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0 Introduction

One of the most important, if not the most important, geometric spaces is the Euclidean
space ℝ𝑚. Throughout the history of mathematics its concepts have been generalised in
various ways yielding for example spherical and hyperbolic geometry or the more abstract
Riemannian geometry. The planar case ℝ2 was especially fruitful and resulted, among
others, in the classification of closed Riemann surfaces.

A geometric object which is very close to resembling ℝ2 is a translation surface. A
rough description is that a translation surface is glued out of polygons where two sides
are glued together by a translation. Because it is built out of polygons, it is locally
isometric to ℝ2 and since the gluing is done by translations, i.e. no rotations, we have at
each point the directions ‘North’, ‘West’, ‘South’, and ‘East’ and these are well-defined
across the whole translation surface unlike for example on the Möbius strip.

In this work we will describe the generalisation of a translation surface to any dimension
𝑚 and we will fittingly call it translation manifold. The generalisation to higher dimension
is a very natural question and the definition given above can easily be adapted to higher
dimensions by gluing polytopes instead of polygons. However, the implications are more
drastic as most of the theory for translation surfaces relies on two-dimensional concepts
like a complex structure, or the classification of surfaces.

Some points of a translation surface are especially interesting, the so called singularities.
Walking around a singularity does not yield an angle of 2𝜋 but of 2𝜋𝑘 for some 𝑘 ∈ ℕ
and we can classify the (tame) singularities by this number 𝑘. These special points also
occur in the higher-dimensional translation manifolds. However, in two dimensions we
essentially have only one way (or its inverse) to walk around a singularity. In higher
dimensions we have multiple ways to do that, so we can no longer use this approach
to understand and classify them. Instead we describe a new method applicable to all
dimensions for identifying and comparing singularities across translation manifolds. The
new approach uses translation coverings and the developing map.

Of particular interest is whether a singular point is a ‘real singularity’ or not. If the
singularity is on a translation surface and the angle around it is 2𝜋, i.e. 𝑘 = 1, then we
can add the point to the translation surface and still have a translation surface. In this
case we call the singularity removable. For an angle of 2𝜋𝑘 with 𝑘 ≥ 2, the singularity
cannot be added to the translation surface without disturbing the translation structure,
so that is a ‘real singularity’.

For singularities of translation manifolds the same question concerning their removabil-
ity arises. This time the question is more difficult to answer as we do not have the number
𝑘 to begin with and as singularities are no longer single points but a collection of points
like curves or surfaces. In this work we will show that isolated point singularities do not
exist on a translation manifold except for a two dimensional manifold, i.e. a translation
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0 Introduction

surface, and expand that result to any collection of singularities which admit a simply
connected neighbourhood.

The structure of this text is as follows. In the first chapter, section 1.1 contains a
definition of a translation manifold as well as the three different generalisations resulting
from the three different but equivalent definitions of a translation surface and we will
discuss these divergent generalisations and their merits.

Also part of chapter 1 is the definition and construction of our two main tools: the
translation covering and the developing map. This will take place in sections 1.2 and 1.3,
respectively.

The discussion of the singularities of a translation manifold happens in chapter 2.
There we start by proving theorem 2.1.1 which allows us to test whether a singularity is
removable or not using a translation covering (section 2.1). Section 2.2.2 discusses and
solves the question when an isolated singularity on a translation manifold manifold is
removable.

The next section (section 2.3) generalises the observation of the previous section and
introduces images and shadows of singularities. Shadows are non-singular points but
they behave like singularities with respect to the developing map and should as such
be treated like singularities. Using this concept, we are able to provide criteria for the
removability of an arbitrary singularity of a translation manifold in form of corollary 2.3.19
and theorem 2.3.21.

In section 2.4, we apply the results of section 2.3 to dimension two and three where
some of the prerequisites are automatically fulfilled.

In the last chapter, we examine a particular kind of translation manifold: a cubic
translation manifold. As its name suggests it is built out of cubes and this cubic
structure allows us to find suitable and well-behaved neighbourhoods around any point
in the manifold, in particular around its singularities. As a consequence we can prove
theorem 3.2.7 which states that singularities of codimension greater than two are always
removable (except when part of a larger, codimension two singularity). Furthermore,
the description of these neighbourhoods enables us to give a complete classification of
all singularities occurring on a cubic translation manifold and how they intersect in
theorem 3.2.29.

Acknowledgements:
The author of this work was supported by a stipend of the Carl-Zeiss-Stiftung.
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Notation
Throughout this work we are using the following notations:

𝑎 ≔ 𝑏
the symbol 𝑎 is defined to be the ex-
pression 𝑏.

𝒜
atlas of a (translation) manifold, see
definition 1.1.1.

𝐴
closure of a set 𝐴 in a topological
space.

[𝐴]≊
denotes the equivalence class of faces
of cubic translation manifolds which
are isometric-isomorphic to the face
𝐴; see definition 3.2.18.

[𝐴]≅
denotes the equivalence class of faces
of cubic translation manifolds which
are translation-isomorphic to the face
𝐴; see definition 3.2.18.

∐𝑖 𝐴𝑖, 𝐴1 ⨿ 𝐴2

coproduct of objects 𝐴𝑖; often denotes
the disjoint union of sets/spaces.

⋁
𝑖
𝐴𝑖, 𝐴1 ∨ 𝐴2

gluing of topological spaces 𝐴𝑖 at
a single point; called wedge sum or
wedge product. We have 𝜋1(⋁

𝑖
𝐴𝑖) =

∗𝑖𝜋1(𝐴𝑖) where on the right-hand side
we have the free product of the funda-
mental groups of 𝐴𝑖.

𝐴#𝐵
connected sum of the topological man-
ifolds 𝐴 and 𝐵. It is obtained by cut-
ting out a 𝑚-ball of 𝐴 and 𝐵 and

glueing the resulting (𝑚 − 1)-spheres
via a homeomorphism.

𝐴 ≊ 𝐵

the faces 𝐴 and 𝐵 of two cubic
translation manifolds are isometric-
isomorphic; see definition 3.2.18.

𝐴 ≅ 𝐵

the faces 𝐴 and 𝐵 of two cubic
translation manifolds are translation-
isomorphic; see definition 3.2.18.

]𝑎, 𝑏[, ]𝑎, 𝑏], [𝑎, 𝑏[, [𝑎, 𝑏]

the open, half-open, and closed inter-
vals in ℝ also often denoted by (𝑎, 𝑏),
(𝑎, 𝑏], [𝑎, 𝑏), [𝑎, 𝑏].

Acc((𝑥𝑛)𝑛∈ℕ)

set of all accumulation points of the
sequences (𝑥𝑛)𝑛∈ℕ.

𝐴 ⨿𝑋 𝐵

gluing of topological spaces 𝐴 and 𝐵
along a common subspace 𝑋.

�̄�(𝑥, 𝑟)

closed ball of radius 𝑟 around 𝑥 in
a metric space 𝑋, often but not al-
ways the same as the closure of the
open ball 𝐵(𝑥, 𝑟); �̄�(𝑥, 𝑟) ≔ {𝑦 ∈ 𝑋 |
𝑑(𝑥, 𝑦) ≤ 𝑟}.

𝐵(𝑥, 𝑟)

open ball of radius 𝑟 around 𝑥 in a
metric space 𝑋; 𝐵(𝑥, 𝑟) ≔ {𝑦 ∈ 𝑋 |
𝑑(𝑥, 𝑦) < 𝑟}.
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�̇�(𝑥, 𝑟)

punctured open ball of radius 𝑟
around 𝑥 in a metric space 𝑋, i.e. the
open ball without origin; �̇�(𝑥, 𝑟) ≔
{𝑦 ∈ 𝑋 | 𝑑(𝑥, 𝑦) < 𝑟} ∖ {𝑥}.

𝐵𝑛

(topological) solid 𝑛-ball.

𝐷

usually denotes the developing map,
see definition 1.3.6.

𝑑, 𝑑eukl, 𝑑ℝ𝑚 , 𝑑𝑀

𝑑 generally denotes a metric, 𝑑eukl and
𝑑ℝ𝑚 is the Euclidean metric, and 𝑑𝑀
is the metric on space 𝑀.

𝜕𝐴

boundary of a set 𝐴 in a topological
space.

𝐷𝑈(𝛴)

image of the singularities or the
boundary of 𝑈, see definition 2.3.7.

𝐷f
𝑈(𝛴)

image of the singularities of 𝑈, see
definition 2.3.2.

𝑓∣𝐴
restriction of a function/1-form/… 𝑓
to a subset 𝐴.

𝐹𝑛

free group of rank 𝑛.

𝐺 ∗𝑈 𝐻

free product of the groups 𝐺 and 𝐻
with amalgamation over 𝑈.

ℑ(𝑧)

the imaginary part of a complex num-
ber/function/1-form/… 𝑧

int 𝐴

interior of a set 𝐴 in a topological
space.

ℓ(𝛾)

path length of a path 𝛾.

𝑀 ′

for a cubic translation manifold 𝑀:
same translation manifold as 𝑀 but
considered as cubic translation mani-
fold where the cubes are subdivided
into 3dim 𝑀 smaller cubes, i.e. the edge
length is divided by 3; see defini-
tion 3.2.9.

𝑁𝑀(𝐴)

cubic neighbourhood of a face 𝐴 of
a cubic translation manifold 𝑀; see
definition 3.1.9.

𝜋1(𝑋, 𝑥), 𝜋1(𝑋)

first fundamental group of a topo-
logical space 𝑋 with respect to the
basepoint 𝑥. The basepoint is often
ommitted.

ℜ(𝑧)

the real part of a complex number/
function/1-form/… 𝑧

relint(𝐴)

the relative interior of a 𝑘-face 𝐴 of a
cubic translation manifold; relint(𝐴)
is 𝐴 without (𝑘 − 1)-faces; see defini-
tion 3.1.6
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𝛴
set of singularities of a translation
manifold, 𝛴 = 𝑀 ∖ 𝑀, see defini-
tion 1.1.8.

𝑆𝑛

(topological) 𝑛-sphere.

𝑆f
𝑈(𝛴)

shadows of the singularities of 𝑈, see
definition 2.3.2.

𝑆𝑈(𝛴)
shadows of the singularities or the
boundary of 𝑈, see definition 2.3.7.

Deck(�̃�/𝑋)
the Deck transformation group of the
covering map �̃� → 𝑋.

𝑇 ∗

torus of dimension 𝑚 as translation
manifold without its codimension two
skeleton.

𝑇 𝑚

solid torus of dimension 𝑚; 𝑇 𝑚 =
ℝ𝑚/ℤ𝑚.

𝑋ℕ

set of all sequences (𝑥𝑛)𝑛∈ℕ in 𝑋.

[𝑥, 𝑦]

commutator of the group elements 𝑥
and 𝑦; [𝑥, 𝑦] = 𝑥𝑦𝑥−1𝑦−1.
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1 Fundamentals on Translation Manifolds

In this chapter we provide the ground work for the theory of translation manifolds.
We start off with a section giving not one but three different definitions of a translation

manifold. This happens in section 1.1. The first definition we give is the simplest and
most general one, and uses only the language of a manifold and its transition maps. Less
general but a concrete way to construct examples is the second definition which glues
polytopes together along their sides to form a translation manifold. The last definition
relies on differentiable 1-forms and uses language and results from differential geometry.
At the end, in section 1.1.4, we give a comparison of these definitions together with their
advantages and uses.

A translation manifold contains special – or better noteworthy – points, the so called
singularities. We define them in this chapter but they are of such rich structure that they
merit a chapter of their own (chapter 2).

We move on to quickly introduce the concept of a translation covering in section 1.2,
which will be one of our main focus later on, before we discuss and construct the developing
map of a translation manifold in section 1.3. We provide the definition of a developing
map for a slightly more general type of manifolds – so called (𝐺, 𝑋)-manifolds. This comes
at no additional cost as the proofs are the same whether we consider a (𝐺, 𝑋)-manifold
or a translation manifold.

At the end, in section 1.3.3, we will discuss properties of the developing map on
a translation manifold. It comes to no surprise that due to the translation nature
the developing map of a translation manifold has more nice properties than a generic
developing map.

1.1 Definition of a Translation Manifold

Translation manifolds can be defined in different ways. In this section, we will discuss
three different definitions. These definitions are generalisations of the three definitions
of a translation surface to higher dimensions. It is interesting to note that while the
definitions are equivalent for (finite) translation surfaces, they are no longer equivalent
in higher dimensions.

1.1.1 Definition as a Manifold

Let us start with the definition which justifies both parts of its name: translation and
manifold.

7



1 Fundamentals on Translation Manifolds

Definition 1.1.1 (Translation Manifold). An 𝑚-dimensional translation manifold is
an 𝑚-dimensional manifold 𝑀 with atlas 𝒜 where the changes of coordinates (also called
transition maps) are translations, i.e. they are locally of the form

𝑥 ↦ 𝑥 + 𝑐 (1.1)

for some vector 𝑐 ∈ ℝ𝑚.
Such an atlas is called a translation atlas. A maximal translation atlas is called

translation structure.

Remark 1.1.2. We usually do not make the distinction between a translation atlas and
a translation structure and assume without loss of generality that all atlases are maximal.

Remark 1.1.3. Because the changes of coordinates are translations, they are in particu-
lar smooth, affine, etc. So a translation structure also induces a smooth structure, affine
structure, etc. on 𝑀.

Example 1.1.4. a) 𝑀 = ℝ𝑚 with the identity as a global chart 𝜑 = id: 𝑀 → ℝ𝑚.

b) 𝑀 = 𝐵(0, 1) ⊆ ℝ𝑚 with the inclusion as global chart 𝜑: 𝑀 ↪ ℝ𝑚.

c) 𝑀 = �̇�(0, 1) ⊆ ℝ𝑚 with the inclusion as global chart 𝜑: 𝑀 ↪ ℝ𝑚.

d) 𝑀 = ℝ𝑚/ℤ𝑚 the 𝑚-torus. A chart around a point 𝑝 ∈ 𝑀 is the local inverse of
the covering map 𝜋: ℝ𝑚 → 𝑀 on a sheet.

e) Let 𝑇1 and 𝑇2 be two 𝑚-tori with the translation structure as above. Embed a
solid (𝑚 − 1)-hyperball 𝐶 in the torus 𝑇1 and in the same way in the torus 𝑇2.
Cutting along the hyperball 𝐶 does not separate the torus and yields two opposed
(𝑚 − 1)-hypersurfaces inside each torus (see figure 1.1). Each hypersurface can be
identified by a translation with the hypersurface of the opposite side in the other
torus because 𝐶 is embedded in the same way in both tori. This yields a translation
structure on (𝑇1 ∖ 𝜕𝐶) ∪ (𝑇2 ∖ 𝜕𝐶) because the gluing was a translation. This is
very similar to the gluing appearing in definition 1.1.14.
This construction can be generalised to more sophistically embedded surfaces
embedded in any translation manifold, not just tori, see for example figure 1.2.

We will see more examples of translation manifolds as we go on.
Since the changes of coordinates are translations, the pullback of the Euclidean metric

of ℝ𝑚 via the charts of a translation atlas is locally well-defined. We can use this to
define a metric on the translation manifold:

Definition 1.1.5 (Flat metric). The flat metric 𝑑 on a translation manifold 𝑀 is the
metric induced by the path length:

𝑑(𝑥, 𝑦) ≔ inf{ℓ(𝛾) | 𝛾: [0, 1] → 𝑀 path with 𝛾(0) = 𝑥 and 𝛾(1) = 𝑦} (1.2)
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1.1 Definition of a Translation Manifold

𝑇1

𝐶2 𝐶1

𝜕𝐶

𝑇2

𝐶′
1 𝐶′

2

𝜕𝐶

Figure 1.1: The cut along the embedded disc 𝐶 in each of the tori yields two surfaces,
𝐶1 and 𝐶2, in the first torus and two surfaces, 𝐶′

1 and 𝐶′
2, in the second

torus 𝑇2. For better visualisation the surfaces are drawn with a curve. The
gluing of 𝐶1 with 𝐶′

1 and of 𝐶2 with 𝐶′
2 results in a translation structure on

(𝑇1 ∖ 𝜕𝐶) ∪ (𝑇2 ∖ 𝜕𝐶). The outer sides of the cube representing the torus 𝑇1
are glued with their respective opposite side in 𝑇1 and likewise for 𝑇2.

𝑇1

𝐶

𝜕𝐶 𝑇2

𝐶

𝜕𝐶

Figure 1.2: Example of a more sophisticated gluing of two tori along an embedded surface
𝐶. The surface 𝐶 has a boundary component 𝜕𝐶 but is not retractable to a
disc-surface like in figure 1.1. Again, after the gluing, the translation structure
is given on all of the two tori except on the boundary 𝜕𝐶.
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1 Fundamentals on Translation Manifolds

𝑀 𝑎

𝑏
𝑑eucl

Figure 1.3

for 𝑥, 𝑦 ∈ 𝑀. The length ℓ(𝛾) of a path 𝛾 is measured locally by the pullback of the
Euclidean metric, i.e. locally ℓ(𝛾) = ℓ(𝜑(𝛾)) for a chart 𝜑. So the path length of a path 𝛾
on 𝑀 is

ℓ(𝛾) ≔
𝑛

∑
𝑖=1

ℓ(𝜑𝑖(𝛾∣[𝑡𝑖−1,𝑡𝑖])), (1.3)

where 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 1 is a subdivision of [0, 1] such that 𝛾∣[𝑡𝑖−1,𝑡𝑖] is contained
in a chart 𝜑𝑖: 𝑈𝑖 → ℝ𝑚 and the ℓ(⋅) on the right-hand side denotes the usual path length
in ℝ𝑚.

We have that – per definitionem – a translation manifold is a length metric space
(also called interior space). It is worth mentioning that the flat metric defined above
coincides locally with the pullback of the Euclidean metric and is therefore indeed a
metric. Moreover, it immediately follows:

Lemma 1.1.6. Charts of a translation manifold are local isometries.

We will later explore in corollary 1.3.11 how local this isometric property is.

Remark 1.1.7. Note that the metric defined via the path length does not need to
coincide globally with the (possibly) induced Euclidean metric by pullback via the charts.
Consider the C-shaped set in ℝ2 depicted in figure 1.3 with the atlas consisting of the
inclusion 𝑀 ↪ ℝ2. Here the Euclidean distance 𝑑eucl between 𝑎 and 𝑏 is different than
the distance given by the flat metric induced by the path length, which has to ‘go around’
and is thus longer.

Definition 1.1.8 (Singularities). The singularities 𝛴 of a translation manifold 𝑀 are
defined as

𝛴 ≔ 𝑀 ∖ 𝑀 (1.4)

where 𝑀 is the metric completion of 𝑀 with respect to the flat metric.
A singularity 𝜎 ∈ 𝛴 is called removable, if there is an open neighbourhood 𝑈 ⊆ 𝑀 of

𝜎 and a map 𝜑: 𝑈 → ℝ𝑛 such that 𝒜 ∪ {𝜑} is a translation atlas for 𝑀 ∪ 𝑈. Note that
𝑈 might contain more singularities than just 𝜎, which then are also removable using the
same chart 𝜑.

Remark 1.1.9. For a flat surface the singularities are (mostly) isolated points, so
speaking of a singularity is unambiguous. In higher dimensions the singular points

10



1.1 Definition of a Translation Manifold

themselves can form structures, e.g. all points on an edge of a cube can be singularities.
In this case we also refer to the whole edge as a singularity although it consists of many
individual singular points.

Example 1.1.10. a) 𝑀 = ℝ𝑚 with the identity as a global chart 𝜑 = id: 𝑀 → ℝ𝑚

has no singularities since ℝ𝑚 is already metrically complete.

b) 𝑀 = 𝐵(0, 1) ⊆ ℝ𝑚 with the inclusion as a global chart 𝜑: 𝑀 ↪ ℝ𝑚. The metric
completion of 𝑀 is the closed ball 𝑀 = �̄�(0, 1) and the singularities are/can be
thought of as the boundary of 𝑀 in ℝ𝑚.

c) 𝑀 = �̇�(0, 1) ⊆ ℝ𝑚 with the inclusion as a global chart 𝜑: 𝑀 ↪ ℝ𝑚 for 𝑚 ≥ 2.
Similar to the previous example it has the boundary as singularities but also the
centre point 0. We can include the singular centre point into 𝑀 and still have a
translation structure on 𝑀 ∪ {0} (which is the previous example). The center is
therefore a removable singularity. We will discuss this type of isolated singularity
in depth in section 2.2.2.

d) The 𝑚-torus 𝑀 = ℝ𝑚/ℤ𝑚 has no singularities. It is a compact space and thus
metrically complete.

e) Gluing of two 𝑚-tori along an (𝑚 − 1)-hyperball 𝐶 as in example 1.1.4 e) yields
more interesting singularities. The metric completion is the two 𝑚-tori glued along
the closed (𝑚 − 1)-hyperball 𝐶 via a translation. The singularities are therefore
the embedded boundary of 𝐶 in each of the tori which get identified. So the
set of singularities is homeomorphic to (a single copy of) the boundary of 𝐶 –
see figure 1.4.

In two dimensions there is the well-studied concept of a finite translation surface often
just referred to as translation surface.

Definition 1.1.11 (Finite Translation Surface I). A finite translation surface is a
two-dimensional translation manifold with the additional conditions that the metric
completion is a closed surface without boundary and the number of singular points is
finite.

