to this formulation and we therefore also translate the assumptions into

this setting.

2.1.1 Second-order formulation

Let H be a real, separable Hilbert space and L: D(L) C H — H be a strictly positive, self-adjoint
operator. By [67, Prop. 5.13] we define L'/2 as the unique, strictly positive, self-adjoint operator that

satisfies L'/2L'/2 = L and may hence introduce the intermediate space

V =D(LY?) with D(L)—V < H, o]y, = [|L*? (2.1)

UH?—L’

with dense and continuous embeddings. In particular, we assume the existence of a constant Cepyp such
that the following bounds hold

[0l < Cemp vl ve V. lally < Cemp llallpry, a € D). (2.2)
In the first part of this thesis we consider the abstract second-order evolution equation
q”(t) = _LQ(t) + G(t7 q(t))a te [07 tdef]a Q(O) = qo, q/(O) = Q(l)a (23)

in H and use the spaces above to reformulate it as a first-order system. In order to illustrate the abstract
framework considered in the rest of the first part, we present a class of examples of semilinear wave

equations.
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Example 2.5 (]9, Example 3.1]). We consider the semilinear evolution equation (2.3) in the following
setting:
(a) 0 # Q CR? is a conver, bounded Lipschitz domain with d € {1,2,3}.
(b) L = —div(AV) with uniformly positive definite A € L>(Q)4*4.
(c) For g: [0,tqe] X 2 x R — R there is some o = (ou, oty ) € N3 such that all partial derivatives
0%g, B < «, exist, are continuous in t and y and bounded in x.

(d) There is vy > 1 and a constant Cy > 0 such that for all (t,x,y) € [0,tger] X © X R we have

lg(t, z,y)|,10:g(t, z,y)| < Cy(1+ |y[7),
10yg(t, 2, y)| < Cy(1+ |y 1)

For the corrected Lie Splitting (3.14) we assume in addition
1Byyg(t,z,y)] < Co(1+[yI"7") .
For (t,x) € [0,taef] X @ and q € V we define

G(t,q)(z) = g(t,z,q(x)).

The most common examples fitting into this framework, are in d = 1,2,3 on H = L*(Q) the cubic
wave equation with L = —A and g(q) = ¢° or the Sine-Gordon equation with g(q) = sin(q). In Table 4.1,
we provide a detailed list of criteria such that the error analysis presented in this part of the thesis can

be conducted.

2.1.2 First-order system

In order to prove a wellposedness result for (2.3) we formulate it as the first-order system

u(t) = Au(t) + ftu(t),  u= <q> : (2.4)

0 I 0
(00 e (). o

on the separable Hilbert space X = V x ‘H with inner product

with

(u1,u2)x = (q1,q2)v + (v1,v2)3 -

The wave operator A is given on its domain D(A) = D(L) x V which allows for the following properties.
The first one, see for example [19, Section VI.3.c], is crucial for the wellposedness of (2.4) as we see in

the next section.
Lemma 2.6. The operator A: D(A) — X is skew adjoint.

Proof. 1t is clear that for u € D(A) it holds

(Au,u)x = —(u, Au) x ,
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i.e., A is skew-symmetric. Hence, it suffices to prove that I + A : D(A) — X is surjective, see [73, Satz
VIL2.8]. Given any y = (y1, 12 )T € X we seek u = (q,v )T € D(A) such that

weer = (7))

holds. Substituting the first equation in the second gives
(I+L)g=y1—yp€H,

which has a solution g € D(L). Setting v = y; — q € V gives surjectivity for I + A. The case I — A is
fully analogous. O

In many cases the embeddings in (2.1) are compact maps which makes the later appearing functional
calculus more intuitive. In the next result we explain how this transfers to the first-order formulation,
cf. [65, Lemma 9.20].

Lemma 2.7. If the embeddings in (2.1) are compact, A has a compact resolvent.

Proof. Take any sequences (uy,), in D(A) and (yn)n in X with
Aup, =y, and  |lyn||x <C forallneN.

We then have to prove that there exists a converging subsequence (u,,); in X. Looking at the single

An Yin Un, Yi,n
un = ) yn = b = .
Un Y2,n _an Y2,n

Since we have [[v,|y, = [[y1,nlly, < C, there is a subsequence converging in H and hence there is some
v € H such that

components we have

Up; v inH, j—o00,

holds. Further, by ||Qn,~HD(L)

another converging subsequence and conclude the assertion. O

= HmeHH < C and the compact embedding into V' we may extract

In the error analysis we also prove convergence in the stronger norm

[ullpay = [l Aullx -
The following lemma states that ||-||D( 4y Is indeed a norm and is equivalent to the standard graph norm.

Lemma 2.8. For u € D(A) and Cepmp from (2.2) it holds
lullx < Coms [|[Aulx -

Proof. For u = (q,v )T € D(A) we have by (2.2)

2 2 2 2 2 2
lullx = llally + vl < Co (lallpzy + 10lly) = Comp lullpa)

and hence the assertion is shown. O
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2.2 Wellposedness results

In this section we consider the theory of linear and semilinear evolution equations. To simplify the
presentation, we restrict ourselves to wave-type equations in Hilbert spaces. All results can be found in

the monographs [19, 58, 63].

2.2.1 Linear, inhomogeneous evolution equations

A preliminary step towards the semilinear equations studied in the numerical analysis is the careful

treatment of the inhomogeneous evolution equation
W (1) = Au() + £(B),  u(0) = uo, (2.6)

which is done in two steps.

The homogeneous case
In the first part we investigate the homogeneous evolution equation
W) = Au(t),  u(0) = o, (2.7)

in some Hilbert space X. If X is finite dimensional and A € C"*", it is well-known that the solution of

(2.7) is given by

u(t) = ey, et = EA]“ , (2.8)

k=0 "
and that the series is absolutely convergent by the boundedness of A. Obviously, this construction cannot
be done in the case of an unbounded operator A. In the following we will generalize the solution theory

of (2.7) to this case.

Definition 2.9. Consider a family (T(t))i>o0 of bounded linear operators on X. We call (T(t))i>0 a
strongly continuous semigroup or Coy-semigroup if the following properties are satisfied:
(a) T(0) =1,
(b) T(#)T(s) =T(t+s) forallt,s >0,
(c) %E%T(t)x =z forallz € X.
It is easily verified that the family e*4 from (2.8) satisfies all conditions from Definition 2.9. Given

this family we can get back the matrix A by the representation

d
A= — tA
at©

This can be used in order to extract an operator from any given semigroup which is called the generator.

t=0

Definition 2.10. Let (T(t))tzo be a Cy-semigroup on a Hilbert space X. We define the set
. 1 _ L
D(A) ={ze X | hlil(r]lJr +(T(h)z — x) exists in X}
and define for x € D(A) the operator
. ; 1 _
A:DA) - X, z— hlg& HT(h)z —z),

called the infinitesimal generator of the semigroup (T(t))tzo.
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We present some useful results on semigroups and their generators, see, e.g., [19, Chapter II].

Proposition 2.11. Let (T'(t));>0 be a Co-semigroup on a Hilbert space X and A: D(A) — X its gener-
ator. Then the following assertions hold:

(a) The operator A is closed and D(A) is dense in X.

(b) The map t — T(t)z is continuous from [0,00) to X for all x € X.

(¢) There exist M > 1 and w € R such that ||T(t)|| y, y < Me“".

(d) For x € D(A) it holds T(t)x € D(A) and

%T(t)m =AT(t)x =T(t)Az, t>0.

From the last point it is clear that for ug € D(A) the function

satisfies u € C'*(]0, 00), X) N C([0,0), D(A)) and solves (2.7).

Proposition 2.12. Let (T'(t));>0 be a Co-semigroup on a Hilbert space X and A: D(A) — X its gener-
ator. Further, let M > 1 and w € R such that | T(t)| x,_x < Me“" holds.
If Re X > w, then A is in the resolvent set p(A) and it holds

M

M — A" <=
IO =) lyex < ooz o

n>1.
With this proposition, we can prove one of the most important theorems going back to Hille and

Yosida which gives a characterization whether an operator is a generator of a semigroup.

Theorem 2.13 (Hille-Yosida). Let A: D(A) — X be a linear operator in a Hilbert space X and take
M >1 andw € R. Then A is the generator of a semigroup satisfying ||T(t)|x. x < Me*" if and only if
the following is satisfied:

(a) A is closed and D(A) is dense in X

(b) For any A with Re A > w it holds A € p(A) and

M

" < >1.
HXeX > (Re)\—w)m n=

I(A = 4)"

We further mention one important subclass of strongly continuous semigroups, the so-called Cy-groups.
We obtain them if we replace in Definition 2.9 ¢ > 0 by t € R and t,s > 0 by t,s € R. A Cy-group
is called unitary if one can choose M = 1 and w = 0. An example for such an generator is the wave

operator in (2.5) as can be seen from the next result.

Theorem 2.14 (Stone). Let A: D(A) — X be a linear, densely defined operator. Then A generates a
unitary Co-group if and only if A is skew adjoint.

The inhomogeneous case

In the next section we turn to the inhomogeneous evolution equation (2.6) and assume throughout that
A is the generator of a strongly continuous semigroup and change the notation to 7'(t) = e*4. The main

goal of this section is to find solutions to (2.6) and we hence clarify what a solution is.
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Definition 2.15. (a) We call u a classical solution of (2.6) on [0,t*) if u solves (2.6), u(0) = ug, and
u € C'([0, tenal; X) N C([0, tena], D(A)) (2.9)

for any teng < t*.
(b) Let f € C([0,tget], X), then the function u € C([0,tqet], X) defined by
¢
u(t) = ety + /e(t_S)Af(s) ds (2.10)
0

is called a mild solution of (2.6). One often refers to (2.10) as the variation-of-constants formula.

We note that every classical solution of (2.6) is also a mild solution and, since the mild solution is
uniquely defined by (2.10), classical solutions must be unique as well. On the other hand, if there exists
a classical solution it must be given by (2.10). Hence, we need to study whether a mild solution is also a

classical one. The answer can be given in terms of the regularity of f and wyg.

Proposition 2.16. Let u € C([0,tqet], X) be the mild solution of (2.6). If ug € D(A) and one of the

two conditions

(a) f € CH([0,taec], X),  (b) f € C([0, taet], D(A)),

is satisfied, then u is the classical solution of (2.6).

2.2.2 Semilinear evolution equations

We now turn to the actual equation of interest given by the semilinear evolution equation
u'(t) = Au(t) + f(t, u(t)), u(0) = g, (2.11)

where A is the generator of a strongly continuous semigroup. The final task of this section is to give
sufficient conditions on f in order to obtain a classical solution of (2.11) in the sense of Definition 2.15.

We start with a crucial observation. Assume that we have a solution u € C([0, tena], X) and define

g(t) = f(t,u(t)).

Then u is also the solution of the inhomogeneous problem (2.6) with f replaced by g and hence we obtain

by (2.10) the variation-of-constants formula in the form

¢
u(t) = ettug + /e(t*S)Af(s, u(s))ds. (2.12)

0
We again denote a function u € C([0, tend], X) satisfying (2.12) a mild solution to (2.11). As before we
see that every classical solution of (2.11) also is a mild solution. We first state a result [63, Thm. 6.1.2,
6.1.4] that guarantees the existence of mild solutions and close with the final theorem on the existence

of classical solutions.
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Theorem 2.17. Let A: D(A) — X be the generator of a strongly continuous semigroup and let ug € X.

(a) If f : [0,tqef] X X — X is globally Lipschitz continuous, then (2.11) has a unique mild solution on
[0, tet]-

(b) If f : [0, tqet] X X — X is locally Lipschitz continuous, then there is a t* < tger such that (2.11) has

a unique mild solution on [0,t%).

The proof is performed via a fixed-point argument using the representation in (2.12). This theorem
directly implies the uniqueness of the classical solution. Hence, as before it remains to decide if the mild

solution also is a classical one.

Theorem 2.18 ([63, Thm. 6.1.5]). Let A: D(A) — X be the generator of a strongly continuous semigroup
and let ug € D(A). Further, let f € C([0,tqer] X X, X) be locally Lipschitz continuous. Then the mild
solution of (2.12) on [0,t*) is also a classical solution. Hence, for every 0 < tonq < t* there exists a
constant K > 0 with

max {[Au(®) | Ol s} K. € [0, tendl. (2.13)

In the following we refer to (2.13) as the generalized finite-energy condition.

Remark 2.19. The addition generalized is due to the fact that the finite-energy condition refers in

the literature to quantities of the form
2 / 2 2
[Va)|| . + lld' 72 < K2,

which is only a special case of our framework. We comment on this in Section 4.2.2.

2.3 Functional calculus for skew-adjoint operators on Hilbert

spaces

In this section we sketch the construction of a functional calculus which we need later for the construction
of the filters. We briefly explain the finite dimensional case to illustrate a general functional calculus.
We follow the monograph [67] and first present the case of a continuous spectrum and afterwards

explain the simplification in the case of a compact resolvent.

2.3.1 Example: The finite-dimensional case

As a first step we treat the finite dimensional case of symmetric and skew-symmetric matrices. For such

a matrix B we have a decomposition with a unitary matrix U of the form
B=UDU", D = diag(A1, ..., \n),

where \; € o(B) are the eigenvalues of B. Now given any function f that is defined on the spectrum

o(B), we may define

Hence, one can think of this functional calculus as a manipulation of the spectrum. However, such a
decomposition is usually not available in the infinite dimensional case and we need a more involved theory

in order to construct functions applied to operators.
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2.3.2 The general case

In the following we present a functional calculus for skew-adjoint operators in Hilbert spaces. Such
operators have their spectrum on the imaginary axis. Therefore, we may restrict ourselves to the function
space

Cp (iR) :== {h: iR — C | h is continuous and ||hljec < 00 }.

One can actually treat a larger class of functions, but we avoid these technicalities since the given set is
sufficient for our purposes.

The construction of the functional calculus is also based on a decomposition of the skew-adjoint
operator A given by so-called spectral measures, see for example [67, Chapter 4]. We will not further
comment on this, but only state the most important properties. To this end we need the two functions
defined for z € iR

1(z) =1, r,\(z)zﬁ,)\e(C\iR7
which both lie in Cj, (iR).
Theorem 2.20. Let A: D(A) — X be a skew-adjoint operator on a separable Hilbert space X. Then
there is a map

Wa:C (iIR) = LX), h +— h(A),

which satisfies the following properties for g,h € Cp, (iR):
(a) U4 is linear,
(b) 1(A) =T and r(A) = (A\— A) "' for A€ C\ iR,
(©) [P xx <[Pl
(d) (gh)(A) = g(A)h(A),
(e) For x € D(A) it holds h(A)x € D(A) and Ah(A)x = h(A)Ax.
(f) If h: z — zh(z) € Cy (iR), then for any x € X it holds

h(A)z € D(A),  h(A)z = Ah(A)z.
Proof. All statements can be found in [67, Theorem 5.9] for the case of self-adjoint operators where

one might neglect the closure of the operators as they are already closed by our restriction to bounded

functions. In order to obtain the skew-adjoint case we simply consider the self-adjoint operator
B:=—iA: D(A) - X

and use the functional calculus ¥p: Cp (R) — E(X ) for unbounded, self-adjoint operators. We obtain

the desired functional calculus by setting for h € Cp, (iR)
h(z) = h(iz), z€R,  h(A) :=h(B)
since h € Cp (R) holds. This gives the functional calculus for unbounded, skew-adjoint operators. O

In the special case of an analytic function h satisfying h(z) = h(—z) and the wave operator A given
in (2.5) a formal computation would lead to a block diagonal operator h(A), for example using a power
series expansion of h. As this property is needed in the proofs later, we will confirm this property in the

following proposition.
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Proposition 2.21. Let h € Cy, (iR) be an even function, i.e., h(z) = h(—z) for z € iR, and assume that

lim h(iz) =0

z—+o0

holds. Further, consider the wave operator from (2.5). Then, for the projections m;, i € {1,2}, onto the

i-th component and x € X it holds
mix =0 implies mh(A)z =0.

Proof. We prove the assertion by an approximation argument. By [70, Section 1.6] we find a sequence
of even rational functions (h,), that convergence uniformly on iR to h. Hence, by the continuity of =;
it is sufficient to prove the result only for the functions h,,. Now fix n € N, and since h tends to zero at
infinity we may decompose h,, as a finite product of functions of the type

a+ B2

7 z €iR.
v —z

¢(z) =

A direct calculation gives the assertion for ¢ and iteratively for the product h,, which closes the proof. [

2.3.3 Case of a compact resolvent

If the embeddings in (2.1) are compact, we deduced in Lemma 2.7 that A has a compact resolvent. Hence,

the spectral theorem yields that A admits an orthonormal basis of eigenvectors
(br)kenr, Adp = idedr, ox € [|D(AT),
JEN
where M C N and A\ € R. Any x € X can thus be represented as
= oapdr, o= (T,0K)x,
keM

with the equivalence

x€D(A) — Z |Apag|® < 0o.
keM

This enables us to define the following functional calculus on the set Cp, (iR) very elegantly by

. h(4): X - X
Wa: Gy (iR) = E(X)’ he r= Y oo — h(A)x= Y h(ilg)ouxor ’
keM keM

which is then fully analogous to the finite dimensional case.
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CHAPTER 3

Review on exponential integrators

In this chapter we recall the general idea and the construction of exponential integrators. Further, we
present all the underlying methods covered in the latter error analysis. Since we are not concerned with
classical integration schemes as for example Runge-Kutta methods, we do not review them, but only
explain the most important differences. We will first consider methods of order one, as they illustrate
the basic ideas of exponential integrators nicely. Afterwards we turn to second-order methods which will
be of most interest in Chapter 4.

To begin with, we briefly recall the variation-of-constants formula already introduced in (2.12)

¢
u(t) = ety + /e(t_s)Af(s,u(s)) ds.

0

which was the formula any solution of (2.4) has to satisfy. Note that the formula reduces to the funda-

mental theorem of calculus by setting A = 0 and one obtains

u(t) = uo + / f(s,u(s))ds.
0

From this, many numerical integration schemes can be derived discretizing the integral term in a suitable
way. This leads for example to Runge-Kutta or Adams—Bashforth methods. We now pursue the same
idea but applied to the integral term in (2.12).

In the following we need the (p-functions which are defined for z € C as

1

k
—S Zs
Vr+1(2) ::/e(1 ) Eds, k>0. (3.1)
0

With the definition pg(z) = €* they also satisfy the recursion
1

o - ), A0 k20 (32)

Pry1(2) = T



20 Chapter 3. Review on exponential integrators

3.1 Methods of order one

We now explain the two simplest ways to construct a numerical integrator from (2.12). To this end fix
some stepsize 7 > 0 and replace t by 7 in the variation-of-constants formula. The first idea is to freeze f
in the integral at (0,ug) and to obtain the approximation
T
u(r) = e™ug + / e A f(s5,u(s)) ds

0
-

~ e g + / T4 £(0,u(0)) ds
0
= eTAU/O + 71 (TA)f(07 U()) ;

(3.3)

with ¢q from (3.1). Using the notation ¢, = nr and f, = f(tmun), the idea in (3.3) leads to the

exponential Euler method

Unt1 = €My +T01(TA) fo s (3.4)

from which we already observe some properties of exponential integrators. The coefficients of the method
are analytic functions evaluated at the operator 7A. This means that the unbounded part of the evolution
equation is incorporated in the numerical scheme and the approximation mainly takes place in the ,nice®
part of (2.12). In particular, we can see from the calculations in (3.3) that the method (3.4) is exact if
f is constant.

The second possible choice is a weakened version of the idea above and tends somehow more in the
direction of the classical methods that use the fundamental theorem of calculus. It starts with the varia-
tion-of-constants formula (2.12) but approximates the whole integrand. One example is to do this at the
left boundary as it is done for the explicit Euler method which results in

™
u(r) = e ug + / e £(0,up) ds
0

= e™ug + e f(0,up) -
We obtain the following method which we call the Lie Splitting
Upyr = €My + 7™ f, = 74 (un +7fn) . (3.5)

The name is motivated from the second representation in (3.5). We mention that this method is in
general not exact for constant f.

These two methods are the simplest exponential integrators and are of stiff order 1 if applied to a
sufficiently smooth solution. One can view them as prototypes of how to construct exponential integrators
from (2.12).

3.2 Methods of order two

There is a rich literature on how to construct also higher order schemes from the presented first-order

method. But since we want to conduct the error analysis only with respect to data, we restrict ourselves
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to schemes of order less or equal 2. Whereas the methods of order 1 are applicable to general first-order
systems, we now consider the first-order equation (2.4) only with the special structure given in (2.5).
This is essential since we make repeated use of the maps m;: X — X, i = 1,2, which are the projection

onto the i-th component of the product space X. We present these methods in the following.

3.2.1 A general class of second-order exponential methods

Since we will consider a whole class of second-order methods in this thesis, we cast them in the following
abstract formulation and exemplify it in the next sections. The coefficients a,l%,Bi are elements of
Cp (iR) which will also be specified below for the different methods. For a node ¢y € (0,1] using the
additional notation tn4¢ = t, + &7 and frye, = f (tn+c27 Un) we consider the schemes in the explicit
formulation

U, = e, + cata(caTA) fr, (3.6)

Un4+1 = eTAun + 7-<7T1 (él(TA)fTL + EQ(TA)fTL+02) + 2 (Bl(TA)fTL + BQ(TA)fYL+02)> 5

or in the implicit formulation

U, = e, + cota(caTA) frtes s (3.7)

tni1 = e+ 7 (11 (BuTA) fo + Ba(7A) fres) + 1 (Br(TA) o + BalrA) fuses) )

We assume that the coefficients satisfy the conditions

a(z) = ag + za1(z),
Bi(2) + Ba(2) = p1(2) + 2 p2) , (3.8)
Bi(2) + Ba(2) = ¢ ( )+Z p(z),
)

(
CQBQ(O

H
A
=2

I
=

where also a1, p, p € Cp (iR). As we will see below, the conditions in (3.8) can lead to second-order error
bounds. Further, the class of methods with p = p = 0 can be treated differently in the error analysis.
We now proceed and investigate the range of application of the schemes (3.6) and (3.7).

Exponential Runge—Kutta schemes We first consider general two-stage exponential Runge-Kutta

methods. They are of the form

U, = e, + coT1(caTA) fr

(3.9)
Upil = e, + T(bl(TA)fn + bQ(TA)fn+C2) ,

and are obtained from (3.6) letting B;=B; =b;,i=1,2and a(z) = p1(2). If the coefficient functions
b1, by satisfy

bi(2) +ba(2) = @1(2),  cab2(0) =3,

Hochbruck and Ostermann showed that the method is second-order convergent for parabolic problems,

see [39, Theorem 4.3.]. Popular choices are c; = 3, by = 0 or ¢ = 1, ba(z) = ¢2(2).
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The symmetric, but implicit exponential Runge-Kutta scheme from Celledoni, Cohen and Owren [15,

Example 2.1]

Up = e up + Z01(ZA) frs1/2,
Unt1 = €My + 701 (TA) fri1)2,
is covered by (3.7) with a(z) = ¢1(z), by = 0 and b2(z) = p1(z). Obviously, both schemes satisfy (3.8).

We note that those schemes are the natural generalization of the exponential Euler method (3.4).

Lawson methods A variant of the above-mentioned exponential Runge—Kutta schemes are the Lawson
methods which can be obtained by a transformation of variables and applying a standard Runge-Kutta
scheme. Hochbruck, Leibold and Ostermann presented a convergence analysis in [45]. We only present

the methods that are of second order which take the form

A A
U, = e u, + core®™ f, |

TA 1 TA 1 (1—c2)TA (310)
Up41 = € Un+7_(( _E) fn+@e 2 fnJrcz)-

Note that they can also be seen as a generalization of the method (3.5) where we applied a quadrature
formula to the integral term in (2.12). We have a(z) = e* and use Taylor expansion on the coefficients
Ei = B; to obtain

Bi(z) = (1= 55)e” = (1= 57) + (1= 555)2 + O(),

By(z) = sellme)® = Ly 1meaz L 0(22) (3.11)
p1(2) =1+ L2+ 0(2%).

Thus, (3.8) is valid for any co € (0,1].

Strang splitting Another famous example fitting in the general framework is the Strang splitting
applied to the first-order system (2.4) coming from the second-order formulation (2.3). It is based on the

following decomposition. The exact flows o2 and o/ of the two subproblems

Ct) - <Alu> | @ ) <f(£ u>> |

are by the special form of f in ) given explicitly by

() () )
o U ug + Tf(t(), uo) .

We consider the Strang splitting in the variants (A, f A) and (f, A, f) given by

n+1 tn
< ) = @f/z oplo ‘Pf/Q < ) ) (3.12a)
Un+1 Un
n+1 tn
() =tmostocta (). @120
Un+1 Un

respectively. Note that the ( 1A, f Varlant in (3.12b) is equivalent to a trigonometric integrator without

filter functions, see, e.g., [35, XIII.2.2]. For (3.12a) the coeflicients are given by

= a(z) = By(2) = By(2) =0, By(z) = By(2) = €*/?

1
9’
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and for (3.12b) by
_ 1. - 1
co =1, a(z):Bl(z):Bl(z)zée , Bg(z):Bg(z):§.

Similar computations as in (3.11) verify the conditions in (3.8).

Extended Runge-Kutta—Nystrom methods The motivation to allow for the additional degree
of freedom in (3.6) and (3.7) induced by the projections m; and 72 comes from the class of extended
Runge-Kutta—Nystrom methods. So far these methods have only been considered for ordinary differen-
tial equations. For the sake of readability we present these methods for L and A being matrices, but note
that this can be made rigorous. The two-stage methods considered for example by Wang, Wu and Xia

in [71, 72] for problem (2.3) are given by
Gn+tco = COS(CQTA)qn + caT SinC(CQTA)vn + 7—2(121(7_A)G(tn7 qn)
Gn+1 = cos(TA)gy + 7 sinc(TA)v, + 7’ (31 (TA)G(tn, qn) "‘32 (TA)G (tnscs) QnJrcz)) (3.13)
Un+1 = —A Sin(TA)Qn + COS(TA)Un + T<b1 (TA)G(tnv Qn) + bQ (TA)G(tn+cz ) QTL+C2)> )
where A = L'/2 is the positive definite matrix square root. The main difference to the methods covered
by (3.9) is the second-order formulation which allows for different choices of b; and by whereas they are
not independent in the first-order formulation. In order to see the connection to (3.6) we need some

preparation.

Analogously to the definition in (3.1) we define the t-functions by a parameter integral.

Definition 3.1. For z € R define ¥y(z) = cos(z) and let for j >0

Yir1(z) = 0/COS((l — s)z)% ds.

By construction the y-functions are analytic and from the definition we directly obtain several prop-

erties which include a relation to the ¢-functions.

Lemma 3.2. (a) For z € R\ {0} we have

Di(z) =sine(s),  wha(e) = L)y 2 Losinelz) 2o sin(z)

22 22 23

(b) For j >0 it holds

z

quﬂ(z):/sin((l—s)z)?!d& z € R\ {0}.
0

(c) For j >0 it holds 1;(0) = 7

ﬁ.
(d) We have the symmetric connection

¥;(2) = %(‘Pj(iz) + @j(—i2)>7 j>0, z€R.
(e) We have
_ ¥i1(0) =951 (2)

)
22

Pj1(2) j=>1, ze R\ {0}.
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We note that since the ¢; and ; are analytic functions, all assertions in the lemma remain true in
the limit z = 0 and actually also hold for z € C. We do not treat this case further since we only need it

for matrices with spectrum on the real axis.

Proof. The properties (a),(c) and (e) are easily verified.
(b) Let j >0 and z € R\ {0}. We compute

0/18111 (=925 _{Sin((ls) s+l ]

z 4! z

+

1 1
cos( ds

/ (G+1)!

0

sin((1 — s)z) sitt !
= { ( p, ) )(j+1)!]0+¢(j+1)+1(2)

= Vjt2(2).

d) The assertion is a direct consequence of Euler’s formula, i.e., for z € R it holds

1 . .
B (6(175)12 + 67(175)12) = cos((1 — s)2).

The next lemma provides another connection of the ¢- and the t-functions in the context of matrix

functions.
Lemma 3.3. Consider the matrizc A = ( (/)\2 g) for some positive definite matrix A. Then the
following relations hold for t € R:
oA cos(tA)  tsinc(tA) _ Yo(tA) th1 (tA) (RO)
—Asin(tA)  cos(tA) —tA21 (tA)  ho(tA) )
Yi(tA)  tea(tA)
A) =
#1(64) (tA2¢2(tA) 1/11(15/\)) ’ R
V2 (tA) tips(tA)
A) = .
Patd) (twg(m) w2<tA>> ()

Proof. The relation in (R0) is well-known and we only verify (R1). The proof of (R2) is completely
analogous.

For the ¢;-function it holds ¢1(z) = e:—_l by (3.2) and hence for ¢ # 0 we compute

(t4) = 1 0 —A"2\ [cos(tA) —I tsinc(tA)
7! t —Asin(tA) cos(tA) — T
_ < sinc(tA) t(tA) "2 (I — cos(tA)))

1 (cos(tA) — 1) sinc(tA)

[ witA)  ta(tA)
O\ tA2g0(tA) i (tA) )

Note that the representation is also valid for ¢t = 0. O
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method by by
ERKN1 P2 (2) ¥o(3)
ERKN2 P2 (2) ¥1(2)
ERKN3 391(3) cos(3)
ERKN5 sinc(2)3¥1(%) | sinc(2)vo(2)

Table 3.1: Different methods considered in [71]. The scheme ERKN4 is excluded since it is equivalent
to ERKN2. We will see in next chapter that ERKN5 can be seen as Strang (3.12a) with outer filter

sinh(z
z

sinhc: z — ) and hence is covered by our error analysis.

With these results we go back and establish the connection of (3.13) and (3.6). Since we only multiply

in (3.6) with a vector f that is zero in the first component and use the projections 7;, we compute

ail a2 0 a129 ail  ai 0 0
1 = s T2 = .
az1 az /) \g 0 az1 ax /) \g a229

Hence, the choice of B; and R can be traced back to find operators that satisfy

_ 3
Bi(TA>=<* T ) Bi(TA)=<* ;) i=1,2,
* % * 0

with b;, b; from (3.13). With Lemma 3.3 we obtain

oA 0 _ 71 (TA)g (A 0 _ 7o (TA)g J(rA (O) _ (7’1/)3(7'/\)9)
<g> (wom)g) oA <g> (wmA)g) o 2 T e )
such that we arrive at

~

Bi = @j 1mphes ?7\1 = wj—i-la j = 0, 1 5
Bi = @j implies bl = d)j, ] = O7 1, 2.

Those cover the common choices in (3.13), see for example [72, Table 1]. Different choices with ¢y = %
and by = b; = 0 were considered in [71], see Table 3.1. Hence, if the methods are constructed with the

right p-functions, they also satisfy the conditions (3.8).

3.2.2 Further methods

In this section we present four more methods that do not fit in the general framework of (3.6) and (3.7).
Nevertheless, they can be analyzed by the same techniques as the before mentioned methods such that

we can also derive error bounds for these.

Corrected Lie Splitting We consider the second-order corrected Lie splitting given by

Uppr = e (un + 7f (tng1/2: un) + %zrf (tnt1/2, un)) (3.14)
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with the correction term

X ) —Af(t ).

ry(t,u) = Jp(t, u) <Au
where J; denotes the Jacobian of f.

