KIT | KIT-Bibliothek | Impressum | Datenschutz

Anderson‐accelerated polarization schemes for fast Fourier transform‐based computational homogenization

Wicht, Daniel; Schneider, Matti; Böhlke, Thomas

Abstract:
Classical solution methods in fast Fourier transform‐based computational micromechanics operate on, either, compatible strain fields or equilibrated stress fields. By contrast, polarization schemes are primal‐dual methods whose iterates are neither compatible nor equilibrated. Recently, it was demonstrated that polarization schemes may outperform the classical methods. Unfortunately, their computational power critically depends on a judicious choice of numerical parameters. In this work, we investigate the extension of polarization methods by Anderson acceleration and demonstrate that this combination leads to robust and fast general‐purpose solvers for computational micromechanics. We discuss the (theoretically) optimum parameter choice for polarization methods, describe how Anderson acceleration fits into the picture, and exhibit the characteristics of the newly designed methods for problems of industrial scale and interest.

Open Access Logo


Verlagsausgabe §
DOI: 10.5445/IR/1000130188
Veröffentlicht am 02.03.2021
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Mechanik (ITM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 0029-5981, 1097-0207
KITopen-ID: 1000130188
Erschienen in International journal for numerical methods in engineering
Verlag Wiley
Seiten nme.6622
Vorab online veröffentlicht am 06.01.2021
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page