A finite translation surface can also be defined in two very different but equivalent
ways. These different aspects give rise to the beautiful and rich theory of flat surfaces. A
summary of these definitions follows, for more details we refer to the higher dimensional
definitions (definitions 1.1.14 and 1.1.15).

Definition 1.1.12 (Finite Translation Surface II). A finite translation surface is
the object obtained by gluing finitely many polygons in the plane in the following way:
each polygon is endowed with an orientation, and two sides of opposite orientation but
equal length are glued via a translation in ℝ2. The metric structure is inherited from ℝ2

and the singularities are the corners of the polygons.
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𝑇1

𝐶

𝜕𝐶

𝑇2

𝐶

𝜕𝐶

Figure 1.4: Gluing of two tori along an embedded disc 𝐶 results in the boundary 𝜕𝐶
of 𝐶 becoming singular. If we walk around a point on 𝜕𝐶 starting in 𝑇1,
we pass through 𝐶 and after a full 360° turn we land at the same point we
started but in the other torus. After walking another 360° we come back to
the point we started at in 𝑇1. During the walk the surface 𝐶 works like a
portal teleporting us from one torus to the other and back.
The fact that we need to walk 720° to come back to the starting point implies
that we cannot find a neighbourhood for that singular point which is locally
isometric to the Euclidean space because in the latter we would always only
need to walk 360° to return to the starting point. Thus, 𝜕𝐶 consists entirely
of non-removable singularities.

Definition 1.1.13 (Finite Translation Surface III). A finite translation surface is
a Riemann surface, i.e. a closed surface with a complex structure and without boundary,
together with a non-zero holomorphic 1-form on it. The holomorphic 1-form is also called
Abelian differential. The charts for the translation manifold are obtained by integrating
the holomorphic 1-form along paths and the singularities are the zeros of the 1-form.

Both of these definitions can be generalised to higher dimensions. The latter, however,
needs to be given some additional consideration as a complex structure cannot be
generalised to odd dimensions over ℝ.

1.1.2 Definition with Polytopes

The second definition constructs translation manifolds by gluing polytopes along their
sides in the way you would imagine. The precise definition is a little technical as we have
to pay attention to the orientation and the singularities.

Definition 1.1.14 (Translation Manifold II). Let 𝑃𝑖 ⊆ ℝ𝑚 be (not necessarily con-
vex) polytopes with 𝑖 ∈ 𝐼 for some index set 𝐼. Pick an orientation on each polytope.
The sides of the polytopes are partitioned into pairs such that each pair consists of sides
with opposite orientation and which are isometric via a translation. Denote by 𝑃 𝑚−2

𝑖

12
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𝐴′ 𝐴
𝐵

𝐶

Figure 1.5: The side 𝐴′ of the first cube can be glued with the side 𝐴 of the second cube
because they are isometric via a translation and have opposite orientations
(the interior of the cubes are on opposite sides after identifying 𝐴 with 𝐴′).
The side 𝐴′ cannot be glued with side 𝐵 even though they are isometric since
they are not isometric via a translation.
The side 𝐴′ can also not be glued with the side 𝐶 even though they are
isometric via translation because they have the same orientation (the interior
of the cubes would end up being on the same side after identifying 𝐴′ with 𝐶).

the codimension two skeleton of the polytope 𝑃𝑖. The translation manifold 𝑀 is the
topological space

𝑀 = (∐
𝑖∈𝐼

(𝑃𝑖 ∖ 𝑃 𝑚−2
𝑖 ))/∼, (1.5)

where the equivalence relation is induced by identifying the relative interiors of the pairs
of sides via the translation. The set of singularities is the union of the codimension two
skeletons

𝛴 = (∐
𝑖∈𝐼

𝑃 𝑚−2
𝑖 )/∼ (1.6)

again identified via the translations for the pairs. The metric structure on 𝑀 is obtained
by locally identifying the polytope with its embedding in ℝ𝑚. Note that due to the choice
of opposite orientation, two solid hemispheres which are glued by an identification of
sides match up perfectly to build isometrically a solid ball in ℝ𝑚 (cf. figure 1.5).

1.1.3 Definition using 𝟏-Forms
The last definition uses 1-forms and the language of differential geometry.

Recall that a 1-form 𝜔 on an 𝑚-dimensional, differentiable manifold 𝑀 is a smooth
section of the cotangent bundle 𝑇 ∗𝑀, i.e. 𝜔: 𝑀 → 𝑇 ∗𝑀 with 𝜔(𝑝) ∈ 𝑇 ∗

𝑝 𝑀 for all 𝑝 ∈ 𝑀.
Locally on a chart 𝜑: 𝑈 → ℝ𝑚, any 1-form 𝜔 can be written as

𝜔∣𝑈 =
𝑚

∑
𝑖=1

𝑓𝑖 d𝑥𝑖, (1.7)

where 𝑓𝑖: 𝑈 → ℝ are smooth functions. A 1-form is called closed iff d𝜔 = 0 and called
exact iff 𝜔 = d𝑓 for some 0-form 𝑓, i.e. for a smooth function 𝑓: 𝑀 → ℝ. Here d denotes
the (exterior) derivative operator mapping 𝑘-forms to (𝑘 + 1)-forms.
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Definition 1.1.15 (Translation Manifold III). A translation manifold of dimension
𝑚 is an 𝑚-dimensional, differentiable manifold 𝑀 together with 𝑚 closed 1-forms 𝜔1,…,
𝜔𝑚 such that 𝜔1 ∧ ⋯ ∧ 𝜔𝑚 has no zeros on 𝑀.

The condition for 𝜔1 ∧ ⋯ ∧ 𝜔𝑚 to have no zeros on 𝑀 can be rephrased to: 𝜔1,…, 𝜔𝑚
are pointwise linearly independent, that is 𝜔1(𝑝),…, 𝜔𝑚(𝑝) are linearly independent in
the vector space 𝑇 ∗

𝑝 𝑀 for all 𝑝 ∈ 𝑀.
When comparing this with the definition of a translation surface, we see that we have

replaced one complex-valued 1-form with two real-valued 1-forms. Their connection
being – as expected – the mapping of the complex 1-form to its real and imaginary
part. The condition for the 1-form of being holomorphic is replaced by being closed.
The characterisation of the singularities as zeros is replaced by the characterisation via
linearly dependence.

Remark 1.1.16. There are two viewpoints to this definition.

(VP1) The first one is to consider the translation manifold 𝑀 to be the set of regular
points, i.e. does not contain singularities. The singularities are later ‘added’
via the metric completion: 𝛴 = 𝑀 ∖ 𝑀. This is the point of view we used in
definition 1.1.15 and is in line with definition 1.1.1. For our previous definition,
this means that we require the 1-forms to be linearly independent on all of 𝑀.

(VP2) The second point of view is to consider the translation manifold 𝑁 to be the set
of all points (singular and regular). The set 𝛴 of singularities is then defined as a
subset of 𝑁. That is 𝑁 corresponds to 𝑀 above and 𝑁 ∖ 𝛴 to 𝑀. This viewpoint
is used in definition 1.1.13 and usually requires the 1-forms to be defined on all of
𝑁, i.e. on regular points and singularities. The singularities are then defined as
the points where the 1-forms are not linearly independent.

Note that the two definitions resulting from these points of view are slightly different for
corner cases as the latter requires the 1-forms to be extendable to the closure 𝑀.

Example 1.1.17. Let 𝑇 ≔ ℝ2/ℤ2 be the torus. Consider the two closed 1-forms
𝜔1 ≔ sin(2𝜋𝑥) d𝑥 and 𝜔2 ≔ d𝑦 on 𝑇.

With the second viewpoint (VP2) we have 𝑁 ≔ 𝑇 and the set of singularities 𝛴2
are all the points where 𝜔1 and 𝜔2 are linearly dependent. In this example we have
𝛴2 = {(𝑥, 𝑦) ∈ 𝑇 | 𝑥 = 𝑘𝜋 for some 𝑘 ∈ ℤ}. Hence the translation surface 𝑇 ∗ ≔ 𝑇 ∖ 𝛴2
decomposes into two connected components.

With the first point of view (VP1), we start with 𝑀 ≔ 𝑇 ∗ and 𝜔1 and 𝜔2 are only
defined on 𝑇 ∗. The set of singularities is then 𝛴1 ≔ 𝑀 ∖ 𝑀, where the metric is induced
by the charts given by 𝜔1 and 𝜔2 (see theorem 1.1.23 below).

Be aware that 𝛴1 ≠ 𝛴2 in this example. This is because 𝑇 ∗ has two connected
components and thus their metric completions do not overlap. With the second viewpoint
(VP2), however, the connected components are still tied together by the underlying 𝑁
resulting in fewer singularities 𝛴2 because 𝛴2 is a subset of 𝑁 .
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Remark 1.1.18 (A Translation Surface is a two-dimensional Translation Manifold).
Given a translation surface (𝑋, 𝜔) as a closed Riemann surface 𝑋 together with a non-
zero holomorphic 1-form 𝜔, i.e. the classic definition (definition 1.1.13), we get a two-
dimensional translation manifold by considering 𝑋 as a smooth real two-dimensional
manifold and the real part ℜ𝜔 and imaginary part ℑ𝜔 of 𝜔 as real-valued 1-forms.

Indeed, ℜ𝜔 and ℑ𝜔 are linearly independent at point 𝑝 if and only if 𝜔 is non-zero
at 𝑝. This can be checked locally: Locally on a chart 𝑈 ⊆ 𝑋 we can describe 𝜔 as
𝜔 = 𝑓 d𝑧 = (ℜ𝑓 + 𝑖ℑ𝑓)(d𝑥 + 𝑖 d𝑦) for some holomorphic function 𝑓: 𝑈 → ℂ. We have

ℜ𝜔 = ℜ𝑓 d𝑥 − ℑ𝑓 d𝑦, ℑ𝜔 = ℑ𝑓 d𝑥 + ℜ𝑓 d𝑦 (1.8)

and thus
ℜ𝜔 ∧ ℑ𝜔 = ((ℜ𝑓)2 + (ℑ𝑓)2)(d𝑥 ∧ d𝑦). (1.9)

Therefore, (ℜ𝜔∧ℑ𝜔)(𝑝) = 0 if and only if 𝑓(𝑝) = 0, in other words if and only if 𝜔(𝑝) = 0.
So 𝑀 ≔ 𝑋 ∖ {𝑝 ∈ 𝑋 | 𝜔(𝑝) = 0} together with ℜ𝜔 and ℑ𝜔 is a (two-dimensional)

translation manifold according to definition 1.1.15. Because 𝑋 is closed and the zeros of
𝜔 are discrete, the set of singularities given by the metric completion is precisely the set
{𝑝 ∈ 𝑋 | 𝜔(𝑝) = 0}. Thus, the translation manifold (𝑀, ℜ𝜔, ℑ𝜔) is exactly the translation
surface (𝑋, 𝜔) and definition 1.1.15 is indeed a generalisation of definition 1.1.13.

The above remark shows that if 𝜔1 and 𝜔2 are the real and imaginary part of a
holomorphic 1-form, then they become linearly dependent at point 𝑝 if and only if both
vanish at point 𝑝. However, if 𝜔1 and 𝜔2 are not induced by a holomorphic 1-form, then
linearly dependent in point 𝑝 does not imply that both 1-forms must vanish. It can be
that only one of the 1-forms vanishes or that none of them do, see example 1.1.25 for an
illustration of this.

Remark 1.1.19. The more correct analogue of holomorphic for higher dimensions is a
harmonic 1-form. However, harmonic in 𝑚 dimensions can only be defined on manifolds
with a Riemannian metric. This is a slightly stronger prerequisite on our manifold than
just differentiable. For the construction of a translation atlas, which we will present in a
moment, a closed 1-form is enough. Furthermore, theorem 1.1.24 states that the 1-forms
𝜔𝑖 become harmonic with respect to the translation structure they induce, so in the end
we have not lost anything.

Before we begin formulating the translation charts for the above definition of a
translation manifold with 1-forms, we need to recall (a consequence of) the Poincaré
Lemma [Lee13, Theorem 11.49 and Corollary 11.50, pp. 296–297]:

Lemma 1.1.20 (Poincaré Lemma). On a simply connected manifold closed 𝑘-forms
are exact.

This Poincaré Lemma is the 𝑘-form analogue for a holomorphic function to have a
primitive on a simply connected domain.

With this tool equipped we can construct (well-defined) charts on 𝑀 as follows:
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Lemma 1.1.21. Let 𝑀 be an 𝑚-dimensional, differentiable manifold, 𝑝 ∈ 𝑀, and 𝜔1,…,
𝜔𝑚 closed 1-forms.

If 𝜔1(𝑝),…, 𝜔𝑚(𝑝) are linearly independent in 𝑇 ∗
𝑝 𝑀, then there is an open neighbourhood

𝑈 ⊆ 𝑀 of 𝑝 such that

𝜑: 𝑈 → ℝ𝑚, 𝑞 ↦ (∫
𝑞

𝑝
𝜔1, … , ∫

𝑞

𝑝
𝜔𝑚) (1.10)

is a homeomorphism. Here ∫𝑞
𝑝

𝜔𝑖 denotes the integral over 𝜔𝑖 along any path from 𝑝 to 𝑞
which lies inside 𝑈.

Proof. We have three things to check: 1. 𝜑 is well-defined, 2. 𝜑 is bijective, and 3. 𝜑
and 𝜑−1 are continuous.

Since linearly independence is an open condition, we find an open neighbourhood
𝑈 ⊆ 𝑀 around 𝑝 on which 𝜔1(𝑝),…, 𝜔𝑚(𝑝) are linearly independent. Possibly making 𝑈
smaller, we may further assume that 𝑈 is simply connected. Then (the restrictions of)
the closed 1-forms 𝜔𝑖 are exact on 𝑈. Therefore, the integral

∫
𝑞

𝑝
𝜔𝑖 (1.11)

for 𝑞 ∈ 𝑈 is independent of the path taken between 𝑝 and 𝑞 inside of 𝑈 [Lee13, Theorem
16.26]. Thus, the map 𝜑 of the statement is well-defined.

Since 𝜔𝑖 are exact on 𝑈, there are continuous differentiable functions 𝑓𝑖: 𝑈 → ℝ with
d𝑓𝑖 = 𝜔𝑖 on 𝑈. We have [Lee13, Theorem 11.39, p. 291]

∫
𝑞

𝑝
𝜔𝑖 = 𝑓𝑖(𝑞) − 𝑓𝑖(𝑝). (1.12)

By altering 𝑓𝑖 by a constant we may assume that 𝑓𝑖(𝑝) = 0 and this does not affect
d𝑓𝑖 = 𝜔𝑖. With this choice our chart in spe 𝜑 becomes

𝜑(𝑞) = (𝑓1(𝑞), … , 𝑓𝑚(𝑞)). (1.13)

To show that 𝜑 is bijective and a homeomorphism we use the inverse function theorem
(or the implicit function theorem). However, instead of proving bijectivity and homeo-
morphism for 𝜑, we show it for 𝜑 ∘ 𝜓−1, where 𝜓: 𝑈 → ℝ𝑚 is a chart of the manifold
𝑀 around 𝑝. Indeed, this suffices since 𝜓 is a homeomorphism. By making 𝑈 smaller if
necessary, we find a chart 𝜓: 𝑈 → ℝ𝑚 around 𝑝. In this chart the 1-form 𝜔𝑖 is given by

𝜔𝑖(𝑝) =
𝑚

∑
𝑗=1

𝜕(𝑓𝑖 ∘ 𝜓−1)
𝜕𝑥𝑗

(𝜓(𝑝)) d𝑝𝑥𝑗 (1.14)

for 𝑝 ∈ 𝑈. The derivative of 𝜑 ∘ 𝜓−1: ℝ𝑚 ⊇ 𝜓(𝑈) → ℝ𝑚 at 𝜓(𝑝) ∈ ℝ𝑚 is

𝐷(𝜑 ∘ 𝜓−1)(𝜓(𝑝)) =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜕(𝑓1 ∘ 𝜓−1)
𝜕𝑥1

(𝜓(𝑝)) … 𝜕(𝑓1 ∘ 𝜓−1)
𝜕𝑥𝑚

(𝜓(𝑝))

⋮ ⋮
𝜕(𝑓𝑚 ∘ 𝜓−1)

𝜕𝑥1
(𝜓(𝑝)) … 𝜕(𝑓𝑚 ∘ 𝜓−1)

𝜕𝑥𝑚
(𝜓(𝑝))

⎞⎟⎟⎟⎟⎟⎟
⎠

. (1.15)
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Note that the entries of a row are exactly the coefficients of 𝜔𝑖(𝑝) = d𝑝𝑓𝑖 ∈ 𝑇 ∗
𝑝 𝑀 with

respect to the basis d𝑝𝑥1,…, d𝑝𝑥𝑚. Because 𝜔1(𝑝),…, 𝜔𝑚(𝑝) are linearly independent, the
derivative 𝐷(𝜑 ∘ 𝜓−1) is invertible. Hence, by the implicit function theorem we have that
on a possible even smaller neighbourhood 𝑈 around 𝑝 the map𝜑 ∘ 𝜓−1 is invertible and a
homeomorphism. �

Remark 1.1.22. The map 𝜑 of lemma 1.1.21 is in fact a chart for 𝑀 fitting into the
already existing (differentiable) atlas. This can be seen in the previous proof: the
inverse function theorem states that the transition map 𝜑 ∘ 𝜓−1 has the same differential
properties as 𝑓𝑖 ∘ 𝜓−1.

Now that we have a chart around each point 𝑝, we can show that these charts can be
combined into a translation atlas:
Theorem 1.1.23. Let 𝑀 be an 𝑚-dimensional, differentiable manifold and 𝜔1,…, 𝜔𝑚
closed 1-forms.

Then {𝜑𝑝 | 𝑝 ∈ 𝑀, 𝜔1(𝑝) ∧ ⋯ ∧ 𝜔𝑚(𝑝) ≠ 0} is a translation atlas for 𝑀 ∖ {𝑝 ∈ 𝑀 |
𝜔1(𝑝) ∧ ⋯ ∧ 𝜔𝑚(𝑝) = 0} where

𝜑𝑝: 𝑈𝑝 → ℝ𝑚, 𝑞 ↦ (∫
𝑞

𝑝
𝜔1, … , ∫

𝑞

𝑝
𝜔𝑚) (1.16)

is the chart described in lemma 1.1.21 around the point 𝑝.

Proof. Let 𝜑𝑝 and 𝜑𝑞 be two charts with 𝑈𝑝 ∩𝑈𝑞 ≠ ∅. We must show that the transition
map 𝜑𝑝 ∘ 𝜑−1

𝑞 is locally a translation. Because this is a local property, we may consider a
suitable small neighbourhood. To this end, let 𝑟 ∈ 𝑈𝑝 ∩ 𝑈𝑞 and 𝑈𝑟 ⊆ 𝑈𝑝 ∩ 𝑈𝑞 a connected
neighbourhood of 𝑟.

For any point 𝑥 ∈ 𝑈𝑟 and any closed 1-form 𝜔𝑖, we have

∫
𝑥

𝑝
𝜔𝑖 = ∫

𝑟

𝑝
𝜔𝑖 + ∫

𝑥

𝑟
𝜔𝑖 (1.17)

and all the integrals are well-defined, i.e. independent of the choice of path in 𝑈𝑝
connecting the end points, by the construction of the chart 𝜑𝑝, namely because 𝑈𝑝 is
simply connected. Moreover, this stays true, when interpreting the last integral ∫𝑥

𝑟
𝜔𝑖 in

𝑈𝑟, i.e. only paths in 𝑈𝑟 ⊆ 𝑈𝑝 connecting the end points are allowed.
Similarly, we have

∫
𝑥

𝑟
𝜔𝑖 = ∫

𝑞

𝑟
𝜔𝑖 + ∫

𝑥

𝑞
𝜔𝑖 (1.18)

where the integrals are well-defined for any path in 𝑈𝑞 connecting the end points. Again,
we can reinterpret the left hand side to only consider paths in 𝑈𝑟 ⊆ 𝑈𝑞.

Plugging equation (1.18) in equation (1.17), we get

∫
𝑥

𝑝
𝜔𝑖 = ∫

𝑟

𝑝
𝜔𝑖 + ∫

𝑞

𝑟
𝜔𝑖 + ∫

𝑥

𝑞
𝜔𝑖 =

≕𝑐(𝑝,𝑞,𝑟,𝜔𝑖)≕𝑐𝑖

⏞⏞⏞⏞⏞⏞⏞
∫

𝑟

𝑝
𝜔𝑖

⏟
in 𝑈𝑝

+ ∫
𝑞

𝑟
𝜔𝑖

⏟
in 𝑈𝑞

+ ∫
𝑥

𝑞
𝜔𝑖

⏟
in 𝑈𝑞

= 𝑐𝑖 + ∫
𝑥

𝑞
𝜔𝑖. (1.19)
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The number 𝑐𝑖 = 𝑐(𝑝, 𝑞, 𝑟, 𝜔𝑖) is a constant independent of 𝑥 and only depending on the
points 𝑝, 𝑞, 𝑟 and the 1-form 𝜔𝑖.