It is inspired by a fourth-order method of this type proposed by McLachlan and Quispel in [57, 4.9.3
(c)]. Further, note that in the linear case, where f(t,u) = Fu, the correction term reduces to the (linear)

commutator

rp(t,u) = FAu— AFu = [F, Aju.
Hence, one can consider (3.14) as an approximation to the method

2
T
Upg1 = eTAeTFe 3 [F,A]un,

which was considered by Suzuki in [68, (3.37)]. As far as we know there is no convergence analysis for
this method.

Exponential multistep method of Adams-type The two-step exponential multistep method from
Hochbruck and Ostermann [40, (2.7)]

Un+1 = eTAU'n + TY1 (TA)fn + TW?(TA) (fn - fnfl) ) n Z 1 )

(3.15)
up = e (uo + 7o) ,

is derived from the variation-of-constants formula for the exact solution of (2.3) by approximating the
nonlinearity f in the integral term by an interpolation polynomial using the last two approximations

Up—1, Un-

Exponential multistep methods of Nystrom-type Similarly, we consider a method that was used
by Frisch, She and Thual in [20, (B 4)], namely

Up41 = ezTAun_l + QTeTAfn , n>1,

N (3.16)
up =e’ (UO+Tf0).
A variant of this method is given in [20, (B 5)] called the “slaved frog”. It reads
Upp1 = M1 + 21701 (27A) fr, n>1, (3.17)

up = eTA(uo + Tfo) .

For A = 0 both methods reduce to an explicit Nystrom method, cf. method (1.13’) in [34].
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CHAPTER 4

Error analysis for averaged exponential integrators

We now present the core of the first part of the thesis. We first explain the main ideas and the main
results and afterwards turn to a rigorous description of the framework and the error analysis.

We emphasize that most of the material is taken from [9] and is extended by additional explana-
tions, more detailed computations and also some new results not presented elsewhere. In particular,
Sections 4.5.2, 4.5.3, 4.5.4, 4.7 and some bounds in Section 4.6.2 have been added.

4.1 Informal overview of methods, concepts and results

In this section we give an informal overview of the methods of interest, the main concepts, and the main
results, as it is done in [9, Sect. 2], and present the analytical framework which is necessary to formulate
our results rigorously in the later sections. In order to postpone all technical difficulties, we explain
everything in the finite dimensional case dim H < oo. This is not the case of interest for us, but here
all the approximations presented are well-defined and the statements valid. However, the appropriate
function spaces to treat evolution equations and additional assumptions necessary for the error analysis

are introduced in Section 4.2. We recall the second-order equation (2.3)
q¢"(t) = —Lq(t) + G(t,q(t)), t € [0, taer]

which is the starting point of this overview.

4.1.1 Averaged differential equation

Let L be a symmetric, positive definite matrix in R™*™ and let x = ¢,¢: iR — R be even (i.e.,
x(—z) = x(2)) and analytic functions satisfying x(0) = 1. By the theory of matrix functions we can
define the filter operator

X = x(irL'?)
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and with this an averaged nonlinearity
Gl(t,q) = ¥G(t, dq).

In order to apply them to the first order system (2.4) we enlarge the filters to the block diagonal operators

6 0 b0
a=(2 %), w=(V Y).
0 ¢ 0 ¥
and turn our attention to the averaged differential equation

() = Au(t) + f(t,u(t)), f(t, ) = Uf(t, ®u) = (@(S ?1)) . (4.1)

We have to make sure that the averaging has the two following properties. On the one hand the solution
@ of (4.1) should still satisfy a generalized finite-energy condition (2.13). In Lemma 4.15 we show that
the modified constant K is independent of 7 and n. On the other hand we need a relation of the original
solution u and the averaged solution w. If we denote by |-y the norm induced by (-,-)x, we prove in
Theorem 4.14

Ju(t) @Oy < O t€ [0, teudl,

provided that 1, ¢ satisfy a certain set of conditions. Under some less restrictive assumptions on the
filters we further establish the bound

lu(t) —u(t)||x < CT, t €10, tend] -

Having all this at hand, the averaged solution w is, concerning the regularity, roughly speaking as good
as the original solution u and it is sufficient to prove error bounds for numerical schemes applied to (4.1)

as long as only the finite-energy condition enters in the error constant.

4.1.2 Averaged methods

As we have explained above, the averaged solution u inherits the essential properties of u. Hence, the
averaged methods are constructed by applying any of the numerical methods in Section 3.2 to the averaged
equation (4.1) instead of the original one (2.4). So taking for example the Strang splitting (3.12a), the

averaged variant reads

128 7 tn ~
( H) = pipoplopl, ( ) o uo = u(0) = u(0). (4.2)

Un+1 Up

Actually, this is equivalent to use a modified numerical scheme where the nonlinearity f is replaced by
the averaged nonlinearity f in (4.1). In Figure 4.1 these different views are depicted. We emphasize that
the first perspective is only needed for theoretical reasons to perform the error analysis, however it allows
us to analyze many different averaged methods simultaneously. When it comes to implementation, one
will simply use the method in the form (4.2).

Since we can show that the difference of (2.4) and (4.1) is of order 72, it is natural to use methods
of order 2 in order to obtain global error bounds of the same order. While this approach would work
perfectly fine in the finite dimensional case, for evolution equations this is not so clear. In fact, numerical

experiments show that order reduction might be a problem.



4.1. Informal overview of methods, concepts and results 29

Figure 4.1: Different ways to construct an approximation u,, of the solution u(t,) of the original equation
(2.4) and the solution u(t,) of the averaged equations (4.1), [9, Fig. 1].

The thesis aims at rigorous error bounds of first and second order and gives a precise characterization
of the framework. This includes the numerical methods, the data in terms of L and G and the choice of

the filter functions.

4.1.3 Overview of results

With the ideas explained before, we prove different types of error bounds. We distinguish between error

bounds in the X- and the D(A)-norm and also between error bounds for classical and weak solutions.

Error bounds in the X-norm In Theorem 4.24 and several corollaries in Section 4.6.2 we provide
the following error bounds.

(a) The Strang splitting, the exponential Runge-Kutta methods, the Lawson methods, the extended
Runge-Kutta—Nystrom methods and the exponential multistep methods applied to the original equa-
tion (2.4) satisfy

[u(tn) — unl y < Cr7.

(b) Using appropriate filters ¢, any method of Section 3.2 applied to the averaged equation (4.1)
satisfies the bound
[utn) —unllx < Cor?.

The constants Cy,Cs only depend on the initial value ug, the finite energy K, properties of G, and tepng,

but not on n and 7.

Error bounds in the D(A)-norm Similarly, we establish error bounds in a stronger norm in Theo-
rem 4.31 and several corollaries in Section 4.6.2.
(a) The exponential Runge-Kutta methods and the exponential multistep methods of Adams-type ap-
plied to the original equation (2.4) satisfy

[u(tn) — unHD(A) <CiT.

(b) Using an appropriate filter ¢, the Strang splitting, the Lawson methods, the extended Runge-Kutta—
Nystrom method, the corrected Lie splitting and the exponential multistep methods of Nystrom-type
applied to the averaged equation (4.1) satisfy the bound

[u(tn) — unHD(A) < Cor.
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Again, the constants C7,Cs only depend on the initial value ug, the finite energy K, properties of G, and

tend, but not on n and 7.

Error bounds for weak solutions Finally, we treat the first-order methods from Section 3.1. The
key difficulty arises in only considering weak solutions of (2.4). For linear f we prove the following bound
in Theorem 4.45.

Using an appropriate filter ¢, the exponential Euler method and the Lie splitting applied to the
averaged equation (4.1) satisfy the bound

llu(tn) — unHX <Cr.

The constant C only depends on the initial value wug, properties of G, and tcnq, but not on n and 7.

Strategy All proves rely on the decomposition
u(tn) —unllx < llu(tn) —a(tn)ll x + u(tn) — unl x - (4.3)

In the different scenarios we proceed in the same two steps. We first bound the term induced by the

averaged equation and in the second step bound the error of the numerical method applied to (4.1).

4.1.4 Numerical example

In this section we consider one of the examples that fits in our framework, cf. Section 4.2.1, and show
that one can gain something with the averaging within numerical methods. We solve a variant of the

sine-Gordon equation given on the torus T = R/(27Z) by

q"(t) = Aq(t) — q(t) +mqasin(m; cos(q(t))) q(t), (4.4)

with ¢ € [0,1] and m;, m, € L>(T). Since one of the main difficulties in the error analysis is induced by
low regularity assumptions, we construct the initial values in the following way. In order to control the
regularity of the solution, we follow the approach of [45] and use a Fourier spectral method in space. We

choose the Fourier coefficients for the initial values (go,vo) € H'(T) x L?(T) such that
(qo,vo) € HY(T) x L*(T) \ H'™¢(T) x H(T)

holds for ¢ = 107%. Although, we truncate the Fourier series for some large N € N to discretize in
space, the experiments in [45] show that in the limit N — co the H'T¢(T) x H¢(T)-norm is not bounded
uniformly in N. By the standard semigroup theory one cannot expect to gain any regularity over time,
and we are hence most likely in the situation of a solution of low regularity.

Another crucial generalization compared to the analysis in [22, 23] is that the coefficients of the

right-hand side do not need to be smooth. So for example let ¢ € L?(T) and consider
G(g)(x) = ma () sin(mi(x) cos(q)) g

This obviously gives G(q) in L?(T), but we cannot improve this by additional regularity of g, i.e., that
even if ¢ € H'(T) holds, there is in general no € > 0 with G(q) € H¢(T).
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Figure 4.2: Discrete L™ ([O7 1], L3(T) x H_l(']I‘)) error (on the y-axis) of the numerical solution of (4.4)
with (blue, dots) and without filters (red, crosses) plotted against the stepsize 7 (on the z-axis) with N
grid points. The gray lines indicate order one (dotted) and two (dashed).

As numerical method we used the Strang splitting variant (3.12a), i.e., (4, f,A) with N =27, j =
9,10, 11, spatial grid points. In Figure 4.2 we displayed the results using filters (blue, dots)

) = w(z) = sie(3) = 3 (1(5) + () = 2 (15)
and also without filters, i.e., ¢ = ¢ = 1, (red, crosses). The code to reproduce the plots is available on
https://doi.org/10.5445/IR,/1000130189.

These experiments clearly indicate the above-mentioned order reduction to order one for the non-
averaged scheme. However, this only happens in the stiff regime, and we briefly explain why this is the
case. Later in the error analysis, a key ingredient to prevent the order reduction is the fact that the filters
¢, roughly behave like the ¢1-function, cf. (F3), in particular they are zero whenever ¢, is zero, i.e.,

for z = 2imk, k > 1. Since ||A| v, x = N/2, we obtain for 7 < 79 ~ 47 /N
TIAl x o x <27 (4.6)
and ¢1(7A) is invertible. Hence, in this non-stiff regime it holds
I=pi(rA)pi(rA)7!

and even the identity behaves like a filter. Actually, in this regime the two errors of both schemes are
quite close. However, we are interested in abstract evolution equations and for unbounded operators A

(4.6) cannot be achieved. Therefore, only the stiff regime is relevant, i.e., the limit N — oo.
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4.2 Refined analytical framework

In this section, cf. [9, Sect. 3], we specify the assumptions necessary to prove the results mentioned in
Section 4.1.3. In order to illustrate the applicability of our results, we specify the general Example 2.5 in
Table 4.1. There three examples are collected where we stated, for a given Hilbert space H, the dimension

d of the domain 2 and additional assumptions on the data.

4.2.1 Second-order equation

As in Section 2.1 we begin with the second-order formulation since the equation is posed in this form.
This enables us to assess and verify the assumption more easily. In the following we recall sufficient
conditions on the nonlinearity G to guarantee wellposedness of the equation and to establish the error

analysis presented in Sections 4.3, 4.4, 4.5, and 4.6.

Assumption 4.1 (Wellposedness). For G we have G € C([0,tena] x V,H), i.e., G is Fréchet-differen-
tiable with Fréchet-derivative Jg(t,q) € L([0, tena] x Vo) for all ¢ € V,t € [0, tenal.

In the infinite dimensional case differentiability is a subtle matter. In Example 2.5 the growth bounds
guarantee that Assumption 4.1 is valid. Only additional conditions on the growth of higher order deriva-
tives would lead to a twice Fréchet-differentiable function G. Therefore, we only assume regularity for G

evaluated at a sufficiently smooth function.

Assumption 4.2 (Regularity of G evaluated at a smooth function).
For q € CY([0,tena], V) N C([0, tena), D(L)) we have

ts Gt (1)) € O ([0, tona], V) with “LG(t,q(8)) = Ja(t,a(t)) < ! ) , (A1)
dt q(t)

t— Ja(t,q(t) € CM ([0, tena), L([0, tena) x V,H)) with C > 0 such that

H%Jc(t,q(t))H <¢ =0 (Il IdOlyv) (42)

Remark 4.3. We note that (A1) is not implied by Assumption 4.1. Using the chain rule we can only

H[0,tena] XV

conclude the weaker assertion
t— G(ta Q(t)) S Cl ([07 tend]a H)

which is not sufficient for the error analysis.

(a) In Ezample 2.5 the additional regularity ¢ € C([0,tena), D(L)) is sufficient to verify the Assump-
tion (Al). This is mainly due to the fact that D(L) is a subset of L>°(Q) in the example and the
composition

t = g(t,q(t))
is then also continuous in L>(Q).

(b) Another approach would be to assume G € C1([0,tena] X V, V) and the chain rule would immediately
yield Assumption (Al). However, this assumption excludes many interesting nonlinearities. In
Ezample 2.5 with H = H=*(Q) and V = L*(Q), see Table 4.1, this would imply that G is already an
affine transformation, see [25, Section 3]. Hence, not even the function q — sin(q) would be covered

by the analysis.



4.2. Refined analytical framework 33

Finally, we need an assumption on bounds of G and Jg. They are posed on balls with radii in different
norms which play an important role in the error analysis. We mainly need them when evaluating the
functions at the averaged and numerical solution where not the same bounds as for the exact solution

are available.

Assumption 4.4 (Regularity of G). There are constants C = C(r) such that for given ry,r;, > 0 and
q with |lqlly, < rv, ldllpy S, p €V, andt € [0, tena] the following inequalities are satisfied:

IGE Dy < Clro), (A3)
|Vt a) () | <Cev)Usl+lplly). (Ada)
p H
|Jett.a) () | =cen s+l (AdD)
b

For the corrected Lie Splitting (3.14) we assume in addition for ||p;||,, < rv,i=1,2,

| (o (t.p) = Ja(t.p2)) (2) |, <o) lp=pely - (A-CLS-1)

and for ||pillpr) < e, i=1,2, also

H (Ja(t,p1) = Ja(t, p2)) (2) HV < C(re) lpr = p2llpr, - (A-CLS-2)

Remark 4.5. Let G be an operator satisfying Assumptions 4.1, 4.2, and 4.4. Then for any ¢ € R the
operator G + cI does so, too. This allows us to treat positive semidefinite operators L, e.g., the Laplacian

with Neumann or periodic boundary condition, by shifting the spectrum to the right half-plane.

We mention that Assumptions 4.1, 4.2, and 4.4 are satisfied for the different configurations in Table 4.1,
but we postpone the calculations to Appendix A.

All examples are posed with homogeneous Dirichlet boundary conditions. By possibly shifting L, we
can also treat Neumann, Robin, or periodic boundary conditions, see Remark 4.5.

Higher order Sobolev spaces H = H*(2), k > 2, can be handled as well but the spaces and conditions

for the operators and parameters become more complicated.

4.2.2 First-order equation

The exponential methods from Chapter 3 are all applied to the first-order formulation (2.4) of equation
(2.3). In Section 2.1.2 we already considered the operator A: D(A) — X in this formulation and now
turn to the nonlinearity f defined in (2.5). We translate the Assumptions 4.1, 4.2, and 4.4 posed on
G into this setting by means of the following three lemmas. The first one provides a classical solution
of (2.4) by standard semigroup theory. All statements in the lemmas directly follow from the special

structure of f and the assumptions in Section 4.2.1.

Lemma 4.6 (Wellposedness). Let G satisfy Assumption 4.1. Then f: [0, tend] X X — X defined in (2.4)
satisfies f € C([0,tena) x X, X) with Fréchet derivative Jy(t,u) € L([0,tena) x X, X) for allu € X and
te [0, tend]-



34

Chapter 4. FError analysis for averaged exponential integrators

H=1(Q) L*(Q) Hy(Q)
d d=1 d=1,2,3 d=1,2,3
A _ Wl,oo(Q)dxd Cl,l(Q)dxdeQ,oo(Q)dxd
or H4(Q)d><d
Q — - 09 of class C®
D(L) Hy(Q) | H*(Q)NHG(Q) {ge ()N Hy(Q) |
Lq € Hy(Q)}
14 L2(Q) Hy(Q) H?(Q) N Hg(Q)
a (2,0,2) (2,1,3) (3,2,3)
g - g(t,-,0) = 0 on 09 g(t,-,0) =0 on 99
<o, d=2
growth v <2 _
bound <3, d=3

Table 4.1: Overview on the specification of Example 2.5. An empty box corresponds to no additional

assumptions on this datum.

In the error analysis it is not sufficient to only have differentiability of f in X, but we also need this in

the stronger D(A)-norm. As in Assumption 4.2 this cannot be achieved in terms of Fréchet-derivatives.

Lemma 4.7 (Regularity of f evaluated at a smooth function). Let G satisfy Assumption 4.2 and u
satisfy (2.9). Then we have

t = f(t,u(t)) € C*([0,tena), D(A)) with %f(t,u(t)) = Js(t,u(t)) <u'1(t)> , (A1)
t = Jp(t,u(t)) € C* ([0, tenal, £([0, tena] x X, X)) with C >0 such that
|Grra®)| o, U Ol (A2)

The next lemma contains two Lipschitz properties of f which easily follow from the corresponding

bound on the derivative. They are crucial for the forthcoming error analysis.

Lemma 4.8 (Regularity of f). Let G satisfy Assumption 4.4. Then there are constants C = C(r) such
that for given rx,ra >0 and u; with ||l x < rx, luillpay S 7a, i=1,2, v € X, and t € [0,tena] the
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following inequalities are satisfied:

|t un)llpay < Cra), (A3)
75t w1) () | <) (sl + ol (Ad2)
|7t w1) () lpay < Cra) (sl + Il (A4D)
|t = stw) | <€) = wall (Asa)
It wr) = £t u2)lpay < € (ra) s = sl (A5b)

For the corrected Lie Splitting (3.14) we further have for |jvi||y < rx,i=1,2,
0 )
| (5t 01) = Tyt 02) | < Coamx) o — vl (A-CLS-1")
Ui
and for ||villpiay < 74, i =1,2, also

O b)
|5t 00) = Tyt v2) (u> o, <€) lr =l (A-CLS-2)

In Theorem 2.18 we have seen that Lemma 4.6 together with Lemma 4.8 guarantee local wellposed-
ness of (2.4). Since our error analysis only requires assumptions on the data, we recall the following

wellposedness result which is a direct consequence of Theorem 2.18.

Proposition 4.9. Let Assumptions 4.1 and 4.4 be satisfied and take an initial value ug € D(A). Then
there exists a time t* > 0 and a classical solution of (2.4) on [0,t*) satisfying (2.9) and the generalized
finite-energy condition (2.13) for some K > 0.

We note that the generalized finite-energy condition has been used before in the literature. For
u= (q7 q’) in the situation of Example 2.5 with H = H~1(Q), see Table 4.1, (2.13) implies

2 2 2
lAu®) % = la®)lpr, + 1 @)y = [|[AY> Va@)|| . + ld @7 < K2,

which corresponds to the finite-energy condition used in [21, 30, 38, 66]. We further mention, that the
bound (2.13) also implies

lg" )l < W' ()l x < K,

which is essential in verifying the abstract assumptions on G.
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4.2.3 Filter

We finally characterize the functions which can be used as filter functions. We define them on the

imaginary axis since they are applied to the skew-adjoint operator A.

Definition 4.10. Let x € Cp, (iR). We call x a filter of order m, m = 1,2, if the following properties are
satisfied: There exist ¥,0 € Cp (iR) such that for all z € iR

Ix(2)] <1, (F1)
1= x(2) = 29(2). (F2)
zx(z) = (e = 1)O(z). (F3)
In addition, for m = 2, x is symmetric, i.e.,
x(2) = x(=2) (F4)

Note that (F3) is equivalent to x(z) = ¢1(2)0(z2).

Remark 4.11. (a) The simplest example for a filter of order 1 is x(z) = p1(2), where we simply have
O(z) = 1. With this in mind, one can think of a filter of order 2 as a symmetric version of the
w1 -function.

(b) In our example (4.5) we used the short average filter proposed in [21] which is a filter of order 2. We
note that in this example x(iz) = sinc(%) holds for all x € R, which relates our filters to the ones

considered in [35, Chapter XIII] since they are always defined on the real azis.

In Theorem 2.20 we answered the question on how to apply such functions to unbounded operators
by a functional calculus. This allows us to define a corresponding class of filter operators that we later

use in the averaged schemes.

Theorem 4.12. Let 7 > 0 and x € Cp (iR) be a filter of order m with 9,0 from Definition 4.10. Then

we have

Boundedness:  ||x(TA)| xx <1 (OF1)
[T A xex < 9llces [1OT A xx < 1Ol

Smoothing: X(TA): X — D(A) is continuous with (OF2)
ITAX(TA) [ x o x <2]Oll

Consistency:  9(7A): X — D(A™),
I —x(tA) = (TA)"I(TA) (OF3)

Cancelation:  (TA)x(TA) = (™ — 1)O(1A) (OF4)
Block structure: For m =2 and i € {1,2}

mx =0 implies mx(TA)x=0. (OF5)

Proof. All statements are direct consequences of Theorem 2.20 and Proposition 2.21. O
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Remark 4.13. (a) We further obtain ||TA19(TA)||§(HX < 2| oo for m =2 as
|209(2) > = |229(2)| |9(2)] < 2||9]|oe  for all z € iR.

In particular, every second-order filter is also a filter of order 1.

(b) The property (OF5) allows us to transfer the structure of f given in (2.5) to ]? given in (4.1), in

particular we have

7Tlf(tvu) = \Ilﬂ—lf(tv (I)u) =0, f(tvu) = \ij(t,']rlq)u) = \Ilf(tv CD’]Tlu) = f(tv']rlu)a (47)

which is obviously true for ¢ = ¢ = 1.

4.3 Averaged problem

In this section we make precise what was motivated in Section 4.1.1. Since falso satisfies the assertion
of Lemma 4.6 we conclude with Proposition 4.9 the existence of a unique classical solution @ of (4.1) for
all 7 > 0. However, a priori we do not know anything about the maximal existence time and the bounds
on u, u' and Au and whether they depend on the stepsize .

Both questions are answered in the following results. The existence time is coupled to a bound on
the difference of the original solution u of (2.4) and the averaged solution @ of (4.1). Since we need the
Lipschitz continuity of f in (A5a’), we define rx via

ma. u(t < CompK = Lr
pax [u®)]x < Cemp 37X

with Cemyp, defined in (2.2) and K in (2.13).

Theorem 4.14 ([9, Thm. 4.1]). Let Assumptions 4.1, 4.2, and 4.4 be valid and consider the averaged
nonlinearity ]? defined in (4.1) with filters of order m. Then there is a 79 > 0 and a constant Cyyy > 0
such that for all T < 79 and filters of order 1 it holds

[u(t) —a(t)lx < CaT,  0<t<tena, (4.8)
and if the filters are of order 2 also
u(t) —a(t)| x < Ca7®, 0 <t <tena- (4.9)

The constant Cg, and 19 depend on Tx, ug, tend, the generalized finite-energy K from Proposition 4.9,
the filter functions, and the embedding constant Cepmp, but not on 7. In particular, @ exists on [0, tend]

and is bounded by

max [[a(t)]y < drx.

t€[0,tend)
Proof. We only prove the second-order bound (4.9), since (4.8) is then derived by a simplification of the

presented arguments. Let t* > 0 be the maximal existence time of & and define

to = sup{s € (0,1%) | e [[u(t)lly < rx}-
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This time is needed in order to apply the uniform bounds on fand f evaluated at u. The proof is closed

by proving tg > tenq-

We first observe that for ¢ < min{tg, tena} the variation-of-constants formula yields

mwmwéQ“ﬁAQ@m@»ﬂamm)@

. (4.10)
=1 (t) + L2(t) +/ elt=)4 (f(s,u(s)) - f(s,ﬂ(s))) ds
0
with
¢
I (t) :/ et (T — ) f(s,u(s)) ds,
0
¢
I (¢) :/ et=)A4y (f(s,u(s)) — f(s,Pu(s))) ds.
0
By Assumption (A5a’) and since ¢ < tg, the third term in (4.10) is bounded by
¢ _ _ ¢
H / 4 (F(s,u(s)) = F(s,u(s))) ds| < C(rx) / lu(s) —a(s)| ds,
0 X 0
where we also used the bound in (OF1). We are left to prove
I <O, j=1,2, (4.11)

since these bounds are sufficient to apply a Gronwall lemma which shows the assertion for all ¢ <
min{t07 tend}~

We first bound I; and use (OF3) and integration by parts to obtain

I(t) =72 /Ot e(tfs)AA219(TA)f(s, u(s)) ds

t

— 2 [_e(tfs)AAqg(TA)f(&u(s))}o (4.12)

2 ! t—s 1
+7 /0 el )AAﬁ(TA)Jf(s,u(S))< S)) ds,

where we used that f(s,u(s)) is differentiable in X. By Assumptions (A3’), (A4b’), and the bound (2.13)

on v’ we have
|4f (s, u(s) [ < C (), \Mh@M%(J@N&<cmy

and immediately conclude (4.11) for j = 1.

To increase the readability we use the notation u(s, o) = ou(s)+ (1 —0)Pu(s) and the differentiability
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(A1) of f to get
Ix(t) :/0 e(t*S)A\Il(f(s,u(s)) — f (s, Pu(s))) ds

t 1
:/0 /O e(t—s)Aq/%f(s,u(s,o))dads

t 1 0
= elt=5)A s,u(s,o o ds
/0/0 Wy (s (s ) ((I—cb)u(s))d a

t 1 0
= (t=s)Ag J dod
e s,u(s,o o as
/0 /0 (s, u(s,)) ((I —®) eSAu())

t p1 0
—|—/0 A e(tfs)A\IJJf(S,u(S,O')) ((I—(I))fe(se)"‘f(e,u(e)) d@) do ds
0

=151(t) + Iz 2(¢),

where we applied the variation-of-constants formula (2.12) again on u(s) in the last step. By (OF3) and

integration by parts, the first term can be rewritten as

t
! 0
(t—s)A

e UJr(s,u(s, d
/0 f( ( U)) (ﬁ(TA)eSAAu()) UL

2 e (t—s)A 0
+7 e AWJ;(s,u(s,0)) N do ds

o Jo (1 A)e* Aug

t 1 0
— 7'2/ / t=9Ap L g (s u(s, o dods.
o Jo ds f( ( )) ﬁ(TA)GSAAUO

Hence, we have ||I51(t)||, < C7? by (A2'), (Ada’), and (A4b’). Concerning the term I 2, by assumption
(A1) we also have

12’1(15) = 7'2

S

/ DA F(0,u(0))do € D(A),

0
(s—0)A _ (s—0)A
Ao/e £(0,u(0))do O/e Af(0,u(6))do.

Hence, again integration by parts gives

S

(I —®) / =N (0,u(6)) do

0

S

:7-2192(7-14)({_e(s—e)AAf(e,u(g» dg} +/e(s—9)AAJf(0’u(9)) ( 1 )da)

!/
0 J u'(0)

and Assumptions (A3’) and (A4b’) yield the desired bound (4.11). Using (4.9) for ¢t < min{tg, tena} we
obtain for 7 < 75 = %(%)1/2

u < C.o? < 3py .
Inax u(s)]l x < Jnax, [u(s)llx + CavT < 4rx

This proves to > tend and hence (4.9) holds on [0, tena) for all 7 < 7. O
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From the previous theorem we know something about the maximal existence time of &, we have a
bound on @, and we obtained bounds on the difference of v and u. The open question on the generalized

finite-energy condition of u is answered in the next lemma.

Lemma 4.15 ([9, Lemma 4.2]). Let Assumptions 4.1, 4.2, and 4.4 be valid and let ¥, ¢ be filters of

order 1. Then there is a 79 > 0 and a constant CA'M, > 0 such that for all T < 19
[ Au(t) — Aa(t)||x < CouT, 0 <1t < tend.
In particular, u satisfies the generalized finite-energy condition uniformly in 7 < 19, i.e.,
max {[|[A@()| ., [@ ()l x} < K, 0 <t < tona, (4.13)

where 19 and the constants an and K depend on rx, ug, tend, the generalized finite-energy K from

Proposition 4.9, the filter functions, and the embedding constant Cepmp, but not on 7.

Proof. We proceed as in the proof of Theorem 4.14 and define ¢y by
to == sup{s € (0,tend] | m[zoix] | Au(t)]|y <2K}.
t ,8

For 0 <t < tg, (4.10), (A5b’), and (4.8) imply
t ~
[|Au(t) — Au(?)| x = H/ Aelt=)4 (f(s,u(s)) - f(s,u(s))) dsH
o b's
t
<AL x + [AL®)]x + C(QK)/O [u(s) —u(s)lx ds
< [AL )| x + [[AL ()] x + TtC (2K) Cay-
We may expand the terms similarly as before, and as in (4.12) it holds

AL (t) = /0 AT — W) Af (s, u(s)) ds

t

= [ s+ [ (s ) (b)
B (t—s5)A t ! (t—5)A 1
—7 [_e ﬁ(rA)Af(s,u(s))}ow/O =V (TA) AT (5, u(s)) (u ) :

where we used (OF3) for m = 1 and obtain a O(7) bound for ||AI(t)| . Similarly it holds by (A1’),

Al (t) :/0 /0 e(t_S)A\IIAJf(s,u(&J)) ((I— i) u(s)) do ds

=T t 1e(t_S)A s,u(s,o 0 ods
/0 /0 AT (s u(s, ) (ﬁ(TA)Au(s)> do ds,

which also gives a O(7)-bound. By possibly reducing 7o we obtain the result for 0 < ¢ < tonq. This
immediately implies the first bound in (4.13) and the second bound is then obtained from (4.1). O



4.4. Abstract assumptions on the one-step methods 41

Remark 4.16. Note that Theorem 4.14 and Lemma 4.15 remain true for W = I as for this choice
I;(t) = 0 holds. Additionally, the proof does not require the property (F3) and the constant function
z — 1 satisfies all the other properties in Definition 4.10. This case is of interest for methods (3.9) and
(3.15). Roughly speaking, here the outer filter is replaced by the @1 -function which behaves like a filter as
we have already seen from (F3).

By the same argument, ® = I yields I5(t) = 0 and hence the assertion. Clearly, choosing ® =¥ =1

gives u = u and the bounds are trivial.

4.4 Abstract assumptions on the one-step methods

In this section we provide abstract assumptions that characterize the classes of methods which are covered
by our error analysis, and we show how the methods presented before are included in the framework.

We recall that u denotes the solution of the original problem (2.4) and u the solution of the averaged
problem (4.1). Further, we denote the numerical flow by S; and the defect by d,, i.e., a one-step method
is given by

Un+1 = Sr(tnaun)a 6n = S‘r (tnvﬂ(t'rL)) - a(tn+1) (414)

We start with an assumption on the stability of the method.

