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Abstract

This thesis is concerned with the time integration of certain classes of nonlinear evolution equations in
Hilbert spaces by exponential integrators. We aim to prove error bounds which can be established by
including only quantities given by a wellposedness result. In the first part, we consider semilinear wave
equations and introduce a class of first- and second-order exponential schemes. A standard error analysis
is not possible due to the lack of regularity. We have to employ appropriate filter functions as well as
the integration by parts and summation by parts formulas in order to obtain optimal error bounds. In
the second part, we propose two exponential integrators of first and second order applied to a class of
quasilinear wave-type equations. By a detailed investigation of the differentiability of the right-hand side
we derive error bounds in different norms. In the framework we can treat quasilinear Maxwell’s equations
in full space and on a smooth domain as well as a class of quasilinear wave equations. In both parts, we
include numerical examples to confirm our theoretical findings.
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1

CHAPTER 1

Motivation and Introduction

In the natural sciences many phenomena are modeled by ordinary (ODEs) and partial differential equa-
tions (PDEs). They arise from physical models and describe how certain processes take place. This
means that, once we know the solution of the differential equation, we have a precise knowledge of
what will happen in the considered system. In this thesis we focus on a specific class of PDEs, namely
wave-type problems, in particular on the wave equation and Maxwell’s equations. Wave equations model
for example the propagation of sound or the vibration of a membrane and the foundations of classical
electromagnetism are laid by Maxwell’s equations.

Because of these important applications, scientists and engineers have been encouraged for centuries
to predict the physical processes by finding the solutions of the given equations. For the specific models
this can sometimes be done even analytically, i.e., one can derive an explicit formula for the solution.
Typical strategies are separation of variables as well as the application of Fourier and Laplace transforms,
respectively.

However, in most cases such a direct approach is not possible and only an approximation of the exact
solution can be found. To do this on a computer, we need to turn the problems, which are continuous
in space and time, into finite dimensional problems. Often the method of lines technique is used where
first the spatial domain is discretized and the time variable remains continuous. This leads to a generally
large system of ODEs which in a second step has to be discretized in time. In this thesis we restrict
ourselves to the discretization in time and work in an abstract function space which is an important
first step towards the analysis of fully discrete methods. We note that for practical implementations a
discretization in space is necessary.

The thesis comprises two parts where we treat different classes of nonlinear evolution equations.
However, both parts share two common features:

We aim at error bounds that only rely on the regularity of the solution which can be directly derived
from the problem. This means given certain data of the problem, we first conclude uniqueness and
existence of a solution and derive its regularity and a priori bounds. This information then enters the
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error analysis where all appearing constants can be traced back to known data. This approach is usually
referred to as an error analysis in terms of the data.

Moreover, we only study exponential integrators which have become quite popular in the last decades.
They are constructed from the variation-of-constants formula and treat the linear part of the equation
exactly. Hence, more information of the exact solution is incorporated in the numerical method which
improves the numerical approximation even if the exact solution is not smooth.

1.1 Semilinear problems

In the first part we are interested in solving abstract wave equations such as for example the cubic wave
equation or the sine-Gordon equation. In particular, we study the time integration in an abstract Hilbert
space framework and focus on error bounds that can be established under physically realistic assumptions,
in particular finite-energy conditions.

If the equation is posed on a finite dimensional space, for example after the discretization by finite
differences, there is some literature available, see e.g., [35, Chap. XIII.] for an overview. García-Archilla,
Sanz-Serna and Skeel [21], Grimm and Hochbruck [30], Hochbruck and Lubich [38], and Sanz-Serna [66]
studied exponential (or trigonometric) integrators for such equations. These methods were shown to be
second-order convergent and unconditionally stable, i.e., the constants do not depend on the Lipschitz
constant of the discretized differential operator. Remarkably, the error analysis is performed under a
finite-energy condition only and does not make use of bounds on the second time derivative. The key
ingredient are certain matrix functions that act as filters which remove resonances in the local error. If
these filters are chosen appropriately, they ensure cancellations in the global error such that the local
error is of the same order as the global error.

In the recent paper [8] by Buchholz et al. and the PhD thesis [10] by Buchholz, a completely new
technique was introduced to prove and extend the above mentioned results in the ODE case. The
trigonometric integrator was reformulated as a Strang splitting applied to a modified problem and the
proof was divided into two steps. First, the error introduced from the modified problem is bounded.
Afterwards, using ideas from [46] by Jahnke and Lubich and [54] by Lubich, a specific representation
of the defect was derived that separates terms of order three from the leading error terms which are of
order two. The order three terms are then summed up in the standard way and the filters are employed
for the leading error terms. In this way, a modified Lady Windermere’s fan argument together with the
above-mentioned cancellations lead to the global error of order two.

We close with a brief overview of further work on exponential integration schemes for the time inte-
gration of semilinear wave equations. Baumstark, Faou and Schratz [7] studied the time integration of a
sine-Gordon equation that depends on a parameter c→∞ which induces high oscillations in time. They
construct methods that allow for error bounds independent of c. A spatially discretized wave equation
with periodic boundary conditions is considered by Gauckler in [22]. The right-hand side is chosen as a
polynomial such that the smooth coefficients together with the algebra structure allow for optimal error
bounds. Gauckler et al. extended the approach in [23] to the quasilinear case. For linear and semilinear
evolution equations in [36, 37] exponential splitting methods are analyzed by Hansen and Ostermann
where the error bounds rely on commutator bounds of the splitting operators. Crouseilles, Einkemmer
and Massot [17] compare the stability of different types of exponential integrators applied to Vlasov-
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Poisson and drift-kinetic equations. In a recent preprint, Caliari et al. [13] apply rational exponential
integrators to hyperbolic and oscillatory PDEs.

Aim and main results

We present rigorous error bounds for the time discretization of abstract wave equations with exponential
integrators under low regularity assumptions on the data in the first part of this thesis. Due to this lack
of regularity we do not consider higher order methods. We note that most of the material has already
been published in [9].

The methods are constructed as follows. We introduce filter functions and replace the right-hand side
of the equation by a filtered variant which leads to an averaged equation. We then take an exponential
method, which we call the underlying scheme, and apply it to the averaged equation. This new method
is the averaged scheme which is analyzed in the first part of this thesis. For the underlying schemes
we refer to the papers by Celledoni, Cohen and Owren [15] and Hochbruck and Ostermann [39, 40] on
exponential Runge–Kutta methods, by Hochbruck, Leibold and Ostermann [45] on Lawson methods and
by Wang, Wu and Xia [71, 72] on extended Runge–Kutta–Nyström methods.

The analysis is performed on a whole scale of Sobolev spaces and covers different boundary conditions.
Thus, we can treat a large class of examples, and we included all computations to verify that they fit into
the abstract framework. In particular, our framework covers non-constant coefficients for the differential
operator and power bounded nonlinearities for which the admissible polynomial degree is determined
by the spatial dimension and the corresponding Sobolev embeddings. Most importantly, the framework
admits for a classical wellposedness result which is the only regularity that enters the constants in the
error bounds. Up to our knowledge this has only been done before by Gauckler [22] for periodic boundary
conditions where a far richer structure is available.

The error analysis applies to a large class of first- and second-order exponential integrators. For the
presented error bounds of the second-order methods we first provide a detailed characterization of the
filter functions, the averaged solution, as well as for the defects. This allows us to derive the estimates in
a unified way. Finally, we obtain the error bounds of the first-order methods under even lower regularity
assumptions for the approximation of mild solutions.

Outline

The first part of the thesis is organized as follows. In Chapter 2, we introduce the analytical framework,
discuss the wave equation in the second-order formulation and briefly illustrate it with an example. We
reformulate the equation as a first-order system and recall some basic semigroup theory which leads us
to a standard wellposedness result. We conclude this chapter by introducing a functional calculus for
skew-adjoint operators in Hilbert spaces.

We proceed with a review on exponential integrators in Chapter 3. We first explain the general
construction of such schemes and derive the two simplest methods of first order. Further, we present the
second-order methods which serve as the underlying schemes for our averaged methods.

The core of the first part is Chapter 4. We begin with an informal overview of the main concepts
appearing in the error analysis and sketch the main results. For the purpose of illustration we added
a numerical experiment and a class of examples which are covered by the presented theory. In the
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subsequent sections we refine the analytical framework, introduce the filter functions and estimate the
error stemming from the averaging procedure. We finally establish the desired error bounds for the
different methods in different norms.

All technical calculations which are necessary to fit the concrete examples into the abstract framework
are collected in Appendix A.

1.2 Quasilinear problems

The second part of the thesis is concerned with the time integration of the quasilinear evolution equations
posed in a Hilbert space by exponential integrators.

In a very general framework, Kato proved in [50, 51] the wellposedness of such equations. This
generality does not only cover symmetric hyperbolic system of first order, but also the wave equation,
the Kortweg-de Vries equation and many more interesting examples. In order to relax the assumptions
on the initial data and make the results of Kato easier to apply, the framework was refined in the PhD
thesis [61] by Müller with a focus on certain quasilinear wave and Maxwell’s equations. Due to the wide
range of applications of quasilinear equations in the modeling of different phenomena, a large literature
on their numerical treatment emerged over the last few years which we will present in the following.

We first mention the papers by Kanda [47], Kobayashi [52], and Takahashi [69], where the wellposed-
ness of general nonlinear evolution equations is studied. The aim was to construct solutions via difference
approximations which are in principle the implicit and semi-implicit Euler method. The nonlinear semi-
groups are generated by multi-valued, dissipative operators on some Banach space. For the special case
of quasilinear problems, Crandall and Souganidis [16] give a different proof of Kato’s results also via
difference approximations. However, the convergence rates in these papers are only of order 1/2. The
first results for the time integration of quasilinear hyperbolic problems with optimal order were derived
by Hochbruck and Pažur in [41]. They employed completely new techniques and proved error bounds
of order one for the mentioned variants of the Euler method. Building upon this, Hochbruck, Pažur
and Schnaubelt [44] and Kovács and Lubich [53] extended the techniques to coercive and algebraically
stable Runge–Kutta methods. A similar framework was used by Maier in the thesis [56] where finite
element methods were combined with the leapfrog method and Runge–Kutta schemes in order to prove
full discretization error bounds.

In the case of the one-dimensional quasilinear wave equation equipped with periodic boundary con-
dition, Gauckler et al. [23] used trigonometric integrators for the time integration. By a sophisticated
stability analysis, the authors proved second-order error bounds in time and further treated the full dis-
cretization with pseudo-spectral methods. The Westervelt equation in two and three dimensions was
studied by Antonietti et al. [6] and Nikolić and Wohlmuth [62] where the discretization in space was
performed with continuous and discontinuous Galerkin (dG) methods. Absorbing boundary conditions
for this equation were treated in [60] by Muhr, Nikolić and Wohlmuth. For parabolic problems, Casas
and Chrysafinos [14] combined linear finite elements in space with a dG method of order zero in time
and showed error bounds under low regularity assumptions.

Before we turn to our contributions, we emphasize the influence of the following two series of papers.
The original Kato framework was used by Kovács and Lubich in [53] and the refined Kato framework,
which is also the basis of our error analysis, was used by Hochbruck, Pažur and Schnaubelt in [41, 44].
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In these related frameworks, the time integration by algebraically stable and coercive Runge–Kutta
schemes was considered and error bounds were derived. In particular, their stability estimates were the
starting point for our stability analysis. The idea for the method and the idea how to represent the local
error comes mainly from the papers [26–28] by González and Thalhammer. They considered quasilinear
parabolic equations and constructed and analyzed several exponential integration schemes. However, the
analyticity of the semigroup is a key ingredient in their analysis such that we cannot apply it to wave-type
equations where the semigroup usually is generated by a skew-adjoint operator.

Aim and main results

In the second part of this thesis we present rigorous error bounds for the time discretization of quasilinear
wave-type evolution equations with exponential integrators. In this framework we treat quasilinear wave
equations and Maxwell’s equations simultaneously. We extend the framework of possible examples and
thus provide an extension of the wellposedness result by Müller [61] to more general right-hand sides.

We propose two exponential integrators which are of first and second order and derive error bounds in
different norms. Similar to the first part of the thesis our main error bounds only rely on the regularity
obtained from the wellposedness result. Compared to the methods from Hochbruck, Pažur and Schnaubelt
[41, 44] and Kovács and Lubich [53], we hence relax the assumptions on the regularity of the exact solution.
A key ingredient is the precise knowledge of the differentiability of the data evaluated at smooth functions,
which we formulate as assumptions. For the specific examples, we postpone the proofs to the appendix.

Up to our knowledge there are only two papers that treat exponential integrators for quasilinear
wave-type equations. Pototschnig et al. [64] consider an application from physical optics and perform
numerical experiments. Gauckler et al. [23] only treat the one-dimensional wave equation with periodic
boundary conditions. Hence, this is the first result concerning error bounds on exponential integrators
for this general class of quasilinear wave-type evolution equations.

Outline

The second part of the thesis is structured as follows. In Chapter 5, we introduce the analytical framework
and explain the two main examples fitting into it. All necessary assumptions for the error analysis are
presented in an abstract way in order to treat the examples at once. We conclude the chapter with the
extension of a known wellposedness result which is the foundation of the following error analysis.

Next, we review some numerical methods for quasilinear problems in Chapter 6. In the first two
sections, we present the methods for wave-type problems by Hochbruck, Pažur and Schnaubelt [41, 44]
and Kovács and Lubich [53] and for parabolic problems by González and Thalhammer [26–28]. Further,
we explain the error bounds derived by Gauckler et al. [23] for the special case of the quasilinear wave
equation in one spatial dimension. We also comment on a numerical comparison by Pototschnig et al.
[64] of exponential integrators and classical time integration schemes for quasilinear Maxwell’s equations
which clearly indicates that exponential integrators can be highly competitive.

Finally, in Chapter 7 we propose our new methods, state the main results and prove them in the
subsequent sections. Further, we provide a numerical example where we combine our methods with a
finite element method in space. As a possible further application of the technique used in the proofs we
establish error bounds also in stronger norms. However, they cannot be derived from the wellposedness



6 Chapter 1. Motivation and Introduction

result proven earlier but need additional regularity.
As in part I, we postpone the calculations to show that the wave equation and Maxwell’s equations

fit into the abstract framework to Appendix B.

Notation

In this section, we introduce the notation used throughout the thesis.

Differential operators Let Ω ⊆ Rd be some domain with d ∈ {1, 2, 3} and consider sufficiently smooth
functions f : Ω→ R and g : Ω ⊆ R3 → R3. We define for x =

(
x1 . . . xd

)
the gradient

∇f(x) =
d∑
i=1

∂xif(x) .

Further, for g =
(
g1, g2, g3

)T we define the divergence by

div g = ∂x1g1 + ∂x2g2 + ∂x3g3 ,

and the curl-operator by

curl g =


∂x2g3 − ∂x3g2

∂x3g1 − ∂x1g3

∂x1g2 − ∂x2g1

 .

The Laplacian ∆ is given by

∆f = div
(
∇f
)

=
d∑
i=1

∂2
xif .

Spaces For Banach spaces X,Y , ‖·‖X denotes the norm on X and L
(
X,Y

)
the set of all bounded

operators T : X → Y equipped with the standard operator norm ‖T‖Y←X . We use the abbreviation
L
(
X
)

:= L
(
X,X

)
. If X is a Hilbert space 〈·, ·〉X denotes the scalar product on X.

We denote for a radius r > 0 the ball around zero in X by

BX(r) := {x ∈ X | ‖x‖X ≤ r} ,

and if X can be written as a product X = X1 ×X2 we denote by denote by πi : X → X the projection
onto the i-th component of the product space X, i = 1, 2, i.e., for x =

(
x1, x2

)T ∈ X
π1x =

(
x1

0

)
, π2x =

(
0
x2

)
.

Further, Ck(X,Y ) is the space of all k-times Fréchet-differentiable functions from X to Y . We write
W k,p(Ω), k ∈ N0, 1 ≤ p ≤ ∞, for the Sobolev space of order k with all (weak) derivatives in Lp(Ω) and
abbreviate Hk(Ω) := W k,2(Ω). For multi-indices α, β ∈ N` we write α ≤ β if αi ≤ βi for all i = 1, . . . , `.

Calculus on Banach spaces We use several times the theory of differentiation and integration in
Banach spaces. We refer the reader to [4, Section IV.3] for results concerning the differentiation. Since
all integrals can be understood as Riemann integrals, the necessary theory can be found in [5, Chapter
VI].
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Part I

On averaged exponential integrators
for semilinear wave equations with

solutions of low regularity
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CHAPTER 2

Analytical framework - semilinear problems

In this chapter we lay the foundations of the first part of this thesis. After recalling some basic facts from
functional analysis, we introduce the semilinear wave equation in first- and second-order formulation. The
last section contains the most important properties of the functional calculus for self-adjoint operators.

Since we deal with differential operators, we need to extend the classical operator theory concerning
bounded linear operators. The proper generalization is given by closed linear operators. Such operators
A are in general not defined on the full space but rather only on a subset D(A) of a Hilbert space X
which we call the domain of A. We further say that an operator is densely defined if D(A) = X holds.

Definition 2.1. Let A : D(A) ⊆ X → X be a linear operator. We call A a closed operator if the following
implication holds:

For any sequences (xn)n in D(A) and (yn)n in X given by yn := Axn with

xn → x and yn → y

for some x, y ∈ X it holds
x ∈ D(A) and Ax = y .

For such operators one can also define the adjoint operator. This has to be done slightly more carefully
compared to the bounded operator case.

Definition 2.2. Let A : D(A)→ X be a closed, linear and densely defined operator and consider the set

D(A∗) := {y ∈ X | ∃z ∈ X : 〈Ax, y〉X = 〈x, z〉X} .

(a) We define A∗ : D(A∗) → X for any y ∈ D(A∗) by A∗y := z. Note that z is unique and the map is
well-defined. We call A∗ the adjoint of A.

(b) A is called self adjoint if D(A∗) = D(A) and A∗ = A.
(c) A is called skew adjoint if D(A∗) = D(A) and A∗ = −A.
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This next definition recalls the well-known concepts of the spectrum and the resolvent set.

Definition 2.3. Let A : D(A)→ X be a linear, closed operator.
(a) The resolvent set of A is given by

ρ(A) := {λ ∈ C | λI −A : D(A)→ X is invertible} .

(b) The spectrum of A is given by σ(A) := C \ ρ(A).
(c) The operator A is called strictly positive if there is some cA > 0 such that 〈Ax, x〉X ≥ cA ‖x‖2X .

We finally introduce the concept of compact operators which often appears in the context of embed-
dings.

Definition 2.4. Let T : Y → X be a linear operator. We call T a compact operator if the following holds:
For any bounded sequence (yn)n in Y , there exists a subsequence (ynj )j such that the sequence (Tynj )j
converges in X.

2.1 Wave equation

The equation of interest in this first part of the thesis is the semilinear wave equation. We naturally
consider it in a second-order formulation. Hence, we present the equation and all imposed assumptions
on the data in this formulation. Since we prove a wellposedness result with the aid of semigroup theory,
we reformulate the equation afterwards as a first-order system. In addition, all methods we propose for
the time integration are applied to this formulation and we therefore also translate the assumptions into
this setting.

2.1.1 Second-order formulation

Let H be a real, separable Hilbert space and L : D(L) ⊆ H → H be a strictly positive, self-adjoint
operator. By [67, Prop. 5.13] we define L1/2 as the unique, strictly positive, self-adjoint operator that
satisfies L1/2L1/2 = L and may hence introduce the intermediate space

V = D(L1/2) with D(L) ↪→ V ↪→ H, ‖v‖V =
∥∥L1/2v

∥∥
H , (2.1)

with dense and continuous embeddings. In particular, we assume the existence of a constant Cemb such
that the following bounds hold

‖v‖H ≤ Cemb ‖v‖V , v ∈ V, ‖q‖V ≤ Cemb ‖q‖D(L) , q ∈ D(L) . (2.2)

In the first part of this thesis we consider the abstract second-order evolution equation

q′′(t) = −Lq(t) +G(t, q(t)), t ∈ [0, tdef ], q(0) = q0, q′(0) = q′0, (2.3)

in H and use the spaces above to reformulate it as a first-order system. In order to illustrate the abstract
framework considered in the rest of the first part, we present a class of examples of semilinear wave
equations.
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Example 2.5 ([9, Example 3.1]). We consider the semilinear evolution equation (2.3) in the following
setting:
(a) ∅ 6= Ω ⊆ Rd is a convex, bounded Lipschitz domain with d ∈ {1, 2, 3}.
(b) L = −div(A∇) with uniformly positive definite A ∈ L∞(Ω)d×d.
(c) For g : [0, tdef ] × Ω × R → R there is some α = (αt, αx, αy) ∈ N3 such that all partial derivatives

∂βg, β ≤ α, exist, are continuous in t and y and bounded in x.
(d) There is γ > 1 and a constant Cg > 0 such that for all (t, x, y) ∈ [0, tdef ]× Ω× R we have

|g(t, x, y)|, |∂tg(t, x, y)| ≤ Cg
(
1 + |y|γ

)
,

|∂yg(t, x, y)| ≤ Cg
(
1 + |y|γ−1) .

For the corrected Lie Splitting (3.14) we assume in addition

|∂yyg(t, x, y)| ≤ Cg
(
1 + |y|γ−1) .

For (t, x) ∈ [0, tdef ]× Ω and q ∈ V we define

G(t, q)(x) := g(t, x, q(x)).

The most common examples fitting into this framework, are in d = 1, 2, 3 on H = L2(Ω) the cubic
wave equation with L = −∆ and g(q) = q3 or the Sine-Gordon equation with g(q) = sin(q). In Table 4.1,
we provide a detailed list of criteria such that the error analysis presented in this part of the thesis can
be conducted.

2.1.2 First-order system

In order to prove a wellposedness result for (2.3) we formulate it as the first-order system

u′(t) = Au(t) + f(t, u(t)), u =
(
q

v

)
, (2.4)

with

A =
(

0 I

−L 0

)
, f(t, u) =

(
0

G(t, q)

)
, (2.5)

on the separable Hilbert space X = V ×H with inner product

〈u1, u2〉X = 〈q1, q2〉V + 〈v1, v2〉H .

The wave operator A is given on its domain D(A) = D(L)× V which allows for the following properties.
The first one, see for example [19, Section VI.3.c], is crucial for the wellposedness of (2.4) as we see in
the next section.

Lemma 2.6. The operator A : D(A)→ X is skew adjoint.

Proof. It is clear that for u ∈ D(A) it holds

〈Au, u〉X = −〈u,Au〉X ,
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i.e., A is skew-symmetric. Hence, it suffices to prove that I ± A : D(A) → X is surjective, see [73, Satz
VII.2.8]. Given any y =

(
y1, y2

)T ∈ X we seek u =
(
q, v

)T ∈ D(A) such that

(
I +A

)
u = y ⇐⇒

(
q + v

v − Lq

)
=
(
y1

y2

)

holds. Substituting the first equation in the second gives(
I + L

)
q = y1 − y2 ∈ H ,

which has a solution q ∈ D(L). Setting v = y1 − q ∈ V gives surjectivity for I + A. The case I − A is
fully analogous.

In many cases the embeddings in (2.1) are compact maps which makes the later appearing functional
calculus more intuitive. In the next result we explain how this transfers to the first-order formulation,
cf. [65, Lemma 9.20].

Lemma 2.7. If the embeddings in (2.1) are compact, A has a compact resolvent.

Proof. Take any sequences (un)n in D(A) and (yn)n in X with

Aun = yn and ‖yn‖X ≤ C for all n ∈ N .

We then have to prove that there exists a converging subsequence (unj )j in X. Looking at the single
components we have

un =
(
qn

vn

)
, yn =

(
y1,n

y2,n

)
,

(
vn

−Lqn

)
=
(
y1,n

y2,n

)
.

Since we have ‖vn‖V = ‖y1,n‖V ≤ C, there is a subsequence converging in H and hence there is some
v ∈ H such that

vnj → v in H, j →∞ ,

holds. Further, by
∥∥qnj∥∥D(L) =

∥∥y2,nj
∥∥
H ≤ C and the compact embedding into V we may extract

another converging subsequence and conclude the assertion.

In the error analysis we also prove convergence in the stronger norm

‖u‖D(A) := ‖Au‖X .

The following lemma states that ‖·‖D(A) is indeed a norm and is equivalent to the standard graph norm.

Lemma 2.8. For u ∈ D(A) and Cemb from (2.2) it holds

‖u‖X ≤ Cemb ‖Au‖X .

Proof. For u =
(
q, v

)T ∈ D(A) we have by (2.2)

‖u‖2X = ‖q‖2V + ‖v‖2H ≤ C
2
emb
(
‖q‖2D(L) + ‖v‖2V

)
= C2

emb ‖u‖
2
D(A) ,

and hence the assertion is shown.
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2.2 Wellposedness results

In this section we consider the theory of linear and semilinear evolution equations. To simplify the
presentation, we restrict ourselves to wave-type equations in Hilbert spaces. All results can be found in
the monographs [19, 58, 63].

2.2.1 Linear, inhomogeneous evolution equations

A preliminary step towards the semilinear equations studied in the numerical analysis is the careful
treatment of the inhomogeneous evolution equation

u′(t) = Au(t) + f(t), u(0) = u0 , (2.6)

which is done in two steps.

The homogeneous case

In the first part we investigate the homogeneous evolution equation

u′(t) = Au(t), u(0) = u0 , (2.7)

in some Hilbert space X. If X is finite dimensional and A ∈ Cn×n, it is well-known that the solution of
(2.7) is given by

u(t) = etAu0, etA =
∞∑
k=0

tk

k!A
k , (2.8)

and that the series is absolutely convergent by the boundedness of A. Obviously, this construction cannot
be done in the case of an unbounded operator A. In the following we will generalize the solution theory
of (2.7) to this case.

Definition 2.9. Consider a family
(
T (t))t≥0 of bounded linear operators on X. We call

(
T (t))t≥0 a

strongly continuous semigroup or C0-semigroup if the following properties are satisfied:
(a) T (0) = I,
(b) T (t)T (s) = T (t+ s) for all t, s ≥ 0,
(c) lim

t→0
T (t)x = x for all x ∈ X.

It is easily verified that the family etA from (2.8) satisfies all conditions from Definition 2.9. Given
this family we can get back the matrix A by the representation

A = d

dt
etA
∣∣∣
t=0

.

This can be used in order to extract an operator from any given semigroup which is called the generator.

Definition 2.10. Let
(
T (t))t≥0 be a C0-semigroup on a Hilbert space X. We define the set

D(A) := {x ∈ X | lim
h→0+

1
h

(
T (h)x− x

)
exists in X}

and define for x ∈ D(A) the operator

A : D(A)→ X, x 7→ lim
h→0+

1
h

(
T (h)x− x

)
,

called the infinitesimal generator of the semigroup
(
T (t))t≥0.
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We present some useful results on semigroups and their generators, see, e.g., [19, Chapter II].

Proposition 2.11. Let
(
T (t))t≥0 be a C0-semigroup on a Hilbert space X and A : D(A)→ X its gener-

ator. Then the following assertions hold:
(a) The operator A is closed and D(A) is dense in X.
(b) The map t 7→ T (t)x is continuous from [0,∞) to X for all x ∈ X.
(c) There exist M ≥ 1 and ω ∈ R such that ‖T (t)‖X←X ≤Meωt.
(d) For x ∈ D(A) it holds T (t)x ∈ D(A) and

d

dt
T (t)x = AT (t)x = T (t)Ax, t ≥ 0 .

From the last point it is clear that for u0 ∈ D(A) the function

u(t) := T (t)u0

satisfies u ∈ C1([0,∞), X) ∩ C([0,∞),D(A)) and solves (2.7).

Proposition 2.12. Let
(
T (t))t≥0 be a C0-semigroup on a Hilbert space X and A : D(A)→ X its gener-

ator. Further, let M ≥ 1 and ω ∈ R such that ‖T (t)‖X←X ≤Meωt holds.
If Reλ > ω, then λ is in the resolvent set ρ(A) and it holds∥∥(λI −A)−n∥∥

X←X ≤
M(

Reλ− ω
)n , n ≥ 1 .

With this proposition, we can prove one of the most important theorems going back to Hille and
Yosida which gives a characterization whether an operator is a generator of a semigroup.

Theorem 2.13 (Hille-Yosida). Let A : D(A) → X be a linear operator in a Hilbert space X and take
M ≥ 1 and ω ∈ R. Then A is the generator of a semigroup satisfying ‖T (t)‖X←X ≤Meωt if and only if
the following is satisfied:
(a) A is closed and D(A) is dense in X
(b) For any λ with Reλ > ω it holds λ ∈ ρ(A) and∥∥(λI −A)−n∥∥

X←X ≤
M(

Reλ− ω
)n , n ≥ 1 .

We further mention one important subclass of strongly continuous semigroups, the so-called C0-groups.
We obtain them if we replace in Definition 2.9 t ≥ 0 by t ∈ R and t, s ≥ 0 by t, s ∈ R. A C0-group
is called unitary if one can choose M = 1 and ω = 0. An example for such an generator is the wave
operator in (2.5) as can be seen from the next result.

Theorem 2.14 (Stone). Let A : D(A) → X be a linear, densely defined operator. Then A generates a
unitary C0-group if and only if A is skew adjoint.

The inhomogeneous case

In the next section we turn to the inhomogeneous evolution equation (2.6) and assume throughout that
A is the generator of a strongly continuous semigroup and change the notation to T (t) = etA. The main
goal of this section is to find solutions to (2.6) and we hence clarify what a solution is.
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Definition 2.15. (a) We call u a classical solution of (2.6) on [0, t∗) if u solves (2.6), u(0) = u0, and

u ∈ C1([0, tend], X) ∩ C([0, tend],D(A)) (2.9)

for any tend < t∗.
(b) Let f ∈ C([0, tdef ], X), then the function u ∈ C([0, tdef ], X) defined by

u(t) = etAu0 +
t∫

0

e(t−s)Af(s) ds (2.10)

is called a mild solution of (2.6). One often refers to (2.10) as the variation-of-constants formula.

We note that every classical solution of (2.6) is also a mild solution and, since the mild solution is
uniquely defined by (2.10), classical solutions must be unique as well. On the other hand, if there exists
a classical solution it must be given by (2.10). Hence, we need to study whether a mild solution is also a
classical one. The answer can be given in terms of the regularity of f and u0.

Proposition 2.16. Let u ∈ C([0, tdef ], X) be the mild solution of (2.6). If u0 ∈ D(A) and one of the
two conditions

(a) f ∈ C1([0, tdef ], X) , (b) f ∈ C([0, tdef ],D(A)) ,

is satisfied, then u is the classical solution of (2.6).

2.2.2 Semilinear evolution equations

We now turn to the actual equation of interest given by the semilinear evolution equation

u′(t) = Au(t) + f(t, u(t)), u(0) = u0 , (2.11)

where A is the generator of a strongly continuous semigroup. The final task of this section is to give
sufficient conditions on f in order to obtain a classical solution of (2.11) in the sense of Definition 2.15.
We start with a crucial observation. Assume that we have a solution u ∈ C1([0, tend], X) and define

g(t) := f(t, u(t)) .

Then u is also the solution of the inhomogeneous problem (2.6) with f replaced by g and hence we obtain
by (2.10) the variation-of-constants formula in the form

u(t) = etAu0 +
t∫

0

e(t−s)Af(s, u(s)) ds . (2.12)

We again denote a function u ∈ C([0, tend], X) satisfying (2.12) a mild solution to (2.11). As before we
see that every classical solution of (2.11) also is a mild solution. We first state a result [63, Thm. 6.1.2,
6.1.4] that guarantees the existence of mild solutions and close with the final theorem on the existence
of classical solutions.
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Theorem 2.17. Let A : D(A)→ X be the generator of a strongly continuous semigroup and let u0 ∈ X.
(a) If f : [0, tdef ] ×X → X is globally Lipschitz continuous, then (2.11) has a unique mild solution on

[0, tdef ].
(b) If f : [0, tdef ]×X → X is locally Lipschitz continuous, then there is a t∗ ≤ tdef such that (2.11) has

a unique mild solution on [0, t∗).

The proof is performed via a fixed-point argument using the representation in (2.12). This theorem
directly implies the uniqueness of the classical solution. Hence, as before it remains to decide if the mild
solution also is a classical one.

Theorem 2.18 ([63, Thm. 6.1.5]). Let A : D(A)→ X be the generator of a strongly continuous semigroup
and let u0 ∈ D(A). Further, let f ∈ C1([0, tdef ] ×X,X) be locally Lipschitz continuous. Then the mild
solution of (2.12) on [0, t∗) is also a classical solution. Hence, for every 0 < tend < t∗ there exists a
constant K > 0 with

max {‖Au(t)‖X , ‖u
′(t)‖X} ≤ K, t ∈ [0, tend]. (2.13)

In the following we refer to (2.13) as the generalized finite-energy condition.

Remark 2.19. The addition generalized is due to the fact that the finite-energy condition refers in
the literature to quantities of the form∥∥∇q(t)∥∥2

L2 + ‖q′(t)‖2L2 ≤ K2 ,

which is only a special case of our framework. We comment on this in Section 4.2.2.

2.3 Functional calculus for skew-adjoint operators on Hilbert
spaces

In this section we sketch the construction of a functional calculus which we need later for the construction
of the filters. We briefly explain the finite dimensional case to illustrate a general functional calculus.

We follow the monograph [67] and first present the case of a continuous spectrum and afterwards
explain the simplification in the case of a compact resolvent.

2.3.1 Example: The finite-dimensional case

As a first step we treat the finite dimensional case of symmetric and skew-symmetric matrices. For such
a matrix B we have a decomposition with a unitary matrix U of the form

B = UDUH , D = diag
(
λ1, . . . , λn

)
,

where λi ∈ σ(B) are the eigenvalues of B. Now given any function f that is defined on the spectrum
σ(B), we may define

f(B) := Uf(D)UH , f(D) := diag
(
f(λ1), . . . , f(λn)

)
.

Hence, one can think of this functional calculus as a manipulation of the spectrum. However, such a
decomposition is usually not available in the infinite dimensional case and we need a more involved theory
in order to construct functions applied to operators.
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2.3.2 The general case

In the following we present a functional calculus for skew-adjoint operators in Hilbert spaces. Such
operators have their spectrum on the imaginary axis. Therefore, we may restrict ourselves to the function
space

Cb (iR) := {h : iR→ C | h is continuous and ‖h‖∞ <∞ } .

One can actually treat a larger class of functions, but we avoid these technicalities since the given set is
sufficient for our purposes.

The construction of the functional calculus is also based on a decomposition of the skew-adjoint
operator A given by so-called spectral measures, see for example [67, Chapter 4]. We will not further
comment on this, but only state the most important properties. To this end we need the two functions
defined for z ∈ iR

1(z) = 1, rλ(z) = 1
λ− z

, λ ∈ C \ iR ,

which both lie in Cb (iR).

Theorem 2.20. Let A : D(A) → X be a skew-adjoint operator on a separable Hilbert space X. Then
there is a map

ΨA : Cb (iR)→ L
(
X
)
, h 7→ h(A),

which satisfies the following properties for g, h ∈ Cb (iR):
(a) ΨA is linear,
(b) 1(A) = I and rλ(A) =

(
λ−A

)−1 for λ ∈ C \ iR,
(c) ‖h(A)‖X←X ≤ ‖h‖∞,
(d) (gh)(A) = g(A)h(A),
(e) For x ∈ D(A) it holds h(A)x ∈ D(A) and Ah(A)x = h(A)Ax.
(f) If h̃ : z 7→ zh(z) ∈ Cb (iR), then for any x ∈ X it holds

h(A)x ∈ D(A), h̃(A)x = Ah(A)x.

Proof. All statements can be found in [67, Theorem 5.9] for the case of self-adjoint operators where
one might neglect the closure of the operators as they are already closed by our restriction to bounded
functions. In order to obtain the skew-adjoint case we simply consider the self-adjoint operator

B := −iA : D(A)→ X

and use the functional calculus ΨB : Cb (R) → L
(
X
)
for unbounded, self-adjoint operators. We obtain

the desired functional calculus by setting for h ∈ Cb (iR)

ĥ(z) := h(iz), z ∈ R, h(A) := ĥ(B)

since ĥ ∈ Cb (R) holds. This gives the functional calculus for unbounded, skew-adjoint operators.

In the special case of an analytic function h satisfying h(z) = h(−z) and the wave operator A given
in (2.5) a formal computation would lead to a block diagonal operator h(A), for example using a power
series expansion of h. As this property is needed in the proofs later, we will confirm this property in the
following proposition.
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Proposition 2.21. Let h ∈ Cb (iR) be an even function, i.e., h(z) = h(−z) for z ∈ iR, and assume that

lim
x→±∞

h(ix) = 0

holds. Further, consider the wave operator from (2.5). Then, for the projections πi, i ∈ {1, 2}, onto the
i-th component and x ∈ X it holds

πix = 0 implies πih(A)x = 0 .

Proof. We prove the assertion by an approximation argument. By [70, Section 1.6] we find a sequence
of even rational functions (hn)n that convergence uniformly on iR to h. Hence, by the continuity of πi
it is sufficient to prove the result only for the functions hn. Now fix n ∈ N, and since h tends to zero at
infinity we may decompose hn as a finite product of functions of the type

φ(z) = α+ βz2

γ − z2 , z ∈ iR .

A direct calculation gives the assertion for φ and iteratively for the product hn which closes the proof.

2.3.3 Case of a compact resolvent

If the embeddings in (2.1) are compact, we deduced in Lemma 2.7 that A has a compact resolvent. Hence,
the spectral theorem yields that A admits an orthonormal basis of eigenvectors

(φk)k∈M , Aφk = iλkφk, φk ∈
⋂
j∈N
D(Aj) ,

where M ⊆ N and λk ∈ R. Any x ∈ X can thus be represented as

x =
∑
k∈M

αkφk, αk = 〈x, φk〉X ,

with the equivalence
x ∈ D(A) ⇐⇒

∑
k∈M

|λkαk|2 <∞ .

This enables us to define the following functional calculus on the set Cb (iR) very elegantly by

ΨA : Cb (iR)→ L
(
X
)
, h 7→


h(A) : X → X

x =
∑
k∈M

αkφk 7→ h(A)x =
∑
k∈M

h(iλk)αkφk
,

which is then fully analogous to the finite dimensional case.
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CHAPTER 3

Review on exponential integrators

In this chapter we recall the general idea and the construction of exponential integrators. Further, we
present all the underlying methods covered in the latter error analysis. Since we are not concerned with
classical integration schemes as for example Runge–Kutta methods, we do not review them, but only
explain the most important differences. We will first consider methods of order one, as they illustrate
the basic ideas of exponential integrators nicely. Afterwards we turn to second-order methods which will
be of most interest in Chapter 4.

To begin with, we briefly recall the variation-of-constants formula already introduced in (2.12)

u(t) = etAu0 +
t∫

0

e(t−s)Af(s, u(s)) ds .

which was the formula any solution of (2.4) has to satisfy. Note that the formula reduces to the funda-
mental theorem of calculus by setting A = 0 and one obtains

u(t) = u0 +
t∫

0

f(s, u(s)) ds .

From this, many numerical integration schemes can be derived discretizing the integral term in a suitable
way. This leads for example to Runge–Kutta or Adams–Bashforth methods. We now pursue the same
idea but applied to the integral term in (2.12).

In the following we need the ϕ-functions which are defined for z ∈ C as

ϕk+1(z) :=
1∫

0

e(1−s)z s
k

k! ds, k ≥ 0 . (3.1)

With the definition ϕ0(z) = ez they also satisfy the recursion

ϕk+1(z) = 1
z

(
ϕk(z)− 1

k!

)
, z 6= 0, k ≥ 0 . (3.2)
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3.1 Methods of order one

We now explain the two simplest ways to construct a numerical integrator from (2.12). To this end fix
some stepsize τ > 0 and replace t by τ in the variation-of-constants formula. The first idea is to freeze f
in the integral at (0, u0) and to obtain the approximation

u(τ) = eτAu0 +
τ∫

0

e(τ−s)Af(s, u(s)) ds

≈ eτAu0 +
τ∫

0

e(τ−s)Af(0, u(0)) ds

= eτAu0 + τϕ1(τA)f(0, u0) ,

(3.3)

with ϕ1 from (3.1). Using the notation tn = nτ and fn = f
(
tn, un

)
, the idea in (3.3) leads to the

exponential Euler method

un+1 = eτAun + τϕ1(τA)fn , (3.4)

from which we already observe some properties of exponential integrators. The coefficients of the method
are analytic functions evaluated at the operator τA. This means that the unbounded part of the evolution
equation is incorporated in the numerical scheme and the approximation mainly takes place in the „nice“
part of (2.12). In particular, we can see from the calculations in (3.3) that the method (3.4) is exact if
f is constant.

The second possible choice is a weakened version of the idea above and tends somehow more in the
direction of the classical methods that use the fundamental theorem of calculus. It starts with the varia-
tion-of-constants formula (2.12) but approximates the whole integrand. One example is to do this at the
left boundary as it is done for the explicit Euler method which results in

u(τ) ≈ eτAu0 +
τ∫

0

eτAf(0, u0) ds

= eτAu0 + τeτAf(0, u0) .

We obtain the following method which we call the Lie Splitting

un+1 = eτAun + τeτAfn = eτA
(
un + τfn

)
. (3.5)

The name is motivated from the second representation in (3.5). We mention that this method is in
general not exact for constant f .

These two methods are the simplest exponential integrators and are of stiff order 1 if applied to a
sufficiently smooth solution. One can view them as prototypes of how to construct exponential integrators
from (2.12).