At last, we verify that the transition map 𝜑𝑝 ∘ 𝜑−1
𝑞 is a translation on 𝑈𝑟 ⊆ 𝑈𝑝 ∩ 𝑈𝑞.

Let 𝑦 ∈ 𝜑𝑞(𝑈𝑟) ⊆ ℝ𝑚, then we have for the 𝑖th component of the transition map

(𝜑𝑝 ∘ 𝜑−1
𝑞 )𝑖(𝑦) = ∫

𝜑−1
𝑞 (𝑦)

𝑝
𝜔𝑖

(1.19)
= 𝑐𝑖 + ∫

𝜑−1
𝑞 (𝑦)

𝑞
𝜔𝑖 = 𝑐𝑖 + (𝜑𝑞)𝑖(𝜑−1

𝑞 (𝑦)) = 𝑐𝑖 + 𝑦𝑖. (1.20)

Thus, 𝜑𝑝 ∘ 𝜑−1
𝑞 is locally around 𝜑𝑞(𝑟) (namely on 𝜑𝑞(𝑈𝑟)) a translation on ℝ𝑚 by the

vector with entries 𝑐𝑖 = 𝑐(𝑝, 𝑞, 𝑟, 𝜔𝑖). �

Theorem 1.1.24. The closed 1-forms 𝜔1, … , 𝜔𝑚 are harmonic with respect to the
Riemannian metric induced by the translation structure on 𝑀∖{𝑝 ∈ 𝑀|𝜔1(𝑝)∧⋯∧𝜔𝑚(𝑝) =
0}.

Proof. On charts constructed with the 1-forms 𝜔1, … , 𝜔𝑚 the 1-form 𝜔𝑖 is just d𝑥𝑖,
thus harmonic. �

The above proof also shows that for a two-dimensional translation manifold (𝑀; 𝜔1, 𝜔2),
the 1-form 𝜔1 + 𝑖𝜔2 is a holomorphic on 𝑀 ∖ {𝑝 ∈ 𝑀 | 𝜔1(𝑝) ∧ 𝜔2(𝑝) = 0}. Generally we
cannot expect that this also holds on the singular points as the following example shows:

Example 1.1.25. Let 𝑀 = ℝ2 with id: ℝ2 → ℝ2 as global chart. Consider the 1-forms

𝜔1 = (𝑥2 + 𝑦2) d𝑥 + (2𝑥𝑦 + 1) d𝑦 𝜔2 = d𝑦. (1.21)

Both forms are closed. We note that all the following integrals are well-defined because
𝜔1 and 𝜔2 are closed on ℝ2 and ℝ2 is simply connected.

We have (𝜔1 ∧ 𝜔2)(𝑥, 𝑦) = (𝑥2 + 𝑦2)(d𝑥 ∧ d𝑦) = 0 if and only if (𝑥, 𝑦) = (0, 0). We
point out that neither form is zero in (0, 0), nevertheless they become linearly dependent
in (0, 0).

Let 𝑀∗ ≔ 𝑀 ∖ {(0, 0)}. The charts around a point 𝑝 ∈ 𝑀∗ as described by the-
orem 1.1.23 are

�̃�𝑝: 𝑈𝑝 → ℝ2, 𝑞 ↦ (∫
𝑞

𝑝
𝜔1, ∫

𝑞

𝑝
𝜔2) . (1.22)

with 𝑈𝑝 a sufficiently small neighbourhood around 𝑝. However, to avoid unnecessary
computation, we post-compose each chart 𝜑𝑝 with the translation

𝑡𝑝: 𝑥 ↦ 𝑥 + (∫
𝑝

0
𝜔1, ∫

𝑝

0
𝜔2) . (1.23)

Thus, all charts look like

𝜑𝑝 = 𝑡𝑝 ∘ �̃�𝑝: 𝑈𝑝 → ℝ2, 𝑞 ↦ (∫
𝑞

0
𝜔1, ∫

𝑞

0
𝜔2) . (1.24)

18



1.1 Definition of a Translation Manifold

In particular they can be combined into a single map 𝜑 (but not necessarily a chart) on
all of ℝ2.

Calculating the integrals yields

𝜑𝑝: 𝑈𝑝 → ℝ2, (𝑥, 𝑦) ↦ (1
3

𝑥3 + 𝑥𝑦2 + 𝑦, 𝑦) . (1.25)

From this concrete description we can derive that 𝜑, which is just 𝜑𝑝 but defined on all
of ℝ2, is bijective on ℝ2. Thus, 𝜑 is a global chart on 𝑀∗.

Walking around the origin and using that 𝜑 is a bijective chart on 𝑀∗, we see that
(0, 0) is a removable singularity.

By the note above 𝜔1 + 𝑖𝜔2 is holomorphic on 𝑀∗ ⊆ ℝ2 ≅ ℂ. However, 𝜔1 + 𝑖𝜔2 is not
holomorphic on all of 𝑀. Because if it were, then at all points 𝑝 of 𝑀 either both 𝜔1 and
𝜔2 must vanish at 𝑝, or they must be linearly independent at 𝑝 (cf. remark 1.1.18). In
this example neither is the case for 𝑝 = (0, 0).

The explanation for this is that on 𝑀∗ the charts id and 𝜑 are compatible, i.e. they
define the same differential and complex structure. However, on all of 𝑀 the two charts
are not compatible any more because 𝜑 is not a diffeomorphism of ℝ2. Therefore, the
atlases {id} and {𝜑} induce different differential and complex structures on 𝑀. Be aware
that the structures of 𝑀 are different but they are still isomorphic (via the map 𝜑 as
map between 𝑀 and 𝑀).

With respect to the structure induced by 𝜑 on 𝑀, the holomorphic 1-form 𝜔1 + 𝑖𝜔2
on 𝑀∗ can be extended to a holomorphic 1-form on all of 𝑀. However, the same form
cannot be extended on 𝑀 with respect to the structure induced by id.

The same re-interpretation process can also be done with any holomorphic 1-form
and other charts where the singularities cover the points at which the charts are not
compatible.

1.1.4 Comparison of the Definitions

The obvious question which arises is whether these definitions are equivalent when some
restrictions like a finite number of polytopes are imposed.

General Case

For the general case, the definition given via a translation atlas (definition 1.1.1) and
via 1-forms (definition 1.1.15) are equivalent. We have already seen how 1-forms give
rise to a translation structure, for the other way around we need to realise that the local
1-forms d𝑥1, … , d𝑥𝑚 induced by a chart are closed as well as linearly independent on
their chart and that they can be combined to a global closed 1-form on all of 𝑀 because
the transition maps between charts are translations, i.e. have derivative 1.

The definition via polytopes (definition 1.1.14) is strictly weaker as for this definition
singularities are always ‘straight’ because they are part of the codimension two skeleton
of the polytopes.
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Finite Case

For the definition via polytopes (definition 1.1.14) a good finiteness condition seems to be
to require only finitely many polytopes to be glued. Again for the same reason as before,
this definition is different than the other two as we still only have ‘straight’ singularities.

For a finite version of the definition via 1-forms (definition 1.1.15) we at least would
require that the 1-forms can be extended to the metric completion of 𝑀 and therefore that
the metric completion has a structure as a (differentiable) manifold. With this requirement
not all finite translation manifolds glued by polytopes yield a finite translation manifold
in the 1-form sense because not all glueings yield a manifold (see example 1.1.26).

This means that the two concepts – 1-form and polytope – which coincide in dimension
two, split in higher dimensions into distinct ones, which have some intersection but none
is a subset of the other.

Providing a finite equivalent for the definition with a translation atlas (definition 1.1.1)
is difficult because it is unclear how to imitate isolated (point) singularities. We could
require that the set of singularities 𝛴 has only finitely many connected components.
However, even a single component, which can now be a line or similar, can easily
accumulate by itself. A better analogue in higher dimensions would be that locally
around a singular point, 𝛴 has only a single connected component plus the requirement
that the metric completion is a manifold.

The same generalisation problem arises for the points of linear independence in the
1-form definition (definition 1.1.15). In the two-dimensional case the holomorphic nature
of the differential guarantees by way of the identity theorem that only finitely many
singularities can exist. If the 1-form is only smooth or even only differentiable, there is
no such restriction anymore. Thus, we have to impose a similar requirement as in the
previous paragraph for the points of linear dependence.

All in all we can say that it is (again) a lucky low dimensional phenomenon that for a
translation surface the three definitions of a finite translation surface coincide.

Example 1.1.26 (Three-dimensional L-shaped Translation Manifold).
The manifold depicted in figure 1.6 is called the three-dimensional L-shaped translation

Figure 1.6: The three-dimensional L-shaped translation manifold. Opposite sides are
glued by a translation.
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manifold. It is glued out of four cubes as shown in the image and the remaining (outer)
sides are glued with their opposite by a translation in 𝑥-, 𝑦-, or 𝑧-direction.

After the identification the space consists of 4 cubes, 12 sides, 6 edges (one being
visualised in the figure), and 1 vertex (also visualised in the figure). The translation
manifold itself is the gluing except for the edges and vertices. The metric completion is
the gluing including the (glued) edges and vertices.

The Euler characteristic of the metric completion is 1 − 6 + 12 − 4 = 3. By [Thu97,
Proposition 3.2.8, p. 122] a three-dimensional gluing is a manifold if and only if the
Euler characteristic is zero, thus the metric completion of this translation manifold is not
a manifold.

1.2 Translation Coverings
Translation coverings are a useful tool to describe and compare translation manifolds.
Basically, they are topological coverings which interact nicely with the translation
structure.

Definition 1.2.1 (Translation Covering). Let (𝑀, 𝒜) and (𝑁, ℬ) be two translation
manifolds of dimension 𝑚 with translation atlases 𝒜 and ℬ, respectively. A map
𝑝: (𝑀, 𝒜) → (𝑁, ℬ) is called translation covering if and only if

i) 𝑝 is a covering map of topological spaces,

ii) the translation structures given by 𝒜 and the pullback of ℬ along 𝑝 are the same.

The second condition means that for every 𝑥 ∈ 𝑀 and every neighbourhood 𝑈 of 𝑥 such
that 𝑝∣

𝑈
: 𝑈 → 𝑝(𝑈) is a homeomorphism and such that there is a chart 𝜑: 𝑝(𝑈) → ℝ𝑚

in ℬ, the map 𝜑 ∘ 𝑝: 𝑈 → ℝ𝑚 is a chart for 𝑀 which is compatible with 𝒜.

Remark 1.2.2. We can also reverse this definition: Given any (topological) covering
𝑝: 𝑀 → 𝑁 between a topological space 𝑀 and a translation manifold (𝑁, ℬ), then 𝑝
induces a translation structure on 𝑀, namely the pullback 𝑝∗(ℬ) of ℬ, and with this
structure 𝑝: (𝑀, 𝑝∗(ℬ)) → (𝑁, ℬ) becomes a translation covering.

Lemma 1.2.3. Let 𝑝: (𝑀, 𝒜) → (𝑁, ℬ) be a translation covering of 𝑚-dimensional
translation manifolds. If 𝑈 ⊆ 𝑀 is an open set such that 𝑝∣

𝑈
: 𝑈 → 𝑝(𝑈) is a homeo-

morphism, then 𝑝∣
𝑈

: 𝑈 → 𝑝(𝑈) is a translation, i.e. for all suitable charts 𝜑 ∈ 𝒜
and 𝜓 ∈ ℬ the map 𝜓 ∘ 𝑝∣

𝑈
∘ 𝜑−1 between subsets of ℝ𝑚 is a translation 𝑥 ↦ 𝑥 + 𝑐.

The following lemma shows that for a translation covering, the group of topological
Deck transformations is the same as the group of translation Deck transformations.

Lemma 1.2.4. Let 𝑝: (𝑀, 𝒜) → (𝑁, ℬ) be translation covering between translation
manifolds. Furthermore, let Deck(𝑀/𝑁) be the group of topological Deck transformations,
i.e.

Deck(𝑀/𝑁) = {𝑓: 𝑀 → 𝑀 | 𝑓 ∈ Aut(𝑀), 𝑝 ∘ 𝑓 = 𝑝}. (1.26)
Then every 𝑓 ∈ Deck(𝑀/𝑁) is locally a translation.
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Proof. Let 𝑓: 𝑀 → 𝑁 be a topological Deck trans-
formation. Choose charts (𝜑, 𝑈) and (𝜓, 𝑉 ) of 𝑀
such that 𝑝∣𝑈: 𝑈 → 𝑝(𝑈) and 𝑝∣𝑉: 𝑉 → 𝑝(𝑉 ) are
homeomorphisms and 𝑓(𝑈) ⊆ 𝑉. Since 𝑝 ∘ 𝑓 = 𝑝 and
𝑝∣𝑉 is invertible on 𝑝(𝑉 ), we have 𝑓∣𝑈 = 𝑝∣−1

𝑉 ∘ 𝑝∣𝑈.
Because 𝑝 and hence 𝑝∣−1

𝑉 are locally translations
(cf. lemma 1.2.3), so is 𝑓. �

𝑈 ⊇ 𝑀 𝑀 ⊆ 𝑉

𝑝(𝑈) ⊆ 𝑝(𝑉 ) ⊆ 𝑁

𝑓

𝑝 𝑝

1.3 Developing Map
An essential tool for dealing with translation manifolds is the developing map. Basically
the developing map is glued together out of charts whenever two charts overlap yielding
a chart-like map on all of 𝑀. This naive construction can have some ambiguity to it so
that instead of a map 𝐷: 𝑀 → ℝ𝑚 we get a map 𝐷: �̃� → ℝ𝑚 from the universal cover
�̃� of 𝑀.

This idea and concept of a developing map not only applies to translation manifolds
but can be done in the more general framework of (𝐺, 𝑋)-manifolds.

The concept of a (𝐺, 𝑋)-manifold is described in the literature, e.g. [Thu97, chapter 3].
Here we will repeat the definitions and statements we need and fill in some blanks.

1.3.1 (𝑮, 𝑿)-Manifolds
A (𝐺, 𝑋)-manifold is a generalisation of the concept that the transition maps are transla-
tions, which form a group.

Definition 1.3.1 ((𝑮, 𝑿)-manifold). Let 𝑋 be a connected manifold and 𝐺 a group
acting on 𝑋 via homeomorphisms.

A (𝐺, 𝑋)-manifold is a topological space 𝑀 with an (𝐺, 𝑋)-atlas. A (𝐺, 𝑋)-atlas is a
collection of maps 𝜑𝑖: 𝑈𝑖 → 𝑋, called charts, such that

i) 𝑈𝑖 is an open subset of 𝑀 and all 𝑈𝑖 cover 𝑀, i.e. ⋃𝑖 𝑈𝑖 = 𝑀,

ii) 𝜑𝑖 is an open embedding, i.e. homeomorphism onto an open subset of 𝑋,

iii) whenever two open sets 𝑈𝑖 and 𝑈𝑗 intersect, the transition map (also called change
of coordinates) 𝛾𝑖𝑗 ≔ 𝜑𝑖 ∘𝜑−1

𝑗 : 𝜑𝑗(𝑈𝑖 ∩𝑈𝑗) → 𝜑𝑖(𝑈𝑖 ∩𝑈𝑗) agrees locally with elements
of 𝐺, i.e. the domain of 𝛾𝑖𝑗 can be covered by open sets 𝑉𝑘 ⊆ 𝑋 such that for each
set 𝑉𝑘 there is an element 𝑔𝑘 ∈ 𝐺 with 𝛾𝑖𝑗∣𝑉𝑘

= 𝑔𝑘∣𝑉𝑘
.

Example 1.3.2. a) If 𝑋 = ℝ𝑚 and 𝐺 is the group of isometries of the Euclidean
space, a (𝐺, 𝑋)-manifold is called Euclidean or flat manifold.

b) If 𝑋 = 𝑆𝑚 is the sphere and 𝐺 = 𝑂(𝑚 + 1) is the orthogonal group acting on 𝑆𝑚,
a (𝐺, 𝑆𝑚)-manifold is called spherical or elliptic manifold.

c) If 𝑋 = ℍ𝑚 is the hyperbolic space and 𝐺 the group of hyperbolic isometries on ℍ𝑚,
a (𝐺, ℍ𝑚)-manifold is called hyperbolic manifold.
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𝑀

𝑈𝑖
𝑈𝑗

𝑋

𝜑𝑖(𝑈𝑖)

(𝛾𝑖𝑗𝜑𝑗)(𝑈𝑗)

𝜑𝑗(𝑈𝑗)

𝛾𝑖𝑗

𝜑𝑖

𝜑𝑗

Figure 1.7: Adjusting the image 𝜑𝑗(𝑈𝑗) by an element 𝛾𝑖𝑗 ∈ 𝐺 so that it matches up with
𝜑𝑖(𝑈𝑖). After the adjusting we can combine the charts to get a well-defined
map 𝑈𝑖 ∪ 𝑈𝑗 → 𝑋.

d) If 𝑋 = ℝ𝑚 and 𝐺 is the group of affine maps on ℝ𝑚, a (𝐺, ℝ𝑚)-manifold is called
affine manifold.

e) If 𝑋 = ℝ𝑚 and 𝐺 is the group of translations on ℝ𝑚, a (𝐺, ℝ𝑚)-manifold is called
translation manifold, cf. definition 1.1.1.

1.3.2 Developing Map

To be able to construct the developing map, we need a slightly stronger assumption
regarding the action of our group 𝐺 on 𝑋.

Definition 1.3.3 (Analytic Action). A group 𝐺 acts analytically on 𝑋 when the
following condition is fulfilled: If 𝑔, ℎ ∈ 𝐺 and there is an open set 𝑈 ⊆ 𝑋 on which 𝑔 and
ℎ coincide, i.e. 𝑔∣𝑈 = ℎ∣𝑈, then 𝑔 = ℎ on each connected component of 𝑋 intersecting 𝑈.

The basic idea of the developing map is to extend a chart 𝜑: 𝑈 → 𝑋 by combining
it with another chart which has some overlap with 𝑈. We can achieve this by using an
element of 𝐺 to make the codomains of the charts match-up.

However, we have to be careful to get a well-defined map since combining with different
charts in different orders might result in different extensions of the initial chart. It
transpires that we can resolve this ambiguity by extending the chart along paths and
then ascending to the universal cover of the (𝐺, 𝑋)-manifold.

Here is the construction in detail:

Combining two charts

We first describe the gluing construction for two charts: Let 𝑀 be a (𝐺, 𝑋)-manifold with
𝑋 a connected manifold and 𝐺 a group acting analytically on 𝑋 via homeomorphisms.
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Consider two charts 𝜑𝑖: 𝑈𝑖 → 𝑋 and 𝜑𝑗: 𝑈𝑗 → 𝑋, which overlap, i.e. 𝑈𝑖 ∩ 𝑈𝑗 ≠ ∅. With
regard to the definition of a (𝐺, 𝑋)-manifold, the transition map

̃𝛾𝑖𝑗 ≔ 𝜑𝑖 ∘ 𝜑−1
𝑗 : 𝜑𝑗(𝑈𝑖 ∩ 𝑈𝑗) → 𝜑𝑖(𝑈𝑖 ∩ 𝑈𝑗) (1.27)

locally coincides with some elements 𝑔𝑘 ∈ 𝐺. Because 𝐺 acts analytically, all the 𝑔𝑘
are equal on the individual connected components of 𝜑𝑗(𝑈𝑖 ∩ 𝑈𝑗). In other words ̃𝛾𝑖𝑗 is
represented by a single group element on each connected component. Phrased differently,
we have a locally constant map

𝛾𝑖𝑗: 𝑈𝑖 ∩ 𝑈𝑗 → 𝐺 (1.28)

with 𝛾𝑖𝑗(𝑥) = 𝑔 where 𝑔 is the element representing ̃𝛾𝑖𝑗 on the connected component of
𝜑𝑗(𝑥) in 𝜑𝑗(𝑈𝑖 ∩ 𝑈𝑗). Here we also used the homeomorphism 𝜑𝑗 to identify 𝑈𝑖 ∩ 𝑈𝑗 and
𝜑𝑗(𝑈𝑖 ∩ 𝑈𝑗) to ease the burden of notation later on.

This constructed 𝛾𝑖𝑗 has the following useful property: If we modify 𝜑𝑗 with it, we
get a chart which we can attach to 𝜑𝑖 without requiring any further modifications
(cf. figure 1.7). More precisely: If 𝑥 ∈ 𝑈𝑖 ∩ 𝑈𝑗, then the charts 𝛾𝑖𝑗(𝑥) ∘ 𝜑𝑗 and 𝜑𝑖 coincide
around 𝑥. In fact, if 𝑈𝑖 ∩ 𝑈𝑗 is connected, then 𝛾𝑖𝑗(𝑥) is independent of the choice of 𝑥
and 𝛾𝑖𝑗(𝑥) ∘ 𝜑𝑗 and 𝜑𝑖 coincide on the whole of 𝑈𝑖 ∩ 𝑈𝑗. In this case, we can extend 𝜑𝑖
onto 𝑈𝑖 ∪ 𝑈𝑗 using 𝛾𝑖𝑗(𝑥) ∘ 𝜑𝑗 resulting in a map 𝑈𝑖 ∪ 𝑈𝑗 → 𝑋. This extended map shares
many properties with 𝜑𝑖 and 𝜑𝑗 but is not necessarily a chart. For example injectivity
might get lost.