Assumption 4.17 (Stability). The method applied to (4.1) is stable in the sense that for allv € D(A),
weX,t>0,

S (t,v) — S (t,w) =™ (v —w) + 7T (t,v,w), (4.15)
where J : R x D(A) x X — X is bounded by
17 (¢ 0.0l < Co (Wollogay -0l o= wll . ¢ € 0. fena] (4.16)

We note that the stronger D(A)-norm in the above assumption does not cause any problems since
we use the stability only for comparing the numerical flow starting at @(¢,) and at w, and hence only
Hﬂ(tn)HD( 4) appears when we use (4.16). The following proposition states that all the one-step methods
from Chapter 3 are stable in the sense of (4.15) and (4.16).

Proposition 4.18 ([9, Prop. 5.5]). Let Assumptions 4.1, 4.2, and 4.4 be satisfied.

(a) The general explicit exponential class (3.6) satisfies the stability Assumption 4.17.

(b) There is some 19 > 0 such that the general implicit exponential class (3.7) satisfies the stability
Assumption 4.17 for all T < 19.

(¢) The second-order variant of the Lie splitting (3.14) applied to the averaged equation (4.1) satisfies
Assumption 4.17.

We emphasize that we cannot analyze the second-order variant of the Lie splitting (3.14) without
filter functions. Starting with ug € D(A) and checking the summands of u1, we see that all of them lie
in D(A) except Af(t1/2,u0) € X by (A3’). Hence, we can only conclude u; € X and this does not allow

us to define wuo.
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However, if we replace f by f, we obtain

Pu

ry (t,u) = \IJJf(t,(I)u) (AO ) - A\I/f(t,éu)

and property (OF2) yields that A®: X — X is bounded and thus Af(t,,2,u0) € D(A) holds. Therefore,
uy € D(A) and the scheme is well-defined.

Proof. (a) We recall a, By, Bs € Cp (iR) and define the inner stage by
5X(t,v) = e + cora(caTA) f(t,v) (4.17)
and compute for |[v|| y , ||w| y < 7x by (Aba’)
1522, v) — 8(t ) [ = €70 —w) + caralea A) (F(Ev) — F(t,w))]|
< (14 Clrx)7) v —wlly
as well as
155t < rx + Clrx)T =74
For the outer stage we hence consider with J = m J1 + m2J2 by symmetry only the case
To (tn,v,w) =B1(TA)(f(tn,v) — f(tn,w)) (4.18)
+Ba(rA) (£t 555ty 0) = Fltnens 555 (tn ) ) -
Taking norms and using the properties of the inner stages gives
1 (tn, 0.0l < (COrx) + Cr)(1+ Clrx)r) ) o —wll

For a fixed maximal stepsize 79 > 0, r1 is uniformly bounded by some C(rx) which closes the
argument.

(b) In order to obtain stability of the implicit scheme we define for fixed ||v|| y < rx the fixed-point map

Tyt (U) = 2™ + cora(catA) f(tpsey, U) - (4.19)
Note that once we established stability and boundedness of the inner stage, the outer stage is handled
as in part (a). We first check that for ||U||y < 2rx it holds
[Tot, (U)llx < 7x 4+ CT [|f(fngey . Uy S7x +7C(2rx) < 2rx

for 7 < 79 < &5+ For the contractivity we compute for Ul x, IVIx <2rx

10,6, (U) = Tot, (V)llxx < OTf (tnteas U) = ftnger, V)lix < 7CQ2rx) IU = Viix < 511U = Viix

for 7 <79 < By Banach fixed-point theorem we obtain a unique solution U* = T, (U*)

1
2C(2rx) "
and define the solution map s™(t,,v) = U*.

In the last step we obtain with ||v]|y , [|w|x <7x and V* = s™(t,,v), W* = si™(t,,, w)
V" =W|x < llv—wllx + CT [ f(tnter, V) = ftnger, W)l x
<o —wlx +7Cr) V7 = W7l (4.20)
<lv—wlx+5 IV =W,

which yields [|s™(t,,,v) — s2(t,,, w)||x < 2[|v — w] -
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(¢) We recall the scheme (3.14) with filters

~ 2 0
Sl = o 4o Flts) 5 (w300 (0

) —A\I/f(t,@u))

=™, + 1™ (f(tnﬂ/g, u) + %(WJf (t, ‘I’u) <

0
(TA(I))U

Hence, the operator J is given by

T (tn,v,0) = ™ (f(tn+1/27v) - f(tn-l-l/% w))

1, 7A 0 _ 0
et (g ) -vteen (o)) )
— 1 (rAw) (£ (t,@0) - f(t,0w))
= €TA<.71 +J2 — .73) .
By (OF1), (OF4), and (Aba’) we directly obtain
17 llx +11Tsllx < Cllvllx s lwlix) o —wllx - (4.22)

We expand the remaining term as

0 0
= L(WJs(t,Pv) — UJ,(t, D +iwgs(t,® )
‘72 2( f( U) f( w)) ((TA@)U) 2 f( w) ((TA(I)) (’U—U)))
Again (OF4), the bound (A-CLS-1’) for the first term and (A4a’) for the second term yield

1Z2llx < CUlvllpeay, lwlix) [l = wlix + C(lwlx) v —wlx - (4.23)
Combining (4.22) and (4.23) we have shown the condition of Assumption 4.17. O

In order to prove convergence we also need consistency of the methods. For the first-order error

bounds the assumption is rather standard.

Assumption 4.19 (Counsistency for order one). The method applied to the original equation (2.4) satisfies
Assumption 4.17 (with ¢ =¥ = 1) and its defect (4.14) satisfies

18]l < CT2,
where C' > 0 is independent of T and n.

A straightforward assumption for second-order convergence would be consistency with [/, [y < C73.
Then standard arguments lead to error bounds in O(7?). However, under the assumptions made on the
data we can not expect this to hold at least in the non-averaged case as we have seen in the numerical
example in Section 4.1.4.

For the averaged methods we are hence left with some terms of lower order 72 and some terms of the
right order 73. To end up with a global error of order 2 we require a particular structure of the defect,

which we will motivate in the following.
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In Chapter 3 we have seen that most of the methods we consider are constructed from the variation-

of-constants formula
1
~ _ TA~ (1—s)TA 7 ~
Wtpy1) = e aty) + 7 / e fltn 4+ 7s,u(t, +78))ds, (4.24)
0

and the method is constructed by approximating the integral term. Hence, this defect can be expressed

as some quadrature error that contains the second derivative in s of
fi(s) = Tf(tn + 75, U(tn +75))  or  fa(s) =e1TITAL(s),

depending on the precise method. The terms of order 73 can be treated in the standard way. However,

from f; we obtain the second-order term

0
T2 J+(t, + 78, U(tn + T5)) N , (4.25)
! (TAD) Au(t,, + 75)
where one 7 is needed to compensate the operator A® which is only bounded by C7~!. Additionally, fo

gives the term
72 (TAW) =T AAS (t,, + 75, DU(t, + T5)). (4.26)

For this term property (OF4) comes into play. It allows us to carry over the local convergence order
to the global error. Similar terms are obtained for the defect of the splitting scheme (3.14). We hence
propose the following general structure of ,, which also includes the integral in (4.24) and the structures
in (4.25) and (4.26).

Assumption 4.20 (Structure of defects for order two). The defect 6, defined in (4.14) of a numerical
method applied to the averaged equation (4.1) is of the form

o, =06 +6@ 4+ D,

with | Dy || < CT3, where the constant C > 0 is independent of T and n. In addition, one of the following

sets of conditions is satisfied:

(a) If ¢, are filters of order 2, then there exist w, € X and a linear map W,,: X — D(A) which satisfy

1
lwally < C, |- (wasa = wa)||, <. (4.27a)
1
Wallyex <G, H;(WnH ~Wa)||,. =G (4.27b)
[ AWl xx <C, (4.27¢)

with a constant C which is independent of T and n such that 57(5) can be written as
o) =2 (rAV)w,, 6P = T2W, (TAD) Au(ty) (4.28)
(b) If v =1 and ¢ is a filter of order 2, then (4.27) and (4.28) hold with w,, =0 for all n.

Remark 4.21. If we use property (OF2) in the representation (4.28) we can conclude ||6,]y < CT2.
But this is precisely Assumption 4.19 and would only yield a suboptimal first-order bound in the global

error.
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The following propositions shows that the methods presented in Chapter 3 satisfy the abstract as-

sumptions on the defect.

Proposition 4.22 ([9, Prop. 5.5]). Let Assumptions 4.1, 4.2, and 4.4 be satisfied.

(a) The general explicit and implicit exponential class (3.6) and (3.7) applied to the averaged equation
(4.1) satisfy Assumptions 4.19 and 4.20 (a).

(b) If the coefficients in (3.8) are chosen such that p = p = 0, then (3.6) and (3.7) applied to the averaged
equation (4.1) also satisfy Assumption 4.20 (b).

(¢) The second-order variant of the Lie splitting (3.14) applied to the averaged equation (4.1) satisfies
Assumption 4.20 (a).

Proof. We mainly focus on part (a) and (b) of the proposition since they can be proved together. In the
end we sketch the ideas of part (c).
(i) We first establish Assumption 4.20 for (a) and (b). Recall t,4¢ = ¢, + 7€ and let Up1¢ = U(tpie)
and fn+§ = f(tn+§, Unye). We first consider the inner defect A,, of the explicit scheme

Ay, =87 (tm ﬂn) — Uptcy
1

— CQT(a(CQTA)]}; — /6(1_5)627Aﬂ+625 d§)
0

= CQT(An,l - An,?)

where we used the variation-of-constants formula. As we will only need the first component of the
inner stage due to (4.7), it is sufficient to estimate w1 A, ; and m A, 2. Since 7r1fn =0 by (4.7),
we obtain by (A3’)

[T 1l = Hﬂja(cQTA)fn .= T Hﬂ'lal(CQTA)AﬁL N <Cr
with ay given in (3.8) and once more (4.7) gives
1 1
M Apally = Hm /6(1‘5)6”Afn+525 dgHX _ Hm (/ QOTAT e f”*”)Hx <Cr
0 0

by the order of the implicit Euler method, where we employ (A1) and (A3’) to bound the integrand.

In summary this gives
ImAnlx <C7%, (4.29)
which also holds in the case of the unfiltered problem. For the implicit scheme we obtain
A, = Sirm (tm ﬂn) — Un-e

1
= coTa(caTA) (f(tn+g, sim (tn,Un)) — ﬁ+62)+CQT(G(CQTA)ﬁL+C2 — /e(lfﬁ)cer]’c;lJrc2§ d{)
0

= coTa(caTA) (f(thrg, sim (tnsUn)) — ﬁl+C2)+CQT(An71 —Ay2).

Choosing 7 < 71y sufficiently small and estimating A, ; and A,, 2 as above, we obtain as in (4.20)
the bound (4.29).
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For s, = s or s, = s™ this leads us to the defect
0 = €™Vt + 7 (11 (Br(TA) o + Ba(rA) (bt 57 (bns n)))
473 (By(TA) fo + Ba(rA) f (tnsens v (tn, an))) Tyt

We then use the variation-of-constants formula (4.24) and, due to the decomposition I = 71 + mo,
it is sufficient to consider the defects 6, ; = m;0,. Since both defects have an identical structure,

we only consider
1
(5»,172 =TT (B1 (TA)‘]?;I + BQ(’TA) ~(tn+52 , St (tru ’ljn)) - /6(1_5)7Af;1+§ df)
0

= 7m2Bs (TA) (f(tn+62 ) 57 (t’m ﬁ”)) - fn+c2) (4 30)

1
g (Bl(TA)}; 4 Bo(TA) frsey — / e1=TAF dg)
0

= 1moly + 1ol .

Using (Aba’) and the bound in (4.29), we have by (4.7) in the filtered as well as in the unfiltered

case

HTWZEHX S CT Hf(tn—&-qas‘r(tnaﬂn)) - ﬁL+02 x

< )7 [ (50t ) = Tt}
=C(rx)7 |mAnl x
<CO73.

The term fg is the defect of an exponential quadrature rule. Using Taylor expansion on
1
Frso = fn +70f + 7207 / Flvosds, P8 = fltn + € tn +6))| . (431)
0
we are able to write with the definition of the ¢-functions in (3.1) and the coefficients in (3.8)
1
b= By AV, + BarA) (ot eafl) = [ €497, 4 eF) de + s
0

= (Bu(rA) + Bo(r4) = 1)) Ju + 7(e2Ba(rA) = p2(7 ) ) T + s
= f2,1 + f2,2 + f2,3 .

where f23 is given by
1 1
IQg—TBQTAC/l*S tcgs A8 — T / (IETA/l—s n+£sd5d§ (4.32)
0 0

We estimate the three terms separately. The first dominant term _?\2’3 gives rise to the term W,

motivated in (4.25). Since the two terms of the difference have the precise same structure we further
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decompose f2,3 = f{fg — ffg and only investigate the first part. We compute

(1—s)f",,..ds

TA _ 3 2
Troly 3 =T maBa(TA)cs t-Cas

1
0/
1
0
= 31,B TA02/1—8J~tncs,ﬂncs ds + D} 4.33
2 2( ) 20 ( ) f( +c2 +c2 ) A(I)U/(tn+02s) n ( )
1
~ 0
= 72wy By (TA) 2 /(1 — s)J}v(tn+C2s,un+C2s) <(TA<I>)Aﬂ > ds + D} + D?
0 n

with || DL, < C7® by (A2) and || D2||, < C73 by (A3’). The term W is given by

1
0
W;?CE = ’/'I'QBQ(TA)C% /(1 - S)J}'(tn—i-CQSaﬂn-‘rCQS) < ) ds.
X
0

The properties (4.27b) and (4.27¢) follow from (A2’) and (A4b’). Analogously we define a linear
map W2 with the same properties and set W,, = W2 — W5,

To bound j;’g we use that by (3.8)
c2B5(0) = § = 2(0)
holds and thus there exists ¢ € Cp (iR) with
c2Ba(2) — p2(2) = 2p(2), z €iR.
From this we conclude by (A1’)

HTnggﬁng = HTQWQQ(TA)TAJ?T’L

<Cr’ HAﬂ
bl

< Cr3.
X

We conclude with the term :7\271. If p=p =0 in (3.8) holds, we have fg’l = 0 and for part (b)

Assumption 4.20 (b) is proven. In the other cases we write
Tmalyy =772 (31(TA) + By(14) - wl(TA))ﬁz
= 73772p(TA)A2]’”; (4.34)
=72 (TA\II)wn
where we used (3.8) and mp AV = AV due to (2.5) and (OF5). Then w, is given by
wy, = p(tA)mo Af (tr, Puy,) -

The properties (4.27a) follow directly from (A3’) and (A5b’), and Assumption 4.20 (a) is satisfied.
(ii) In order to verify Assumption 4.19, we let ) = ¢ = 1 and as in (4.31) we expand fnJrs only up to
order 1. Then I, is given by

L = 7(Bi(r4) + Ba(r4) - ¢1(74) )

fo
1 1
+T262b2(TA)/}Z+C25d8—72/6(1_€)7—A/ﬁL+§S ds de .
0 0 0
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From (3.8) we have p € C (iR) and z — 22p(2) € Cp (iR) and with the computation of Remark 4.13
we also have
Pz zp(z) € Cp (iR) . (4.35)
The assertion then follows by the boundedness of ﬁ’l +s and the fact that
Bi(2) + Baf) = @i(2) + 2 7(2) (1.36)
holds together with the bound (A3’).

(iii) We briefly comment on the scheme (3.14). The defect can be written as

~ re ~ 2 ~ ~
5n = €TA (un + Tf(tn+1/27 un) + %r}v (tn+l/2aun)) — Un+1

T
2

= /%(ew (Tnti—¢ + EF (tngrjos Ungr—e) + %77 (tn+1/2ﬂ7n+1—5))) dg§

= /egA (]?(tn-i-l/% an+17§) - ﬁwlf&) dg

2 —~ ~
+/%65A(d%77 (tnt1/2, Unt1—¢) + Ary (tn+1/27un+17§>) d§
0

=L+ 14,

0 ~
where we used the structure of f to obtain Jy(t,u) (f) = 0. In the first term I3 we add and

subtract Te™/ 2‘4]?"4_1 s2 and get the quadrature error of the midpoint rule twice. The term :7:1

admits a similar structure as f271 and hence Assumption 4.20 can be verified as before. O

4.5 Error bounds for exponential one-step methods

This section is devoted to the main results for averaged exponential one-step methods. We prove error
bounds in the X-norm in Theorem 4.24, cf. [9, Thm. 6.2], and in the D(A)-norm in Section 4.5.4.

A key ingredient is the so-called summation by parts formula

n n n—1 J
Z ajbj = Z anbj + Z (aj — a]‘+1) <Z bk) s (437)
j=0 7=0 7=0 k=0

which also comes in the form

Zan ]b = Za]b(] + Z < Z ak> J+1 - bj> s (438)

=0
and can be seen as a discrete analogous of the integration by parts formula. It is verified by straightforward

calculations.

4.5.1 Bounds in the X-norm

The following result corresponds to the right diagonal arrow in Figure 4.1 and is the last step towards our
main theorems in this section, Theorem 4.24. It states that, given suitable filters, any one-step method

of Section 3.2 applied to the averaged equation (4.1) allows for a global error of order O(72).
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As before, u denotes the solution of the original problem (2.4) and % the solution of the averaged
problem (4.1).

Theorem 4.23 (Global error of the averaged problem, [9, Thm. 6.1]). Let Assumptions 4.1, 4.2, and
4.4 be fulfilled. Moreover, let (uy,)y be the numerical approxzimations of a scheme applied to the averaged
equation (4.1) that satisfies Assumptions 4.17 and 4.20. Then there is a 79 > 0 and a constant C, > 0
such that for all T < 19

un —(tn)|x < Cet?, 0<ty,=n7 < tend.

The constant C, and 19 depend on ug, tendq, the generalized finite-energy K from Proposition 4.9, the

filter functions, and the embedding constant Cepp, but are independent of T and n.

Proof. The proof makes use of the error recursion from [30] and adapts techniques from [8, Theorem 5.3].

Due to definition (4.14) of the defect d,,, the global error ¢, = u(t,) — u, can be written as

gn+1 = S‘r(tnaa(tn)) - S‘r(tnaun) - 5n
=e™e, + Tj(tn, u(ty), un) —0p

by Assumption 4.17. Resolving the recursion we obtain that the global error satisfies
gn+1 = €(n+1)TAgo +7 Z €(n7j)TAj(tj, ﬂ(tj), Uj) - Z B(nij)TA(Sj. (439)
j=0 j=0

In a first step we establish the bound
|- ey < oo (4.40)
j=0

with a constant Cy being independent of 7 and n. In the second step we close the proof with the bound
in (4.16) and the application of a discrete Gronwall lemma.
(i) The proof is done by induction on n in order to control the X-norm of the numerical approximations.

For n = 0, the statement is obviously true. Hence we assume that for all 0 < k < n it holds
lurll S, o= #E)lx < Cor®, Coim CpeCoRorstons,

By Assumption 4.20, the defect is split into three parts, which motivates to write

n

Soer s = el vl +ah, (4.41)
=0
where
gff_%_l - Z e(nij)TAéj(‘e)a e = 1) 27 ’éflz)l = Z e(nij)TADj'
=0 =0

Since ||D;]ly < C73 and nt < tena we casily see

B =[x n, <o
Cnii jgoe iy SO
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To bound é{n?-p ¢ =1,2, we define the sums

E,=Y €™ and  F,=) u(t). (4.42)
j=0 j=0

We employ the summation by parts formula (4.38) with a; = /7 and b; = (55»1), use the represen-

tation of the defect in Assumption 4.20, and property (OF4) with y = ¥ to obtain

n n—1
SIS gl S (6 )
7=0

7=0
n—1
= T3EnA\I/U}0 + T3 Z En,jflA\I/ (ij - wj)
i=0 (4.43)

=712E, (™ — Ogwy
n—1 1
TA
+T2<TZOEn_j_1(€ —I)@qz;(qu_l —wj)).
J:

We note that estimating F, in a naive way leads to a factor n and hence one loses one order of
convergence. However, we can do better if we bound E; (e™ — I) together. We exploit a telescopic

sum to get
J
I =Dl = | et -l = et <2 e

Together with (4.27a) and (OF1) this yields (4.40) for 6§1) instead of d;.

~(

We proceed similarly for the term en%)rl. We use the representation in (4.28), apply the summation

by parts formula (4.37) with a; = e("~)7™4W; and b; = A®Au;, and (OF4) with y = ® to get

n—1

S eI = BW,AGAF, + 73 e DTA(W; — e TAW, 1) ADAF,
7=0 =0
= 72W, 04 (e™ — I)AF, (4.45)

n—1
. 1
+ 72 (7- Z e("*J)TA; (Wj - efTAWjH)@fb(eTA - I)AFj)'
=0

In order to obtain second-order error bounds we bound the terms separately. If we expand the

term
1 1 1
;(WJ — €7TAWJ'+1) = ;eiTA (VVJ — Wj+1) — ;(efTA — I)W] ;
we may use the bounds (4.27b) and (4.27¢) to derive
1, 1
Ze T W . W <
HTe (W; WJ+1)HX<—X H’T (W; WJH)H)«—X =C
1 s a
_ TA __ . — — . <
Hr(e I)WJHXHX H%( 7—A)AW]HXeX =G

since |p1(2)| < 1 for z € iR.

As in (4.44), we estimate the term (e™ — I)AF; for j < n since the term F} alone does not have

the right order. After adding the exact solution we apply the variation-of-constants formula, (A3’),
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and (4.13), which gives

H(e”‘ - I)AFjHX = HA i(emﬂ(tk) —alty +7)) + Ai(ﬂ(tk +7) - ﬂ(tk))Hx
k=0

k=0

j T
_ H _ Z/o e(T*S)AAf(ﬂ(tk +5))ds+ A(u(tjq1) — ﬂO)HX
k=0

< tenaC(K) + 2K.
This yields (4.40) for (5J(-2) instead of 0; and together with the results above proves (4.40).
(ii) Finally, turning back to (4.39), we plug in €y = 0, the bounds on the defects (4.40) and the stability
in (4.16) and arrive at

n
j=0

Ensillx = |73 AT (b it ) = Yo A |
Jj=0 ]

<G +7Y_ Cr(K,rx) & -

j=1
A discrete Gronwall lemma thus yields

||gn+1 HX S 7'2 05 eCj(K,’I‘x)te,,d — Ce7_2,

[tniillx < @(tarn)llx + [Entallx < 3rx + Cer® <rx

2 . .
fort<1 < %(% and the induction is closed. O

From all these preparations we now easily conclude our main result for averaged exponential one-step

methods.

Theorem 4.24 ([9, Thm. 6.2]). Let Assumptions 4.1, 4.2, and 4.4 be fulfilled. Further, let (uy,)n be the
numerical approximations of a scheme that satisfies Assumption 4.17.
(a) If the method also satisfies Assumption 4.19 and is applied to the original equation (2.4), then there

is a 79 > 0 and a constant C7 > 0 such that for all 7 < 79

lun, — u(tn)| x < ChT, 0<t,=n1 <tend-

(b) Let ¢, such that Assumption 4.20 is satisfied. Then there is a 79 > 0 and a constant Co > 0 such
that for all T < 79
lun —u(ta)llx < Cot?, 0 <ty =07 < tena,

if the method is applied to the averaged equation (4.1).

The constants C1,Cy and 1y depend on ug, tend, the generalized finite-energy K from Proposition 4.9,

the filter functions, and the embedding constant Cepmp, but are independent of T and n.

Proof. Part (a) follows directly from Assumption 4.19 and equation (4.39). For part (b), we simply
combine Theorem 4.14 and Theorem 4.23 by the triangle inequality (4.3). O
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Figure 4.3: Discrete L™ ([07 1], L*(T) x Hil(']I‘)) error (on the y-axis) of the numerical solution of (4.4)
plotted against the stepsize 7 (on the z-axis) without filters (red, crosses) and with outer filter only (blue,

dots) with N grid points. The gray lines indicate order one (dotted) and two (dashed).

4.5.2 On the necessity of the inner filter

Gauckler [22] proves that in the setting of a one-dimensional wave equation with periodic boundary
condition it is not necessary to use an inner filter ¢ in order to obtain second-order error bounds. Hence,
we comment on how this insight is present in our more general framework. Numerical experiments
indicate that in certain examples the inner filter cannot be neglected. We used an example similar to
that of Section 4.1.4 and only describe the differences. We changed the right-hand side to

G(g) = mgsin(m; q) g, (4.46)

and made the choice ¢ = 1 and 1 as in (4.5) for the numerical scheme (blue, dots), see Figure 4.3. The
code to reproduce the plots is available on https://doi.org/10.5445 /IR /1000130189. We still observe an
improvement of the numerical scheme with outer filter compared to not using any filter (red, crosses),
but the order reduction cannot be prevented.

Going back into the error analysis, we see that the inner filter ® is important in the defect that stems
from the part of the quadrature error which is considered in (4.25). In more detail we examine this term

in (4.32), and it is obvious that this term was not problematic if we could simply conclude

el <€ (4.47

For the following considerations we restrict ourselves to the case g(t,z,q) = g(z, ¢) and hence (4.47) is


https://doi.org/10.5445/IR/1000130189
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equivalent to
9n+eslloy = 1900 (@n+es) (@hses)® + 9y (@nres)dnies|l,, < C-

which is precisely the conclusion in [22, Proposition 3.3]. In all the examples mentioned above we have

at least, cf. Appendix A,

Hgyy(Qn+§S)(q;+§s)2HV < C(H‘]n—&-&SHD(L) ) ||q;7,+§sHv) < C(K)
and hence (4.47) is equivalent to
||gy(Qn+fs)qx+£s||H <C. (4'48)

Since by the generalized finite-energy condition (2.13) it holds Hq;{ +es
(4.48) is

H ) < K a sufficient condition for

Hgy(qn-&-Es)HHeH <C.

However, from (A2) we can in general only conclude that it is bounded from V to H, and we would need

a bound on qu +¢s||y Which is not covered by the generalized finite-energy condition.

Iy
So, the question to answer is when the multiplication by g, (¢n+¢s) is a bounded operator from A to
H. We give an exemplary overview on different scenarios.
(a) H=H1(Q) and d=1

Since in our framework ¢’(gn+es) acts as a multiplication operator, it is sufficient to check whether
a multiplication is continuous as an operator from H~1(Q) into itself. We compute for a € H'(Q)
and v € L?(Q)
lavlg— = sup (av,w)r> = sup (v,aw)r2 < sup vl g lawllg < C ol g llallg -
llwll 1=1 llwll g1 =1 lwll =1
Hence, we can extend this to a bounded linear operator m: H=1(Q) — H~Y(Q) if a € H'(Q).
Therefore, a sufficient condition for (4.48) to hold, is g, (qn+es) € H' () for g1es € H(Q) .

Smooth coefficients  In [22] g is a polynomial and since H!(Q) is an algebra for d = 1, this
directly implies g, (gn+es) € H'(€2). More general, we can assure this condition if we assume (z,y) —

gy(x,y) to be weakly differentiable in x and continuously differentiable in y since then
T = gy(xa QH+§s(ta (E)) € H' (Q)

for all ¢ € [0,tena] by the standard arguments.
Irregular coefficients If we use a right-hand side as in (4.46) the above considerations do
not apply. For example, take the linear case with g(z,y) = m(z)y, m € L°°(2). We then have
gy(z,y) = m(x), which is in general not a map from H~!(Q) into itself. This explains the behavior
in Figure 4.3.

(b) H = L3(%)

For any spatial dimension d € {1, 2,3} a sufficient condition for (4.48) is

gy(anres) € L=(Q), (4.49)

since we only need a bounded multiplication operator from L?(£2) to L?(£2). Surprisingly, this is far
less restrictive than in the case H = H~'(2). In addition, since gnies € H2(Q) < L>(Q) holds,
the assumptions in Table 4.1 directly imply (4.49) and no inner filter is needed.
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(c) H=H(Q)

The situation is not so much different to the L?(Q)-case since (4.48) is implied by

9y (@nres) € WH(Q). (4.50)

Since gnies € H3(Q) < W1°(Q) holds for the exact solution, the regularity of g is sufficient for

(4.50) to be valid and also no inner filter is needed.

4.5.3 On the necessity of the outer filter

After the discussion above, naturally the question arises whether one needs an outer filter and if one can
characterize the scenarios where it is necessary. Again checking the proof of Proposition 4.22, we observe

that the outer filter ¥ only enters in the term (4.34). In particular, if we could establish the bound
| A2 f (tn, u(tn)]| < C, (4.51)
with C independent of 7, then one can take ) = 1. Note that (4.51) is equivalent to
1G(tn, q(tn)llp(ry = 1L Gtn, q(tn)lly < C- (4.52)
For simplicity we only consider L = —A and check the different scenarios.

(a) H=H"(Q)
In this case we have chosen o = (2,0, 2), but (4.52) is given by

||g(tn7 '7q(tn7 ))”Hl S Ca

which is not defined under the assumed smoothness of g. For example, the right-hand side in
(4.46) is not weakly differentiable in  due to the terms mg,,m; € L*(). However, since ¢ €
C([0,T], H}()) holds, differentiability in the z-component of g and the assumption g(t,-,0) = 0
on 0N imply (4.52) by the chain rule. In particular in the framework of [22], this section together
with the observations in the previous one yield second-order error bounds without any filter.
(b) H=L*Q) and H = H}(Q)

As in the previous case, it is easily seen that the bound in (4.52) can be achieved requiring more
regularity of ¢g in the spatial variable x and possibly adding more compatibility conditions on the

boundary.

4.5.4 Bounds in the graph norm

In this section we adapt the technique previously used to obtain error bounds also in the stronger graph
norm. It is no surprise that the order is decreased to one for the filtered scheme. We emphasize that the
usage of the inner filter ® is redundant. However, it does also not deteriorate the result. We first present

the slightly different stability assumption for the method compared to Assumption 4.17.

Assumption 4.25 (Stability). The method applied to (4.1) is stable in the sense that for allv,w € D(A),
t>0,

Sr(t,v0) = So(t,w) = €™ (v —w) + 77 (t,v,0),
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where J : R x D(A) x D(A) — D(A) is bounded by

1T (t,v,w)lpeay < Co (HUHD(A) ; ||w||D(A)) v = wllpgay> t € [0, tena]- (4.53)

The following proposition shows that the assumption on the stability is satisfied by all the one-step

methods considered.

Proposition 4.26. Let Assumptions 4.1, 4.2, and 4.4 be satisfied.

(a) The general explicit exponential class (3.6) satisfies the stability Assumption 4.25.

(b) There is some 19 > 0 such that the general implicit exponential class (3.7) satisfies the stability
Assumption 4.25 for all T < 1.

(¢) The second-order variant of the Lie splitting (3.14) applied to the averaged equation (4.1) satisfies

Assumption 4.25.