3.2 Methods of order two

There is a rich literature on how to construct also higher order schemes from the presented first-order
method. But since we want to conduct the error analysis only with respect to data, we restrict ourselves
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to schemes of order less or equal 2. Whereas the methods of order 1 are applicable to general first-order
systems, we now consider the first-order equation (2.4) only with the special structure given in (2.5).
This is essential since we make repeated use of the maps πi : X → X, i = 1, 2, which are the projection
onto the i-th component of the product space X. We present these methods in the following.

3.2.1 A general class of second-order exponential methods

Since we will consider a whole class of second-order methods in this thesis, we cast them in the following
abstract formulation and exemplify it in the next sections. The coefficients a, B̂i, Bi are elements of
Cb (iR) which will also be specified below for the different methods. For a node c2 ∈ (0, 1] using the
additional notation tn+ξ = tn + ξτ and fn+c2 = f

(
tn+c2 , Un

)
we consider the schemes in the explicit

formulation

Un = ec2τAun + c2τa(c2τA)fn , (3.6)

un+1 = eτAun + τ
(
π1
(
B̂1(τA)fn + B̂2(τA)fn+c2

)
+ π2

(
B1(τA)fn +B2(τA)fn+c2

))
,

or in the implicit formulation

Un = ec2τAun + c2τa(c2τA)fn+c2 , (3.7)

un+1 = eτAun + τ
(
π1
(
B̂1(τA)fn + B̂2(τA)fn+c2

)
+ π2

(
B1(τA)fn +B2(τA)fn+c2

))
.

We assume that the coefficients satisfy the conditions

a(z) = a0 + za1(z) ,

B̂1(z) + B̂2(z) = ϕ1(z) + z2 ρ̂(z) ,

B1(z) +B2(z) = ϕ1(z) + z2 ρ(z) ,

c2B̂2(0) = c2B2(0) = 1
2 ,

(3.8)

where also a1, ρ̂, ρ ∈ Cb (iR). As we will see below, the conditions in (3.8) can lead to second-order error
bounds. Further, the class of methods with ρ̂ = ρ = 0 can be treated differently in the error analysis.

We now proceed and investigate the range of application of the schemes (3.6) and (3.7).

Exponential Runge–Kutta schemes We first consider general two-stage exponential Runge–Kutta
methods. They are of the form

Un = ec2τAun + c2τϕ1(c2τA)fn ,

un+1 = eτAun + τ
(
b1(τA)fn + b2(τA)fn+c2

)
,

(3.9)

and are obtained from (3.6) letting B̂i = Bi = bi, i = 1, 2 and a(z) = ϕ1(z). If the coefficient functions
b1, b2 satisfy

b1(z) + b2(z) = ϕ1(z), c2b2(0) = 1
2 ,

Hochbruck and Ostermann showed that the method is second-order convergent for parabolic problems,
see [39, Theorem 4.3.]. Popular choices are c2 = 1

2 , b1 = 0 or c2 = 1, b2(z) = ϕ2(z).
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The symmetric, but implicit exponential Runge–Kutta scheme from Celledoni, Cohen and Owren [15,
Example 2.1]

Un = e1/2τAun + τ
2ϕ1( τ2A)fn+1/2 ,

un+1 = eτAun + τϕ1(τA)fn+1/2 ,

is covered by (3.7) with a(z) = ϕ1(z), b1 = 0 and b2(z) = ϕ1(z). Obviously, both schemes satisfy (3.8).
We note that those schemes are the natural generalization of the exponential Euler method (3.4).

Lawson methods A variant of the above-mentioned exponential Runge–Kutta schemes are the Lawson
methods which can be obtained by a transformation of variables and applying a standard Runge–Kutta
scheme. Hochbruck, Leibold and Ostermann presented a convergence analysis in [45]. We only present
the methods that are of second order which take the form

Un = ec2τAun + c2τe
c2τAfn ,

un+1 = eτAun + τ
((

1− 1
2c2

)
eτAfn + 1

2c2
e(1−c2)τAfn+c2

)
.

(3.10)

Note that they can also be seen as a generalization of the method (3.5) where we applied a quadrature
formula to the integral term in (2.12). We have a(z) = ez and use Taylor expansion on the coefficients
B̂i = Bi to obtain

B1(z) =
(
1− 1

2c2

)
ez =

(
1− 1

2c2

)
+
(
1− 1

2c2

)
z +O(z2) ,

B2(z) = 1
2c2
e(1−c2)z = 1

2c2
+ 1−c2

2c2
z +O(z2) ,

ϕ1(z) = 1 + 1
2z +O(z2) .

(3.11)

Thus, (3.8) is valid for any c2 ∈ (0, 1].

Strang splitting Another famous example fitting in the general framework is the Strang splitting
applied to the first-order system (2.4) coming from the second-order formulation (2.3). It is based on the
following decomposition. The exact flows ϕAτ and ϕfτ of the two subproblems(

t′

u′

)
=
(

1
Au

)
,

(
t′

u′

)
=
(

0
f(t, u)

)
,

are by the special form of f in (2.5) given explicitly by

ϕAτ

(
t0

u0

)
=
(
t0 + τ

eτAu0

)
, ϕfτ

(
t0

u0

)
=
(

t0

u0 + τf(t0, u0)

)
.

We consider the Strang splitting in the variants
(
A, f,A

)
and

(
f,A, f

)
given by(

tn+1

un+1

)
= ϕAτ/2 ◦ ϕ

f
τ ◦ ϕAτ/2

(
tn

un

)
, (3.12a)(

tn+1

un+1

)
= ϕfτ/2 ◦ ϕ

A
τ ◦ ϕ

f
τ/2

(
tn

un

)
, (3.12b)

respectively. Note that the
(
f,A, f

)
variant in (3.12b) is equivalent to a trigonometric integrator without

filter functions, see, e.g., [35, XIII.2.2]. For (3.12a) the coefficients are given by

c2 = 1
2 , a(z) = B̂1(z) = B1(z) = 0, B̂2(z) = B2(z) = ez/2
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and for (3.12b) by

c2 = 1, a(z) = B̂1(z) = B1(z) = 1
2e

z, B̂2(z) = B2(z) = 1
2 .

Similar computations as in (3.11) verify the conditions in (3.8).

Extended Runge–Kutta–Nyström methods The motivation to allow for the additional degree
of freedom in (3.6) and (3.7) induced by the projections π1 and π2 comes from the class of extended
Runge–Kutta–Nyström methods. So far these methods have only been considered for ordinary differen-
tial equations. For the sake of readability we present these methods for L and A being matrices, but note
that this can be made rigorous. The two-stage methods considered for example by Wang, Wu and Xia
in [71, 72] for problem (2.3) are given by

qn+c2 = cos(c2τΛ)qn + c2τ sinc(c2τΛ)vn + τ2a21(τΛ)G(tn, qn)

qn+1 = cos(τΛ)qn + τ sinc(τΛ)vn + τ2
(
b̂1(τΛ)G(tn, qn) + b̂2(τΛ)G(tn+c2 , qn+c2)

)
vn+1 = −Λ sin(τΛ)qn + cos(τΛ)vn + τ

(
b1(τΛ)G(tn, qn) + b2(τΛ)G(tn+c2 , qn+c2)

)
,

(3.13)

where Λ = L1/2 is the positive definite matrix square root. The main difference to the methods covered
by (3.9) is the second-order formulation which allows for different choices of b1 and b̂1 whereas they are
not independent in the first-order formulation. In order to see the connection to (3.6) we need some
preparation.

Analogously to the definition in (3.1) we define the ψ-functions by a parameter integral.

Definition 3.1. For z ∈ R define ψ0(z) := cos(z) and let for j ≥ 0

ψj+1(z) :=
1∫

0

cos((1− s)z)s
j

j! ds .

By construction the ψ-functions are analytic and from the definition we directly obtain several prop-
erties which include a relation to the ϕ-functions.

Lemma 3.2. (a) For z ∈ R \ {0} we have

ψ1(z) = sinc(z), ψ2(z) = 1− cos(z)
z2 , ψ3(z) = 1− sinc(z)

z2 = z − sin(z)
z3 .

(b) For j ≥ 0 it holds

ψj+2(z) =
1∫

0

sin((1− s)z)
z

sj

j! ds, z ∈ R \ {0} .

(c) For j ≥ 0 it holds ψj(0) = 1
j! .

(d) We have the symmetric connection

ψj(z) = 1
2

(
ϕj(iz) + ϕj(−iz)

)
, j ≥ 0, z ∈ R .

(e) We have

ψj+1(z) = ψj−1(0)− ψj−1(z)
z2 , j ≥ 1, z ∈ R \ {0} .
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We note that since the ϕj and ψj are analytic functions, all assertions in the lemma remain true in
the limit z = 0 and actually also hold for z ∈ C. We do not treat this case further since we only need it
for matrices with spectrum on the real axis.

Proof. The properties (a),(c) and (e) are easily verified.

(b) Let j ≥ 0 and z ∈ R \ {0}. We compute

1∫
0

sin((1− s)z)
z

sj

j! ds =
[

sin((1− s)z)
z

sj+1

(j + 1)!

]1

0
+

1∫
0

cos((1− s)z) sj+1

(j + 1)! ds

=
[

sin((1− s)z)
z

sj+1

(j + 1)!

]1

0
+ ψ(j+1)+1(z)

= ψj+2(z) .

d) The assertion is a direct consequence of Euler’s formula, i.e., for z ∈ R it holds

1
2

(
e(1−s)iz + e−(1−s)iz

)
= cos((1− s)z).

The next lemma provides another connection of the ϕ- and the ψ-functions in the context of matrix
functions.

Lemma 3.3. Consider the matrix A =
(

0 I

−Λ2 0

)
for some positive definite matrix Λ. Then the

following relations hold for t ∈ R:

etA =
(

cos(tΛ) t sinc(tΛ)
−Λ sin(tΛ) cos(tΛ)

)
=
(

ψ0(tΛ) tψ1(tΛ)
−tΛ2ψ1(tΛ) ψ0(tΛ)

)
, (R0)

ϕ1(tA) =
(

ψ1(tΛ) t ψ2(tΛ)
−tΛ2ψ2(tΛ) ψ1(tΛ)

)
, (R1)

ϕ2(tA) =
(

ψ2(tΛ) t ψ3(tΛ)
−tΛ2ψ3(tΛ) ψ2(tΛ)

)
. (R2)

Proof. The relation in (R0) is well-known and we only verify (R1). The proof of (R2) is completely
analogous.

For the ϕ1-function it holds ϕ1(z) = ez−1
z by (3.2) and hence for t 6= 0 we compute

ϕ1(tA) = 1
t

(
0 −Λ−2

I 0

)(
cos(tΛ)− I t sinc(tΛ)
−Λ sin(tΛ) cos(tΛ)− I

)

=
(

sinc(tΛ) t (tΛ)−2 (I − cos(tΛ))
1
t (cos(tΛ)− I) sinc(tΛ)

)

=
(

ψ1(tΛ) t ψ2(tΛ)
−tΛ2ψ2(tΛ) ψ1(tΛ)

)
.

Note that the representation is also valid for t = 0.
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method b̂2 b2

ERKN1 ψ2(z) ψ0( z2 )

ERKN2 ψ2(z) ψ1(z)

ERKN3 1
2ψ1( z2 ) cos( z2 )

ERKN5 sinc(z) 1
2ψ1( z2 ) sinc(z)ψ0( z2 )

Table 3.1: Different methods considered in [71]. The scheme ERKN4 is excluded since it is equivalent
to ERKN2. We will see in next chapter that ERKN5 can be seen as Strang (3.12a) with outer filter
sinhc: z 7→ sinh(z)

z and hence is covered by our error analysis.

With these results we go back and establish the connection of (3.13) and (3.6). Since we only multiply
in (3.6) with a vector f that is zero in the first component and use the projections πi, we compute

π1

(
a11 a12

a21 a22

)(
0
g

)
=
(
a12g

0

)
, π2

(
a11 a12

a21 a22

)(
0
g

)
=
(

0
a22g

)
.

Hence, the choice of Bi and B̂i can be traced back to find operators that satisfy

B̂i(τA) =
(
? τ b̂i

? ?

)
, Bi(τA) =

(
? ?

? bi

)
, i = 1, 2 ,

with b̂i, bi from (3.13). With Lemma 3.3 we obtain

eτA

(
0
g

)
=
(
τψ1(τΛ)g
ψ0(τΛ)g

)
, ϕ1(τA)

(
0
g

)
=
(
τψ2(τΛ)g
ψ1(τΛ)g

)
, ϕ2(τA)

(
0
g

)
=
(
τψ3(τΛ)g
ψ2(τΛ)g

)
.

such that we arrive at

B̂i = ϕj implies b̂i = ψj+1, j = 0, 1 ,

Bi = ϕj implies bi = ψj , j = 0, 1, 2 .

Those cover the common choices in (3.13), see for example [72, Table 1]. Different choices with c2 = 1
2

and b̂1 = b1 = 0 were considered in [71], see Table 3.1. Hence, if the methods are constructed with the
right ϕ-functions, they also satisfy the conditions (3.8).

3.2.2 Further methods

In this section we present four more methods that do not fit in the general framework of (3.6) and (3.7).
Nevertheless, they can be analyzed by the same techniques as the before mentioned methods such that
we can also derive error bounds for these.

Corrected Lie Splitting We consider the second-order corrected Lie splitting given by

un+1 = eτA
(
un + τf

(
tn+1/2, un

)
+ τ2

2 rf
(
tn+1/2, un

))
(3.14)
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with the correction term

rf (t, u) := Jf
(
t, u
)( 0

Au

)
−Af

(
t, u
)
.

where Jf denotes the Jacobian of f .
It is inspired by a fourth-order method of this type proposed by McLachlan and Quispel in [57, 4.9.3

(c)]. Further, note that in the linear case, where f(t, u) = Fu, the correction term reduces to the (linear)
commutator

rF (t, u) = FAu−AFu = [F,A]u .

Hence, one can consider (3.14) as an approximation to the method

un+1 = eτAeτF e
τ2

2 [F,A]un ,

which was considered by Suzuki in [68, (3.37)]. As far as we know there is no convergence analysis for
this method.

Exponential multistep method of Adams-type The two-step exponential multistep method from
Hochbruck and Ostermann [40, (2.7)]

un+1 = eτAun + τϕ1(τA)fn + τϕ2(τA) (fn − fn−1) , n ≥ 1 ,

u1 = eτA (u0 + τf0) ,
(3.15)

is derived from the variation-of-constants formula for the exact solution of (2.3) by approximating the
nonlinearity f in the integral term by an interpolation polynomial using the last two approximations
un−1, un.

Exponential multistep methods of Nyström-type Similarly, we consider a method that was used
by Frisch, She and Thual in [20, (B 4)], namely

un+1 = e2τAun−1 + 2τeτAfn , n ≥ 1 ,

u1 = eτA
(
u0 + τf0

)
.

(3.16)

A variant of this method is given in [20, (B 5)] called the “slaved frog”. It reads

un+1 = e2τAun−1 + 2τϕ1(2τA)fn , n ≥ 1 ,

u1 = eτA
(
u0 + τf0

)
.

(3.17)

For A = 0 both methods reduce to an explicit Nyström method, cf. method (1.13’) in [34].
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CHAPTER 4

Error analysis for averaged exponential integrators

We now present the core of the first part of the thesis. We first explain the main ideas and the main
results and afterwards turn to a rigorous description of the framework and the error analysis.

We emphasize that most of the material is taken from [9] and is extended by additional explana-
tions, more detailed computations and also some new results not presented elsewhere. In particular,
Sections 4.5.2, 4.5.3, 4.5.4, 4.7 and some bounds in Section 4.6.2 have been added.

4.1 Informal overview of methods, concepts and results

In this section we give an informal overview of the methods of interest, the main concepts, and the main
results, as it is done in [9, Sect. 2], and present the analytical framework which is necessary to formulate
our results rigorously in the later sections. In order to postpone all technical difficulties, we explain
everything in the finite dimensional case dimH < ∞. This is not the case of interest for us, but here
all the approximations presented are well-defined and the statements valid. However, the appropriate
function spaces to treat evolution equations and additional assumptions necessary for the error analysis
are introduced in Section 4.2. We recall the second-order equation (2.3)

q′′(t) = −Lq(t) +G(t, q(t)), t ∈ [0, tdef ]

which is the starting point of this overview.

4.1.1 Averaged differential equation

Let L be a symmetric, positive definite matrix in Rm×m and let χ = φ, ψ : iR → R be even (i.e.,
χ(−z) = χ(z)) and analytic functions satisfying χ(0) = 1. By the theory of matrix functions we can
define the filter operator

χ̃ = χ(iτL1/2)



28 Chapter 4. Error analysis for averaged exponential integrators

and with this an averaged nonlinearity

G̃(t, q) := ψ̃G(t, φ̃q) .

In order to apply them to the first order system (2.4) we enlarge the filters to the block diagonal operators

Φ =
(
φ̃ 0
0 φ̃

)
, Ψ =

(
ψ̃ 0
0 ψ̃

)
,

and turn our attention to the averaged differential equation

ũ′(t) = Aũ(t) + f̃(t, ũ(t)), f̃(t, ũ) = Ψf(t,Φũ) =
(

0
G̃(t, q̃)

)
. (4.1)

We have to make sure that the averaging has the two following properties. On the one hand the solution
ũ of (4.1) should still satisfy a generalized finite-energy condition (2.13). In Lemma 4.15 we show that
the modified constant K̃ is independent of τ and n. On the other hand we need a relation of the original
solution u and the averaged solution ũ. If we denote by ‖·‖X the norm induced by 〈·, ·〉X , we prove in
Theorem 4.14

‖u(t)− ũ(t)‖X ≤ Cτ
2, t ∈ [0, tend],

provided that ψ, φ satisfy a certain set of conditions. Under some less restrictive assumptions on the
filters we further establish the bound

‖u(t)− ũ(t)‖X ≤ Cτ, t ∈ [0, tend] .

Having all this at hand, the averaged solution ũ is, concerning the regularity, roughly speaking as good
as the original solution u and it is sufficient to prove error bounds for numerical schemes applied to (4.1)
as long as only the finite-energy condition enters in the error constant.

4.1.2 Averaged methods

As we have explained above, the averaged solution ũ inherits the essential properties of u. Hence, the
averaged methods are constructed by applying any of the numerical methods in Section 3.2 to the averaged
equation (4.1) instead of the original one (2.4). So taking for example the Strang splitting (3.12a), the
averaged variant reads(

tn+1

un+1

)
= ϕAτ/2 ◦ ϕ

f̃
τ ◦ ϕAτ/2

(
tn

un

)
, u0 = ũ(0) = u(0) . (4.2)

Actually, this is equivalent to use a modified numerical scheme where the nonlinearity f is replaced by
the averaged nonlinearity f̃ in (4.1). In Figure 4.1 these different views are depicted. We emphasize that
the first perspective is only needed for theoretical reasons to perform the error analysis, however it allows
us to analyze many different averaged methods simultaneously. When it comes to implementation, one
will simply use the method in the form (4.2).

Since we can show that the difference of (2.4) and (4.1) is of order τ2, it is natural to use methods
of order 2 in order to obtain global error bounds of the same order. While this approach would work
perfectly fine in the finite dimensional case, for evolution equations this is not so clear. In fact, numerical
experiments show that order reduction might be a problem.
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u(tn)

un

ũ(tn)
‖u(tn)− ũ(tn)‖X ≤ Cτ2

clas
sica

l sch
eme

averaged scheme

Figure 4.1: Different ways to construct an approximation un of the solution u(tn) of the original equation
(2.4) and the solution ũ(tn) of the averaged equations (4.1), [9, Fig. 1].

The thesis aims at rigorous error bounds of first and second order and gives a precise characterization
of the framework. This includes the numerical methods, the data in terms of L and G and the choice of
the filter functions.

4.1.3 Overview of results

With the ideas explained before, we prove different types of error bounds. We distinguish between error
bounds in the X- and the D(A)-norm and also between error bounds for classical and weak solutions.

Error bounds in the X-norm In Theorem 4.24 and several corollaries in Section 4.6.2 we provide
the following error bounds.
(a) The Strang splitting, the exponential Runge–Kutta methods, the Lawson methods, the extended

Runge–Kutta–Nyström methods and the exponential multistep methods applied to the original equa-
tion (2.4) satisfy

‖u(tn)− un‖X ≤ C1τ .

(b) Using appropriate filters φ, ψ any method of Section 3.2 applied to the averaged equation (4.1)
satisfies the bound

‖u(tn)− un‖X ≤ C2τ
2 .

The constants C1, C2 only depend on the initial value u0, the finite energy K, properties of G, and tend,
but not on n and τ .

Error bounds in the D(A)-norm Similarly, we establish error bounds in a stronger norm in Theo-
rem 4.31 and several corollaries in Section 4.6.2.
(a) The exponential Runge–Kutta methods and the exponential multistep methods of Adams-type ap-

plied to the original equation (2.4) satisfy

‖u(tn)− un‖D(A) ≤ C1τ .

(b) Using an appropriate filter ψ, the Strang splitting, the Lawson methods, the extended Runge–Kutta–
Nyström method, the corrected Lie splitting and the exponential multistep methods of Nyström-type
applied to the averaged equation (4.1) satisfy the bound

‖u(tn)− un‖D(A) ≤ C2τ .
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Again, the constants C1, C2 only depend on the initial value u0, the finite energy K, properties of G, and
tend, but not on n and τ .

Error bounds for weak solutions Finally, we treat the first-order methods from Section 3.1. The
key difficulty arises in only considering weak solutions of (2.4). For linear f we prove the following bound
in Theorem 4.45.

Using an appropriate filter φ, the exponential Euler method and the Lie splitting applied to the
averaged equation (4.1) satisfy the bound

‖u(tn)− un‖X ≤ Cτ .

The constant C only depends on the initial value u0, properties of G, and tend, but not on n and τ .

Strategy All proves rely on the decomposition

‖u(tn)− un‖X ≤ ‖u(tn)− ũ(tn)‖X + ‖ũ(tn)− un‖X . (4.3)

In the different scenarios we proceed in the same two steps. We first bound the term induced by the
averaged equation and in the second step bound the error of the numerical method applied to (4.1).

4.1.4 Numerical example

In this section we consider one of the examples that fits in our framework, cf. Section 4.2.1, and show
that one can gain something with the averaging within numerical methods. We solve a variant of the
sine-Gordon equation given on the torus T = R/(2πZ) by

q′′(t) = ∆q(t)− q(t) +ma sin(mi cos(q(t))) q(t), (4.4)

with t ∈ [0, 1] and mi,ma ∈ L∞(T). Since one of the main difficulties in the error analysis is induced by
low regularity assumptions, we construct the initial values in the following way. In order to control the
regularity of the solution, we follow the approach of [45] and use a Fourier spectral method in space. We
choose the Fourier coefficients for the initial values (q0, v0) ∈ H1(T)× L2(T) such that

(q0, v0) ∈ H1(T)× L2(T) \H1+ε(T)×Hε(T)

holds for ε = 10−6. Although, we truncate the Fourier series for some large N ∈ N to discretize in
space, the experiments in [45] show that in the limit N →∞ the H1+ε(T)×Hε(T)-norm is not bounded
uniformly in N . By the standard semigroup theory one cannot expect to gain any regularity over time,
and we are hence most likely in the situation of a solution of low regularity.

Another crucial generalization compared to the analysis in [22, 23] is that the coefficients of the
right-hand side do not need to be smooth. So for example let q ∈ L2(T) and consider

G(q)(x) := ma(x) sin(mi(x) cos(q)) q .

This obviously gives G(q) in L2(T), but we cannot improve this by additional regularity of q, i.e., that
even if q ∈ H1(T) holds, there is in general no ε > 0 with G(q) ∈ Hε(T).
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Figure 4.2: Discrete L∞
(

[0, 1], L2(T)×H−1(T)
)
error (on the y-axis) of the numerical solution of (4.4)

with (blue, dots) and without filters (red, crosses) plotted against the stepsize τ (on the x-axis) with N
grid points. The gray lines indicate order one (dotted) and two (dashed).

As numerical method we used the Strang splitting variant (3.12a), i.e.,
(
A, f̃ , A

)
with N = 2j , j =

9, 10, 11, spatial grid points. In Figure 4.2 we displayed the results using filters (blue, dots)

φ(z) = ψ(z) = sinhc( z2 ) = 1
2

(
ϕ1( z2 ) + ϕ1(− z2 )

)
= sinh(z/2)

z/2 (4.5)

and also without filters, i.e., φ = ψ = 1, (red, crosses). The code to reproduce the plots is available on
https://doi.org/10.5445/IR/1000130189.

These experiments clearly indicate the above-mentioned order reduction to order one for the non-
averaged scheme. However, this only happens in the stiff regime, and we briefly explain why this is the
case. Later in the error analysis, a key ingredient to prevent the order reduction is the fact that the filters
φ, ψ roughly behave like the ϕ1-function, cf. (F3), in particular they are zero whenever ϕ1 is zero, i.e.,
for z = 2iπk, k ≥ 1. Since ‖A‖X←X ≈ N/2, we obtain for τ < τ0 ≈ 4π/N

τ ‖A‖X←X < 2π (4.6)

and ϕ1(τA) is invertible. Hence, in this non-stiff regime it holds

I = ϕ1(τA)ϕ1(τA)−1

and even the identity behaves like a filter. Actually, in this regime the two errors of both schemes are
quite close. However, we are interested in abstract evolution equations and for unbounded operators A
(4.6) cannot be achieved. Therefore, only the stiff regime is relevant, i.e., the limit N →∞.

https://doi.org/10.5445/IR/1000130189
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4.2 Refined analytical framework

In this section, cf. [9, Sect. 3], we specify the assumptions necessary to prove the results mentioned in
Section 4.1.3. In order to illustrate the applicability of our results, we specify the general Example 2.5 in
Table 4.1. There three examples are collected where we stated, for a given Hilbert space H, the dimension
d of the domain Ω and additional assumptions on the data.

4.2.1 Second-order equation

As in Section 2.1 we begin with the second-order formulation since the equation is posed in this form.
This enables us to assess and verify the assumption more easily. In the following we recall sufficient
conditions on the nonlinearity G to guarantee wellposedness of the equation and to establish the error
analysis presented in Sections 4.3, 4.4, 4.5, and 4.6.

Assumption 4.1 (Wellposedness). For G we have G ∈ C1([0, tend]× V,H), i.e., G is Fréchet-differen-
tiable with Fréchet-derivative JG(t, q) ∈ L

(
[0, tend]× V,H

)
for all q ∈ V, t ∈ [0, tend].

In the infinite dimensional case differentiability is a subtle matter. In Example 2.5 the growth bounds
guarantee that Assumption 4.1 is valid. Only additional conditions on the growth of higher order deriva-
tives would lead to a twice Fréchet-differentiable function G. Therefore, we only assume regularity for G
evaluated at a sufficiently smooth function.

Assumption 4.2 (Regularity of G evaluated at a smooth function).
For q ∈ C1([0, tend], V ) ∩ C([0, tend],D(L)) we have

t 7→ G(t, q(t)) ∈ C1 ([0, tend], V ) with d

dt
G(t, q(t)) = JG(t, q(t))

(
1

q′(t)

)
, (A1)

t 7→ JG(t, q(t)) ∈ C1 ([0, tend],L
(
[0, tend]× V,H

))
with C > 0 such that

∥∥∥ d
dt
JG(t, q(t))

∥∥∥
H←[0,tend]×V

≤ C, C = C
(
‖q(t)‖D(L) , ‖q

′(t)‖V
)

(A2)

Remark 4.3. We note that (A1) is not implied by Assumption 4.1. Using the chain rule we can only
conclude the weaker assertion

t 7→ G(t, q(t)) ∈ C1 ([0, tend],H)

which is not sufficient for the error analysis.
(a) In Example 2.5 the additional regularity q ∈ C([0, tend],D(L)) is sufficient to verify the Assump-

tion (A1). This is mainly due to the fact that D(L) is a subset of L∞(Ω) in the example and the
composition

t 7→ g(t, q(t))

is then also continuous in L∞(Ω).
(b) Another approach would be to assume G ∈ C1([0, tend]×V, V ) and the chain rule would immediately

yield Assumption (A1). However, this assumption excludes many interesting nonlinearities. In
Example 2.5 with H = H−1(Ω) and V = L2(Ω), see Table 4.1, this would imply that G is already an
affine transformation, see [25, Section 3]. Hence, not even the function q 7→ sin(q) would be covered
by the analysis.
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Finally, we need an assumption on bounds of G and JG. They are posed on balls with radii in different
norms which play an important role in the error analysis. We mainly need them when evaluating the
functions at the averaged and numerical solution where not the same bounds as for the exact solution
are available.

Assumption 4.4 (Regularity of G). There are constants C = C(r) such that for given rV , rL > 0 and
q with ‖q‖V ≤ rV , ‖q‖D(L) ≤ rL, p ∈ V , and t ∈ [0, tend] the following inequalities are satisfied:

‖G(t, q)‖V ≤ C(rL), (A3)∥∥∥JG(t, q)
(
s

p

)∥∥∥
H
≤ C(rV ) (|s|+ ‖p‖V ) , (A4a)

∥∥∥JG(t, q)
(
s

p

)∥∥∥
V
≤ C(rL) (|s|+ ‖p‖V ) . (A4b)

For the corrected Lie Splitting (3.14) we assume in addition for ‖pi‖V ≤ rV , i = 1, 2,

∥∥∥(JG(t, p1)− JG(t, p2)
)(0

q

)∥∥∥
H
≤ C(rL, rV ) ‖p1 − p2‖V . (A-CLS-1)

and for ‖pi‖D(L) ≤ rL, i = 1, 2, also

∥∥∥(JG(t, p1)− JG(t, p2)
)(0

q

)∥∥∥
V
≤ C(rL) ‖p1 − p2‖D(L) . (A-CLS-2)

Remark 4.5. Let G be an operator satisfying Assumptions 4.1, 4.2, and 4.4. Then for any c ∈ R the
operator G+ cI does so, too. This allows us to treat positive semidefinite operators L, e.g., the Laplacian
with Neumann or periodic boundary condition, by shifting the spectrum to the right half-plane.

Wemention that Assumptions 4.1, 4.2, and 4.4 are satisfied for the different configurations in Table 4.1,
but we postpone the calculations to Appendix A.

All examples are posed with homogeneous Dirichlet boundary conditions. By possibly shifting L, we
can also treat Neumann, Robin, or periodic boundary conditions, see Remark 4.5.

Higher order Sobolev spaces H = Hk(Ω), k ≥ 2, can be handled as well but the spaces and conditions
for the operators and parameters become more complicated.

4.2.2 First-order equation

The exponential methods from Chapter 3 are all applied to the first-order formulation (2.4) of equation
(2.3). In Section 2.1.2 we already considered the operator A : D(A) → X in this formulation and now
turn to the nonlinearity f defined in (2.5). We translate the Assumptions 4.1, 4.2, and 4.4 posed on
G into this setting by means of the following three lemmas. The first one provides a classical solution
of (2.4) by standard semigroup theory. All statements in the lemmas directly follow from the special
structure of f and the assumptions in Section 4.2.1.

Lemma 4.6 (Wellposedness). Let G satisfy Assumption 4.1. Then f : [0, tend]×X → X defined in (2.4)
satisfies f ∈ C1([0, tend]×X,X) with Fréchet derivative Jf

(
t, u
)
∈ L

(
[0, tend]×X,X

)
for all u ∈ X and

t ∈ [0, tend].
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H H−1(Ω) L2(Ω) H1
0 (Ω)

d d = 1 d = 1, 2, 3 d = 1, 2, 3

A – W 1,∞(Ω)d×d C1,1(Ω)d×d∩W 2,∞(Ω)d×d

or H4(Ω)d×d

Ω – – ∂Ω of class C3

D(L) H1
0 (Ω) H2(Ω) ∩H1

0 (Ω) {q ∈ H3(Ω) ∩H1
0 (Ω) |

Lq ∈ H1
0 (Ω)}

V L2(Ω) H1
0 (Ω) H2(Ω) ∩H1

0 (Ω)

α (2, 0, 2) (2, 1, 3) (3, 2, 3)

g – g(t, ·, 0) = 0 on ∂Ω g(t, ·, 0) = 0 on ∂Ω

growth
bound

γ ≤ 2 γ

<∞ , d = 2

≤ 3 , d = 3
–

Table 4.1: Overview on the specification of Example 2.5. An empty box corresponds to no additional
assumptions on this datum.

In the error analysis it is not sufficient to only have differentiability of f in X, but we also need this in
the stronger D(A)-norm. As in Assumption 4.2 this cannot be achieved in terms of Fréchet-derivatives.

Lemma 4.7 (Regularity of f evaluated at a smooth function). Let G satisfy Assumption 4.2 and u

satisfy (2.9). Then we have

t 7→ f
(
t, u(t)

)
∈ C1 ([0, tend],D(A)) with d

dt
f
(
t, u(t)

)
= Jf

(
t, u(t)

)( 1
u′(t)

)
, (A1’)

t 7→ Jf
(
t, u(t)

)
∈ C1 ([0, tend],L

(
[0, tend]×X,X

))
with C > 0 such that

∥∥∥ d
dt
Jf
(
t, u(t)

)∥∥∥
X←[0,tend]×X

≤ C (‖Au(t)‖X , ‖u
′(t)‖X) . (A2’)

The next lemma contains two Lipschitz properties of f which easily follow from the corresponding
bound on the derivative. They are crucial for the forthcoming error analysis.

Lemma 4.8 (Regularity of f). Let G satisfy Assumption 4.4. Then there are constants C = C(r) such
that for given rX , rA > 0 and ui with ‖ui‖X ≤ rX , ‖ui‖D(A) ≤ rA, i = 1, 2, v ∈ X, and t ∈ [0, tend] the
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following inequalities are satisfied:

‖f(t, u1)‖D(A) ≤ C(rA), (A3’)∥∥∥Jf (t, u1)
(
s

v

)∥∥∥
X
≤ C(rX) (|s|+ ‖v‖X) , (A4a’)

∥∥∥Jf (t, u1)
(
s

v

)∥∥∥
D(A)

≤ C(rA) (|s|+ ‖v‖X) , (A4b’)∥∥∥f(t, u1)− f(t, u2)
∥∥∥
X
≤ C (rX) ‖u1 − u2‖X , (A5a’)

‖f(t, u1)− f(t, u2)‖D(A) ≤ C (rA) ‖u1 − u2‖X . (A5b’)

For the corrected Lie Splitting (3.14) we further have for ‖vi‖X ≤ rX , i = 1, 2,

∥∥∥(Jf (t, v1)− Jf (t, v2)
)( 0

u1

)∥∥∥
X
≤ C(rA, rX) ‖v1 − v2‖X , (A-CLS-1’)

and for ‖vi‖D(A) ≤ rA, i = 1, 2, also

∥∥∥(Jf (t, v1)− Jf (t, v2)
)( 0

u1

)∥∥∥
D(A)

≤ C(rA) ‖v1 − v2‖D(A) . (A-CLS-2’)

In Theorem 2.18 we have seen that Lemma 4.6 together with Lemma 4.8 guarantee local wellposed-
ness of (2.4). Since our error analysis only requires assumptions on the data, we recall the following
wellposedness result which is a direct consequence of Theorem 2.18.

Proposition 4.9. Let Assumptions 4.1 and 4.4 be satisfied and take an initial value u0 ∈ D(A). Then
there exists a time t∗ > 0 and a classical solution of (2.4) on [0, t∗) satisfying (2.9) and the generalized
finite-energy condition (2.13) for some K > 0.

We note that the generalized finite-energy condition has been used before in the literature. For
u =

(
q, q′

)
in the situation of Example 2.5 with H = H−1(Ω), see Table 4.1, (2.13) implies

‖Au(t)‖2X = ‖q(t)‖2D(L) + ‖q′(t)‖2V =
∥∥A1/2∇q(t)

∥∥2
L2 + ‖q′(t)‖2L2 ≤ K2 ,

which corresponds to the finite-energy condition used in [21, 30, 38, 66]. We further mention, that the
bound (2.13) also implies

‖q′′(t)‖H ≤ ‖u
′(t)‖X ≤ K ,

which is essential in verifying the abstract assumptions on G.
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4.2.3 Filter

We finally characterize the functions which can be used as filter functions. We define them on the
imaginary axis since they are applied to the skew-adjoint operator A.

Definition 4.10. Let χ ∈ Cb (iR). We call χ a filter of order m, m = 1, 2, if the following properties are
satisfied: There exist ϑ,Θ ∈ Cb (iR) such that for all z ∈ iR

|χ(z)| ≤ 1 , (F1)

1− χ(z) = zmϑ(z) , (F2)

zχ(z) = (ez − 1)Θ(z) . (F3)

In addition, for m = 2, χ is symmetric, i.e.,

χ(z) = χ(−z) . (F4)

Note that (F3) is equivalent to χ(z) = ϕ1(z)Θ(z).

Remark 4.11. (a) The simplest example for a filter of order 1 is χ(z) = ϕ1(z), where we simply have
Θ(z) = 1. With this in mind, one can think of a filter of order 2 as a symmetric version of the
ϕ1-function.

(b) In our example (4.5) we used the short average filter proposed in [21] which is a filter of order 2. We
note that in this example χ(ix) = sinc(x2 ) holds for all x ∈ R, which relates our filters to the ones
considered in [35, Chapter XIII.] since they are always defined on the real axis.

In Theorem 2.20 we answered the question on how to apply such functions to unbounded operators
by a functional calculus. This allows us to define a corresponding class of filter operators that we later
use in the averaged schemes.

Theorem 4.12. Let τ > 0 and χ ∈ Cb (iR) be a filter of order m with ϑ,Θ from Definition 4.10. Then
we have

Boundedness: ‖χ(τA)‖X←X ≤ 1 (OF1)

‖ϑ(τA)‖X←X ≤ ‖ϑ‖∞, ‖Θ(τA)‖X←X ≤ ‖Θ‖∞

Smoothing: χ(τA) : X → D(A) is continuous with (OF2)

‖τAχ(τA)‖X←X ≤ 2 ‖Θ‖∞

Consistency: ϑ(τA) : X → D(Am),

I − χ(τA) = (τA)m ϑ(τA) (OF3)

Cancelation: (τA)χ(τA) = (eτA − I)Θ(τA) (OF4)

Block structure: For m = 2 and i ∈ {1, 2}

πix = 0 implies πiχ(τA)x = 0 . (OF5)

Proof. All statements are direct consequences of Theorem 2.20 and Proposition 2.21.
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Remark 4.13. (a) We further obtain ‖τAϑ(τA)‖2X←X ≤ 2‖ϑ‖∞ for m = 2 as

|zϑ(z)|2 = |z2ϑ(z)| |ϑ(z)| ≤ 2‖ϑ‖∞ for all z ∈ iR .

In particular, every second-order filter is also a filter of order 1.
(b) The property (OF5) allows us to transfer the structure of f given in (2.5) to f̃ given in (4.1), in

particular we have

π1f̃(t, u) = Ψπ1f(t,Φu) = 0, f̃(t, u) = Ψf(t, π1Φu) = Ψf(t,Φπ1u) = f̃(t, π1u), (4.7)

which is obviously true for ψ = φ = 1.

4.3 Averaged problem

In this section we make precise what was motivated in Section 4.1.1. Since f̃ also satisfies the assertion
of Lemma 4.6 we conclude with Proposition 4.9 the existence of a unique classical solution ũ of (4.1) for
all τ > 0. However, a priori we do not know anything about the maximal existence time and the bounds
on ũ, ũ′ and Aũ and whether they depend on the stepsize τ .

Both questions are answered in the following results. The existence time is coupled to a bound on
the difference of the original solution u of (2.4) and the averaged solution ũ of (4.1). Since we need the
Lipschitz continuity of f in (A5a’), we define rX via

max
t∈[0,tend]

‖u(t)‖X ≤ CembK =: 1
2rX

with Cemb defined in (2.2) and K in (2.13).

Theorem 4.14 ([9, Thm. 4.1]). Let Assumptions 4.1, 4.2, and 4.4 be valid and consider the averaged
nonlinearity f̃ defined in (4.1) with filters of order m. Then there is a τ0 > 0 and a constant Cav > 0
such that for all τ ≤ τ0 and filters of order 1 it holds

‖u(t)− ũ(t)‖X ≤ Cavτ, 0 ≤ t ≤ tend , (4.8)

and if the filters are of order 2 also

‖u(t)− ũ(t)‖X ≤ Cavτ
2, 0 ≤ t ≤ tend . (4.9)

The constant Cav and τ0 depend on rX , u0, tend, the generalized finite-energy K from Proposition 4.9,
the filter functions, and the embedding constant Cemb, but not on τ . In particular, ũ exists on [0, tend]
and is bounded by

max
t∈[0,tend]

‖ũ(t)‖X ≤
3
4rX .

Proof. We only prove the second-order bound (4.9), since (4.8) is then derived by a simplification of the
presented arguments. Let t̃∗ > 0 be the maximal existence time of ũ and define

t0 := sup{s ∈ (0, t̃∗) | max
t∈[0,s]

‖ũ(t)‖X ≤ rX} .



38 Chapter 4. Error analysis for averaged exponential integrators

This time is needed in order to apply the uniform bounds on f̃ and f evaluated at ũ. The proof is closed
by proving t0 ≥ tend.

We first observe that for t ≤ min{t0, tend} the variation-of-constants formula yields

u(t)− ũ(t) =
∫ t

0
e(t−s)A

(
f
(
s, u(s)

)
− f̃

(
s, ũ(s)

))
ds

= I1(t) + I2(t) +
∫ t

0
e(t−s)A

(
f̃
(
s, u(s)

)
− f̃

(
s, ũ(s)

))
ds

(4.10)

with

I1(t) =
∫ t

0
e(t−s)A (I −Ψ) f

(
s, u(s)

)
ds,

I2(t) =
∫ t

0
e(t−s)AΨ

(
f
(
s, u(s)

)
− f

(
s,Φu(s)

))
ds.