We can repeat this process extending 𝜑𝑖 further and further, however, we might run
into trouble when extending the map too far (cf. figure 1.8). The way to avoid this is to
pass to the universal cover of 𝑀.

Extending along paths

Fix a basepoint 𝑥0 ∈ 𝑀 and an initial chart 𝜑0: 𝑈0 → 𝑀 around that basepoint. We
denote by 𝜋: �̃� → 𝑀 the universal covering map of 𝑀 and identify the universal cover
�̃� with the space of homotopy classes of paths starting at 𝑥0. Let [𝛼] ∈ �̃� be a point in
the universal cover represented by a path 𝛼: [0, 1] → 𝑀. We will extend 𝜑0 along 𝛼.

To this end, we subdivide 𝛼 at times 𝑡0 = 0, 𝑡1,…, 𝑡𝑛 = 1 such that each subpath
𝛼∣[𝑡𝑖,𝑡𝑖+1] is contained in a chart 𝜑𝑖: 𝑈𝑖 → 𝑋 for 0 ≤ 𝑖 ≤ 𝑛 − 1 (𝜑0 being the initial chart
chosen above). As we go along 𝛼, we successively adjust the chart 𝜑𝑖 at each 𝛼(𝑡𝑖)
so that it can be used to extend the previously adjusted 𝜑𝑖−1 in a neighbourhood of
𝛼(𝑡𝑖) ∈ 𝑈𝑖−1 ∩ 𝑈𝑖. At step 𝑖 the newly adjusted chart is

𝛾01(𝛼(𝑡1)) ∘ 𝛾12(𝛼(𝑡2)) ∘ ⋯ ∘ 𝛾𝑖−1,𝑖(𝛼(𝑡𝑖)) ∘ 𝜑𝑖. (1.29)

Note that combining all of these adjusted charts into a single map might not yield a
well-defined map on ⋃𝑖 𝑈𝑖.

Lemma 1.3.4. Denote by 𝜑𝛼
0 the adjusted map of the last step which contains 𝛼(1), i.e.

𝜑𝛼
0 ≔ 𝛾01(𝛼(𝑡1)) ∘ 𝛾12(𝛼(𝑡2)) ∘ ⋯ ∘ 𝛾𝑛−2,𝑛−1(𝛼(𝑡𝑛−1)) ∘ 𝜑𝑛−1. (1.30)
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𝑀

•
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𝑥0
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𝑈0

𝑈1 = 𝑈3

𝑈2

𝑈4𝛼

𝛽

𝑋

•

• •

•
•𝑦4

•

𝜑0(𝑈0)

𝛾01𝜑1(𝑈1)

𝛾01𝛾12𝜑2(𝑈2)

∘
𝑦′

4

𝜑𝑖

Figure 1.8: Adjusting the charts 𝜑𝑖: 𝑈𝑖 → 𝜑𝑖(𝑈𝑖) along the path 𝛼. Here 𝑥𝑖 ≔ 𝛼(𝑡𝑖).
Note that the same chart might be used multiple times – in this figure we
have 𝜑1 = 𝜑3 – and also might have non-connected intersections – here 𝑈1
and 𝑈2. If there are multiple connected components, then the connected
component with the current 𝑥𝑖 is the one to consider.
This figure also illustrates that different paths can lead to different extensions:
Here the image of 𝑥4 can either be 𝑦4 or 𝑦′

4 depending on whether we adjust
along path 𝛼 or path 𝛽.

Then the germ of 𝜑𝛼
0 at 𝛼(1) is independent of the choices of charts 𝜑𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1

and the subdivision of [0, 1], and only depends on the choice of the homotopy class of 𝛼,
the basepoint 𝑥0 and the initial chart 𝜑0. In other words, if [𝛼] = [𝛽], then 𝜑𝛼

0 = 𝜑𝛽
0 in

a neighbourhood of the end point 𝛼(1) = 𝛽(1).

Proof. We prove the statement in three steps:
1. the independence of the choice of the charts,
2. the independence of the choice of the subdivision, and
3. the independence of the choice of the representative of the homotopy class.

Independence of the choice of charts
Let 𝑡0, … , 𝑡𝑛 be a subdivision of the interval [0, 1] and 𝛼: [0, 1] → 𝑀 a representative of
the homotopy class. Let 𝜑𝑖: 𝑈𝑖 → 𝑋 be charts containing the path segment 𝛼∣[𝑡𝑖,𝑡𝑖+1] for
0 ≤ 𝑖 ≤ 𝑛 − 1. Further, let 𝜓𝑖: 𝑉𝑖 → 𝑋 be a second set of charts containing the path
segment 𝛼∣[𝑡𝑖,𝑡𝑖+1] for 0 ≤ 𝑖 ≤ 𝑛 − 1 and with the initial chart 𝜓0 = 𝜑0.

We proceed by induction. For 𝑛 = 0 we have 𝜑𝛼
0 = 𝜑0 = 𝜓0 and there is nothing to

prove. Let the statement be true for subdivisions consisting of up to 𝑛 intervals, i.e. we
have

𝛾01(𝛼(𝑡1)) ∘ 𝛾12(𝛼(𝑡2))∘ ⋯ ∘ 𝛾𝑛−2,𝑛−1(𝛼(𝑡𝑛−1)) ∘ 𝜑𝑛−1

= 𝛿01(𝛼(𝑡1)) ∘ 𝛿12(𝛼(𝑡2))∘ ⋯ ∘ 𝛿𝑛−2,𝑛−1(𝛼(𝑡𝑛−1)) ∘ 𝜓𝑛−1
(1.31)
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on a neighbourhood of 𝛼(𝑡𝑛), where 𝛾𝑖𝑗(𝛼(𝑡𝑗)), 𝛿𝑖𝑗(𝛼(𝑡𝑗)) ∈ 𝐺 are the adjustments needed
for 𝜑𝑖 and 𝜓𝑖, respectively. For a subdivision of 𝑛 + 1 intervals we have to show that

𝛾01(𝛼(𝑡1)) ∘ 𝛾12(𝛼(𝑡2))∘ ⋯ ∘ 𝛾𝑛−1,𝑛(𝛼(𝑡𝑛)) ∘ 𝜑𝑛

= 𝛿01(𝛼(𝑡1)) ∘ 𝛿12(𝛼(𝑡2))∘ ⋯ ∘ 𝛿𝑛−1,𝑛(𝛼(𝑡𝑛)) ∘ 𝜓𝑛
(1.32)

on a neighbourhood of 𝛼(𝑡𝑛+1).
By the construction of 𝛾𝑛−1,𝑛(𝛼(𝑡𝑛)) we have

𝛾01(𝛼(𝑡1)) ∘ 𝛾12(𝛼(𝑡2))∘ ⋯ ∘ 𝛾𝑛−2,𝑛−1(𝛼(𝑡𝑛−1)) ∘ 𝜑𝑛−1

= 𝛾01(𝛼(𝑡1)) ∘ 𝛾12(𝛼(𝑡2))∘ ⋯ ∘ 𝛾𝑛−1,𝑛(𝛼(𝑡𝑛)) ∘ 𝜑𝑛
(1.33)

on a neighbourhood of 𝛼(𝑡𝑛) and similarly for 𝜓𝑖 with 𝛿𝑖𝑗. Therefore, equation (1.32)
is true on a neighbourhood of 𝛼(𝑡𝑛). To extend equation (1.32) to a neighbourhood of
𝛼(𝑡𝑛+1) note that 𝛼(𝑡𝑛) and 𝛼(𝑡𝑛+1) are connected by the path 𝛼∣[𝑡𝑛,𝑡𝑛+1] and thus lie in
the same connected component of 𝑈𝑛 ∩ 𝑉𝑛. Because 𝐺 acts analytically being equal on
an open set extends to the whole connected component, in particular equation (1.32)
holds for a neighbourhood of 𝛼(𝑡𝑛+1).

Independence of the choice of the subdivision
Let 𝛼: [0, 1] → 𝑀 be a representative of the homotopy class. Let 𝑡0, … , 𝑡𝑚 be a subdivision
of the interval [0, 1] with suitable charts 𝜑𝑖: 𝑈𝑖 → 𝑋 containing the path segment 𝛼∣[𝑡𝑖,𝑡𝑖+1]
for 0 ≤ 𝑖 ≤ 𝑚 − 1. Further let 𝑠0, … , 𝑠𝑛 be a another subdivision of the interval [0, 1]
with suitable charts 𝜓𝑖: 𝑉𝑖 → 𝑋 containing the path segment 𝛼∣[𝑠𝑖,𝑠𝑖+1] for 0 ≤ 𝑖 ≤ 𝑛 − 1
and with the initial chart 𝜓0 = 𝜑0.

Consider the refined subdivision {𝑡1, … , 𝑡𝑚} ∪ {𝑠0, … , 𝑠𝑛} of [0, 1]. The charts 𝜑𝑖 are
suitable for this subdivision by repeating a chart (possibly multiple times) when an 𝑠𝑗
occurs. The transition map between a repeated map and itself is obviously the identity.
Therefore, 𝜑𝛼

0 is the same whether we use {𝑡0, … , 𝑡𝑚} or {𝑡1, … , 𝑡𝑚} ∪ {𝑠0, … , 𝑠𝑛} with
the charts 𝜑𝑖.

The same is true when using the charts 𝜓𝑗. As we have already established that the
choice of charts does not matter for the subdivision {𝑡1, … , 𝑡𝑚} ∪ {𝑠0, … , 𝑠𝑛}, we can
conclude that the germ of 𝜑𝛼

0 at 𝛼(1) is independent of the choice of the subdivision of
the path.

Independence of the representative of the homotopy class
Let 𝛼: [0, 1] → 𝑀 and 𝛽: [0, 1] → 𝑀 be two paths with 𝛼(0) = 𝛽(0) and 𝛼(1) = 𝛽(1) and
let 𝐻: [0, 1] × [0, 1] → 𝑀 be a homotopy between them which fixes their endpoints. We
need to show that 𝜑𝛼

0 = 𝜑𝛽
0 on a neighbourhood around the end point.

If 𝐻([0, 1]2) ⊆ 𝑈, for some chart 𝜑: 𝑈 → 𝑋, then clearly 𝜑𝛼
0 = 𝜑𝛽

0 = 𝜑 on 𝑈 and in
particular on a neighbourhood of 𝛼(1) = 𝛽(1). This is also true if the homotopy only
happens within a segment [𝑡𝑖−1, 𝑡𝑖] of the subdivision (i.e. 𝛼(𝑡) = 𝛽(𝑡) for 𝑡 ∉ [𝑡𝑖−1, 𝑡𝑖]) as
only 𝛾𝑖−1,𝑖(𝛼(𝑡𝑖)) = 𝛾𝑖−1,𝑖(𝛽(𝑡𝑖)) is needed from that step.

Otherwise, because [0, 1]2 is compact, we can partition [0, 1]2 into finitely many
rectangles [𝑠𝑖, 𝑠𝑖+1]×[𝑡𝑗, 𝑡𝑗+1] with 𝐻([𝑠𝑖, 𝑠𝑖+1]×[𝑡𝑗, 𝑡𝑗+1]) ⊆ 𝑈𝑖𝑗 for some chart 𝜑𝑖𝑗: 𝑈𝑖𝑗 →
𝑋.
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[0, 1]2

𝛼 𝛽

𝑡

𝑠
𝑠𝑖 𝑠𝑖+1

𝑡𝑗

𝑡𝑗+1
𝛼𝑖𝑗

𝛽𝑖𝑗

𝛼(0) = 𝛽(0)

𝛼(1) = 𝛽(1)
𝛼

𝛽

𝛼𝑖𝑗

𝛽𝑖𝑗
𝑈𝑖𝑗

𝑀

𝐻

Figure 1.9: The homotopy between 𝛼𝑖𝑗 and 𝛽𝑖𝑗 only happens inside the chart domain 𝑈𝑖𝑗.

The curves (cf. figure 1.9)

𝛼𝑖𝑗 = 𝛼∣[0,𝑡𝑗]𝐻( ⋅ , 𝑡𝑗)∣[0,𝑠𝑖] 𝐻(𝑠𝑖, ⋅ )∣[𝑡𝑗,𝑡𝑗+1]𝐻( ⋅ , 𝑡𝑗+1)∣[𝑠𝑖,𝑠𝑖+1]⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
homotopy happens here

𝐻( ⋅ , 𝑡𝑗+1)∣[𝑠𝑖+1,1]𝛽∣[𝑡𝑗+1,1],

(1.34a)

𝛽𝑖𝑗 = 𝛼∣[0,𝑡𝑗]𝐻( ⋅ , 𝑡𝑗)∣[0,𝑠𝑖]

homotopy happens here
⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴𝐻( ⋅ , 𝑡𝑗)∣[𝑠𝑖,𝑠𝑖+1]𝐻(𝑠𝑖+1, ⋅ )∣[𝑡𝑗,𝑡𝑗+1] 𝐻( ⋅ , 𝑡𝑗+1)∣[𝑠𝑖+1,1]𝛽∣[𝑡𝑗+1,1]

(1.34b)

are homotopic, have the same fixed start- and endpoints and the homotopy only happens
inside of 𝑈𝑖𝑗. Thus, 𝜑𝛼𝑖𝑗

0 and 𝜑𝛽𝑖𝑗
0 coincide around the end point 𝛼(1) = 𝛼𝑖𝑗(1) = 𝛽𝑖𝑗(1) =

𝛽(1). The curves are chosen such that 𝛽𝑖𝑗 = 𝛼𝑖+1,𝑗 and 𝛼0,𝑗−1 = 𝛽𝑖max,𝑗. Therefore,
we can combine all these small steps leaving the germ at the end point invariant and
conclude that 𝜑𝛼

0 and 𝜑𝛽
0 are equal around 𝛼(1) = 𝛽(1). �

Remark 1.3.5. It is not true that extending only works on simply connected domains.
See example 1.3.9 below for a manifold where the extension of charts is well-defined
despite not being simply connected.

Defining the Developing Map

We have seen that an adjusted map around a point only depends on the homotopy class
of the path taken. This allows us to define the developing map on the universal cover,
which again we regard as the space of homotopy classes of paths.

Definition 1.3.6 (Developing Map). For an initial chart 𝜑0: 𝑈 → 𝑋 and a basepoint
𝑥0 ∈ 𝑈, the developing map of a (𝐺, 𝑋)-manifold 𝑀 is the map

𝐷: �̃� → 𝑋, [𝛼] ↦ 𝜑𝛼
0 (𝛼(1)) (1.35)

from the universal cover �̃� to 𝑋. In other words, we go along the path 𝛼 adjusting and
extending the charts as we go, taking the value at its endpoint as the value of 𝐷.
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Because the germ of 𝜑𝛼
0 at 𝛼(1) only depends on the initial chart and the basepoint,

we can describe the developing map locally around [𝛼] ∈ �̃� by

𝐷 = 𝜑𝛼
0 ∘ 𝜋, (1.36)

where 𝜋: �̃� → 𝑀 is the universal covering map. From this description we immediately
see that the developing map has locally the same properties as the charts of 𝑀.

Remark 1.3.7. Choosing different initial data, i.e. basepoint and initial chart, alters
the developing map 𝐷 by post-composition with an element of 𝐺.

The notation of the developing map does not reflect this dependency. Most of the time
these are implicit or not relevant.

Remark 1.3.8. Whenever 𝑀 is simply connected, we can identify 𝑀 and its universal
cover �̃� so that we can regard the developing map to be defined on 𝑀. This yields a
sort of global chart for 𝑀.

Example 1.3.9. If the (𝐺, 𝑋)-structure is ‘rigid’ enough, then the developing map on
the universal cover �̃� might descends to a well-defined map on 𝑀 via the covering map
𝜋: �̃� → 𝑀. This is often the case for translation manifolds.

i) The punctured disc 𝑀 = �̇�(0, 1) in ℝ2 with the inclusion 𝜑0: �̇�(0, 1) → ℝ2 as
global chart is a translation manifold, i.e. a (𝐺, ℝ2)-manifold where 𝐺 is the group
of translations. It is not simply connected and taking 𝜑0 as initial chart yields a
developing map 𝐷 from the universal cover, which in this case can be thought of as
a helix.
Because adjusting charts only uses translations, it does not change angles and
lengths. Therefore, the developing map is the same as the covering map and it
descends to a well-defined map on �̇�(0, 1), which in this case is 𝜑0 and the induced
map is a proper chart for 𝑀.

ii) Let 𝑀 be the two sheeted connected cover over �̇�(0, 1) considered as a translation
manifold similar to above. In the same way as before, the developing map descends
to a well-defined map on 𝑀. This time the induced map is the two-to-one covering
map from 𝑀 to �̇�(0, 1) which is not a chart for 𝑀.

1.3.3 The Developing Map of a Translation Manifold
As mentioned before, the developing map has locally the same properties as the charts it
is made of. This means that for a translation manifold, the developing map is a local
isometry and the transition map between the developing map and a chart is a translation.
When doing calculations it is essential to know how local the ‘local isometry’ is and
whether we have a uniform bound on it. The following lemma explores this:

Lemma 1.3.10 (𝑫 is an isometry on balls). Let 𝑀 be an 𝑚-dimensional transla-
tion manifold, 𝛴 = 𝑀 ∖ 𝑀 the singularities, 𝑥 ∈ 𝑀 and 𝑟 > 0. Let the ball 𝐵(𝑥, 𝑟) in 𝑀
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be such that 𝐵(𝑥, 𝑟) ⊆ 𝑀, i.e. it does not contain any singularities, and such that the
developing map descends to a map 𝐷: 𝐵(𝑥, 𝑟) → ℝ𝑚.

Then 𝐷 is a homeomorphism from 𝐵(𝑥, 𝑟) ⊆ 𝑀 to 𝐵(𝐷(𝑥), 𝑟) ⊆ ℝ𝑚 and an isometry
from 𝐵(𝑥, 𝑟

2) ⊆ 𝑀 to 𝐵(𝐷(𝑥), 𝑟
2) ⊆ ℝ𝑚.

The important prerequisite is that the 𝑟-ball does not contain any singularities. We
would hope that we can avoid reducing the radius for the isometry statement, however,
remark 2.1.2 gives an example showing that the developing map is not an isometry on
the full ball; in fact the above bound is sharp.

Because charts are the building blocks of the developing map, we have the following
corollary:

Corollary 1.3.11. Let 𝑀 be an 𝑚-dimensional translation manifold, 𝜑: 𝑈 → ℝ𝑚 a
chart, 𝑥 ∈ 𝑈 and 𝑟 > 0 such that the ball 𝐵(𝑥, 𝑟) in 𝑀 is contained completely in 𝑈, i.e.
contains no singularities.

Then 𝜑 is a homeomorphism from 𝐵(𝑥, 𝑟) ⊆ 𝑈 to 𝐵(𝜑(𝑥), 𝑟) ⊆ ℝ𝑚 and an isometry
from 𝐵(𝑥, 𝑟

2) ⊆ 𝑈 to 𝐵(𝜑(𝑥), 𝑟
2) ⊆ ℝ𝑚.

The proof uses a variant of the Hopf-Rinow Theorem. The classic Hopf-Rinow Theorem
cannot be used as our metric space in question 𝐵(𝑥, 𝑟) fails to be geodesically complete.
However, there is a generalised version for length metric spaces (which are also called
interior metric spaces), i.e. metric spaces where the metric is given by the infimum of
path lengths. However, the version for length metric spaces as for example stated by
Bridson-Haefliger[BH99, Proposition 3.7, p. 35] cannot be used either because 𝑀 is a
length metric space but 𝐵(𝑥, 𝑟) is not necessarily one (because geodesics might (and
often do) leave the ball). The variant of Hopf-Rinow we use is stated below and is from
W. Ballmann[Bal95, Theorem 2.4, pp. 12] and originates in Cohn-Vossen[Coh35; Coh36].

Theorem 1.3.12 (generalised Hopf-Rinow (local version), [Bal95]). Let 𝑋 be a
locally compact and interior [metric space], and let 𝑥 ∈ 𝑋 and 𝑅 > 0. Then the following
are equivalent:

(i) any geodesic 𝛾: [0, 1[ → 𝑋 with 𝛾(0) = 𝑥 and ℓ(𝛾) < 𝑅 can be extended to the closed
interval [0, 1];

(ii) any minimizing geodesic 𝛾: [0, 1[ → 𝑋 with 𝛾(0) = 𝑥 and ℓ(𝛾) < 𝑅 can be extended
to the closed interval [0, 1];

(iii) �̄�(𝑥, 𝑟) is compact for 0 ≤ 𝑟 < 𝑅.

Each of these implies that for any pair 𝑦, 𝑧 of points in 𝐵(𝑥, 𝑅) with 𝑑(𝑥, 𝑦)+𝑑(𝑥, 𝑧) < 𝑅
there is a minimizing geodesic from 𝑦 to 𝑧 [and that geodesic is contained in 𝐵(𝑥, 𝑅)].

Remark 1.3.13. Since in our case 𝐵(𝑥, 𝑟) ⊆ 𝑀 is very close to being a complete
Riemannian manifold, even the proof of the classical Hopf-Rinow Theorem as given in
[Boo86, Lemma 7.8, p. 347] goes through although the prerequisites required in the
statement are not fulfilled.
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Proof (of lemma 1.3.10). Before we start note that for a length metric space the
closed ball coincides with the closure of the open ball: �̄�(𝑥, 𝑟) = 𝐵(𝑥, 𝑟).