Proof. The proof is very similar to the one of Proposition 4.18 and in particular the operator J remains
the same. We only need to prove the additional bounds. We consider the three cases separately.
(a) As before it suffices to consider the part of J given in (4.18). With the property given in (A5Db’),

we hence may conclude the assertion if we establish for [|v]5(4) < 74 a bound of the form
5t )l pay < Clra).
where s* denotes the flow of the inner stage defined in (4.17). This is obtained by
152 )llpgay < Nellpgay + O £ 0)llpgay < Clra)

using the bound in (A3’).
(b) Asin part (a) it is sufficient to prove a bound for the solution of (4.19) in |[-[| 5 4). To achieve this, we
consider (4.19) and repeat the fixed-point argument in the stronger norm. Let again H’UHD( A)STA

and |[U||p(4) < 2ra and compute
”Tv,tn (U)HD(A) <A+ O f(tntess U)HD(A) <ra+7C(ra) <2ry
for 7 <719 < % By the same means we also obtain the contractivity and conclude
HSiTm(U)HD(A) < 2ra

for sufficiently small 7 < 7.
(c) We use the decomposition of (4.21) and obtain by (OF1), (OF4), and (A5b’) for

1T1llpeay + 173l peay < CUlYIpeay s wllipay) [0 = wlipay - (4.54)

For J5 we use the expansion

0 0
=1(WJ(t,Pv) — I, (t, D Lyg.(t,® .
J2 2( f( ’U) f( w)) ((TA@)’U) +2 f( w) ((TA@)(U—’LU))
Again (OF4), the bound (A-CLS-2’) for the first term and (A4b’) for the second term yield

172llx < Clvllpeay, lwlipay) 0 = wlpay + Cllwlipa) [0 = wllpa) - (4.55)

Combining (4.54) and (4.55) we have shown the assertion of Assumption 4.25. O
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We further need an assumption on the consistency of the methods. Since we only prove an error
bound of order one, the structure of the defect takes a far simpler form as in Assumption 4.20 and only

one part is left that needs to be taken special care of.

Assumption 4.27 (Structure of defects). The defect §,, defined in (4.14) of a numerical method applied
to the averaged equation (4.1) is of the form

6n =06W + D,

with || Dy peay < C7?, where the constant C > 0 is independent of T and n. In addition, one of the

following sets of conditions is satisfied:
(a) If ¢ is a filter of order 1, then there exists w, € X which satisfies

E

||wn||X < Ca ;(wn—i-l - wn) ¥

<, (4.56)
with a constant C which is independent of T and n such that 67(11) can be written as
AWV =7 (TAV)w, . (4.57)
(b) If¢ =1, then (4.56) and (4.57) hold with w, =0 for all n.

Remark 4.28. We emphasize that a method that satisfies condition (b) of Assumptions 4.27 actually
does not need any filter. These methods are characterized by p = p =0 in (3.8).

In the following proposition we prove that all the methods we consider allow for this special structure
of the defect.

Proposition 4.29. Let Assumptions 4.1, 4.2, and 4.4 be satisfied.

(a) The general explicit and implicit exponential class (3.6) and (3.7) applied to the averaged equation
(4.1) satisfy Assumption 4.27 (a).

(b) If the coefficients in (3.8) are chosen such that p = p = 0, then (3.6) and (3.7) applied to the averaged
equation (4.1) also satisfy Assumption 4.27 (b).

(¢) The second-order variant of the Lie splitting (3.14) applied to the averaged equation (4.1) satisfies
Assumption 4.27 (a).

Proof. The proof is very similar to the one of Proposition 4.22. We first proof part (a) and explain how
(b) follows from this. We recall the decomposition I = w1 + w2 which led to the defects 6, ; = m;0,, and
that it is sufficient to bound one of them. We further use (4.30) where we further decomposed the defect
as
Op,2 = TmaBa(TA) (f(tn+c2,57 (tn, ﬂn)) - fN’n+C2)
1
4 1m2 (BTt Balr Ao, — [ 179, e )
0

:T7T2.[1 +T7T2]2.

The first term gives with (A5b’)

larmahi|| = 7llm ALy < 7O [lsr (tn, Tn) = Tnteal < O,
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where we used (4.29). Note that this lead to a part of d,, » which is of order O(73), however, this fact

cannot be used. The second part requires a more careful treatment. We compute

1
Armoly = mm <31 (TA)Afn + By (TA)AJ}:HC2 — /e(lfg)TAAﬁﬁg df)
0
= 771 (B1(TA) + Ba(TA) — 01(TA)) Af,
1
+ T7r1B2(7’A)A(]f";_~_c2 — ﬁl) —Tm /e(lfé)TAA(ﬁwg - fn) dg
0
= féﬁ + féz

and obtain by (A5b’) directly HfQAQHX < C72. If p = p = 0 holds the conditions in (3.8) imply ]/>271 =0
and part (b) is shown.
For the other cases we use (4.35) and (4.36) to write

f;l =7m <31 (TA) 4+ Ba(TA) — ¢y (TA))A‘]’E:,L
= T(TA\I/)WQﬁ(TA)Af(tn, duy,)
= T(TA\I/)w

which gives us (4.57). It remains to prove the properties of w,, in (4.56). From (A3’) we obtain
lwnllx < IP(TA)AS (tn, B0 < C(K)
and with (A5b’) it follows
w1 = wallx < [|PTA)A(f(tng1, @lngr) = fbn, DTn)) || < C(K)T

such that part (a) and (b) are proven.

In order to show the assertion in (c) we consider the defect

A6, = Ae™ (an + T.}’F(tn—&-l/%ﬂn) + L;r}' (tn+1/Za ﬂn)) - Aﬂn—‘—l
1

= T(Af n+1/27un /6 (= QTAAJ?nJri df) + TgieTAAT}V (tn+1/2,17n)
0

We expand the first term

1
I = T(Af(tnﬂ/% Un) — Afn+1/2 + Afn+l/2 - Awl(TA)fnJrl/Q - /6(175)“414(]?;&5 - fn+1/2) df)
0
= T(Aﬁz+1/2 - AWl(TA)ﬁL+1/2)
1
+ T(Af(tn+1/27 Un) — Afn+1/2 - /6(1_5)7‘414(1?71% - fn+1/2) df)
0

_ A |, FA
=131+ 15,
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and obtain from (A5b’) and (A1’) the bound HIA?)AQHX < C7%. Concerning fg‘fl we get from (3.2)

I3y = 7(7A0) (~pa(TA)Af (trg1 2, Pl 2)) = 7(TA )y 1

where wy, 1 satisfies the properties in (4.56) by the same arguments as in part (a).
We finally study the term ff
‘/[:14 = EieTAAT(tn+l/27ﬁn)
2 - 0 - ~

=GN g 5) () AV A 10

= fﬁl + T(TA\IJ) W2
with Hfﬁlnx < CO7? by (A4b’) and w,, o also satisfies (4.56). Setting w,, = wy, 1 + w, 2 gives (4.57) and
part (c) is proved. O

Theorem 4.30. (Global error of the averaged problem) Let Assumptions 4.1, 4.2, and 4.4 be fulfilled.
Moreover, let (uy)n be the numerical approzimations of a scheme applied to the averaged equation (4.1)
that satisfies Assumptions 4.25 and 4.27. Then there is a 79 > 0 and a constant C, > 0 such that for all
T < Ty

l|lwn — ﬂ(tn)HD(A) <Cr, 0<t, =n7 < tend,
The constant C, and 19 depend on ug, tenq, the gemeralized finite-energy K from Proposition 4.9, the

filter functions, and the embedding constant Cepyp, but are independent of T and n.

Proof. We proceed as in the proof of Theorem 4.23. Using Assumption 4.25, we get from (4.39) by
multiplying with A

Agn+1 = 6(n+1)TAAgQ + 7 Z e(n_j)TAAj (tj, ﬂ(tj), ’u]‘) — Z €(n_j)TAA5j. (458)
7=0

Jj=0

In a first step we again establish the bound
H Ze(”’j)TAAéjHX < 57 (4.59)
§=0

with a constant Cs being independent of 7 and n. Similarly, in the second step we close the proof with
the bound in (4.53) and the application of a discrete Gronwall lemma.

(i) The proof is done by induction on n. For n = 0, the statement is obviously true. Hence we assume
that for all 0 < k < n it holds

lurllpeay < 2K, uk =@t lpay < Cer,  Co = Cp @7 GFtena,
By Assumption 4.27, the defect is split into two parts

>oermirrag =l + e,
=0

analogously to (4.41). Since HD]'HD(A) < CO7? and n7 < tenq we immediately obtain

éﬁ)lHX =[S et aap,| <cr.
=0 <
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As in (4.43) we use the integration by parts formula (4.37) and obtain
n n—1 1
éﬁ?—l = Z e(”ﬂ)TAA(SJ(»l) — 7B, (e™ — )Ogwo + T(T Z En j1(eT* 1Oy~ (wj1 — wj))
i=0 =0 i
and estimate it as before to arrive at (4.59).

(ii) Taking norms in (4.58), using (4.59) and €y = 0 we have

[Entillpay < Csm+7Y Cq(2K) (18]l pa) -
=1

A discrete Gronwall Lemma thus yields

||gn+1 HD(A) <71Cs ecj(2K)te"d = CeTa

[unt1llpay < N[altnt)llpeay + 1nsillpay < K+ Cor < 2K

for 7 < 719 < Cﬁ and the induction is closed. O
This leads to the desired error bound in the graph norm.

Theorem 4.31. Let Assumptions 4.1, 4.2, and 4.4 be fulfilled. Further let (u,)n be the numerical
approximations of a scheme that satisfies Assumptions 4.25 and 4.27. Then there is a 79 > 0 and a

constant C' > 0 such that for all T < 19
Hun - u(tn)”D(A) S CT, 0 S tn =nr S tenda

if the method is applied to the averaged equation (4.1). The constants C' and 19 depend on ug, tenq, the
generalized finite-energy K from Proposition 4.9, the filter functions, and the embedding constant Cepmp,

but are independent of T and n.
Proof. We simply combine Lemma 4.15 and Theorem 4.30 to conclude
Ju(tn) — un”D(A) < lultn) — ﬂ(tn)HD(A) + [[u(tn) — un”D(A) <Cr

for 0 <t, =n7 <tenq. O

4.6 Error bounds for exponential multistep methods

We briefly indicate how to extend the developed theory to the exponential multistep methods of Sec-
tion 3.2.2. In order to get a useful representation for the defects we give a proof for the generalization of

a known result on quadrature errors.

4.6.1 Peano kernels and defects

Let X be some Hilbert or Banach space and consider a weight w: [0,1] — B(X). For a sufficiently smooth

function f: [0,1] — X we consider

T() =Y ecf(c), ()= / w(s)f(s)ds, (4.60)
=1 0
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where T is a quadrature formula with nodes ¢; € R and weights «o; € B(X), i = 1,...,m. We recall the
notion of polynomials in Banach spaces X from [4, Section IV.3] where any polynomial p is given for
some N € N and coefficients k; € X,:=0,...,N, as

N

p:[0,1] = X, s+ p(s)= ZkZSZ
=0

We assume that the quadrature formula is of degree ¢, meaning that polynomials in the above sense of
degree ¢ — 1 are integrated exactly. In the case where all nodes ¢; lie in [0, 1] it is well known that the

error functional defined by

allows for a representation of the form

B(f) = / K(s)f@(s) ds,
0

with some bounded K: [0,1] — B(X), often called the Peano kernel. We will now slightly generalize
this result since for multistep methods nodes will also lie outside this interval. We note that the proof is

straightforward, however, we could not find any reference. Thus, we give the proof in detail here.

Lemma 4.32. Consider T and I from (4.60) with degree q and let [0,1] C [zq, 21] such that ¢; € [xg,x1],
i=1,...,m. Then there exists a bounded K : [xg,z1] = B(X) such that

E(f) = / K(s) £ (s) ds

for all g-times differentiable f: [zg,x1] — X.

Proof. Consider the Taylor expansion of f for s € [zg, z1] by

S
q—1 _ _
f(s) = f(0)+sf(0)+---+ hf(q D(0) + ﬁ /(S — 1)@=V @D ) dt
0
=ps(s) +r(s),
where py is a polynomial of degree ¢ — 1 and r can be written as

Z1

o) = gt [ =07 SO0 D X0 = =

Zo

Since E(py) = 0 holds, we get

(=D E(f)=(¢—-1)! E(r)
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Hence, we obtain the assertion if we define

K(t) = 25 (= 7 'x(1))

and the boundedness is clear if the kernel w and the weights a; are bounded. O

4.6.2 Bounds in the X- and the graph norm

In this section we prove first- and second-order error bounds in the X-norm and first-order error bounds
in the D(A)-norm. Since the first step is performed by an exponential Euler step or a Lie splitting step,

we only mention that in any case the error of the first step is given by
lerllpay < cr? (4.61)

by simply adapting the proofs for the inner stages in Propositions 4.22 and 4.26. For the three schemes
(3.15), (3.16), and (3.17) Assumption 4.17 needs to be modified.

Exponential multistep method of Adams-type For method (3.15), we denote the numerical flow

by S:(t,vn,v,—1) and obtain
S (t, Uy Un_1) — Sr(t, W, Wp_1) = €4 (vn - wn) + 7T, (4.62)
where 7, = j(t,vn,vn,l,wn, wn,l) satisfies by (A5a’) similar to (4.18) the bound

||\7nHX < Cj(”UnHX > ||won) an - wn”x

(4.63)
+ CJ(”Un—l”X ) ||wn—1||X> |vrn—1 — wn—lnx ) t € [0, tendl,
and also by (A5b’) in the graph norm
[Tnllpay < Ca(lvnllpgay » llwnll [[vn — wa|
D(A) ( D(A) D(A)) D(A) (464)

+ CJ(H”n—l”D(A) ) ||wn—1||D(A)) lon—1 — wn—1||D(A) J t € [0, tenal.
This yields the following error bound.

Corollary 4.33 ([9, Cor. 7.1]). Let Assumptions 4.1, 4.2, and 4.4 be valid and consider the numerical
approximations (uy)n from (3.15). Then the following error bounds hold:

(a) If the method is applied to the original equation (2.4), then there is a 79 > 0 and a constant C' > 0
such that for all T < 7

|w(tn) — unHX + [lu(tn) — unHD(A) <Oy, 0<1t, =n7 <tena-

(b) If the method is applied to the averaged equation (4.1) with ¢» = 1 and a filter ¢ of order 2, then
there is a 79 > 0 and a constant C > 0 such that for all T < 7

u(tn) —unllx < Cot?,  0<t, =nT <tend-

Here, Cy, Cy, and 1y depend on ug, tenq, the generalized finite-energy K from Proposition 4.9, the

embedding constant Cepmp, Co, and in addition on the filter functions, but are independent of T and n.
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Proof. (a) For the first part is is sufficient to prove that the defects are of order 2 since we can then use
(4.64) conclude by the standard arguments. As in the proof of [40, Thm. 4.3] the defect stems from

a quadrature error that can be represented by Lemma 4.32 as

1

G = 8¢t (tn), Tltn-) = Ultasn) =7 [ K1(6) Fopods,

-1

where we use the notation of (4.31) for the derivatives of f;ﬂ. The integral term can be bounded

uniformly in both norms by Assumption (A1’). We obtain by (4.62) the error recursion

€n+1 = ST(t'IHﬂ?’L?ﬂn—l) - ST (tnaunaun—l) - 6n

A~
=e’ en+7—s7n_5n7

which is resolved by
Fap = AT 473 A 3 (i) (4.65)
j=1 j=1
Since the last term is bounded by

[, <cr
; D(A)

and (4.61) holds, the assertion is easily derived by a Gronwall lemma. The bound in the X-norm
follows from Lemma 2.8.

(b) In order to prove the second statement, we first employ Theorem 4.14 and Lemma 4.15, so again it
remains to prove the error in approximating the filtered solution. We obtain the similar representa-
tion

1
Opn = 7'3/K2(3) ﬂ'ﬂ ds,
-1
which yields the dominant terms as in (4.32). As above, it also satisfies the conditions on W, in
Assumption 4.20. We note that the error recursion in (4.65) is still valid and with (4.63) we may
close the proof by the lines of the one of Theorem 4.23.

O
Exponential multistep methods of Nystrom-type For the methods (3.16) and (3.17) we have
S (t, Vs Un—1) — S (t, W, wy_ 1) = €274 (Un,l - wn,l) + 7T, (4.66)
where J,, = J (t, v, wy) is bounded with (A5a’) by
17nllx < Calonllx s lwnllx) lon —wnllx .t €[0,tena], (4.67)

and in the stronger norm with (A5b’) by

1Tallpeay < C(lvnllpay: lwnllpay) lon = wnllpiay st € [0, tenal - (4.68)
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In order to apply the techniques from above we define the modification

Xz : Cy(iR) — Cy(iR), x(-) = x(2),
and can state the following result.

Corollary 4.34 (]9, Cor. 7.2]). Let Assumptions 4.1, 4.2, and 4.4 be valid and u be the classical solution

of (2.4). Consider the numerical approzimations (uy, )y, from (3.16).

(a) If the method is applied to the original equation (2.4), then there is a 7o > 0 and a constant C' > 0
such that for all T < 1y it holds

”u(tn) - unHX <Cr, 0<1t, =n7 <tena-

(b) If the method is applied to the averaged equation (4.1) with filters x21, x2¢, where ¥, ¢ are filters of

order 2, then there is a 79 > 0 and a constant C > 0 such that for all T < 19
||U(tn) - UnHX < CT21 0 < t, =nT < tend-

(c) If the method is applied to the averaged equation (4.1) with ¢ = 1 and the filter x21, where 1 is a
filter of order 1, then there is a 79 > 0 and a constant C > 0 such that for all T < 1

flu(tn) — un”D(A) <Cr, 0<t, =n71 <lena.

Here, C' and 1y depend on uq, tend, the generalized finite-energy K from Proposition 4.9, the filter func-

tions, and the embedding constant Cepmp, but are independent of T and n.

Proof. (a) Since the method stems from a midpoint rule applied to the variation-of-constants formula,

the defect can again be written as

1
Op = T/Kl(s) %(e(lfs)TAJ?n+s) ds

—1
1

=72 / Ki(s) el—s)TA (]?,’H_s — AJ?,H_S) ds,

-1

and we may bound the integral term uniformly by (A1’) and (A3’). We use (4.66) to obtain the

error recursion

€nt1 = ST(tYHﬂ?’L?an—l) - Sr (tnaunaun—l) — 0y

= 1 + 7T — O
which is resolved and bounded by

lensillx < llexllx +7 3 Wzl +] 3 e 0uss - (4.69)

._n _n
0<i<y 0<i< g

Since the last term is bounded by O(7) and (4.61) holds, the assertion directly follows from (4.67).
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(b) As the representation in (4.69) is still valid we only have to bound the last term by O(72). The

defect can be written as
1

Op = T/KQ(S) %(6(178)714]?”4_3) ds,
e
and we obtain dominant terms similar to (4.26) and (4.32). They also satisfy Assumption 4.20 if we
replace the following properties in (4.27) by

(U}n+2 - wn) n+2 - Wn)

] <c,
X

I ¢ e 70

As €7 in (F3) is replaced by €22, this can be combined to conclude the assertion similar to the proof
of Theorem 4.23.

(¢) The last part easily follows by the arguments of part (b), the bounds derived in Proposition 4.29,
the stability in (4.68), and the ideas of the proof of Theorem 4.30. O

Corollary 4.35. Let Assumptions 4.1, 4.2, and 4.4 be valid and u be the classical solution of (2.4).

Consider the numerical approzimations (uy), from (3.17).

(a) If the method is applied to the original equation (2.4), then there is a 70 > 0 and a constant C' > 0
such that for all T < 1y it holds

[u(tn) — unllx + [lu(tn) — unHD(A) <Cr, 0<tn=n7 <lend-

(b) If the method is applied to the averaged equation (4.1) with filter x2¢, where ¢ is a filter of order 2,
then there is a 79 > 0 and a constant C' > 0 such that for all 7 < 19

||U(tn) - unHX S OTQ; 0 S tn =nT S tenda

Here, C and 1y depend on ug, tenq, the generalized finite-energy K from Proposition 4.9, the filter function,

and the embedding constant Cepmp, but are independent of T and n.

Proof. The proof combines the ideas of Proposition 4.22 and Corollary 4.34, and it only remains to
investigate the defect. The bound in the X-norm in part (a) again follows from Lemma 2.8.

(a) We use the definition of ¢; to compute

1

Ab, =27 (apl(QTA)Aﬂ - / cA=62TA QT e dg)
0
1

- 27’/6(1_5)27—’414(]?71 — frsoe—1) dE,

0
which directly gives [|0n[|p 4y < C7? by (A1).
(b) For second-order we compute for the defect expanding with Taylor as in (4.31)

1
571 =27 ((‘01(27'14)}:” — /6(1_5)27—Aﬁl+2§,1 df)
0

1

1 1
/6 (=024 (96 — 1) ], dé — / 2(-1) 2/ n+(25 1)s ds d§
0 0

+ 1.

Il
'\'>
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For the first term we use integration by parts and obtain with (A1’)

7], = /1 0T AT de| <o,
0 X

Along the lines of (4.33) we deduce from I, the map W, which also satisfies the second part of
(4.70). O

4.7 Error bounds for first-order methods with mild solutions
In this last section we consider the linear version of equation (2.4)
u'(t) = Au(t) + Fu(t), u(0) =up € X, (4.71)

which is discretized by the first-order schemes presented in (3.4) and (3.5). The error analysis is performed

under the following assumption on the linear term F.

Assumption 4.36. The linear operator F': X — X satisfies the bounds
[Fzlly, 1Fzllpay < Lrllzllx,  zeX.
Remark 4.37. In the second-order formulation (2.3), consider a linear operator G satisfying

G:V=V, Gy <Clldlly -

w(2) )

From Theorem 2.17 we immediately obtain a mild solution u € C([0, tend], X) and it holds the varia-

If we define the operator

then F satisfies Assumption 4.36.

tion-of-constants formula

¢
u(t) = ettug + / e=)AFy(s) ds
0

for all ¢ € [0, tena]. We emphasize that the initial value only satisfies ug € X and hence there is no hope
for a classical solution of (4.71). Nevertheless, we are able to prove an error bound of order one under

this regularity. We start with an explicit bound on the norm of the solution .

Lemma 4.38. Let Assumption 4.36 be satisfied. Then the mild solution u € C([0,tend], X) of (4.71)

satisfies the bound

Ju()]|x < ol €7 < Jluoll x €7 tmd = rx .

Proof. We simply compute

t t
||u<t>Xs||e“uo||X+H [ et rusyas| < uall+ [ Le ol ds,

X

and a Gronwall lemma yields the assertion. O
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Let ¢ be a filter of order 1 and define Fu = F®u. We then consider the linear version of equation
(4.1)
W (t) = Au(t) + Fu(t),  a(0)=upe X, (4.72)

and directly obtain the following bound.
Corollary 4.39. Let Assumption 4.36 be satisfied. Then the mild solution u € C([0, tena], X) of (4.72)

satisfies the bound

sup[[at)]ly <rx.
te[ovtend]

Proof. We only use that by (OF1) it holds

|-
X

F H <L
[Fa] < Le lallx
and conclude by the lines of Lemma 4.38. O

In the next step we bound the difference of the original and the averaged solution. The idea is the

same as before, but we need to take care of the lack of regularity when deriving the error terms.

Theorem 4.40. Let Assumption 4.36 be valid and consider the averaged nonlinearity F with a first-order
filter. Then there is a constant Cyy > 0 such that for all 7 >0

||U(t) - a(t)HX < CMJT» 0 <t< tend -

The constant Cy, depends on Lg, ug, tend, the filter functions, and the embedding constant Cepyp, but not

on T.

Proof. We employ the variation-of-constants formula to write

u(t) — (t) = / ot-9a <Fu(s) - ﬁa(s))) ds

0

= /t e(t*S)AF(I — ®)u(s)ds + /75 e(t*S)Aﬁ(u(s) —u(s)) ds (4.73)
0 0

— L(t) + Lu(t).

By (OF1) and Assumption 4.36 the second term in (4.73) is bounded by

t t
nbmh=HAé“Mﬂmgﬁm»®kSLFAnw@—mwuw-
It remains to prove
L)l < Cr, (4.74)

since this bound is sufficient to apply a Gronwall lemma. To bound I; we use the variation-of-constants
formula to obtain
t
L) = / e=IAR(I — ®)e* g ds,
0
t S
+ / IR (1 - @) / e=DAFy(0) db ds,
0 0
=111(t) + L1 2(t)
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For the first term we again use (OF3) and integration by parts to obtain
t
Lia(t) = T/ e(=IAFesA AY(1 A)uyg ds,
0
t
= T([e(t_s)AFeSAﬁ(TA)uo]g-i-/ e=IAAF A Y(T A)ug ds) ,
0

which gives the first part of (4.74). The second part follows by the estimate

t S
(=T / eU=DARY(1 A) / eC=DAAFu(9) dods|| < CT,
0

0 X

11 ,2]

and the assertion is proved. O

In order to stick to the established framework of the preceding sections we formulate the properties

of the two first-order schemes as abstract assumptions.

Assumption 4.41 (Stability). The method applied to (4.72) is stable in the sense that for all v,w € X,
t>0,

Sr(v) = Sr(w) = €™ (v —w) + 77 (v,0),
where J : X x X — X is bounded by
1T (v, w)llx <Cgllv—w|x . (4.75)

As we have already seen for the error bound in the graph norm, the structure of the defect becomes
simpler if one only wants to prove bounds of order 1. We think it is worth mentioning that in comparison

to Assumption 4.27 we now have 67(12) instead of 5,(11) whereas both appeared originally in Assumption 4.20.

Assumption 4.42 (Structure of defects). The defect 6,, defined in (4.14) of a numerical method applied
to the averaged equation (4.72) is of the form

with || Dyl x < CT2, where the constant C > 0 is independent of T and n. In addition, there exists a
linear map W: X — D(A) which satisfies

Wlxex <G, AW xx <G, (4.76)
with a constant C which is independent of T and n such that 6&2) can be written as
5 =W (TA®)4, . (4.77)

Proposition 4.43. Let Assumption 4.36 be satisfied. The exponential Euler method (3.4) and the Lie
splitting (3.5) applied to the averaged equation (4.72) satisfy Assumptions 4.41 and 4.42.

Proof. (a) We first investigate the Lie splitting (3.5). Concerning the stability, we note that Assump-
tion 4.41 is fulfilled with
J(v,w) = eTAﬁ(v —w).
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which clearly satisfies (4.75). By the variation-of-constants formula we expand the defect as

5, =™ (I + Tﬁ)ﬂn — Up+1

= rFu, — T e(lfs)TAFﬂnJrs ds

S

2 /6(178)7Aﬁ6(870)TAﬁ17n+g do ds
0

=71 Fu, — (- S)TAFeSTAu ds—T1

1
0/
/1 /1
0 0
1 s
//e(l_s)TAﬁe(s_”)TAﬁﬂnJra do ds
0

1
_ T/(@TAﬁan _ e(l—s)TAFves‘rA dS _ T2
0

=T /(eTAF - e(l_s)TAFeSTA)q)ﬂn ds+ Dj}. .
0
By (OF2) we have ®u, in D(A) and hence we may differentiate the semigroup in the following
computation

1
-
0
1
/ " (AF — FA)e" 774, do ds + D},

ag

1
/di (er A Felt=74) @, dods + D,

1-s
1
.
0 1-s
1
.
0

= 72W Adu,, + D? + D}

1 1
/ e?TAReI=TAADY,, do ds + T2 / / e’ TAAF = TADY, do ds + D}

1-s 0 1-s

with

11
—//e‘”AFe(l_")TAxdods.

Hence, (4.76) and (4.77) are satisfied by Assumption 4.36. We further set D,, = D} + D? and obtain
the bound || D, ||y < C7? which yields the claim of Assumption 4.42.

(b) We similarly proceed for the exponential Euler method (3.4) and note that Assumption 4.41 is
fulfilled with

J(v,w) = ng(TA)ﬁ(U —w).

which satisfies (4.75). By the variation-of-constants formula we expand the defect as
Sp = €M + 701 (TA) Fllyy, — Tpin
1
e(l_s)TAﬁﬂn ds —T / e(l_S)TAﬁﬂnJrs ds
0

S

1
e(l_s)TAF(I— ”A <I>un ds — 72//e(l_s)TAﬁe(s_U)TAﬁﬂ,Hg do ds
00

/
/

= 12WAdY, + D,
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with
Wz / / seTAFp (st Az do ds .
1-s
As before, (4.76) and (4.77) are satisfied, and it holds || D,y < C72. O

Theorem 4.44. (Global error of the averaged problem) Let Assumption 4.36 be fulfilled. Moreover, let
(un)n be the numerical approximations of a scheme applied to the averaged equation (4.72) that satisfies
Assumptions 4.41 and 4.42. Then there is a constant C, > 0 such that for all 7 >0

||un - a(tn)HX < CeT7 0 < t, =nT < tenda

The constant C,. depends on uq, tend, the radius Lp, the filter functions, and the embedding constant

Cemp, but is independent of T and n.

Proof. We proceed as in the proof of Theorem 4.23 and expand the global error by Assumption 4.41
'evn+1 (n+1)‘rAe 47 Z 6(n j)TAj Z eln— 7 TA5
7=0
Once we established the bound .
H Z e("_j)TAéjHX < Cst (4.78)
j=0

with a constant Cs being independent of 7 and n. The proof is closed by a discrete Gronwall lemma
which then yields

lensilly < 7Csetena.

By Assumption 4.42, the defect is split into two parts, which motivates to write

n—j)T 2 D
Ze( 7) A(; %nJ)rlJré{nJr)l’

where

2 i@ D —i)r
%nJ)rl _Ze(n 7) A(;](, ) Ae(n+)1 :Ze(n NTAD..
=0

Since | Dj||y < C7? and nt < tenq we easily see

Next we consider éfa)_l. Recall F,, from (4.42) and, as in (4.45), we arrive at

], -|Sern], <cr
=0

3 e ITASE) = s eg(em — I,

j=0
n—1 ) 1
+ T(T Z en=a)TAZ (I- e*TA)W@q)(eTA - I)Fj).
T
j=0
We estimate by (4.76) the difference
1
N I R e
T XX XX
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since |p1(2)| <1 for z € iR.
Next we consider (™ — I)F; for j < n. After adding the exact solution we apply the variation-of-

constants formula, which gives
J

|- DE||, - Hki =t + 7)) + Y (@l o+ 7) = )|

k=0

zui/ ARty + 5)ds + (ity1) — o)

X

<tenaLlprx +2rx.
This yields (4.78) and thus the assertion. O
From this we may conclude the final error bound of this section.

Theorem 4.45. Let Assumption 4.36 be fulfilled. Further let (uy,)n be the numerical approximations
of the exponential Euler method (3.4) or the Lie splitting (3.5) applied to the averaged equation (4.72).
Then there is a constant C > 0 such that for all 7 > 0

lun —ultn)| x < CT, 0<t,=n7 <tend-

The constant C' depends on uq, tend, the radius Ly, the filter functions, and the embedding constant Cepp,

but is independent of 7 and n.

Proof. We simply combine Theorem 4.40 and Theorem 4.44 using the triangle inequality. O
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APPENDIX A

Semilinear examples

This appendix is devoted to the verification of the assumptions made in Sections 2.1.1 and 4.2.1. We
show that Example 2.5 with its specification made in Table 4.1 is fully covered by the analysis presented

in Part I. Hence, we check every column of Table 4.1 in the following sections.