By Assumption (A5a’) and since t ≤ t0, the third term in (4.10) is bounded by

∥∥∥∫ t

0
e(t−s)A

(
f̃
(
s, u(s)

)
− f̃

(
s, ũ(s)

))
ds
∥∥∥
X
≤ C

(
rX
) ∫ t

0
‖u(s)− ũ(s)‖X ds ,

where we also used the bound in (OF1). We are left to prove

‖Ij(t)‖X ≤ Cτ
2, j = 1, 2, (4.11)

since these bounds are sufficient to apply a Gronwall lemma which shows the assertion for all t ≤
min{t0, tend}.

We first bound I1 and use (OF3) and integration by parts to obtain

I1(t) = τ2
∫ t

0
e(t−s)AA2ϑ(τA)f

(
s, u(s)

)
ds

= τ2
[
−e(t−s)AAϑ(τA)f

(
s, u(s)

)]t
0

+ τ2
∫ t

0
e(t−s)AAϑ(τA)Jf

(
s, u(s)

)( 1
u′(s)

)
ds,

(4.12)

where we used that f
(
s, u(s)

)
is differentiable in X. By Assumptions (A3’), (A4b’), and the bound (2.13)

on u′ we have

∥∥Af(s, u(s)
)∥∥
X
≤ C (K) ,

∥∥∥AJf(s, u(s)
)( 1

u′(s)

)∥∥∥
X
≤ C (K) .

and immediately conclude (4.11) for j = 1.

To increase the readability we use the notation u(s, σ) = σu(s)+(1−σ)Φu(s) and the differentiability
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(A1’) of f to get

I2(t) =
∫ t

0
e(t−s)AΨ

(
f
(
s, u(s)

)
− f

(
s,Φu(s)

))
ds

=
∫ t

0

∫ 1

0
e(t−s)AΨ d

dσf
(
s,u(s, σ)

)
dσ ds

=
∫ t

0

∫ 1

0
e(t−s)AΨJf

(
s,u(s, σ)

)( 0
(I − Φ)u(s)

)
dσ ds

=
∫ t

0

∫ 1

0
e(t−s)AΨJf

(
s,u(s, σ)

)( 0
(I − Φ) esAu0

)
dσ ds

+
∫ t

0

∫ 1

0
e(t−s)AΨJf

(
s,u(s, σ)

) 0

(I − Φ)
s∫
0
e(s−θ)Af

(
θ, u(θ)

)
dθ

 dσ ds

= I2,1(t) + I2,2(t) ,

where we applied the variation-of-constants formula (2.12) again on u(s) in the last step. By (OF3) and
integration by parts, the first term can be rewritten as

I2,1(t) = τ2

[∫ 1

0
e(t−s)AΨJf

(
s,u(s, σ)

)( 0
ϑ(τA)esAAu0

)
dσ

]t
0

+ τ2
∫ t

0

∫ 1

0
e(t−s)AAΨJf

(
s,u(s, σ)

)( 0
ϑ(τA)esAAu0

)
dσ ds

− τ2
∫ t

0

∫ 1

0
e(t−s)AΨ d

dsJf
(
s,u(s, σ)

)( 0
ϑ(τA)esAAu0

)
dσ ds .

Hence, we have ‖I2,1(t)‖X ≤ Cτ
2 by (A2’), (A4a’), and (A4b’). Concerning the term I2,2, by assumption

(A1’) we also have
s∫

0

e(s−θ)Af
(
θ, u(θ)

)
dθ ∈ D(A),

A

s∫
0

e(s−θ)Af
(
θ, u(θ)

)
dθ =

s∫
0

e(s−θ)AAf
(
θ, u(θ)

)
dθ.

Hence, again integration by parts gives

(I − Φ)
s∫

0

e(s−θ)Af
(
θ, u(θ)

)
dθ

= τ2ϑ2(τA)
([
− e(s−θ)AAf

(
θ, u(θ)

)
dθ
]s

0
+

s∫
0

e(s−θ)AAJf
(
θ, u(θ)

)( 1
u′(θ)

)
dθ

)

and Assumptions (A3’) and (A4b’) yield the desired bound (4.11). Using (4.9) for t ≤ min{t0, tend} we
obtain for τ ≤ τ0 = 1

2
(
rX
Cav

)1/2
max
s∈[0,t]

‖ũ(s)‖X ≤ max
s∈[0,t]

‖u(s)‖X + Cavτ
2 ≤ 3

4rX .

This proves t0 ≥ tend and hence (4.9) holds on [0, tend] for all τ ≤ τ0.



40 Chapter 4. Error analysis for averaged exponential integrators

From the previous theorem we know something about the maximal existence time of ũ, we have a
bound on ũ, and we obtained bounds on the difference of u and ũ. The open question on the generalized
finite-energy condition of ũ is answered in the next lemma.

Lemma 4.15 ([9, Lemma 4.2]). Let Assumptions 4.1, 4.2, and 4.4 be valid and let ψ, φ be filters of
order 1. Then there is a τ0 > 0 and a constant Ĉav > 0 such that for all τ ≤ τ0

‖Au(t)−Aũ(t)‖X ≤ Ĉavτ, 0 ≤ t ≤ tend.

In particular, ũ satisfies the generalized finite-energy condition uniformly in τ ≤ τ0, i.e.,

max {‖Aũ(t)‖X , ‖ũ
′(t)‖X} ≤ K̃, 0 ≤ t ≤ tend, (4.13)

where τ0 and the constants Ĉav and K̃ depend on rX , u0, tend, the generalized finite-energy K from
Proposition 4.9, the filter functions, and the embedding constant Cemb, but not on τ .

Proof. We proceed as in the proof of Theorem 4.14 and define t0 by

t0 := sup{s ∈ (0, tend] | max
t∈[0,s]

‖Aũ(t)‖X ≤ 2K} .

For 0 ≤ t ≤ t0, (4.10), (A5b’), and (4.8) imply

‖Au(t)−Aũ(t)‖X =
∥∥∥∫ t

0
Ae(t−s)A

(
f
(
s, u(s)

)
− f̃

(
s, ũ(s)

))
ds
∥∥∥
X

≤ ‖AI1(t)‖X + ‖AI2(t)‖X + C (2K)
∫ t

0
‖u(s)− ũ(s)‖X ds

≤ ‖AI1(t)‖X + ‖AI2(t)‖X + τtC (2K)Cav.

We may expand the terms similarly as before, and as in (4.12) it holds

AI1(t) =
∫ t

0
e(t−s)A(I −Ψ

)
Af
(
s, u(s)

)
ds

=
[
−e(t−s)A(I −Ψ

)
f
(
s, u(s)

)]t
0

+
∫ t

0
e(t−s)A(I −Ψ

)
Jf
(
s, u(s)

)( 1
u′(s)

)

= τ
[
−e(t−s)Aϑ(τA)Af

(
s, u(s)

)]t
0

+ τ

∫ t

0
e(t−s)Aϑ(τA)AJf

(
s, u(s)

)( 1
u′(s)

)
.

where we used (OF3) for m = 1 and obtain a O(τ) bound for ‖AI1(t)‖X . Similarly it holds by (A1’),

AI2(t) =
∫ t

0

∫ 1

0
e(t−s)AΨAJf

(
s,u(s, σ)

)( 0
(I − Φ)u(s)

)
dσ ds

= τ

∫ t

0

∫ 1

0
e(t−s)AΨAJf

(
s,u(s, σ)

)( 0
ϑ(τA)Au(s)

)
dσ ds ,

which also gives a O(τ)-bound. By possibly reducing τ0 we obtain the result for 0 ≤ t ≤ tend. This
immediately implies the first bound in (4.13) and the second bound is then obtained from (4.1).
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Remark 4.16. Note that Theorem 4.14 and Lemma 4.15 remain true for Ψ = I as for this choice
I1(t) = 0 holds. Additionally, the proof does not require the property (F3) and the constant function
z 7→ 1 satisfies all the other properties in Definition 4.10. This case is of interest for methods (3.9) and
(3.15). Roughly speaking, here the outer filter is replaced by the ϕ1-function which behaves like a filter as
we have already seen from (F3).

By the same argument, Φ = I yields I2(t) = 0 and hence the assertion. Clearly, choosing Φ = Ψ = I

gives u = ũ and the bounds are trivial.

4.4 Abstract assumptions on the one-step methods

In this section we provide abstract assumptions that characterize the classes of methods which are covered
by our error analysis, and we show how the methods presented before are included in the framework.

We recall that u denotes the solution of the original problem (2.4) and ũ the solution of the averaged
problem (4.1). Further, we denote the numerical flow by Sτ and the defect by δn, i.e., a one-step method
is given by

un+1 = Sτ (tn, un), δn = Sτ
(
tn, ũ(tn)

)
− ũ(tn+1). (4.14)

We start with an assumption on the stability of the method.

Assumption 4.17 (Stability). The method applied to (4.1) is stable in the sense that for all v ∈ D(A),
w ∈ X, t ≥ 0,

Sτ (t, v)− Sτ (t, w) = eτA (v − w) + τJ (t, v, w) , (4.15)

where J : R×D(A)×X → X is bounded by

‖J (t, v, w)‖X ≤ CJ
(
‖v‖D(A) , ‖w‖X

)
‖v − w‖X , t ∈ [0, tend]. (4.16)

We note that the stronger D(A)-norm in the above assumption does not cause any problems since
we use the stability only for comparing the numerical flow starting at ũ(tn) and at un and hence only
‖ũ(tn)‖D(A) appears when we use (4.16). The following proposition states that all the one-step methods
from Chapter 3 are stable in the sense of (4.15) and (4.16).

Proposition 4.18 ([9, Prop. 5.5]). Let Assumptions 4.1, 4.2, and 4.4 be satisfied.

(a) The general explicit exponential class (3.6) satisfies the stability Assumption 4.17.

(b) There is some τ0 > 0 such that the general implicit exponential class (3.7) satisfies the stability
Assumption 4.17 for all τ ≤ τ0.

(c) The second-order variant of the Lie splitting (3.14) applied to the averaged equation (4.1) satisfies
Assumption 4.17.

We emphasize that we cannot analyze the second-order variant of the Lie splitting (3.14) without
filter functions. Starting with u0 ∈ D(A) and checking the summands of u1, we see that all of them lie
in D(A) except Af(t1/2, u0) ∈ X by (A3’). Hence, we can only conclude u1 ∈ X and this does not allow
us to define u2.
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However, if we replace f by f̃ , we obtain

r
f̃

(t, u) = ΨJf
(
t,Φu

)( 0
AΦu

)
−AΨf

(
t,Φu

)
and property (OF2) yields that AΦ: X → X is bounded and thus Af̃(t1/2, u0) ∈ D(A) holds. Therefore,
u1 ∈ D(A) and the scheme is well-defined.

Proof. (a) We recall a,B1, B2 ∈ Cb (iR) and define the inner stage by

sex
τ (t, v) = ec2τAv + c2τa(c2τA)f(t, v) (4.17)

and compute for ‖v‖X , ‖w‖X ≤ rX by (A5a’)

‖sex
τ (t, v)− sex

τ (t, w)‖X =
∥∥ec2τA(v − w) + c2τa(c2τA)

(
f(t, v)− f(t, w)

)∥∥
X

≤
(
1 + C(rX)τ

)
‖v − w‖X ,

as well as

‖sex
τ (t, v)‖X ≤ rX + C(rX)τ =: r1 .

For the outer stage we hence consider with J = π1J1 + π2J2 by symmetry only the case

J2 (tn, v, w) =B1(τA)
(
f(tn, v)− f(tn, w)

)
(4.18)

+B2(τA)
(
f(tn+c2 , s

ex
τ (tn, v))− f(tn+c2 , s

ex
τ (tn, w))

)
.

Taking norms and using the properties of the inner stages gives

‖J2 (tn, v, w)‖X ≤
(
C(rX) + C(r1)

(
1 + C(rX)τ

))
‖v − w‖X .

For a fixed maximal stepsize τ0 > 0, r1 is uniformly bounded by some C(rX) which closes the
argument.

(b) In order to obtain stability of the implicit scheme we define for fixed ‖v‖X ≤ rX the fixed-point map

Tv,tn(U) = ec2τAv + c2τa(c2τA)f(tn+c2 , U) . (4.19)

Note that once we established stability and boundedness of the inner stage, the outer stage is handled
as in part (a). We first check that for ‖U‖X ≤ 2rX it holds

‖Tv,tn(U)‖X ≤ rX + Cτ ‖f(tn+c2 , U)‖X ≤ rX + τC(2rX) ≤ 2rX

for τ ≤ τ0 ≤ rX
C(2rX) . For the contractivity we compute for ‖U‖X , ‖V ‖X ≤ 2rX

‖Tv,tn(U)− Tv,tn(V )‖X ≤ Cτ ‖f(tn+c2 , U)− f(tn+c2 , V )‖X ≤ τC(2rX) ‖U − V ‖X ≤
1
2 ‖U − V ‖X

for τ ≤ τ0 ≤ 1
2C(2rX) . By Banach fixed-point theorem we obtain a unique solution U∗ = Tv,tn(U∗)

and define the solution map sim
τ (tn, v) = U∗.

In the last step we obtain with ‖v‖X , ‖w‖X ≤ rX and V ∗ = sim
τ (tn, v), W ∗ = sim

τ (tn, w)

‖V ∗ −W ∗‖X ≤ ‖v − w‖X + Cτ ‖f(tn+c2 , V
∗)− f(tn+c2 ,W

∗)‖X
≤ ‖v − w‖X + τC(r2) ‖V ∗ −W ∗‖X
≤ ‖v − w‖X + 1

2 ‖V
∗ −W ∗‖X ,

(4.20)

which yields ‖sim
τ (tn, v)− sim

τ (tn, w)‖X ≤ 2 ‖v − w‖X .
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(c) We recall the scheme (3.14) with filters

Sτ
(
tn, u

)
= eτA

(
un + τ f̃

(
tn+1/2, u

)
+ τ2

2

(
ΨJf

(
t,Φu

)( 0
AΦu

)
−AΨf

(
t,Φu

))
= eτAun + τeτA

(
f̃
(
tn+1/2, u

)
+ 1

2

(
ΨJf

(
t,Φu

)( 0(
τAΦ

)
u

)
−
(
τAΨ

)
f
(
t,Φu

)))
.

Hence, the operator J is given by

J (tn, v, w) = eτA
(
f̃
(
tn+1/2, v

)
− f̃

(
tn+1/2, w

))
+ 1

2e
τA
(

ΨJf
(
t,Φv

)( 0(
τAΦ

)
v

)
−ΨJf

(
t,Φw

)( 0(
τAΦ

)
w

))
− 1

2e
τA
(
τAΨ

)(
f
(
t,Φv

)
− f

(
t,Φw

))
= eτA

(
J1 + J2 − J3

)
.

(4.21)

By (OF1), (OF4), and (A5a’) we directly obtain

‖J1‖X + ‖J3‖X ≤ C(‖v‖X , ‖w‖X) ‖v − w‖X . (4.22)

We expand the remaining term as

J2 = 1
2

(
ΨJf

(
t,Φv

)
−ΨJf

(
t,Φw

))( 0(
τAΦ

)
v

)
+ 1

2ΨJf
(
t,Φw

)( 0(
τAΦ

)(
v − w

)) .

Again (OF4), the bound (A-CLS-1’) for the first term and (A4a’) for the second term yield

‖J2‖X ≤ C(‖v‖D(A) , ‖w‖X) ‖v − w‖X + C(‖w‖X) ‖v − w‖X . (4.23)

Combining (4.22) and (4.23) we have shown the condition of Assumption 4.17.

In order to prove convergence we also need consistency of the methods. For the first-order error
bounds the assumption is rather standard.

Assumption 4.19 (Consistency for order one). The method applied to the original equation (2.4) satisfies
Assumption 4.17 (with φ = ψ = 1) and its defect (4.14) satisfies

‖δn‖X ≤ Cτ
2 ,

where C > 0 is independent of τ and n.

A straightforward assumption for second-order convergence would be consistency with ‖δn‖X ≤ Cτ3.
Then standard arguments lead to error bounds in O(τ2). However, under the assumptions made on the
data we can not expect this to hold at least in the non-averaged case as we have seen in the numerical
example in Section 4.1.4.

For the averaged methods we are hence left with some terms of lower order τ2 and some terms of the
right order τ3. To end up with a global error of order 2 we require a particular structure of the defect,
which we will motivate in the following.
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In Chapter 3 we have seen that most of the methods we consider are constructed from the variation-
of-constants formula

ũ(tn+1) = eτAũ(tn) + τ

1∫
0

e(1−s)τAf̃(tn + τs, ũ(tn + τs)) ds , (4.24)

and the method is constructed by approximating the integral term. Hence, this defect can be expressed
as some quadrature error that contains the second derivative in s of

f1(s) = τ f̃(tn + τs, ũ(tn + τs)) or f2(s) = e(1−s)τAf1(s) ,

depending on the precise method. The terms of order τ3 can be treated in the standard way. However,
from f1 we obtain the second-order term

τ2J
f̃

(
tn + τs, ũ(tn + τs)

)( 0
(τAΦ)Aũ(tn + τs)

)
, (4.25)

where one τ is needed to compensate the operator AΦ which is only bounded by Cτ−1. Additionally, f2

gives the term
τ2 (τAΨ) e(1−s)τAAf(tn + τs,Φũ(tn + τs)). (4.26)

For this term property (OF4) comes into play. It allows us to carry over the local convergence order
to the global error. Similar terms are obtained for the defect of the splitting scheme (3.14). We hence
propose the following general structure of δn which also includes the integral in (4.24) and the structures
in (4.25) and (4.26).

Assumption 4.20 (Structure of defects for order two). The defect δn defined in (4.14) of a numerical
method applied to the averaged equation (4.1) is of the form

δn = δ(1)
n + δ(2)

n +Dn

with ‖Dn‖X ≤ Cτ3, where the constant C > 0 is independent of τ and n. In addition, one of the following
sets of conditions is satisfied:
(a) If φ, ψ are filters of order 2, then there exist wn ∈ X and a linear map Wn : X → D(A) which satisfy

‖wn‖X ≤ C,
∥∥∥1
τ

(
wn+1 − wn

)∥∥∥
X
≤ C, (4.27a)

‖Wn‖X←X ≤ C,
∥∥∥1
τ

(
Wn+1 −Wn

)∥∥∥
X←X

≤ C, (4.27b)

‖AWn‖X←X ≤ C, (4.27c)

with a constant C which is independent of τ and n such that δ(i)
n can be written as

δ(1)
n = τ2(τAΨ

)
wn , δ(2)

n = τ2Wn

(
τAΦ

)
Aũ(tn) , (4.28)

(b) If ψ = 1 and φ is a filter of order 2, then (4.27) and (4.28) hold with wn = 0 for all n.

Remark 4.21. If we use property (OF2) in the representation (4.28) we can conclude ‖δn‖X ≤ Cτ2.
But this is precisely Assumption 4.19 and would only yield a suboptimal first-order bound in the global
error.
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The following propositions shows that the methods presented in Chapter 3 satisfy the abstract as-
sumptions on the defect.

Proposition 4.22 ([9, Prop. 5.5]). Let Assumptions 4.1, 4.2, and 4.4 be satisfied.
(a) The general explicit and implicit exponential class (3.6) and (3.7) applied to the averaged equation

(4.1) satisfy Assumptions 4.19 and 4.20 (a).
(b) If the coefficients in (3.8) are chosen such that ρ = ρ̂ = 0, then (3.6) and (3.7) applied to the averaged

equation (4.1) also satisfy Assumption 4.20 (b).
(c) The second-order variant of the Lie splitting (3.14) applied to the averaged equation (4.1) satisfies

Assumption 4.20 (a).

Proof. We mainly focus on part (a) and (b) of the proposition since they can be proved together. In the
end we sketch the ideas of part (c).

(i) We first establish Assumption 4.20 for (a) and (b). Recall tn+ξ = tn + τξ and let ũn+ξ := ũ(tn+ξ)
and f̃n+ξ := f̃(tn+ξ, ũn+ξ). We first consider the inner defect ∆n of the explicit scheme

∆n = sex
τ

(
tn, ũn

)
− ũn+c2

= c2τ
(
a(c2τA)f̃n −

1∫
0

e(1−ξ)c2τAf̃n+c2ξ dξ
)

= c2τ
(
∆n,1 −∆n,2

)
where we used the variation-of-constants formula. As we will only need the first component of the
inner stage due to (4.7), it is sufficient to estimate π1∆n,1 and π1∆n,2. Since π1f̃n = 0 by (4.7),
we obtain by (A3’)

‖π1∆n,1‖X =
∥∥∥π1a(c2τA)f̃n

∥∥∥
X

= τ
∥∥∥π1a1(c2τA)Af̃n

∥∥∥
X
≤ Cτ

with a1 given in (3.8) and once more (4.7) gives

‖π1∆n,2‖X =
∥∥∥π1

1∫
0

e(1−ξ)c2τAf̃n+c2ξ dξ
∥∥∥
X

=
∥∥∥π1

( 1∫
0

e(1−ξ)c2τAf̃n+c2ξ dξ − f̃n+c2

)∥∥∥
X
≤ Cτ

by the order of the implicit Euler method, where we employ (A1’) and (A3’) to bound the integrand.
In summary this gives

‖π1∆n‖X ≤ Cτ
2 , (4.29)

which also holds in the case of the unfiltered problem. For the implicit scheme we obtain

∆n = sim
τ

(
tn, ũn

)
− ũn+c2

= c2τa(c2τA)
(
f̃(tn+ξ, s

im
τ

(
tn, ũn

)
)− f̃n+c2

)
+c2τ

(
a(c2τA)f̃n+c2 −

1∫
0

e(1−ξ)c2τAf̃n+c2ξ dξ
)

= c2τa(c2τA)
(
f̃(tn+ξ, s

im
τ

(
tn, ũn

)
)− f̃n+c2

)
+c2τ

(
∆n,1 −∆n,2

)
.

Choosing τ ≤ τ0 sufficiently small and estimating ∆n,1 and ∆n,2 as above, we obtain as in (4.20)
the bound (4.29).
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For sτ = sex
τ or sτ = sim

τ , this leads us to the defect

δn = eτAũn + τ
(
π1
(
B̂1(τA)f̃n + B̂2(τA)f̃

(
tn+c2 , sτ

(
tn, ũn

)))
+π2

(
B1(τA)f̃n +B2(τA)f̃

(
tn+c2 , sτ

(
tn, ũn

)))
− ũn+1 .

We then use the variation-of-constants formula (4.24) and, due to the decomposition I = π1 + π2,
it is sufficient to consider the defects δn,i = πiδn. Since both defects have an identical structure,
we only consider

δn,2 = τπ2

(
B1(τA)f̃n +B2(τA)f̃

(
tn+c2 , sτ

(
tn, ũn

))
−

1∫
0

e(1−ξ)τAf̃n+ξ dξ
)

= τπ2B2(τA)
(
f̃
(
tn+c2 , sτ

(
tn, ũn

))
− f̃n+c2

)
+ τπ2

(
B1(τA)f̃n +B2(τA)f̃n+c2 −

1∫
0

e(1−ξ)τAf̃n+ξ dξ
)

= τπ2Î1 + τπ2Î2 .

(4.30)

Using (A5a’) and the bound in (4.29), we have by (4.7) in the filtered as well as in the unfiltered
case ∥∥∥τπ2Î1

∥∥∥
X
≤ Cτ

∥∥∥f̃(tn+c2 , sτ
(
tn, ũn

))
− f̃n+c2

∥∥∥
X

≤ C(rX)τ
∥∥∥π1

(
sτ
(
tn, ũn

)
− ũn+c2

)∥∥∥
X

= C(rX)τ ‖π1∆n‖X
≤ Cτ3 .

The term Î2 is the defect of an exponential quadrature rule. Using Taylor expansion on

f̃n+σ = f̃n + τσf̃ ′n + τ2σ2
1∫

0

(1− s)f̃ ′′n+σs ds, f̃
(k)
n+s := dk

dξk
f̃(tn + ξ, ũ(tn + ξ))

∣∣
ξ=τs , (4.31)

we are able to write with the definition of the ϕ-functions in (3.1) and the coefficients in (3.8)

Î2 = B1(τA)f̃n +B2(τA)
(
f̃n + τc2f̃

′
n

)
−

1∫
0

e(1−ξ)τA(f̃n + τξf̃ ′n
)
dξ + Î2,3

=
(
B1(τA) +B2(τA)− ϕ1(τA)

)
f̃n + τ

(
c2B2(τA)− ϕ2(τA)

)
f̃ ′n + Î2,3

= Î2,1 + Î2,2 + Î2,3 .

where Î2,3 is given by

Î2,3 = τ2B2(τA)c22

1∫
0

(1− s)f̃ ′′n+c2s ds− τ
2

1∫
0

e(1−ξ)τA
1∫

0

(1− s)f̃ ′′n+ξs ds dξ . (4.32)

We estimate the three terms separately. The first dominant term Î2,3 gives rise to the term Wn

motivated in (4.25). Since the two terms of the difference have the precise same structure we further
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decompose Î2,3 = ÎA2,3 − ÎB2,3 and only investigate the first part. We compute

τπ2Î
A
2,3 = τ3π2B2(τA)c22

1∫
0

(1− s)f̃ ′′n+c2s ds

= τ3π2B2(τA)c22

1∫
0

(1− s)J
f̃

(
tn+c2s, ũn+c2s

)( 0
AΦu′(tn+c2s)

)
ds+D1

n

= τ2π2B2(τA)c22

1∫
0

(1− s)J
f̃

(
tn+c2s, ũn+c2s

)( 0(
τAΦ

)
Aũn

)
ds+D1

n +D2
n

(4.33)

with
∥∥D1

n

∥∥
X
≤ Cτ3 by (A2’) and

∥∥D2
n

∥∥
X
≤ Cτ3 by (A3’). The term WA

n is given by

WA
n x = π2B2(τA)c22

1∫
0

(1− s)J
f̃

(
tn+c2s, ũn+c2s

)(0
x

)
ds .

The properties (4.27b) and (4.27c) follow from (A2’) and (A4b’). Analogously we define a linear
map WB

n with the same properties and set Wn = WA
n −WB

n .

To bound Î2,2 we use that by (3.8)

c2B2(0) = 1
2 = ϕ2(0)

holds and thus there exists ϕ̂ ∈ Cb (iR) with

c2B2(z)− ϕ2(z) = zϕ̂(z), z ∈ iR .

From this we conclude by (A1’)∥∥∥τπ2Î2,2

∥∥∥
X

=
∥∥∥τ2π2ϕ̂(τA)τAf̃ ′n

∥∥∥
X
≤ Cτ3

∥∥∥Af̃ ′n∥∥∥
X
≤ Cτ3 .

We conclude with the term Î2,1. If ρ = ρ̂ = 0 in (3.8) holds, we have Î2,1 = 0 and for part (b)
Assumption 4.20 (b) is proven. In the other cases we write

τπ2Î2,1 = τπ2

(
B1(τA) +B2(τA)− ϕ1(τA)

)
f̃n

= τ3π2ρ(τA)A2f̃n

= τ2(τAΨ
)
wn

(4.34)

where we used (3.8) and π2AΨ = AΨπ1 due to (2.5) and (OF5). Then wn is given by

wn = ρ(τA)π2Af(tn,Φũn) .

The properties (4.27a) follow directly from (A3’) and (A5b’), and Assumption 4.20 (a) is satisfied.
(ii) In order to verify Assumption 4.19, we let ψ = φ = 1 and as in (4.31) we expand f̃n+s only up to

order 1. Then Î2 is given by

Î2 = τ
(
B1(τA) +B2(τA)− ϕ1(τA)

)
f̃n

+ τ2c2b2(τA)
1∫

0

f̃ ′n+c2s ds− τ
2

1∫
0

e(1−ξ)τA
1∫

0

f̃ ′n+ξs ds dξ .
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From (3.8) we have ρ ∈ Cb (iR) and z 7→ z2ρ(z) ∈ Cb (iR) and with the computation of Remark 4.13
we also have

ρ̃ : z 7→ zρ(z) ∈ Cb (iR) . (4.35)

The assertion then follows by the boundedness of f̃ ′n+s and the fact that

B1(z) +B2(z) = ϕ1(z) + z ρ̃(z) (4.36)

holds together with the bound (A3’).
(iii) We briefly comment on the scheme (3.14). The defect can be written as

δn = eτA
(
ũn + τ f̃

(
tn+1/2, ũn

)
+ τ2

2 rf̃
(
tn+1/2, ũn

))
− ũn+1

=
τ∫

0

d
dξ

(
eξA
(
ũn+1−ξ + ξf̃

(
tn+1/2, ũn+1−ξ

)
+ ξ2

2 rf̃
(
tn+1/2, ũn+1−ξ

)))
dξ

=
τ∫

0

eξA
(
f̃
(
tn+1/2, ũn+1−ξ

)
− f̃n+1−ξ

)
dξ

+
τ∫

0

ξ2

2 e
ξA
(
d
dξ rf̃

(
tn+1/2, ũn+1−ξ

)
+Ar

f̃

(
tn+1/2, ũn+1−ξ

))
dξ

= Î3 + Î4 ,

where we used the structure of f to obtain Jf (t, u)
(

0
f

)
= 0. In the first term Î3 we add and

subtract τeτ/2Af̃n+1/2 and get the quadrature error of the midpoint rule twice. The term Î4

admits a similar structure as Î2,1 and hence Assumption 4.20 can be verified as before.

4.5 Error bounds for exponential one-step methods

This section is devoted to the main results for averaged exponential one-step methods. We prove error
bounds in the X-norm in Theorem 4.24, cf. [9, Thm. 6.2], and in the D(A)-norm in Section 4.5.4.

A key ingredient is the so-called summation by parts formula
n∑
j=0

ajbj =
n∑
j=0

anbj +
n−1∑
j=0

(
aj − aj+1

)( j∑
k=0

bk

)
, (4.37)

which also comes in the form
n∑
j=0

an−jbj =
n∑
j=0

ajb0 +
n−1∑
j=0

(
n−j−1∑
k=0

ak

)(
bj+1 − bj

)
, (4.38)

and can be seen as a discrete analogous of the integration by parts formula. It is verified by straightforward
calculations.

4.5.1 Bounds in the X-norm

The following result corresponds to the right diagonal arrow in Figure 4.1 and is the last step towards our
main theorems in this section, Theorem 4.24. It states that, given suitable filters, any one-step method
of Section 3.2 applied to the averaged equation (4.1) allows for a global error of order O(τ2).
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As before, u denotes the solution of the original problem (2.4) and ũ the solution of the averaged
problem (4.1).

Theorem 4.23 (Global error of the averaged problem, [9, Thm. 6.1]). Let Assumptions 4.1, 4.2, and
4.4 be fulfilled. Moreover, let (un)n be the numerical approximations of a scheme applied to the averaged
equation (4.1) that satisfies Assumptions 4.17 and 4.20. Then there is a τ0 > 0 and a constant Ce > 0
such that for all τ ≤ τ0

‖un − ũ(tn)‖X ≤ Ce τ
2, 0 ≤ tn = nτ ≤ tend.

The constant Ce and τ0 depend on u0, tend, the generalized finite-energy K from Proposition 4.9, the
filter functions, and the embedding constant Cemb, but are independent of τ and n.

Proof. The proof makes use of the error recursion from [30] and adapts techniques from [8, Theorem 5.3].
Due to definition (4.14) of the defect δn, the global error ẽn = ũ(tn)− un can be written as

ẽn+1 = Sτ (tn, ũ(tn))− Sτ (tn, un)− δn
= eτAẽn + τJ

(
tn, ũ(tn), un

)
− δn

by Assumption 4.17. Resolving the recursion we obtain that the global error satisfies

ẽn+1 = e(n+1)τAẽ0 + τ

n∑
j=0

e(n−j)τAJ
(
tj , ũ(tj), uj

)
−

n∑
j=0

e(n−j)τAδj . (4.39)

In a first step we establish the bound ∥∥∥ n∑
j=0

e(n−j)τAδj

∥∥∥
X
≤ Cδτ2 (4.40)

with a constant Cδ being independent of τ and n. In the second step we close the proof with the bound
in (4.16) and the application of a discrete Gronwall lemma.

(i) The proof is done by induction on n in order to control theX-norm of the numerical approximations.
For n = 0, the statement is obviously true. Hence we assume that for all 0 ≤ k ≤ n it holds

‖uk‖X ≤ rX , ‖uk − ũ(tk)‖X ≤ Ce τ
2, Ce := Cδ e

CJ (K̃,rX)tend .

By Assumption 4.20, the defect is split into three parts, which motivates to write

n∑
j=0

e(n−j)τAδj = ẽ
(1)
n+1 + ẽ

(2)
n+1 + ẽ

(D)
n+1, (4.41)

where

ẽ
(`)
n+1 =

n∑
j=0

e(n−j)τAδ
(`)
j , ` = 1, 2, ẽ

(D)
n+1 =

n∑
j=0

e(n−j)τADj .

Since ‖Dj‖X ≤ Cτ
3 and nτ ≤ tend we easily see

∥∥∥ẽ(D)
n+1

∥∥∥
X

=
∥∥∥ n∑
j=0

e(n−j)τADj

∥∥∥
X
≤ Cτ2.
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To bound ẽ(`)
n+1, ` = 1, 2, we define the sums

En =
n∑
j=0

ejτA and Fn =
n∑
j=0

ũ(tj). (4.42)

We employ the summation by parts formula (4.38) with aj = ejτA and bj = δ
(1)
j , use the represen-

tation of the defect in Assumption 4.20, and property (OF4) with χ = Ψ to obtain

n∑
j=0

e(n−j)τAδ
(1)
j = Enδ

(1)
0 +

n−1∑
j=0

En−j−1
(
δ

(1)
j+1 − δ

(1)
j

)
= τ3EnAΨw0 + τ3

n−1∑
j=0

En−j−1AΨ
(
wj+1 − wj

)
= τ2En(eτA − I)ΘΨw0

+ τ2
(
τ

n−1∑
j=0

En−j−1(eτA − I)ΘΨ
1
τ

(
wj+1 − wj

))
.

(4.43)

We note that estimating En in a naive way leads to a factor n and hence one loses one order of
convergence. However, we can do better if we bound Ej(eτA− I) together. We exploit a telescopic
sum to get

∥∥Ej(eτA − I)
∥∥
X

=
∥∥∥ j∑
k=0

ekτA(eτA − I)
∥∥∥
X

=
∥∥∥e(j+1)τA − I

∥∥∥
X
≤ 2. (4.44)

Together with (4.27a) and (OF1) this yields (4.40) for δ(1)
j instead of δj .

We proceed similarly for the term ẽ
(2)
n+1. We use the representation in (4.28), apply the summation

by parts formula (4.37) with aj = e(n−j)τAWj and bj = AΦAũj , and (OF4) with χ = Φ to get

n∑
j=0

e(n−j)τAδ
(2)
j = τ3WnAΦAFn + τ3

n−1∑
j=0

e(n−j)τA(Wj − e−τAWj+1
)
AΦAFj

= τ2WnΘΦ(eτA − I)AFn

+ τ2
(
τ

n−1∑
j=0

e(n−j)τA 1
τ

(
Wj − e−τAWj+1

)
ΘΦ(eτA − I)AFj

)
.

(4.45)

In order to obtain second-order error bounds we bound the terms separately. If we expand the
term

1
τ

(
Wj − e−τAWj+1

)
= 1
τ
e−τA

(
Wj −Wj+1

)
− 1
τ

(e−τA − I)Wj ,

we may use the bounds (4.27b) and (4.27c) to derive∥∥∥1
τ
e−τA

(
Wj −Wj+1

)∥∥∥
X←X

=
∥∥∥1
τ

(
Wj −Wj+1

)∥∥∥
X←X

≤ C,∥∥∥1
τ

(e−τA − I)Wj

∥∥∥
X←X

=
∥∥∥ϕ1(−τA)AWj

∥∥∥
X←X

≤ C,

since |ϕ1(z)| ≤ 1 for z ∈ iR.

As in (4.44), we estimate the term (eτA − I)AFj for j ≤ n since the term Fj alone does not have
the right order. After adding the exact solution we apply the variation-of-constants formula, (A3’),
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and (4.13), which gives

∥∥∥(eτA − I)AFj
∥∥∥
X

=
∥∥∥A j∑

k=0
(eτAũ(tk)− ũ(tk + τ)) +A

j∑
k=0

(ũ(tk + τ)− ũ(tk))
∥∥∥
X

=
∥∥∥− j∑

k=0

∫ τ

0
e(τ−s)AAf̃(ũ(tk + s)) ds+A(ũ(tj+1)− ũ0)

∥∥∥
X

≤ tendC(K̃) + 2K̃.

This yields (4.40) for δ(2)
j instead of δj and together with the results above proves (4.40).

(ii) Finally, turning back to (4.39), we plug in ẽ0 = 0, the bounds on the defects (4.40) and the stability
in (4.16) and arrive at

‖ẽn+1‖X =
∥∥∥τ n∑

j=0
e(n−j)τAJ

(
tj , ũ(tj), uj

)
−

n∑
j=0

e(n−j)τAδj

∥∥∥
X

≤ Cδτ2 + τ

n∑
j=1

CJ (K̃, rX) ‖ẽj‖X .

A discrete Gronwall lemma thus yields

‖ẽn+1‖X ≤ τ
2 Cδ e

CJ (K̃,rX)tend = Ceτ
2,

‖un+1‖X ≤ ‖ũ(tn+1)‖X + ‖ẽn+1‖X ≤
3
4rX + Ceτ

2 ≤ rX

for τ ≤ τ0 ≤ 1
2
(
rX
Ce

)1/2 and the induction is closed.

From all these preparations we now easily conclude our main result for averaged exponential one-step
methods.

Theorem 4.24 ([9, Thm. 6.2]). Let Assumptions 4.1, 4.2, and 4.4 be fulfilled. Further, let (un)n be the
numerical approximations of a scheme that satisfies Assumption 4.17.

(a) If the method also satisfies Assumption 4.19 and is applied to the original equation (2.4), then there
is a τ0 > 0 and a constant C1 > 0 such that for all τ ≤ τ0

‖un − u(tn)‖X ≤ C1τ, 0 ≤ tn = nτ ≤ tend .

(b) Let φ, ψ such that Assumption 4.20 is satisfied. Then there is a τ0 > 0 and a constant C2 > 0 such
that for all τ ≤ τ0

‖un − u(tn)‖X ≤ C2τ
2, 0 ≤ tn = nτ ≤ tend,

if the method is applied to the averaged equation (4.1).

The constants C1, C2 and τ0 depend on u0, tend, the generalized finite-energy K from Proposition 4.9,
the filter functions, and the embedding constant Cemb, but are independent of τ and n.

Proof. Part (a) follows directly from Assumption 4.19 and equation (4.39). For part (b), we simply
combine Theorem 4.14 and Theorem 4.23 by the triangle inequality (4.3).
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Figure 4.3: Discrete L∞
(

[0, 1], L2(T)×H−1(T)
)
error (on the y-axis) of the numerical solution of (4.4)

plotted against the stepsize τ (on the x-axis) without filters (red, crosses) and with outer filter only (blue,
dots) with N grid points. The gray lines indicate order one (dotted) and two (dashed).

4.5.2 On the necessity of the inner filter

Gauckler [22] proves that in the setting of a one-dimensional wave equation with periodic boundary
condition it is not necessary to use an inner filter φ in order to obtain second-order error bounds. Hence,
we comment on how this insight is present in our more general framework. Numerical experiments
indicate that in certain examples the inner filter cannot be neglected. We used an example similar to
that of Section 4.1.4 and only describe the differences. We changed the right-hand side to

G(q) = ma sin(mi q) q, (4.46)

and made the choice φ = 1 and ψ as in (4.5) for the numerical scheme (blue, dots), see Figure 4.3. The
code to reproduce the plots is available on https://doi.org/10.5445/IR/1000130189. We still observe an
improvement of the numerical scheme with outer filter compared to not using any filter (red, crosses),
but the order reduction cannot be prevented.

Going back into the error analysis, we see that the inner filter Φ is important in the defect that stems
from the part of the quadrature error which is considered in (4.25). In more detail we examine this term
in (4.32), and it is obvious that this term was not problematic if we could simply conclude∥∥f ′′n+ξs

∥∥
X
≤ C . (4.47)

For the following considerations we restrict ourselves to the case g(t, x, q) = g(x, q) and hence (4.47) is

https://doi.org/10.5445/IR/1000130189
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equivalent to ∥∥g′′n+ξs
∥∥
H =

∥∥gyy(qn+ξs)(q′n+ξs)2 + gy(qn+ξs)q′′n+ξs
∥∥
H ≤ C .

which is precisely the conclusion in [22, Proposition 3.3]. In all the examples mentioned above we have
at least, cf. Appendix A,∥∥gyy(qn+ξs)(q′n+ξs)2∥∥

V
≤ C

(
‖qn+ξs‖D(L) ,

∥∥q′n+ξs
∥∥
V

)
≤ C(K)

and hence (4.47) is equivalent to ∥∥gy(qn+ξs)q′′n+ξs
∥∥
H ≤ C . (4.48)

Since by the generalized finite-energy condition (2.13) it holds
∥∥q′′n+ξs

∥∥
H ≤ K a sufficient condition for

(4.48) is
‖gy(qn+ξs)‖H←H ≤ C .

However, from (A2) we can in general only conclude that it is bounded from V to H, and we would need
a bound on

∥∥q′′n+ξs
∥∥
V

which is not covered by the generalized finite-energy condition.
So, the question to answer is when the multiplication by gy(qn+ξs) is a bounded operator from H to

H. We give an exemplary overview on different scenarios.
(a) H = H−1(Ω) and d = 1

Since in our framework g′(qn+ξs) acts as a multiplication operator, it is sufficient to check whether
a multiplication is continuous as an operator from H−1(Ω) into itself. We compute for a ∈ H1(Ω)
and v ∈ L2(Ω)

‖av‖H−1 = sup
‖w‖H1 =1

〈av, w〉L2 = sup
‖w‖H1 =1

〈v, aw〉L2 ≤ sup
‖w‖H1 =1

‖v‖H−1 ‖aw‖H1 ≤ C ‖v‖H−1 ‖a‖H1 .