First, we show that all balls �̄�(𝑥, 𝑟′) are compact for 0 ≤ 𝑟′ < 𝑟. Given any geodesic
𝛾: [0, 1[ → 𝐵(𝑥, 𝑟) with 𝛾(0) = 𝑥 and ℓ(𝛾) < 𝑟, the geodesic 𝛾 can be extended to [0, 1]
since the metric completion is the closure and is contained in 𝑀: 𝐵(𝑥, ℓ(𝛾)) ⊆ 𝐵(𝑥, 𝑟) ⊆ 𝑀.
Thus, by theorem 1.3.12 (the generalised Theorem of Hopf-Rinow (local version)) the
closed balls �̄�(𝑥, 𝑟′) for 0 ≤ 𝑟′ < 𝑟 are all compact.

Second, there is a unique geodesic from 𝑥 to 𝑦 ∈ 𝐵(𝑥, 𝑟). The existence of the geodesic
is given by theorem 1.3.12 (the generalised Theorem of Hopf-Rinow (local version)). For
the uniqueness, recall that any geodesic in 𝑀 is straight – or in other words a Euclidean
line segment – because 𝑀 is a translation manifold. If there are two different geodesics
from 𝑥 to 𝑦, then the geodesics must start in different directions at 𝑥, otherwise they
would be the same as they have the same length. Since 𝑥 is a regular point, i.e. there is
0 < 𝜀 ≤ 𝑟 such that 𝐵(𝑥, 𝜀) is isometric to 𝐵(𝐷(𝑥), 𝜀) via 𝐷, we can identify this direction
with a direction in ℝ𝑚. Now 𝐷 maps geodesics to straight line segments. If the geodesics
start in different directions, then their images under 𝐷 start in different directions and
yield distinct end points in ℝ𝑚. Thus, there cannot be two different geodesics from 𝑥
to 𝑦.

Third, we show that the developing map 𝐷 is a homeomorphism between 𝐵(𝑥, 𝑟) ⊆ 𝑀
and 𝐵(𝐷(𝑥), 𝑟) ⊆ ℝ𝑚. According to the previous argument, we can identify any point
𝑦 ∈ 𝐵(𝑥, 𝑟) with its geodesic connecting it with 𝑥. This geodesic is uniquely specified
by its length and the direction it starts in 𝑥. Since 𝑥 is a regular point, we can identify
any direction via 𝐷 with a direction in ℝ𝑚. Since a direction and length characterise
a point in a ball in ℝ𝑚, we have identified 𝐵(𝑥, 𝑟) ⊆ 𝑀 with 𝐵(𝐷(𝑥), 𝑟) ⊆ ℝ𝑚 and also
vice versa. Moreover, this identification is exactly the developing map 𝐷 because the
process described is the same as developing along the geodesic from 𝑥 to 𝑦. Since 𝐷 is a
local homeomorphism and is bijective on 𝐵(𝑥, 𝑟), we have that 𝐷 is a homeomorphism
from 𝐵(𝑥, 𝑟) ⊆ 𝑀 to 𝐵(𝐷(𝑥), 𝑟) ⊆ ℝ𝑚.

Lastly, 𝐷 is an isometry on 𝐵(𝑥, 𝑟/2). Let 𝑦, 𝑦′ ∈ 𝐵(𝑥, 𝑟/2). In the first paragraph
we have shown property (i) of theorem 1.3.12 (the generalised Theorem of Hopf-Rinow
(local version)) and hence can apply its conclusion. Thus, we find a geodesic between 𝑦
and 𝑦′, which is contained in 𝐵(𝑥, 𝑟). Because 𝐷 maps geodesics to straight lines of the
same length, we have 𝑑(𝑦, 𝑦′) = 𝑑(𝐷(𝑥), 𝐷(𝑦)) and 𝐷 is an isometry on 𝐵(𝑥, 𝑟/2). In
particular, 𝐵(𝑥, 𝑟/2) (with the induced metric of 𝑀) is a length metric space of its own.�

Remark 1.3.14. The above statement is also true for an open set 𝑈 ⊆ 𝑀 which is
geodesically convex, that is for every two points 𝑦, 𝑦′ in 𝑈 the geodesic between these
exists and lies in 𝑈. The set on which it is an isometry is obtained by shrinking the
image of 𝑈 in ℝ𝑚 by a factor of 2 (with any image point of 𝑈 as centre) and than taking
the pre-image under 𝐷.
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2 Singularities

In this chapter we investigate singularities of translation manifolds. Singularities are
the points which are outside of the domain where we have the translation structure, i.e.
outside of where it looks like the Euclidean space. At such singular points a wide variety
of things can happen, from simple things like being a border point of the space, to tame
things like being a conic singularity with an angle of 2𝜋𝑘 (𝑘 ∈ ℤ), to crazy things like a
wild singularity on the Chamanara surface[Cha04].

Optimally a singularity is removable. This means that the singularity is no ‘real’
singularity but merely artificially introduced. So we can add the singularity to the
translation manifold and still have a translation manifold. We are particularly interested
in understanding under what conditions singularities are removable.

This chapter consists of four parts. The first part is very short and introduces the core
theorem (theorem 2.1.1) on which the rest builds. The idea is to use a covering to test
whether singularities can be removed.

Applying this theorem to the situation where we have either a tame isolated singularity
or an isolated singular point which has a neighbourhood which is a manifold, is done in
the second part. Most work is put into proving the existing of the covering in this case.
The result is summarised in theorem 2.2.8.

After that the third part generalises the notion of singularity to also take shadows of
singularities (cf. definitions 2.3.2 and 2.3.7) into account. They are the main obstacles to
the developing map having the covering property. Using these concept allows us to prove
the existence of a covering map in more situations, thus making theorem 2.1.1 easier
applicable. The main results of this part are corollary 2.3.19 and theorem 2.3.21.

The fourth part takes a closer look at the situation in dimension 2 and 3. In these
low dimensions some prerequisites of previous theorems are always fulfilled so that
the resulting statements become slightly stronger. The statements are summarized in
theorem 2.4.6.

2.1 Removing Singularities using a Covering

We have a translation manifold 𝑀 of dimension 𝑚 with its singularities 𝛴 = 𝑀 ∖ 𝑀. For
a singularity to be removable we must be able to extend the translation structure of 𝑀
to the singularity. Since a translation structure implies also a metric structure and a
manifold structure, we must also be able to extend those, which gives a useful check for
when a singularity is not removable.

We have seen that singularities are not necessarily isolated points but can be bended
curves, wobbly surfaces, … This makes it more challenging because in contrast to the
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surface case, where singularities are only (isolated) points, finding a nice, canonical,
isometric neighbourhood to classify singularities in tame and wild is impossible. Therefore,
we will use translation coverings to compare singularities with each other.

We motivate this with the following observation: Assume that 𝛴 is a set of removable
singularities and we have a global chart 𝜑: 𝑀 → 𝜑(𝑀) ⊆ ℝ𝑚. We can then identify
𝑀 with a subset of ℝ𝑚. Moreover, the map 𝜑 is a covering map of degree 1 and the
singularities of 𝜑(𝑀) ⊆ ℝ𝑚, which are removable in ℝ𝑚, are obviously removable in 𝑀
and vice versa. We can generalise this observation to arbitrary coverings and also to
non-removable singularities:

Theorem 2.1.1. Let (𝑀, 𝒜) and (𝑁, ℬ) be translation manifolds. Let 𝑈 ⊆ 𝑀 be an
open set. If

(i) 𝑈 is connected,

(ii) there exists a (surjective) translation covering 𝑝: (𝑈, 𝒜∣𝑈) → (𝑁, ℬ), and

(iii) 𝑁 is connected and simply connected,

then 𝑝: 𝑈 → 𝑁 is a homeomorphism and local isometry.
In particular the ‘type’ of a singularity in 𝑁 is the same as the ‘type’ of the corresponding

singularity in 𝑈. Moreover, all singularities which are removable in 𝑁 are removable
in 𝑈 (and hence in 𝑀).

The crucial part of this theorem is the existence of the translation covering 𝑝. This is
usually the hardest precondition to meet and can be quite difficult to prove. Note that
for a finite translation surface the existence of a (finite) covering of the punctured ball
around a singularity is backed directly into the definition of a finite translation surface.

Remark 2.1.2. We cannot expect 𝑝 to be a global isometry as two points of 𝑈 can be
close in 𝑀 but have a long path distance inside of 𝑈. For example, consider the torus
𝑀 = ℝ2/ℤ2, 𝑈 = ]0.1, 0.9[2 ⊆ 𝑀 and 𝑁 = ]0.1, 0.9[2 ⊆ ℝ2, where 𝑁 is endowed with the
usual Euclidean metric and 𝑈 has the induced metric from the torus.

The distance of the points 𝑥 = (0.2, 0.2) and 𝑦 = (0.2, 0.8) on 𝑀 is 0.4 with the
connecting geodesic 𝛾 being a path partially outside of 𝑈, see figure 2.1, their images in
𝑁, however, the have distance 0.6. This technicality can usually be avoided by making 𝑈
smaller. Then 𝑝 becomes a (global) isometry between 𝑈 and 𝑁.

𝑀 𝑈
𝑥

𝑦

𝛾

𝑝
𝑁

𝑝(𝑥)

𝑝(𝑦)
𝛾′

Figure 2.1: Example of a covering 𝑝 which increases the distance between some points.
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2.2 Removing Isolated Singularities

Proof (of Theorem 2.1.1). Since 𝑁 is simply connected, it is its own
universal cover. Regarding the property of the universal cover, there exists
a covering 𝑞 : 𝑁 → 𝑈, which is also surjective as 𝑈 is connected, with
𝑝 ∘ 𝑞 = id. Hence, 𝑞 is injective. As a covering 𝑞 is surjective and thus
bijective. Therefore, 𝑝 = 𝑞−1 and 𝑝 and 𝑞 are homeomorphisms which
are locally translations. Thus, 𝑝 is a homeomorphism that is locally an
isometry. �

𝑁

𝑈

𝑁

𝑞

𝑝

id

2.2 Removing Isolated Singularities
The simplest scenario for a singularity we can think of is a single singular point with no
other singularities nearby. This situation is quite well-known in the two-dimensional case
as nearly all singularities are isolated points.

From the theory of translation surfaces we also know that we can classify singularities
broadly into two groups: tame singularities and wild singularities. The former is well
understood while the latter still amazes.

In the first section we discuss the generalisation of tame isolated singularities and prove
that they are always removable in higher dimension.

In the second section we take a look at a situation which does not fall under the
tame regime: a possibly wild singularity but with a neighbourhood which is a manifold.
Although a priori not tame, we are able to show that these singularities are also removable.

Before we start looking into these two situation, let us give a formal definition what
an isolated singularity is:

Definition 2.2.1 (Isolated Singularity). Let 𝑀 be a translation manifold. We call a
singularity 𝜎 ∈ 𝑀 ∖ 𝑀 isolated iff there is an open neighbourhood 𝑈 ⊆ 𝑀 of 𝜎 such that
𝑈 ∖ {𝜎} ⊆ 𝑀.

In other words, we have a neighbourhood of 𝜎 whose only singular point is 𝜎 itself.

2.2.1 Removing Tame Isolated Singularities
For a translation surface the singularities can be categorised into two groups: tame
singularities and wild singularities. The former are completely understood as well as
classified and singularities occurring on a finite translation surface are always of this
type. Wild singularities, on the other hand, can only be observed on infinite translation
surfaces. A precise definition is:

Definition 2.2.2 (Singularities of a Translation Surface). For a translation sur-
face 𝑀 a singularity 𝜎 is called tame iff it admits a neighbourhood which is a branched
translation covering of a disc. That is, there exists 𝜀 > 0 such that 𝑀 ⊇ �̇�(𝜎, 𝜀) →
�̇�(0, 𝜀) ⊆ ℝ2 is a translation covering. These tame singularities can be fully classified:

(i) Either it is a cone angle singularity of multiplicity 𝑘, which means that it has
an angle of 2𝜋𝑘 for some 𝑘 ∈ ℕ and the above covering is a 𝑘-cyclic translation
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2 Singularities

covering. These are the only singularities which can be found on finite translation
surfaces.

(ii) Or it is an infinite angle singularity also called cone angle singularity of multiplicity
∞, which means that the above covering is an infinite cyclic translation covering.

A singularity 𝜎 is called wild iff it is not tame.

We can generalise this definition of a tame singularity to translation manifolds in the
following way:

Definition 2.2.3 (Tame Isolated Singularity). Let 𝑀 be a translation manifold of
dimension 𝑚 and let 𝜎 ∈ 𝑀 ∖ 𝑀 be an isolated singularity. We call 𝜎 tame iff 𝜎 has
an open neighbourhood 𝑈 ⊆ 𝑀 such that there is 𝜀 > 0 and a translation covering
𝑈 ∖ {𝜎} → �̇�(0, 𝜀) = 𝐵(0, 𝜀) ∖ {0} ⊆ ℝ𝑚 to the open punctured Euclidean ball.

With this definition we can immediately show that tame isolated singularities are
always removable starting from dimension 3; or in other words: (real) tame isolated
singularities do not exist in higher dimensions.

Theorem 2.2.4. Let (𝑀, 𝒜) be a translation manifold of dimension 𝑚 ≥ 3. If 𝜎 ∈
𝑀∖𝑀 is a tame isolated singularity, then 𝜎 is removable. That is there is a neighbourhood
𝑈 ⊆ 𝑀 of 𝜎 which is isometric to the Euclidean ball 𝐵(0, 𝜀) ⊆ ℝ𝑚 for some 𝜀 > 0.

Proof. For dimension greater or equal than three the punctured ball is simply connected,
i.e. 𝜋1(�̇�(0, 𝜀)) = {0}. Since coverings are classified by the subgroups of the fundamental
group 𝜋1(�̇�(0, 𝜀)), there is only one covering of the punctured ball: the identity. If 𝜎
is a tame isolated singularity, then its corresponding covering is the identity and by
theorem 2.1.1 𝜎 is removable because 0 is a removable singularity in �̇�(0, 𝜀) ⊆ ℝ𝑚. �

2.2.2 Removing Isolated Singularities on a Manifold

From the surface world we also know that some singular points are wilder than others.
Thus, a good starting point to use the previous results on new ground is to look at

a translation manifold of dimension greater than two which has an isolated singularity
and the neighbourhood of that singularity is a manifold. The last condition should rule
out wild behaviour which we already observe in two-dimensions. We could call such
singularities almost tame singularities.

The main goal of this section is to prove that any such singularity is removable
(thus tame). In other words: almost tame isolated singularities do not exist in higher
dimensions.

The proof as presented here relies heavily on the symmetry of the situation in particular
of the neighbourhood around the singularity and is therefore not easily adaptable to
non-point singularities. Nevertheless it lays the groundwork for the more general concepts
and techniques outlined in the next sections.
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2.2 Removing Isolated Singularities

Definition 2.2.5. Let 𝑀 be a translation manifold and 𝜎 ∈ 𝑀 ∖ 𝑀 a singularity. We
say 𝑀 is a manifold around 𝜎 iff there exists an open neighbourhood 𝑈 ⊆ 𝑀 of 𝜎 such
that 𝑀 ∪ 𝑈 admits the structure of a topological manifold which extends the manifold 𝑀.
In other words, there exists a chart for 𝑈 and this chart is compatible with the charts
of 𝑀 as a topological manifold, i.e. changes of coordinates between these charts are
homeomorphisms (but not necessarily translations). Note that 𝑈 is allowed to contain
additional singularities other than 𝜎.

Sometimes we require additional properties from the manifold 𝑀∪𝑈, e.g. being a smooth
manifold, then the changes of coordinates must satisfy these additional requirements,
too.

Proposition 2.2.6. Given a translation manifold 𝑀 of dimension 𝑚 ≥ 3, let 𝜎 ∈ 𝑀∖𝑀
be an isolated singularity. If the metric completion 𝑀 is a manifold around 𝜎, then there
exists an 𝜀 > 0 such that

(i) the developing map 𝐷: 𝑀 ⊇ �̇�(𝜎, 𝜀) → ℝ𝑚 exists, and

(ii) 𝐷 is a translation covering onto its image 𝐷(�̇�(𝜎, 𝜀)) = �̇�(0, 𝜀).

Remark 2.2.7. We need at least dimension three, as for dimension two the punctured
ball is not simply connected and thus the developing map is not well-defined on �̇�(𝜎, 𝜀).
However, the statement remains true when talking about the map induced by the
developing map.

The condition that 𝑀 is a manifold cannot be dropped without replacement as there are
examples of isolated singularities in which every neighbourhood is not simply connected. A
better known example might be the isolated singularity of the Chamanara surface[Cha04].

The above proposition has the following theorem as a consequence:

Theorem 2.2.8. Given a translation manifold 𝑀 of dimension 𝑚 ≥ 3, let 𝜎 ∈ 𝑀 ∖ 𝑀
be an isolated singularity. If the metric completion 𝑀 is manifold around 𝜎, then 𝜎 is
removable.

Proof. In dimension three and above the punctured ball �̇�(0, 𝜀) ⊆ ℝ𝑚 is simply
connected and 0 is a removable singularity of it. Thus, theorem 2.1.1 in combination
with proposition 2.2.6 imply that 𝜎 is a removable singularity. �

The rest of this section is dedicated to the proof of proposition 2.2.6. The crucial
point in the proof is the point symmetry of the neighbourhood around 𝜎 which we use
throughout. The overall structure is this:

First, we find a round ball-like neighbourhood around 𝜎 and show that we can define
the developing map on it (to this end we use that 𝑀 is a manifold around 𝜎). Next, we
show that 𝐷 preserves the radial symmetry, namely 𝐷 preserves the distance to the centre.
Using this we can prove that 𝐷 is surjective on the Euclidean punctured ball �̇�(0, 𝜀).
Lastly, we show that 𝐷 has the covering property by exploiting the radial symmetry. To
verify the covering property, we need some uniform neighbourhoods around every point.
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Sadly, the point symmetry does not provide such uniform neighbourhoods, however, it
allows us to find neighbourhoods uniform with respect to the angle (but not the radius)
which in this case is enough to prove the covering property.

Before we start, a short reminder of a consequence of the Hopf-Rinow Theorem: Since
𝑀 is a manifold and metrically complete around 𝜎, it is also geodesically complete, i.e.
any two points near 𝜎 can be connected by a geodesic.

Lemma 2.2.9. There exists 𝜀 > 0 such that 𝑀 admits a developing map

𝐷: �̇�(𝜎, 𝜀) → ℝ𝑚 (2.1)

and this map is not expanding, i.e. 𝑑ℝ𝑚(𝐷(𝑥), 𝐷(𝑦)) ≤ 𝑑𝑀(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ �̇�(𝜎, 𝜀). In
particular the image of 𝐷 is contained in 𝐵(0, 𝜀) ⊆ ℝ𝑚.

Proof. Since 𝑀 is a manifold around 𝜎 there is a chart and 𝜀 > 0 such that 𝐵(𝜎, 𝜀) is
homeomorphic to 𝐵(0, 1) ⊆ ℝ𝑚. In particular, for dimension 𝑚 ≥ 3 the punctured ball
�̇�(𝜎, 𝜀) is simply connected, i.e. it is its own universal cover. Therefore, the developing
map

𝐷: �̇�(𝜎, 𝜀) → ℝ𝑚 (2.2)
exists and is well-defined (cf. remark 1.3.8). Because the developing map is constructed
out of charts of a translation manifold 𝑀, it is a local isometry.

Ideally, at this point we would like to apply lemma 1.3.10. However, the ball of interest
contains the singularity 𝜎 so the lemma is not applicable.

We wish for 𝐷 to be not expanding. However, for the same reason as pointed out in
remark 2.1.2 the shortest path between two points might leave the ball 𝐵(𝜎, 𝜀). To force
all geodesics to lie within the ball, it is enough to reduce the radius, e.g. to a quarter (in
fact any fraction smaller than or equal to one-third will do).

In this situation 𝐷 is (globally) not expanding. Indeed, given points 𝑥 and 𝑦 in �̇�(𝜎, 𝜀),
let 𝛾𝑛 be short paths in 𝑀 between 𝑥 and 𝑦 such that 𝑑𝑀(𝑥, 𝑦) = lim𝑛→∞ ℓ(𝛾𝑛). Note that
we cannot assume 𝛾𝑛 to be a geodesic between 𝑥 and 𝑦 as a geodesic might go through 𝜎.
However, we can approximate any geodesic through 𝜎 with such 𝛾𝑛. With this choice of 𝛾𝑛
it follows that 𝐷(𝛾𝑛) is a path between 𝐷(𝑥) and 𝐷(𝑦), which has the same length as 𝛾𝑛
since 𝐷 is a local isometry. Thus, 𝑑ℝ𝑚(𝐷(𝑥), 𝐷(𝑦)) ≤ ℓ(𝐷(𝛾𝑛)) = ℓ(𝛾𝑛)

𝑛→∞
−−−→ 𝑑𝑀(𝑥, 𝑦)

and 𝐷 is not a expanding. �

Next we define the image of 𝜎 under 𝐷 (cf. also definition 2.3.2 for a generalisation).
Let (𝑥𝑛)𝑛∈ℕ be a Cauchy sequence with 𝑥𝑛 → 𝜎 for 𝑛 → ∞. Since 𝐷 is not expanding,
the image sequence (𝐷(𝑥𝑛))𝑛∈ℕ is a Cauchy sequence in ℝ𝑚 and converges to some point
0 ∈ ℝ𝑚. We call 0 the image of 𝜎 under 𝐷 and we will see in a moment that we can indeed
extend 𝐷 to a continuous map on 𝐵(𝜎, 𝜀). Because 𝐷 is constructed from translation
charts, we may assume without loss of generality, that 0 is indeed the origin in ℝ𝑚 by
concatenating the developing map with a translation.