A.1 Basic estimates

Throughout we need estimates related to Sobolev spaces and products of functions lying in them. We
collect them in this section. Several times we employ for a bounded Lipschitz domain () # Q C R
d € {1,2,3} the continuous embeddings [1, Theorem 4.12]

HY(Q) — L>(Q), d=1,

HY(Q) = LYQ), d=2, q€cll,o0),
HY(Q) — L5(Q), d=3,
(€2)

(A.1)
H?(Q) = L®(Q), d=2,3.
Throughout, we consider the norms
lall 7 = I1VallZ2
lallz = llallzz + Va7, (A.2)

d
lal%e = llalZe + Va2 + S [100.05,4] 2 -

i,j=1
In the next lemma we collect some estimates that remain valid for the dimensions d = 1,2,3. They

either directly follow from (A.1) or are extensions of the computations in [24, Section 7.4].
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Lemma A.1. Let Q C R? be bounded with d = 1,2,3. Then the following estimates hold for functions

f, g in the respective spaces:

1fglle < CNAl g gl g s (
1fglle < C ALz N9l ae (
gl < CHUFl e gl g2 » (
1fall 2 < Clf gz gl g2 - (

Using the notation of Example 2.5, assume that for 1: (t,z,y) — R all partial derivatives 8°¢, B < a,

exist, are continuous in t and y and bounded in x. Then for p € [2,00) it holds

a=(0,0,0) [t F)ll 2 < C(Ifllp) (A7)
a=(1,0,1) ot ) =¥l Dlle < CUIF e s Ngll o) (18 = s+ 1Lf = gll) (A.8)
a=(0,1,1) 9@ )l < C(IF M gee) 1 (A.9)
a=(1,1,2) [t ) = (s, Dl < C>F g - Mgl =) (18 = sI+11F = gll ) (A.10)
a=(0,2,2) 9t )l a2 < C(If1 ) (A.11)
a=(1,2,3) [t ) = (s Dl < CUIF ez gl =) (1t = sl + 1 = gll =), (A.12)

We further denote the evaluation of a function G at a function ¢: [0,7] — X, where X is some Banach
space by
G(t) = G(t,q(t)), Gi(t) = 0:G(t,y)|y=q()

and for higher derivatives analogously.

A2 H=HYQ)

We start with the first column of Table 4.1 with d = 1 and 2 C R some finite interval. The operator L
is defined on H = H~1(2) by

<Lq7¢>H_1><Hé = <AVq7v¢>L27 qv(b S H(%(Q) )

for some uniformly positive A € L>(Q), i.e., A > ¢ almost everywhere. The additional spaces are given
by
V=L1*Q), D(L)=Hy(Q),

but we need to be careful with the choice of the norms. Usually, H} () is equipped with the inner product
(u,v) g1 = (Vu, Vo) r2 which induces a norm by the Friedrich’s inequality. Further, its dual comes with

the operator norm

[fll - = sup <fau>H*1><Hé- (A.13)

u =1
il

However, we need to work with equivalent norms below. For the nonlinearity g we assume a = (2,0,2)
and the growth bounds
l9(t, 2, )|, |0yt 2, y)| < Ce(1+1yl?)

(A.14)
0y9(t,z,y)| < Cg (1 +yl) -
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For the corrected Lie Splitting (3.14) we assume in addition
|5yyg(t,a},y)| < Og(l + |y‘) . (A.15)
We first consider the operator theoretic assumptions from Section 2.1.1.

Lemma A.2. The operator L: D(L) C H — H is strictly positive and self adjoint with respect to
(s ) r-1,a defined in (A.19). Further, (2.1) and (2.2) hold and the embeddings are compact.

Proof. (a) We first consider wellposedness and the spectral bounds. By the Lax-Milgram Lemma we
obtain for some € > 0 that for any f € H~!(Q) there is a unique solution ¢ € H}(Q2) of the problem
Lg—X¢=f in H Q)

(A.16)
> (AVq, V)2 = Mg, d)r2 = (f ;) -1y for all ¢ € Hy(Q)

for all A with Re A < e. Hence, the spectrum of L is part of the right half plane and for A = 0, we
can define L=1: H=1(Q) — H}(Q) via
(AV(L™f), V)1 = (fr P -1xmy - (A.17)

Let ¢ = L71f € H}(2) be the solution of (A.16), then the boundedness of L™! follows from

—1.112 1 1
1274 |1y = IVallZe < 5(AVG. Vo) 12 = <(f )iy < 5[IVallzz |l

9
such that HL_lfHHé <O la-r

Sl

(b) We now prove that L is self adjoint. To this end we introduce the scalar products

(f.9)a = (AVf,Vg)r2, (A.18)
(f,9)m—a=(L""f, L7 g)a. (A.19)

We prove their equivalence to the standard inner product and then show that L is self adjoint with

respect to (-, ) g-1 A-

(1) Obviously, (A.18) is equivalent to the standard inner product by the properties of A with

2 2 2
5 lalltyy < llala < 1Al lal%

and we have to check that the norm induced by (A.19) is equivalent to (A.13). It holds with the
definition of L' in (A.17) with A =0

[l = sup (fru)grxmp= sup (L7 fiupa < sup  [[L7Hf[| 4 [lulla
llull 1 =1 llull 1 =1 lull =1
0 0 0
12 |7 —
< AL 17 o
and choosing ug = ||lf1f|’;111 L1 f yields
0

luoll gy =1, (f uo)m—1xmy = HL_lin HL_lfH;Iil > 6L o

and hence the equivalence is shown.
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(2) By (A.19) and the definition of L=! in (A.17) we obtain symmetry for f,g € H}(Q) by
<Lf7g>H’1,A = <f7L_1g>A = <L_1gaf>A = <g7f>H*1><Hé = <g?f>L2 )
(fLgy-1a = (L7 f.0)a = (f.9) g xmi ={f,9)r2 -

As in (A.16) we can also solve (il + L)q = f for every f € H~(Q)) and we may conclude

self-adjointness.
(3) By [1, Theorem 6.3] we have the compact embedding H}(2) — L*(Q). Now let || f,]|;. < C.

Using the strictly positive square root of L, and the relations

1220 g1 = N80z = L7420l
we define g, == L™1/2f, with [|gn]o < C. Hence, there is a converging subsequence (gy,); in
L?(Q) and we obtain
1 = Foi =14 = llgms = gnall 2 = 0
for j, k — oo such that also L?(Q) < H~1(f2) is compact. O
We then turn to the assumptions from Section 4.2.1 and verify the necessary Fréchet-differentiability.

Lemma A.3. In the case H = H~1(Q) and the framework recalled above Assumption 4.1 is valid.

Proof. We start with a more general calculation. Since we have the fundamental theorem of calculus for

almost every = € Q we get for functions ¢q,p € V and t,t + s € [0, tgef]

Dg(t»SaQap)(I) = g(t + S5,Z,q +p) - g(t7x7Q) - (8tg(taz7q)5 + ayg(t7x7Q)p)

o oY~ _

L (g(t+os,2,q+ 0op)) — (Qeg(t,z,q)s + Oyg(t,z,q)p) do (A.20)

[Org(t +0s,2,q+ 0op) — Osg(t,x,q)] s + [Oyg(t + 05, 2,9+ op) — Oyg(t,x,q)] pdo

First note that the embedding (A.1) by [1, Result 3.13] also implies the embedding L(2) < H~1(Q).
Hence, we will use the L!-norm instead of the H ~!-norm. For p,q € L?(Q), taking the L!-norm of (A.20)
and recalling G(t, ¢)(z) = g(t,z, ¢(z)) we obtain by Holder’s inequality

1
1Dyt 5,0 9)ll0 < / 18.G (¢t + 05, + op) — BG(t @)l 1 1]
0

+10yG(t + 05,9+ ap) = 0,G(L, )l - [Ipll L2 do

and the growth bounds in (A.14) guarantee by the dominated convergence theorem

1

——— || Dy(t, s,q,p —0, s,p—0.
ST+ ol e ot @2l

This yields the Fréchet derivative for h € R and p € V

Ja(t,q) (h> = 0:G(t,q)h + 0,G(t,q)p (A.21)

p

and by the same computation as above we check that it is continuous in £([0, taer] x L*(Q), H~1(Q)). O
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In the next lemma we consider the differentiability of the right-hand side evaluated at a smooth

function.
Lemma A.4. In the case H = H~Y(Q) and the framework recalled above Assumption 4.2 is valid.
Proof. (A1) For Jg(t,q) defined in (A.21) we compute

Do (t,s) = 1(G(t+5) = G1)) ~ Ja(t,qlt)) (qi t)>

21 (Gt +09)) - Jalta(®) (42)) do (A22)

o O~

Gi(t+0s) — Gi(t) + Gyt + 0s)d (t + 05) — Gy(t)q' (t) do

For ¢ € C([0,T], H*(Q)) N C1([0,T], L*(Q)) we get
< / Hét(t +os) — ét(t)HL2 + Héy(t +08)q (t +0s8) — @y(t)q'(t)‘ do
0

|Pett. .

which goes to zero for s — 0 by t — G.(t) € C([0,T], L=(R)) for z € {t,y} due to (A.1). By the same

argument we get the continuity of the derivative.

(A2) To shorten notation, we define for h € Rand pe V

~

D2(t) = Gu(t) + Gy (t) (g (t) + p) + Gy ()’ (t) - p (A.23)

5 (JG(t+57Q(t+ 5)) (Z) —Ja(t,q(t)) <2>> - D (1)

41 (Jg(t +0s,q(t + 0s)) (Z) - D?;@)) do (A.24)

and compute

D%(t+os) — D(t)do .

S

Forp € L2, h € Rand ¢ € C([0,T], H ()N C([0,T], L*(Q) we get ¢'p € C([0,T], L*(Q)) and hence

1 1
H/ﬁé(wras)ff)é(t)da’ﬁ g/Hétt(tJrcrs)f@tt(t)‘Ll
0 0

|Gt + 05) (ha' (¢ + 05) + p) = Guy(8) (h (1) + )|

L1

+ Héyy(t +08)¢ (t+0s) p— éyy(t)q/(t) pHLl do .

Since t — G.(t) € C([0,T],L>(R)) holds for z € {tt,ty,yy}, the expression tends to 0 uniformly in
h,p — 0. O

In the final lemma we consider different bounds of the nonlinearity.
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Lemma A.5. In the case H = H=1(Q) and the framework recalled above Assumption 4.4 is valid.

Proof. (A3) For q € HY(Q), t € [0, taef] we get by (A.14) and (A.3) the estimate
IGt @2 <C 1+ ¢ ) < Clallg) -

(Ada) For q,p € L*(Q), t,s € [0, tqer] we get by (A.14) and Hoélder’s inequality

HJ(;(t q) ( ) H = [10:G(t, q)s + 0:G(t, q)pl 11

< C (14 ||2||,.) sl + C (1 + llall =) Ipll 12
< C(llallz2) (sl + lIpll =) -

(A4b) For g € HY(Q), p € L%(Q), t, 5 € [0,%aer] we get by (A.14), (A.3), (A.7), and (A.1)

HJG(t 9 ( ) H = |0;G(t,q)s + 0,G(t,q)p||,

< C(1+]|a*]| ) Isl + C (llall o) D]l 2
< C(llallm) (sl + 1pll =) -

(A-CLS-1) For p; € L?(Q), i = 1,2, ¢ € HZ(Q) and t € [0,tqef] we obtain by (A.1) and the Holder’s
inequality and (A.15)

| att.p) = Ja(t ) (2) | = l@Gp) - 0,G(t.p2)al .

< C(llgll 1) 10,G(t,p1) — 0y G(t, p2)ll 11
< C(llgllg) ( s 10y, G(t, sp1 4+ (1 — $)p2) |l 12) Ip1 — p2ll 2
se|0,

C(llgll gz s Ipall 2 s lIp2ll2) [lp1 = pall 2 -

(A-CLS-2) For p;,q € H}(Q), i = 1,2, and t € [0, tgef] we obtain by (A.1)

| (Tt 1) = Jo(t,p2) (2) | = @G p0) = 0,60t ) .

< C(llgll L) 10, G(E, pr) — 9y G(E, p2)ll 2
< C(llallg) ( sup 104y G(t, sp1 + (L= s)p2)ll =) 1 — p2ll g

s€|0,

< C(lallgs Pl s P2l ) lor = poll g - H

A3 H=L%Q)

Next, we consider the second column of Table 4.1. For d = 1,2, 3 and a convex Lipschitz domain  C R?,
the operator L is defined on H = L?(Q)) by

Lq = —div (AVq)
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for some symmetric, uniformly positive matrix A € W1>°(Q)?*¢ with lower bound § > 0 and the

additional spaces are given by
V=H(Q), DL)=H*(Q)NHQ).
with their standard norms. For the nonlinearity g we assume « = (2,1, 3) and the growth bounds

lg(t, z, )], [0eg(t, 2, )| < Ce(L+[y|7),

) (A.25)
|9yg(t, 2, y)] < Ce(1+ [y ™).
and for the corrected Lie Splitting (3.14) we assume in addition
1Oyyg(t, 2, y)] < Co(1+[yI"™7) . (A.26)

For d = 2 we may choose v > 1 arbitrarily large and for d = 3 we need v < 3. In the case d = 1, we note
that (A.25) and (A.26) are not necessary.

We first consider the operator theoretic assumptions from Section 2.1.1.

Lemma A.6. The operator L: D(L) C H — H is positive and self adjoint. Further, (2.1) and (2.2) hold

and the embeddings are compact.

Proof. (a) We first consider wellposedness and the spectral bounds. We compute as in (A.16)
Lg—X=f inL*(Q) < (AVq, V)2 — Mg, d)r> = (f, )2 Vo € Hy(Q) (A.27)

and obtain by the Lax-Milgram Lemma for some ¢ > 0 that there is a unique solution ¢ € H(Q) for
all A with Re A < e. By the convexity of  the result [32, Theorem 3.2.1.2] further yields ¢ € H?(2).
Hence, the spectrum of L is part of the right half plane.

(b) By [1, Theorem 6.3] we have the compact embeddings

H?*(Q) — HY(Q) — L*(Q).

(c) We finally prove that L is self adjoint on the L2-scalar product. Symmetry directly follows from
(A.27) as well as the solvability of (il + L)g = f in L?(Q2) which gives the assertion. O

We now turn to the assumptions made in Section 4.2.1 and verify the necessary Fréchet-differentiability.
Lemma A.7. In the case H = L*(Q) and the framework recalled above Assumption 4.1 is valid.
Proof. We only prove the case d = 2 and d = 3, as the case d = 1 is even easier. By the choice of v, for

p,q € HY(Q) — L*(Q), taking the L?-norm of (A.20) we obtain for p = % with Holder’s inequality

1
1Dyt 5, 0,0) 2 < / 10:G (¢ + 05,0+ 0p) — DGt 9)l| ]
0

+10yG(t +0s,q+ap) — 0,G(t,q)| 1, [Ipll 2+ dor-
By the growth bounds in (A.25) we estimate with (A.1)

10:G(t,q)ll7= < C(1+ Nlall7%) < C(lallg) .
10,G(t. )5, < C(1+ lall32,) < Cllallg) .
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which leads to convergence of

1

——— || D t757qap %07 S,p%O,
ST e Dot o

by the standard arguments as above. O

In the next lemma we consider the differentiability of the right-hand side evaluated at a smooth

function.
Lemma A.8. In the case H = L*(Q) and the framework recalled above Assumption 4.2 is valid.
Proof. (A1) For g € C([0,T], H*(£2)) N C*([0,T], H'(R2)) we get by (A.1) and (A.3)

g € C([0,T],L*(Q), VqeC(0,T],H' (), Vqgq €C([0,T],L*(Q), Vq' €C([0,T],L*(Q))

and hence for D¢ defined in (A.22)

~

Hﬁg(t,s)HHl < @t(t +os)— ét(t)HHl + Héy(t +08)q (t+ 0s) — Gy(t)d'(t) do

HH1

IN

o S~ _

Grolt +08) — @m(t)‘

L2

CAv'ty(t +08)Vq(t+os) — éty (t)Vq(t)‘

L2

Gyt +08)q' (t + 05) — ny(t)q'(t)’

L2

D)

w(t+08)Va(t +05) ¢ (t+05) — Gyy () Va(?) q’(t)‘

L2

)

+ o+ 4+ o+

do
L2

Gyt + o)V (t+05) — Gy ()74 (1)

goes to zero for s — 0 since t — G, (t) € C([0,T], L*°(2)) holds for z € {tz, ty, zy,yy,y}.

(A2) For p € HY(Q), h € R and ¢ € C([0,T], H*(Q)) N C1([0,T], H'(2)) we get ¢’ p € C([0,T], L*(Q))
and hence for D2 defined in (A.23)

1

L2 S / étt(t—f—gs)h—étt(t)hHL2
0

+[|Guut + 05) (ha' ¢+ 75) + p) = Gy (1) (n (1) + p)

1
H /ﬁg(t +o5) — D(t) do]
0

L2

|Gt + ) (¢ + 75) p = Gy (04 (1) D)

Lo do

which goes to zero for s — 0 since t — G, (t) € C([0,T], L>(£2)) holds for z € {tt, ty, yy}. O
In the final lemma of this section we consider different bounds of the nonlinearity.

Lemma A.9. In the case H = L*(Q) and the framework recalled above Assumption 4.4 is valid.

Proof. (A3) For q € H?%(Q), t € [0,t4cf] we get by (A.9)

lg(t Dl e < C (gl o) -
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(Ada) For ¢,p € H(Q) = L?¥ and v from (A.25) with p = % and t,s € [0,tqef] we get by Holder’s

inequality and (A.1)

|Gt @)s + 0,G(t a)pl s < € (L lal"l2) Isl +C (1 la™™ || ) Il o

< C(llgllg) Asl + lIpll ) -
(A4b) For q € H?3(Q), p € H*(Q) and t, s € [0, taef] we get by (A.5) and (A.11)
10:G(t, q)s + 0, G(t, )pll g < C (llall =) Is| + CllOy Gt @)l g2 Pl o

< Cllgllg=) (sl + ol o) -

(A-CLS-1) For p; € H'(Q) < L>(Q), i = 1,2, and ~ from (A.25) with p = 24, ¢ € H*(Q) and
t € [0,t4ef] we obtain by the Holder’s inequality and (A.26)

1(0,G(t.p1) = 0,G(t.p2))al| > < C(llallg2) 10, G (t.p1) — 0, G (t,p2)l 2
< C(llallg) ( sup 18y, G(t, sp1 + (1 = s)p2)ll ) [lp1 — p2ll 2

se

< Cllallgz s el s lp2ll o) lpy = P2l g1 -
(A-CLS-2) For p;,q € H?(Q), i = 1,2, t € [0,tqe] We obtain by (A.5), (A.10) and (A.9)

1(0,G(t,p1) = 3,G(t,p2))al| yr < C (lldll =) 104G (¢, p1) — Oy G (t, p2) | 1
C (Il g=) (.Zl[tpl] 10y G(t, sp1 + (1= s)p2)ll 1) Ip1 — 2l g2

IN

< Clgllgz s llprll = p2ll =) - [lp1 = P2ll = - o

A4 H=HYQ)

For the last column of Table 4.1 let d = 1,2,3 and consider a convex domain Q C R? with boundary of
class C3. The operator L is defined on H = H{(£2), equipped with (-,-)a defined in (A.18), by

Lg=— div(AVq)
for some A € CHH(Q)¥*d N W22(Q)¥* or A € H*(2)9*? and the additional spaces are given by
V=H*(Q)NH(Q), DL)={peH(Q)NH;(Q)|Lpe Hy(Q)}.

We note that for the nonlinearity g we assume o = (3,2, 3), but no bounds of the form (A.14) or (A.25)

are necessary. We first consider the operator theoretic assumptions from Section 2.1.1.

Lemma A.10. The operator L: D(L) C H — H is positive and self adjoint. Further, (2.1) and (2.2)

hold and the embeddings are compact.

Proof. (a) We first consider wellposedness and the spectral bounds. We want to solve the equation

Lg—Mg=f € Hi(Q). (A.28)
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Let ¢ € C2°(Q) and take the inner product to get

(Lg, )a — Mq, 9)a = (f,9)a <= (-AVdivAVq, V)2 — MAVq, V)2 = (f,d)a

(A.29)
< (divAVq,divAV¢)r2 — AM(AVq, V)2 = (f,d)a -

This equation remains valid for all ¢ € H2(2) N H(Q). By [32, Theorem 3.1.3.1] there is some € > 0

such that the bilinear form
a: H*(Q)NHY(Q) x H*(Q) N Hi(Q) = R, a(¢,v) = (divAVe,div AVY) 12 — N(AV, Vib) 2

is bounded and coercive for all Re A > € and, hence, by Lax-Milgram we obtain the unique solution
q € H?(Q)NH(Q) of (A.28) in L?(Q). With [32, Theorem 2.5.1.1] the smoothness of the boundary
and the coefficients A further imply ¢ € H3(Q), i.e., ¢ € D(L).

(b) By [1, Theorem 6.3] we have the compact embeddings

H3(Q) — H*(Q) — H'(Q).

(c) We finally prove that L is self adjoint in (H& (), (-, A). The symmetry directly follows from (A.29)
as well as the solvability of (£il + L)g = f in Hg () which gives the assertion. O

We now turn to the assumptions made in Section 4.2.1 and verify the necessary Fréchet-differentiability.
Lemma A.11. In the case H = H}(Q) and the framework recalled above Assumption 4.1 is valid.

Proof. For p,q € H?(Q) we obtain by (A.5) and (A.10)

1
1Dyt 5,0, D)1 < / 10,6t + 05,9 + 0p) — Gt 0l ||
0

+10,G(t + 0s,q+ op) — 0yG(t, @) || g IPll = do
< C(llglgz s ol =) (sl + 12l 1) Is]
+C(llgll g2 > 1P g=2) (sl + ol g72) Ioll = dor,

which leads to convergence of

1

— |ID,(t,s,q, =0, sp—0. 0

In the next lemma we consider the differentiability of the right-hand side evaluated at a smooth

function.
Lemma A.12. In the case H = H}(Q) and the framework recalled above Assumption 4.2 is valid.

Proof. (A1) For q € C([0,T], H3(Q)) N C*([0,T], H2()) and D¢ defined in (A.22) we get
1
|Date.)] . < [[Gt+o9)~ Gutt)], + |Gote+ os)a' e+ rs) = Gytora
0

which goes to zero for s — 0 by t — G.(t) € C([0,T), H*(R)) for z € {t,y}. By the same argument we

get the continuity of the derivative.
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(A2) For p € H?(Q) and q € C([0,T], H3(Q)) N CL([0,T], H*(Q)) we get ¢’ p € C([0,T], H*(2)) and
hence for D defined in (A.23)

H1

1
/ (t+os) DG d(IHH1 /HGtt (t+os) — Gtt( )H
0

+||Gey(t + 05) (g (¢ + 75) +p) = oy (1) (' (8) + )|

H1

~

+Guntt-+ et 70) p= G 0) 8], o

which goes to zero for s — 0 by ¢ — G, (t) € C([0,T], H2(Q)) for z € {tt,ty, yy}. O
In the final lemma we consider different bounds of the nonlinearity.
Lemma A.13. In the case H = H}(Q) and the framework recalled above Assumption 4.4 is valid.

Proof. (A3) For g € H3(Q), t € [0, tgef] we get by (A.11)
lg@ )2 < C(lallp=) -

(Ada) For ¢,p € H?(Q), t,s € [0, tacf] we get by (A.5), (A.9), and (A.11)

10:G(t,9)s + 9y G({t, pll g < C(llgll =) [s] + C N0y G @)l o [12]] 2
< C(llgllg=) (sl + lIpll =) -

(A4b) For q € H3(Q), p € H%(Q), t, s € [0,tqer]) we get by (A.6) and (A.11)
18:G(t, a)s + 0y G(t, @)pll g2 < C (llall =) (I + 1Pl =) -
(A-CLS-1) For p; € H%(Q), i =1,2, ¢ € H3(Q) and t € [0, tqer] we obtain by (A.5), (A.9) and (A.10)

(8, G (t,p1) — 8,G(t,p2)) 4| » < C (gl =) 18, G(E, p1) — 9y G (t, p2) |l 11
< C(lgll =) ( w 10y, G(t, sp1 + (1 — $)p2) || 1) [IP1 — D2l 112
se|0,

< C(lall gz 1Pl g2 5 P2l g2) - P2 = D2l g2 -
(A-CLS-2) For p;,q € H3(Q), i = 1,2, t € [0,%qer) We obtain by (A.5), (A.9) and (A.12)

1(0,G(t.p1) = 0,G(t.p2)) | 2 < C (llall =) 19, G (t,p1) — 0y Gt p2)ll 2
< C(ldllgz s llpall g 5 Ip2ll =) - 1Py = P2ll g - O
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CHAPTER D

Analytical framework - quasilinear problems

In this chapter we introduce the analytical framework necessary to treat quasilinear evolution equations
of the form

A(u(t)u'(t) = Au(t) + g(t, u(t)), u(0) = up. (5.1)
We recall the results from [61], explain the examples which fit into the framework and extend the well-

posedness result from the literature. We introduce the three nested Hilbert spaces
Z =Y =X

which are continuously and densely embedded. The space Y is an interpolation space between Z and
X, see [55] for details on interpolation spaces. The linear operator A is skew adjoint on D(A) where
Y < D(A) — X with

Alxcy < axy, |Ally 7z <avz,
holds. We reformulate (5.1) as
u'(t) = Au(t))u(t) + f(t, u(t)) (5.2)
where we use the notation
Aw)=A, =A"(wA,  flt,u)=A""(u)g(tu). (5.3)

The situation of semilinear problems is recovered for constant A such that this framework extends the
one of Chapter 2. Before going into details of the framework, we discuss the examples which are covered

by the presented error analysis.

5.1 Prototypical examples

The two classes of examples are the quasilinear wave equation on a bounded domain and the Maxwell’s
equations on a domain or the full space. We discuss these examples separately and prove the assumptions

in Appendix B.
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5.1.1 Wave equation

Consider the quasilinear wave equation from [18] on a bounded domain Q@ C R? d = 1,2,3, with a
C3-boundary 0 of the form

Auq(t) + 0u K (q(t)) = Aq(t) +r(t,q(t),q' (1), nQ, >0,
q(t) =0, ond, t>0

(5.4)

with

K € C°(R), 1+ K'(0)>0, reC*RxQxRxR), (5.5)
and 7(t,-,0,0) = 0 on 9N for ¢ > 0. We note that in [18] the term f was not present, but is covered by
our extension of the wellposedness result. This equation fits into the framework of (5.1) by rewriting it

in first-order with u = (¢,¢ )T and the operators

1 0 0 I 0
A= <0 1+K’(q)>’ 4= (A 0)’ ot = <—K”(61)(q’)2 +r(t7q7q’)> - 09

The Hilbert spaces in this example are
X = H}(Q) x L*(Q), Y = (H*(Q) N H(Q)) x Hy (), (5.7)
Z={qe H* () NH{(Q): Ag € H)(Q)} x (H*(Q) N H(Q)).
An important step throughout the wellposedness theory and error analysis is to ensure that the
operator A is invertible. This was used above to rewrite (5.1) into the formulation (5.2). In addition, we
note that the equation (5.1) degenerates in the case that A is not invertible and the whole theory is not

applicable.

In the model above, a typical choice is the Kerr-type nonlinearity
K(z) =x2*, x€R, (5.8)
see for example [12, 59, 64]. In this case, one needs to ensure that for the solution ¢ it holds
1+ K'(¢)=1+3x¢*>>0, (5.9)

which is always satisfied for x > 0. Since we consider d < 3, there is a continuous embedding H?(Q) —

L>(Q) with constant Cemp, and we may estimate

Hq”Loo < Cemb Hq||H2 < Cemb ||u||y .

Hence, we can guarantee (5.9) also for x < 0 if we control ||ul|y, by some radius R satisfying

9 1
ST

This radius R then ensures that equation (5.1) does not degenerate, and we will use it for the wellposed-
ness and the error analysis in this part of the thesis. From now on we consider R as a given quantity of
the problem that might have an a priori bound as in the case x < 0.

Further, we need another radius r with
[ull z <7,

to obtain uniform bounds in the later appearing constants. However, this parameter can be chosen

arbitrarily.
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5.1.2 Maxwell’s equations

Another example are the quasilinear Maxwell’s equations. They were for example considered in [61]
where a detailed framework is provided and most of the assumption made in this section are verified.

This framework was amended in [41]. The Maxwell’s equations are given by the system of evolution

equations
0D(t) =curl H(t) —o(E(t))E(t), inQ, t>0,
0¢B(t) = — curl E(t), inQ, t>0,
( B(t) (t) (5.10)
divD(t) =0, inQ, t>0,
div B(t) = 0, inQ, t>0,

with the nonlinear material laws
D=FE+ P(E), B=H+ M(H).

This equation fits in the framework of (5.1) by rewriting it in first order with v = (E, H )T and the

operators

[T+ P(E) 0 _ 0 curl ) — —o(E)E
A(u)—< 0 I+M/(H)>, A= (_Cuﬂ . ) g(t, )_< 0 ) . (5.11)

For the coefficients we assume
o€ CHR3,R3?), P,M e C*(R3 R>3), (5.12)

where P’'(z) and M'(x) are symmetric for all z € Q. Further, I + P’(0) and I + M’(0) are assumed to

be positive definite. The most prominent example is again the Kerr-type nonlinearity
P(E)=x|B’E, x€R, M=0,

see for example [2, 12, 64].

On the full space For ) = R? we use the Hilbert spaces
X = L*(R?)S, Y = H*(R?)S, Z = H3R?*)%. (5.13)

By the embedding H?(R3)% < L°°(R?)® similar arguments as for the wave equation guarantee that there
is some R > 0 such that I + P’(x) and I + M'(z) are positive definite in a ball By (R). One could also
replace the Hilbert spaces Y and Z by

Y = H*(R?)S, Z = H¥TH(R3)® (5.14)

for s > 2 since also H*(R®)® < L>(R*)5 holds. However, we only consider the choice (5.13) for the

verification of the examples, but we expect that everything can be transferred to the situation (5.14).

On a bounded domain Let Q be a domain with a boundary 99 of class C*. The framework then

also covers homogeneous Dirichlet boundary conditions with the spaces

X =L*R*»5 Y :=H*(Q)°nH;(Q)°, Z ={qe H*(Q)*NH;(Q)®: Ag € H}(Q)?*}?. (5.15)
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5.2 Assumptions

Recall that the radius R < oo is given by the problem, and there might be an a priori bound as in (5.9).
The radius » < oo, however, can always be chosen arbitrarily large. We drop the dependency of the
constants on R and r for the sake of readability, i.e., we always abbreviate C' = C(R, ), where C is any

constant appearing in the following.

Assumption 5.1 (properties of A). The set {A(y): y € By (R)} forms a family of invertible self-adjoint
operators in L(X) such that the ranges Ran(I F A~ (y)A) are dense in X and the inverses A=*(y) also
belong to L(Y). Moreover, for all z € X and y,y € By (R), we have

AW xx < Ax (5.16a)
(2, A(y)z)x > vy lz)l% (5.16b)
[A(y) =A@ xx < Clly —ylly (5.16c¢)

and there are constants x,ly,lz such that for ¢, (E e B:

INNOEFSIO! N T (5.16d)

VW

with the triples
(V,W,B) ¢ {(X, Y, By (R)), (Y,Y, By (R)), (2, 2, Bz(r))} .

As a direct consequence of the previous assumption we obtain with vx from (5.16d) and constants
vy, vy that for ¢ € B it holds:

AT @)y oy <wv,s (5.17)
with the tuples
(v.B) € { (X.By (R)). (V. By (R)). (2,B2(r) } .

In the following we make frequent use of the state dependent inner product

<{L‘7 y>¢ = <A(¢).’IJ, y>X

which is defined for ¢ € By (R) by (5.16a) and (5.16b). We state two important properties which can be
found in the Appendix of [41].