Hence, we can extend this to a bounded linear operator m : H−1(Ω) → H−1(Ω) if a ∈ H1(Ω).
Therefore, a sufficient condition for (4.48) to hold, is gy(qn+ξs) ∈ H1(Ω) for qn+ξs ∈ H1(Ω) .

Smooth coefficients In [22] g is a polynomial and since H1(Ω) is an algebra for d = 1, this
directly implies gy(qn+ξs) ∈ H1(Ω). More general, we can assure this condition if we assume (x, y) 7→
gy(x, y) to be weakly differentiable in x and continuously differentiable in y since then

x 7→ gy(x, qn+ξs(t, x)) ∈ H1(Ω)

for all t ∈ [0, tend] by the standard arguments.

Irregular coefficients If we use a right-hand side as in (4.46) the above considerations do
not apply. For example, take the linear case with g(x, y) = m(x)y, m ∈ L∞(Ω). We then have
gy(x, y) = m(x), which is in general not a map from H−1(Ω) into itself. This explains the behavior
in Figure 4.3.

(b) H = L2(Ω)

For any spatial dimension d ∈ {1, 2, 3} a sufficient condition for (4.48) is

gy(qn+ξs) ∈ L∞(Ω) , (4.49)

since we only need a bounded multiplication operator from L2(Ω) to L2(Ω). Surprisingly, this is far
less restrictive than in the case H = H−1(Ω). In addition, since qn+ξs ∈ H2(Ω) ↪→ L∞(Ω) holds,
the assumptions in Table 4.1 directly imply (4.49) and no inner filter is needed.
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(c) H = H1
0 (Ω)

The situation is not so much different to the L2(Ω)-case since (4.48) is implied by

gy(qn+ξs) ∈W 1,∞(Ω) . (4.50)

Since qn+ξs ∈ H3(Ω) ↪→ W 1,∞(Ω) holds for the exact solution, the regularity of g is sufficient for
(4.50) to be valid and also no inner filter is needed.

4.5.3 On the necessity of the outer filter

After the discussion above, naturally the question arises whether one needs an outer filter and if one can
characterize the scenarios where it is necessary. Again checking the proof of Proposition 4.22, we observe
that the outer filter Ψ only enters in the term (4.34). In particular, if we could establish the bound∥∥A2f(tn, u(tn)

∥∥
X
≤ C , (4.51)

with C independent of τ , then one can take ψ = 1. Note that (4.51) is equivalent to

‖G(tn, q(tn)‖D(L) = ‖LG(tn, q(tn)‖H ≤ C . (4.52)

For simplicity we only consider L = −∆ and check the different scenarios.
(a) H = H−1(Ω)

In this case we have chosen α = (2, 0, 2), but (4.52) is given by

‖g(tn, ·, q(tn, ·))‖H1 ≤ C ,

which is not defined under the assumed smoothness of g. For example, the right-hand side in
(4.46) is not weakly differentiable in x due to the terms ma,mi ∈ L∞(Ω). However, since q ∈
C1([0, T ], H1

0 (Ω)) holds, differentiability in the x-component of g and the assumption g(t, ·, 0) = 0
on ∂Ω imply (4.52) by the chain rule. In particular in the framework of [22], this section together
with the observations in the previous one yield second-order error bounds without any filter.

(b) H = L2(Ω) and H = H1
0 (Ω)

As in the previous case, it is easily seen that the bound in (4.52) can be achieved requiring more
regularity of g in the spatial variable x and possibly adding more compatibility conditions on the
boundary.

4.5.4 Bounds in the graph norm

In this section we adapt the technique previously used to obtain error bounds also in the stronger graph
norm. It is no surprise that the order is decreased to one for the filtered scheme. We emphasize that the
usage of the inner filter Φ is redundant. However, it does also not deteriorate the result. We first present
the slightly different stability assumption for the method compared to Assumption 4.17.

Assumption 4.25 (Stability). The method applied to (4.1) is stable in the sense that for all v, w ∈ D(A),
t ≥ 0,

Sτ (t, v)− Sτ (t, w) = eτA (v − w) + τJ (t, v, w) ,
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where J : R×D(A)×D(A)→ D(A) is bounded by

‖J (t, v, w)‖D(A) ≤ CJ
(
‖v‖D(A) , ‖w‖D(A)

)
‖v − w‖D(A) , t ∈ [0, tend]. (4.53)

The following proposition shows that the assumption on the stability is satisfied by all the one-step
methods considered.

Proposition 4.26. Let Assumptions 4.1, 4.2, and 4.4 be satisfied.
(a) The general explicit exponential class (3.6) satisfies the stability Assumption 4.25.
(b) There is some τ0 > 0 such that the general implicit exponential class (3.7) satisfies the stability

Assumption 4.25 for all τ ≤ τ0.
(c) The second-order variant of the Lie splitting (3.14) applied to the averaged equation (4.1) satisfies

Assumption 4.25.

Proof. The proof is very similar to the one of Proposition 4.18 and in particular the operator J remains
the same. We only need to prove the additional bounds. We consider the three cases separately.
(a) As before it suffices to consider the part of J given in (4.18). With the property given in (A5b’),

we hence may conclude the assertion if we establish for ‖v‖D(A) ≤ rA a bound of the form

‖sex
τ (tn, v)‖D(A) ≤ C(rA) ,

where sex
τ denotes the flow of the inner stage defined in (4.17). This is obtained by

‖sex
τ (tn, v)‖D(A) ≤ ‖v‖D(A) + Cτ ‖f(tn, v)‖D(A) ≤ C(rA)

using the bound in (A3’).
(b) As in part (a) it is sufficient to prove a bound for the solution of (4.19) in ‖·‖D(A). To achieve this, we

consider (4.19) and repeat the fixed-point argument in the stronger norm. Let again ‖v‖D(A) ≤ rA

and ‖U‖D(A) ≤ 2rA and compute

‖Tv,tn(U)‖D(A) ≤ rA + Cτ ‖f(tn+c2 , U)‖D(A) ≤ rA + τC(rA) ≤ 2rA

for τ ≤ τ0 ≤ rA
C(rA) . By the same means we also obtain the contractivity and conclude∥∥sim

τ (v)
∥∥
D(A) ≤ 2rA

for sufficiently small τ ≤ τ0.
(c) We use the decomposition of (4.21) and obtain by (OF1), (OF4), and (A5b’) for

‖J1‖D(A) + ‖J3‖D(A) ≤ C(‖v‖D(A) , ‖w‖D(A)) ‖v − w‖D(A) . (4.54)

For J2 we use the expansion

J2 = 1
2

(
ΨJf

(
t,Φv

)
−ΨJf

(
t,Φw

))( 0(
τAΦ

)
v

)
+ 1

2ΨJf
(
t,Φw

)( 0(
τAΦ

)(
v − w

)) .
Again (OF4), the bound (A-CLS-2’) for the first term and (A4b’) for the second term yield

‖J2‖X ≤ C(‖v‖D(A) , ‖w‖D(A)) ‖v − w‖D(A) + C(‖w‖D(A)) ‖v − w‖D(A) . (4.55)

Combining (4.54) and (4.55) we have shown the assertion of Assumption 4.25.
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We further need an assumption on the consistency of the methods. Since we only prove an error
bound of order one, the structure of the defect takes a far simpler form as in Assumption 4.20 and only
one part is left that needs to be taken special care of.

Assumption 4.27 (Structure of defects). The defect δn defined in (4.14) of a numerical method applied
to the averaged equation (4.1) is of the form

δn = δ(1)
n +Dn

with ‖Dn‖D(A) ≤ Cτ2, where the constant C > 0 is independent of τ and n. In addition, one of the
following sets of conditions is satisfied:
(a) If ψ is a filter of order 1, then there exists wn ∈ X which satisfies

‖wn‖X ≤ C,
∥∥∥1
τ

(
wn+1 − wn

)∥∥∥
X
≤ C, (4.56)

with a constant C which is independent of τ and n such that δ(1)
n can be written as

Aδ(1)
n = τ

(
τAΨ

)
wn . (4.57)

(b) If ψ = 1, then (4.56) and (4.57) hold with wn = 0 for all n.

Remark 4.28. We emphasize that a method that satisfies condition (b) of Assumptions 4.27 actually
does not need any filter. These methods are characterized by ρ = ρ̂ = 0 in (3.8).

In the following proposition we prove that all the methods we consider allow for this special structure
of the defect.

Proposition 4.29. Let Assumptions 4.1, 4.2, and 4.4 be satisfied.
(a) The general explicit and implicit exponential class (3.6) and (3.7) applied to the averaged equation

(4.1) satisfy Assumption 4.27 (a).
(b) If the coefficients in (3.8) are chosen such that ρ = ρ̂ = 0, then (3.6) and (3.7) applied to the averaged

equation (4.1) also satisfy Assumption 4.27 (b).
(c) The second-order variant of the Lie splitting (3.14) applied to the averaged equation (4.1) satisfies

Assumption 4.27 (a).

Proof. The proof is very similar to the one of Proposition 4.22. We first proof part (a) and explain how
(b) follows from this. We recall the decomposition I = π1 + π2 which led to the defects δn,i = πiδn and
that it is sufficient to bound one of them. We further use (4.30) where we further decomposed the defect
as

δn,2 = τπ2B2(τA)
(
f̃
(
tn+c2 , sτ

(
tn, ũn

))
− f̃n+c2

)
+ τπ2

(
B1(τA)f̃n +B2(τA)f̃n+c2 −

1∫
0

e(1−ξ)τAf̃n+ξ dξ
)

= τπ2Î1 + τπ2Î2 .

The first term gives with (A5b’)∥∥Aτπ2Î1
∥∥
X

= τ
∥∥π1AÎ1

∥∥
X
≤ τC(K̃)

∥∥sτ(tn, ũn)− ũn+c2

∥∥
X
≤ Cτ3 ,
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where we used (4.29). Note that this lead to a part of δn,2 which is of order O(τ3), however, this fact
cannot be used. The second part requires a more careful treatment. We compute

Aτπ2Î2 = τπ1

(
B1(τA)Af̃n +B2(τA)Af̃n+c2 −

1∫
0

e(1−ξ)τAAf̃n+ξ dξ
)

= τπ1
(
B1(τA) +B2(τA)− ϕ1(τA)

)
Af̃n

+ τπ1B2(τA)A
(
f̃n+c2 − f̃n

)
− τπ1

1∫
0

e(1−ξ)τAA
(
f̃n+ξ − f̃n

)
dξ

= ÎA2,1 + ÎA2,2

and obtain by (A5b’) directly
∥∥ÎA2,2∥∥X ≤ Cτ2. If ρ = ρ̂ = 0 holds the conditions in (3.8) imply Î2,1 = 0

and part (b) is shown.
For the other cases we use (4.35) and (4.36) to write

ÎA2,1 = τπ1
(
B1(τA) +B2(τA)− ϕ1(τA)

)
Af̃n

= τ
(
τAΨ

)
π2ρ̃(τA)Af(tn,Φũn)

= τ
(
τAΨ

)
wn ,

which gives us (4.57). It remains to prove the properties of wn in (4.56). From (A3’) we obtain

‖wn‖X ≤ ‖ρ̃(τA)Af(tn,Φũn)‖X ≤ C(K̃)

and with (A5b’) it follows

‖wn+1 − wn‖X ≤
∥∥ρ̃(τA)A

(
f(tn+1,Φũn+1)− f(tn,Φũn)

)∥∥
X
≤ C(K̃)τ

such that part (a) and (b) are proven.
In order to show the assertion in (c) we consider the defect

Aδn = AeτA
(
ũn + τ f̃

(
tn+1/2, ũn

)
+ τ2

2 rf̃
(
tn+1/2, ũn

))
−Aũn+1

= τ
(
Af̃
(
tn+1/2, ũn

)
−

1∫
0

e(1−ξ)τAAf̃n+ξ dξ
)

+ τ2

2 e
τAAr

f̃

(
tn+1/2, ũn

)
= ÎA3 + ÎA4 .

We expand the first term

ÎA3 = τ
(
Af̃
(
tn+1/2, ũn

)
−Af̃n+1/2 +Af̃n+1/2 −Aϕ1(τA)f̃n+1/2 −

1∫
0

e(1−ξ)τAA
(
f̃n+ξ − f̃n+1/2

)
dξ
)

= τ
(
Af̃n+1/2 −Aϕ1(τA)f̃n+1/2

)
+ τ
(
Af̃
(
tn+1/2, ũn

)
−Af̃n+1/2 −

1∫
0

e(1−ξ)τAA
(
f̃n+ξ − f̃n+1/2

)
dξ
)

= ÎA3,1 + ÎA3,2
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and obtain from (A5b’) and (A1’) the bound
∥∥ÎA3,2∥∥X ≤ Cτ2. Concerning ÎA3,1 we get from (3.2)

ÎA3,1 = τ
(
τAΨ

)(
−ϕ2(τA)Af(tn+1/2,Φũn+1/2)

)
= τ

(
τAΨ

)
wn,1

where wn,1 satisfies the properties in (4.56) by the same arguments as in part (a).
We finally study the term ÎA4

ÎA4 = τ2

2 e
τAAr

(
tn+1/2, ũn

)
= τ2

2 e
τAΨAJf

(
tn+1/2,Φũn

)( 0
AΦũn

)
+ τ
(
τAΨ

)(
− 1

2e
τAAf

(
tn+1/2,Φũn

))
= ÎA4,1 + τ

(
τAΨ

)
wn,2

with
∥∥ÎA4,1∥∥X ≤ Cτ2 by (A4b’) and wn,2 also satisfies (4.56). Setting wn = wn,1 + wn,2 gives (4.57) and

part (c) is proved.

Theorem 4.30. (Global error of the averaged problem) Let Assumptions 4.1, 4.2, and 4.4 be fulfilled.
Moreover, let (un)n be the numerical approximations of a scheme applied to the averaged equation (4.1)
that satisfies Assumptions 4.25 and 4.27. Then there is a τ0 > 0 and a constant Ce > 0 such that for all
τ ≤ τ0

‖un − ũ(tn)‖D(A) ≤ Cτ, 0 ≤ tn = nτ ≤ tend,

The constant Ce and τ0 depend on u0, tend, the generalized finite-energy K from Proposition 4.9, the
filter functions, and the embedding constant Cemb, but are independent of τ and n.

Proof. We proceed as in the proof of Theorem 4.23. Using Assumption 4.25, we get from (4.39) by
multiplying with A

Aẽn+1 = e(n+1)τAAẽ0 + τ

n∑
j=0

e(n−j)τAAJ (tj , ũ(tj), uj)−
n∑
j=0

e(n−j)τAAδj . (4.58)

In a first step we again establish the bound∥∥∥ n∑
j=0

e(n−j)τAAδj

∥∥∥
X
≤ Cδτ (4.59)

with a constant Cδ being independent of τ and n. Similarly, in the second step we close the proof with
the bound in (4.53) and the application of a discrete Gronwall lemma.

(i) The proof is done by induction on n. For n = 0, the statement is obviously true. Hence we assume
that for all 0 ≤ k ≤ n it holds

‖uk‖D(A) ≤ 2K̃, ‖uk − ũ(tk)‖D(A) ≤ Ce τ, Ce := Cδ e
CJ (2K̃)tend .

By Assumption 4.27, the defect is split into two parts
n∑
j=0

e(n−j)τAAδj = ẽ
(1)
n+1 + ẽ

(D)
n+1,

analogously to (4.41). Since ‖Dj‖D(A) ≤ Cτ
2 and nτ ≤ tend we immediately obtain

∥∥∥ẽ(D)
n+1

∥∥∥
X

=

∥∥∥∥∥∥
n∑
j=0

e(n−j)τAADj

∥∥∥∥∥∥
X

≤ Cτ .
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As in (4.43) we use the integration by parts formula (4.37) and obtain

ẽ
(1)
n+1 =

n∑
j=0

e(n−j)τAAδ
(1)
j = τEn(eτA − I)ΘΨw0 + τ

(
τ

n−1∑
j=0

En−j−1(eτA − I)ΘΨ
1
τ

(
wj+1 − wj

))
and estimate it as before to arrive at (4.59).

(ii) Taking norms in (4.58), using (4.59) and ẽ0 = 0 we have

‖ẽn+1‖D(A) ≤ Cδ τ + τ

n∑
j=1

CJ (2K̃) ‖ẽj‖D(A) .

A discrete Gronwall Lemma thus yields

‖ẽn+1‖D(A) ≤ τ Cδ e
CJ (2K̃)tend = Ceτ,

‖un+1‖D(A) ≤ ‖ũ(tn+1)‖D(A) + ‖ẽn+1‖D(A) ≤ K̃ + Ceτ ≤ 2K̃

for τ ≤ τ0 ≤ K̃
Ce

and the induction is closed.

This leads to the desired error bound in the graph norm.

Theorem 4.31. Let Assumptions 4.1, 4.2, and 4.4 be fulfilled. Further let (un)n be the numerical
approximations of a scheme that satisfies Assumptions 4.25 and 4.27. Then there is a τ0 > 0 and a
constant C > 0 such that for all τ ≤ τ0

‖un − u(tn)‖D(A) ≤ Cτ, 0 ≤ tn = nτ ≤ tend,

if the method is applied to the averaged equation (4.1). The constants C and τ0 depend on u0, tend, the
generalized finite-energy K from Proposition 4.9, the filter functions, and the embedding constant Cemb,
but are independent of τ and n.

Proof. We simply combine Lemma 4.15 and Theorem 4.30 to conclude

‖u(tn)− un‖D(A) ≤ ‖u(tn)− ũ(tn)‖D(A) + ‖ũ(tn)− un‖D(A) ≤ Cτ

for 0 ≤ tn = nτ ≤ tend.

4.6 Error bounds for exponential multistep methods

We briefly indicate how to extend the developed theory to the exponential multistep methods of Sec-
tion 3.2.2. In order to get a useful representation for the defects we give a proof for the generalization of
a known result on quadrature errors.

4.6.1 Peano kernels and defects

Let X be some Hilbert or Banach space and consider a weight w : [0, 1]→ B(X). For a sufficiently smooth
function f : [0, 1]→ X we consider

T (f) =
m∑
i=1

αif(ci), I(f) =
1∫

0

w(s)f(s) ds , (4.60)



60 Chapter 4. Error analysis for averaged exponential integrators

where T is a quadrature formula with nodes ci ∈ R and weights αi ∈ B(X), i = 1, . . . ,m. We recall the
notion of polynomials in Banach spaces X from [4, Section IV.3] where any polynomial p is given for
some N ∈ N and coefficients ki ∈ X, i = 0, . . . , N , as

p : [0, 1]→ X, s 7→ p(s) =
N∑
i=0

kis
i .

We assume that the quadrature formula is of degree q, meaning that polynomials in the above sense of
degree q − 1 are integrated exactly. In the case where all nodes ci lie in [0, 1] it is well known that the
error functional defined by

E(f) = T (f)− I(f)

allows for a representation of the form

E(f) =
1∫

0

K(s)f (q)(s) ds ,

with some bounded K : [0, 1] → B(X), often called the Peano kernel. We will now slightly generalize
this result since for multistep methods nodes will also lie outside this interval. We note that the proof is
straightforward, however, we could not find any reference. Thus, we give the proof in detail here.

Lemma 4.32. Consider T and I from (4.60) with degree q and let [0, 1] ⊆ [x0, x1] such that ci ∈ [x0, x1],
i = 1, . . . ,m. Then there exists a bounded K : [x0, x1]→ B(X) such that

E(f) =
x1∫
x0

K(s) f (q)(s) ds

for all q-times differentiable f : [x0, x1]→ X.

Proof. Consider the Taylor expansion of f for s ∈ [x0, x1] by

f(s) = f(0) + sf ′(0) + · · ·+ sq−1

(q−1)!f
(q−1)(0) + 1

(q−1)!

s∫
0

(s− t)(q−1)f (q)(t) dt

= pf (s) + r(s) ,

where pf is a polynomial of degree q − 1 and r can be written as

r(s) = 1
(q−1)!

x1∫
x0

(s− t)q−1f (q)(t)χ(s, t) dt, χ(s, t) =

1[0,s](t) , 0 ≤ s ≤ x1 ,

−1[s,0](t) , x0 ≤ s < 0 .

Since E(pf ) = 0 holds, we get

(q − 1)! E(f) = (q − 1)! E(r)

=
n∑
i=1

αi

x1∫
x0

(ci − t)q−1f (q)(t)χ(ci, t) dt−
1∫

0

x1∫
x0

w(s)(s− t)q−1f (q)(t)χ(s, t) dt ds

=
x1∫
x0

f (q)(t)
( n∑
i=1

αi(ci − t)q−1χ(ci, t)−
1∫

0

w(s)(s− t)q−1χ(s, t) ds
)
dt

=
x1∫
x0

f (q)(t) E
(
(· − t)q−1χ(·, t)

)
dt.
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Hence, we obtain the assertion if we define

K(t) := 1
(q−1)!E

(
(· − t)q−1χ(·, t)

)
and the boundedness is clear if the kernel w and the weights αi are bounded.

4.6.2 Bounds in the X- and the graph norm

In this section we prove first- and second-order error bounds in the X-norm and first-order error bounds
in the D(A)-norm. Since the first step is performed by an exponential Euler step or a Lie splitting step,
we only mention that in any case the error of the first step is given by

‖e1‖D(A) ≤ Cτ
2 (4.61)

by simply adapting the proofs for the inner stages in Propositions 4.22 and 4.26. For the three schemes
(3.15), (3.16), and (3.17) Assumption 4.17 needs to be modified.

Exponential multistep method of Adams-type For method (3.15), we denote the numerical flow
by Sτ (t, vn, vn−1) and obtain

Sτ (t, vn, vn−1)− Sτ (t, wn, wn−1) = eτA
(
vn − wn

)
+ τJn, (4.62)

where Jn = J
(
t, vn, vn−1, wn, wn−1

)
satisfies by (A5a’) similar to (4.18) the bound

‖Jn‖X ≤ CJ
(
‖vn‖X , ‖wn‖X

)
‖vn − wn‖X

+ CJ
(
‖vn−1‖X , ‖wn−1‖X

)
‖vn−1 − wn−1‖X , t ∈ [0, tend],

(4.63)

and also by (A5b’) in the graph norm

‖Jn‖D(A) ≤ CJ
(
‖vn‖D(A) , ‖wn‖D(A)

)
‖vn − wn‖D(A)

+ CJ
(
‖vn−1‖D(A) , ‖wn−1‖D(A)

)
‖vn−1 − wn−1‖D(A) , t ∈ [0, tend].

(4.64)

This yields the following error bound.

Corollary 4.33 ([9, Cor. 7.1]). Let Assumptions 4.1, 4.2, and 4.4 be valid and consider the numerical
approximations (un)n from (3.15). Then the following error bounds hold:
(a) If the method is applied to the original equation (2.4), then there is a τ0 > 0 and a constant C > 0

such that for all τ ≤ τ0

‖u(tn)− un‖X + ‖u(tn)− un‖D(A) ≤ C1τ, 0 ≤ tn = nτ ≤ tend .

(b) If the method is applied to the averaged equation (4.1) with ψ = 1 and a filter φ of order 2, then
there is a τ0 > 0 and a constant C > 0 such that for all τ ≤ τ0

‖u(tn)− un‖X ≤ C2τ
2, 0 ≤ tn = nτ ≤ tend .

Here, C1, C2, and τ0 depend on u0, tend, the generalized finite-energy K from Proposition 4.9, the
embedding constant Cemb, C2, and in addition on the filter functions, but are independent of τ and n.
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Proof. (a) For the first part is is sufficient to prove that the defects are of order 2 since we can then use
(4.64) conclude by the standard arguments. As in the proof of [40, Thm. 4.3] the defect stems from
a quadrature error that can be represented by Lemma 4.32 as

δn = Sτ
(
tn, ũ(tn), ũ(tn−1)

)
− ũ(tn+1) = τ2

1∫
−1

K1(s) f̃ ′n+s ds ,

where we use the notation of (4.31) for the derivatives of f̃n+s. The integral term can be bounded
uniformly in both norms by Assumption (A1’). We obtain by (4.62) the error recursion

ẽn+1 = Sτ
(
tn, ũn, ũn−1

)
− Sτ

(
tn, un, un−1

)
− δn

= eτAẽn + τJn − δn ,

which is resolved by

ẽn+1 = enτAẽ1 + τ

n∑
j=1

e(n−j)τAJj −
n∑
j=1

e(n−j)τAδj . (4.65)

Since the last term is bounded by ∥∥∥ n∑
j=0

e(n−j)τAδj

∥∥∥
D(A)

≤ Cτ ,

and (4.61) holds, the assertion is easily derived by a Gronwall lemma. The bound in the X-norm
follows from Lemma 2.8.

(b) In order to prove the second statement, we first employ Theorem 4.14 and Lemma 4.15, so again it
remains to prove the error in approximating the filtered solution. We obtain the similar representa-
tion

δn = τ3
1∫
−1

K2(s) f̃ ′′n+s ds ,

which yields the dominant terms as in (4.32). As above, it also satisfies the conditions on Wn in
Assumption 4.20. We note that the error recursion in (4.65) is still valid and with (4.63) we may
close the proof by the lines of the one of Theorem 4.23.

Exponential multistep methods of Nyström-type For the methods (3.16) and (3.17) we have

Sτ (t, vn, vn−1)− Sτ (t, wn, wn−1) = e2τA(vn−1 − wn−1
)

+ τJn , (4.66)

where Jn = J (t, vn, wn) is bounded with (A5a’) by

‖Jn‖X ≤ CJ
(
‖vn‖X , ‖wn‖X

)
‖vn − wn‖X , t ∈ [0, tend] , (4.67)

and in the stronger norm with (A5b’) by

‖Jn‖D(A) ≤ CJ
(
‖vn‖D(A) , ‖wn‖D(A)

)
‖vn − wn‖D(A) , t ∈ [0, tend] . (4.68)
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In order to apply the techniques from above we define the modification

χ2 : Cb
(
iR
)
→ Cb

(
iR
)
, χ(·) 7→ χ(2·) ,

and can state the following result.

Corollary 4.34 ([9, Cor. 7.2]). Let Assumptions 4.1, 4.2, and 4.4 be valid and u be the classical solution
of (2.4). Consider the numerical approximations (un)n from (3.16).
(a) If the method is applied to the original equation (2.4), then there is a τ0 > 0 and a constant C > 0

such that for all τ ≤ τ0 it holds

‖u(tn)− un‖X ≤ Cτ, 0 ≤ tn = nτ ≤ tend .

(b) If the method is applied to the averaged equation (4.1) with filters χ2ψ, χ2φ, where ψ, φ are filters of
order 2, then there is a τ0 > 0 and a constant C > 0 such that for all τ ≤ τ0

‖u(tn)− un‖X ≤ Cτ
2, 0 ≤ tn = nτ ≤ tend.

(c) If the method is applied to the averaged equation (4.1) with φ = 1 and the filter χ2ψ, where ψ is a
filter of order 1, then there is a τ0 > 0 and a constant C > 0 such that for all τ ≤ τ0

‖u(tn)− un‖D(A) ≤ Cτ, 0 ≤ tn = nτ ≤ tend.

Here, C and τ0 depend on u0, tend, the generalized finite-energy K from Proposition 4.9, the filter func-
tions, and the embedding constant Cemb, but are independent of τ and n.

Proof. (a) Since the method stems from a midpoint rule applied to the variation-of-constants formula,
the defect can again be written as

δn = τ

1∫
−1

K1(s) d
ds

(
e(1−s)τAf̃n+s

)
ds

= τ2
1∫
−1

K1(s) e(1−s)τA(f̃ ′n+s −Af̃n+s
)
ds ,

and we may bound the integral term uniformly by (A1’) and (A3’). We use (4.66) to obtain the
error recursion

ẽn+1 = Sτ
(
tn, ũn, ũn−1

)
− Sτ

(
tn, un, un−1

)
− δn

= e2τAẽn−1 + τJn − δn ,

which is resolved and bounded by

‖en+1‖X ≤ ‖e1‖X + τ
∑

0≤j≤n2

‖Jn−2j‖X +
∥∥∥ ∑

0≤j≤n2

e2jτAδn−2j

∥∥∥
X
. (4.69)

Since the last term is bounded by O(τ) and (4.61) holds, the assertion directly follows from (4.67).
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(b) As the representation in (4.69) is still valid we only have to bound the last term by O(τ2). The
defect can be written as

δn = τ

1∫
−1

K2(s) d2

ds2

(
e(1−s)τAf̃n+s

)
ds ,

and we obtain dominant terms similar to (4.26) and (4.32). They also satisfy Assumption 4.20 if we
replace the following properties in (4.27) by∥∥∥ 1

2τ
(
wn+2 − wn

)∥∥∥
X
≤ C ,

∥∥∥ 1
2τ
(
Wn+2 −Wn

)∥∥∥
X
≤ C . (4.70)

As ez in (F3) is replaced by e2z, this can be combined to conclude the assertion similar to the proof
of Theorem 4.23.

(c) The last part easily follows by the arguments of part (b), the bounds derived in Proposition 4.29,
the stability in (4.68), and the ideas of the proof of Theorem 4.30.

Corollary 4.35. Let Assumptions 4.1, 4.2, and 4.4 be valid and u be the classical solution of (2.4).
Consider the numerical approximations (un)n from (3.17).
(a) If the method is applied to the original equation (2.4), then there is a τ0 > 0 and a constant C > 0

such that for all τ ≤ τ0 it holds

‖u(tn)− un‖X + ‖u(tn)− un‖D(A) ≤ Cτ, 0 ≤ tn = nτ ≤ tend .

(b) If the method is applied to the averaged equation (4.1) with filter χ2φ, where φ is a filter of order 2,
then there is a τ0 > 0 and a constant C > 0 such that for all τ ≤ τ0

‖u(tn)− un‖X ≤ Cτ
2, 0 ≤ tn = nτ ≤ tend,

Here, C and τ0 depend on u0, tend, the generalized finite-energy K from Proposition 4.9, the filter function,
and the embedding constant Cemb, but are independent of τ and n.

Proof. The proof combines the ideas of Proposition 4.22 and Corollary 4.34, and it only remains to
investigate the defect. The bound in the X-norm in part (a) again follows from Lemma 2.8.
(a) We use the definition of ϕ1 to compute

Aδn = 2τ
(
ϕ1(2τA)Af̃n −

1∫
0

e(1−ξ)2τAAf̃n−1+2ξ dξ
)

= 2τ
1∫

0

e(1−ξ)2τAA
(
f̃n − f̃n+2ξ−1

)
dξ ,

which directly gives ‖δn‖D(A) ≤ Cτ2 by (A1’).
(b) For second-order we compute for the defect expanding with Taylor as in (4.31)

δn = 2τ
(
ϕ1(2τA)f̃n −

1∫
0

e(1−ξ)2τAf̃n+2ξ−1 dξ
)

= −2τ2
1∫

0

e(1−ξ)2τA(2ξ − 1)f̃ ′n dξ − 2τ3
1∫

0

(2ξ − 1)2
1∫

0

(1− s)f̃ ′′n+(2ξ−1)s ds dξ

= Î1 + Î2 .
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For the first term we use integration by parts and obtain with (A1’)

∥∥∥Î1∥∥∥
X

= 4τ3

∥∥∥∥∥∥
1∫

0

e(1−ξ)2τA(ξ2 − ξ)Af̃ ′n dξ

∥∥∥∥∥∥
X

≤ Cτ3 .

Along the lines of (4.33) we deduce from Î2 the map Wn which also satisfies the second part of
(4.70).

4.7 Error bounds for first-order methods with mild solutions

In this last section we consider the linear version of equation (2.4)

u′(t) = Au(t) + Fu(t) , u(0) = u0 ∈ X , (4.71)

which is discretized by the first-order schemes presented in (3.4) and (3.5). The error analysis is performed
under the following assumption on the linear term F .

Assumption 4.36. The linear operator F : X → X satisfies the bounds

‖Fx‖X , ‖Fx‖D(A) ≤ LF ‖x‖X , x ∈ X .

Remark 4.37. In the second-order formulation (2.3), consider a linear operator G satisfying

G : V → V, ‖Gq‖V ≤ C ‖q‖V .

If we define the operator

Fu =
(

0
Gq

)
, u =

(
q

v

)
,

then F satisfies Assumption 4.36.

From Theorem 2.17 we immediately obtain a mild solution u ∈ C([0, tend], X) and it holds the varia-
tion-of-constants formula

u(t) = etAu0 +
∫ t

0
e(t−s)AFu(s) ds

for all t ∈ [0, tend]. We emphasize that the initial value only satisfies u0 ∈ X and hence there is no hope
for a classical solution of (4.71). Nevertheless, we are able to prove an error bound of order one under
this regularity. We start with an explicit bound on the norm of the solution u.

Lemma 4.38. Let Assumption 4.36 be satisfied. Then the mild solution u ∈ C([0, tend], X) of (4.71)
satisfies the bound

‖u(t)‖X ≤ ‖u0‖X e
LF t ≤ ‖u0‖X e

LF tend =: rX .

Proof. We simply compute

‖u(t)‖X ≤
∥∥etAu0

∥∥
X

+
∥∥∥∥∫ t

0
e(t−s)AFu(s) ds

∥∥∥∥
X

≤ ‖u0‖X +
∫ t

0
LF ‖u(s)‖X ds ,

and a Gronwall lemma yields the assertion.
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Let φ be a filter of order 1 and define F̃ ũ = FΦũ. We then consider the linear version of equation
(4.1)

ũ′(t) = Aũ(t) + F̃ ũ(t), ũ(0) = u0 ∈ X , (4.72)

and directly obtain the following bound.

Corollary 4.39. Let Assumption 4.36 be satisfied. Then the mild solution ũ ∈ C([0, tend], X) of (4.72)
satisfies the bound

sup
t∈[0,tend]

‖ũ(t)‖X ≤ rX .

Proof. We only use that by (OF1) it holds∥∥∥F̃ x∥∥∥
X
,
∥∥∥F̃ x∥∥∥

D(A)
≤ LF ‖x‖X

and conclude by the lines of Lemma 4.38.

In the next step we bound the difference of the original and the averaged solution. The idea is the
same as before, but we need to take care of the lack of regularity when deriving the error terms.

Theorem 4.40. Let Assumption 4.36 be valid and consider the averaged nonlinearity F̃ with a first-order
filter. Then there is a constant Cav > 0 such that for all τ > 0

‖u(t)− ũ(t)‖X ≤ Cavτ, 0 ≤ t ≤ tend .

The constant Cav depends on LF , u0, tend, the filter functions, and the embedding constant Cemb, but not
on τ .

Proof. We employ the variation-of-constants formula to write

u(t)− ũ(t) =
∫ t

0
e(t−s)A

(
Fu(s)− F̃ ũ(s)

))
ds

=
∫ t

0
e(t−s)AF

(
I − Φ

)
u(s) ds+

∫ t

0
e(t−s)AF̃

(
u(s)− ũ(s)

)
ds

= I1(t) + I2(t) .

(4.73)

By (OF1) and Assumption 4.36 the second term in (4.73) is bounded by

‖I2(t)‖X =
∥∥∥∫ t

0
e(t−s)AF̃

(
u(s)− ũ(s)

)
ds
∥∥∥
X
≤ LF

∫ t

0
‖u(s)− ũ(s)‖X ds.

It remains to prove

‖I1(t)‖X ≤ Cτ , (4.74)

since this bound is sufficient to apply a Gronwall lemma. To bound I1 we use the variation-of-constants
formula to obtain

I1(t) =
∫ t

0
e(t−s)AF

(
I − Φ

)
esAu0 ds,

+
∫ t

0
e(t−s)AF

(
I − Φ

) s∫
0

e(s−θ)AFu(θ) dθ ds,

= I1,1(t) + I1,2(t)
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For the first term we again use (OF3) and integration by parts to obtain

I1,1(t) = τ

∫ t

0
e(t−s)AFesAAϑ(τA)u0 ds,

= τ
([
e(t−s)AFesAϑ(τA)u0

]t
0+
∫ t

0
e(t−s)AAFesAϑ(τA)u0 ds

)
,

which gives the first part of (4.74). The second part follows by the estimate

‖I1,2‖X (t) = τ

∥∥∥∥∥∥
∫ t

0
e(t−s)AFϑ(τA)

s∫
0

e(s−θ)AAFu(θ) dθ ds

∥∥∥∥∥∥
X

≤ Cτ ,

and the assertion is proved.

In order to stick to the established framework of the preceding sections we formulate the properties
of the two first-order schemes as abstract assumptions.

Assumption 4.41 (Stability). The method applied to (4.72) is stable in the sense that for all v, w ∈ X,
t ≥ 0,

Sτ (v)− Sτ (w) = eτA (v − w) + τJ (v, w) ,

where J : X ×X → X is bounded by

‖J (v, w)‖X ≤ CJ ‖v − w‖X . (4.75)

As we have already seen for the error bound in the graph norm, the structure of the defect becomes
simpler if one only wants to prove bounds of order 1. We think it is worth mentioning that in comparison
to Assumption 4.27 we now have δ(2)

n instead of δ(1)
n whereas both appeared originally in Assumption 4.20.

Assumption 4.42 (Structure of defects). The defect δn defined in (4.14) of a numerical method applied
to the averaged equation (4.72) is of the form

δn = δ(2)
n +Dn

with ‖Dn‖X ≤ Cτ2, where the constant C > 0 is independent of τ and n. In addition, there exists a
linear map W : X → D(A) which satisfies

‖W‖X←X ≤ C, ‖AW‖X←X ≤ C, (4.76)

with a constant C which is independent of τ and n such that δ(2)
n can be written as

δ(2)
n = τW

(
τAΦ

)
ũn . (4.77)

Proposition 4.43. Let Assumption 4.36 be satisfied. The exponential Euler method (3.4) and the Lie
splitting (3.5) applied to the averaged equation (4.72) satisfy Assumptions 4.41 and 4.42.

Proof. (a) We first investigate the Lie splitting (3.5). Concerning the stability, we note that Assump-
tion 4.41 is fulfilled with

J(v, w) = eτAF̃
(
v − w

)
.
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which clearly satisfies (4.75). By the variation-of-constants formula we expand the defect as

δn = eτA
(
I + τF̃

)
ũn − ũn+1

= eτAτF̃ ũn − τ
1∫

0

e(1−s)τAF̃ ũn+s ds

= τeτAF̃ ũn − τ
1∫

0

e(1−s)τAF̃ esτAũn ds− τ2
1∫

0

s∫
0

e(1−s)τAF̃ e(s−σ)τAF̃ ũn+σ dσ ds

= τ

1∫
0

(
eτAF̃ ũn − e(1−s)τAF̃ esτAũn

)
ds− τ2

1∫
0

s∫
0

e(1−s)τAF̃ e(s−σ)τAF̃ ũn+σ dσ ds

= τ

1∫
0

(
eτAF − e(1−s)τAFesτA

)
Φũn ds+D1

n .

By (OF2) we have Φũn in D(A) and hence we may differentiate the semigroup in the following
computation

δn = τ

1∫
0

1∫
1−s

d
dσ

(
eστAFe(1−σ)τA

)
Φũn dσ ds+D1

n

= τ2
1∫

0

1∫
1−s

eστA
(
AF − FA

)
e(1−σ)τAΦũn dσ ds+D1

n

= −τ2
1∫

0

1∫
1−s

eστAFe(1−σ)τAAΦũn dσ ds+ τ2
1∫

0

1∫
1−s

eστAAFe(1−σ)τAΦũn dσ ds+D1
n

= τ2WAΦũn +D2
n +D1

n

with

Wx = −
1∫

0

1∫
1−s

eστAFe(1−σ)τAx dσ ds .

Hence, (4.76) and (4.77) are satisfied by Assumption 4.36. We further set Dn = D1
n+D2

n and obtain
the bound ‖Dn‖X ≤ Cτ2 which yields the claim of Assumption 4.42.

(b) We similarly proceed for the exponential Euler method (3.4) and note that Assumption 4.41 is
fulfilled with

J(v, w) = ϕ1(τA)F̃
(
v − w

)
.

which satisfies (4.75). By the variation-of-constants formula we expand the defect as

δn = eτAũn + τϕ1(τA)F̃ ũn − ũn+1

= τ

1∫
0

e(1−s)τAF̃ ũn ds− τ
1∫

0

e(1−s)τAF̃ ũn+s ds

= τ

1∫
0

e(1−s)τAF
(
I − esτA

)
Φũn ds− τ2

1∫
0

s∫
0

e(1−s)τAF̃ e(s−σ)τAF̃ ũn+σ dσ ds

= τ2WAΦũn +Dn
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with

Wx = −
1∫

0

1∫
1−s

seστAFϕ1(sτA)x dσ ds .

As before, (4.76) and (4.77) are satisfied, and it holds ‖Dn‖X ≤ Cτ2.

Theorem 4.44. (Global error of the averaged problem) Let Assumption 4.36 be fulfilled. Moreover, let
(un)n be the numerical approximations of a scheme applied to the averaged equation (4.72) that satisfies
Assumptions 4.41 and 4.42. Then there is a constant Ce > 0 such that for all τ ≥ 0

‖un − ũ(tn)‖X ≤ Ceτ, 0 ≤ tn = nτ ≤ tend,

The constant Ce depends on u0, tend, the radius LF , the filter functions, and the embedding constant
Cemb, but is independent of τ and n.

Proof. We proceed as in the proof of Theorem 4.23 and expand the global error by Assumption 4.41

ẽn+1 = e(n+1)τAẽ0 + τ

n∑
j=0

e(n−j)τAJ
(
ũ(tj), uj

)
−

n∑
j=0

e(n−j)τAδj .