Lemma 2.2.10. The developing map 𝐷 preserves the distance to the centre of the
respective balls. More precisely, for all 𝑥 ∈ �̇�(𝜎, 𝜀)

𝑑𝑀(𝑥, 𝜎) = 𝑑ℝ𝑚(𝐷(𝑥), 0). (2.3)
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Proof. We already know that 𝐷 is not expanding on �̇�(𝜎, 𝜀), i.e. for all 𝑥, 𝑦 ∈ �̇�(𝜎, 𝜀)

𝑑ℝ𝑚(𝐷(𝑥), 𝐷(𝑦)) ≤ 𝑑𝑀(𝑥, 𝑦). (2.4)

Let (𝑥𝑛)𝑛∈ℕ be a sequence with 𝑥𝑛 → 𝜎 as 𝑛 → ∞. Without loss of generality we may
assume that 𝑑𝑀(𝑥𝑛, 𝜎) < 1

𝑛 and 𝑑ℝ𝑚(𝐷(𝑥𝑛), 0) < 1
𝑛 .

First, we extend inequality (2.4) to still hold for 𝑦 = 𝜎:

𝑑ℝ𝑚(𝐷(𝑥), 0) ≤ 𝑑ℝ𝑚(𝐷(𝑥), 𝐷(𝑥𝑛)) + 𝑑ℝ𝑚(𝐷(𝑥𝑛), 0)

≤ 𝑑𝑀(𝑥, 𝑥𝑛) + 1
𝑛

≤ 𝑑𝑀(𝑥, 𝜎) + 𝑑𝑀(𝜎, 𝑥𝑛) + 1
𝑛

≤ 𝑑𝑀(𝑥, 𝜎) + 1
𝑛

+ 1
𝑛

𝑛→∞
−−−→ 𝑑𝑀(𝑥, 𝜎)

(2.5)

Thus, 𝑑ℝ𝑚(𝐷(𝑥), 0) ≤ 𝑑𝑀(𝑥, 𝜎).
Next, we remind ourselves that – since 𝐷 is a local isometry – if 𝛾 is a (local) geodesic

in 𝑀, then 𝐷(𝛾) is a (local) geodesic, too, and ℓ(𝛾) = ℓ(𝐷(𝛾)).
Let 𝑥 ∈ �̇�(𝜎, 𝜀) ⊆ 𝑀, let 𝑑 = 𝑑𝑀(𝜎, 𝑥) and let 𝛾: [0, 𝑑] → 𝑀 be a geodesic from 𝜎

to 𝑥, which exists due to 𝐵(𝜎, 𝜀) being geodesically complete.
Clearly, 𝛾(]0, 𝑑]) ⊆ �̇�(𝜎, 𝜀) since otherwise 𝛾(𝑡) ∈ 𝑀 ∖ �̇�(𝜎, 𝜀) for some 𝑡 > 0 and as 𝛾

does not leave 𝐵(𝜎, 𝜀), we would have 𝛾(𝑡) = 𝜎, a contradiction to 𝛾 being a geodesic.
Let (𝑡𝑛)𝑛∈ℕ with 𝑡𝑛 → 0 as 𝑛 → ∞. Then we have lim𝑛→∞ 𝛾(𝑡𝑛) = 𝛾(0) = 𝜎. Using

inequality (2.5) yields

𝑑(𝐷(𝛾(𝑡𝑛)), 0) ≤ 𝑑(𝛾(𝑡𝑛), 𝜎)
𝑛→∞
−−−→ 0 (2.6)

i.e. lim𝑛→∞ 𝐷(𝛾(𝑡𝑛)) = 0 and we can deduce

𝑑𝑀(𝜎, 𝑥) = 𝑑𝑀( lim
𝑛→∞

𝛾(𝑡𝑛), 𝛾(𝑑)) = lim
𝑛→∞

𝑑𝑀(𝛾(𝑡𝑛), 𝛾(𝑑))

= lim
𝑛→∞

ℓ(𝛾∣[𝑡𝑛,𝑑]) = lim
𝑛→∞

ℓ(𝐷(𝛾∣[𝑡𝑛,𝑑])) = lim
𝑛→∞

𝑑ℝ𝑚(𝐷(𝛾(𝑡𝑛)), 𝐷(𝛾(𝑑)))

= 𝑑ℝ𝑚( lim
𝑛→∞

𝐷(𝛾(𝑡𝑛)), 𝐷(𝛾(𝑑))) = 𝑑ℝ𝑚(0, 𝐷(𝑥)),
(2.7)

where we used the continuity of the metrics and that 𝛾 is a geodesic. �

By the above lemma the developing map preserves the distance to the centre. In
particular the pre-image of an open ball around 0 is an open ball around 𝜎. This shows
that the extension �̄� of 𝐷 to the unpunctured 𝐵(𝜎, 𝜀) with �̄�(𝜎) = 0 is continuous. It is,
however, not necessarily a developing map for 𝑀.

Lemma 2.2.11. Let 𝑥 ∈ �̇�(𝜎, 𝜀) and 𝑑 ≔ 𝑑(𝑥, 𝜎). Then, 𝐷 is an isometry on 𝐵(𝑥, 𝛿)
where 𝛿 ≔ 1

2 min{𝑑, 𝜀 − 𝑑}. In particular, the radius only depends on the distance of 𝑥
to 𝜎 but not on 𝑥 itself.
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𝜎

(a) The set 𝐵(0, 𝜀) ∖ 𝐵((1, 0, … , 0), 𝜀/2) ⊆
ℝ𝑚 is an example of a metric 𝜀-ball
which is not isometric to an Euclidean
one but homeomorphic to one. This ex-
ample here is not a ‘counter example’ as
the boundary of the dent would consist
of singularities, which are then in the
𝜀-neighbourhood of 𝜎.

𝜎

(b) Not every metric 𝜀-ball has a point at
a given distance. For example the ball
of radius 2 and radius 4 on the stand-
ard torus around 𝜎 are the same (they
are the whole torus). This is also not
a ‘counter example’, as the ball is not
homeomorphic to the Euclidean ball in
ℝ𝑚.

Figure 2.2: topological 𝜀-balls

That 𝐷 is uniformly a local isometry (with respect to the distance from 𝜎) is important.
A priori our neighbourhood 𝐵(𝜎, 𝜀) is a metric ball and does not need to look like an
Euclidean ball at all, although it is homeomorphic to one (see figure 2.2). With this
lemma, however, we know that we have a uniform isometry on a sphere around 𝜎, i.e.
independent of the direction.

Proof. The open metric ball 𝐵(𝑥, 𝛿) in 𝑀 is contained in �̇�(𝜎, 𝜀) ⊆ 𝑀. In particular,
it does not contain any singularity of 𝑀. This allows us to use lemma 1.3.10 and the
claim follows. �

Lemma 2.2.12. The image of the developing map 𝐷 is �̇�(0, 𝜀) ⊆ ℝ𝑚.

Proof. Let 𝑑 ∈ ]0, 𝜀[. Since by lemma 2.2.10 𝐷 preserves the distance to the centre, we
can see that 𝐷(𝜕𝐵(𝜎, 𝑑)) ⊆ 𝜕𝐵(0, 𝑑).

The developing map is a local isometry and so is 𝐷∣𝜕𝐵(𝜎,𝑑), in particular it is an open
map. As 𝜕𝐵(𝜎, 𝑑) is open in itself, its image under 𝐷∣𝜕𝐵(𝜎,𝑑) is also open. On the other
hand 𝜕𝐵(𝜎, 𝑑) is compact (as it is closed and bounded in a set homeomorphic to a subset
of ℝ𝑚), thus its image is also compact. Hence, the image of 𝜕𝐵(𝜎, 𝑑) is open and compact.
Thus, it is all of 𝜕𝐵(0, 𝑑) ⊆ ℝ𝑚 or empty.

It is left to show that this is not the empty set. There is a point 𝑥 ∈ �̇�(𝜎, 𝜀) and the
geodesic from 𝜎 to 𝑥 exists in 𝑀 by the Hopf-Rinow theorem as 𝑀 is a manifold. Clearly
𝜕𝐵(0, 𝑟) ≠ ∅ for all 0 ≤ 𝑟 < 𝑑(𝜎, 𝑥) since it contains at least the point of the geodesic.

We may now without loss of generality shrink 𝜀 to 𝑑(𝜎, 𝑥) and the statement follows.�

Lemma 2.2.13. 𝐷: �̇�(𝜎, 𝜀) → �̇�(0, 𝜀) is a covering.

Proof. The idea to prove the covering property is based on the last argument in the
proof of [Thu97, Proposition 3.4.10, pp. 144]. Thurston’s proof, however, requires 𝐷
to be an isometry on all 𝛿-balls. In general we cannot guarantee this when the balls
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𝜎

𝜀

𝑑
𝑦

𝛿

𝛿

𝛿

in 𝑀

Figure 2.3: The choice of 𝛿 in the proof of lemma 2.2.13 must be such that a ball of
radius 𝛿 fits around every point of the annulus.

approach the singularity 𝜎 or the boundary of 𝐵(𝜎, 𝜀) but lemma 2.2.11 gives us a bound
uniform enough to make it work nevertheless.

Let 𝑦 ∈ 𝐷(�̇�(𝜎, 𝜀)) ⊆ �̇�(0, 𝜀) ⊆ ℝ𝑚 and 𝑑 ≔ 𝑑(0, 𝑦). Choose 0 < 𝛿 < 𝑑 such that for
any point 𝑥 in the metric annulus 𝐴 ≔ 𝐵(𝜎, 𝑑+𝛿)∖𝐵(𝜎, 𝑑−𝛿) the ball 𝐵(𝑥, 𝛿) is contained
in �̇�(𝜎, 𝜀) and such that 𝐷∣𝐵(𝑥,𝛿) is an isometry. Such a 𝛿 exists by lemma 2.2.11, cf.
figure 2.3, e.g. choose

𝛿 ≔ 1
8

min{𝑑, 𝜀 − 𝑑}. (2.8)

Take 𝑥 ∈ 𝐷−1(𝐵(𝑦, 𝛿/2)). Because 𝐷 preserves the distance to the centre (lemma 2.2.10),
𝑥 is guaranteed to be within the annulus. Figure 2.4 depicts the situation. From here on
we follow Thurston’s argument. The ball 𝐵(𝑥, 𝛿) ⊆ 𝑀 maps isometrically and thus must
properly contain a homeomorphic copy of 𝐵(𝑦, 𝛿/2) ⊆ ℝ𝑚. The entire inverse image
𝐷−1(𝐵(𝑦, 𝛿/2)) ⊆ 𝑀 is then a disjoint union of such homeomorphic copies, since if not,
two 𝛿/2-balls would intersect violating 𝐷∣𝐵(𝑥,𝛿) being an isometry. Therefore, 𝐷 evenly
covers 𝐷(�̇�(𝜎, 𝜀)) = �̇�(0, 𝜀), so it is a covering projection 𝐷: �̇�(𝜎, 𝜀) → �̇�(0, 𝜀). �

This finishes the proof of proposition 2.2.6.

2.3 Images and Shadows of Singularities

The previous discussion of an isolated singularity has shown how we can utilise coverings
to describe singularities and in particular to show that isolated singularities are removable.
For an isolated singularity there is only a single point we have to take care of and we can
find a nice symmetric neighbourhood on which we can build upon. While singularities
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𝜎

𝑥

𝐷−1(𝐵(𝑦, 𝛿
2))

𝐵(𝑥, 𝛿) in 𝑀

0 𝑦
𝐵(𝑦, 𝛿

2)

𝐷(𝐵(𝑥, 𝛿))
isometrically in ℝ𝑚

𝐷

Figure 2.4: The balls involved in the proof of lemma 2.2.13. The depicted situation
cannot happen, as 𝐷 maps 𝐵(𝑥, 𝛿) isometrically but the 𝛿/2-ball has two
partial pre-images.
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2.3 Images and Shadows of Singularities

in dimension two are (only) points, this is no longer true in higher dimensions and
singularities are usually not isolated at all.

To understand the nature of the developing map in these cases, we must identify the
points where complications arise. Obviously, singularities are points which need our
attention. However, their influence reaches a little further as they shimmer through to
other sheets of the (yet to be proven) covering by the developing map. This yields the
concept of images and shadows of singularities which allows us to describe problematic
points.

Having taken care of these points, we prove in theorem 2.3.16 under some mild condition
(corresponding to the tameness of the singularity) that the developing map is a covering
and use that to remove singularities with theorem 2.3.21.

2.3.1 Definition of Shadows and Images

Example 2.3.1. First, let us consider a simple example. Let 𝑀 be two glued sliced
punctured discs where one disc contains a singularity 𝜎 but the other does not (see
figure 2.5). The developing map 𝐷 – or more precisely the in this case well-defined map
induced by the developing map as 𝑀 is not simply connected – maps onto the punctured
open ball �̇�(0, 𝜀) ⊆ ℝ2. (𝑀 has to be non simply connected because of theorem 2.3.21.)
In general we would like to say that 𝐷 is a covering on �̇�(0, 𝜀). However, 𝐷 fails to be
covering over the point 𝐷(𝜎), which can be thought of the image of 𝜎 under 𝐷, because
the pre-image of a small disc around 𝐷(𝜎) is in one sheet a punctured disc and in the
other a filled disc.

This situation is unpleasant. For a concrete example with knowledge about the
singularity in question, the situation can often be resolved easily by choosing a better
suited neighbourhood for it. In the above example, we could reduce the radius, so 𝜎 is
no longer in the neighbourhood we are interested in and thus not a problem any more.

For the generic case, this is much harder to do as singularities are not only isolated
points and can accumulate in the points we are interested in. Furthermore, proving the
existence of a ‘good’ neighbourhood can be quite challenging for an abstract space.

To tackle this problem, we introduce images and shadows. Simply put, we declare
the points at which 𝐷 fails to be a covering map also to be singularities. Then 𝐷 is a

𝑆(𝜎) 𝜎

𝑀

𝐷(𝜎)

�̇�(0, 𝜀) ⊆ ℝ2

𝐷

Figure 2.5: The translation manifold 𝑀 consists of two glued punctured discs. It has two
singularities: the centre of the discs (present in both discs) and the singularity
𝜎 (only present in one disc).
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translation covering again. In the above example we would declare 𝑆(𝜎) to also be a
singularity. However, singularities without any restriction can be quite wild and expose
complicated and unintuitive behaviour so we have to be careful when doing this.

Here is a first definition which we will revise later as it does not cover all situations
which can occur. Nevertheless it is useful in its own right especially when we have some
control or knowledge about the neighbourhood of the singularities we are interested in.

Definition 2.3.2 (Images and Shadows). Let 𝑀 be a translation manifold of dimen-
sion 𝑚, 𝑀 its metric completion and 𝛴 = 𝑀 ∖ 𝑀 the set of singularities. Let 𝑈 ′ ⊆ 𝑀
be an open neighbourhood such that the development map on the universal cover of
𝑈 ≔ 𝑈 ′ ∩ 𝑀 descends to a well-defined map on 𝑈. The images of the singularities of 𝑈
contained in 𝑈 ′ in ℝ𝑚 are defined as

𝐷f
𝑈(𝛴) ≔ ⋃

(𝑥𝑛)𝑛∈ℕ∈𝒞
Acc((𝐷(𝑥𝑛))𝑛∈ℕ) ⊆ 𝐷(𝑈), (2.9a)

where
𝒞 ≔ {(𝑥𝑛)𝑛∈ℕ ∣ (𝑥𝑛)𝑛∈ℕ is a Cauchy sequence in 𝑈 with lim

𝑛→∞
𝑥𝑛 ∈ 𝛴 ∩ 𝑈 ′} (2.9b)

and Acc is the set of accumulation points of a sequence. The shadows of the singularities
𝛴 ∩ 𝑈 ′ in 𝑈 are

𝑆f
𝑈(𝛴) ≔ (𝛴 ∩ 𝑈 ′) ∪ 𝐷−1(𝐷f

𝑈(𝛴)). (2.10)

The ‘f’ in our notation stands for ‘focused’; for an explanation for this name choice see
remark 2.3.3 point 5 and remark 2.3.8 point 3.

Remark 2.3.3. A couple of remarks regarding this definition.

1. Images of singularities often do not lie in the image of 𝑈 under 𝐷 but in its closure
𝐷(𝑈), e.g. the punctured ball in ℝ𝑚 considered as translation manifold.

2. Note that not every image yields a shadow as it might not lie in the image of 𝐷,
e.g. in the example 2.3.1 the origin 0 is an image but it is not contained in the
image 𝐷(𝑀) = �̇�(0, 𝜀) and thus has no pre-images, i.e. no corresponding shadow.

3. We include the set of singularities 𝛴 in the set of shadows. This is for convenience
but also to honour the spirit of the definition as shadows should be regarded as a
generalisation of singularities and thus should be a superset.

4. The images of singularities in ℝ𝑚 depend on the choice of 𝐷 and are well-defined
up to a translation.

5. The notation is slightly misleading as the singularities depend on 𝑈 ′ and not just
on 𝑈. However, this notation is more in line with our upcoming definition 2.3.7 and
the idea that we look at a set in 𝑈 ⊆ 𝑀 with developing map 𝐷 and are interested
in the singularities related to 𝑈. Having the possibility of choosing 𝑈 ′ gives also a
more fine-grained control to pick the singularities of interest.
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2.3 Images and Shadows of Singularities

The usual choice for 𝑈 ′ is int 𝑈 but it might be worth noting that in general
𝑈 ≠ int 𝑈 ∩ 𝑀, so the map induced by the developing map might not be defined
for int 𝑈 ∩ 𝑀. In concrete examples, however, it is clear what 𝑈 ′ is supposed to be.

6. The above definition can be adopted for any map 𝐷 between two translation
manifolds which is a local isometry or more generally locally not expanding.

Lemma 2.3.4. In the situation of definition 2.3.2, we have

𝐷f
𝑈(𝛴) = { lim

𝑛→∞
𝐷(𝑥𝑛) ∣ (𝑥𝑛)𝑛∈ℕ is a Cauchy sequence in 𝑈 with lim

𝑛→∞
𝑥𝑛 ∈ 𝛴 ∩ 𝑈 ′}.

(2.11)

Proof. If the limit of the sequence (𝐷(𝑥𝑛))𝑛∈ℕ exists, then the set of accumulation
points Acc((𝐷(𝑥𝑛))𝑛∈ℕ) is the singleton set consisting only of the limit point of the
sequence (𝐷(𝑥𝑛))𝑛∈ℕ and the statement follows. Thus, it suffices to show that taking
the limit lim𝑛→∞ 𝐷(𝑥𝑛) is well defined.

Let (𝑥𝑛)𝑛∈ℕ be a Cauchy sequence in 𝑈 with 𝑥 ≔ lim𝑛→∞ 𝑥𝑛 ∈ 𝛴 ∩ 𝑈 ′. If 𝐷 is
(globally) not expanding, then (𝐷(𝑥𝑛))𝑛∈ℕ would be a Cauchy sequence, too, but this is
in general not the case. Even worse, under 𝐷 a short distance in 𝑀 can become a large
distance in ℝ𝑚, cf. remark 2.1.2. However, locally 𝐷 is an isometry and this will suffice
as the following shows.

Let 𝜀 > 0 and 𝐵(𝑥, 𝜀) ⊆ 𝑈 ′ be an open ball in 𝑀 around the limit of the Cauchy
sequence. Then for all 𝑦, 𝑦′ ∈ 𝐵(𝑥, 𝜀

3) ∩ 𝑈, we have 𝑑(𝑦, 𝑦′) < 2𝜀
3 and all the short paths

between 𝑦 and 𝑦′ are contained in 𝐵(𝑥, 𝜀) ∩ 𝑈 ⊆ 𝑀. We use the words ‘short paths’
as the geodesic between 𝑦 and 𝑦′ (which has length less than 2𝜀

3 ) might go through a
singularity. By the definition of the metric in 𝑀 there are short paths whose lengths are
arbitrary close to the distance between 𝑦 and 𝑦′. Since 𝐷 – as a local isometry – preserves
the length of paths, we have 𝑑(𝐷(𝑦), 𝐷(𝑦′)) < 2𝜀

3 . Although 𝐷 might be expanding it at
least preserves short distances around 𝑥, i.e. if 𝑦 and 𝑦′ are close to 𝑥 and thus are close
to each other, the distance between their images under 𝐷 might increase but the images
are still close to each other. In particular, 𝐷 maps a Cauchy sequence converging to 𝑥 to
a Cauchy sequence.