Lemma 5.2 (relation of norms). Let Assumption 5.1 hold.
(a) For ¢ € By(R)
Al < llully < v llull - (5.18)

(b) For ¢,vp € By(R) and 7 >0

lully, < T llully . for ll¢ = lly <7, (5.19)

where k1 = k1 (y) = %I/X L.

With the bounds on A in Assumption 5.1, we establish several properties of the composed differential

operator A in the following lemma.



5.2. Assumptions 89

Lemma 5.3 (properties of Ay). Let Assumption 5.1 hold. Then for ¢ € By (R)

lAgll v,y < vxaxy (5.20a)
and for ¢, € By (R) N Bz (r)
IAglly, , <vyayz, (5.20Db)
Ay = Aplly, z < Lxll¢ =¥l (5.20c)
Ay = Aylly .y < Ly llo =¥y - (5.20d)

Proof. Equation (5.20a) is easily verified by Assumption 5.1 and the other statements are proved in [41,
Lemma 3.6]. O

In the papers of Kato, a key assumption is given by the following commutator condition. It is used
in his proofs for the wellposedness, but is also employed in the error analysis of this thesis. It guarantees
that the quasilinear operator can be lifted to the stronger space Z while only taking a small perturbation,

in form of a bounded linear operator in the space X, into account.

Assumption 5.4 (commutator condition). We assume that there is an continuous isomorphism S: Z —
X such that for z € By (R) N Bz(r) it holds

A =SA.S7'= A, + B(z)

with
I1B()lxex <B-

In order to make the assumptions easily verifiable for the semilinear term, we pose the assumptions

on the original term g in (5.1).

Assumption 5.5 (properties of g). For V € {X,Y,Z} there are constants Ly such that for ¢1,ps €
Bz(r) and t,s € [0,T] it holds

lg(t, 61) — g(s,d2)lly < Lg,v ([t — s+ ll¢1 — ¢2ly,) - (5.21)

From this we can deduce the properties of f which will be the ones used in the wellposedness theory

and the error analysis.

Lemma 5.6 (properties of f). Let Assumptions 5.1 and 5.5 hold.
(a) The Lipschitz bound (5.21) also holds for f with constants Ly .
(b) ForV € {Y,Z} there are constants Cy oo such that for ¢ € Bz(r) and t € [0,T]

1FE )y < Cryioo-

Proof. The properties are simply deduced by combining Assumption 5.1 with the properties (5.16d),
(5.17), and (5.21). O
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Notation
We briefly collect some relevant constant used in the error analysis later and introduce a shorthand
notation. In the following, v > 0 denotes a given parameter, which will be determined later.

ko = (vxAx)Y? > 1 ki = ki(y) = 4 vxtr, (5.22a)

co=|1Sllxz ||5'71HZ%X1€0 >1, c1 = coryayz (5.22b)
We further use for a Hilbert space V and a function v € C([0,T], V)

= t .
ol e = max o(0)ly

5.3 Wellposedness

The aim of this section is to provide a wellposedness result for the equation (5.2). The standard approach
is to use the Banach fixed-point theorem. This can be done by choosing a complete metric space E and

considering for fixed ¢ € E the linear, non-autonomous evolution equation

u'(t) = A((t)u(t) + f(t 6(t))

(5.23)
= Ay (t)u(t) + f4(t)

with initial value u(0) = ug. For this equation, wellposedness and a priori bounds need to be established.
In the next step the solution map

S:p—u=1ug

is studied. Obviously, a fixed point of § is a solution of (5.2). Hence, the main task lies in the construction
of a suitable space F which allows S to be a contractive self-map.

This has been successfully done in [61, Thm. 3.41] for the slightly simpler right-hand side

f(t,0) = A7H(9)Q(d)¢ .

We mention that in [61] the special structure of f was used in order to define the operator A(¢) differently
by
A(9) = A1 D) (A+Q(e))

and to set f in (5.2) to zero. Our contribution is the generalization of this result, and we may apply the
results of [61] by setting @ = 0, but therefore have to treat the inhomogeneous term f with additional
technical effort.

For the fixed-point argument we use the same (complete) metric space as in [61]

E(T,r,y)={¢cC(0,T],2) | loM)lly <R, llo®)llz <7 [dlriporiy) <7} (5.24)

for positive parameters T', R, r,y chosen later, equipped with the metric

d(¢,9) = max [l¢(t) —v(t)[ly -

t€[0,T)

As explained above, we fix a function ¢ € E(T,r,v) and study equation (5.23).
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5.3.1 A priori bounds for the non-autonomous evolution equation

In the following we recall known results for non-autonomous evolution equations since they are needed
for the analysis of (5.23). The first ingredient are so-called evolution families that generalize the concept

of one-parameter semigroups discussed in Chapter 2. They arise in solving the problem
u'(t) = A(t)u(t) (5.25)

where A(t) depends on time. One can show under suitable assumptions on A(¢) that there is a family of

operators U depending on two variables such that u given by
u(t) = U(t, s)ug

is the solution of (5.25) with initial value u(s) = ug. This family of operators is often called evolution
family. For example if A(t) = A is constant, the standard semigroup theory applies and U is simply given
by
Ult,s) =elt=94,

We put this together in the following definition, see, e.g., [49].

Definition 5.7 (evolution family). Let J = [a, b] be an interval and define Ay = {(t,s) € J x J: s < t}.
Further, consider a Hilbert space Y. The family of operators U : Ay — E(Y) is called an evolution
family on Y if it satisfies the following properties fora < s <r <t <b.

(a) Foranyy €Y, the map (t,s) — U(t, s)y is continuous in Y with U(t,t) = I and there are constants

M >1 and w € R such that |U(t, )|y, y < Me*=%) holds.
(b) It holds U(t,s) = U(t,r)U(r,s).

Evolution families are a useful tool in the representation of the solution of non-autonomous evolution

equations. This also applies for equation (5.23) where there is an additional inhomogeneity present.

Theorem 5.8. Let ¢ € E(T,r,7). Then there exists an evolution family Uy on'Y with J = [0,T] such

that (5.23) with initial value uw(0) = ug has a unique solution given by

t
u() U¢t0U0+/U¢th¢ (526)
0

In addition, the evolution family has the following properties:

(a) For any z € Z the following derivatives exist in Y for 0 < s <t <T:

0Us(t, s)z = Ag(t)Ug(t,5)2,

(5.27)
OsUy(t,5)z = —Uy(t, s)Ay(s)z.
(b) The evolution family satisfies for 0 < s <t <T the bounds
Uy(t,s < e TehoBli=s)
1Us(t; s)lly .y < co (5.28)

||U¢(t’ S)||Z<_Z < CoeleekOﬁ(tfs) .

Proof. The representation (5.26) is given in [61, Thm.3.13]. The additional properties are verified in [61,
Thm. 3.35] and in the proof of [61, Thm.3.41] where (5.28) is explicitly stated in [61, (3.10)]. O
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In order to derive the a priori bounds, we decompose the solution by
t
up =Ly + 6y,  Ly(t) =Us(t,0uo,  u(t) = /U¢(t’0)f¢(0’) do,
0

since the bounds on the linear part %4 and the convolution part €y are derived separately. Before we
estimate the two terms, we first guarantee the desired regularity of the solution u4. The following lemma

is the firs step towards this.

Lemma 5.9. Let ¢ € E(T,r,v). Then f, € C([0,T],Z) holds and the maps
Ay — Z, (t,s) — Ugl(t, s)fs(s)
A=Y,  (ts) = Ay(t)Us(t, s)fs(s)

are jointly continuous in both variables.

Proof. By Lemma 5.6 and v € C([0,T], Z) we immediately obtain f, € C([0,T],Z). Since we have a
constant isomorphism S, the second assertion can be deduced from [48, Thm. 6.1] where the continuity
of

Ay — Z, (t,s) — Uyl(t, s)z

for z € Z is shown. From this and the continuity of A4 the last claim is easily derived. O

This immediately implies that a fixed-point of (5.26) is a classical solution of (5.2), and it suffices to

find ug in the metric space F.
Theorem 5.10. Let ug € Z and ¢ € E(T,r,7). Then the function uy defined in (5.26) satisfies
ug € C([0, ], 2) N C([0, T],Y).

Proof. For the linear part .2, we use the differentiability in (5.27) and obtain the same result for %, if
we combine Lemma 5.9 with the proof of [48, Theorem 7.1] replacing the space X by Y. O

We now turn to the a priori bounds. For the linear part %}, they were already derived in [61], and we
only state the bounds. We remark that the constants have been adjusted to the notation in this thesis

and introduce the constants
wa = wa(y) = k1(y) + kopS, v =7(r) = 2r+2cCfy0- (5.29)
Proposition 5.11. For ¢ € E(T,r,v) the following bounds hold:

125 ()[ly < coe Juolly
12 @)l ; < coe*" Juol| ,
KA

1%s = ZLolly.0o < T(cgLy e T) e  |uoll 5 16 = Ylly o -

Lip(Y,[0,T)) < et [uoll;

Proof. The results can be found in the proof of [61, Thm. 3.41] in step 4. O

The a priori estimates for € are derived by similar arguments. We employ the bounds on the evolution

family in Theorem 5.8 and on f given in Lemma 5.6.
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Proposition 5.12. For ¢, € E(T,r,v) the following bounds hold:

1€y < coe”* " TCr 00,
1€l ; < coe”*" TCy 2,50,
[Cg¢} Lip(Y,[0,T1) < (Cocf)ypo + Tch’fyzm)esz ’

165 = Colly.oe < (coTe* Lyy +T?cge" e Ly Cf z.00) 16 = ¢llyo0 -

Proof. (a) We first provide the bounds in Y and Z. By Lemma 5.6 and (5.28) we have

t
HCgtﬁ(t)”Y < /CoeleekOB(t_a)Cf,Y,oo do < COTerTCf,Y,my

)
~+

€60l < [ coeh T Ay 1 o do < T Cy

(e}

(b) The Lipschitz-continuity in Y for 0 < s <t < T is obtained by
t s
150) ~ o6y < || [Uat.orsatordo| |+ [ @Watt.o) ~ Uats.0) su(o) do]
s 0

st
< cpe?TCly o0 |t — 8| + H //A¢(T)U¢(T, o) fe(o)dr daHY
< (coCfyo0 +Te1Cr z00)e* T |t — 5|,
where we used (5.27) in the second step. This implies

[Cg(ﬁ] Lip(Y,[0,T]) < (CoCﬁypo + TClcf7Z700)€w2T .

(c) We finally estimate the Lipschitz constant for the contraction. To this end we compute for ¢, €
E(T,r,y)and 0 <t <T

[,(0) ~ o)l < | /(U¢<t,o>f¢<> U(t,0) o) do]|

| A

t t
| [vstt.o)ato) = suto) do] |+ [Watto) - Uutt. o) futord,
0 0
_ 1 (52

We estimate separately by Lemma 5.6 and (5.28)

E' <coTe? " Lyy ||¢ — Yy oo
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and as in [61, p.75 bottom]

t

¢? = H /(U¢(t70) = Uy(t,0)) fu(0) dJHY

0

= / |(Us(t,0) = Up(t, 0)) fu (o) do

S/ 2,26, T koBt/||A¢ Ap(S)lly 5 dslfy(o)l, do

0
< T2 e Ly Cf 7,00 6 = Ylly oo

and conclude
165 = Cully.oo < (0T Ly + T?c3eM e T Ly C 7.00) |6 = Ylly oo - O

We finally arrive at the a priori bound for the solution u4 by combining the results of Propositions 5.11
and 5.12.

Corollary 5.13. For ¢,v € E(T,r,~) it holds
lus(®)lly < coe> (Jluolly + TCrym0)
o)l 5 < coe”s (Jluol; + TCpz,06)

6] Lipey 0.7 < €167 (lluoll z + TCr.z.00) + coe™" Cry oo

[ug — uplly oo < (Tchyeleesz lluoll; + (coTe* " Lyy + Tt T e 2T Ly O 4 0o)) 6 — Yy oo -

5.3.2 Quasilinear evolution equation

With this preparation we are now in the position to close the proof of the fixed-point argument.

Theorem 5.14. Let Assumptions 5.1, 5.4, and 5.5 be satisfied. For an initial value

luolly < Ro:= =R,  luoll, <roi= 4=,
define the time
In2 R 1
T = min{ 2~ S P } (5.30)
wy  4coCry 0o 4c0Cf 2,00 4co(Lyr + Lyy)

where wo and 7y are given in (5.29). Then there is a unique solution u of (5.2) with
ue C([0,7),2)nCH([0,T],Y),

satisfying
[u®ly <R, fu@)lz <r

on the interval [0, T).
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Proof. With the definition of T\, Ry and 79 we obtain
e T <ew2T < 2, coTCry00 < iR, coTCf 7,00 < i"’a

and hence with Corollary 5.13 directly
[ug (@)l < R,
lug @)z <7,
[ug] Lip(v,o,1]) =7
It remains to prove the contraction bound

s = wplly g < 3 116~ wlly, oo (5.31)

With this one can apply Banach fixed-point theorem and close the proof by the same arguments as in

[61, Thm. 3.41], in particular using Theorem 5.10. We rewrite the last constant of Corollary 5.13
OLip = CoT(Lyek1T (coesz(HuQHZ + TCf,Z,oo)) + eszLﬁy) .
and as above we obtain with the definition of T

Crip <2¢0T(Lyr+Lsy) < 3
such that (5.31) follows. O

One can also obtain additional differentiability of the solution u in the weaker space X if we assume

more differentiability of the data.

Theorem 5.15. Let the assumptions of Theorem 5.14 be satisfied and let u be the solution of (5.2) with
ue C([0,T],Z) N CLY([0,T),Y). Further, assume fory € Y the following differentiability

t=f(tu(t) € C([0,T],X),
t—A(u(t))y € C1([0,T], X).

Then the solution u of (5.2) satisfies in addition
u € C*([0,T],X).

Proof. The assumptions basically guarantee that we may differentiate «’ in X using equation (5.2). O
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CHAPTER 0

Review on time integration of quasilinear evolution equations

In this chapter we give an overview on the results obtained for time integration of quasilinear evolution
equations. We mainly focus on wave-type equation except the Magnus-type integrators which were
analyzed for parabolic problems. The approaches in Section 6.1 and 6.2 are the main motivation for
our methods proposed in the next Chapter. In Section 6.3 we present an alternative approach for the
time integration of quasilinear wave equations by trigonometric integrators and in Section 6.4 we briefly

discuss a numerical comparison of exponential integrators for quasilinear Maxwell’s equations.

6.1 Implicit Runge—Kutta methods for quasilinear hyperbolic

systems

We start with implicit Runge—Kutta methods that were analyzed in the same framework as the analysis
in this part of the thesis. We remark that in Hochbruck, Pazur and Schnaubelt [41, 44] the problem was

of the form

u'(t) = Au(t))u(t), u(0) = wo. (6.1)

We start with explaining the first- and second-order methods that gave rise to the methods proposed

later and afterwards we briefly show how higher-order was achieved.

FEuler method

In [41] problem (6.1) was discretized in time by the Euler method. Applying the well-known implicit
Euler rule (6.1) with the notation of (5.3) results in

Upg1 = Up +TAy,  Ung1, 1 2>0, (6.2)
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where in each step a fully nonlinear problem has to be solved. On can linearize, this resulting in the

so-called semi-implicit Euler method given by
Unt1 = Up + TAy Uny1, 1 >0 (6.3)

Here, in each step only a linear system has to be solved which is computationally far more attractive.
The idea of (6.3) is later employed for the exponential Euler method. Both methods are of order 1 as
can be seen in the following theorems.

In the first one, error bounds in the X-norm are proven under regularity assumptions that follow from

Theorem 5.15

Theorem 6.1 ([41, Thm. 4.3]). Let u be the classical solution of Theorem 5.14 and assume in addition
u” € L3([0,T), X). Further, let u,, be the numerical approzimation obtained from (6.2) or (6.3). Under

certain assumptions on the data there is 79 > 0 such that for all T < 1y it holds

T
1/2
Jutn) = wnll < €7 ([ IO + IO de)
0

with a constant C > 0 independent of T and n.

Under additional assumptions on the data and the regularity of the solution, first-order error bounds

are also shown in the stronger Z-norm.

Theorem 6.2 ([41, Thm. 4.5]). Let u be the classical solution of Theorem 5.14 and assume in addition
Au € L*>([0,T),2) and v',u" € L?([0,T),X). Further, let u, be the numerical approzimation obtain

from (6.2) or (6.3). Under certain assumptions on the data there is 19 > 0 such that for all T < 79 it
holds

T
1/2
Ju(tn) = wall, < O / " O + 1w’ )1 dt)
0

with a constant C > 0 independent of T and n.

Midpoint rule

Next we bring the attention to two second-order methods proposed by Kovdcs and Lubich [53]. In this
work the authors considered equation (5.2) in a slightly different framework. For simplicity, we omit the

additional nonlinearity f and consider only problem (6.1). They consider the implicit midpoint rule
Unt1 = Un + 5A4, (un + un+1) (6.4)
with two different choices of w1, which are given by

Unt1/2 = 5 (Unt1 + Un) n>0, (6.4, FI)
Un+41/2 :un+%(un_un—1)a n>1, Uy/2 = Uo - (6~47 LI)
Similar to (6.2) the method (6.4, FI) is fully nonlinear whereas (6.4, LI) is only linearly implicit as this

was the case in (6.3). The idea of (6.4, LI) is later employed for the exponential midpoint rule. For both

schemes the following error bound was derived.
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Theorem 6.3 ([53, Thm. 3.1]). Let u be a sufficiently regular solution of (5.2) and let u, be the
numerical approxzimation obtain from (6.4, FI) or (6.4, LI). Under certain assumptions on the data there

is 79 > 0 such that for all = < 19 it holds
l|u(tn) — un”z < Cr?

with a constant C > 0 independent of T and n.

Higher-order methods

Even though this thesis is not concerned with methods of order higher than two, we briefly sketch the
results which have their basis in the theory of the preceding two sections. This might be a starting point
for future research.

Despite slightly different analytical frameworks in [41, 53], the papers both considered implicit Runge—
Kutta methods that are coercive [33, Def. IV.14.1] and algebraically stable [11], [33, Def. IV.12.5]. Since
we will not further work with these concepts we only refer to the given literature and state the Gauss
and Radau ITA methods as the main examples, [33, Thm. IV.12.9]. For nodes ¢; € [0, 1], coefficients a;;
and positive weights b; > 0, they are given by

Uni = Ay, Uns, i=1,...,s,

ni

S
Um;:unJrTE aijUnj, i=1,...,s,

j=1
S
Un4+1 = Un + TZ blUnu
i=1
where u,, =~ u(t,) approximates the exact solution w at time ¢, = n7 and the internal stages satisfy
Uni = u(ty, + ¢i7).
In both papers we find results on the convergence of the schemes with stage order g. Without being

precise about assumptions and frameworks for completeness we state the following result which combines

error bounds in different norms.

Theorem 6.4 ([41, Thm. 5.3 & Thm. 6.3],[53, Thm. 4.1]). Let u be a sufficiently reqular solution of

(5.2) and let uy,, be the numerical approximation obtained from a method of type (6.5) with stage order q.

ForV € {X,Y, Z} under certain assumptions on the data there is 79 > 0 such that for all 7 < ¢ it holds
[u(tn) = unlly, < CTIH

with a constant C > 0 independent of T and n.

We remark that under stronger assumptions on the commutator compared to Assumption 5.4, Kovacs
and Lubich also proved an error bound of the classical order p, see [53, Thm. 4.2].

6.2 Magnus-type integrators for quasilinear parabolic problems

The motivation to use exponential integrators for (5.2) comes from the paper [26] by Gonzalez and Thal-

hammer. With the ideas developed by Gonzdlez, Thalhammer and Ostermann [29] for non-autonomous
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parabolic problems, the quasilinear equation
W' (t) = L(u(®)u(t) +0(t),  u(0) =wuo (6.6)

is considered in some Banach space X. For sufficiently regular u the operator L(u) : D — X is of elliptic
type. The main example is given by an elliptic operator with solution dependent coefficients in some LP
space over a domain ).

The method they considered in [26] is constructed in the following way. They freeze the argument of
L in (6.6) at some midpoint Upti1/2 and b at t,, 1/, such that they arrive at a linear equation with a

constant inhomogeneity. The outer stage then simply is the exact solution of this equation. To obtain

T

Uy 41/2 they use an exponential Euler step with stepsize 5 which yields the following method

Un+1/2 = 6T/2Lunun + %@1(%]:4“”){)(@1) , (6 7)
Uiy = e M Uni1/ag, 4 To1(TLu, 1 0)b(tny1/2) -

On expects this method to be of order two, but this is not true in general as can be seen from the theory
and numerical experiments in [26]. In fact, they prove for some interpolation space of X and D(L) that
the method converges with order sightly less than 2 depending on certain parameters, in particular the

exponent p of the LP-space. We state their main theorem in this sloppy way.

Theorem 6.5 ([26, Thm. 5.1]). Let u be a sufficiently regular solution of (6.6) and let u,, be the numerical
approzimation obtained from (6.7). Further, let X® be some interpolation space between D(L) and X .

Under certain assumptions on the data, there is 79 > 0 and € > 0 such that all T < 79 it holds
[u(tn) —unl xs < CT2
with a constant C > 0 independent of T and n.

In [27, 28], Gonzdlez and Thalhammer extended these results to higher order methods and proved

error bounds for a larger class of methods, but we omit the details here.

6.3 Trigonometric integrators for quasilinear wave equations

Gauckler et al. [23] considered a quasilinear wave equation in one space dimension. It is given in the

form
Oq(t) = O2aq(t) — q(t) + ka(q(t))Ozzq(t) + kr(q(t), Oxq(t)) on T =R/(277Z),
with smooth and real-valued functions a,r. Similar to (5.6), the equation is rewritten in first order as

u'(t) = Au(t) + g(t, u(t), Vu(t))

with the positive, self-adjoint operator L = —0,, + I: H**2(T) — H*(T) and

0 I 0
A= , ,u(t), Vu = .
<—L 0) ot (0, ult) (Ha(q)f)qurmr(q,axq))

The basis of the numerical method is the Strang splitting (3.12b) applied to the first-order formulation

with some modified fsimﬂar to what was analyzed in the first part of this thesis. However, the properties
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of the filters proposed in Definition 4.10 are in general not sufficient for quasilinear problems. In the error

analysis, solutions with
ut) = (q(t),q'(t)) € H*(T) x HY(T),  t€[0,1],

are considered. One of the main results of the paper is an error bound for the semi-discretization in time
[23, Thm 3.2] which allows for the estimate

||un - u(tn)”Hz x H1 S CT2 .

In addition, the authors provide for the full discretization with Fourier spectral methods in space [23,
Thm 3.4] a similar error bound.

We emphasize that we are not able to properly compare the trigonometric integrator to our later
proposed methods. This is due to the fact that we work in the framework of Chapter 5, which mainly
treats the dimensions d = 2 and d = 3. Even though, the case d = 1 can also be handled, our results
would be by far not optimal. To give an example, in d = 1 we have the embedding H'(T) < L°(T)
such that the condition (5.9) can already be guaranteed with the H!- instead of the H?-norm.

6.4 Numerical comparison of exponential integrators for quasi-

linear Maxwell’s equations

We conclude this chapter with some comments on the reference by Pototschnig et al. [64]. In this
paper, two exponential integration schemes are proposed for the time integration of quasilinear Maxwell’s
equations of a form closely related to (5.10) and are compared to classical integration schemes. The spatial
discretization is given by a staggered Yee-grid [74] for all methods. However, no error analysis is provided,
and we are not aware of it published elsewhere.

For the classical scheme, the authors choose the Leapfrog method where the nonlinear part is solved by
a Newton solver and the classical Runge-Kutta method (RK4) of classical order 4. This first exponential
integrator they consider is given by a Lawson method which is a fourth-order variant of (3.10). The
underlying Runge-Kutta method is the RK4 from above. The equation is split in a linear and nonlinear
part where the linear part is integrated exactly. Further, the fourth-order exponential Runge-Kutta
method proposed in [42] is used. In comparison to the Lawson method, in each time step the exact
Jacobian is used as linear part which is integrated exactly. The evaluation of the matrix exponential
applied to a vector is approximated by Krylov subspace methods.

In the one-dimensional test case a performance comparison is carried out where the computational
time is plotted against the relative error. The authors observe a very nice behavior of the exponential
methods and can even outperform the classical methods. These numerical findings clearly indicate that
exponential integrators for quasilinear Maxwell’s equations can be very efficient, and it might also be

interesting to compare our newly proposed methods with the ones from [64].
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CHAPTER [

Exponential integrators for quasilinear hyperbolic systems and main results

After the preparations in the previous chapters, we now propose and analyze the exponential integrators
used to solve (5.2). In the first section we derive the new methods, state the main results in Theorem 7.1
and Theorem 7.7, and compare them to the results from Section 6.1. In the following two sections 7.2
and 7.3, we prove the main results and show some numerical experiments in Section 7.4. We conclude
the chapter in Section 7.5 with some further results concerning error bounds in stronger norms. However,
in contrast to the main results discussed in Section 7.1, we have to assume additional regularity of the
solution which cannot be deduced from the wellposedness result in Chapter 5.

Recall the stepsize 7 > 0 and, given a numerical approximation w,, ~ u(t,) and the time ¢,, = nt, we

define the operators

A, = A(un)a f, = f(tnaun) . (71)
Similarly, let u(¢) be the solution of Theorem 5.14 and define Up4, = u(t, + 70). We introduce the
notation N N
£(t) = f(t,u(?)), frro = fltn +70,Untq), (7.2)
A(t) = A(u(?)), Ao = A(Unyo) -

Throughout the chapter the assumptions of Chapter 5 are valid. In particular, we do not state the precise
dependence of the appearing constants on the bounds assumed in Chapter 5. We will only be precise

about the regularity of the solution u and the dependence on 7, n and t,.

7.1 Overview of methods and main results

In this section we propose the new exponential integrators for the time discretization of (5.2) and explain
how they are connected to the methods explained in Chapter 6. The common feature goes back to the
idea explained in Section 6.2 where we freeze the argument of the differential operator and the semilinear
term in (5.2) and use the exact representation of the solution of the resulting linear equation. This results

in the following two methods.
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Exponential Euler method
If we freeze at the last approximation wu,,, we obtain the exponential Euler scheme

TA
Unp =e "Up + TP TAn fn
+1 1(TAR) (7.3)

=u, + 701 (TAR) (Ayu, +£,)
where we used the notation introduced in (7.1). We note that this can also be seen as a variant of (6.3)
where the resolvent (I - TAun)_l is replaced by the exponential. In fact, we see in the latter stability
analysis a very similar behavior of the two methods. For the method (7.3), the first main result in the

second part of this thesis are the following error bounds.

Theorem 7.1. Let u be the solution of (5.1) obtained by Theorem 5.14 and u,, the approximation obtained
from (7.3). If Assumptions 5.1, 5.4, and 5.5 are satisfied, we obtain for V € {X,Y} the error bounds

u(tn) = unlly <tne®"Cyr, 0<nT=t, <T,
with constants Cy,cy > 0 that only depend on ||v'||y, . and ||u| , ., but are independent of 7, n and t,.

We note that compared to Theorem 6.1 for the bound in the X-norm, we also need |[ul|, ., but in

our theorem only |[u/[| i . enters compared to the L?-norm

T

2
/ " (6)|1% dt
0

which shows a slight advantage of the exponential integrator in terms of regularity assumptions.

Exponential midpoint rule

We also study a second-order method, inspired by the exponential ansatz in (6.7). We could directly
study this method in our framework and we expect that second-order would also be achieved. However,
we do not want to compute another exponential Euler step as an inner stage.

So we combine this scheme with the ideas of [53] where the midpoint is computed by (6.4, FI) or
(6.4, LI). Classically, one would like to use the average of w, and wu,y; as in (6.4, FI), but this would
make the method implicit in the unbounded operator and thus computationally very expensive. Hence,
as in (6.4, LI) we replace the average by the extrapolation using the last two approximations and arrive
at the following scheme

Uy/2 = Uo,

Upt1/2 = %(Sun - un—l)a n>1, (74)

Unt1 = €120, + 701 (TApy12) g2,
which we call the exponential midpoint rule.

In order to derive error bounds of second-order for the scheme (7.4), the Lipschitz bounds from the
previous chapter are not sufficient. Indeed, we have to apply Taylor expansion not only to the exact
solution u, but also to the terms on the right-hand side of (5.2). Otherwise, we can only achieve bounds
under the same regularity as in Theorem 6.3 and there is no gain in an exponential method. The
necessary differentiability is formulated as assumptions to ensure readability of the chapter. We provide
the detailed computations to verify the assumptions in Appendix B. We begin with the differentiability

of the semilinear term g.
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Assumption 7.2 (additional properties of g). Let u € C1([0,T],Y)NC([0,T), Z) and consider the map
t—g(t) = g(t,u(t)). (7.5)

Then there is a constant Cy y oo with

(a) t—g(t) € CH([0,T],Y), I8 ®lly < Cg.v,00,

and, if in addition, u € C*([0,T],X) holds, then there is Cy» x 00 Such that
(b) t—g(t) € C*([0,T], X), 18" ()l x < Cgr,x,00;

with constants only depending on |[u"{| x o, W]y o0s U/l 7 o0

Whereas similar conditions to those in Assumption 7.2 are known from the analysis of semilinear
evolution equations, we need an additional assumption in order to treat the differential operator and the

composition of A=t and g.

Assumption 7.3 (additional properties of A). Let u € C([0,T],Y)NC([0,T],Z) and consider the map

tes A7) = A (u(t)).

ForV e{X,Y} and v € V it holds

(a) t— A~L(t)yw € C([0,T),V), 1A ®),y <Crv,
and, if in addition, u € C?([0,T], X), it further holds for y € Y
(b) t = AT )y € C2(0,7],X), (A7) (0[5 y < Cxv,

with constants Cx x,Cxy,Cyy only depending on ||u”||X’oo, ||u’||Y700, ||uHZ700.

With the two preceding assumptions, we can conclude differentiability of the right-hand side in (5.2).

We first consider the semilinear term f.

Lemma 7.4. Let u € C*([0,T],X)NCY([0,T],Y)NC([0,T],Z) and consider the map

o~

£ B(t) = f(t () -

If Assumptions 7.2 and 7.3 hold, then T satisfies Assumption 7.2 with constants Ctrv,00,Crrr X 00 ONLY

depending on ||u"|| x o, ¢/ lly 00r 4]l 2,00-

Proof. The assertion directly follows from the product rule. Note however, that part (a) holds already
true for u € C1([0,T],Y) N C([0,T], Z), since we only employ part (a) of Assumptions 7.2 and 7.3. O

By the structure of A (u), we directly conclude the following lemma which gives differentiability of the

differential operator evaluated at a smooth function.

Lemma 7.5. Let u € C1([0,7],Y)NC([0,T],Z) and consider the map
t Al =A"(HA.

If Assumption 5.1 and 7.3 are satisfied, then for y € Y and z € Z it holds
(a) > A(t)y is CH([0,T],X),  [|A'(®)] ¢y < Chy.
(b) t— A(t)z is C1([0,T],Y), A1)y, , < Oty

and, if in addition, u € C*([0,T], X), it further holds
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(c) t— A(t)z is C2([0,T], X), A1) .y < C12.

with constants C4y, Ot ,, C4, only depending on "]l x oos N2

Y, 00’ ||UHZ,00
We remark that Lemmas 7.4 and 7.5 are a key ingredient in the error analysis. Additionally, they

allow us to derive further regularity of the solution wu.