Once we established the bound ∥∥∥ n∑
j=0

e(n−j)τAδj

∥∥∥
X
≤ Cδτ (4.78)

with a constant Cδ being independent of τ and n. The proof is closed by a discrete Gronwall lemma
which then yields

‖ẽn+1‖X ≤ τ Cδ e
CJ tend .

By Assumption 4.42, the defect is split into two parts, which motivates to write
n∑
j=0

e(n−j)τAδj = ẽ
(2)
n+1 + ẽ

(D)
n+1,

where

ẽ
(2)
n+1 =

n∑
j=0

e(n−j)τAδ
(2)
j , ẽ

(D)
n+1 =

n∑
j=0

e(n−j)τADj .

Since ‖Dj‖X ≤ Cτ
2 and nτ ≤ tend we easily see∥∥∥ẽ(D)

n+1

∥∥∥
X

=
∥∥∥ n∑
j=0

e(n−j)τADj

∥∥∥
X
≤ Cτ .

Next we consider ẽ(2)
n+1. Recall Fn from (4.42) and, as in (4.45), we arrive at

n∑
j=0

e(n−j)τAδ
(2)
j = τWΘΦ(eτA − I)Fn

+ τ
(
τ

n−1∑
j=0

e(n−j)τA 1
τ

(
I − e−τA

)
WΘΦ(eτA − I)Fj

)
.

We estimate by (4.76) the difference∥∥∥1
τ

(e−τA − I)W
∥∥∥
X←X

=
∥∥∥ϕ1(−τA)AW

∥∥∥
X←X

≤ C,
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since |ϕ1(z)| ≤ 1 for z ∈ iR.
Next we consider (eτA − I)Fj for j ≤ n. After adding the exact solution we apply the variation-of-

constants formula, which gives

∥∥∥(eτA − I)Fj
∥∥∥
X

=
∥∥∥ j∑
k=0

(eτAũ(tk)− ũ(tk + τ)) +
j∑

k=0
(ũ(tk + τ)− ũ(tk))

∥∥∥
X

=
∥∥∥ j∑
k=0

∫ τ

0
e(τ−s)AF̃ ũ(tk + s) ds+ (ũ(tj+1)− ũ0)

∥∥∥
X

≤ tendLF rX + 2rX .

This yields (4.78) and thus the assertion.

From this we may conclude the final error bound of this section.

Theorem 4.45. Let Assumption 4.36 be fulfilled. Further let (un)n be the numerical approximations
of the exponential Euler method (3.4) or the Lie splitting (3.5) applied to the averaged equation (4.72).
Then there is a constant C > 0 such that for all τ ≥ 0

‖un − u(tn)‖X ≤ Cτ, 0 ≤ tn = nτ ≤ tend .

The constant C depends on u0, tend, the radius LF , the filter functions, and the embedding constant Cemb,
but is independent of τ and n.

Proof. We simply combine Theorem 4.40 and Theorem 4.44 using the triangle inequality.
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APPENDIX A

Semilinear examples

This appendix is devoted to the verification of the assumptions made in Sections 2.1.1 and 4.2.1. We
show that Example 2.5 with its specification made in Table 4.1 is fully covered by the analysis presented
in Part I. Hence, we check every column of Table 4.1 in the following sections.

A.1 Basic estimates

Throughout we need estimates related to Sobolev spaces and products of functions lying in them. We
collect them in this section. Several times we employ for a bounded Lipschitz domain ∅ 6= Ω ⊆ Rd,
d ∈ {1, 2, 3} the continuous embeddings [1, Theorem 4.12]

H1(Ω) ↪→ L∞(Ω), d = 1,

H1(Ω) ↪→ Lq(Ω), d = 2, q ∈ [1,∞),

H1(Ω) ↪→ L6(Ω), d = 3,

H2(Ω) ↪→ L∞(Ω), d = 2, 3.

(A.1)

Throughout, we consider the norms

‖q‖2H1
0

= ‖∇q‖2L2 ,

‖q‖2H1 = ‖q‖2L2 + ‖∇q‖2L2 ,

‖q‖2H2 = ‖q‖2L2 + ‖∇q‖2L2 +
d∑

i,j=1

∥∥∂xi∂xjq∥∥2
L2 .

(A.2)

In the next lemma we collect some estimates that remain valid for the dimensions d = 1, 2, 3. They
either directly follow from (A.1) or are extensions of the computations in [24, Section 7.4].
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Lemma A.1. Let Ω ⊆ Rd be bounded with d = 1, 2, 3. Then the following estimates hold for functions
f, g in the respective spaces:

‖fg‖L2 ≤ C ‖f‖H1 ‖g‖H1 , (A.3)

‖fg‖L2 ≤ C ‖f‖L2 ‖g‖H2 , (A.4)

‖fg‖H1 ≤ C ‖f‖H1 ‖g‖H2 , (A.5)

‖fg‖H2 ≤ C ‖f‖H2 ‖g‖H2 . (A.6)

Using the notation of Example 2.5, assume that for ψ : (t, x, y) 7→ R all partial derivatives ∂βψ, β ≤ α,
exist, are continuous in t and y and bounded in x. Then for p ∈ [2,∞) it holds

α = (0, 0, 0) : ‖ψ(t, ·, f)‖L2 ≤ C
(
‖f‖L∞

)
, (A.7)

α = (1, 0, 1) : ‖ψ(t, ·, f)− ψ(s, ·, g)‖Lp ≤ C
(
‖f‖L∞ , ‖g‖L∞

)(
|t− s|+ ‖f − g‖Lp

)
, (A.8)

α = (0, 1, 1) : ‖ψ(t, ·, f)‖H1 ≤ C
(
‖f‖L∞

)
‖f‖H1 , (A.9)

α = (1, 1, 2) : ‖ψ(t, ·, f)− ψ(s, ·, g)‖H1 ≤ C
(
‖f‖H2 , ‖g‖H2

)(
|t− s|+ ‖f − g‖H1

)
, (A.10)

α = (0, 2, 2) : ‖ψ(t, ·, f)‖H2 ≤ C
(
‖f‖H2

)
, (A.11)

α = (1, 2, 3) : ‖ψ(t, ·, f)− ψ(s, ·, g)‖H2 ≤ C
(
‖f‖H2 , ‖g‖H2

)(
|t− s|+ ‖f − g‖H2

)
, (A.12)

We further denote the evaluation of a function G at a function q : [0, T ] 7→ X , where X is some Banach
space by

Ĝ(t) := G(t, q(t)), Ĝt(t) := ∂tG(t, y)|y=q(t)

and for higher derivatives analogously.

A.2 H = H−1(Ω)

We start with the first column of Table 4.1 with d = 1 and Ω ⊆ R some finite interval. The operator L
is defined on H = H−1(Ω) by

〈Lq , φ〉H−1×H1
0

= 〈A∇q,∇φ〉L2 , q, φ ∈ H1
0 (Ω) ,

for some uniformly positive A ∈ L∞(Ω), i.e., A ≥ δ almost everywhere. The additional spaces are given
by

V = L2(Ω), D(L) = H1
0 (Ω) ,

but we need to be careful with the choice of the norms. Usually, H1
0 (Ω) is equipped with the inner product

〈u, v〉H1
0

= 〈∇u,∇v〉L2 which induces a norm by the Friedrich’s inequality. Further, its dual comes with
the operator norm

‖f‖H−1 = sup
‖u‖H1

0
=1
〈f , u〉H−1×H1

0
. (A.13)

However, we need to work with equivalent norms below. For the nonlinearity g we assume α = (2, 0, 2)
and the growth bounds

|g(t, x, y)|, |∂tg(t, x, y)| ≤ Cg
(
1 + |y|2

)
,

|∂yg(t, x, y)| ≤ Cg
(
1 + |y|

)
.

(A.14)
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For the corrected Lie Splitting (3.14) we assume in addition

|∂yyg(t, x, y)| ≤ Cg
(
1 + |y|

)
. (A.15)

We first consider the operator theoretic assumptions from Section 2.1.1.

Lemma A.2. The operator L : D(L) ⊆ H → H is strictly positive and self adjoint with respect to
〈·, ·〉H−1,A defined in (A.19). Further, (2.1) and (2.2) hold and the embeddings are compact.

Proof. (a) We first consider wellposedness and the spectral bounds. By the Lax-Milgram Lemma we
obtain for some ε > 0 that for any f ∈ H−1(Ω) there is a unique solution q ∈ H1

0 (Ω) of the problem

Lq − λq = f in H−1(Ω)

⇐⇒ 〈A∇q,∇φ〉L2 − λ〈q, φ〉L2 = 〈f , φ〉H−1×H1
0

for all φ ∈ H1
0 (Ω)

(A.16)

for all λ with Reλ < ε. Hence, the spectrum of L is part of the right half plane and for λ = 0, we
can define L−1 : H−1(Ω)→ H1

0 (Ω) via

〈A∇(L−1f),∇φ〉L2 = 〈f , φ〉H−1×H1
0
. (A.17)

Let q = L−1f ∈ H1
0 (Ω) be the solution of (A.16), then the boundedness of L−1 follows from∥∥L−1f
∥∥2
H1

0
= ‖∇q‖2L2 ≤

1
δ
〈A∇q,∇q〉L2 = 1

δ
〈f , q〉H−1×H1

0
≤ 1
δ
‖∇q‖L2‖f‖H−1

such that
∥∥L−1f

∥∥
H1

0
≤ δ−1‖f‖H−1 .

(b) We now prove that L is self adjoint. To this end we introduce the scalar products

〈f, g〉A := 〈A∇f,∇g〉L2 , (A.18)

〈f, g〉H−1,A := 〈L−1f, L−1g〉A . (A.19)

We prove their equivalence to the standard inner product and then show that L is self adjoint with
respect to 〈·, ·〉H−1,A.

(1) Obviously, (A.18) is equivalent to the standard inner product by the properties of A with

δ ‖q‖2H1
0
≤ ‖q‖2A ≤ ‖A‖∞ ‖q‖

2
H1

0

and we have to check that the norm induced by (A.19) is equivalent to (A.13). It holds with the
definition of L−1 in (A.17) with λ = 0

‖f‖H−1 = sup
‖u‖H1

0
=1
〈f , u〉H−1×H1

0
= sup
‖u‖H1

0
=1
〈L−1f, u〉A ≤ sup

‖u‖H1
0

=1

∥∥L−1f
∥∥

A ‖u‖A

≤ ‖A‖1/2∞
∥∥L−1f

∥∥
A

and choosing u0 =
∥∥L−1f

∥∥−1
H1

0
L−1f yields

‖u0‖H1
0

= 1, 〈f , u0〉H−1×H1
0

=
∥∥L−1f

∥∥2
A

∥∥L−1f
∥∥−1
H1

0
≥ δ1/2 ∥∥L−1f

∥∥
A ,

and hence the equivalence is shown.
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(2) By (A.19) and the definition of L−1 in (A.17) we obtain symmetry for f, g ∈ H1
0 (Ω) by

〈Lf, g〉H−1,A = 〈f, L−1g〉A = 〈L−1g, f〉A = 〈g , f〉H−1×H1
0

= 〈g, f〉L2 ,

〈f, Lg〉H−1,A = 〈L−1f, g〉A = 〈f , g〉H−1×H1
0

= 〈f, g〉L2 .

As in (A.16) we can also solve (±iI + L)q = f for every f ∈ H−1(Ω) and we may conclude
self-adjointness.

(3) By [1, Theorem 6.3] we have the compact embedding H1
0 (Ω) ↪→ L2(Ω). Now let ‖fn‖L2 ≤ C.

Using the strictly positive square root of L, and the relations∥∥L1/2φ
∥∥
H−1,A = ‖φ‖L2 =

∥∥L−1/2φ
∥∥

A ,

we define gn := L−1/2fn with ‖gn‖A ≤ C. Hence, there is a converging subsequence (gnj )j in
L2(Ω) and we obtain ∥∥fnj − fnk∥∥H−1,A =

∥∥gnj − gnk∥∥L2 → 0

for j, k →∞ such that also L2(Ω) ↪→ H−1(Ω) is compact.

We then turn to the assumptions from Section 4.2.1 and verify the necessary Fréchet-differentiability.

Lemma A.3. In the case H = H−1(Ω) and the framework recalled above Assumption 4.1 is valid.

Proof. We start with a more general calculation. Since we have the fundamental theorem of calculus for
almost every x ∈ Ω we get for functions q, p ∈ V and t, t+ s ∈ [0, tdef ]

Dg(t, s, q, p)(x) := g(t+ s, x, q + p)− g(t, x, q)− (∂tg(t, x, q)s+ ∂yg(t, x, q)p)

=
1∫

0

d
dσ (g(t+ σs, x, q + σp))− (∂tg(t, x, q)s+ ∂yg(t, x, q)p) dσ (A.20)

=
1∫

0

[∂tg(t+ σs, x, q + σp)− ∂tg(t, x, q)] s+ [∂yg(t+ σs, x, q + σp)− ∂yg(t, x, q)] p dσ

First note that the embedding (A.1) by [1, Result 3.13] also implies the embedding L1(Ω) ↪→ H−1(Ω).
Hence, we will use the L1-norm instead of the H−1-norm. For p, q ∈ L2(Ω), taking the L1-norm of (A.20)
and recalling G(t, q)(x) := g(t, x, q(x)) we obtain by Hölder’s inequality

‖Dg(t, s, q, p)‖L1 ≤
1∫

0

‖∂tG(t+ σs, q + σp)− ∂tG(t, q)‖L1 |s|

+ ‖∂yG(t+ σs, q + σp)− ∂yG(t, q)‖L2 ‖p‖L2 dσ

and the growth bounds in (A.14) guarantee by the dominated convergence theorem
1

|s|+ ‖p‖L2
‖Dg(t, s, q, p)‖L1 → 0, s, p→ 0 .

This yields the Fréchet derivative for h ∈ R and p ∈ V

JG(t, q)
(
h

p

)
= ∂tG(t, q)h+ ∂yG(t, q)p (A.21)

and by the same computation as above we check that it is continuous in L
(
[0, tdef ]×L2(Ω), H−1(Ω)

)
.
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In the next lemma we consider the differentiability of the right-hand side evaluated at a smooth
function.

Lemma A.4. In the case H = H−1(Ω) and the framework recalled above Assumption 4.2 is valid.

Proof. (A1) For JG(t, q) defined in (A.21) we compute

D̂G(t, s) := 1
s

(
Ĝ(t+ s)− Ĝ(t)

)
− JG(t, q(t))

(
1

q′(t)

)

=
1∫

0

d
dσ

1
s

(
Ĝ(t+ σs)

)
− JG(t, q(t))

(
1

q′(t)

)
dσ

=
1∫

0

Ĝt(t+ σs)− Ĝt(t) + Ĝy(t+ σs)q′(t+ σs)− Ĝy(t)q′(t) dσ

(A.22)

For q ∈ C([0, T ], H1(Ω)) ∩ C1([0, T ], L2(Ω)) we get

∥∥∥D̂G(t, s)
∥∥∥
L2
≤

1∫
0

∥∥∥Ĝt(t+ σs)− Ĝt(t)
∥∥∥
L2

+
∥∥∥Ĝy(t+ σs)q′(t+ σs)− Ĝy(t)q′(t)

∥∥∥
L2

dσ

which goes to zero for s → 0 by t 7→ Ĝz(t) ∈ C([0, T ], L∞(Ω)) for z ∈ {t, y} due to (A.1). By the same
argument we get the continuity of the derivative.

(A2) To shorten notation, we define for h ∈ R and p ∈ V

D̂2
G(t) := Ĝtt(t) + Ĝty(t)

(
hq′(t) + p

)
+ Ĝyy(t)q′(t) · p (A.23)

and compute
1
s

(
JG(t+ s, q(t+ s))

(
h

p

)
− JG(t, q(t))

(
h

p

))
− D̂2

G(t)

=
1∫

0

d
dσ

1
s

(
JG(t+ σs, q(t+ σs))

(
h

p

)
− D̂2

G(t)
)
dσ

=
1∫

0

D̂2
G(t+ σs)− D̂2

G(t) dσ .

(A.24)

For p ∈ L2, h ∈ R and q ∈ C([0, T ], H1(Ω))∩C1([0, T ], L2(Ω) we get q′p ∈ C([0, T ], L1(Ω)) and hence

∥∥∥ 1∫
0

D̂2
G(t+ σs)− D̂2

G(t) dσ
∥∥∥
L1
≤

1∫
0

∥∥∥Ĝtt(t+ σs)− Ĝtt(t)
∥∥∥
L1

+
∥∥∥Ĝty(t+ σs) (hq′(t+ σs) + p)− Ĝty(t) (hq′(t) + p)

∥∥∥
L1

+
∥∥∥Ĝyy(t+ σs)q′(t+ σs) p− Ĝyy(t)q′(t) p

∥∥∥
L1
dσ .

Since t 7→ Ĝz(t) ∈ C([0, T ], L∞(Ω)) holds for z ∈ {tt, ty, yy}, the expression tends to 0 uniformly in
h, p→ 0.

In the final lemma we consider different bounds of the nonlinearity.
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Lemma A.5. In the case H = H−1(Ω) and the framework recalled above Assumption 4.4 is valid.

Proof. (A3) For q ∈ H1(Ω), t ∈ [0, tdef ] we get by (A.14) and (A.3) the estimate

‖G(t, q)‖L2 ≤ C
(
1 +

∥∥q2∥∥
L2

)
≤ C (‖q‖H1) .

(A4a) For q, p ∈ L2(Ω), t, s ∈ [0, tdef ] we get by (A.14) and Hölder’s inequality

∥∥∥JG(t, q)
(
s

p

)∥∥∥
L1

= ‖∂tG(t, q)s+ ∂tG(t, q)p‖L1

≤ C
(
1 +

∥∥q2∥∥
L1

)
|s|+ C (1 + ‖q‖L2) ‖p‖L2

≤ C (‖q‖L2) (|s|+ ‖p‖L2) .

(A4b) For q ∈ H1(Ω), p ∈ L2(Ω), t, s ∈ [0, tdef ] we get by (A.14), (A.3), (A.7), and (A.1)

∥∥∥JG(t, q)
(
s

p

)∥∥∥
L2

= ‖∂tG(t, q)s+ ∂yG(t, q)p‖L2

≤ C
(
1 +

∥∥q2∥∥
L2

)
|s|+ C (‖q‖L∞) ‖p‖L2

≤ C (‖q‖H1) (|s|+ ‖p‖L2) .

(A-CLS-1) For pi ∈ L2(Ω), i = 1, 2, q ∈ H1
0 (Ω) and t ∈ [0, tdef ] we obtain by (A.1) and the Hölder’s

inequality and (A.15)

∥∥∥(JG(t, p1)− JG(t, p2)
)(0

q

)∥∥∥
L1

=
∥∥(∂yG(t, p1)− ∂yG(t, p2)

)
q
∥∥
L1

≤ C (‖q‖H1) ‖∂yG(t, p1)− ∂yG(t, p2)‖L1

≤ C (‖q‖H1)
(

sup
s∈[0,1]

‖∂yyG(t, sp1 + (1− s)p2)‖L2

)
‖p1 − p2‖L2

≤ C (‖q‖H1 , ‖p1‖L2 , ‖p2‖L2) ‖p1 − p2‖L2 .

(A-CLS-2) For pi, q ∈ H1
0 (Ω), i = 1, 2, and t ∈ [0, tdef ] we obtain by (A.1)

∥∥∥(JG(t, p1)− JG(t, p2)
)(0

q

)∥∥∥
L2

=
∥∥(∂yG(t, p1)− ∂yG(t, p2)

)
q
∥∥
L2

≤ C (‖q‖L∞) ‖∂yG(t, p1)− ∂yG(t, p2)‖L2

≤ C (‖q‖H1)
(

sup
s∈[0,1]

‖∂yyG(t, sp1 + (1− s)p2)‖L2

)
‖p1 − p2‖H1

≤ C (‖q‖H1 , ‖p1‖H1 , ‖p2‖H1) ‖p1 − p2‖H1 .

A.3 H = L2(Ω)

Next, we consider the second column of Table 4.1. For d = 1, 2, 3 and a convex Lipschitz domain Ω ⊆ Rd,
the operator L is defined on H = L2(Ω) by

Lq = −div
(
A∇q

)
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for some symmetric, uniformly positive matrix A ∈ W 1,∞(Ω)d×d with lower bound δ > 0 and the
additional spaces are given by

V = H1
0 (Ω), D(L) = H2(Ω) ∩H1

0 (Ω) .

with their standard norms. For the nonlinearity g we assume α = (2, 1, 3) and the growth bounds

|g(t, x, y)|, |∂tg(t, x, y)| ≤ Cg
(
1 + |y|γ

)
,

|∂yg(t, x, y)| ≤ Cg
(
1 + |y|γ−1) . (A.25)

and for the corrected Lie Splitting (3.14) we assume in addition

|∂yyg(t, x, y)| ≤ Cg
(
1 + |y|γ−1) . (A.26)

For d = 2 we may choose γ > 1 arbitrarily large and for d = 3 we need γ ≤ 3. In the case d = 1, we note
that (A.25) and (A.26) are not necessary.

We first consider the operator theoretic assumptions from Section 2.1.1.

Lemma A.6. The operator L : D(L) ⊆ H → H is positive and self adjoint. Further, (2.1) and (2.2) hold
and the embeddings are compact.

Proof. (a) We first consider wellposedness and the spectral bounds. We compute as in (A.16)

Lq − λq = f in L2(Ω) ⇐⇒ 〈A∇q,∇φ〉L2 − λ〈q, φ〉L2 = 〈f , φ〉L2 ∀φ ∈ H1
0 (Ω) (A.27)

and obtain by the Lax-Milgram Lemma for some ε > 0 that there is a unique solution q ∈ H1
0 (Ω) for

all λ with Reλ < ε. By the convexity of Ω the result [32, Theorem 3.2.1.2] further yields q ∈ H2(Ω).
Hence, the spectrum of L is part of the right half plane.

(b) By [1, Theorem 6.3] we have the compact embeddings

H2(Ω) ↪→ H1(Ω) ↪→ L2(Ω) .

(c) We finally prove that L is self adjoint on the L2-scalar product. Symmetry directly follows from
(A.27) as well as the solvability of (±iI + L)q = f in L2(Ω) which gives the assertion.

We now turn to the assumptions made in Section 4.2.1 and verify the necessary Fréchet-differentiability.

Lemma A.7. In the case H = L2(Ω) and the framework recalled above Assumption 4.1 is valid.

Proof. We only prove the case d = 2 and d = 3, as the case d = 1 is even easier. By the choice of γ, for
p, q ∈ H1(Ω) ↪→ L2γ(Ω), taking the L2-norm of (A.20) we obtain for ρ = 2γ

γ−1 with Hölder’s inequality

‖Dg(t, s, q, p)‖L2 ≤
1∫

0

‖∂tG(t+ σs, q + σp)− ∂tG(t, q)‖L2 |s|

+ ‖∂yG(t+ σs, q + σp)− ∂yG(t, q)‖Lρ ‖p‖L2γ dσ .

By the growth bounds in (A.25) we estimate with (A.1)

‖∂tG(t, q)‖2L2 ≤ C
(
1 + ‖q‖2γL2γ

)
≤ C

(
‖q‖H1

)
,

‖∂yG(t, q)‖ρLρ ≤ C
(
1 + ‖q‖2γL2γ

)
≤ C

(
‖q‖H1

)
,
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which leads to convergence of

1
|s|+ ‖p‖H1

‖Dg(t, s, q, p)‖L2 → 0, s, p→ 0 ,

by the standard arguments as above.

In the next lemma we consider the differentiability of the right-hand side evaluated at a smooth
function.

Lemma A.8. In the case H = L2(Ω) and the framework recalled above Assumption 4.2 is valid.

Proof. (A1) For q ∈ C([0, T ], H2(Ω)) ∩ C1([0, T ], H1(Ω)) we get by (A.1) and (A.3)

q ∈ C([0, T ], L∞(Ω)), ∇q ∈ C([0, T ], H1(Ω)), ∇q q′ ∈ C([0, T ], L2(Ω)), ∇q′ ∈ C([0, T ], L2(Ω))

and hence for D̂G defined in (A.22)

∥∥∥D̂G(t, s)
∥∥∥
H1
≤

1∫
0

∥∥∥Ĝt(t+ σs)− Ĝt(t)
∥∥∥
H1

+
∥∥∥Ĝy(t+ σs)q′(t+ σs)− Ĝy(t)q′(t)

∥∥∥
H1

dσ

≤
1∫

0

∥∥∥Ĝtx(t+ σs)− Ĝtx(t)
∥∥∥
L2

+
∥∥∥Ĝty(t+ σs)∇q(t+ σs)− Ĝty(t)∇q(t)

∥∥∥
L2

+
∥∥∥Ĝxy(t+ σs)q′(t+ σs)− Ĝxy(t)q′(t)

∥∥∥
L2

+
∥∥∥Ĝyy(t+ σs)∇q(t+ σs) q′(t+ σs)− Ĝyy(t)∇q(t) q′(t)

∥∥∥
L2

+
∥∥∥Ĝy(t+ σs)∇q′(t+ σs)− Ĝy(t)∇q′(t)

∥∥∥
L2

dσ

goes to zero for s→ 0 since t 7→ Ĝz(t) ∈ C([0, T ], L∞(Ω)) holds for z ∈ {tx, ty, xy, yy, y}.

(A2) For p ∈ H1(Ω), h ∈ R and q ∈ C([0, T ], H2(Ω)) ∩ C1([0, T ], H1(Ω)) we get q′ p ∈ C([0, T ], L2(Ω))
and hence for D̂2

G defined in (A.23)

∥∥∥ 1∫
0

D̂2
G(t+ σs)− D̂2

G(t) dσ
∥∥∥
L2
≤

1∫
0

∥∥∥Ĝtt(t+ σs)h− Ĝtt(t)h
∥∥∥
L2

+
∥∥∥Ĝty(t+ σs) (hq′(t+ σs) + p)− Ĝty(t) (hq′(t) + p)

∥∥∥
L2

+
∥∥∥Ĝyy(t+ σs)q′(t+ σs) p− Ĝyy(t)q′(t) p

∥∥∥
L2

dσ

which goes to zero for s→ 0 since t 7→ Ĝz(t) ∈ C([0, T ], L∞(Ω)) holds for z ∈ {tt, ty, yy}.

In the final lemma of this section we consider different bounds of the nonlinearity.

Lemma A.9. In the case H = L2(Ω) and the framework recalled above Assumption 4.4 is valid.

Proof. (A3) For q ∈ H2(Ω), t ∈ [0, tdef ] we get by (A.9)

‖g(t, q)‖H1 ≤ C (‖q‖H1) .
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(A4a) For q, p ∈ H1(Ω) ↪→ L2γ and γ from (A.25) with ρ = 2γ
γ−1 and t, s ∈ [0, tdef ] we get by Hölder’s

inequality and (A.1)

‖∂tG(t, q)s+ ∂yG(t, q)p‖L2 ≤ C (1 + ‖|q|γ‖L2) |s|+ C
(

1 +
∥∥∥|q|γ−1

∥∥∥
Lρ

)
‖p‖L2γ

≤ C (‖q‖H1) (|s|+ ‖p‖H1) .

(A4b) For q ∈ H2(Ω), p ∈ H1(Ω) and t, s ∈ [0, tdef ] we get by (A.5) and (A.11)

‖∂tG(t, q)s+ ∂yG(t, q)p‖H1 ≤ C (‖q‖H2) |s|+ C ‖∂yG(t, q)‖H2 ‖p‖H1

≤ C (‖q‖H2) (|s|+ ‖p‖H1) .

(A-CLS-1) For pi ∈ H1(Ω) ↪→ L2γ(Ω), i = 1, 2, and γ from (A.25) with ρ = 2γ
γ−1 , q ∈ H2(Ω) and

t ∈ [0, tdef ] we obtain by the Hölder’s inequality and (A.26)∥∥(∂yG(t, p1)− ∂yG(t, p2)
)
q
∥∥
L2 ≤ C (‖q‖H2) ‖∂yG(t, p1)− ∂yG(t, p2)‖L2

≤ C (‖q‖H2)
(

sup
s∈[0,1]

‖∂yyG(t, sp1 + (1− s)p2)‖Lρ
)
‖p1 − p2‖L2γ

≤ C (‖q‖H2 , ‖p1‖H1 , ‖p2‖H1) ‖p1 − p2‖H1 .

(A-CLS-2) For pi, q ∈ H2(Ω), i = 1, 2, t ∈ [0, tdef ] we obtain by (A.5), (A.10) and (A.9)∥∥(∂yG(t, p1)− ∂yG(t, p2)
)
q
∥∥
H1 ≤ C (‖q‖H2) ‖∂yG(t, p1)− ∂yG(t, p2)‖H1

≤ C (‖q‖H2)
(

sup
s∈[0,1]

‖∂yyG(t, sp1 + (1− s)p2)‖H1

)
‖p1 − p2‖H2

≤ C (‖q‖H2 , ‖p1‖H2 , ‖p2‖H2) . ‖p1 − p2‖H2 .

A.4 H = H1
0(Ω)

For the last column of Table 4.1 let d = 1, 2, 3 and consider a convex domain Ω ⊆ Rd with boundary of
class C3. The operator L is defined on H = H1

0 (Ω), equipped with 〈·, ·〉A defined in (A.18), by

Lq = −div
(
A∇q

)
for some A ∈ C1,1(Ω)d×d ∩W 2,∞(Ω)d×d or A ∈ H4(Ω)d×d and the additional spaces are given by

V = H2(Ω) ∩H1
0 (Ω), D(L) = {p ∈ H3(Ω) ∩H1

0 (Ω) | Lp ∈ H1
0 (Ω)} .

We note that for the nonlinearity g we assume α = (3, 2, 3), but no bounds of the form (A.14) or (A.25)
are necessary. We first consider the operator theoretic assumptions from Section 2.1.1.

Lemma A.10. The operator L : D(L) ⊆ H → H is positive and self adjoint. Further, (2.1) and (2.2)
hold and the embeddings are compact.

Proof. (a) We first consider wellposedness and the spectral bounds. We want to solve the equation

Lq − λq = f ∈ H1
0 (Ω) . (A.28)
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Let φ ∈ C∞c (Ω) and take the inner product to get

〈Lq, φ〉A − λ〈q, φ〉A = 〈f, φ〉A ⇐⇒ 〈−A∇div A∇q,∇φ〉L2 − λ〈A∇q,∇φ〉L2 = 〈f, φ〉A
⇐⇒ 〈div A∇q,div A∇φ〉L2 − λ〈A∇q,∇φ〉L2 = 〈f, φ〉A .

(A.29)

This equation remains valid for all φ ∈ H2(Ω)∩H1
0 (Ω). By [32, Theorem 3.1.3.1] there is some ε > 0

such that the bilinear form

a : H2(Ω) ∩H1
0 (Ω)×H2(Ω) ∩H1

0 (Ω)→ R, a(φ, ψ) = 〈div A∇φ, div A∇ψ〉L2 − λ〈A∇φ,∇ψ〉L2

is bounded and coercive for all Reλ > ε and, hence, by Lax-Milgram we obtain the unique solution
q ∈ H2(Ω)∩H1

0 (Ω) of (A.28) in L2(Ω). With [32, Theorem 2.5.1.1] the smoothness of the boundary
and the coefficients A further imply q ∈ H3(Ω), i.e., q ∈ D(L).

(b) By [1, Theorem 6.3] we have the compact embeddings

H3(Ω) ↪→ H2(Ω) ↪→ H1(Ω) .

(c) We finally prove that L is self adjoint in
(
H1

0 (Ω), 〈·, ·〉A
)
. The symmetry directly follows from (A.29)

as well as the solvability of (±iI + L)q = f in H1
0 (Ω) which gives the assertion.

We now turn to the assumptions made in Section 4.2.1 and verify the necessary Fréchet-differentiability.

Lemma A.11. In the case H = H1
0 (Ω) and the framework recalled above Assumption 4.1 is valid.

Proof. For p, q ∈ H2(Ω) we obtain by (A.5) and (A.10)

‖Dg(t, s, q, p)‖H1 ≤
1∫

0

‖∂tG(t+ σs, q + σp)− ∂tG(t, q)‖H1 |s|

+ ‖∂yG(t+ σs, q + σp)− ∂yG(t, q)‖H1 ‖p‖H2 dσ

≤ C
(
‖q‖H2 , ‖p‖H2)

(
|s|+ ‖p‖H1

)
|s|

+C
(
‖q‖H2 , ‖p‖H2)

(
|s|+ ‖p‖H1

)
‖p‖H2 dσ ,

which leads to convergence of

1
|s|+ ‖p‖H2

‖Dg(t, s, q, p)‖H1 → 0, s, p→ 0 .

In the next lemma we consider the differentiability of the right-hand side evaluated at a smooth
function.

Lemma A.12. In the case H = H1
0 (Ω) and the framework recalled above Assumption 4.2 is valid.

Proof. (A1) For q ∈ C([0, T ], H3(Ω)) ∩ C1([0, T ], H2(Ω)) and D̂G defined in (A.22) we get

∥∥∥D̂G(t, s)
∥∥∥
H2
≤

1∫
0

∥∥∥Ĝt(t+ σs)− Ĝt(t)
∥∥∥
H2

+
∥∥∥Ĝy(t+ σs)q′(t+ σs)− Ĝy(t)q′(t)

∥∥∥
H2

dσ ,

which goes to zero for s → 0 by t 7→ Ĝz(t) ∈ C([0, T ], H2(Ω)) for z ∈ {t, y}. By the same argument we
get the continuity of the derivative.
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(A2) For p ∈ H2(Ω) and q ∈ C([0, T ], H3(Ω)) ∩ C1([0, T ], H2(Ω)) we get q′ p ∈ C([0, T ], H2(Ω)) and
hence for D̂2

G defined in (A.23)

∥∥∥ 1∫
0

D̂2
G(t+ σs)− D̂2

G(t) dσ
∥∥∥
H1
≤

1∫
0

∥∥∥Ĝtt(t+ σs)− Ĝtt(t)
∥∥∥
H1

+
∥∥∥Ĝty(t+ σs) (hq′(t+ σs) + p)− Ĝty(t) (hq′(t) + p)

∥∥∥
H1

+
∥∥∥Ĝyy(t+ σs)q′(t+ σs) p− Ĝyy(t)q′(t) p

∥∥∥
H1

dσ ,

which goes to zero for s→ 0 by t 7→ Ĝz(t) ∈ C([0, T ], H2(Ω)) for z ∈ {tt, ty, yy}.

In the final lemma we consider different bounds of the nonlinearity.

Lemma A.13. In the case H = H1
0 (Ω) and the framework recalled above Assumption 4.4 is valid.

Proof. (A3) For q ∈ H3(Ω), t ∈ [0, tdef ] we get by (A.11)

‖g(t, q)‖H2 ≤ C (‖q‖H2) .

(A4a) For q, p ∈ H2(Ω), t, s ∈ [0, tdef ] we get by (A.5), (A.9), and (A.11)

‖∂tG(t, q)s+ ∂yG(t, q)p‖H1 ≤ C (‖q‖H2) |s|+ C ‖∂yG(t, q)‖H1 ‖p‖H2

≤ C (‖q‖H2) (|s|+ ‖p‖H2) .

(A4b) For q ∈ H3(Ω), p ∈ H2(Ω), t, s ∈ [0, tdef ] we get by (A.6) and (A.11)

‖∂tG(t, q)s+ ∂yG(t, q)p‖H2 ≤ C (‖q‖H2) (|s|+ ‖p‖H2) .

(A-CLS-1) For pi ∈ H2(Ω), i = 1, 2, q ∈ H3(Ω) and t ∈ [0, tdef ] we obtain by (A.5), (A.9) and (A.10)∥∥(∂yG(t, p1)− ∂yG(t, p2)
)
q
∥∥
H1 ≤ C (‖q‖H2) ‖∂yG(t, p1)− ∂yG(t, p2)‖H1

≤ C (‖q‖H2)
(

sup
s∈[0,1]

‖∂yyG(t, sp1 + (1− s)p2)‖H1

)
‖p1 − p2‖H2

≤ C (‖q‖H2 , ‖p1‖H2 , ‖p2‖H2) . ‖p1 − p2‖H2 .

(A-CLS-2) For pi, q ∈ H3(Ω), i = 1, 2, t ∈ [0, tdef ] we obtain by (A.5), (A.9) and (A.12)∥∥(∂yG(t, p1)− ∂yG(t, p2)
)
q
∥∥
H2 ≤ C (‖q‖H2) ‖∂yG(t, p1)− ∂yG(t, p2)‖H2

≤ C (‖q‖H2 , ‖p1‖H2 , ‖p2‖H2) . ‖p1 − p2‖H2 .
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Part II

Exponential integrators for
quasilinear wave-type equations
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CHAPTER 5

Analytical framework - quasilinear problems

In this chapter we introduce the analytical framework necessary to treat quasilinear evolution equations
of the form

Λ(u(t))u′(t) = Au(t) + g(t, u(t)), u(0) = u0. (5.1)

We recall the results from [61], explain the examples which fit into the framework and extend the well-
posedness result from the literature. We introduce the three nested Hilbert spaces

Z ↪→ Y ↪→ X

which are continuously and densely embedded. The space Y is an interpolation space between Z and
X, see [55] for details on interpolation spaces. The linear operator A is skew adjoint on D(A) where
Y ↪→ D(A) ↪→ X with

‖A‖X←Y ≤ αXY , ‖A‖Y←Z ≤ αY Z ,

holds. We reformulate (5.1) as

u′(t) = A(u(t))u(t) + f(t, u(t)) (5.2)

where we use the notation

A(u) = Au = Λ−1(u)A, f(t, u) = Λ−1(u)g(t, u) . (5.3)

The situation of semilinear problems is recovered for constant Λ such that this framework extends the
one of Chapter 2. Before going into details of the framework, we discuss the examples which are covered
by the presented error analysis.

5.1 Prototypical examples

The two classes of examples are the quasilinear wave equation on a bounded domain and the Maxwell’s
equations on a domain or the full space. We discuss these examples separately and prove the assumptions
in Appendix B.
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5.1.1 Wave equation

Consider the quasilinear wave equation from [18] on a bounded domain Ω ⊆ Rd, d = 1, 2, 3, with a
C3-boundary ∂Ω of the form

∂ttq(t) + ∂ttK
(
q(t)

)
= ∆q(t) + r(t, q(t), q′(t)), in Ω, t ≥ 0 ,

q(t) = 0, on ∂Ω, t ≥ 0
(5.4)

with
K ∈ C5(R), 1 +K ′(0) > 0, r ∈ C3(R× Ω× R× R) , (5.5)

and r(t, ·, 0, 0) = 0 on ∂Ω for t ≥ 0. We note that in [18] the term f was not present, but is covered by
our extension of the wellposedness result. This equation fits into the framework of (5.1) by rewriting it
in first-order with u =

(
q, q′

)T and the operators

Λ(u) =
(

1 0
0 1 +K ′(q)

)
, A =

(
0 I

∆ 0

)
, g(t, u) =

(
0

−K ′′(q)
(
q′
)2 + r(t, q, q′)

)
. (5.6)

The Hilbert spaces in this example are

X := H1
0 (Ω)× L2(Ω), Y :=

(
H2(Ω) ∩H1

0 (Ω)
)
×H1

0 (Ω), (5.7)

Z := {q ∈ H3(Ω) ∩H1
0 (Ω) : ∆q ∈ H1

0 (Ω)} ×
(
H2(Ω) ∩H1

0 (Ω)
)
.

An important step throughout the wellposedness theory and error analysis is to ensure that the
operator Λ is invertible. This was used above to rewrite (5.1) into the formulation (5.2). In addition, we
note that the equation (5.1) degenerates in the case that Λ is not invertible and the whole theory is not
applicable.

In the model above, a typical choice is the Kerr-type nonlinearity

K(z) = χz3, χ ∈ R , (5.8)

see for example [12, 59, 64]. In this case, one needs to ensure that for the solution q it holds

1 +K ′(q) = 1 + 3χq2 > 0 , (5.9)

which is always satisfied for χ ≥ 0. Since we consider d ≤ 3, there is a continuous embedding H2(Ω) ↪→
L∞(Ω) with constant Cemb, and we may estimate

‖q‖L∞ ≤ Cemb ‖q‖H2 ≤ Cemb ‖u‖Y .

Hence, we can guarantee (5.9) also for χ < 0 if we control ‖u‖Y by some radius R satisfying

R2 <
1

C2
emb3 |χ| .

This radius R then ensures that equation (5.1) does not degenerate, and we will use it for the wellposed-
ness and the error analysis in this part of the thesis. From now on we consider R as a given quantity of
the problem that might have an a priori bound as in the case χ < 0.

Further, we need another radius r with

‖u‖Z ≤ r ,

to obtain uniform bounds in the later appearing constants. However, this parameter can be chosen
arbitrarily.
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5.1.2 Maxwell’s equations

Another example are the quasilinear Maxwell’s equations. They were for example considered in [61]
where a detailed framework is provided and most of the assumption made in this section are verified.
This framework was amended in [41]. The Maxwell’s equations are given by the system of evolution
equations

∂tD(t) = curlH(t)− σ(E(t))E(t), in Ω, t ≥ 0 ,

∂tB(t) = − curlE(t), in Ω, t ≥ 0 ,

divD(t) = 0, in Ω, t ≥ 0 ,

divB(t) = 0, in Ω, t ≥ 0 ,

(5.10)

with the nonlinear material laws

D = E + P (E), B = H +M(H) .