Therefore, the limit of (𝐷(𝑥𝑛))𝑛∈ℕ ∈ ℝℕ exists and is well defined. �

Example 2.3.5. Figure 2.6 shows an example of a translation surface where the Cauchy
sequence (𝑥𝑛)𝑛∈ℕ converges to 𝑥 but 𝐷 is not non-expanding on 𝑈. Indeed, 𝐷 increases
the distances between 𝑥2𝑛 and 𝑥2𝑛+1 (cf. remark 2.1.2). However, if 𝑑𝑀(𝑥2𝑛, 𝑥2𝑛+1) is
small, then 𝑑ℝ𝑚(𝐷(𝑥2𝑛), 𝐷(𝑥2𝑛+1)) is small, too.

As outlined above the idea behind the concept of images and shadows is to gather
all the problematic points and show that outside of these (the map induced by) the
developing map is a covering, in other words

𝐷: 𝑈 ∖ 𝑆f
𝑈(𝛴) → 𝐷(𝑈) ∖ 𝐷f

𝑈(𝛴) (2.12)

is a translation covering.
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…
𝑛 − 1

𝑛 − 2

𝑥

𝑥2(𝑛−1)

𝑥2(𝑛−1)+1

𝑛

𝑛 − 1

𝑥

𝑥2𝑛
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𝑛 + 1

𝑛

𝑥
𝑥2(𝑛+1)
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…

𝑈

𝐷(𝑥2𝑛)

𝐷(𝑥2𝑛+1)

𝐷𝑈(𝑥)

in ℝ𝑚

𝐷

Figure 2.6: Example of a translation surface with not non-expanding developing map.

In example 2.3.1 we have seen that singularities are such problematic points and by
extension also their shadows and these capture indeed all the points preventing 𝐷 from
being a covering. While it works out in that situation, generally this is not the case and
there is a second kind of points which need our attention: boundary points.

Here is an example illustrating that points of the boundary can lead to covering
problems:

Example 2.3.6. This is a slightly modified version of example 2.3.1 but instead of
glueing two sliced discs we glue one sliced disc and one sliced square. The situation
is depicted in figure 2.7. The developing map 𝐷 – or more precisely the (in this case

𝑈 �̇�(0, 𝜀) ⊆ ℝ2

𝐷

Figure 2.7: The neighbourhood 𝑈 of the translation manifold 𝑀 consists of a punctured
disc glued with a punctured square. The map 𝐷 is not a covering above the
dashed points.

44



2.3 Images and Shadows of Singularities

well-defined) map induced by the developing map as 𝑈 is not simply connected – maps
onto the punctured square in ℝ2. 𝐷 is almost everywhere a covering except on the dashed
points which resembles the ‘image of the boundary of the circle’.

The set of singularities 𝛴 for this translation manifold is only the centre point (a
singularity of order two). For definition 2.3.2 the neighbourhood 𝑈 ′ is 𝑈 (the open circle
and open square) together with the centre point. Thus, the images 𝐷f

𝑈(𝛴) are still only
the centre point and do not contain the dashed points.

In the previous example, the obstacle which prevents 𝐷 from being a covering is the
boundary of the neighbourhood 𝑈. Thus, we need to extend the definition of images and
shadows to also take into account the boundaries. The revised definition reads like this:

Definition 2.3.7. Let 𝑀 be a translation manifold of dimension 𝑚, 𝑀 its metric com-
pletion and 𝛴 = 𝑀 ∖ 𝑀 the set of singularities. Let 𝑈 ⊆ 𝑀 be a connected, open
neighbourhood such that the developing map induces a well-defined map 𝐷: 𝑈 → ℝ𝑚

on 𝑈. The images of singularities or the boundary of 𝑈 in ℝ𝑚 are defined as

𝐷𝑈(𝛴) ≔ ⋃
(𝑥𝑛)𝑛∈ℕ∈𝒞

Acc((𝐷(𝑥𝑛))𝑛∈ℕ) ⊆ 𝐷(𝑈), (2.13a)

where
𝒞 ≔ {(𝑥𝑛)𝑛∈ℕ ∣ (𝑥𝑛)𝑛∈ℕ is a Cauchy sequence in 𝑈 with lim

𝑛→∞
𝑥𝑛 ∈ 𝜕𝑈}. (2.13b)

The shadows of the singularities or the boundary of 𝑈 in 𝑈 are

𝑆𝑈(𝛴) ≔ 𝜕𝑈 ∪ 𝐷−1(𝐷𝑈(𝛴)). (2.14)

Remark 2.3.8. 1. Lemma 2.3.4 does not hold anymore. To see this consider the
torus 𝑀 where 𝑈 is everything except the glued boundary, cf. figure 2.8.

2. The above definition does not mention singularities. They are hidden in the
boundary: the singularities related to 𝑈 are a subset of the boundary of 𝑈.

𝑈

𝑀

𝑥

𝑥

𝑥2

𝑥4

𝑥1
𝑥3

𝐷(𝑈)

𝑥even

𝑥odd

𝐷(𝑥2)
𝐷(𝑥4)

𝐷(𝑥1)
𝐷(𝑥3)

in ℝ𝑚

𝐷

Figure 2.8: The sequence (𝑥𝑛)𝑛∈ℕ converges in the translation manifold to a single point 𝑥.
However, its image under the development map 𝐷 does not converge but has
two accumulation points 𝑥odd and 𝑥even.

45



2 Singularities

3. In comparison to definition 2.3.2 we only need one open set 𝑈 ⊆ 𝑀. This has its
merits but also drawbacks:

The second definition (definition 2.3.7) covers all problematic points allowing us to
prove the theorems in the remainder of this section.

In the first definition (definition 2.3.2) with 𝑈 and 𝑈 ′, the 𝑈 ′ can be thought of as
a blind or filter which admits only the singularities we care about to cast a shadow.
This lets us focus on a particular singularity at the cost that we need additional
information about the neighbourhood (like the radial symmetry in example 2.3.1).

4. Note that 𝑈 ∖ 𝑆𝑈(𝛴) might not be connected anymore, e.g. example 2.3.6 describes
such a situation.

Remark 2.3.9 (Relation between Definition 2.3.2 and Definition 2.3.7).
That we have to include the boundary is not that surprising since if we consider the
neighbourhood 𝑈 to be a translation manifold in its own right, then the set of singularities
of 𝑈 is 𝑈 ∖ 𝑈, which contains the boundary of 𝑈.

We can make this more precise: Let 𝑀 be a translation manifold, 𝑀 its metric
completion and 𝛴 = 𝑀 ∖ 𝑀 its set of singularities. Furthermore, let 𝑈 ⊆ 𝑀 an open,
connected neighbourhood such that the developing map induces a well-defined map
𝐷: 𝑈 → ℝ𝑚. Denote by 𝑁 the metric space 𝑈 but with the intrinsic metric, i.e. the
metric induced by the path lengths of paths in 𝑈 (cf. definition 1.1.5). The inclusion
𝜄: 𝑁 → 𝑀 is a non-expanding embedding and can be extended to the metric completions
𝜄: 𝑁 → 𝑀, which is still non-expanding. Note that 𝜄 might not be injective any more,
e.g. figure 2.8 with 𝜄 = 𝐷−1).

We have that 𝑁 (and hence 𝑈) is a translation manifold with singularities 𝛴𝑁 =
𝑁 ∖ 𝑁 and we can project 𝑁 onto the closure 𝑈 of 𝑈 as a subset of 𝑀. Furthermore,
definition 2.3.7 can be reduced to definition 2.3.2 by choosing 𝑈 ′ = 𝑁 for the translation
manifold 𝑁:

𝑆𝑈(𝛴) = 𝜄(𝑆f
𝑁(𝛴𝑁)). (2.15)

Be aware that 𝑈 ′ is open in 𝑁 but 𝜄(𝑈 ′) ⊆ 𝑀 is usually not open in 𝑀.
If 𝜄 is injective, then 𝑈 and 𝑁 can be identified and the above equation can be

shortened to 𝑆𝑈(𝛴) = 𝑆f
𝑈(𝑈 ∖ 𝑈) obfuscating that on the right-hand side 𝑈 is regarded

as a translation manifold on its own and not as a subset of 𝑀.

2.3.2 Covering without Shadows

Although the developing map 𝐷: 𝑈 → ℝ𝑚 might not be a covering map one might think
it has the path lifting property, i.e. a path 𝛾: [0, 1] → 𝐷(𝑈) can be lifted to a path
̃𝛾: [0, 1] → 𝑈 with 𝐷 ∘ ̃𝛾 = 𝛾. This is incorrect as a lifted point in the image might be a

singularity in one layer but not a singularity in another, see example 2.3.1, which prevents
lifting some paths. To make the lifting statement true we have to account for the images
of singularities and also for the boundaries as the following example shows.
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̃𝑥1

̃𝑥2

𝑈

𝐷𝑈(𝛴)

𝑥𝛾

in ℝ𝑚

𝐷

Figure 2.9: The path 𝛾 can only be lifted from ̃𝑥1 but not from ̃𝑥2.

Example 2.3.10. For the neighbourhood 𝑈 depicted in figure 2.9, we have to take the
boundary into account when lifting the path 𝛾. The path 𝛾, which crosses 𝐷𝑈(𝛴), can
be lifted from ̃𝑥1 but not from ̃𝑥2.

Lemma 2.3.11 (Path Lifting Property). Let 𝑀 be an 𝑚-dimensional translation
manifold and 𝛴 = 𝑀 ∖ 𝑀 the set of singularities. Let 𝑈 ⊆ 𝑀 be an open set such that
the developing map descends to a map 𝐷: 𝑈 → ℝ𝑚.

Then 𝐷: 𝑈 ∖ 𝑆𝑈(𝛴) → 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) has the path lifting property. This means
that for a path 𝛾: [0, 1] → 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) or ray 𝛾: [0, 1[ → 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) and a pre-
image ̃𝑥 ∈ 𝐷−1(𝛾(0)) of the starting point, there exists a unique lift ̃𝛾: [0, 1] → 𝑈 ∖ 𝑆𝑈(𝛴)
or ̃𝛾: [0, 1[ → 𝑈 ∖ 𝑆𝑈(𝛴), respectively, that is a path or ray with 𝐷 ∘ ̃𝛾 = 𝛾. For the
former, for each choice of ̃𝑥, there is an ̃𝑥1 which is the pre-image of the end point 𝛾(1).

Remark 2.3.12. The lifting of rays is in particularly useful to aim for singularities, i.e.
paths in 𝑀 which end in a singularity.

Proof. Recall that 𝐷 is a local isometry.
Let 𝑈�̃� be a neighbourhood around the starting point such that 𝐷∣𝑈�̃�

is an isometry.
Lift the beginning of the path 𝛾 to 𝑀 by defining ̃𝛾 ≔ (𝐷∣𝑈�̃�

)−1 ∘ 𝛾. Note that this way
we can only lift open parts of 𝛾, i.e. 𝛾∣[0,𝑡[ for some 𝑡.

Assume we have already lifted the beginning 𝛾∣[0,𝑡1[ of 𝛾 for some 𝑡1 ∈ [0, 1[ to 𝑀 where
the last lifting was done via a local restriction of 𝐷 to 𝑈𝑥0

on which it is an isometry.
We extend the lift to 𝑡1. Let ̃𝑥1 ≔ lim𝑡→𝑡1

̃𝛾(𝑡). This limit is well-defined as 𝛾(𝑡) is a
Cauchy sequence and the lifting in the last part of ̃𝛾 was done via an isometry. We have

̃𝑥1 ∈ 𝑈 ∖ 𝑆𝑈(𝛴) as otherwise

𝛾(𝑡1) = lim
𝑡→𝑡1

𝛾(𝑡) = lim
𝑡→𝑡1

(𝐷 ∘ ̃𝛾)(𝑡) ∈ 𝐷𝑈(𝛴), (2.16)

a contradiction. Thus, we can pick a neighbourhood 𝑈�̃�1
⊆ 𝑈 such that 𝐷 is an isometry

around ̃𝑥1 and extend ̃𝛾 via (𝐷∣𝑈�̃�1
)−1 ∘ 𝛾, which matches up with ̃𝛾 as 𝑈𝑥0

and 𝑈𝑥1

47



2 Singularities

intersect. This process can be repeated countably often, thus allowing lifting rays
𝛾: [0, 1[ → 𝐷(𝑈) ∖ 𝐷𝑈(𝛴).

To see that also paths 𝛾: [0, 1] → 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) can be lifted, first lift its restriction
on [0, 1[, then do the extension to 𝑡 = 1 in the same way as described above for 𝑡1. �

The developing map also has the homotopy lifting property, the proof of this is similar
to the proof of the path lifting property.

Remark 2.3.13 (Homotopy Lifting Property). Let 𝑀 be an 𝑚-dimensional trans-
lation manifold, 𝛴 = 𝑀 ∖ 𝑀 the singularities. Let 𝑈 ⊆ 𝑀 be an open set such that the
developing map descends to a map 𝐷: 𝑈 → ℝ𝑚.

Then 𝐷: 𝑈 ∖ 𝑆𝑈(𝛴) → 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) has the homotopy lifting property. This means,
given a map 𝑓: 𝑌 × 𝐼 → 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) and map ̃𝑓 : 𝑌 × {0} → 𝑈 lifting 𝑓∣𝑌 ×𝐼 , i.e.
𝐷 ∘ ̃𝑓 = 𝑓, then there exists a unique lift ̃𝑓 : 𝑌 × 𝐼 → 𝑈 ∖ 𝑆𝑈(𝛴) lifting 𝑓 and restricting to

̃𝑓 on 𝑌 × {0}. Here 𝐼 is either the closed unit interval [0, 1] or the half-open unit interval
[0, 1[.

In particular, paths 𝛾: [0, 1] → 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) and rays 𝛾: [0, 1[ → 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) can
be lifted. For the former, for each choice of ̃𝑥 ∈ 𝐷−1(𝛾(0)), there is a ̃𝑥1 which is the
pre-image of the end point 𝛾(1).

Since the set of singularities 𝛴 = 𝑀 ∖ 𝑀 is by construction closed, one might guess
that the images of the singularities are also closed in ℝ𝑚. However, this is not the case
as the following example shows.

Example 2.3.14. The translation manifold 𝑀 as depicted in figure 2.10 consists of an
infinite spiral staircase, where at each level 𝑛 > 0 there is a singularity in distance ℓ + 1

𝑛 .
The images of these singularities converge to a point with distance ℓ but neither of its
pre-images is a singularity.

Requiring finiteness in the fibres of 𝐷 (even uniform finiteness) does not salvage the
situation:

Example 2.3.15. Consider the neighbourhood 𝑈 = 𝑀 depicted in figure 2.11. It
consists of a half-annulus which has spikes at the angles 𝜋

2𝑛 which reach to the centre up
to distance 1

2𝑛 combined with a circle. The centre 𝑥 is not in the image of the singularities
or the boundary of 𝑈 but 𝑥 is an accumulation point of the image. In this construction
the number of pre-images under 𝐷 is bounded by 2.

A variation of this example uses a singularity of finite order near the tips of the spikes
yielding the same result even when not considering the boundary.

Theorem 2.3.16. Let 𝑀 be an 𝑚-dimensional translation manifold and 𝛴 = 𝑀∖𝑀 the
singularities. Let 𝑈 ⊆ 𝑀 be such that the developing map descends to a map 𝐷: 𝑈 → ℝ𝑚.
Furthermore, assume that 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) is open in 𝐷(𝑈). Then

i) 𝑈 ∖ 𝑆𝑈(𝛴) is open in 𝑈, and

ii) 𝐷: 𝑈 ∖ 𝑆𝑈(𝛴) → 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) is a translation covering map.
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𝜎𝑛−1ℓ − 1
𝑛−1

⋮

⋮

𝜎𝑛ℓ − 1
𝑛

⋮

⋮

𝜎𝑛+1ℓ − 1
𝑛+1

⋮

⋮

𝑥ℓ

in ℝ𝑚

𝐷

Figure 2.10: Infinite spiral staircase with a singularity 𝜎𝑛 on each level. The images of
the singularities on each level converge to 𝑥 but 𝑥 itself is not an image of a
singularity.
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̃𝑥

𝑈

𝑥

in ℝ𝑚

𝐷

Figure 2.11: In this example the covering is finite but the images of the tips of the spikes
accumulate in 𝑥 although 𝑥 itself is not an image of a singularity nor the
boundary.

Remark 2.3.17. The above can be seen as an indicator or sufficient prerequisite for
tame singularities. The first condition is that the images of the singularities are closed in
𝐷(𝑈). The second condition is more hidden and is the requirement for the developing
map to descend to a map on the translation manifold.

Isolated wild singularities usually fail the second condition.

Remark 2.3.18. Please note that neither 𝑈 ∖𝑆𝑈(𝛴) nor 𝐷(𝑈)∖𝐷𝑈(𝛴) must be connec-
ted. In particular, 𝐷 can be a covering with different degrees on the individual connected
components. For an example see figure 2.12.

Proof. Since 𝑈 ∖ 𝑆𝑈(𝛴) = 𝑈 ∖ 𝐷−1(𝐷𝑈(𝛴)) and 𝐷 is a local homeomorphism, 𝐷(𝑈) ∖
𝐷𝑈(𝛴) open implies 𝑈 ∖ 𝑆𝑈(𝛴) open.

𝑈 �̇�(0, 𝜀) ⊆ ℝ2

𝐷

Figure 2.12: The neighbourhood 𝑈 consists of the punctured disc glued with a punctured
square. The image of the boundary of 𝑈 separates 𝐷(𝑈) into five connected
components: the four corners and the central punctured disc. Over each of
the four corner components 𝐷 has degree 1, and over the central punctured
disc it has degree 2.
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Let 𝑦 ∈ 𝐷(𝑈) ∖ 𝐷𝑈(𝛴). To show that 𝐷 is a covering map we again need a uniform
bound for the radii of balls on which 𝐷 is an isometry. More precisely we need 𝐷∣𝐵(�̃�,𝜀)
to be an isometry for all ̃𝑥 ∈ 𝐷−1(𝐵(𝑦, 𝜀/2)).

Choose 𝜀 > 0 such that 𝐵(𝑦, 5𝜀/2) ⊆ 𝐷(𝑈) ∖ 𝐷𝑈(𝛴). We claim that with this choice
𝐷∣𝐵(�̃�,𝜀): 𝐵( ̃𝑥, 𝜀) → 𝐷(𝐵( ̃𝑥, 𝜀)) is an isometry for all ̃𝑥 ∈ 𝐷−1(𝐵(𝑦, 𝜀/2)) ⊆ 𝑈.

Let ̃𝑥 ∈ 𝐷−1({𝑥}) be a pre-image of 𝑥 ∈ 𝐵(𝑦, 𝜀/2)). First, we show that 𝐵( ̃𝑥, 2𝜀) ∩
𝑆𝑈(𝛴) = ∅, in particular 𝐵( ̃𝑥, 2𝜀) ⊆ 𝑀. We have 𝐷(𝐵( ̃𝑥, 2𝜀)) ⊆ 𝐵(𝑥, 2𝜀) ⊆ 𝐵(𝑦, 5

2𝜀)
and since the latter has no images of singularities or the boundary, its pre-image has no
shadows of singularities or the boundary. Next, by lemma 1.3.10 the map 𝐷 restricted to
𝐵(𝑥, 𝜀) is an isometry. Lastly, by the same argument as in lemma 2.2.13 we can conclude
that

𝐷: 𝑈 ∖ 𝑆𝑈(𝛴) → 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) (2.17)

is a covering map. It is also a translation covering map as 𝐷 is glued out of charts, i.e.
respects the translation structure. �

Corollary 2.3.19. Let 𝑀 be an 𝑚-dimensional translation manifold and 𝛴 = 𝑀 ∖ 𝑀
be the singularities. Let 𝑈 ⊆ 𝑀 be an open set such that the developing map descends to
a map 𝐷: 𝑈 → ℝ𝑚. If

i) 𝑈 ∖ 𝑆𝑈(𝛴) is connected,

ii) 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) is open, and

iii) 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) is simply connected,

then the singularities removable in 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) are removable in 𝑈 ∖ 𝑆𝑈(𝛴).

Proof. By theorem 2.3.16 the developing map 𝐷 is a translation covering, thus the
statements follows from theorem 2.1.1. �

In a next step we try to reduce the prerequisites of corollary 2.3.19. A first attempt
would be to hope that 𝑈 ∖ 𝑆𝑈(𝛴) simply connected would be enough to imply that all
singularities inside of 𝑈 are removable. This is unfortunately not the case as the next
example shows:

Example 2.3.20. The universal covering 𝑈 of the punctured unit disc (considered as
translation manifold) is simply connected but the singularity is not removable.

However, for a finite covering we have the following statement:

Theorem 2.3.21. Let 𝑀 be an 𝑚-dimensional translation manifold and 𝛴 = 𝑀 ∖ 𝑀 be
the singularities. Furthermore, let 𝑈 ⊆ 𝑀 be such that the developing map descends to
a well-defined map 𝐷: 𝑈 → ℝ𝑚. If

i) 𝑈 ∖ 𝑆𝑈(𝛴) is connected and simply connected,

ii) 𝜋1(𝐷(𝑈) ∖ 𝐷𝑈(𝛴)) is torsion free, and
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iii) either
a) 𝐷: 𝑈 ∖ 𝑆𝑈(𝛴) → 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) is a finite covering,

or
b) 𝐷−1(𝑥) is finite for all 𝑥 ∈ 𝐷(𝑈) ∖ 𝐷𝑈(𝛴), and
c) 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) is open,

then the singularities which are removable in 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) are removable in 𝑈 ∖ 𝑆𝑈(𝛴).