Corollary 7.6. Let u € C1([0,T],Y)NC([0,T],Z) be the solution obtained in Theorem 5.14. If Assump-
tions 7.2 (a) and 7.3 (a) hold, then

ue C*((0,7), X) n ([0, 7], Y) N C([0,T], 2).
Proof. This is a direct consequence of Theorem 5.15 using Lemmas 7.4 and 7.5 (a). O

We are almost in the position to state the error bound for the exponential midpoint rule. However,
we need to take care of the bounds on the extrapolated approximations wu,, /2. Since this is not a convex
combination of previous approximation, the bounds of wu,, and u,_1 do not hold. To overcome this, we
choose some radius R > R such that Assumption 5.1 on A(y) is still valid. If we can guarantee that the
numerical approximations stay in the slightly larger ball By(ﬁ), the scheme remains stable. This enters

later as a mild stepsize restriction 7 < 7y with
% <R-R, (7.6)

where 7 is chosen below in (7.8). Due to similar arguments we also have to replace the radius r by 7 = 2r.
All assumptions in Chapter 5 have been posed for the radii R and r. For the analysis of the exponential
midpoint rule, we have to assume that they also hold for the new radii R and 7. We denote the constants

by the same name but with an additional hat, e.g., we replace
Crxoo =Crxoo(Rr) by Crxoo=Crxoo(RT).

Without loss of generality we may also assume a monotone growth of the constants in the radii such that,

e.g., Crxoo < CA'f,XVOO holds. Due to the possibly larger constants we can only simulate up to the time

~ In2
T =minf or, 20 T (77)
w2 4COCf7y7oo 4COCf,Z,oo

where

. NN ~_ ~ A
Wo = 2k1(7) + ko, V= +260Cf .y 00 - (7.8)
0
If we compare (7.7) to the end time T given in (5.30), then in general the three terms appearing here
are smaller than the corresponding ones in (5.30) and thus also their minimum is smaller. However, we
do not know in general how the fourth term in (5.30) relates to these quantities and hence, in general we
can not decide which time is larger. Hence, we prove the following error bound in the X- and Y-norm

on the intersection of both time intervals.

Theorem 7.7. Let u be the solution of (5.1) obtained by Corollary 7.6 and u,, the approzimation obtained
from (7.4). If Assumptions 5.1, 5.4, and 5.5, are satisfied, and in addition Assumptions 7.2 and 7.3 hold

true, and 1o is given by (7.6), then for all 7 < 1y the error is bounded by
u(tn) = unllxc + 7 [[u(tn) = tnlly < tae"C7%, 0 <nr=t, < min{T, Tia},

with constants C,c > 0 that only depend on [|u"||x o, [[W[ly oo, [[ull 5 o, but are independent of T, n and
th.
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For the second-order error bound in the X-norm in Theorem 6.4, see [41, Thm. 5.3] for the precise

statement, a bound on
T
J 14w O + 1 @) a
0

is required. This is, roughly speaking, one scale of regularity more than used in the above Theorem 7.7.

7.2 Error analysis of the exponential Euler method

This section is devoted to the proof of Theorem 7.1 and it is divided into three steps. We first establish
stability of the numerical approximations in the stronger Y- and Z-norms in order to use the numerical
flow for the error propagation. The analysis closely follows [41]. In the next step, we derive an error
recursion for the global error and prove bounds on the defect. Lastly, we solve the error recursion and

conclude a bound on the global error.

7.2.1 Stability

The first observation is a variant of [41, Lemma 3.7]. In this lemma we use a space that contains all

numerical approximations. For N € N and £ > 0 we define the space

E(N,R,r,&) = {6 =(do,...,on) € Z" |
”QS/C”Y <R, ||¢k||z <r, k=0,...,N, (7'9)

||¢k_¢k71||Y§£a k:]-a"'vN}v

which can be seen as a discrete analogue of the space (5.24). It is constructed in such a way that starting
with approximations of this space for some N > 1, and inserting them in the numerical scheme, yields
that the following approximation, say ¢n41, together with the preceding approximations then lies in
E (N + 1, R, f). The proof is done by induction in Lemma 7.11 and needs the following auxiliary

results.

Lemma 7.8. Let Assumptions 5.1 and 5.4 hold. Further, let ¢ = (¢o, .. .,qu) € E(N, R,r, T’}/) and
0<j<k<N forjkeN. Then:

GTA"’k e7'A¢k_1 o eTAd,j S koewl(k7j+1)‘r’

XX

TA TAg, TAg. wa(k—j+1)7
AT AN T (k=17

< coe
Y+Y
eTA‘l’k eTA¢k—1 o e‘rA¢j S Coewz(kfjJrl)T
Z+—Z

)

with w1 = w1 (y) = k1(7y) and ws given in (5.29).

Proof. The proof can be found the in Appendix of [41]. However, since we need an extension of this
result, we give the proof in detail here. In a first step we prove the bound in the X-norm and then adapt
it to the Z-norm. The last bound is then obtained by interpolation and ko < ¢y due to (5.22).
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(a) Let z € X be arbitrary. By Assumption 5.1 we have that A4 generates a Cop-group with HetA¢xH¢ =
[z]ly- Using this with (5.18) and (5.19), we compute

eTAor Aok ...eTA‘%'xH < 1/}(/2 ‘
=

12
Y ‘

Aok ™A1 | T x‘

Pk

e Aoio1 | A, x‘

[o38
e Aoio1 | A, x‘

IN

1/2 ki1
Z/X€

Pr—1

IN

IN

vy 2T o],
< ko CI

by the definition of kg in (5.22a), which gives the assertion.
(b) Let z € Z be arbitrary. By Assumption 5.4 we obtain for

A5, = SA4,S7 = Ay, + B(¢r),  |IB(d)zl,, < kBl

that the semigroups satisfies He"‘Aga,‘H(ﬁ < kot ||l 4 From this we conclude

e [ P W SN
z z
S s
< HS_luXeZ V;(/2 ‘ eTAik eTAd’k—l .“eTAd)j Sx‘
Pk
S s
< HS*lHXeZ V;(/Zekoﬂq— eTAd’k—l '“eTAd)j S )
k
S S
<7 v 2elatkoB)T || TGy TR
- H ||X(—Z X o
<...
<157 g hoe IS
S Coew2(k7j+1)r ||$“X 7
by the definition of ¢g in (5.22b) and of ws in (5.29). L

Remark 7.9. From the proof we can see that in the X -norm one could replace k—j+1 by k—j, but this
is not possible in the Z-norm. However, we cannot gain anything from this in the latter error analysis,
and we hence stay with this suboptimal bound for the sake of consistency with the error bounds in the

stronger norms.

Corollary 7.10. The bounds in Lemma 7.8 hold true, if we replace e™ ¢ by 01(TAg,) for some
¢ e {0,...,N}.

Proof. For x € X, this simply follows from the bounds
1
lor(rA,)all,, g/Heufs)TAwHW ds < |, .
0
1
S (1—s)7’AS H ko™
lir(raal,, < [ [0l ds <o al,
0

. AS
which are the same as for e”®¢¢ and e’ ¢¢. O
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In order to use the result of Lemma 7.8 in the error analysis, we have to guarantee that the numerical
approximations stay in the space E from (7.9). The following lemma is an extension of [41, Theorem 4.1]
and establishes this at least as long as the lower bound on the existence time 7" of the exact solution.
Lemma 7.11. Let Assumptions 5.1, 5.4, and 5.5 hold. For T defined in (5.30) and initial values

luolly < Ro = g5 R Juoll; < o= 7r,

the numerical approzimations given by (7.3) satisfy for Nt <T

(ug, ..., un) EE(N,R,?“,T’}/), (7.10)
for E defined in (7.9) and v in (5.29).
Proof. We first introduce an abbreviation for the product of several semigroups

emhi i<k,
1, 1>k
and with this it holds
Ung1 = €72 u, + 701 (TAL)E,

_ eTAn (e‘rAnfl Up—1 + TP1 (TAnfl)fnfl) + TP (TAn)fn (7 11)

=Sfuo+ 7Y SI e (TA)E; .

§=0
We prove (7.10) by induction on n. Hence, let n < N —1 and assume (uq, ..., u,) € E(n, R, ’}/T). Then
by Lemma 7.8 and Corollary 7.10 we estimate for j <n

187101 (A lyy > [1STHa01(TA)]] ,_, < coe> I (7.12)
Taking the Y-norm in (7.11) gives with the bounds in Lemma 5.6

n

lunsilly < coe+ Jluolly +cor 3 eI |,
§=0

< o (Jluolly + T Cry.o0)

< 2CO(RO + ﬁR) :R7

(7.13)

since t,,+1 < T and (5.30) hold, where we used the induction hypothesis to bound f;. In the same way,

we get with Lemma 5.6

n
luns1ll < coe* ™+ fluoll, + cor Y 27D gy,

Jj=0

(7.14)
< coe?™ ([Juollz + TCr.2.00)
<2545 =
We close the induction estimating with (5.20b) the term
s = wnlly < [[(e™" = Dunl|y + 7 llo1(rAw)Eally,
=7 [[Anp1(TAR)unlly + 7 llo1(TAR)Ey (7.15)

<Tryayz ”SDl(TAn)unHZ +7 ”901(7—An)fn||y .
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If we use the representation in (7.11) for w,,
n—1
01 (TAL)un = 1(TA,)SE g + 7 Z ©1 (TAn)S;-lJ:11<p1 (TA)f;,
3=0
then Corollary 7.10 and the same computations as in (7.14) yield
llp1 (TAn)Un”Z < CO€w2T(||U0||Z + TCf,Z,oo) <r. (7.16)

With Lemma 5.6 and (7.12) we further get

1 (TAREly < coe™? Cfy 0 <200 Cr o0, (7.17)
where we used 7wy <1In2. From (7.15), together with the definition (5.22b), we arrive at

unt1 —unlly < T(%T+2CO Cf,Y,oo) =~7, (7.18)

which finally yields (ug, ..., unt1) € E(n +1,R,r, 'yr) and the induction is closed. O

7.2.2 Defect
In this step we present a recursion for the global error given by
en = u(ty) — Uy .

In order to make u(t,) and u,, comparable, we use (5.2), replace A (u(t)) by A(uy) and treat the remainder
as an inhomogeneity. Then the error propagation is driven by the semigroups studied in Lemma 7.8, and

it remains to bound the defects. This is the main task in the following proposition.

Proposition 7.12. Let Assumptions 5.1, 5.4, and 5.5 hold and consider the solution u given by Theo-
rem 5.14 and numerical approzimations (uy,), given by (7.3). Then the global error satisfies the error

recursion

eni1 =€ Ae, + 6, (7.19)

where the defect is bounded by

18nllx < (Cox 7llenllx + Cox 72) €™,
with constants Cy x,Cs x > 0 that only depend on ||u'| x ., llull 5 o

Proof. We obtain from equation (5.2), plugging in the last approximation u,, and using the notation in
(7.1) and (7.2), the differential equation

(
+ (A — An)u(t) + (B, —£.) + (At) — A )u(t) + (£(t) - £,)

4
= Au(t) + £, 4+ 0nilt).
=1
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The variation-of-constants formula enables us to solve this equation by

3

4
u(tni1) = €A ulty) + To1(TALE + Y b (7.20)
=1
where
Oni = /e(T_s)A"gn,i(tn +s)ds, i=1,...,4

0

The four terms are estimated separately. By (5.20c) and Lemma 7.8 it holds

1
160l = TH/61 A (B = Ao ds|

ds

0
1
7_/Hel $)TA, n_An)anJrs .
0

STko/e(l—s)Twl
0

1

< ThoLx ||€on/e(1_s)m1 [tn+sl 5 ds
0

~ R (7.21)
(An - An) Un+s

ds
X

< ThoLxe™ |len| x llull 2,

and in the same manner with Lemma 5.6

1

= /e(l_s)TA" (B —£a) ds||

0
; R (7.22)
< Tk:o/e(l_s)ml n|y ds

0

165,

< Thoe™" Ly x lenl x -

The other defects can be bounded with (5.20c) by

1

16nslly = TH /eu_s)mn (Rnse — An)iinss dsHX

0
1

STko/e(l_s)Twl

0

ds

Kn s_gn :u\n s
(Bt i X (7.23)

1
< rholix [ €4 iy~ Tl [l ds
0

< 2 hoLxe™ [[u'll x o0 1l 2,00



112 Chapter 7. Exponential integrators for quasilinear hyperbolic systems and main results

and similarly by Lemma 5.6

1
10nally = TH /e(lfs)'rA” (e~ 1) ds”x

0
/ SN (7.24)
< Tko/e(l_s)ml fors — £, ds
0
< 7%koe™' Ly x (1 + Hu’HXm) .
The assertion follows by setting
4
(Sn = Z (Snﬂ‘
i=1
and subtracting u,; given in (7.3) from (7.20). O

Very similar computations lead to bounds in the stronger Y-norm, where we employ the additional
regularity u € C*([0,7],Y).

Corollary 7.13. The defect in (7.19) can also be bounded by
H5n||y < (CU,Y T Hen”Y + CB,Y 7'2) e,
with constants Coy, Csy > 0 that only depend on |||y ., [lul 7 -
Proof. We only need to establish the bounds on the defects to verify the assertion.

By Lemma 7.8 and (5.20d) it holds

(;&n - An)an—&-s

1
||5n71||y < TCO/e(lfs)Tw’z N ds
0
1
(7.25)
< reoly el [ €07 sl ds
0

< TeoLye™? |len]ly Hu”Zoo

and in the same manner with Lemma 5.6

1

||5n)2||y < TCO/e(T—S)w2
0

£, —f,

ds < Ttcoe™? Ly |lenlly - (7.26)
%

The other defects can be bounded with (5.20d) by

1
H(Sn,?’”Y < Tco/e(l_S)ﬂdz (‘&nJrs - -A\n)anJrs ds
Y
0
1 (7.27)
< reoly / U @y — nlly [Bnssl, ds
0

< 2oLy e™ ||ully, o 1ull 7,00
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and similarly by Lemma 5.6

1

10n.4lly < 7'00/6(1_5)““2 ?nJrS —1, ; ds < T2CO€Tw2Lf)y(1 + ||u’||Y’oo) , (7.28)
0
which yields the required bound on the defect. O

7.2.3 Global error

A combination of the stability bounds and the defects yields the global error result.

Proof of Theorem 7.1. We note that the assumptions of the theorem allow us to apply all results of
Sections 7.2.1 and 7.2.2.

(a) We first prove the bound in the X-norm. Using the error recursion in (7.19) and recalling the

product Sf = ™% .. ™ for k > i, we obtain by a discrete version of the variation-of-constants
formula
n
ent1 =€ Aren + 0, =SGeg+ > _ ST, 10;. (7.29)
§=0

As it holds ep = 0, with Lemma 7.8 and Proposition 7.12 we get as in (7.12)

n
lensillx < D 18Tl 165115
§=0

n n
< kor D0 e HITC ey |+ kor Y e I Cyr
j=0 j=0

which is equivalent to
n n
e~ (DT o | x < Cokot Z e VT lejll ¢ + kot Z e YITCsT .
j=0 j=0

A Gronwall argument yields with ¢,,41 = (n+ 1)7
e el < tsaeC R0 kG 7

and hence

Hen+1||x < tn+1e(w1+Cako)tn+1 koCjs 7,

which completes the proof.

(b) The error bound in the Y-norm is easily derived replacing Proposition 7.12 by Corollary 7.13 and
w1 by we which yields

n n
lentilly <cory_ €2 =D, [lejlly, + cor Y €2 =D Cyr
J=0 =0

and again bringing e¥2("*17 to the other side and a Gronwall argument yield the assertion. O
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7.3 Error analysis of the exponential midpoint rule

The proof of Theorem 7.7 has a very similar structure to the one of Theorem 7.1, but we need to take
special care of the extrapolations of previous approximations. This induces some technical difficulties
in the stability analysis. Next, we derive the error propagation similar to Proposition 7.12 and bound
the appearing defects. Several terms are treated in the standard way as the exponential Euler method,

whereas for the remaining terms the additionally required differentiability come into play.

7.3.1 Stability

Since the numerical method is now driven by the exponential evaluated at the extrapolated midpoints,
we again derive a result for bounds on the composition of these linear flows. The choice of the larger

constants in the space E becomes clearer in Lemma 7.15 when we derive the bounds on the midpoints.

Lemma 7.14. Let Assumptions 5.1 and 5.4 hold. Further, let

¢ = (d12:¢3/2-- - Ont1/2) €E (Nuﬁa?v 273) .

We obtain the stability bounds as in (7.8) for j <k and j, k € {%, %, N+ %} with kg, co, w1 and wo

replaced by EO, Co, W1 and Wy, respectively, where Wy = 2k, (7) and ©s is given in (7.8).
Proof. The proof is similar to the one of Lemma 7.8 and can be found in the Appendix of [41]. O

This enables us to prove bounds on the numerical approximations very similar to the bounds provided
in Lemma 7.11. The only difference lies in the time IA’mid defined in (7.7), which is necessary to obtain

uniform bounds in the numerical approximations.

Lemma 7.15. Let Assumptions 5.1, 5.4, and 5.5 hold. For fmid defined in (7.7), 7 < 7o with 19 given

in (7.6) and initial values
luolly < Ro= R, lluoll; < 70 = 2,
the numerical approzimations given in (7.4) satisfy for Nt < fmid
(UO,...,UN)EE(N,R,T,T:Y\), (U1/27~-~7UN71/2)EE(N_L]%,?’%W)- (730)
Proof. We proof the assertion by induction on n and assume (7.30) is true for some 1 <n < N —1, i.e.,

(ugy .- up) € E(?’L,R,’I’7’YT), (u1/2,. - s Up—1/2) € E (n— 1,§,?,2T?) .

Note that the base case n = 1 is the same as for the exponential Euler due to the choice u; /5 = ug and
hence true by Lemma 7.11.

(a) By the induction hypothesis and 7 < 7y given in (7.6), we obtain for the extrapolated midpoint

||un+1/2||y < llunlly + % [tun = un-ally SR+ < ﬁu

as well as

tns1/2]l; < 2 lunllz + 2 llun-ill, < 2r =7.
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Defining u_1 := ug, it holds u;/, = %uo — %u_l and we estimate for n > 1
Hun—i-l/Z - 7-l'7l—1/2||y < % ||un - unleY + % ||Un71 - un72Hy < 277\7_

Hence, it holds (u1/z,...,Upt1/2) € E (n, I%, T, 27'?).
(b) By part (a), we can apply Lemmas 5.6 and 7.14 and, together with the induction hypothesis, we
obtain as in (7.13)

o~

lnsally < e+ ([luolly + TmiaCryo0) < R
and in the same way

lnsallz < oe*" (Juoll ; + TwiaCr.z.00) <.
Finally, along the lines of (7.15), (7.16), (7.17), and (7.18) we establish

[tnt1 = unlly = [[(e74+172 = ) wp + 701 (T A 41 /2)En g1 /2]y

< 7| Ansry201 (TA L1 2)un||y + Tgoeswafy,oo

IN

7,

which gives (ug,...,Un11) € E(n +1,R,r, 77), so the induction is closed. O

7.3.2 Defects and global error
In order to increase the readability of the proof we define analogously to u, /5 in (7.4) the extrapolation
of the exact solution and the corresponding operator by

@n+1/2 = % (3@n —Un—1), Anﬂ/z = A@n+1/2)a £n+1/2 = f(tn+1/27@n+1/2>

with U 5 = uo. By the proof of Theorem 5.14, we have

~ ~ | RO = . —~
Hﬁn-s-l/zHy < ||un||Y + 5 (|t — unley <R+ % <R, ||@n+1/2||z <2r=r
and thus we can use the same bounds as for u,,41/2. Further, we consider the extrapolated error

en+1/2 = Upy1/2 — Unt1/2-

We emphasize that one does not necessarily need to introduce this extrapolated error. However, it
makes the following computations a bit shorter, and we get rid of this term at the very end in the error

accumulation.

Proposition 7.16. Let Assumptions 5.1, 5.4, 5.5, 7.2, and 7.3 be satisfied and consider the solution u
given by Corollary 7.6 and numerical approzimations (uy,)n given by (7.4). Then the global error satisfies

the error recursion

engp1 = €A t1/2e, 46, (7.31)
where the defect is bounded by
90l < Cs72em™,
0]l < (CJ,XTHenH/QHX+C(;,XT3) 67217 n>1,

with constants Cy x,Cs x only depending on ||u”||X700, ||u’||Y700, ||uHZ00



116 Chapter 7. Exponential integrators for quasilinear hyperbolic systems and main results

Proof. We proceed as in Proposition 7.12 plugging in u,,,/2 to obtain

' (t) = A(t)ult) + £ (t)
= A, 1u(t) + 110

+ (An-&-l/Z - An+1/2) u(t) + (£41/2 — t1/2)
+ (Kn+1/2 - An+1/2) u(t) + Gn+1/2 —£n+1/2)
(AW~ Rppre) ult) 4 ({0 = Fisj2)
6
= Apyrou(t) +Faprjo + Y 0nilt).

=1

Applying the variation-of-constants formula as above yields the terms

6
u(tn+1) = 67’A1L+1/2’U,(tn> + TY1 (TA.nJrl/Q)fnJrl/Q + Z 671)2‘ . (732)

i=1

We split the proof into four parts. We first bound the four terms that have appeared similarly in the

proof of Proposition 7.12. Here, we need to distinguish the defect of the first step from the others. In

the third and forth part the assumptions on the differentiability enter.

(a) By definition we have Uyjy = @1/2 and hence dp;; = dp2 = 0. Since the first step is given by an
exponential Euler step, (7.23) and (7.24) yield

1603l x + 160.allx < CT2.

(b) We now turn to the case n > 1. The same computation as in (7.21) gives

6(175)7';1\1

16n1llx < Tho ds

(An+1/2 - An+1/2) an+s

X

o—__

< rhoLxe™ ||ens ol l[ull 2.0
as well as in (7.22)
0n.2llx < Thoe™ Lyx [lentaye]|

The defect §,, 3 can be bounded by Lemma 7.14 and (5.20c)

o~

(An+1/2 - An+1/2> Upts y ds

1
18n,3ll < Tho / (=97
0

1
< 7hoLx /e(l_s)m1 u(tng1/2) —@n+1/2HX [Tntsll 7 ds
0

S TBkOLXeTWI% Hu,l”X,DO ||u||Z,oo ’
as well as d,, 4 with Lemma 5.6 by
H(sn/l”X S TBkoeTwlzf,X% ||u/l||X,oo )

where we used Taylor expansion on u(t,1/2) for both defects, see Lemma B.11.
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(c) The last two defects are considered for n > 0. We first prove the statement for d,, 5. We have

T

577,,5 — /6(T78)An+1/2dn(tn + 5) ds (733)

with the function

To expand this we first need

d(t) = A'(tyu(t)  + (At) — Appr)2)d(t)
= dp(t) + dp ()

and hence

Ay (tny1/2) = dni(tnsrja) = A (tpi12)Ungrya -
We also obtain

1 (t) == L1 (8) = A" (t)ult) + AL (D) (1) -

Lemma 7.5 implies the following bounds

s (tnsrp2)lly = A (s )i 2lly < Oz il (734
and
ldun (D] < A" Bu(@)]| + | A (' (1)]| (7.35)
< R lull 700 + Cy 11y, »
as well as
ldna®) = [|(A() = Rparo) ' )] < ZCy 0]l ms - (7.36)

Using d, (tn41/2) = 0 and integration by parts, we expand

s—7/2 s—7/2
dp(tn + 8) = / dn’l(tn_;’_l/g +o)do+ / dn12(tn+1/2 +o)do
0 0
s—7/2
= (8 - %) dn’l(th’,l/Q) + / (s -5 a) C.l.n71(tn+1/2 +0)do
0
s—7/2

+ / dn,Q(tn+1/2 -|—O') dO’.
0
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Plugging this in (7.33) gives
i /e(T—S)An+1/2dn(tn + S) ds

0
-

_ /e(T—S)An+1/2 (3 — %) ds dn,1(tn+1/2)

0
T s—7/2
+ / e(Tfs)AnJrl/Z / (S — % — O') d.n,l(tn+1/2 + 0') do ds
0 0
T S—T/2
+/e(T_S)A"+1/2 / dn,g(th/Q +o)dods
0 0

1 2 3
= 5n,5 + 6n,5 + 671,5

We estimate these terms separately. By integration by parts we obtain

571115 = (/ e('rfs)An+1/2 (s _ %) ds) dn,l(tn+1/2)

0

1

= (2/6(7_3)A’L+1/2(8 —75) dS) A1 j2dn 1 (tns )

0
and estimate by Lemma 7.14, (5.20a), and (7.34)

6%l < gshore™ ||An+1/2dn1( nt1/2)|x
< %E Dxaxy 7™ ||dn1(trs1s2)|y
< (HkovxaxyCiy ||u||z,oo)736W1-

We further obtain by (7.35)

[82.all < gehor®e™ [ldnallx o

< ko (CRz ulzc + Oy Wy ) 7P7™

and at last by (7.36)

(L kor®er ||d

nQHXOO

<1
5HX 4
< (SRoCy I lly, ) 767

This gives the assertion for 9, 5.
(d) The proof for §,, ¢ is very similar. We have the representation (7.33) with d,, replaced by

o~

Du(t) = (1) ~fusijz.  Dultasaje) =0
Computing the derivatives, we obtain with Lemma 7.4 similar to (7.34) and (7.35)
1Dually = [F' Oy < Crye (7.37)
1Daallx = F" @]l < Cprxo0

and in particular the term corresponding to dn’g does not appear. Hence, we proceed as in part (c)

which yields the desired bound for §,, ¢.
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Finally, setting

On =Y O

=1

and subtracting u,; given in (7.4) from (7.32) closes the proof. O

Corollary 7.17. The defect in (7.31) can also be bounded by
I16nlly < (Coy 7 |lejaselly + Coy %) €72,
with constants Cyy,Csy > 0 that only depend on ||u'[ly . |lull; -

Proof. We proceed analogously to Corollary 7.13. By Lemma 7.14, Lemma 5.6 and (5.20d) it holds

16n,1]ly < TC0e™> Ly |lentasaly lull 7,0 -
||6n,2||y S 7—/C\OeTWZLf,Y }|6n+1/2||y .
Using Taylor expansion only up to order 1, see Lemma B.11, with (5.20d) and Lemma 5.6 we bound
16n,3]ly < 72€0e™? Ly |||y o0 l1ull 7,00 »
16nally < 7%C0e™2Lyy [[0/[ly,o -

Since we only aim for defects of order 2, we estimate in the exact same way

1

l6n5lly < 750/6(175)”’2 (Kms - -&n+1/2> Up 45 v ds
0
< 2¢0e™? Ly 3 |/ lly ool 7,00
and also
18n6lly < 7%C0e™* Ly 5 (L + [0 lly,00) -
which gives the assertion. O

We can finally give the proof of the error bound of the exponential midpoint rule.

Proof of Theorem 7.7. We note that the assumptions of the theorem allow us to apply the results of
Section 7.3.1 as well as Proposition 7.16 and Corollary 7.17.

By (7.31) we resolve the error recursion as in (7.29) and use the bounds provided in Lemma 7.14,
Proposition 7.16, and Corollary 7.17. With the observation

n n
D lessgelly <23 lleslly
Jj=1 j=1

for V € {X,Y}, the bound in the X- and the Y-norm is derived analogously to Theorem 7.1. O
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7.4 Numerical experiments

In order to illustrate the theoretical findings in Theorems 7.1 and 7.7, we consider the quasilinear wave

equation (5.4) rewritten in the form

Na)d" = Aq+r(t.q,q) (7.38)
obtained from the Kerr-type nonlinearity (5.8) with y = —% and coeflicients

Ng)=1- %% r(tg,qd)=1q (¢) - Lsin(g) + f(1),

on the unit disc 2 C R? subject to homogeneous Dirichlet boundary conditions. With = = (xl, To ), we

chose the source term f by
f(t,z) = cos’(t) sin((l +1)(1 - \x|2)3) .
To illustrate the sufficiency of our regularity assumptions, we chose the initial position
L o 2 2
go(x) = —7lal*In(=1In(p|z[*)) + Cr(jz]” = 1) + C2

with p = % and constants C7 and Cs such that gg = Agg = 0 holds on 9f). A straightforward calculation
shows that go € H?(Q), see Lemma B.13, and hence it satisfies the conditions on the first component of
the product space Z defined in (5.7).

Note however, that there is no ¢ > 0 such that gy € H3>7¢(Q) holds. Indeed, computing the second

derivatives, we are left with nice terms, that are in H'(£2) N L>°(Q2), but also the critical term
po @ = In(— In(plo[2)) € H'(Q)\ L¥(Q), (7.39)

which is a well-known function to prove the sharpness of the Sobolev’s embedding theorem. We have
provided more details in Appendix B.

For the initial value in the second component we take
! — 1 _ 2 2
(@) = — (1= [z]*)",

which is a smooth function, but Agy does not satisfy the homogeneous Dirichlet boundary conditions. In

particular, the initial value ug = (qo7 a5 )T is an element of Z.

Space discretization

We performed the space discretization by linear Lagrange finite elements and used the open source Python
tool FEniCS [3, version 2018.1.0]. This gives the ansatz space V;, C H(Q), with Q5 C Q and we then
seek for ¢x(t) € Vi, which solves

(Man())ar (1), 0 r2(0,) = = (an(t), )z () + A(an () Zn (Man () 7 (¢, an(t), 41 (1)), ) L2()

for all ¢ € V},, where Z;, denotes the interpolation onto Vj. Testing against a basis, leads to the system

of ordinary differential equations

M (qn(t))apn (t) = —Lugn(t) + Mu(qn(t))gn(t, qn(t), a5 (t)) (7.40)
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Figure 7.1: Discrete L™ ([0, 1], H3(Q) x L? (Q)) error (on the y-axis) of the numerical solution of (7.38)
computed with (7.41) (middle line, red) and (7.42) (lower line, blue) plotted against the stepsize 7 (on the
x-axis). Further, the discrete L™ ([0, 1], H} (Q)) error in the velocity ¢ computed with (7.41) is shown
(upper line, green). The gray lines indicate order one (dotted) and two (dashed).

with the mass and stiffness matrix

(Mh(Qh(t)))i)j = <)\(Qh(t))¢i,¢j>L2(Qh)7 (Lh)i)j = <v¢i7v¢j>L2(Qh) ;

and discretized nonlinearity

gn(t,an(t)) = n (Mg ()~ r(t, an(t), 4 (1)) -

Time discretization

Recalling the construction of the method, we freeze the argument of the differential operator and the
semilinear term in (7.40) either on the last approximation or on the extrapolation to the midpoint.
Denoting the fully discrete approximation by ¢;' ~ ¢(t,) and v}’ ~ ¢'(t,), we compute the exponential

Euler step by solving the linearized version of (7.40)

My (qp)ap (t) = —Lpagn(t) + My(qy)gn(tn, ary, v}), t € [tn,tn + 7], (7.41)

exactly to obtain qZH and v,?“, where g, is given from the previous step. We note that this is equivalent

to first rewriting (7.40) as a first-order system and then applying the exponential Euler method.
Similarly, we define the extrapolation term qZH/2 =3q0 — 3¢ " and UZH/Q =3vp — $vp 7! and a

step of the exponential midpoint rule is given by the solution of
n+1/2 n+1/2 n+1/2 n+1/2
Ma(a, ™)) (8) = —Lnan(®) + Ma(ay ™) gn tusa e a2 0772 (7.42)

The exact solution of these equations is approximated using rational Krylov methods to evaluate the
trigonometric matrix functions as it was suggested in [31] and [43]. The code to reproduce the plots is
available on https://doi.org/10.5445/IR/1000130189.