This equation fits in the framework of (5.1) by rewriting it in first order with u =
(
E,H

)T and the
operators

Λ(u) =
(
I + P ′(E) 0

0 I +M ′(H)

)
, A =

(
0 curl

− curl 0

)
, g(t, u) =

(
−σ(E)E

0

)
. (5.11)

For the coefficients we assume

σ ∈ C4(R3,R3,3), P,M ∈ C4(R3,R3,3) , (5.12)

where P ′(x) and M ′(x) are symmetric for all x ∈ Ω. Further, I + P ′(0) and I + M ′(0) are assumed to
be positive definite. The most prominent example is again the Kerr-type nonlinearity

P (E) = χ|E|2E, χ ∈ R, M = 0 ,

see for example [2, 12, 64].

On the full space For Ω = R3 we use the Hilbert spaces

X := L2(R3)6, Y := H2(R3)6, Z := H3(R3)6 . (5.13)

By the embedding H2(R3)6 ↪→ L∞(R3)6 similar arguments as for the wave equation guarantee that there
is some R > 0 such that I + P ′(x) and I + M ′(x) are positive definite in a ball BY (R). One could also
replace the Hilbert spaces Y and Z by

Y = Hs(R3)6, Z = Hs+1(R3)6 , (5.14)

for s > 3
2 since also Hs(R3)6 ↪→ L∞(R3)6 holds. However, we only consider the choice (5.13) for the

verification of the examples, but we expect that everything can be transferred to the situation (5.14).

On a bounded domain Let Ω be a domain with a boundary ∂Ω of class C4. The framework then
also covers homogeneous Dirichlet boundary conditions with the spaces

X := L2(R3)6, Y := H2(Ω)6 ∩H1
0 (Ω)6, Z := {q ∈ H4(Ω)3 ∩H1

0 (Ω)3 : ∆q ∈ H1
0 (Ω)3}2 . (5.15)
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5.2 Assumptions

Recall that the radius R <∞ is given by the problem, and there might be an a priori bound as in (5.9).
The radius r < ∞, however, can always be chosen arbitrarily large. We drop the dependency of the
constants on R and r for the sake of readability, i.e., we always abbreviate C = C(R, r), where C is any
constant appearing in the following.

Assumption 5.1 (properties of Λ). The set {Λ(y) : y ∈ BY (R)} forms a family of invertible self-adjoint
operators in L

(
X
)
such that the ranges Ran(I ∓ Λ−1(y)A) are dense in X and the inverses Λ−1(y) also

belong to L
(
Y
)
. Moreover, for all x ∈ X and y, ỹ ∈ BY (R), we have

‖Λ(y)‖X←X ≤ λX (5.16a)

〈x,Λ(y)x〉X ≥ ν−1
X ‖x‖

2
X (5.16b)

‖Λ(y)− Λ(ỹ)‖X←X ≤ ` ‖y − ỹ‖Y (5.16c)

and there are constants `X , `Y , `Z such that for φ, φ̃ ∈ B:∥∥∥Λ−1(φ)− Λ−1(φ̃)
∥∥∥
V←W

≤ `V
∥∥∥φ− φ̃∥∥∥

V
, (5.16d)

with the triples (
V,W,B

)
∈
{(
X,Y,BY (R)

)
,
(
Y, Y,BY (R)

)
,
(
Z,Z,BZ(r)

)}
.

As a direct consequence of the previous assumption we obtain with νX from (5.16d) and constants
νY , νZ that for φ ∈ B it holds: ∥∥Λ−1(φ)

∥∥
V←V ≤ νV , (5.17)

with the tuples (
V,B

)
∈
{(
X,BY (R)

)
,
(
Y,BY (R)

)
,
(
Z,BZ(r)

)}
.

In the following we make frequent use of the state dependent inner product

〈x, y〉φ = 〈Λ(φ)x, y〉X

which is defined for φ ∈ BY (R) by (5.16a) and (5.16b). We state two important properties which can be
found in the Appendix of [41].

Lemma 5.2 (relation of norms). Let Assumption 5.1 hold.
(a) For φ ∈ BY (R)

λ−1
X ‖u‖

2
φ ≤ ‖u‖

2
X ≤ νX ‖u‖

2
φ . (5.18)

(b) For φ, ψ ∈ BY (R) and τ > 0

‖u‖φ ≤ e
k1τ ‖u‖ψ , for ‖φ− ψ‖Y ≤ γτ , (5.19)

where k1 = k1(γ) = 1
2νX ` γ.

With the bounds on Λ in Assumption 5.1, we establish several properties of the composed differential
operator Aφ in the following lemma.



5.2. Assumptions 89

Lemma 5.3 (properties of Aφ). Let Assumption 5.1 hold. Then for φ ∈ BY (R)

‖Aφ‖X←Y ≤ νXαXY (5.20a)

and for φ, ψ ∈ BY (R) ∩ BZ(r)

‖Aφ‖Y←Z ≤ νY αY Z , (5.20b)

‖Aφ −Aψ‖X←Z ≤ LX ‖φ− ψ‖X , (5.20c)

‖Aφ −Aψ‖Y←Z ≤ LY ‖φ− ψ‖Y . (5.20d)

Proof. Equation (5.20a) is easily verified by Assumption 5.1 and the other statements are proved in [41,
Lemma 3.6].

In the papers of Kato, a key assumption is given by the following commutator condition. It is used
in his proofs for the wellposedness, but is also employed in the error analysis of this thesis. It guarantees
that the quasilinear operator can be lifted to the stronger space Z while only taking a small perturbation,
in form of a bounded linear operator in the space X, into account.

Assumption 5.4 (commutator condition). We assume that there is an continuous isomorphism S : Z →
X such that for z ∈ BY (R) ∩ BZ(r) it holds

AS
z = SAzS

−1 = Az +B(z)

with

‖B(z)‖X←X ≤ β .

In order to make the assumptions easily verifiable for the semilinear term, we pose the assumptions
on the original term g in (5.1).

Assumption 5.5 (properties of g). For V ∈ {X,Y, Z} there are constants Lg,V such that for φ1, φ2 ∈
BZ(r) and t, s ∈ [0, T ] it holds

‖g(t, φ1)− g(s, φ2)‖V ≤ Lg,V
(
|t− s|+ ‖φ1 − φ2‖V

)
. (5.21)

From this we can deduce the properties of f which will be the ones used in the wellposedness theory
and the error analysis.

Lemma 5.6 (properties of f). Let Assumptions 5.1 and 5.5 hold.

(a) The Lipschitz bound (5.21) also holds for f with constants Lf,V .

(b) For V ∈ {Y,Z} there are constants Cf,V,∞ such that for φ ∈ BZ(r) and t ∈ [0, T ]

‖f(t, φ)‖V ≤ Cf,V,∞ .

Proof. The properties are simply deduced by combining Assumption 5.1 with the properties (5.16d),
(5.17), and (5.21).
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Notation

We briefly collect some relevant constant used in the error analysis later and introduce a shorthand
notation. In the following, γ > 0 denotes a given parameter, which will be determined later.

k0 = (νXλX)1/2 ≥ 1 k1 = k1(γ) = 1
2 νX`γ, (5.22a)

c0 = ‖S‖X←Z
∥∥S−1∥∥

Z←Xk0 ≥ 1, c1 = c0νY αY Z (5.22b)

We further use for a Hilbert space V and a function v ∈ C([0, T ], V )

‖v‖V,∞ := max
t∈[0,T ]

‖v(t)‖V .

5.3 Wellposedness

The aim of this section is to provide a wellposedness result for the equation (5.2). The standard approach
is to use the Banach fixed-point theorem. This can be done by choosing a complete metric space E and
considering for fixed φ ∈ E the linear, non-autonomous evolution equation

u′(t) = A(φ(t))u(t) + f(t, φ(t))

= Aφ(t)u(t) + fφ(t) ,
(5.23)

with initial value u(0) = u0. For this equation, wellposedness and a priori bounds need to be established.
In the next step the solution map

S : φ 7→ u = uφ

is studied. Obviously, a fixed point of S is a solution of (5.2). Hence, the main task lies in the construction
of a suitable space E which allows S to be a contractive self-map.

This has been successfully done in [61, Thm. 3.41] for the slightly simpler right-hand side

f(t, φ) = Λ−1(φ)Q(φ)φ .

We mention that in [61] the special structure of f was used in order to define the operator A(φ) differently
by

Ã(φ) = Λ−1(φ)
(
A+Q(φ)

)
,

and to set f in (5.2) to zero. Our contribution is the generalization of this result, and we may apply the
results of [61] by setting Q = 0, but therefore have to treat the inhomogeneous term f with additional
technical effort.

For the fixed-point argument we use the same (complete) metric space as in [61]

E(T, r, γ) := {φ ∈ C([0, T ], Z) | ‖φ(t)‖Y ≤ R, ‖φ(t)‖Z ≤ r, [φ]Lip([0,T ],Y ) ≤ γ} , (5.24)

for positive parameters T,R, r, γ chosen later, equipped with the metric

d
(
φ, ψ

)
:= max

t∈[0,T ]
‖φ(t)− ψ(t)‖Y .

As explained above, we fix a function φ ∈ E(T, r, γ) and study equation (5.23).
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5.3.1 A priori bounds for the non-autonomous evolution equation

In the following we recall known results for non-autonomous evolution equations since they are needed
for the analysis of (5.23). The first ingredient are so-called evolution families that generalize the concept
of one-parameter semigroups discussed in Chapter 2. They arise in solving the problem

u′(t) = A(t)u(t) (5.25)

where A(t) depends on time. One can show under suitable assumptions on A(t) that there is a family of
operators U depending on two variables such that u given by

u(t) = U(t, s)u0

is the solution of (5.25) with initial value u(s) = u0. This family of operators is often called evolution
family. For example if A(t) = A is constant, the standard semigroup theory applies and U is simply given
by

U(t, s) = e(t−s)A .

We put this together in the following definition, see, e.g., [49].

Definition 5.7 (evolution family). Let J = [a, b] be an interval and define ∆J := {(t, s) ∈ J ×J : s ≤ t}.
Further, consider a Hilbert space Y . The family of operators U : ∆J → L

(
Y
)
is called an evolution

family on Y if it satisfies the following properties for a ≤ s ≤ r ≤ t ≤ b.
(a) For any y ∈ Y , the map (t, s) 7→ U(t, s)y is continuous in Y with U(t, t) = I and there are constants

M ≥ 1 and ω ∈ R such that ‖U(t, s)‖Y←Y ≤Meω(t−s) holds.
(b) It holds U(t, s) = U(t, r)U(r, s).

Evolution families are a useful tool in the representation of the solution of non-autonomous evolution
equations. This also applies for equation (5.23) where there is an additional inhomogeneity present.

Theorem 5.8. Let φ ∈ E(T, r, γ). Then there exists an evolution family Uφ on Y with J = [0, T ] such
that (5.23) with initial value u(0) = u0 has a unique solution given by

uφ(t) = Uφ(t, 0)u0 +
t∫

0

Uφ(t, σ)fφ(σ) dσ . (5.26)

In addition, the evolution family has the following properties:
(a) For any z ∈ Z the following derivatives exist in Y for 0 ≤ s ≤ t ≤ T :

∂tUφ(t, s)z = Aφ(t)Uφ(t, s)z ,

∂sUφ(t, s)z = −Uφ(t, s)Aφ(s)z .
(5.27)

(b) The evolution family satisfies for 0 ≤ s ≤ t ≤ T the bounds

‖Uφ(t, s)‖Y←Y ≤ c0e
k1T ek0β(t−s) ,

‖Uφ(t, s)‖Z←Z ≤ c0e
k1T ek0β(t−s) .

(5.28)

Proof. The representation (5.26) is given in [61, Thm.3.13]. The additional properties are verified in [61,
Thm. 3.35] and in the proof of [61, Thm.3.41] where (5.28) is explicitly stated in [61, (3.10)].
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In order to derive the a priori bounds, we decompose the solution by

uφ = Lφ + Cφ, Lφ(t) := Uφ(t, 0)u0, Cφ(t) :=
t∫

0

Uφ(t, σ)fφ(σ) dσ ,

since the bounds on the linear part Lφ and the convolution part Cφ are derived separately. Before we
estimate the two terms, we first guarantee the desired regularity of the solution uφ. The following lemma
is the firs step towards this.

Lemma 5.9. Let φ ∈ E(T, r, γ). Then fφ ∈ C([0, T ], Z) holds and the maps

∆J → Z, (t, s) 7→ Uφ(t, s)fφ(s)

∆J → Y, (t, s) 7→ Aφ(t)Uφ(t, s)fφ(s)

are jointly continuous in both variables.

Proof. By Lemma 5.6 and u ∈ C([0, T ], Z) we immediately obtain fφ ∈ C([0, T ], Z). Since we have a
constant isomorphism S, the second assertion can be deduced from [48, Thm. 6.1] where the continuity
of

∆J → Z, (t, s) 7→ Uφ(t, s)z

for z ∈ Z is shown. From this and the continuity of Aφ the last claim is easily derived.

This immediately implies that a fixed-point of (5.26) is a classical solution of (5.2), and it suffices to
find uφ in the metric space E.

Theorem 5.10. Let u0 ∈ Z and φ ∈ E(T, r, γ). Then the function uφ defined in (5.26) satisfies

uφ ∈ C([0, T ], Z) ∩ C1([0, T ], Y ) .

Proof. For the linear part Lφ we use the differentiability in (5.27) and obtain the same result for Cφ if
we combine Lemma 5.9 with the proof of [48, Theorem 7.1] replacing the space X by Y .

We now turn to the a priori bounds. For the linear part Lφ they were already derived in [61], and we
only state the bounds. We remark that the constants have been adjusted to the notation in this thesis
and introduce the constants

ω2 = ω2(γ) = k1(γ) + k0β, γ = γ(r) := c1
c0
r + 2c0Cf,Y,∞ . (5.29)

Proposition 5.11. For φ ∈ E(T, r, γ) the following bounds hold:

‖Lφ(t)‖Y ≤ c0e
ω2t ‖u0‖Y ,

‖Lφ(t)‖Z ≤ c0e
ω2t ‖u0‖Z ,[

Lφ

]
Lip(Y,[0,T ]) ≤ c1e

ω2T ‖u0‖Z ,

‖Lφ −Lψ‖Y,∞ ≤ T
(
c20LY e

k1T
)
eω2T ‖u0‖Z ‖φ− ψ‖Y,∞ .

Proof. The results can be found in the proof of [61, Thm. 3.41] in step 4.

The a priori estimates for Cφ are derived by similar arguments. We employ the bounds on the evolution
family in Theorem 5.8 and on f given in Lemma 5.6.
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Proposition 5.12. For φ, ψ ∈ E(T, r, γ) the following bounds hold:

‖Cφ(t)‖Y ≤ c0e
ω2TTCf,Y,∞ ,

‖Cφ(t)‖Z ≤ c0e
ω2TTCf,Z,∞ ,[

Cφ
]

Lip(Y,[0,T ]) ≤
(
c0Cf,Y,∞ + Tc1Cf,Z,∞

)
eω2T ,

‖Cφ − Cψ‖Y,∞ ≤
(
c0Te

ω2TLf,Y + T 2c20e
k1T eω2TLY Cf,Z,∞

)
‖φ− ψ‖Y,∞ .

Proof. (a) We first provide the bounds in Y and Z. By Lemma 5.6 and (5.28) we have

‖Cφ(t)‖Y ≤
t∫

0

c0e
k1T ek0β(t−σ)Cf,Y,∞ dσ ≤ c0Teω2TCf,Y,∞ ,

‖Cφ(t)‖Z ≤
t∫

0

c0e
k1T ek0β(t−σ)Cf,Z,∞ dσ ≤ c0Teω2TCf,Z,∞ .

(b) The Lipschitz-continuity in Y for 0 ≤ s ≤ t ≤ T is obtained by

‖Cφ(t)− Cφ(s)‖Y ≤
∥∥∥ t∫
s

Uφ(t, σ)fφ(σ) dσ
∥∥∥
Y

+
∥∥∥ s∫

0

(
Uφ(t, σ)− Uφ(s, σ)

)
fφ(σ) dσ

∥∥∥
Y

≤ c0eω2TCf,Y,∞ |t− s|+
∥∥∥ s∫

0

t∫
s

Aφ(r)Uφ(r, σ)fφ(σ) dr dσ
∥∥∥
Y

≤
(
c0Cf,Y,∞ + Tc1Cf,Z,∞

)
eω2T |t− s| ,

where we used (5.27) in the second step. This implies

[
Cφ
]

Lip(Y,[0,T ]) ≤
(
c0Cf,Y,∞ + Tc1Cf,Z,∞

)
eω2T .

(c) We finally estimate the Lipschitz constant for the contraction. To this end we compute for φ, ψ ∈
E(T, r, γ) and 0 ≤ t ≤ T

‖Cφ(t)− Cψ(t)‖Y ≤
∥∥∥ t∫

0

(
Uφ(t, σ)fφ(σ)− Uψ(t, σ)fψ(σ)

)
dσ
∥∥∥
Y

≤
∥∥∥ t∫

0

Uφ(t, σ)
(
fφ(σ)− fψ(σ)

)
dσ
∥∥∥
Y

+
∥∥∥ t∫

0

(
Uφ(t, σ)− Uψ(t, σ)

)
fψ(σ) dσ

∥∥∥
Y

= C 1 + C 2 .

We estimate separately by Lemma 5.6 and (5.28)

C 1 ≤ c0Teω2TLf,Y ‖φ− ψ‖Y,∞
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and as in [61, p.75 bottom]

C 2 =
∥∥∥ t∫

0

(
Uφ(t, σ)− Uψ(t, σ)

)
fψ(σ) dσ

∥∥∥
Y

≤
t∫

0

∥∥(Uφ(t, σ)− Uψ(t, σ)
)
fψ(σ)

∥∥
Y
dσ

≤
t∫

0

c20e
2k1T ek0βt

t∫
σ

‖Aφ(s)−Aψ(s)‖Y←Z ds ‖fψ(σ)‖Z dσ

≤ T 2c20e
k1T eω2TLY Cf,Z,∞ ‖φ− ψ‖Y,∞ ,

and conclude

‖Cφ − Cψ‖Y,∞ ≤
(
c0Te

ω2TLf,Y + T 2c20e
k1T eω2TLY Cf,Z,∞

)
‖φ− ψ‖Y,∞ .

We finally arrive at the a priori bound for the solution uφ by combining the results of Propositions 5.11
and 5.12.

Corollary 5.13. For φ, ψ ∈ E(T, r, γ) it holds

‖uφ(t)‖Y ≤ c0e
ω2T
(
‖u0‖Y + TCf,Y,∞

)
,

‖uφ(t)‖Z ≤ c0e
ω2T
(
‖u0‖Z + TCf,Z,∞

)
,[

uφ
]

Lip(Y,[0,T ]) ≤ c1e
ω2T
(
‖u0‖Z + TCf,Z,∞

)
+ c0e

ω2TCf,Y,∞ ,

‖uφ − uψ‖Y,∞ ≤
(
Tc20LY e

k1T eω2T ‖u0‖Z +
(
c0Te

ω2TLf,Y + T 2c20e
k1T eω2TLY Cf,Z,∞

))
‖φ− ψ‖Y,∞ .

5.3.2 Quasilinear evolution equation

With this preparation we are now in the position to close the proof of the fixed-point argument.

Theorem 5.14. Let Assumptions 5.1, 5.4, and 5.5 be satisfied. For an initial value

‖u0‖Y ≤ R0 := 1
4c0
R, ‖u0‖Z ≤ r0 := 1

4c0
r,

define the time

T := min
{ ln 2
ω2

,
R

4c0Cf,Y,∞
,

r

4c0Cf,Z,∞
,

1
4c0
(
LY r + Lf,Y

)} , (5.30)

where ω2 and γ are given in (5.29). Then there is a unique solution u of (5.2) with

u ∈ C([0, T ], Z) ∩ C1([0, T ], Y ) ,

satisfying

‖u(t)‖Y ≤ R, ‖u(t)‖Z ≤ r

on the interval [0, T ].
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Proof. With the definition of T , R0 and r0 we obtain

ek1T ≤ eω2T ≤ 2, c0TCf,Y,∞ ≤ 1
4R, c0TCf,Z,∞ ≤ 1

4r,

and hence with Corollary 5.13 directly

‖uφ(t)‖Y ≤ R ,

‖uφ(t)‖Z ≤ r ,[
uφ
]

Lip(Y,[0,T ]) ≤ γ .

It remains to prove the contraction bound

‖uφ − uψ‖Y,∞ ≤
1
2 ‖φ− ψ‖Y,∞ . (5.31)

With this one can apply Banach fixed-point theorem and close the proof by the same arguments as in
[61, Thm. 3.41], in particular using Theorem 5.10. We rewrite the last constant of Corollary 5.13

CLip = c0T
(
LY e

k1T
(
c0e

ω2T
(
‖u0‖Z + TCf,Z,∞

))
+ eω2TLf,Y

)
.

and as above we obtain with the definition of T

CLip ≤ 2c0T
(
LY r + Lf,Y

)
≤ 1

2

such that (5.31) follows.

One can also obtain additional differentiability of the solution u in the weaker space X if we assume
more differentiability of the data.

Theorem 5.15. Let the assumptions of Theorem 5.14 be satisfied and let u be the solution of (5.2) with
u ∈ C([0, T ], Z) ∩ C1([0, T ], Y ). Further, assume for y ∈ Y the following differentiability

t 7→f(t, u(t)) ∈ C1([0, T ], X) ,

t 7→A(u(t))y ∈ C1([0, T ], X) .

Then the solution u of (5.2) satisfies in addition

u ∈ C2([0, T ], X) .

Proof. The assumptions basically guarantee that we may differentiate u′ in X using equation (5.2).
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CHAPTER 6

Review on time integration of quasilinear evolution equations

In this chapter we give an overview on the results obtained for time integration of quasilinear evolution
equations. We mainly focus on wave-type equation except the Magnus-type integrators which were
analyzed for parabolic problems. The approaches in Section 6.1 and 6.2 are the main motivation for
our methods proposed in the next Chapter. In Section 6.3 we present an alternative approach for the
time integration of quasilinear wave equations by trigonometric integrators and in Section 6.4 we briefly
discuss a numerical comparison of exponential integrators for quasilinear Maxwell’s equations.

6.1 Implicit Runge–Kutta methods for quasilinear hyperbolic
systems

We start with implicit Runge–Kutta methods that were analyzed in the same framework as the analysis
in this part of the thesis. We remark that in Hochbruck, Pažur and Schnaubelt [41, 44] the problem was
of the form

u′(t) = A(u(t))u(t), u(0) = u0. (6.1)

We start with explaining the first- and second-order methods that gave rise to the methods proposed
later and afterwards we briefly show how higher-order was achieved.

Euler method

In [41] problem (6.1) was discretized in time by the Euler method. Applying the well-known implicit
Euler rule (6.1) with the notation of (5.3) results in

un+1 = un + τAun+1un+1, n ≥ 0 , (6.2)
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where in each step a fully nonlinear problem has to be solved. On can linearize, this resulting in the
so-called semi-implicit Euler method given by

un+1 = un + τAunun+1, n ≥ 0 . (6.3)

Here, in each step only a linear system has to be solved which is computationally far more attractive.
The idea of (6.3) is later employed for the exponential Euler method. Both methods are of order 1 as
can be seen in the following theorems.

In the first one, error bounds in the X-norm are proven under regularity assumptions that follow from
Theorem 5.15

Theorem 6.1 ([41, Thm. 4.3]). Let u be the classical solution of Theorem 5.14 and assume in addition
u′′ ∈ L2([0, T ], X). Further, let un be the numerical approximation obtained from (6.2) or (6.3). Under
certain assumptions on the data there is τ0 > 0 such that for all τ ≤ τ0 it holds

‖u(tn)− un‖X ≤ Cτ
( T∫

0

‖u′′(t)‖2X + ‖u′(t)‖2X dt
)1/2

with a constant C > 0 independent of τ and n.

Under additional assumptions on the data and the regularity of the solution, first-order error bounds
are also shown in the stronger Z-norm.

Theorem 6.2 ([41, Thm. 4.5]). Let u be the classical solution of Theorem 5.14 and assume in addition
Au ∈ L∞([0, T ], Z) and u′, u′′ ∈ L2([0, T ], X). Further, let un be the numerical approximation obtain
from (6.2) or (6.3). Under certain assumptions on the data there is τ0 > 0 such that for all τ ≤ τ0 it
holds

‖u(tn)− un‖Z ≤ Cτ
( T∫

0

‖u′′(t)‖2Z + ‖u′(t)‖2Z dt
)1/2

with a constant C > 0 independent of τ and n.

Midpoint rule

Next we bring the attention to two second-order methods proposed by Kovács and Lubich [53]. In this
work the authors considered equation (5.2) in a slightly different framework. For simplicity, we omit the
additional nonlinearity f and consider only problem (6.1). They consider the implicit midpoint rule

un+1 = un + τ
2 Aun+1/2

(
un + un+1

)
(6.4)

with two different choices of un+1/2 which are given by

un+1/2 = 1
2
(
un+1 + un

)
, n ≥ 0 , (6.4, FI)

un+1/2 = un + 1
2
(
un − un−1

)
, n ≥ 1, u1/2 = u0 . (6.4, LI)

Similar to (6.2) the method (6.4, FI) is fully nonlinear whereas (6.4, LI) is only linearly implicit as this
was the case in (6.3). The idea of (6.4, LI) is later employed for the exponential midpoint rule. For both
schemes the following error bound was derived.
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Theorem 6.3 ([53, Thm. 3.1]). Let u be a sufficiently regular solution of (5.2) and let un be the
numerical approximation obtain from (6.4, FI) or (6.4, LI). Under certain assumptions on the data there
is τ0 > 0 such that for all τ ≤ τ0 it holds

‖u(tn)− un‖Z ≤ Cτ
2

with a constant C > 0 independent of τ and n.

Higher-order methods

Even though this thesis is not concerned with methods of order higher than two, we briefly sketch the
results which have their basis in the theory of the preceding two sections. This might be a starting point
for future research.

Despite slightly different analytical frameworks in [41, 53], the papers both considered implicit Runge–
Kutta methods that are coercive [33, Def. IV.14.1] and algebraically stable [11], [33, Def. IV.12.5]. Since
we will not further work with these concepts we only refer to the given literature and state the Gauss
and Radau IIA methods as the main examples, [33, Thm. IV.12.9]. For nodes ci ∈ [0, 1], coefficients aij
and positive weights bi > 0, they are given by

U̇ni = AUniUni, i = 1, . . . , s,

Uni = un + τ

s∑
j=1

aijU̇nj , i = 1, . . . , s,

un+1 = un + τ

s∑
i=1

biU̇ni,

(6.5)

where un ≈ u(tn) approximates the exact solution u at time tn = nτ and the internal stages satisfy
Uni ≈ u(tn + ciτ).

In both papers we find results on the convergence of the schemes with stage order q. Without being
precise about assumptions and frameworks for completeness we state the following result which combines
error bounds in different norms.

Theorem 6.4 ([41, Thm. 5.3 & Thm. 6.3],[53, Thm. 4.1]). Let u be a sufficiently regular solution of
(5.2) and let un be the numerical approximation obtained from a method of type (6.5) with stage order q.
For V ∈ {X,Y, Z} under certain assumptions on the data there is τ0 > 0 such that for all τ ≤ τ0 it holds

‖u(tn)− un‖V ≤ Cτ
q+1

with a constant C > 0 independent of τ and n.

We remark that under stronger assumptions on the commutator compared to Assumption 5.4, Kovács
and Lubich also proved an error bound of the classical order p, see [53, Thm. 4.2].

6.2 Magnus-type integrators for quasilinear parabolic problems

The motivation to use exponential integrators for (5.2) comes from the paper [26] by González and Thal-
hammer. With the ideas developed by González, Thalhammer and Ostermann [29] for non-autonomous
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parabolic problems, the quasilinear equation

u′(t) = L(u(t))u(t) + b(t), u(0) = u0 (6.6)

is considered in some Banach space X. For sufficiently regular u the operator L(u) : D → X is of elliptic
type. The main example is given by an elliptic operator with solution dependent coefficients in some Lp

space over a domain Ω.
The method they considered in [26] is constructed in the following way. They freeze the argument of

L in (6.6) at some midpoint Un+1/2 and b at tn+1/2, such that they arrive at a linear equation with a
constant inhomogeneity. The outer stage then simply is the exact solution of this equation. To obtain
Un+1/2 they use an exponential Euler step with stepsize τ

2 which yields the following method

Un+1/2 = eτ/2Lunun + τ
2ϕ1( τ2 Lun)b(tn) ,

un+1 = e
τLUn+1/2un + τϕ1(τLUn+1/2)b(tn+1/2) .

(6.7)

On expects this method to be of order two, but this is not true in general as can be seen from the theory
and numerical experiments in [26]. In fact, they prove for some interpolation space of X and D(L) that
the method converges with order sightly less than 2 depending on certain parameters, in particular the
exponent p of the Lp-space. We state their main theorem in this sloppy way.

Theorem 6.5 ([26, Thm. 5.1]). Let u be a sufficiently regular solution of (6.6) and let un be the numerical
approximation obtained from (6.7). Further, let Xβ be some interpolation space between D(L) and X.
Under certain assumptions on the data, there is τ0 > 0 and ε > 0 such that all τ ≤ τ0 it holds

‖u(tn)− un‖Xβ ≤ Cτ
2−ε

with a constant C > 0 independent of τ and n.

In [27, 28], González and Thalhammer extended these results to higher order methods and proved
error bounds for a larger class of methods, but we omit the details here.

6.3 Trigonometric integrators for quasilinear wave equations

Gauckler et al. [23] considered a quasilinear wave equation in one space dimension. It is given in the
form

∂ttq(t) = ∂xxq(t)− q(t) + κa(q(t))∂xxq(t) + κr(q(t), ∂xq(t)) on T = R/(2πZ) ,

with smooth and real-valued functions a, r. Similar to (5.6), the equation is rewritten in first order as

u′(t) = Au(t) + g(t, u(t),∇u(t))

with the positive, self-adjoint operator L = −∂xx + I : Hs+2(T)→ Hs(T) and

A =
(

0 I

−L 0

)
, g(t, u(t),∇u(t)) =

(
0

κa(q)∂xxq + κr(q, ∂xq)

)
.

The basis of the numerical method is the Strang splitting (3.12b) applied to the first-order formulation
with some modified f̃ similar to what was analyzed in the first part of this thesis. However, the properties
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of the filters proposed in Definition 4.10 are in general not sufficient for quasilinear problems. In the error
analysis, solutions with

u(t) =
(
q(t), q′(t)

)
∈ H5(T)×H4(T), t ∈ [0, T ] ,

are considered. One of the main results of the paper is an error bound for the semi-discretization in time
[23, Thm 3.2] which allows for the estimate

‖un − u(tn)‖H2×H1 ≤ Cτ2 .

In addition, the authors provide for the full discretization with Fourier spectral methods in space [23,
Thm 3.4] a similar error bound.

We emphasize that we are not able to properly compare the trigonometric integrator to our later
proposed methods. This is due to the fact that we work in the framework of Chapter 5, which mainly
treats the dimensions d = 2 and d = 3. Even though, the case d = 1 can also be handled, our results
would be by far not optimal. To give an example, in d = 1 we have the embedding H1(T) ↪→ L∞(T)
such that the condition (5.9) can already be guaranteed with the H1- instead of the H2-norm.

6.4 Numerical comparison of exponential integrators for quasi-
linear Maxwell’s equations

We conclude this chapter with some comments on the reference by Pototschnig et al. [64]. In this
paper, two exponential integration schemes are proposed for the time integration of quasilinear Maxwell’s
equations of a form closely related to (5.10) and are compared to classical integration schemes. The spatial
discretization is given by a staggered Yee-grid [74] for all methods. However, no error analysis is provided,
and we are not aware of it published elsewhere.

For the classical scheme, the authors choose the Leapfrog method where the nonlinear part is solved by
a Newton solver and the classical Runge–Kutta method (RK4) of classical order 4. This first exponential
integrator they consider is given by a Lawson method which is a fourth-order variant of (3.10). The
underlying Runge–Kutta method is the RK4 from above. The equation is split in a linear and nonlinear
part where the linear part is integrated exactly. Further, the fourth-order exponential Runge–Kutta
method proposed in [42] is used. In comparison to the Lawson method, in each time step the exact
Jacobian is used as linear part which is integrated exactly. The evaluation of the matrix exponential
applied to a vector is approximated by Krylov subspace methods.

In the one-dimensional test case a performance comparison is carried out where the computational
time is plotted against the relative error. The authors observe a very nice behavior of the exponential
methods and can even outperform the classical methods. These numerical findings clearly indicate that
exponential integrators for quasilinear Maxwell’s equations can be very efficient, and it might also be
interesting to compare our newly proposed methods with the ones from [64].
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CHAPTER 7

Exponential integrators for quasilinear hyperbolic systems and main results

After the preparations in the previous chapters, we now propose and analyze the exponential integrators
used to solve (5.2). In the first section we derive the new methods, state the main results in Theorem 7.1
and Theorem 7.7, and compare them to the results from Section 6.1. In the following two sections 7.2
and 7.3, we prove the main results and show some numerical experiments in Section 7.4. We conclude
the chapter in Section 7.5 with some further results concerning error bounds in stronger norms. However,
in contrast to the main results discussed in Section 7.1, we have to assume additional regularity of the
solution which cannot be deduced from the wellposedness result in Chapter 5.

Recall the stepsize τ > 0 and, given a numerical approximation un ≈ u(tn) and the time tn = nτ , we
define the operators

An = A(un), fn = f(tn, un) . (7.1)

Similarly, let u(t) be the solution of Theorem 5.14 and define ûn+σ = u(tn + τσ). We introduce the
notation

f̂(t) = f(t, u(t)) , f̂n+σ = f(tn + τσ, ûn+σ) ,

Â(t) = A(u(t)) , Ân+σ = A(ûn+σ) .
(7.2)

Throughout the chapter the assumptions of Chapter 5 are valid. In particular, we do not state the precise
dependence of the appearing constants on the bounds assumed in Chapter 5. We will only be precise
about the regularity of the solution u and the dependence on τ , n and tn.

7.1 Overview of methods and main results

In this section we propose the new exponential integrators for the time discretization of (5.2) and explain
how they are connected to the methods explained in Chapter 6. The common feature goes back to the
idea explained in Section 6.2 where we freeze the argument of the differential operator and the semilinear
term in (5.2) and use the exact representation of the solution of the resulting linear equation. This results
in the following two methods.
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Exponential Euler method

If we freeze at the last approximation un, we obtain the exponential Euler scheme

un+1 = eτAnun + τϕ1(τAn)fn
= un + τϕ1(τAn)

(
Anun + fn

)
,

(7.3)

where we used the notation introduced in (7.1). We note that this can also be seen as a variant of (6.3)
where the resolvent

(
I − τAun

)−1 is replaced by the exponential. In fact, we see in the latter stability
analysis a very similar behavior of the two methods. For the method (7.3), the first main result in the
second part of this thesis are the following error bounds.

Theorem 7.1. Let u be the solution of (5.1) obtained by Theorem 5.14 and un the approximation obtained
from (7.3). If Assumptions 5.1, 5.4, and 5.5 are satisfied, we obtain for V ∈ {X,Y } the error bounds

‖u(tn)− un‖V ≤ tne
cV tnCV τ, 0 ≤ nτ = tn ≤ T,

with constants CV , cV > 0 that only depend on ‖u′‖V,∞ and ‖u‖Z,∞, but are independent of τ , n and tn.

We note that compared to Theorem 6.1 for the bound in the X-norm, we also need ‖u‖Z,∞, but in
our theorem only ‖u′‖X,∞ enters compared to the L2-norm

T∫
0

‖u′′(t)‖2X dt ,

which shows a slight advantage of the exponential integrator in terms of regularity assumptions.

Exponential midpoint rule

We also study a second-order method, inspired by the exponential ansatz in (6.7). We could directly
study this method in our framework and we expect that second-order would also be achieved. However,
we do not want to compute another exponential Euler step as an inner stage.

So we combine this scheme with the ideas of [53] where the midpoint is computed by (6.4, FI) or
(6.4, LI). Classically, one would like to use the average of un and un+1 as in (6.4, FI), but this would
make the method implicit in the unbounded operator and thus computationally very expensive. Hence,
as in (6.4, LI) we replace the average by the extrapolation using the last two approximations and arrive
at the following scheme

u1/2 = u0,

un+1/2 = 1
2
(
3un − un−1

)
, n ≥ 1,

un+1 = eτAn+1/2un + τϕ1(τAn+1/2)fn+1/2 ,

(7.4)

which we call the exponential midpoint rule.
In order to derive error bounds of second-order for the scheme (7.4), the Lipschitz bounds from the

previous chapter are not sufficient. Indeed, we have to apply Taylor expansion not only to the exact
solution u, but also to the terms on the right-hand side of (5.2). Otherwise, we can only achieve bounds
under the same regularity as in Theorem 6.3 and there is no gain in an exponential method. The
necessary differentiability is formulated as assumptions to ensure readability of the chapter. We provide
the detailed computations to verify the assumptions in Appendix B. We begin with the differentiability
of the semilinear term g.
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Assumption 7.2 (additional properties of g). Let u ∈ C1([0, T ], Y )∩C([0, T ], Z) and consider the map

t 7→ ĝ(t) = g(t, u(t)) . (7.5)

Then there is a constant Cg′,Y,∞ with
(a) t 7→ ĝ(t) ∈ C1([0, T ], Y ), ‖ĝ′(t)‖Y ≤ Cg′,Y,∞,
and, if in addition, u ∈ C2([0, T ], X) holds, then there is Cg′′,X,∞ such that
(b) t 7→ ĝ(t) ∈ C2([0, T ], X), ‖ĝ′′(t)‖X ≤ Cg′′,X,∞,
with constants only depending on ‖u′′‖X,∞, ‖u′‖Y,∞, ‖u‖Z,∞.

Whereas similar conditions to those in Assumption 7.2 are known from the analysis of semilinear
evolution equations, we need an additional assumption in order to treat the differential operator and the
composition of Λ−1 and g.

Assumption 7.3 (additional properties of Λ). Let u ∈ C1([0, T ], Y )∩C([0, T ], Z) and consider the map

t 7→ Λ−1(t) := Λ−1(u(t)) .

For V ∈ {X,Y } and v ∈ V it holds
(a) t 7→ Λ−1(t)v ∈ C1([0, T ], V ),

∥∥(Λ−1)′(t)∥∥
V←V ≤ CV V ,

and, if in addition, u ∈ C2([0, T ], X), it further holds for y ∈ Y
(b) t 7→ Λ−1(t)y ∈ C2([0, T ], X),

∥∥(Λ−1)′′(t)∥∥
X←Y ≤ CXY ,

with constants CXX , CXY , CY Y only depending on ‖u′′‖X,∞, ‖u′‖Y,∞, ‖u‖Z,∞.

With the two preceding assumptions, we can conclude differentiability of the right-hand side in (5.2).
We first consider the semilinear term f .

Lemma 7.4. Let u ∈ C2([0, T ], X) ∩ C1([0, T ], Y ) ∩ C([0, T ], Z) and consider the map

t 7→ f̂(t) = f(t, u(t)) .

If Assumptions 7.2 and 7.3 hold, then f̂ satisfies Assumption 7.2 with constants Cf ′,Y,∞, Cf ′′,X,∞ only
depending on ‖u′′‖X,∞, ‖u′‖Y,∞, ‖u‖Z,∞.

Proof. The assertion directly follows from the product rule. Note however, that part (a) holds already
true for u ∈ C1([0, T ], Y ) ∩ C([0, T ], Z), since we only employ part (a) of Assumptions 7.2 and 7.3.

By the structure of A(u), we directly conclude the following lemma which gives differentiability of the
differential operator evaluated at a smooth function.

Lemma 7.5. Let u ∈ C1([0, T ], Y ) ∩ C([0, T ], Z) and consider the map

t 7→ Â(t) = Λ−1(t)A .

If Assumption 5.1 and 7.3 are satisfied, then for y ∈ Y and z ∈ Z it holds
(a) t 7→ Â(t)y is C1([0, T ], X),

∥∥Â′(t)∥∥
X←Y ≤ C

A
XY ,

(b) t 7→ Â(t)z is C1([0, T ], Y ),
∥∥Â′(t)∥∥

Y←Z ≤ C
A
Y Z ,

and, if in addition, u ∈ C2([0, T ], X), it further holds
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(c) t 7→ Â(t)z is C2([0, T ], X),
∥∥Â′′(t)∥∥

X←Z ≤ C
A
XZ ,

with constants CAXY , CAY Z , CAXZ only depending on ‖u′′‖X,∞, ‖u′‖Y,∞, ‖u‖Z,∞.

We remark that Lemmas 7.4 and 7.5 are a key ingredient in the error analysis. Additionally, they
allow us to derive further regularity of the solution u.

Corollary 7.6. Let u ∈ C1([0, T ], Y )∩C([0, T ], Z) be the solution obtained in Theorem 5.14. If Assump-
tions 7.2 (a) and 7.3 (a) hold, then

u ∈ C2([0, T ], X) ∩ C1([0, T ], Y ) ∩ C([0, T ], Z) .

Proof. This is a direct consequence of Theorem 5.15 using Lemmas 7.4 and 7.5 (a).

We are almost in the position to state the error bound for the exponential midpoint rule. However,
we need to take care of the bounds on the extrapolated approximations un+1/2. Since this is not a convex
combination of previous approximation, the bounds of un and un−1 do not hold. To overcome this, we
choose some radius R̂ > R such that Assumption 5.1 on Λ(y) is still valid. If we can guarantee that the
numerical approximations stay in the slightly larger ball BY (R̂), the scheme remains stable. This enters
later as a mild stepsize restriction τ ≤ τ0 with

γ̂τ0
2 ≤ R̂−R , (7.6)

where γ̂ is chosen below in (7.8). Due to similar arguments we also have to replace the radius r by r̂ = 2r.
All assumptions in Chapter 5 have been posed for the radii R and r. For the analysis of the exponential

midpoint rule, we have to assume that they also hold for the new radii R̂ and r̂. We denote the constants
by the same name but with an additional hat, e.g., we replace

Cf,X,∞ = Cf,X,∞(R, r) by Ĉf,X,∞ = Ĉf,X,∞(R̂, r̂) .