Numerical results

Unfortunately, there is no exact solution available to this problem. However, we know by the well-

posedness result that the solution is sufficiently regular in order to apply our theorems. We thus used
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the midpoint rule on a fine grid with maximal diameter h.s = 6 - 1073 and stepsize Ter = to

560
obtain a reference solution. On a coarser mesh with maximal diameter hp.x = 1072, we computed the
approximated solutions of (7.41) and (7.42). The stepsizes T were chosen such that the quotient - is
an integer and hence the reference solution at this time is available.

In Figure 7.1 we depicted the error between the projection of the reference solution and the numerical
approximations in the different norms. To compute the X-norm we used the discrete H{(Q) x L?(Q)
norm obtained by the mass and stiffness matrix. However, Lagrange finite elements are not contained in
H?(Q) such that the full Y-norm cannot be computed. We thus only provide the error in the velocity ¢’
in the Hg(Q2)-norm. We included lines that indicate order one and two, and we observe a good alignment
with the error bounds shown in Theorems 7.1 and 7.7. The deviation of the last two or three points of
the midpoint rule can be explained by the error induced by the space discretization which is only relevant

in the regime below 1073.

7.5 Error bounds in stronger norms

In this final section, we explain how error bounds for the exponential Euler (7.3) and the exponential
midpoint rule (7.4) in stronger norms compared to Section 7.1 can be achieved. However, we have used
all the regularity provided in Theorem 5.14 and 5.15, and hence need to assume additional regularity of
the solution. Note that this cannot be guaranteed by the wellposedness theory considered in this thesis.
To this end we introduce the space Z4 := {z € Z: Az € Z} with norm

2 2 2
I1zllza = I2ll7 + 1A=z
and continuous embedding Z4 — Z. We further assume that the solution of (5.2) satisfies
u € C([0,T], Z4) nC*([0,T], Z) (7.43)

and discuss how this helps to extend our so far obtained results.

Exponential Euler method We first extend Lemma 5.3 by a Lipschitz bound that uses the new space
ZA, see [41, Lemma 3.6].

Lemma 7.18. Let Assumption 5.1 hold. Then for ¢,v € By (R) N Bz(r)

||A¢> - A¢||Z<_ZA <Lz|¢- T/’Hz
Proof. This directly follows from (5.16d). O
With this additional Lemma we can immediately prove a bound on the defect in the Z-norm.

Corollary 7.19. Let Assumptions 5.1, 5.4, and 5.5 hold. Further, consider the solution u which satisfies
(7.43) and the numerical approzimations (u,), given by (7.3). Then the defect in (7.19) can also be
bounded by

HaTLHZ S (CU,Z T Hennz + C(;,Z T2) e’? )

with constants Cy,z,Cs,z > 0 that only depend on |[u'[| , . and [lul ya -
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Proof. As in the proof of Corollary 7.13, we only establish the bounds on the defects. By Lemma 7.8 and
7.18 it holds
TW2

10n,1ll; < TeoLze™ [lenllz lull 74 o »

and in the same manner with Lemma 5.6

105,21

z <70 Lyzenll -
The other defects can be bounded with Lemma 7.18 by

160311, < T2coLze™ ||u|| 5 o0 1l 24 oo

and similarly by Lemma 5.6
16nall ; < T2coe™2 Ly z (1 + |u'll 5,00 - O
Analogously to Theorem 7.1 we can derive the first-order error bound in the Z-norm.

Theorem 7.20. Let u be the solution of (5.1) and u, the approzimation obtained from (7.3). Further,
assume that u € C([0,T],Z4) N CY([0,T),Z) holds. If Assumptions 5.1, 5.4, and 5.5 are satisfied, we

obtain the error bound
[lu(tn) — unll, < tne“ nCyr, 0<nr=t,<T

with constants Cz,cz > 0 that only depend on ||| 4 ., and ||lul| ;4 but are independent of T, n and

t.

,007

Similar to the observations for Theorem 7.1, comparing our result with Theorem 6.2, we could improve

the regularity assumptions using only [[u'||; ., instead of the L?-norm

T

2
/ I (0)11% dt.
0

Exponential midpoint rule In Theorem 7.7 we have shown a second-order error bound in the X-
norm and an first-order error bound in the Y-norm. We now improve the result in the Y-norm and study
the additional regularity that can be deduced from (7.43).

Corollary 7.21. If u € CY([0,T],2) N C([0,T], Z*) and in addition Assumptions 7.2 (a) and 7.3 (a)
hold, then the solution u of (5.2) satisfies

ue C¥[0,T],Y)NCY[0,T],Z2) nC([0,T], Z*).

Nevertheless, we have to assume additional regularity of the data as well. We again formulate this in

assumptions and give the detailed proofs in Appendix B.

Assumption 7.22 (additional properties of g). Let u € C1([0,T],Z) N C([0,T], Z4) and consider the
map

t=g(t) = g(t,u(t)).

Then there is a constant Cy 7, with
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(a) t—g(t) € C'([0,T],2), I8’ )z < Cyg 2,00,
and, if in addition, u € C*([0,T],Y) holds, then there is Cyr y o such that
(b) t—g(t) € C*([0,T],Y), 8" ()lly < Cgryvio0s

’

with constants only depending on [[u” ||y o, W[ 7 oo [[ull g4 o0 -

We further add assumptions on the differentiability of A in some stronger norms.
Assumption 7.23 (additional properties of A). Let u € C*([0,T],Z) N C([0,T], Z4) and consider the

map
ts ATt = A (u(t)).

For z € Z it holds

(a) ts A=L(t)z € C([0,T), Z), H(A‘l)/(t)HZeZ < Cyz,
and, if in addition, uw € C*([0,T),Y), it further holds
b) t= ATz e (0,11 Y), (A @) <Cvs

with constants Cy z,Czz only depending on |[u”|ly ., |u'|l 5 oo, [lull 74

, 00"
Combining the two preceding assumptions gives us the following stronger differentiability and extends

Lemma 7.4.
Lemma 7.24. Let u € C*([0,T),Y)NC([0,T],Z) and consider the map
t£(t) = f(tult).

If Assumptions 7.22 and 7.23 hold, then f satisfies Assumption 7.22 with constants Cyr z o0, Cfr y,00 0nly
depending on [[u”lly oo, [W'l] 7,000 10l 24 oo-
Further, we easily obtain together with Assumption 5.1 (a) the following differentiability of the dif-
ferential operator evaluated at a smooth function.
Lemma 7.25. Let u € C*([0,7T],Z) N C([0,T], Z*) and consider the map
t A(t) = A" (H)A.

If Assumptions 5.1, 7.3, and 7.23 are satisfied, then for w € Z* it holds

(@)t A@w is C1(0.7),2),  ||A0)|  <c,
and, if in addition, u € C*([0,T),Y), it further holds
(b) t s A(t)w is C2([0,T],Y), ny'(t)H <ci,,

Y+2z4A

with constants CéZ,CézA only depending on ||u”HY’OO, ||uIHZ,oo7 ||u||ZA700.

With these preparations we can bound the defect of the exponential midpoint rule (7.4) in the Y-norm

which will lead to the desired second-order error bound.

Corollary 7.26. Let Assumptions 5.1, 5.4, 5.5, 7.2, 7.3, 7.22, and 7.23 be satisfied and consider the
solution u given by Corollary 7.21 and numerical approzimations (uy, ), given by (7.4). Then the global

error satisfies the error recursion (7.31) where the defect is bounded by
16olly < Csy T2,
16nlly < (Coy 7|l€ns1s2]ly + Coy 7°) €72, n>1,

with constants Cyy, Csy only depending on ||u” ||y, ||t 5, ||ull 4.
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Proof. (a) By definition we have Uy/p = @1/2 and hence 6y, = dp2 = 0. Since the first step is given by

an exponential Euler step, (7.27) and (7.28) yield
160,31ly + [[60,4lly < CT2.
(b) We now turn to the case n > 1. The same computation as in (7.25) gives
10nally < 70 Lye™ lensayally ull 700
as well as in (7.26)

y < TEOeTaQZﬁY ||€n+1/2HY :

[[0n,2

The defect 4, 3 can be bounded by Lemma 7.14 and 7.18

16n.3lly < 7% Lye ™22 [u"|ly o 1]l 700 »
as well as d,, 4 with Lemma 5.6 by
16n,ally < 7°C0e™2Lyy & 0" ly o

where we used Taylor expansion on u(t,1/2) for both defects, see Lemma B.11.

(c) Since the representation in (7.33) is still valid and Lemma 7.5 (b) and 7.25 implies the bounds
Hdn,l(tml/z)“z = H‘K/(tn+1/2>an+l/2HZ < C%y [ull 24 00
and
ol <[, + v,
< Cfzallullza oo + CF2 10l 700
as well as
ldn2®lly = | (A() = Apsry)w'®)]| < 5652 10/l -

the bound for [|0, 5|, is derived as before.

(d) Analogously to (7.37) we can establish with Lemma 7.24

HD"71HZ = ’/f\/(t)HZ S Cf’,Z,oo ’
[Bually = [E®)|, < Crrvioe
which then provides the bound for ||d,, 6y - O

Along the lines of Theorem 7.7 we deduce the global error in the Y-norm.

Theorem 7.27. Let u be the solution of (5.1) and u, the approzimation obtained from (7.4). Further,
assume that u € C([0,T),Z4) N CY([0,T],2). If Assumptions 5.1, 5.4, and 5.5, are satisfied, and in
addition Assumptions 7.2, 7.3, 7.22, and 7.23 hold true, and 7o is given by (7.6), then for all T < 79 the

error is bounded by
[u(ty) = tnlly < tne™ Cyr?, 0 <nr=t, < min{T, Trmia},

with constants Cy,cy > 0 that only depend on ||u” ||y, |[v| 4, |ull 44, but are independent of 7, n and
tn.
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APPENDIX B

Quasilinear examples

In this part of the Appendix we will comment on the assumptions made for the error analysis. Some of
them have been used and verified before in [41, 44, 61] and we will give the references. This concerns
in particular the assumptions on the operator A and A. Moreover, we only check the assumptions for

Maxwell’s equations in the full space case (5.13) since the case (5.15) is fully analogous.

B.1 Assumptions on A

We first comment on Assumption 5.1. The detailed computation in order to verify the assumption are
given in the proof of [61, Thm. 4.6 & 4.9] for Maxwell’s equations and in [61, Thm. 4.12] for the wave
equation. In particular, properties (5.16a), (5.16¢), (5.16b) and (5.16d) for the triple (Y,Y, By (R)) are

proven. The remaining two cases are derived fully analogously and we omit the details.

B.2 Kato’s commutator condition

A crucial tool for the wellposedness is Assumption 5.4. The discussion of this property is beyond the
scope of this thesis. The assertions are verified in the proof of [61, Thm. 4.6 & 4.9] for Maxwell’s equations

and in [61, Thm. 4.12] for the wave equation.

B.3 Lipschitz assumptions on the semilinear term

We now turn to Assumption 5.5. Since this term has not appeared in the previous works in this framework
we prove all details here. Throughout we use the norms defined in (A.2). We consider the two examples

separately.
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Wave equation
We recall from (5.6) that g is given by

0 A~ N2 N — ’
g(t,u) = <%(q’q,)+72(t’q7q,)>7 n(e:d)=-K"(@)(d)",  ltqed)=rtaqqd), (BI1)

and state the following lemma.
Lemma B.1. For g given in (B.1) with the regularity given in (5.5) Assumption 5.5 is satisfied.

Proof. 1t is sufficient to prove for uy = (q1,¢} )T cu2 = (g, qh )T there are constants C' such that for
uy,uz € Bz(r), i.e., ¢; € H3(Q), ¢, € H*(Q) , and ¢, s € [0, T]:

[7i(t, a1, qh) — vit a2, a5) ||y < Lgyv (|t — s| + [lur —uzllyy)

with the tuples
(vow) e {12, x), (1" @), ), (H2(©), 2), }

i = 1: We write

(a1, q)) = (g, ab) = K" (a2)(a5)° = K" (@) (d})”
= (K"(g2) — K" (1)) (a5)° = K" (@) (% + ¢}) (a5 — }) -

(a) In the L?-norm we have by (A.4)
Iv(ars 1) = 71(q2,42)ll 2 < KMl oo Mgy = @l 2 1021 2 + 1Kl oo 101 + @l 22 llon — a2l 2 -
(b) In the H'-norm we have by (A.9) and (A.5)

(a1, d1) = (g2, 45) | g < H (K"(g2) — K" (q1)) (qé)zHHl + || K" (1) (g5 + 41) (6 — 41) || g

2
< C(lallgz s llg2ll =) gz = aull g ol 5o
+C(laall gz a2l =) llas — il g1 -

(c) In the H2-norm we have with (A.11) and (A.12)

2
71(q1,d4) — 11(a2, @) | r2 < C(lanll gy s lla2ll ar2) s — @bl are 165 772
+ C (Il g2) llgt + dbll g2 llat — @bl g -

1 = 2: We write

Yo (t,q1,q1) — v2(8,q2,45) = r(t, q1,41) — (5,42, 45)
=7t q1,q1) —7(s,q1,41) +7(s,q1, 1) — r(s,q2,01) +r(t, g2, 91) — 7(5, G2, 43)
= Ar,l + Ar,? + AT,B

(a) In the L?-norm we have by (A.8)

1Azl e < Cllarllpee s laillpee ) It = s,
1Ar2llpe < Clllanllpoe a2l e s il o) lar = a2ll 2
1Arsl e < Clllanllpoe il e s a2l e ) gt — @l o -
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(b) In the H!'-norm we have with (A.9) and (A.10)

1851l < Clanllgz s lad )1t = sl
A2l g < Cllanll gz s g2l s 12 11 =) lan — g2l g
e

1Ar3l g < Cllazllge s 1952 2l =) gy — ol -

(c) In the H2-norm we have with (A.11) and (A.12)

1Ar1 ]2 < Cllanllgo il =) I = s

C
1Ar2l e < Cllaullg s a2l gz i llz2) lar — a2l
C

1Ar3] g < Cllazllg= - 195 g2 2]l =) lar — ol -

Maxwell’s equations

We recall from (5.11) that g is given by

g(t.u) = (‘(’(f)E)

and state the following lemma.

Lemma B.2. For g given in (B.2) with the reqularity given in (5.12) Assumption 5.5 is satisfied.

Proof. 1t is sufficient to proof for i, By € H?(R3) that there are constants C' such that
|o(E1)Er — o(E2)Eally, < C|E1 — Ea|y
with V € {LQ(RS), H?(R3), H3(R3)}. We use the representation
o(E1)Ey — 0(E2)Ey = 0(Ey)(EL — E2) + (0(E1)E — 0(E3))Es .
(a) In the L?-norm we have by (A.1)

lo(E1)Er — o(E2)Eall 2 < |lo(E1)| o |1 — E2llpe + [[o(E1) — o(E2)| 12 | B2l poe
< C([I1Ell g2 |1 B2l g2 5 ) 1 B1 — Eal 1> -

(b) In the H2-norm we have by (A.6), (A.11), and (A.12)

lo(Ev)Ey = 0(E2) ol gz < llo(EV)| g2 | Er — Eall gz + [0(Ex) — 0 (E2)l| g2 [| B2l g2
<C(IE g2 1Bl g2 ) |1 By = Bl g -

(c) In the H3-norm we have

|o(E1)Er — 0(E2)Esl s < ||o(E1)ll s |1Er — Eallgs + llo(Er) — o (E2) | gs | Bl s
< C(IB s N B2l ggs > ) 1By — Eall s -
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B.4 Differentiability of the semilinear term

In this section we discuss Assumptions 7.2 and 7.22. We restrict ourselves to the boundedness of the
formally obtained derivatives. However, we note that continuity is achieved by the precise same compu-
tations and in (A.20), (A.22), and (A.24) we have shown how to conclude differentiability from this.

Further we introduce the notation

c™(H") = c™([0,T], H*(Q)), k,m>0.

Wave equation

We recall g, v1 and 2 from (B.1), g from (7.5) and set

@<t>=(%(t)i%(t>>, O =000 RD) = nlta®.d®). (B3

Lemma B.3. For g given in (B.3) with the regularity given in (5.5) Assumption 7.2 is satisfied.
Proof. Tt is sufficient to prove for ¢ € C*(H') N C1(H?) N C(H?) that for i = 1,2
(a) t = Ai(t) is C([0, T, H(Q)),
(b) t—F;(t) is C2([0, T, L*()).
i =1: We first compute
*at:?l(t) :K//I( )( 1)3 +2[{1/( ) o (B.4)
_8t2 (t) K(4) (q/) K/// 3(q/)2q//
+ 2K///(q>( ) q _"_ 2K//(q) (q//) + 2K//( ) i
(a) We have for ¢ € C2(H') N C(H?) N C(H?) by (A.5)

oA O 1 < 1K (@)(a)°[| 12 + 125" (@)a'a" | g1
< CIK" (@l 14722 + CNI2K" (@) | g2 0" | s
< Cllallg=) (1 132 + 19/ 12 llg” N 1)

(b) If in addition ¢ € C3(L?), it holds by (A.1)
19531 (1) 2 < 1 V(@) (0) ] 2 + 51157 (@) (4)
L L L

+ 257 (@) (a") | + (125" (@)a'a” |

4 2 2
< C(llallgr2) (' [z + a2 Nla” s + la" s + gl = g™ [l =)

i = 2 : We first compute

02 (t) = O (:) + 0yr(-)qd + Ogr(-)q” (B.5)
97 (t) = 4 (-) + 0gr(-)q" + Byr(-)g"

+ 204 47(-)q" + 204,47(-)q"

+ 0y qr()(d) + 20407V d" + g () (¢")°
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(a) We have for ¢ € C2(H') N C*(H?) N C(H3) by (A.5), (A.9), and (A.11)

1072 (O g2 < N0 ()l g2 + 11047 () 2 + 1097 ()" | 1
< Cllall Mg ll =) (A4 1la g + Nl W) -

(b) If in addition ¢ € C3(L?), it holds by (A.3), (A.7), (A.9), and (A.11)

18232 ()| .o < 10eer() + 8gr()d” + B (-)g" | =
+20|0,47 (Vg + B gr()d" |
+ Haq,qr(')(q/)2 +205,47()d'q" + aq’,q’r(')(q”)2”L2
< C(llallyo N llgz=) (14 N grn + g o + 1l o + gl o
+ 1 Nz + g N N g + g N5 ) - =

Lemma B.4. For g given in (B.3) with the regularity given in (5.5) and with K € CS(R), Assump-
tion 7.22 is satisfied.

Proof. Tt is sufficient to prove for ¢ € C?(H?) that
(a) = 3u(t) is C1 (0, T, HA(®)) .
(b) ¢ Fu(t) is C2(0,T), H'() .
i =1: We use the representation in (B.4) for the following computations.

(a) We have for ¢ € C?(H?) by (A.6)

~ 3
10671 ()| 2 < | K" () (@) || o + 12K (0)'q" || 12
3
< Cllallg g lzr=) (N 2 + 1"l gz= Nl N gr2) -

(b) If in addition ¢ € C3(H?'), it holds with (A.5)

105301 < IE D@ @) |+ 51K @ (@) |+ 12K @ @) [ o + 1257 @' | 10

4 2 2
< Clllallg g llr=) (a2 + 1"z N W2 + Nl Wz + Nl N2 Mla™ N ) -

i = 2 : We use the representation in (B.5) for the following computations.

(a) We have for ¢ € C?(H?) by (A.6)

10720l g2 < 100 ()l g2 + 1047 (Vg Wl 2 + 1097 ()q" || 2
< C(llall g2 Mg =) (L + g gz + Nl N1 g72) -

(b) If in addition ¢ € C3(H?'), it holds by (A.5)

10772 8)|| 112 < 106,07 (-) + Bgr(-)g" + By (-) g || gy
+2|[0,qr(")a" + g7 ()a" || g1
P N2 20 Nod' -+ 0 (A2
+ H a7 ( )(q) +20g,¢7(1)d'¢" + q’,q”’()(q ) ||H1
< C(llallgz s lla =) (L + g N gz + lla” e + a2 + [la” | g2
2 2
10 [Tz + 16"l 2 10 12 + g [ r2) - O
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Maxwell’s equations

We recall g from (B.2), g from (7.5) and set
o [ Sy
g(t) = , o) =o(E@)E(®) (B.6)

Lemma B.5. For g given in (B.6) with the regularity given in (5.12) Assumption 7.2 is satisfied.

Proof. Tt is sufficient to prove for E € C*(H?) N C(H?)
(a) t—o(t) is CH([0,T], H*(R?)),

(b) t — a(t) is C%([0,T7], L*(R?)).

(a) We have for E € C*(H?) N C(H?) by (A.6)

15" Ol > < 0" (E@)E" (1), E@]ll = + o (E0)E(£)]] 2
<C(IEN g2 I1E | 572) -

(b) If in addition E € C?(L?), it holds by (A.4)
167 ()2 < o (E@)E' (), E'(t), EG)]ll > + 2| (E®)[E"(t), E'(®)]l 2 + o (E(®)E” ()]l .
< C(I1El g2 1B g2 1Bl 2) - H
Lemma B.6. For g given in (B.6) with o € C*(R?,R>3) Assumption 7.22 is satisfied.

Proof. Tt is sufficient to prove for E € C*(H?)

(a) t— o(t) is CH([0,T], H3(R3)),

(b) t— &(t) is C?([0,T], H*(R?)).

(a) We have for E € C'(H?) by the algebra property of H?3(R?)

15" W s < 0" (E@)E (), E@]l s + [lo(E@)E" ()] g
<C(IEN s I1E | g5) -

(b) If in addition E € C?(H?), it holds by (A.6)

18" (Ol g2 < llo” (BW)E' (1), E'(t), E@)]l| g2 + 2o (BO)E' (1), E'(6)]| g2 + |0 (E@) E” ()] g2
< C(IEl g2, 1B 2 1B | 2) - -
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B.5 Differentiability of the quasilinear term

In this section we discuss Assumptions 7.3 and 7.23 and again restrict ourselves to the boundedness of

the derivatives.

Wave equation
We recall the map

t A7) = A (u(t), we ' (0,T],Y)nC(0,T),2)

I 0 I 0
AL = = B.7
v (0 w> (0 A(q@») 7

Lemma B.7. For A= given in (B.7) with the regularity given in (5.5) Assumption 7.3 is satisfied.

and define

Proof. Tt suffices to prove for x € L?(Q) and y € H(Q) and ¢ € C?*(H') N C*(H?) N C(H3) that
(a) t+— A(q(t)x is C([0,T], L*(2))
(b) t = Ag(t))y is C*([0,T], H' (%))
(e) t= Aq(t))y is C*([0,T], L*()) -
We obtain the the expressions
O (q(t))y = N (a(t)d (t)y
DENa(t)z = X"(a(8) (¢ (1) + X (a(t)g" (t)z .
(a) We obtain the bounds by (A.1)
10:XM(g(8)2ll L2 < IN(a(D)d' Byl L2 < IN (@O e 19 12 N2l 22 < Cllallgr2) g gz N2l 2 -

(b) By (A.5) we have
1Ayl < IN (@) Oyl < Cllall =) gLz 9l -
(¢) Further, by (A.3) and (A.5) it holds
O2A(a()y] . < IV (@) (a'®)u]| 1o + 1IN (@) Byl 2
< Cllallg=) (19172 + Na" N grr) N9l O

Lemma B.8. For A= given in (B.7) with the regularity given in (5.5) Assumption 7.23 is satisfied.

Proof. 1t suffices to prove for z € H*(Q) and ¢ € C*(H') N C*(H?) N C(H?) that
(a) £ Alg(®))2 s C1((0,T], ()
(b) ¢ Mat)= is C2(0,T], ()
(a) With the the expressions in (B.8) we compute using (A.6)
19:Mq(®)) 2 2 < IV (@®)d' Oyl g2 < Cllgllgr2) 19 1 = 121 gy -

(b) By (A.5) and (A.11) it holds

1022 G®) = 1 < [N (@) (¢ (1) Y]l g + 1N (@) Oyl 11
< C(llgh =) (141722 + " zrs) 19l 7= - =
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Maxwell’s equations

First note that

ALt = (1“’1(”“) 0 ) - (’\E(E(t)) 0 ) (B.9)
0 T E®) 0 A (H(1))

Lemma B.9. For A= given in (B.9) with the regularity given in (5.12) Assumption 7.3 is satisfied.

Proof. Tt suffices to prove for z € L?(R?) and y € H2(R?) to show for E € C1(H?) N C(H?)
(a) t = Ag(E(t)z is C([0,T), L*(R3))
(b) t+— Ag(E(t))y is C*([0,T], H?(R3))
and, if in addition, £ € C?([0,T], L?(R?)) holds, then
(c) t— Ag(E(t))y is C%([0,T], L?(R?)) .
We differentiate to get
ONp(E(t)y = Ng(E()[E'(1), y] (B.10)

(a) We obtain by (A.4) the bound
10N E(E()z]| 2 = [[Ne(E®) [E' (), z]|| 12 < CUIEl g2) I |12 2]l 2

(b) Similar by (A.6) we have

10X (EE) Yl 2 < [[Ne(BE)[E' (1), 2] g2 < CUI1EIg2) 1B g2 1yl = -

(¢) If in addition, we assume E € C?(L?), we get

FNp(B(t)y = Np(B0)[E'(t), E'(t), y] + Ne(BE)[E"(1),y] - (B.11)
and by (A.4)
[OFAB(E®))yl| . < [[NE(E@)[E' @), B' (1), y]|| o + [[Ne(BEO)[E" (1), ]| 2
< CIE ) (1B e + 1B 12) 9]l = - O
Lemma B.10. For A~ given in (B.9) with P, M € C°(R3,R>?) Assumption 7.23 is satisfied.

Proof. 1t suffices to prove for z € H3(R3) to show for E € C'(H?)
(a) t— Ag(E(t)z is C1([0,T], H3(R?))

and, if in addition, E € C?([0,T], L?(R?)) holds, then

(b) =+ Ap(E(L)y is C*(0,T], H2(RS)) .

(a) With (B.10) we obtain the bound

10X (E(t)yll s < [[Ne(EWO)[E'(t), ][] ;75 < CUENgs) I | gza [Yll s -
(b) If we assume in addition E € C%(H?), we get with (B.11)

[OFAE(E®)y|| o < [[Na(E®) [E(1), E' (1), y][| o + [Ne(EO)E"(#),y] | 42
< C(IEl =) (1B W5z + 1B I z2) Nyl - =
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B.6 Miscellaneous

Bounds on the extrapolation error

Lemma B.11. The following estimates hold for u € C*([0,T),V):

3
N
I
£
—~
H~

<7y

[u(tniiy2) — 5 (Bu(t Dy

1
2
[u(tnii2) — 5 (Bu(t

3
~
\
g
—~
H~

||V < 37_2 HUN||V7<X> )

Proof. (a) We compute by the first-order Taylor approximation

IN

[ultnsry2) = 5 Bultn) — ultn=1))| x < [[ultnrrsz) —ult)]]y + 3 [ultn) — uta1)lly

/\

37 e + 37 191y o0

(b) For the second-order bound we expand with Taylor

tnt1/2
u(tpg1/2) = ultn) + / u'(s)ds
tn
n+1/2
tnt1/2
=u(ty,) + [(S — tn+1/2) ( )Ln+ 24 ( nt+1/2 — s)u (s)ds

tn

with

/2

2 2
IRally = | [ (5 =) tn+)ds|| < (55— 515" 10 lx e = 5 NN e -

O\L\JH

In the same manner we obtain

—T

Utn_1) = u(ty) — 7u'(t,) + /(77' —s)u”(tn + 5)ds

0
=u(ty) — 7u'(tn) + Ro

with

|32||V—H/ Jo'(tn+ ) ds|| < [rs+ 5157 10 e = 5 Il -

This gives us the assertion by

Jotnjo) 3 Bultn) ~ it < |s + 3Bally =723 1y 0



136 Appendix B. Quasilinear examples

Regularity of the initial data in Section 7.4

We briefly discuss the regularity of the initial datum with x = (ml, T2 )

1
qo(7) = =7 (@1 + 23) In(=In(p(at + 23))) + C1 (a7 + @5 — 1) + O,

which was defined for p € (0,1) on the ball B;(0) . We start with the partial derivatives of ¢o. Since the
function is symmetric in z; and zs we do not need to compute all of them. The first derivative is given
by

1
n(p(ei + x3)) p(xf + x3)

+ 2011‘1 .

1 1
Oz, q0(x) = —3% In(—1In(p(z3 + 23))) + Z(mf + x%)l 2px1 +2C 24

1 1 1
— —ZpIn(—1 2 2 Zpy—_
2I1 Il( Il(p(:Cl + $2))) + 2I1 hl(p(.i(}% + 3?%))

For the second derivative we need

1 1 1
2 qo(z) = —=In(—In(p(23 + 23))) + = ———5——5— + 2C
(0(w) = =5 I n(pa} +55)) 4 § s + 20
+ L L 2 + L L 2
571 pT1 T 51 pT1
2" In(p(z? + 23)) p(x? + 23) 27 In?(p(z2 4 22)) p(a? + 23)
1 1 1
= ——In(—In(p(z? + 22))) + = ————— + 20,
n 1 x? n 1 x?
In(p(z] +23)) (v +23)  In*(p(2} + 23)) (27 +23)
as well as
1 1 1 1 1 1
02,02, q0(7) = 571 2px0 + 11 2p2
e 2" In(p(a? + 23)) p(af + 23) 2" In*(p(a3 + 23)) p(aF + 23)
1 T1To 1 T1T2

T (oG +ad) W+ ad) | Wl (o(ed +4)) (o B

From this we directly obtain
1
Ory 02yt € L= (B1(0), 0,00 + 5 Im(=1n(p| - [*) € L¥(B1(0),  In(=In(p|-[*)) € L=(B1(0)),

where the last term is the one from (7.39).

In the next step we show that the second derivatives are still H!'-functions. We need the following
auxiliary result.
Lemma B.12. Let p € (0,1), k > 1, and define the function

1

D :B;(0) C R? = R, T
In™(p|z[?)|z|

Then it holds D € L*(B1(0)).
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Proof. We use polar coordinates to obtain

1
/ |D(x)|2dm:/ e du
B1(0) B(0) In*" (plz|?)|z|?

1

1 1
/—27% rdr
) 7 W (pr)

1

1
J r1In“"(pr?)

2

3

1
=
[(21: 1)111%1(,07“2)] .
7r
= < 00,
—(2k — 1) In**"*(p)
since p < 1 holds. O

From this we can conclude the following regularity of ¢o.

Lemma B.13. The function qq is in H3(B1(0)) and in particular it holds

1 1
02,02,40, 07,00 + 5 In(=In(p| - ), 5 In(=1In(pl - %)) € H'(B1(0)).

Proof. Computing all the derivatives, we observe that their absolute value is always dominated by a

multiple of the function D from Lemma B.12. O]

To summarize this, we have shown that qo is in H3(B1(0)) but not in W2°°(B1(0)). Assuming that
qo € H3T¢(B1(0)), would however imply go € W?2°°(B1(0)) by the Sobolev embedding, see [1, Thm. 7.34],

which is a contradiction.
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