Without loss of generality we may also assume a monotone growth of the constants in the radii such that,
e.g., Cf,X,∞ ≤ Ĉf,X,∞ holds. Due to the possibly larger constants we can only simulate up to the time

T̂mid := min
{ ln 2
ω̂2

,
R

4ĉ0Ĉf,Y,∞
,

r

4ĉ0Ĉf,Z,∞

}
, (7.7)

where
ω̂2 = 2k̂1(γ̂) + k̂0β̂, γ̂ := ĉ1

ĉ0
r + 2ĉ0Ĉf,Y,∞ . (7.8)

If we compare (7.7) to the end time T given in (5.30), then in general the three terms appearing here
are smaller than the corresponding ones in (5.30) and thus also their minimum is smaller. However, we
do not know in general how the fourth term in (5.30) relates to these quantities and hence, in general we
can not decide which time is larger. Hence, we prove the following error bound in the X- and Y -norm
on the intersection of both time intervals.

Theorem 7.7. Let u be the solution of (5.1) obtained by Corollary 7.6 and un the approximation obtained
from (7.4). If Assumptions 5.1, 5.4, and 5.5, are satisfied, and in addition Assumptions 7.2 and 7.3 hold
true, and τ0 is given by (7.6), then for all τ ≤ τ0 the error is bounded by

‖u(tn)− un‖X + τ ‖u(tn)− un‖Y ≤ tne
c tnCτ2, 0 ≤ nτ = tn ≤ min{T, T̂mid} ,

with constants C, c > 0 that only depend on ‖u′′‖X,∞, ‖u′‖Y,∞, ‖u‖Z,∞, but are independent of τ , n and
tn.
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For the second-order error bound in the X-norm in Theorem 6.4, see [41, Thm. 5.3] for the precise
statement, a bound on

T∫
0

∥∥Au′′(t)∥∥2
X

+
∥∥u(3)(t)

∥∥2
X
dt

is required. This is, roughly speaking, one scale of regularity more than used in the above Theorem 7.7.

7.2 Error analysis of the exponential Euler method

This section is devoted to the proof of Theorem 7.1 and it is divided into three steps. We first establish
stability of the numerical approximations in the stronger Y - and Z-norms in order to use the numerical
flow for the error propagation. The analysis closely follows [41]. In the next step, we derive an error
recursion for the global error and prove bounds on the defect. Lastly, we solve the error recursion and
conclude a bound on the global error.

7.2.1 Stability

The first observation is a variant of [41, Lemma 3.7]. In this lemma we use a space that contains all
numerical approximations. For N ∈ N and ξ > 0 we define the space

E
(
N,R, r, ξ

)
:= {φ =

(
φ0, . . . , φN

)
∈ ZN+1 |

‖φk‖Y ≤ R, ‖φk‖Z ≤ r, k = 0, . . . , N ,

‖φk − φk−1‖Y ≤ ξ, k = 1, . . . , N} ,

(7.9)

which can be seen as a discrete analogue of the space (5.24). It is constructed in such a way that starting
with approximations of this space for some N ≥ 1, and inserting them in the numerical scheme, yields
that the following approximation, say φN+1, together with the preceding approximations then lies in
E
(
N + 1, R, r, ξ

)
. The proof is done by induction in Lemma 7.11 and needs the following auxiliary

results.

Lemma 7.8. Let Assumptions 5.1 and 5.4 hold. Further, let φ =
(
φ0, . . . , φN

)
∈ E

(
N,R, r, τγ

)
and

0 ≤ j ≤ k ≤ N for j, k ∈ N. Then:∥∥∥eτAφk eτAφk−1 . . . eτAφj

∥∥∥
X←X

≤ k0e
ω1(k−j+1)τ ,∥∥∥eτAφk eτAφk−1 . . . eτAφj

∥∥∥
Y←Y

≤ c0eω2(k−j+1)τ ,∥∥∥eτAφk eτAφk−1 . . . eτAφj

∥∥∥
Z←Z

≤ c0eω2(k−j+1)τ ,

with ω1 = ω1(γ) = k1(γ) and ω2 given in (5.29).

Proof. The proof can be found the in Appendix of [41]. However, since we need an extension of this
result, we give the proof in detail here. In a first step we prove the bound in the X-norm and then adapt
it to the Z-norm. The last bound is then obtained by interpolation and k0 ≤ c0 due to (5.22).
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(a) Let x ∈ X be arbitrary. By Assumption 5.1 we have that Aφ generates a C0-group with
∥∥etAφx

∥∥
φ

=
‖x‖φ. Using this with (5.18) and (5.19), we compute∥∥∥eτAφk eτAφk−1 . . . eτAφj x

∥∥∥
X
≤ ν1/2

X

∥∥∥eτAφk eτAφk−1 . . . eτAφj x
∥∥∥
φk

= ν
1/2
X

∥∥∥eτAφk−1 . . . eτAφj x
∥∥∥
φk

≤ ν1/2
X ek1τ

∥∥∥eτAφk−1 . . . eτAφj x
∥∥∥
φk−1

≤ . . .

≤ ν1/2
X ek1(k−j)τ ‖x‖φj

≤ k0e
k1(k−j)τ ‖x‖X ,

by the definition of k0 in (5.22a), which gives the assertion.
(b) Let z ∈ Z be arbitrary. By Assumption 5.4 we obtain for

AS
φ`

= SAφ`S
−1 = Aφ` +B(φ`), ‖B(φ`)x‖φ` ≤ k0β ‖x‖φ`

that the semigroups satisfies
∥∥etAS

φx
∥∥
φ
≤ ek0βt ‖x‖φ. From this we conclude∥∥∥eτAφk eτAφk−1 . . . eτAφj x

∥∥∥
Z

=
∥∥∥S−1eτAS

φk e
τAS

φk−1 . . . e
τAS

φjSx
∥∥∥
Z

≤
∥∥S−1∥∥

X←Z ν
1/2
X

∥∥∥eτAS
φk e

τAS
φk−1 . . . e

τAS
φjSx

∥∥∥
φk

≤
∥∥S−1∥∥

X←Z ν
1/2
X ek0βτ

∥∥∥eτAS
φk−1 . . . e

τAS
φjSx

∥∥∥
φk

≤
∥∥S−1∥∥

X←Z ν
1/2
X e(k1+k0β)τ

∥∥∥eτAS
φk−1 . . . e

τAS
φj x
∥∥∥
φk−1

≤ . . .

≤
∥∥S−1∥∥

X←Z k0e
ω2(k−j+1)τ ‖Sx‖X

≤ c0eω2(k−j+1)τ ‖x‖X ,

by the definition of c0 in (5.22b) and of ω2 in (5.29).

Remark 7.9. From the proof we can see that in the X-norm one could replace k− j+1 by k− j, but this
is not possible in the Z-norm. However, we cannot gain anything from this in the latter error analysis,
and we hence stay with this suboptimal bound for the sake of consistency with the error bounds in the
stronger norms.

Corollary 7.10. The bounds in Lemma 7.8 hold true, if we replace eτAφ` by ϕ1(τAφ`) for some
` ∈ {0, . . . , N}.

Proof. For x ∈ X, this simply follows from the bounds

‖ϕ1(τAφ`)x‖φ` ≤
1∫

0

∥∥∥e(1−s)τAφ`x
∥∥∥
φ`
ds ≤ ‖x‖φ` ,

∥∥ϕ1(τAS
φ`

)x
∥∥
φ`
≤

1∫
0

∥∥∥e(1−s)τAS
φ`x
∥∥∥
φ`
ds ≤ ek0βτ ‖x‖φ` ,

which are the same as for eτAφ` and eτAS
φ` .
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In order to use the result of Lemma 7.8 in the error analysis, we have to guarantee that the numerical
approximations stay in the space E from (7.9). The following lemma is an extension of [41, Theorem 4.1]
and establishes this at least as long as the lower bound on the existence time T of the exact solution.

Lemma 7.11. Let Assumptions 5.1, 5.4, and 5.5 hold. For T defined in (5.30) and initial values

‖u0‖Y ≤ R0 := 1
4c0
R, ‖u0‖Z ≤ r0 := 1

4c0
r,

the numerical approximations given by (7.3) satisfy for Nτ ≤ T

(u0, . . . , uN ) ∈ E
(
N,R, r, τγ

)
, (7.10)

for E defined in (7.9) and γ in (5.29).

Proof. We first introduce an abbreviation for the product of several semigroups

Ski :=

eτAk . . . eτAi , i ≤ k,

I, i > k

and with this it holds

un+1 = eτAnun + τϕ1(τAn)fn

= eτAn

(
eτAn−1un−1 + τϕ1(τAn−1)fn−1

)
+ τϕ1(τAn)fn

= Sn0u0 + τ

n∑
j=0

Snj+1ϕ1(τAj)fj .

(7.11)

We prove (7.10) by induction on n. Hence, let n ≤ N −1 and assume (u0, . . . , un) ∈ E
(
n,R, r, γτ

)
. Then

by Lemma 7.8 and Corollary 7.10 we estimate for j ≤ n∥∥Snj+1ϕ1(τAj)
∥∥
Y←Y ,

∥∥Snj+1ϕ1(τAj)
∥∥
Z←Z ≤ c0e

ω2(n−j+1)τ . (7.12)

Taking the Y -norm in (7.11) gives with the bounds in Lemma 5.6

‖un+1‖Y ≤ c0e
ω2tn+1 ‖u0‖Y + c0τ

n∑
j=0

eω2(n−j+1)τ ‖fj‖Y

≤ c0eω2tn+1
(
‖u0‖Y + T Cf,Y,∞

)
≤ 2c0

(
R0 + 1

4c0
R
)

= R ,

(7.13)

since tn+1 ≤ T and (5.30) hold, where we used the induction hypothesis to bound fj . In the same way,
we get with Lemma 5.6

‖un+1‖Z ≤ c0e
ω2tn+1 ‖u0‖Z + c0τ

n∑
j=0

eω2(n−j+1)τ ‖fj‖Z

≤ c0eω2T
(
‖u0‖Z + TCf,Z,∞

)
≤ 2
(
r
4 + r

4
)

= r .

(7.14)

We close the induction estimating with (5.20b) the term

‖un+1 − un‖Y ≤
∥∥(eτAn − I

)
un
∥∥
Y

+ τ ‖ϕ1(τAn)fn‖Y
= τ ‖Anϕ1(τAn)un‖Y + τ ‖ϕ1(τAn)fn‖Y
≤ τνY αY Z ‖ϕ1(τAn)un‖Z + τ ‖ϕ1(τAn)fn‖Y .

(7.15)
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If we use the representation in (7.11) for un,

ϕ1(τAn)un = ϕ1(τAn)Sn−1
0 u0 + τ

n−1∑
j=0

ϕ1(τAn)Sn−1
j+1ϕ1(τAj)fj ,

then Corollary 7.10 and the same computations as in (7.14) yield

‖ϕ1(τAn)un‖Z ≤ c0e
ω2T
(
‖u0‖Z + TCf,Z,∞

)
≤ r . (7.16)

With Lemma 5.6 and (7.12) we further get

‖ϕ1(τAn)fn‖Y ≤ c0e
τω2 Cf,Y,∞ ≤ 2c0 Cf,Y,∞ , (7.17)

where we used τω2 ≤ ln 2. From (7.15), together with the definition (5.22b), we arrive at

‖un+1 − un‖Y ≤ τ
(
c1
c0
r + 2c0 Cf,Y,∞

)
= γτ , (7.18)

which finally yields (u0, . . . , un+1) ∈ E
(
n+ 1, R, r, γτ

)
and the induction is closed.

7.2.2 Defect

In this step we present a recursion for the global error given by

en := u(tn)− un .

In order to make u(tn) and un comparable, we use (5.2), replace A(u(t)) by A(un) and treat the remainder
as an inhomogeneity. Then the error propagation is driven by the semigroups studied in Lemma 7.8, and
it remains to bound the defects. This is the main task in the following proposition.

Proposition 7.12. Let Assumptions 5.1, 5.4, and 5.5 hold and consider the solution u given by Theo-
rem 5.14 and numerical approximations (un)n given by (7.3). Then the global error satisfies the error
recursion

en+1 = eτAnen + δn , (7.19)

where the defect is bounded by

‖δn‖X ≤
(
Cσ,X τ ‖en‖X + Cδ,X τ

2) eτω1 ,

with constants Cσ,X , Cδ,X > 0 that only depend on ‖u′‖X,∞, ‖u‖Z,∞.

Proof. We obtain from equation (5.2), plugging in the last approximation un and using the notation in
(7.1) and (7.2), the differential equation

u′(t) = Â(t)u(t) + f̂(t)

= Anu(t) + fn
+
(
Ân −An

)
u(t) +

(
f̂n − fn

)
+
(
Â(t)− Ân

)
u(t) +

(
f̂(t)− f̂n

)
=: Anu(t) + fn +

4∑
i=1

δ̃n,i(t) .
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The variation-of-constants formula enables us to solve this equation by

u(tn+1) = eτAnu(tn) + τϕ1(τAn)fn +
4∑
i=1

δn,i (7.20)

where

δn,i =
τ∫

0

e(τ−s)An δ̃n,i(tn + s) ds, i = 1, . . . , 4 .

The four terms are estimated separately. By (5.20c) and Lemma 7.8 it holds

‖δn,1‖X = τ
∥∥∥ 1∫

0

e(1−s)τAn
(
Ân −An

)
ûn+s ds

∥∥∥
X

≤ τ
1∫

0

∥∥∥e(1−s)τAn
(
Ân −An

)
ûn+s

∥∥∥
X
ds

≤ τk0

1∫
0

e(1−s)τω1
∥∥∥(Ân −An

)
ûn+s

∥∥∥
X
ds

≤ τk0LX ‖en‖X

1∫
0

e(1−s)τω1 ‖ûn+s‖Z ds

≤ τk0LXe
τω1 ‖en‖X ‖u‖Z,∞

(7.21)

and in the same manner with Lemma 5.6

‖δn,2‖X = τ
∥∥∥ 1∫

0

e(1−s)τAn
(
f̂n − fn

)
ds
∥∥∥
X

≤ τk0

1∫
0

e(1−s)τω1
∥∥∥f̂n − fn

∥∥∥
X
ds

≤ τk0e
τω1Lf,X ‖en‖X .

(7.22)

The other defects can be bounded with (5.20c) by

‖δn,3‖X = τ
∥∥∥ 1∫

0

e(1−s)τAn
(
Ân+s − Ân

)
ûn+s ds

∥∥∥
X

≤ τk0

1∫
0

e(1−s)τω1
∥∥∥(Ân+s − Ân

)
ûn+s

∥∥∥
X
ds

≤ τk0LX

1∫
0

e(1−s)τω1 ‖ûn+s − ûn‖X ‖ûn+s‖Z ds

≤ τ2k0LXe
τω1 ‖u′‖X,∞ ‖u‖Z,∞ ,

(7.23)
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and similarly by Lemma 5.6

‖δn,4‖X = τ
∥∥∥ 1∫

0

e(1−s)τAn
(
f̂n+s − f̂n

)
ds
∥∥∥
X

≤ τk0

1∫
0

e(1−s)τω1
∥∥∥f̂n+s − f̂n

∥∥∥
X
ds

≤ τ2k0e
τω1Lf,X

(
1 + ‖u′‖X,∞

)
.

(7.24)

The assertion follows by setting

δn :=
4∑
i=1

δn,i

and subtracting un+1 given in (7.3) from (7.20).

Very similar computations lead to bounds in the stronger Y -norm, where we employ the additional
regularity u ∈ C1([0, T ], Y ).

Corollary 7.13. The defect in (7.19) can also be bounded by

‖δn‖Y ≤
(
Cσ,Y τ ‖en‖Y + Cδ,Y τ

2) eτω2 ,

with constants Cσ,Y , Cδ,Y > 0 that only depend on ‖u′‖Y,∞, ‖u‖Z,∞.

Proof. We only need to establish the bounds on the defects to verify the assertion.
By Lemma 7.8 and (5.20d) it holds

‖δn,1‖Y ≤ τc0

1∫
0

e(1−s)τω2
∥∥∥(Ân −An

)
ûn+s

∥∥∥
Y
ds

≤ τc0LY ‖en‖Y

1∫
0

e(1−s)τω2 ‖ûn+s‖Z ds

≤ τc0LY eτω2 ‖en‖Y ‖u‖Z,∞

(7.25)

and in the same manner with Lemma 5.6

‖δn,2‖Y ≤ τc0

1∫
0

e(τ−s)ω2
∥∥∥f̂n − fn

∥∥∥
Y
ds ≤ τc0eτω2Lf,Y ‖en‖Y . (7.26)

The other defects can be bounded with (5.20d) by

‖δn,3‖Y ≤ τc0

1∫
0

e(1−s)τω2
∥∥∥(Ân+s − Ân

)
ûn+s

∥∥∥
Y
ds

≤ τc0LY

1∫
0

e(1−s)τω2 ‖ûn+s − ûn‖Y ‖ûn+s‖Z ds

≤ τ2c0LY e
τω2 ‖u′‖Y,∞ ‖u‖Z,∞ ,

(7.27)
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and similarly by Lemma 5.6

‖δn,4‖Y ≤ τc0

1∫
0

e(1−s)τω2
∥∥∥f̂n+s − f̂n

∥∥∥
Y
ds ≤ τ2c0e

τω2Lf,Y
(
1 + ‖u′‖Y,∞

)
, (7.28)

which yields the required bound on the defect.

7.2.3 Global error

A combination of the stability bounds and the defects yields the global error result.

Proof of Theorem 7.1. We note that the assumptions of the theorem allow us to apply all results of
Sections 7.2.1 and 7.2.2.

(a) We first prove the bound in the X-norm. Using the error recursion in (7.19) and recalling the
product Ski = eτAk . . . eτAi for k ≥ i, we obtain by a discrete version of the variation-of-constants
formula

en+1 = eτAnen + δn = Sn0 e0 +
n∑
j=0

Snj+1δj . (7.29)

As it holds e0 = 0, with Lemma 7.8 and Proposition 7.12 we get as in (7.12)

‖en+1‖X ≤
n∑
j=0

∥∥Snj+1
∥∥
X←X ‖δj‖X

≤ k0τ

n∑
j=0

eω1(n+1−j)τCσ ‖ej‖X + k0τ

n∑
j=0

eω1(n+1−j)τCδτ

which is equivalent to

e−ω1(n+1)τ ‖en+1‖X ≤ Cσk0τ

n∑
j=0

e−ω1jτ ‖ej‖X + k0τ

n∑
j=0

e−ω1jτCδτ .

A Gronwall argument yields with tn+1 = (n+ 1)τ

e−ω1tn+1 ‖en+1‖X ≤ tn+1e
Cσk0tn+1k0Cδ τ

and hence

‖en+1‖X ≤ tn+1e
(ω1+Cσk0)tn+1k0Cδ τ ,

which completes the proof.

(b) The error bound in the Y -norm is easily derived replacing Proposition 7.12 by Corollary 7.13 and
ω1 by ω2 which yields

‖en+1‖Y ≤ c0τ
n∑
j=0

eω2(n+1−j)τCσ ‖ej‖Y + c0τ

n∑
j=0

eω2(n+1−j)τCδτ

and again bringing eω2(n+1)τ to the other side and a Gronwall argument yield the assertion.
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7.3 Error analysis of the exponential midpoint rule

The proof of Theorem 7.7 has a very similar structure to the one of Theorem 7.1, but we need to take
special care of the extrapolations of previous approximations. This induces some technical difficulties
in the stability analysis. Next, we derive the error propagation similar to Proposition 7.12 and bound
the appearing defects. Several terms are treated in the standard way as the exponential Euler method,
whereas for the remaining terms the additionally required differentiability come into play.

7.3.1 Stability

Since the numerical method is now driven by the exponential evaluated at the extrapolated midpoints,
we again derive a result for bounds on the composition of these linear flows. The choice of the larger
constants in the space E becomes clearer in Lemma 7.15 when we derive the bounds on the midpoints.

Lemma 7.14. Let Assumptions 5.1 and 5.4 hold. Further, let

φ =
(
φ1/2, φ3/2 . . . , φN+1/2

)
∈ E

(
N, R̂, r̂, 2τ γ̂

)
.

We obtain the stability bounds as in (7.8) for j ≤ k and j, k ∈ { 1
2 ,

3
2 , . . . , N + 1

2} with k0, c0, ω1 and ω2

replaced by k̂0, ĉ0, ω̂1 and ω̂2, respectively, where ω̂1 := 2k̂1(γ̂) and ω̂2 is given in (7.8).

Proof. The proof is similar to the one of Lemma 7.8 and can be found in the Appendix of [41].

This enables us to prove bounds on the numerical approximations very similar to the bounds provided
in Lemma 7.11. The only difference lies in the time T̂mid defined in (7.7), which is necessary to obtain
uniform bounds in the numerical approximations.

Lemma 7.15. Let Assumptions 5.1, 5.4, and 5.5 hold. For T̂mid defined in (7.7), τ ≤ τ0 with τ0 given
in (7.6) and initial values

‖u0‖Y ≤ R0 := 1
4ĉ0
R, ‖u0‖Z ≤ r0 := 1

4ĉ0
r,

the numerical approximations given in (7.4) satisfy for Nτ ≤ T̂mid

(u0, . . . , uN ) ∈ E
(
N,R, r, τ γ̂

)
, (u1/2, . . . , uN−1/2) ∈ E

(
N − 1, R̂, r̂, 2τ γ̂

)
. (7.30)

Proof. We proof the assertion by induction on n and assume (7.30) is true for some 1 ≤ n ≤ N − 1, i.e.,

(u0, . . . , un) ∈ E
(
n,R, r, γτ

)
, (u1/2, . . . , un−1/2) ∈ E

(
n− 1, R̂, r̂, 2τ γ̂

)
.

Note that the base case n = 1 is the same as for the exponential Euler due to the choice u1/2 := u0 and
hence true by Lemma 7.11.
(a) By the induction hypothesis and τ ≤ τ0 given in (7.6), we obtain for the extrapolated midpoint∥∥un+1/2

∥∥
Y
≤ ‖un‖Y + 1

2 ‖un − un−1‖Y ≤ R+ γ̂τ
2 ≤ R̂ ,

as well as ∥∥un+1/2
∥∥
Z
≤ 3

2 ‖un‖Z + 1
2 ‖un−1‖Z ≤ 2r = r̂ .
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Defining u−1 := u0, it holds u1/2 = 3
2u0 − 1

2u−1 and we estimate for n ≥ 1∥∥un+1/2 − un−1/2
∥∥
Y
≤ 3

2 ‖un − un−1‖Y + 1
2 ‖un−1 − un−2‖Y ≤ 2γ̂τ .

Hence, it holds (u1/2, . . . , un+1/2) ∈ E
(
n, R̂, r̂, 2τ γ̂

)
.

(b) By part (a), we can apply Lemmas 5.6 and 7.14 and, together with the induction hypothesis, we
obtain as in (7.13)

‖un+1‖Y ≤ ĉ0e
ω̂2tn+1

(
‖u0‖Y + T̂midĈf,Y,∞

)
≤ R

and in the same way

‖un+1‖Z ≤ ĉ0e
ω̂2tn+1

(
‖u0‖Z + T̂midĈf,Z,∞

)
≤ r .

Finally, along the lines of (7.15), (7.16), (7.17), and (7.18) we establish

‖un+1 − un‖Y =
∥∥(eτAn+1/2 − I

)
un + τϕ1(τAn+1/2)fn+1/2

∥∥
Y

≤ τ
∥∥An+1/2ϕ1(τAn+1/2)un

∥∥
Y

+ τ ĉ0e
ω̂2τ Ĉf,Y,∞

≤ γ̂τ ,

which gives (u0, . . . , un+1) ∈ E
(
n+ 1, R, r, γτ

)
, so the induction is closed.

7.3.2 Defects and global error

In order to increase the readability of the proof we define analogously to un+1/2 in (7.4) the extrapolation
of the exact solution and the corresponding operator by

ûn+1/2 = 1
2 (3ûn − ûn−1) , Ân+1/2 = A(ûn+1/2), f̂n+1/2 = f(tn+1/2, ûn+1/2)

with û1/2 = u0. By the proof of Theorem 5.14, we have∥∥ûn+1/2
∥∥
Y
≤ ‖ûn‖Y + 1

2 ‖ûn − ûn−1‖Y ≤ R+ γτ
2 ≤ R̂,

∥∥ûn+1/2
∥∥
Z
≤ 2r = r̂

and thus we can use the same bounds as for un+1/2. Further, we consider the extrapolated error

en+1/2 = ûn+1/2 − un+1/2 .

We emphasize that one does not necessarily need to introduce this extrapolated error. However, it
makes the following computations a bit shorter, and we get rid of this term at the very end in the error
accumulation.

Proposition 7.16. Let Assumptions 5.1, 5.4, 5.5, 7.2, and 7.3 be satisfied and consider the solution u

given by Corollary 7.6 and numerical approximations (un)n given by (7.4). Then the global error satisfies
the error recursion

en+1 = eτAn+1/2en + δn , (7.31)

where the defect is bounded by

‖δ0‖X ≤ Cδ τ
2 eτω̂1 ,

‖δn‖X ≤
(
Cσ,X τ

∥∥en+1/2
∥∥
X

+ Cδ,X τ
3) eτω̂1 , n ≥ 1 ,

with constants Cσ,X , Cδ,X only depending on ‖u′′‖X,∞, ‖u′‖Y,∞, ‖u‖Z,∞.
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Proof. We proceed as in Proposition 7.12 plugging in un+1/2 to obtain

u′(t) = Â(t)u(t) + f̂(t)

= An+1/2u(t) + fn+1/2

+
(
Ân+1/2 −An+1/2

)
u(t) +

(
f̂n+1/2 − fn+1/2

)
+
(
Ân+1/2 − Ân+1/2

)
u(t) +

(
f̂n+1/2 − f̂n+1/2

)
+
(
Â(t)− Ân+1/2

)
u(t) +

(
f̂(t)− f̂n+1/2

)
=: An+1/2u(t) + fn+1/2 +

6∑
i=1

δ̃n,i(t) .

Applying the variation-of-constants formula as above yields the terms

u(tn+1) = eτAn+1/2u(tn) + τϕ1(τAn+1/2)fn+1/2 +
6∑
i=1

δn,i . (7.32)

We split the proof into four parts. We first bound the four terms that have appeared similarly in the
proof of Proposition 7.12. Here, we need to distinguish the defect of the first step from the others. In
the third and forth part the assumptions on the differentiability enter.
(a) By definition we have u1/2 = û1/2 and hence δ0,1 = δ0,2 = 0. Since the first step is given by an

exponential Euler step, (7.23) and (7.24) yield

‖δ0,3‖X + ‖δ0,4‖X ≤ Cτ
2 .

(b) We now turn to the case n ≥ 1. The same computation as in (7.21) gives

‖δn,1‖X ≤ τ k̂0

1∫
0

e(1−s)τω̂1
∥∥∥(Ân+1/2 −An+1/2

)
ûn+s

∥∥∥
X
ds

≤ τ k̂0L̂Xe
τω̂1
∥∥en+1/2

∥∥
X
‖u‖Z,∞

as well as in (7.22)

‖δn,2‖X ≤ τ k̂0e
τω̂1L̂f,X

∥∥en+1/2
∥∥
X
.

The defect δn,3 can be bounded by Lemma 7.14 and (5.20c)

‖δn,3‖X ≤ τ k̂0

1∫
0

e(1−s)τω̂1
∥∥∥(Ân+1/2 − Ân+1/2

)
ûn+s

∥∥∥
X
ds

≤ τ k̂0L̂X

1∫
0

e(1−s)τω̂1
∥∥∥u(tn+1/2)− ûn+1/2

∥∥∥
X
‖ûn+s‖Z ds

≤ τ3k̂0L̂Xe
τω̂1 3

8 ‖u
′′‖X,∞ ‖u‖Z,∞ ,

as well as δn,4 with Lemma 5.6 by

‖δn,4‖X ≤ τ
3k̂0e

τω̂1L̂f,X
3
8 ‖u

′′‖X,∞ ,

where we used Taylor expansion on u(tn+1/2) for both defects, see Lemma B.11.
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(c) The last two defects are considered for n ≥ 0. We first prove the statement for δn,5. We have

δn,5 =
τ∫

0

e(τ−s)An+1/2dn(tn + s) ds (7.33)

with the function

dn(t) :=
(
Â(t)− Ân+1/2

)
u(t), dn(tn+1/2) = 0 .

To expand this we first need

d′n(t) = Â′(t)u(t) +
(
Â(t)− Ân+1/2

)
u′(t)

=: ḋn,1(t) + ḋn,2(t)

and hence

d′n(tn+1/2) = ḋn,1(tn+1/2) = Â′(tn+1/2)ûn+1/2 .

We also obtain

d̈n,1(t) := d
dt ḋn,1(t) = Â′′(t)u(t) + Â′(t)u′(t) .

Lemma 7.5 implies the following bounds

∥∥ḋn,1(tn+1/2)
∥∥
Y

=
∥∥Â′(tn+1/2)ûn+1/2

∥∥
Y
≤ CAY Z ‖u‖Z,∞ , (7.34)

and ∥∥d̈n,1(t)
∥∥
X
≤
∥∥Â′′(t)u(t)

∥∥
X

+
∥∥Â′(t)u′(t)∥∥

X

≤ CAXZ ‖u‖Z,∞ + CAXY ‖u′‖Y,∞ ,
(7.35)

as well as ∥∥ḋn,2(t)
∥∥
X

=
∥∥(Â(t)− Ân+1/2

)
u′(t)

∥∥
X
≤ τ

2C
A
XY ‖u′‖Y,∞ . (7.36)

Using dn(tn+1/2) = 0 and integration by parts, we expand

dn(tn + s) =
s−τ/2∫

0

ḋn,1(tn+1/2 + σ) dσ +
s−τ/2∫

0

ḋn,2(tn+1/2 + σ) dσ

=
(
s− τ

2
)
ḋn,1(tn+1/2) +

s−τ/2∫
0

(
s− τ

2 − σ
)
d̈n,1(tn+1/2 + σ) dσ

+
s−τ/2∫

0

ḋn,2(tn+1/2 + σ) dσ .
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Plugging this in (7.33) gives

δn,5 =
τ∫

0

e(τ−s)An+1/2dn(tn + s) ds

=

 τ∫
0

e(τ−s)An+1/2
(
s− τ

2
)
ds

 ḋn,1(tn+1/2)

+
τ∫

0

e(τ−s)An+1/2

s−τ/2∫
0

(
s− τ

2 − σ
)
d̈n,1(tn+1/2 + σ) dσ ds

+
τ∫

0

e(τ−s)An+1/2

s−τ/2∫
0

ḋn,2(tn+1/2 + σ) dσ ds

= δ1
n,5 + δ2

n,5 + δ3
n,5

We estimate these terms separately. By integration by parts we obtain

δ1
n,5 =

( τ∫
0

e(τ−s)An+1/2
(
s− τ

2
)
ds

)
ḋn,1(tn+1/2)

=
(

1
2

τ∫
0

e(τ−s)An+1/2
(
s2 − τs

)
ds

)
An+1/2ḋn,1(tn+1/2)

and estimate by Lemma 7.14, (5.20a), and (7.34)∥∥δ1
n,5
∥∥
X
≤ 1

12 k̂0τ
3eτω̂1

∥∥An+1/2 ḋn,1(tn+1/2)
∥∥
X

≤ 1
12 k̂0ν̂X α̂XY τ

3eτω̂1
∥∥ḋn,1(tn+1/2)

∥∥
Y

≤
( 1

12 k̂0ν̂X α̂XY C
A
Y Z ‖u‖Z,∞

)
τ3eτω̂1 .

We further obtain by (7.35)∥∥δ2
n,5
∥∥
X
≤ 1

24 k̂0τ
3eτω̂1

∥∥d̈n,1∥∥X,∞
≤ 1

24 k̂0

(
CAXZ ‖u‖Z,∞ + CAXY ‖u′‖Y,∞

)
τ3eτω̂1 ,

and at last by (7.36) ∥∥δ3
n,5
∥∥
X
≤ 1

4 k̂0τ
2eτω̂1

∥∥ḋn,2∥∥X,∞
≤
(

1
8 k̂0C

A
XY ‖u′‖Y,∞

)
τ3eτω̂1 .

This gives the assertion for δn,5.
(d) The proof for δn,6 is very similar. We have the representation (7.33) with dn replaced by

Dn(t) := f̂(t)− f̂n+1/2, Dn(tn+1/2) = 0 .

Computing the derivatives, we obtain with Lemma 7.4 similar to (7.34) and (7.35)∥∥Ḋn,1
∥∥
Y

=
∥∥f̂ ′(t)∥∥

Y
≤ Cf ′,Y,∞ (7.37)∥∥D̈n,1

∥∥
X

=
∥∥f̂ ′′(t)∥∥

X
≤ Cf ′′,X,∞

and in particular the term corresponding to ḋn,2 does not appear. Hence, we proceed as in part (c)
which yields the desired bound for δn,6.
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Finally, setting

δn :=
6∑
i=1

δn,i

and subtracting un+1 given in (7.4) from (7.32) closes the proof.

Corollary 7.17. The defect in (7.31) can also be bounded by

‖δn‖Y ≤
(
Cσ,Y τ

∥∥ej+1/2
∥∥
Y

+ Cδ,Y τ
2) eτω̂2 ,

with constants Cσ,Y , Cδ,Y > 0 that only depend on ‖u′‖Y,∞, ‖u‖Z,∞.

Proof. We proceed analogously to Corollary 7.13. By Lemma 7.14, Lemma 5.6 and (5.20d) it holds

‖δn,1‖Y ≤ τ ĉ0e
τω̂2L̂Y

∥∥en+1/2
∥∥
Y
‖u‖Z,∞ ,

‖δn,2‖Y ≤ τ ĉ0e
τω̂2L̂f,Y

∥∥en+1/2
∥∥
Y
.

Using Taylor expansion only up to order 1, see Lemma B.11, with (5.20d) and Lemma 5.6 we bound

‖δn,3‖Y ≤ τ
2ĉ0e

τω̂2L̂Y ‖u′‖Y,∞ ‖u‖Z,∞ ,

‖δn,4‖Y ≤ τ
2ĉ0e

τω̂2L̂f,Y ‖u′‖Y,∞ .

Since we only aim for defects of order 2, we estimate in the exact same way

‖δn,5‖Y ≤ τ ĉ0

1∫
0

e(1−s)τω̂2
∥∥∥(Ân+s − Ân+1/2

)
ûn+s

∥∥∥
Y
ds

≤ τ2ĉ0e
τω̂2L̂Y

1
2 ‖u

′‖Y,∞ ‖u‖Z,∞ ,

and also

‖δn,6‖Y ≤ τ
2ĉ0e

τω̂2L̂f,Y
1
2
(
1 + ‖u′‖Y,∞

)
,

which gives the assertion.

We can finally give the proof of the error bound of the exponential midpoint rule.

Proof of Theorem 7.7. We note that the assumptions of the theorem allow us to apply the results of
Section 7.3.1 as well as Proposition 7.16 and Corollary 7.17.

By (7.31) we resolve the error recursion as in (7.29) and use the bounds provided in Lemma 7.14,
Proposition 7.16, and Corollary 7.17. With the observation

n∑
j=1

∥∥ej+1/2
∥∥
V
≤ 2

n∑
j=1
‖ej‖V ,

for V ∈ {X,Y }, the bound in the X- and the Y -norm is derived analogously to Theorem 7.1.
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7.4 Numerical experiments

In order to illustrate the theoretical findings in Theorems 7.1 and 7.7, we consider the quasilinear wave
equation (5.4) rewritten in the form

λ(q)q′′ = ∆q + r(t, q, q′) (7.38)

obtained from the Kerr-type nonlinearity (5.8) with χ = − 1
30 and coefficients

λ(q) = 1− 1
10q

2, r(t, q, q′) = 1
5q · (q

′)2 − 1
5 sin(q) + f(t) ,

on the unit disc Ω ⊆ R2 subject to homogeneous Dirichlet boundary conditions. With x =
(
x1, x2

)
, we

chose the source term f by

f(t, x) = cos2(t) sin
(

(1 + t)
(
1− |x|2

)3)
.

To illustrate the sufficiency of our regularity assumptions, we chose the initial position

q0(x) = −1
4 |x|

2 ln(− ln(ρ|x|2)) + C1(|x|2 − 1) + C2

with ρ = 2
5 and constants C1 and C2 such that q0 = ∆q0 = 0 holds on ∂Ω. A straightforward calculation

shows that q0 ∈ H3(Ω), see Lemma B.13, and hence it satisfies the conditions on the first component of
the product space Z defined in (5.7).

Note however, that there is no ε > 0 such that q0 ∈ H3+ε(Ω) holds. Indeed, computing the second
derivatives, we are left with nice terms, that are in H1(Ω) ∩ L∞(Ω), but also the critical term

p0 : x 7→ ln(− ln(ρ|x|2)) ∈ H1(Ω) \ L∞(Ω) , (7.39)

which is a well-known function to prove the sharpness of the Sobolev’s embedding theorem. We have
provided more details in Appendix B.

For the initial value in the second component we take

q′0(x) = −
(
1− |x|2

)2
,

which is a smooth function, but ∆q0 does not satisfy the homogeneous Dirichlet boundary conditions. In
particular, the initial value u0 =

(
q0, q

′
0
)T is an element of Z.

Space discretization

We performed the space discretization by linear Lagrange finite elements and used the open source Python
tool FEniCS [3, version 2018.1.0]. This gives the ansatz space Vh ⊆ H1

0 (Ωh), with Ωh ⊆ Ω and we then
seek for qh(t) ∈ Vh which solves

〈λ(qh(t))q′′h(t), φ〉L2(Ωh) =− 〈qh(t), φ〉H1
0 (Ωh) + 〈λ(qh(t))Ih

(
λ(qh(t))−1r(t, qh(t), q′h(t))

)
, φ〉L2(Ωh)

for all φ ∈ Vh, where Ih denotes the interpolation onto Vh. Testing against a basis, leads to the system
of ordinary differential equations

Mh(qh(t))q′′h(t) = −Lhqh(t) +Mh(qh(t))gh(t, qh(t), q′h(t)) (7.40)
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Figure 7.1: Discrete L∞
(

[0, 1], H1
0 (Ω)× L2(Ω)

)
error (on the y-axis) of the numerical solution of (7.38)

computed with (7.41) (middle line, red) and (7.42) (lower line, blue) plotted against the stepsize τ (on the
x-axis). Further, the discrete L∞

(
[0, 1], H1

0 (Ω)
)
error in the velocity q′ computed with (7.41) is shown

(upper line, green). The gray lines indicate order one (dotted) and two (dashed).

with the mass and stiffness matrix(
Mh(qh(t))

)
i,j

= 〈λ(qh(t))φi, φj〉L2(Ωh),
(
Lh
)
i,j

= 〈∇φi,∇φj〉L2(Ωh) ,

and discretized nonlinearity

gh(t, qh(t)) = Ih
(
Λ(qh(t))−1r(t, qh(t), q′h(t))

)
.

Time discretization

Recalling the construction of the method, we freeze the argument of the differential operator and the
semilinear term in (7.40) either on the last approximation or on the extrapolation to the midpoint.
Denoting the fully discrete approximation by qnh ≈ q(tn) and vnh ≈ q′(tn), we compute the exponential
Euler step by solving the linearized version of (7.40)

Mh(qnh)q′′h(t) = −Lhqh(t) +Mh(qnh)gh(tn, qnh , vnh), t ∈ [tn, tn + τ ] , (7.41)

exactly to obtain qn+1
h and vn+1

h , where qnh is given from the previous step. We note that this is equivalent
to first rewriting (7.40) as a first-order system and then applying the exponential Euler method.

Similarly, we define the extrapolation term q
n+1/2
h = 3

2q
n
h − 1

2q
n−1
h and vn+1/2

h = 3
2v
n
h − 1

2v
n−1
h and a

step of the exponential midpoint rule is given by the solution of

Mh(qn+1/2
h )q′′h(t) = −Lhqh(t) +Mh(qn+1/2

h )gh(tn+1/2, q
n+1/2
h , v

n+1/2
h ) . (7.42)

The exact solution of these equations is approximated using rational Krylov methods to evaluate the
trigonometric matrix functions as it was suggested in [31] and [43]. The code to reproduce the plots is
available on https://doi.org/10.5445/IR/1000130189.

Numerical results

Unfortunately, there is no exact solution available to this problem. However, we know by the well-
posedness result that the solution is sufficiently regular in order to apply our theorems. We thus used

https://doi.org/10.5445/IR/1000130189
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the midpoint rule on a fine grid with maximal diameter href = 6 · 10−3 and stepsize τref = 1
360 to

obtain a reference solution. On a coarser mesh with maximal diameter hmax = 10−2, we computed the
approximated solutions of (7.41) and (7.42). The stepsizes τ were chosen such that the quotient τ

τref
is

an integer and hence the reference solution at this time is available.
In Figure 7.1 we depicted the error between the projection of the reference solution and the numerical

approximations in the different norms. To compute the X-norm we used the discrete H1
0 (Ω) × L2(Ω)

norm obtained by the mass and stiffness matrix. However, Lagrange finite elements are not contained in
H2(Ω) such that the full Y -norm cannot be computed. We thus only provide the error in the velocity q′

in the H1
0 (Ω)-norm. We included lines that indicate order one and two, and we observe a good alignment

with the error bounds shown in Theorems 7.1 and 7.7. The deviation of the last two or three points of
the midpoint rule can be explained by the error induced by the space discretization which is only relevant
in the regime below 10−3.

7.5 Error bounds in stronger norms

In this final section, we explain how error bounds for the exponential Euler (7.3) and the exponential
midpoint rule (7.4) in stronger norms compared to Section 7.1 can be achieved. However, we have used
all the regularity provided in Theorem 5.14 and 5.15, and hence need to assume additional regularity of
the solution. Note that this cannot be guaranteed by the wellposedness theory considered in this thesis.
To this end we introduce the space ZA := {z ∈ Z : Az ∈ Z} with norm

‖z‖2ZA = ‖z‖2Z + ‖Az‖2Z

and continuous embedding ZA ↪→ Z. We further assume that the solution of (5.2) satisfies

u ∈ C([0, T ], ZA) ∩ C1([0, T ], Z) (7.43)

and discuss how this helps to extend our so far obtained results.

Exponential Euler method We first extend Lemma 5.3 by a Lipschitz bound that uses the new space
ZA, see [41, Lemma 3.6].

Lemma 7.18. Let Assumption 5.1 hold. Then for φ, ψ ∈ BY (R) ∩ BZ(r)

‖Aφ −Aψ‖Z←ZA ≤ LZ ‖φ− ψ‖Z

Proof. This directly follows from (5.16d).

With this additional Lemma we can immediately prove a bound on the defect in the Z-norm.

Corollary 7.19. Let Assumptions 5.1, 5.4, and 5.5 hold. Further, consider the solution u which satisfies
(7.43) and the numerical approximations (un)n given by (7.3). Then the defect in (7.19) can also be
bounded by

‖δn‖Z ≤
(
Cσ,Z τ ‖en‖Z + Cδ,Z τ

2) eτω2 ,

with constants Cσ,Z , Cδ,Z > 0 that only depend on ‖u′‖Z,∞ and ‖u‖ZA,∞.
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Proof. As in the proof of Corollary 7.13, we only establish the bounds on the defects. By Lemma 7.8 and
7.18 it holds

‖δn,1‖Z ≤ τc0LZe
τω2 ‖en‖Z ‖u‖ZA,∞ ,

and in the same manner with Lemma 5.6

‖δn,2‖Z ≤ τc0e
τω2Lf,Z ‖en‖Z .

The other defects can be bounded with Lemma 7.18 by

‖δn,3‖Z ≤ τ
2c0LZe

τω2 ‖u′‖Z,∞ ‖u‖ZA,∞ ,

and similarly by Lemma 5.6

‖δn,4‖Z ≤ τ
2c0e

τω2Lf,Z
(
1 + ‖u′‖Z,∞

)
.

Analogously to Theorem 7.1 we can derive the first-order error bound in the Z-norm.

Theorem 7.20. Let u be the solution of (5.1) and un the approximation obtained from (7.3). Further,
assume that u ∈ C([0, T ], ZA) ∩ C1([0, T ], Z) holds. If Assumptions 5.1, 5.4, and 5.5 are satisfied, we
obtain the error bound

‖u(tn)− un‖Z ≤ tne
cZ tnCZ τ, 0 ≤ nτ = tn ≤ T

with constants CZ , cZ > 0 that only depend on ‖u′‖Z,∞ and ‖u‖ZA,∞, but are independent of τ , n and
tn.

Similar to the observations for Theorem 7.1, comparing our result with Theorem 6.2, we could improve
the regularity assumptions using only ‖u′‖Z,∞ instead of the L2-norm

T∫
0

‖u′′(t)‖2Z dt .

Exponential midpoint rule In Theorem 7.7 we have shown a second-order error bound in the X-
norm and an first-order error bound in the Y -norm. We now improve the result in the Y -norm and study
the additional regularity that can be deduced from (7.43).

Corollary 7.21. If u ∈ C1([0, T ], Z) ∩ C([0, T ], ZA) and in addition Assumptions 7.2 (a) and 7.3 (a)
hold, then the solution u of (5.2) satisfies

u ∈ C2([0, T ], Y ) ∩ C1([0, T ], Z) ∩ C([0, T ], ZA) .

Nevertheless, we have to assume additional regularity of the data as well. We again formulate this in
assumptions and give the detailed proofs in Appendix B.

Assumption 7.22 (additional properties of g). Let u ∈ C1([0, T ], Z) ∩ C([0, T ], ZA) and consider the
map

t 7→ ĝ(t) = g(t, u(t)) .

Then there is a constant Cg′,Z,∞ with
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(a) t 7→ ĝ(t) ∈ C1([0, T ], Z), ‖ĝ′(t)‖Z ≤ Cg′,Z,∞,
and, if in addition, u ∈ C2([0, T ], Y ) holds, then there is Cg′′,Y,∞ such that
(b) t 7→ ĝ(t) ∈ C2([0, T ], Y ), ‖ĝ′′(t)‖Y ≤ Cg′′,Y,∞,
with constants only depending on ‖u′′‖Y,∞, ‖u′‖Z,∞, ‖u‖ZA,∞.

We further add assumptions on the differentiability of Λ in some stronger norms.

Assumption 7.23 (additional properties of Λ). Let u ∈ C1([0, T ], Z) ∩ C([0, T ], ZA) and consider the
map

t 7→ Λ−1(t) := Λ−1(u(t)) .

For z ∈ Z it holds
(a) t 7→ Λ−1(t)z ∈ C1([0, T ], Z),

∥∥∥(Λ−1)′(t)∥∥∥
Z←Z

≤ CZZ ,
and, if in addition, u ∈ C2([0, T ], Y ), it further holds
(b) t 7→ Λ−1(t)z ∈ C2([0, T ], Y ),

∥∥∥(Λ−1)′′(t)∥∥∥
Y←Z

≤ CY Z
with constants CY Z , CZZ only depending on ‖u′′‖Y,∞, ‖u′‖Z,∞, ‖u‖ZA,∞.

Combining the two preceding assumptions gives us the following stronger differentiability and extends
Lemma 7.4.

Lemma 7.24. Let u ∈ C1([0, T ], Y ) ∩ C([0, T ], Z) and consider the map

t 7→ f̂(t) = f(t, u(t)) .

If Assumptions 7.22 and 7.23 hold, then f̂ satisfies Assumption 7.22 with constants Cf ′,Z,∞, Cf ′′,Y,∞ only
depending on ‖u′′‖Y,∞, ‖u′‖Z,∞, ‖u‖ZA,∞.

Further, we easily obtain together with Assumption 5.1 (a) the following differentiability of the dif-
ferential operator evaluated at a smooth function.

Lemma 7.25. Let u ∈ C1([0, T ], Z) ∩ C([0, T ], ZA) and consider the map

t 7→ Â(t) = Λ−1(t)A .

If Assumptions 5.1, 7.3, and 7.23 are satisfied, then for w ∈ ZA it holds
(a) t 7→ Â(t)w is C1([0, T ], Z),

∥∥∥Â′(t)∥∥∥
Z←ZA

≤ CAZZ
and, if in addition, u ∈ C2([0, T ], Y ), it further holds
(b) t 7→ Â(t)w is C2([0, T ], Y ),

∥∥∥Â′′(t)∥∥∥
Y←ZA

≤ CAY ZA
with constants CAZZ , CAY ZA only depending on ‖u′′‖Y,∞, ‖u′‖Z,∞, ‖u‖ZA,∞.

With these preparations we can bound the defect of the exponential midpoint rule (7.4) in the Y -norm
which will lead to the desired second-order error bound.

Corollary 7.26. Let Assumptions 5.1, 5.4, 5.5, 7.2, 7.3, 7.22, and 7.23 be satisfied and consider the
solution u given by Corollary 7.21 and numerical approximations (un)n given by (7.4). Then the global
error satisfies the error recursion (7.31) where the defect is bounded by

‖δ0‖Y ≤ Cδ,Y τ
2 eτω̂2 ,

‖δn‖Y ≤
(
Cσ,Y τ

∥∥en+1/2
∥∥
Y

+ Cδ,Y τ
3) eτω̂2 , n ≥ 1 ,

with constants Cσ,Y , Cδ,Y only depending on ‖u′′‖Y , ‖u′‖Z , ‖u‖ZA .
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Proof. (a) By definition we have u1/2 = û1/2 and hence δ0,1 = δ0,2 = 0. Since the first step is given by
an exponential Euler step, (7.27) and (7.28) yield

‖δ0,3‖Y + ‖δ0,4‖Y ≤ Cτ
2 .

(b) We now turn to the case n ≥ 1. The same computation as in (7.25) gives

‖δn,1‖Y ≤ τ ĉ0L̂Y e
τω̂2
∥∥en+1/2

∥∥
Y
‖u‖Z,∞

as well as in (7.26)

‖δn,2‖Y ≤ τ ĉ0e
τω̂2L̂f,Y

∥∥en+1/2
∥∥
Y
.

The defect δn,3 can be bounded by Lemma 7.14 and 7.18

‖δn,3‖Y ≤ τ
3ĉ0L̂Y e

τω̂2 3
8 ‖u

′′‖Y,∞ ‖u‖Z,∞ ,

as well as δn,4 with Lemma 5.6 by

‖δn,4‖Y ≤ τ
3ĉ0e

τω̂2L̂f,Y
3
8 ‖u

′′‖Y,∞ ,

where we used Taylor expansion on u(tn+1/2) for both defects, see Lemma B.11.
(c) Since the representation in (7.33) is still valid and Lemma 7.5 (b) and 7.25 implies the bounds∥∥ḋn,1(tn+1/2)

∥∥
Z

=
∥∥∥Â′(tn+1/2)ûn+1/2

∥∥∥
Z
≤ CAZZ ‖u‖ZA,∞

and ∥∥d̈n,1(t)
∥∥
Y
≤
∥∥∥Â′′(t)u(t)

∥∥∥
Y

+
∥∥∥Â′(t)u′(t)∥∥∥

Y

≤ CAY ZA ‖u‖ZA,∞ + CAY Z ‖u′‖Z,∞ ,

as well as ∥∥ḋn,2(t)
∥∥
Y

=
∥∥∥(Â(t)− Ân+1/2

)
u′(t)

∥∥∥
Y
≤ τ

2C
A
Y Z ‖u′‖Z,∞ ,

the bound for ‖δn,5‖Y is derived as before.
(d) Analogously to (7.37) we can establish with Lemma 7.24∥∥Ḋn,1

∥∥
Z

=
∥∥∥f̂ ′(t)∥∥∥

Z
≤ Cf ′,Z,∞ ,∥∥D̈n,1

∥∥
Y

=
∥∥∥f̂ ′′(t)∥∥∥

Y
≤ Cf ′′,Y,∞ ,

which then provides the bound for ‖δn,6‖Y .

Along the lines of Theorem 7.7 we deduce the global error in the Y -norm.

Theorem 7.27. Let u be the solution of (5.1) and un the approximation obtained from (7.4). Further,
assume that u ∈ C([0, T ], ZA) ∩ C1([0, T ], Z). If Assumptions 5.1, 5.4, and 5.5, are satisfied, and in
addition Assumptions 7.2, 7.3, 7.22, and 7.23 hold true, and τ0 is given by (7.6), then for all τ ≤ τ0 the
error is bounded by

‖u(tn)− un‖Y ≤ tne
cY tnCY τ

2, 0 ≤ nτ = tn ≤ min{T, T̂mid} ,

with constants CY , cY > 0 that only depend on ‖u′′‖Y , ‖u′‖Z , ‖u‖ZA , but are independent of τ , n and
tn.
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APPENDIX B

Quasilinear examples

In this part of the Appendix we will comment on the assumptions made for the error analysis. Some of
them have been used and verified before in [41, 44, 61] and we will give the references. This concerns
in particular the assumptions on the operator Λ and A. Moreover, we only check the assumptions for
Maxwell’s equations in the full space case (5.13) since the case (5.15) is fully analogous.

B.1 Assumptions on Λ

We first comment on Assumption 5.1. The detailed computation in order to verify the assumption are
given in the proof of [61, Thm. 4.6 & 4.9] for Maxwell’s equations and in [61, Thm. 4.12] for the wave
equation. In particular, properties (5.16a), (5.16c), (5.16b) and (5.16d) for the triple

(
Y, Y,BY (R)

)
are

proven. The remaining two cases are derived fully analogously and we omit the details.

B.2 Kato’s commutator condition

A crucial tool for the wellposedness is Assumption 5.4. The discussion of this property is beyond the
scope of this thesis. The assertions are verified in the proof of [61, Thm. 4.6 & 4.9] for Maxwell’s equations
and in [61, Thm. 4.12] for the wave equation.

B.3 Lipschitz assumptions on the semilinear term

We now turn to Assumption 5.5. Since this term has not appeared in the previous works in this framework
we prove all details here. Throughout we use the norms defined in (A.2). We consider the two examples
separately.
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Wave equation

We recall from (5.6) that g is given by

g(t, u) =
(

0
γ1(q, q′) + γ2(t, q, q′)

)
, γ1(q, q′) = −K ′′(q)

(
q′
)2
, γ2(t, q, q′) = r(t, q, q′), (B.1)

and state the following lemma.

Lemma B.1. For g given in (B.1) with the regularity given in (5.5) Assumption 5.5 is satisfied.

Proof. It is sufficient to prove for u1 =
(
q1, q

′
1
)T , u2 =

(
q2, q

′
2
)T there are constants C such that for

u1, u2 ∈ BZ(r), i.e., qi ∈ H3(Ω), q′i ∈ H2(Ω) , and t, s ∈ [0, T ]:

‖γi(t, q1, q
′
1)− γi(t, q2, q

′
2)‖V ≤ Lg,V

(
|t− s|+ ‖u1 − u2‖W

)
,

with the tuples (
V,W

)
∈
{(
L2, X

)
,
(
H1(Ω), Y

)
,
(
H2(Ω), Z

)
,
}

i = 1: We write

γ1(q1, q
′
1)− γ1(q2, q

′
2) = K ′′(q2)

(
q′2
)2 −K ′′(q1)

(
q′1
)2

=
(
K ′′(q2)−K ′′(q1)

)(
q′2
)2 −K ′′(q1)

(
q′2 + q′1

)(
q′2 − q′1

)
.

(a) In the L2-norm we have by (A.4)

‖γ1(q1, q
′
1)− γ1(q2, q

′
2)‖L2 ≤ ‖K ′′′‖L∞ ‖q

′
1 − q′2‖L2 ‖q′2‖H2 + ‖K ′′‖L∞ ‖q

′
1 + q′2‖H2 ‖q′1 − q′2‖L2 .

(b) In the H1-norm we have by (A.9) and (A.5)

‖γ1(q1, q
′
1)− γ1(q2, q

′
2)‖H1 ≤

∥∥∥(K ′′(q2)−K ′′(q1)
)(
q′2
)2∥∥∥

H1
+
∥∥K ′′(q1)

(
q′2 + q′1

)(
q′2 − q′1

)∥∥
H1

≤ C
(
‖q1‖H2 , ‖q2‖H2

)
‖q2 − q1‖H1 ‖q′2‖

2
H2

+ C
(
‖q1‖H2 , ‖q2‖H2

)
‖q′2 − q′1‖H1 .

(c) In the H2-norm we have with (A.11) and (A.12)

‖γ1(q1, q
′
1)− γ1(q2, q

′
2)‖H2 ≤ C

(
‖q1‖H2 , ‖q2‖H2

)
‖q′1 − q′2‖H2 ‖q′2‖

2
H2

+ C
(
‖q1‖H2

)
‖q′1 + q′2‖H2 ‖q′1 − q′2‖H2 .

i = 2: We write

γ2(t, q1, q
′
1)− γ2(s, q2, q

′
2) = r(t, q1, q

′
1)− r(s, q2, q

′
2)

= r(t, q1, q
′
1)− r(s, q1, q

′
1) + r(s, q1, q

′
1)− r(s, q2, q

′
1) + r(t, q2, q

′
1)− r(s, q2, q

′
2)

= ∆r,1 + ∆r,2 + ∆r,3

(a) In the L2-norm we have by (A.8)

‖∆r,1‖L2 ≤ C
(
‖q1‖L∞ , ‖q

′
1‖L∞

)
|t− s| ,

‖∆r,2‖L2 ≤ C
(
‖q1‖L∞ , ‖q2‖L∞ , ‖q

′
1‖L∞

)
‖q1 − q2‖L2 ,

‖∆r,3‖L2 ≤ C
(
‖q1‖L∞ , ‖q

′
1‖L∞ , ‖q

′
2‖L∞

)
‖q′1 − q′2‖L2 .
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(b) In the H1-norm we have with (A.9) and (A.10)

‖∆r,1‖H1 ≤ C
(
‖q1‖H2 , ‖q′1‖H2

)
|t− s| ,

‖∆r,2‖H1 ≤ C
(
‖q1‖H2 , ‖q2‖H2 , ‖q′1‖H2

)
‖q1 − q2‖H1 ,

‖∆r,3‖H1 ≤ C
(
‖q2‖H2 , ‖q′1‖H2 , ‖q′2‖H2

)
‖q′1 − q′2‖H1 .

(c) In the H2-norm we have with (A.11) and (A.12)

‖∆r,1‖H2 ≤ C
(
‖q1‖H2 , ‖q′1‖H2

)
|t− s| ,

‖∆r,2‖H2 ≤ C
(
‖q1‖H2 , ‖q2‖H2 , ‖q′1‖H2

)
‖q1 − q2‖H2 ,

‖∆r,3‖H2 ≤ C
(
‖q2‖H2 , ‖q′1‖H2 , ‖q′2‖H2

)
‖q′1 − q′2‖H1 .

Maxwell’s equations

We recall from (5.11) that g is given by

g(t, u) =
(
−σ(E)E

0

)
(B.2)

and state the following lemma.

Lemma B.2. For g given in (B.2) with the regularity given in (5.12) Assumption 5.5 is satisfied.

Proof. It is sufficient to proof for E1, E2 ∈ H3(R3) that there are constants C such that

‖σ(E1)E1 − σ(E2)E2‖V ≤ C ‖E1 − E2‖V ,

with V ∈
{
L2(R3), H2(R3), H3(R3)

}
. We use the representation

σ(E1)E1 − σ(E2)E2 = σ(E1)
(
E1 − E2

)
+
(
σ(E1)E − σ(E2)

)
E2 .

(a) In the L2-norm we have by (A.1)

‖σ(E1)E1 − σ(E2)E2‖L2 ≤ ‖σ(E1)‖L∞ ‖E1 − E2‖L2 + ‖σ(E1)− σ(E2)‖L2 ‖E2‖L∞

≤ C
(
‖E1‖H2 , ‖E2‖H2 ,

)
‖E1 − E2‖L2 .

(b) In the H2-norm we have by (A.6), (A.11), and (A.12)

‖σ(E1)E1 − σ(E2)E2‖H2 ≤ ‖σ(E1)‖H2 ‖E1 − E2‖H2 + ‖σ(E1)− σ(E2)‖H2 ‖E2‖H2

≤ C
(
‖E1‖H2 , ‖E2‖H2 ,

)
‖E1 − E2‖H2 .

(c) In the H3-norm we have

‖σ(E1)E1 − σ(E2)E2‖H3 ≤ ‖σ(E1)‖H3 ‖E1 − E2‖H3 + ‖σ(E1)− σ(E2)‖H3 ‖E2‖H3

≤ C
(
‖E1‖H3 , ‖E2‖H3 ,

)
‖E1 − E2‖H3 .
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B.4 Differentiability of the semilinear term

In this section we discuss Assumptions 7.2 and 7.22. We restrict ourselves to the boundedness of the
formally obtained derivatives. However, we note that continuity is achieved by the precise same compu-
tations and in (A.20), (A.22), and (A.24) we have shown how to conclude differentiability from this.

Further we introduce the notation

Cm(Hk) := Cm([0, T ], Hk(Ω)), k,m ≥ 0 .

Wave equation

We recall g, γ1 and γ2 from (B.1), ĝ from (7.5) and set

ĝ(t) =
(

0
γ̂1(t) + γ̂2(t)

)
, γ̂1(t) = γ1(q(t), q′(t)), γ̂2(t) = γ2(t, q(t), q′(t)) . (B.3)

Lemma B.3. For ĝ given in (B.3) with the regularity given in (5.5) Assumption 7.2 is satisfied.

Proof. It is sufficient to prove for q ∈ C2(H1) ∩ C1(H2) ∩ C(H3) that for i = 1, 2
(a) t 7→ γ̂i(t) is C1([0, T ], H1(Ω)),
(b) t 7→ γ̂i(t) is C2([0, T ], L2(Ω)).
i = 1 : We first compute

−∂tγ̂1(t) = K ′′′(q)
(
q′
)3 + 2K ′′(q)q′q′′ (B.4)

−∂2
t γ̂1(t) = K(4)(q)

(
q′
)4 +K ′′′(q)3

(
q′
)2
q′′

+ 2K ′′′(q)
(
q′
)2
q′′ + 2K ′′(q)

(
q′′
)2 + 2K ′′(q)q′q′′′

(a) We have for q ∈ C2(H1) ∩ C1(H2) ∩ C(H3) by (A.5)∥∥∂tγ̂1(t)
∥∥
H1 ≤

∥∥K ′′′(q)(q′)3∥∥
H1 + ‖2K ′′(q)q′q′′‖H1

≤ C ‖K ′′′(q)‖H1 ‖q′‖3H2 + C ‖2K ′′(q)q′‖H2 ‖q′′‖H1

≤ C
(
‖q‖H2

)(
‖q′‖3H2 + ‖q′‖H2 ‖q′′‖H1

)
(b) If in addition q ∈ C3(L2), it holds by (A.1)∥∥∂2

t γ̂1(t)
∥∥
L2 ≤

∥∥K(4)(q)
(
q′
)4∥∥

L2 + 5
∥∥K ′′′(q)(q′)2q′′∥∥

L2

+
∥∥2K ′′(q)

(
q′′
)2∥∥

L2 +
∥∥2K ′′(q)q′q′′′

∥∥
L2

≤ C
(
‖q‖H2

)(
‖q′‖4H2 + ‖q′‖2H2 ‖q′′‖H1 + ‖q′′‖2H1 + ‖q′‖H2 ‖q′′′‖L2

)
i = 2 : We first compute

∂tγ̂2(t) = ∂tr(·) + ∂qr(·)q′ + ∂q′r(·)q′′ (B.5)

∂2
t γ̂2(t) = ∂t,tr(·) + ∂qr(·)q′′ + ∂q′r(·)q′′′

+ 2∂t,qr(·)q′ + 2∂t,q′r(·)q′′

+ ∂q,qr(·)
(
q′
)2 + 2∂q,q′r(·)q′q′′ + ∂q′,q′r(·)

(
q′′
)2
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(a) We have for q ∈ C2(H1) ∩ C1(H2) ∩ C(H3) by (A.5), (A.9), and (A.11)

‖∂tγ̂2(t)‖H1 ≤ ‖∂tr(·)‖H1 + ‖∂qr(·)q′‖H1 + ‖∂q′r(·)q′′‖H1

≤ C
(
‖q‖H2 , ‖q′‖H2)

(
1 + ‖q′‖H2 + ‖q′′‖H1

)
.

(b) If in addition q ∈ C3(L2), it holds by (A.3), (A.7), (A.9), and (A.11)∥∥∂2
t γ̂2(t)

∥∥
L2 ≤ ‖∂t,tr(·) + ∂qr(·)q′′ + ∂q′r(·)q′′′‖L2

+ 2 ‖∂t,qr(·)q′ + ∂t,q′r(·)q′′‖L2

+
∥∥∂q,qr(·)(q′)2 + 2∂q,q′r(·)q′q′′ + ∂q′,q′r(·)

(
q′′
)2∥∥

L2

≤ C
(
‖q‖H2 , ‖q′‖H2)

(
1 + ‖q′′‖H1 + ‖q′′′‖L2 + ‖q′‖L2 + ‖q′′‖L2

+ ‖q′‖2H2 + ‖q′′‖H1 ‖q′‖H2 + ‖q′′‖2H1

)
.

Lemma B.4. For ĝ given in (B.3) with the regularity given in (5.5) and with K ∈ C6(R), Assump-
tion 7.22 is satisfied.

Proof. It is sufficient to prove for q ∈ C2(H2) that
(a) t 7→ γ̂i(t) is C1([0, T ], H2(Ω)) ,
(b) t 7→ γ̂i(t) is C2([0, T ], H1(Ω)) .
i = 1 : We use the representation in (B.4) for the following computations.

(a) We have for q ∈ C2(H2) by (A.6)

‖∂tγ̂1(t)‖H2 ≤
∥∥K ′′′(q)(q′)3∥∥

H2 + ‖2K ′′(q)q′q′′‖H2

≤ C
(
‖q‖H2 , ‖q′‖H2)

(
‖q′‖3H2 + ‖q′‖H2 ‖q′′‖H2

)
.

(b) If in addition q ∈ C3(H1), it holds with (A.5)∥∥∂2
t γ̂1(t)

∥∥
H1 ≤

∥∥K(4)(q)
(
q′
)4∥∥

H1 + 5
∥∥K ′′′(q)(q′)2q′′∥∥

H1 +
∥∥2K ′′(q)

(
q′′
)2∥∥

H1 +
∥∥2K ′′(q)q′q′′′

∥∥
H1

≤ C
(
‖q‖H2 , ‖q′‖H2)

(
‖q′‖4H2 + ‖q′‖2H2 ‖q′′‖H2 + ‖q′′‖2H2 + ‖q′‖H2 ‖q′′′‖H1

)
.

i = 2 : We use the representation in (B.5) for the following computations.
(a) We have for q ∈ C2(H2) by (A.6)

‖∂tγ̂2(t)‖H2 ≤ ‖∂tr(·)‖H2 + ‖∂qr(·)q′‖H2 + ‖∂q′r(·)q′′‖H2

≤ C
(
‖q‖H2 , ‖q′‖H2)

(
1 + ‖q′‖H2 + ‖q′′‖H2

)
.

(b) If in addition q ∈ C3(H1), it holds by (A.5)∥∥∂2
t γ̂2(t)

∥∥
H1 ≤ ‖∂t,tr(·) + ∂qr(·)q′′ + ∂q′r(·)q′′′‖H1

+ 2 ‖∂t,qr(·)q′ + ∂t,q′r(·)q′′‖H1

+
∥∥∂q,qr(·)(q′)2 + 2∂q,q′r(·)q′q′′ + ∂q′,q′r(·)

(
q′′
)2∥∥

H1

≤ C
(
‖q‖H2 , ‖q′‖H2)

(
1 + ‖q′′‖H2 + ‖q′′′‖H1 + ‖q′‖L2 + ‖q′′‖H2

+ ‖q′‖2H2 + ‖q′′‖H2 ‖q′‖H2 + ‖q′′‖2H2

)
.
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Maxwell’s equations

We recall g from (B.2), ĝ from (7.5) and set

ĝ(t) =
(
−σ̂(t)

0

)
, σ̂(t) = σ(E(t))E(t) (B.6)

Lemma B.5. For ĝ given in (B.6) with the regularity given in (5.12) Assumption 7.2 is satisfied.

Proof. It is sufficient to prove for E ∈ C1(H2) ∩ C(H3)
(a) t 7→ σ̂(t) is C1([0, T ], H2(R3)),
(b) t 7→ σ̂(t) is C2([0, T ], L2(R3)).
(a) We have for E ∈ C1(H2) ∩ C(H3) by (A.6)

‖σ̂′(t)‖H2 ≤ ‖σ′(E(t))[E′(t), E(t)]‖H2 + ‖σ(E(t))E′(t)‖H2

≤ C
(
‖E‖H2 , ‖E′‖H2

)
.

(b) If in addition E ∈ C2(L2), it holds by (A.4)

‖σ̂′′(t)‖L2 ≤ ‖σ′′(E(t))[E′(t), E′(t), E(t)]‖L2 + 2 ‖σ(E(t))[E′(t), E′(t)]‖L2 + ‖σ(E(t))E′′(t)‖L2

≤ C
(
‖E‖H2 , ‖E′‖H2 , ‖E′′‖L2

)
.

Lemma B.6. For ĝ given in (B.6) with σ ∈ C4(R3,R3,3) Assumption 7.22 is satisfied.

Proof. It is sufficient to prove for E ∈ C1(H3)
(a) t 7→ σ̂(t) is C1([0, T ], H3(R3)),
(b) t 7→ σ̂(t) is C2([0, T ], H2(R3)).
(a) We have for E ∈ C1(H3) by the algebra property of H3(R3)

‖σ̂′(t)‖H3 ≤ ‖σ′(E(t))[E′(t), E(t)]‖H3 + ‖σ(E(t))E′(t)‖H3

≤ C
(
‖E‖H3 , ‖E′‖H3

)
.

(b) If in addition E ∈ C2(H2), it holds by (A.6)

‖σ̂′′(t)‖H2 ≤ ‖σ′′(E(t))[E′(t), E′(t), E(t)]‖H2 + 2 ‖σ(E(t))[E′(t), E′(t)]‖H2 + ‖σ(E(t))E′′(t)‖H2

≤ C
(
‖E‖H2 , ‖E′‖H2 , ‖E′′‖H2

)
.
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B.5 Differentiability of the quasilinear term

In this section we discuss Assumptions 7.3 and 7.23 and again restrict ourselves to the boundedness of
the derivatives.

Wave equation

We recall the map

t 7→ Λ−1(t) = Λ−1(u(t)), u ∈ C1([0, T ], Y ) ∩ C([0, T ], Z)

and define

Λ−1(t) =
(
I 0
0 1

1+K′(q(t))

)
=:
(
I 0
0 λ(q(t))

)
(B.7)

Lemma B.7. For Λ−1 given in (B.7) with the regularity given in (5.5) Assumption 7.3 is satisfied.

Proof. It suffices to prove for x ∈ L2(Ω) and y ∈ H1(Ω) and q ∈ C2(H1) ∩ C1(H2) ∩ C(H3) that
(a) t 7→ λ(q(t))x is C1([0, T ], L2(Ω))
(b) t 7→ λ(q(t))y is C1([0, T ], H1(Ω))
(c) t 7→ λ(q(t))y is C2([0, T ], L2(Ω)) .
We obtain the the expressions

∂tλ(q(t))y = λ′(q(t))q′(t)y

∂2
t λ(q(t))x = λ′′(q(t))

(
q′(t)

)2
x+ λ′(q(t))q′′(t)x .

(B.8)

(a) We obtain the bounds by (A.1)

‖∂tλ(q(t))x‖L2 ≤ ‖λ′(q(t))q′(t)y‖L2 ≤ ‖λ′(q(t))‖L∞ ‖q
′‖H2 ‖x‖L2 ≤ C

(
‖q‖H2

)
‖q′‖H2 ‖x‖L2 .

(b) By (A.5) we have

‖∂tλ(q(t))y‖H1 ≤ ‖λ′(q(t))q′(t)y‖H1 ≤ C
(
‖q‖H2

)
‖q′‖H2 ‖y‖H1 .

(c) Further, by (A.3) and (A.5) it holds∥∥∂2
t λ(q(t))y

∥∥
L2 ≤

∥∥λ′′(q(t))(q′(t))2y∥∥
L2 + ‖λ′(q(t))q′′(t)y‖L2

≤ C
(
‖q‖H2

)(
‖q′‖2H2 + ‖q′′‖H1

)
‖y‖H1 .

Lemma B.8. For Λ−1 given in (B.7) with the regularity given in (5.5) Assumption 7.23 is satisfied.

Proof. It suffices to prove for z ∈ H2(Ω) and q ∈ C2(H1) ∩ C1(H2) ∩ C(H3) that
(a) t 7→ λ(q(t))z is C1([0, T ], H2(Ω))
(b) t 7→ λ(q(t))z is C2([0, T ], H1(Ω)) .
(a) With the the expressions in (B.8) we compute using (A.6)

‖∂tλ(q(t))z‖H2 ≤ ‖λ′(q(t))q′(t)y‖H2 ≤ C
(
‖q‖H2

)
‖q′‖H2 ‖z‖H2 .

(b) By (A.5) and (A.11) it holds∥∥∂2
t λ(q(t))z

∥∥
H1 ≤

∥∥λ′′(q(t))(q′(t))2y∥∥
H1 + ‖λ′(q(t))q′′(t)y‖H1

≤ C
(
‖q‖H2

)(
‖q′‖2H2 + ‖q′′‖H1

)
‖y‖H2 .
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Maxwell’s equations

First note that

Λ−1(t) =
(

1
1+P ′(E(t)) 0

0 1
1+M ′(H(t))

)
=:
(
λE(E(t)) 0

0 λH(H(t))

)
(B.9)

Lemma B.9. For Λ−1 given in (B.9) with the regularity given in (5.12) Assumption 7.3 is satisfied.

Proof. It suffices to prove for x ∈ L2(R3) and y ∈ H2(R3) to show for E ∈ C1(H2) ∩ C(H3)
(a) t 7→ λE(E(t))x is C1([0, T ], L2(R3))
(b) t 7→ λE(E(t))y is C1([0, T ], H2(R3))
and, if in addition, E ∈ C2([0, T ], L2(R3)) holds, then
(c) t 7→ λE(E(t))y is C2([0, T ], L2(R3)) .
We differentiate to get

∂tλE(E(t))y = λ′E(E(t))
[
E′(t), y

]
(B.10)

(a) We obtain by (A.4) the bound

‖∂tλE(E(t))x‖L2 =
∥∥λ′E(E(t))

[
E′(t), x

]∥∥
L2 ≤ C

(
‖E‖H2

)
‖E′‖H2 ‖x‖L2 ,

(b) Similar by (A.6) we have

‖∂tλE(E(t))y‖H2 ≤
∥∥λ′E(E(t))

[
E′(t), x

]∥∥
H2 ≤ C

(
‖E‖H2

)
‖E′‖H2 ‖y‖H2 .

(c) If in addition, we assume E ∈ C2(L2), we get

∂2
t λE(E(t))y = λ′′E(E(t))

[
E′(t), E′(t), y

]
+ λ′E(E(t))

[
E′′(t), y

]
. (B.11)

and by (A.4)∥∥∂2
t λE(E(t))y

∥∥
L2 ≤

∥∥λ′′E(E(t))
[
E′(t), E′(t), y

]∥∥
L2 +

∥∥λ′E(E(t))
[
E′′(t), y

]∥∥
L2

≤ C
(
‖E‖H2

)(
‖E′‖2H2 + ‖E′′‖L2

)
‖y‖H2 .

Lemma B.10. For Λ−1 given in (B.9) with P,M ∈ C5(R3,R3,3) Assumption 7.23 is satisfied.

Proof. It suffices to prove for z ∈ H3(R3) to show for E ∈ C1(H3)
(a) t 7→ λE(E(t))z is C1([0, T ], H3(R3))
and, if in addition, E ∈ C2([0, T ], L2(R3)) holds, then
(b) t 7→ λE(E(t))y is C2([0, T ], H2(R3)) .
(a) With (B.10) we obtain the bound

‖∂tλE(E(t))y‖H3 ≤
∥∥λ′E(E(t))

[
E′(t), x

]∥∥
H3 ≤ C

(
‖E‖H3

)
‖E′‖H3 ‖y‖H3 .

(b) If we assume in addition E ∈ C2(H2), we get with (B.11)∥∥∂2
t λE(E(t))y

∥∥
H2 ≤

∥∥λ′′E(E(t))
[
E′(t), E′(t), y

]∥∥
H2 +

∥∥λ′E(E(t))
[
E′′(t), y

]∥∥
H2

≤ C
(
‖E‖H2

)(
‖E′‖2H2 + ‖E′′‖H2

)
‖y‖H2 .
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B.6 Miscellaneous

Bounds on the extrapolation error

Lemma B.11. The following estimates hold for u ∈ C2([0, T ], V ):

∥∥u(tn+1/2)− 1
2 (3u(tn)− u(tn−1))

∥∥
V
≤ τ ‖u′‖V,∞ ,∥∥u(tn+1/2)− 1

2 (3u(tn)− u(tn−1))
∥∥
V
≤ 3

8τ
2 ‖u′′‖V,∞ .

Proof. (a) We compute by the first-order Taylor approximation

∥∥u(tn+1/2)− 1
2 (3u(tn)− u(tn−1))

∥∥
X
≤
∥∥u(tn+1/2)− u(tn)

∥∥
V

+ 1
2 ‖u(tn)− u(tn−1)‖V

≤ 1
2τ ‖u

′‖V,∞ + 1
2τ ‖u

′‖V,∞
= τ ‖u′‖V,∞ .

(b) For the second-order bound we expand with Taylor

u(tn+1/2) = u(tn) +

tn+1/2∫
tn

u′(s) ds

= u(tn) +
[(
s− tn+1/2

)
u′(s)

]tn+1/2

tn
+

tn+1/2∫
tn

(
tn+1/2 − s

)
u′′(s) ds

= u(tn) + τ
2u
′(tn) +

τ
2∫

0

(
τ
2 − s

)
u′′(tn + s) ds

= u(tn) + τ
2u
′(tn) +R1

with

‖R1‖V =
∥∥∥

τ
2∫

0

(
τ
2 − s

)
u′′(tn + s) ds

∥∥∥
V
≤
[
τ
2 s−

s2

2
]τ/2
0 ‖u′′‖X,∞ = τ2

8 ‖u
′′‖X,∞ .

In the same manner we obtain

u(tn−1) = u(tn)− τu′(tn) +
−τ∫
0

(
−τ − s

)
u′′(tn + s) ds

= u(tn)− τu′(tn) +R2

with

‖R2‖V =
∥∥∥ −τ∫

0

(
−τ − s

)
u′′(tn + s) ds

∥∥∥
V
≤
∣∣∣[τs+ s2

2
]−τ
0

∣∣∣ ‖u′′‖V,∞ = τ2

2 ‖u
′′‖V,∞ .

This gives us the assertion by

∥∥u(tn+1/2)− 1
2 (3u(tn)− u(tn−1))

∥∥
V
≤
∥∥R1 + 1

2R2
∥∥
V

= τ2 3
8 ‖u

′′‖V,∞ .
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Regularity of the initial data in Section 7.4

We briefly discuss the regularity of the initial datum with x =
(
x1, x2

)
q0(x) = −1

4(x2
1 + x2

2) ln(− ln(ρ(x2
1 + x2

2))) + C1(x2
1 + x2

2 − 1) + C2 ,

which was defined for ρ ∈ (0, 1) on the ball B1(0) . We start with the partial derivatives of q0. Since the
function is symmetric in x1 and x2 we do not need to compute all of them. The first derivative is given
by

∂x1q0(x) = −1
2x1 ln(− ln(ρ(x2

1 + x2
2))) + 1

4(x2
1 + x2

2) 1
ln(ρ(x2

1 + x2
2))

1
ρ(x2

1 + x2
2)2ρx1 + 2C1x1

= −1
2x1 ln(− ln(ρ(x2

1 + x2
2))) + 1

2x1
1

ln(ρ(x2
1 + x2

2)) + 2C1x1 .

For the second derivative we need

∂2
x1
q0(x) = −1

2 ln(− ln(ρ(x2
1 + x2

2))) + 1
2

1
ln(ρ(x2

1 + x2
2)) + 2C1

+ 1
2x1

1
ln(ρ(x2

1 + x2
2))

1
ρ(x2

1 + x2
2)2ρx1 + 1

2x1
1

ln2(ρ(x2
1 + x2

2))
1

ρ(x2
1 + x2

2)2ρx1

= −1
2 ln(− ln(ρ(x2

1 + x2
2))) + 1

2
1

ln(ρ(x2
1 + x2

2)) + 2C1

+ 1
ln(ρ(x2

1 + x2
2))

x2
1

(x2
1 + x2

2) + 1
ln2(ρ(x2

1 + x2
2))

x2
1

(x2
1 + x2

2) ,

as well as

∂x2∂x1q0(x) = 1
2x1

1
ln(ρ(x2

1 + x2
2))

1
ρ(x2

1 + x2
2)2ρx2 + 1

2x1
1

ln2(ρ(x2
1 + x2

2))
1

ρ(x2
1 + x2

2)2ρx2

= 1
ln(ρ(x2

1 + x2
2))

x1x2

(x2
1 + x2

2) + 1
ln2(ρ(x2

1 + x2
2))

x1x2

(x2
1 + x2

2) .

From this we directly obtain

∂x2∂x1q0 ∈ L∞(B1(0)), ∂2
x1
q0 + 1

2 ln(− ln(ρ| · |2)) ∈ L∞(B1(0)), ln(− ln(ρ| · |2)) /∈ L∞(B1(0)) ,

where the last term is the one from (7.39).

In the next step we show that the second derivatives are still H1-functions. We need the following
auxiliary result.

Lemma B.12. Let ρ ∈ (0, 1), k ≥ 1, and define the function

D : B1(0) ⊂ R2 → R, x 7→ 1
lnk(ρ|x|2)|x|

.

Then it holds D ∈ L2(B1(0)).
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Proof. We use polar coordinates to obtain∫
B1(0)

|D(x)|2 dx =
∫
B1(0)

1
ln2k(ρ|x|2)|x|2

dx

= 2π
1∫

0

1
r2

1
ln2k(ρr2)

r dr

= 2π
1∫

0

1
r ln2k(ρr2)

dr

= π

[
1

(2k − 1) ln2k−1(ρr2)

]1

0

= π

−(2k − 1) ln2k−1(ρ)
<∞ ,

since ρ < 1 holds.

From this we can conclude the following regularity of q0.

Lemma B.13. The function q0 is in H3(B1(0)) and in particular it holds

∂x2∂x1q0, ∂
2
x1
q0 + 1

2 ln(− ln(ρ| · |2)), 1
2 ln(− ln(ρ| · |2)) ∈ H1(B1(0)) .

Proof. Computing all the derivatives, we observe that their absolute value is always dominated by a
multiple of the function D from Lemma B.12.

To summarize this, we have shown that q0 is in H3(B1(0)) but not in W 2,∞(B1(0)). Assuming that
q0 ∈ H3+ε(B1(0)), would however imply q0 ∈W 2,∞(B1(0)) by the Sobolev embedding, see [1, Thm. 7.34],
which is a contradiction.
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