Remark 2.3.22. The interesting fact about the preconditions in this theorem in partic-
ular with condition b) and c) is that all conditions (except maybe the finiteness condition)
are purely topological properties.

Proof. Firstly, conditions b) and c) imply a) by theorem 2.3.16.
We want to apply theorem 2.1.1. To this end we must show that 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) is

simply connected, i.e. 𝜋1(𝐷(𝑈) ∖ 𝐷𝑈(𝛴)) = 0. But this follows directly from conditions
i), ii) and a) as a torsion free group is either trivial or infinite and the latter cannot
happen because of a) and the simply connectedness of 𝑈 ∖ 𝑆𝑈(𝛴). �

Remark 2.3.23. A condition similar to 𝑈 ∖ 𝑆𝑈(𝛴) being simply connected cannot be
omitted, for example the classic two disc-covering would fulfill everything of the above
except simply connectedness but the singularity is not removable.

2.4 Singularities in Dimension 2 and 3
A question which immediately arises in the situation of theorem 2.3.21 is: Can the
fundamental group of the set 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) have torsion? Or more generally, do open
sets in ℝ𝑚 allow torsion?

For ℝ2 the answer is given by the following theorem:

Theorem 2.4.1. The fundamental group of an open subset of ℝ2 is free, in particular
torsion-free.

This theorem follows from the fact that an open set in dimension two can be triangulated
[Rad26, Hilfssatz 2] in combination with either [Ahl16, Section 44A, p. 102], which proves
the above statement for triangulated surfaces or with [Whi61, Lemma 2.1], which implies
that the triangulation of an open set in ℝ2 has a subcomplex of its 1-skeleton to which
it is homotopic combined with the fact that a 1-simplicial complex is a graph and the
fundamental group of a graph is free.

In the case ℝ3 we can prove that the fundamental group is torsion-free as follows. The
proof uses some knowledge about the classification and composition of 3-manifolds as
well as of the 3-sphere. So let us recall them first.

The 3-sphere 𝑆3 has the property that any embedding 𝑆2 ↪ 𝑆3 of a 2-sphere bounds
two 3-balls – one on the ‘inside’ and one on the ‘outside’ – i.e. we have

𝑆3 ∖ 𝑆2 = 𝐵3 ⨿ 𝐵3. (2.18)
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𝛾

(a) Loop 𝛾 if 𝑁 is part of the ‘inside’ of the
torus.

𝛾

(b) Loop 𝛾 if 𝑁 is part of the ‘outer sur-
roundings’ of the torus.

Figure 2.13: The loop 𝛾, which arises from a torus boundary component of 𝑁, generates
an infinite group.

This fact is (a corollary of) Alexander’s Theorem[Hat07, Theorem 1.1] or a corollary of
the generalised Schoenflies Theorem[Bro60; Maz59]. We note that in the literature, the
property that every embedded 2-sphere bounds a 3-ball is called irreducible.

The connected sum 𝑀#𝑁 of two 𝑚-manifolds 𝑀 and 𝑁 is the manifold obtained by
cutting an embedded 𝑚-ball out of each of the two manifolds and gluing the two resulting
boundary (𝑚 − 1)-spheres via a homeomorphism. The connected sum is an associative
and commutative operation with 𝑆𝑚 being the identity, 𝑀#𝑆𝑚 = 𝑀 (cf. Alexander’s
Theorem for 𝑚 = 3).

Lemma 2.4.2. The fundamental group of an open set in ℝ3 is torsion free.

Proof. Let 𝑈 ⊆ ℝ3 be an open set and in particular a 3-manifold.
Assume 𝜋1(𝑈) has torsion. Then 𝜋1(𝑈) has a subgroup of finite order. By [Hem76,

Theorem 9.8] the set 𝑈 decomposes into 𝑈 = 𝑁#𝑈 ′ such that 𝑁 is compact and 𝜋1(𝑁)
is finite and non-trivial; Note that we can consider 𝑁 not only as a subset of ℝ3 but also
as a subset of 𝑆3.

If 𝑁 has no boundary, then we can directly skip to the last step. Otherwise we eliminate
the boundary as follows:

The boundary of 𝑁 is a surface. We claim that the boundary of 𝑁 is a disjoint union
of spheres:

𝜕𝑁 = ∐ 𝑆2. (2.19)
Clearly, the boundary is a disjoint union of surfaces. If a surface 𝑆𝑔 of it has genus 𝑔 ≥ 1,
then 𝑁 contains a non-contractable loop along 𝑆𝑔 (cf. figure 2.13) and ℤ ⊆ 𝜋1(𝑁) which
is a contradiction to 𝜋1(𝑁) being finite. Thus, the boundary of 𝑁 is a disjoint union of
spheres.

According to van Kampen’s theorem[Hat15, Theorem 1.20, p. 43] gluing 𝑁 with a
3-ball 𝐵3 along an 𝑆2 boundary component does not change the first fundamental group
of 𝑁 because

𝜋1(𝑁 ⨿𝜕𝑆2 𝐵3) ≅ 𝜋1(𝑁) ∗𝜋1(𝑆2)⏟
=0

𝜋1(𝐵3)⏟
=0

≅ 𝜋1(𝑁). (2.20)

Therefore, 𝜋1(𝑁 ⨿𝜕𝑁 ∐ 𝐵3) ≅ 𝜋1(𝑁) and 𝑁 ⨿𝜕𝑁 ∐ 𝐵3 has no boundary.
Recall that 𝑁 ⊆ 𝑆3. Because 𝑆3 ∖ 𝑆2 = 𝐵3 ⨿ 𝐵3, equation (2.18), we can choose the

3-ball being glued to be the 𝐵3 of this union which does not contain 𝑁. This allows us
to consider the gluing of 𝑁 with the balls as taking unions of subsets of 𝑆3.
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Hence, 𝑁 ⨿𝜕𝑁 ∐ 𝐵3 is a subset of 𝑆3, which is closed and has no boundary, thus is
equal to 𝑆3. Therefore,

𝜋1(𝑁) ≅ 𝜋1(𝑁 ⨿𝜕𝑁 ∐ 𝐵3) = 𝜋1(𝑆3) (2.21)

but the left side is a finite, non-trivial group and the right side is the trivial group, a
contradiction. Therefore, our premise must be false and 𝜋1(𝑈) is torsion free. �

Remark 2.4.3. The answer for the question of a torsion free fundamental group is
negative for ℝ𝑚 with 𝑚 ≥ 4 by the observation that a (thickened) projective plane can
be embedded into ℝ4; the thickening is needed as we are talking about open sets. Let us
elaborate this in more detail.

We use the representation of the projective plane as the 2-sphere in ℝ3 with antipodal
points identified, i.e. ℙ2(ℝ) ≔ {(𝑥, 𝑦, 𝑧) ∈ ℝ3 | 𝑥2 + 𝑦2 + 𝑧2 = 1}/∼ where (𝑥, 𝑦, 𝑧) ∼
(−𝑥, −𝑦, −𝑧). The local inverse of the quotient map gives rise to a smooth structure on
ℙ2(ℝ) and it is thus a smooth manifold.

The smooth map 𝑆2 → ℝ4, (𝑥, 𝑦, 𝑧) ↦ (𝑥𝑦, 𝑦𝑧, 𝑧𝑥, 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2) with distinct
constants 𝑎, 𝑏, 𝑐 ∈ ℝ descends to this model of the projective plane and gives rise to an
injective immersion of ℙ2(ℝ) in ℝ4, in other words an embedding. Thus, we can regard
ℙ2(ℝ) as a smooth submanifold of ℝ4.

By [Lee13, Theorem 6.24, p. 139] this smooth submanifold of ℝ4 has an open tubular
neighbourhood in ℝ4 and by [Lee13, Theorem 6.25, p. 140] it is a retract of the embedded
projective plane. In particular it has the same fundamental group.

To summarise, the tubular neighbourhood of an embedded projective plane in ℝ4 is an
open set whose fundamental group is ℤ/2ℤ, i.e. is not torsion-free.

The above can be generalised from ℝ4 to any ℝ𝑚 with 𝑚 ≥ 4. Therefore we have the
following lemma:

Lemma 2.4.4. There exist open sets in ℝ𝑚, 𝑚 ≥ 4, with the first fundamental group
being of finite order. In particular there exist open sets the first fundamental group of
which have torsion.

These sets also really do occur in our setting with translation manifolds:

Example 2.4.5. Let 𝑀 ⊆ ℝ𝑚, 𝑚 ≥ 4, be an open subset with finite first fundamental
group. This set is a translation manifold with the identity as atlas. Its universal cover
𝑝: �̃� → 𝑀 is finite and �̃� is a translation manifold and 𝑝 is a translation covering.
The developing map 𝐷: �̃� → ℝ𝑚 is the covering map 𝑝. The singularities of �̃� are
only the boundary points and the shadows do not produce any points outside of it, i.e.
𝑆f

𝑀(𝜕𝑀) = 𝜕𝑀.
This is therefore an example of a translation manifold which fulfills every precondition

of theorem 2.3.21 except being torsion free.

We can combine these results into the following theorem:
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Theorem 2.4.6. Let 𝑀 be a 2- or 3-dimensional translation manifold and 𝛴 = 𝑀 ∖ 𝑀
be the singularities. Furthermore, let 𝑈 ⊆ 𝑀 be such that the developing map descends
to a well-defined map 𝐷: 𝑈 → ℝ𝑚. If

i) 𝑈 ∖ 𝑆𝑈(𝛴) is connected and simply connected, and

ii) either
a) 𝐷: 𝑈 ∖ 𝑆𝑈(𝛴) → 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) is a finite covering,

or
b) 𝐷−1(𝑥) is finite for all 𝑥 ∈ 𝐷(𝑈) ∖ 𝐷𝑈(𝛴), and
c) 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) is open,

then the singularities which are removable in 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) are removable in 𝑈 ∖ 𝑆𝑈(𝛴).

Proof. The statement follows from theorems 2.3.21 and 2.4.1 and lemma 2.4.2 �

Morally the above theorem states that a singularity in three dimensions is removable
if and only if it has a neighbourhood which is simply connected.

2.5 Conclusion
For the ansatz using coverings to describe singularities, not only the singularities them-
selves have to be considered but also the shadows they cast on other leafs of the covering.
This concept of this kind was expected as a comparison of square-tiled surfaces over the
punctured torus shows.

In particular, in the last section we have seen that the crucial point for a singularity
to be removable is the simply connectedness of a neighbourhood. The simply connec-
tedness implies two things: first the existence of a well-defined developing map on the
neighbourhood, and second the removability of the singularity itself.

Morally, the simply connectedness also states that a singularity has to be big-enough
in terms of its ‘dimension’ because ‘low-dimensional’ subsets only yield simply connected
sets, cf. the punctured ball in 2 vs. 3 dimension. For arbitrary topological spaces the
term dimension has to be filled with a proper definition but in all the examples we have
seen so far its meaning should be obvious.

Theorem 2.1.1 covers almost all if not all situations which we would call tame singular-
ities (or finite translation manifold). Thus, only ‘codimension two’ singularities exist in
finite translation manifolds.
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3 Cubic Translation Manifolds
In this chapter we investigate a special type of translation manifold. The type of
translation manifold we want to examine are cubic ones, that is a translation manifold
which is glued from cubes. In the case of dimension two they are known as square tiled
surfaces or also as orgamis and are from major interest as they provide a rich structure
combined with the fact that they are dense in the set of all finite translation surfaces.
Furthermore, they give important examples and counterexamples – we have already seen
that in example 1.1.26. Moreover, in the future they will guide us the way to understand
singularities in more depth.

Because a cubic translation manifold has only one building block – a cube – it admits
a covering over the torus. This in turn allows us to give some explicit description of
this manifold and to construct suitable and well-behaved neighbourhoods together with
translation coverings around any singularity of our interest. Because of this, we will be
able to classify their singularities and give a concrete description of them.

In section 3.1 we give the definition of a cubic translation manifold as well as some
notation and background on cubes. Most importantly we define what a cubic neighbour-
hood is (definition 3.1.9), which is an adapted neighbourhood which allows to exercise
control over the singularity resulting in a complete classification of them in the next
section.

After that, in section 3.2 we take a closer look at the singularities of a cubic translation
manifold. Using the cubic neighbourhoods, we start with the classification of singularities
of codimension two. Then we show in theorem 3.2.7 that singularities of codimension
greater than two are always removable. Finally, we give a complete classification of the
singularities and their intersection behaviour in theorem 3.2.29.

3.1 Definition of a Cubic Translation Manifold
Throughout this chapter we denote by 𝑇 ∗ the translation manifold built out of a single
𝑚-dimensional unit cube in ℝ𝑚 where opposite faces are identified but without its
(𝑚 − 2)-skeleton. The (𝑚 − 2)-skeleton are the (removable) singularities of 𝑇 ∗. We can
use the standard identification of the torus with ℝ𝑚/ℤ𝑚 to obtain a concrete model for
𝑇 ∗. Because the torus is homogenous we can – or must, depending on the point of view –
choose also the skeleton. In this model we regard the points with integer coordinates
as the vertices of the unit cube. Thus, a point of the (𝑚 − 2)-skeleton has at least two
integer entries in its coordinates. Furthermore, we denote by 𝑐 the centre of 𝑇 ∗ – we
could use any point here and choose the centre purely because its more memorable. In
our concrete model the centre 𝑐 would be 𝑐 ≔ (0.5, …, 0.5) + ℤ𝑚 ∈ 𝑇 ∗. Sometimes we will
shorten the edge length of our cubes, in this case we also shrink 𝑇 ∗ by the same factor.
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3 Cubic Translation Manifolds

Figure 3.1: The three-dimensional L-shaped translation manifold. It is glued out of four
cubes and the remaining sides are glued with their opposite by a translation in
𝑥-, 𝑦-, or 𝑧-direction. All the drawn edges are not part of the cubic translation
manifold and form the singularities.

Definition 3.1.1 (Cubic Translation Manifold I). A cubic translation manifold of
dimension 𝑚 is a translation manifold 𝑀 glued out of 𝑚-dimensional cubes, all of the
same size, as described in definition 1.1.14.

We say 𝑀 is finite iff it is glued out of finitely many cubes.

Example 3.1.2. a) The simplest example is the torus 𝑇 ∗ itself, which is the unique
translation manifold built out of a single cube.

b) ℝ𝑚 is an infinite cubic translation manifold. To strictly obey our definition, we
must exclude its codimension 2 skeleton but we do not reflect that in our notation
and write ℝ𝑚 for the cubic translation manifold with and without its (removable)
singularities.

c) Another example glued out of four cubes can be seen in figure 3.1. We have already
encountered this translation manifold in example 1.1.26, where we give some more
details about its singularities. See also figure 3.3 were we discuss the singularities
of it.

d) If 𝑀 is a cubic translation manifold of dimension 𝑚, then 𝑀 × 𝑇 𝑛 is a cubic
translation manifold of dimension 𝑚 + 𝑛, where we already added some removable
singularities. Here 𝑇 𝑛 denotes the 𝑛-dimensional torus.

Because a cubic translation manifold 𝑀 consists only of cubes of the same size and
shape, we have a map 𝑝: 𝑀 → 𝑇 ∗. This map is well-defined not only in the interior of
the cubes but also on the faces and is a translation covering map.

Since coverings are connected to the first fundamental group, it is good to know what
the fundamental group of the torus is:

Lemma 3.1.3. The fundamental group of 𝑇 ∗ is the free group in 𝑚 generators:

𝜋1(𝑇 ∗) = 𝐹𝑚. (3.1)
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3.1 Definition of a Cubic Translation Manifold

The loops which go through 𝑐 in positive direction 𝑥𝑖, 𝑖 = 1, …, 𝑚, form a basis for 𝜋1(𝑇 ∗).
We will denote the elements of this basis also by 𝑥𝑖.

Proof. Thickening the codimension two skeleton and shrinking the interior of the cube,
yields a bouquet of 𝑚 circles, one circle for each dimension. �

Each cube in 𝑀 can be identified with its centre and the set of centres is exactly
the fibre 𝑝−1({𝑐}). Therefore, we can identify the cubes and the fibre of the covering
𝑝: 𝑀 → 𝑇 ∗. The usual operation of the generators 𝑥𝑖 on the fibre becomes an operation
on the cubes. This operation encodes the gluing pattern of the cubic translation manifold
because the generator 𝑥𝑖, which is the path in direction 𝑥𝑖 maps a cube 𝐶 to the cube
which is glued to the face of 𝐶 in positive 𝑥𝑖-direction.

Similarly, if we have a translation covering 𝑝: 𝑀 → 𝑇 ∗, then we can use 𝑝 to partition
𝑀 into cubes and for these cubes we get a gluing pattern by lifting the generators
𝑥𝑖 ∈ 𝜋1(𝑇 ∗) to 𝑀. Thus, 𝑀 is glued out of cubes and hence a cubic translation manifold.

With this we have just shown that the following definition and definition 3.1.1 are
equivalent:

Definition 3.1.4 (Cubic Translation Manifold II). A cubic translation manifold of
dimension 𝑚 is a translation manifold 𝑀 together with a translation covering 𝑝: 𝑀 → 𝑇 ∗.

𝑀 is a finite cubic translation manifold iff the covering map is finite, i.e. if each fibre
𝑝−1({𝑥}) for 𝑥 ∈ 𝑇 ∗ is finite.

Remark 3.1.5. Instead of starting with a translation covering between translation
manifolds, we can also start with a topological covering map 𝑝: 𝑀 → 𝑇 ∗ between a
topological space 𝑀 and the torus and then endow 𝑀 with the translation structure of
𝑇 ∗ lifted via 𝑝, cf. remark 1.2.2.

3.1.1 Notation
From now on we assume that 𝑀 is connected.

Covering Map

Results of the covering map theory allows us to identify the elements in the fibre 𝑝−1({𝑐})
with the elements in the quotient 𝑝∗(𝜋1(𝑀))\𝜋1(𝑇 ∗). Note that the quotient is only a
group if the covering is normal, i.e. if 𝑝∗(𝜋1(𝑀)) is a normal subgroup in 𝜋1(𝑇 ∗).

We introduce the following short-hand notations: For a cube 𝐶 and an element
𝑔 ∈ 𝜋1(𝑇 ∗), we denote by 𝐶𝑔 the cube under the permutation of the fibre (and hence
the cubes) induced by 𝑔. Under the identification of cubes and cosets the permutation
corresponds to the usual right multiplication.

Since the fundamental group and coverings are sensitive to the basepoint, we will fix
some cube 𝐶1 of 𝑀 as base and its centre 𝑐1 as basepoint. Using 𝐶1 we can map each
element 𝑔 ∈ 𝜋1(𝑇 ∗) to the cube 𝐶1𝑔. Under the identification of cubes in 𝑀 with elements
in the fibre 𝑝−1({𝑐}) which in turn can be identified with elements in 𝑝∗(𝜋1(𝑀))\𝜋1(𝑇 ∗),
the base cube 𝐶1 corresponds to the coset 𝑝∗(𝜋1(𝑀, 𝑐1)). We picked the notation 𝐶1
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3 Cubic Translation Manifolds

instead of 𝐶0 because we are writing the concatenation of group elements in 𝜋1(𝑇 ∗)
multiplicatively.

To ease our notation we will suppress the injective map 𝑝∗ and directly regard 𝜋1(𝑀, 𝑐1)
as a subgroup of 𝜋1(𝑇 ∗, 𝑐), e.g. 𝐶1 becomes 𝜋1(𝑀, 𝑐1).

Cubes

The number of 𝑘-faces, i.e. faces of dimension 𝑘, in an 𝑚-dimensional cube is

2𝑚−𝑘(𝑚
𝑘

). (3.2)

We can see this by realising that a point in a 𝑘-face in ℝ𝑚 has 𝑚 − 𝑘 entries which are
fixed to an integer value and 𝑘 entries without that restriction. The entry in an integer
coordinate can, in the representation [0, 1]𝑚 ⊆ ℝ𝑚, either be 0 or 1. Since the entries of
the integer coordinates can be chosen freely, there are (𝑚

𝑘 ) different 𝑘-faces which are not
translates of each other. Moreover, a 𝑘-face in ℝ𝑚 is contained in exactly 2𝑚−𝑘 different
cubes.

Cubic neighbourhood

In the upcoming discussion we will need some special neighbourhoods for a 𝑘-face. Since
a cubic translation manifold is built out of cubes we can utilise this to define a nice
neighbourhood which is also built out of cubes.

Definition 3.1.6 (Relative Interior). Let 𝑀 be a cubic translation manifold and 𝐴 a
𝑘-face in 𝑀. The relative interior of 𝐴, written relint(𝐴), is 𝐴 without its (𝑘 − 1)-faces.

Remark 3.1.7. The name relative interior is motivated by the following observation.
Let 𝐴 be a face in 𝑀 of a cube 𝐶. Then we can also think of 𝐴 as a face 𝐴ℝ of a cube
𝐶ℝ in ℝ𝑚 because the (unglued) cube 𝐶 can be embedded into ℝ𝑚. The relative interior
of 𝐴 (in 𝑀) is the image of the relative interior of 𝐴ℝ in ℝ𝑚 (in the meaning of affine
geometry of ℝ𝑚) under this identification. Recall that for a subset 𝑋 ⊆ ℝ𝑚 the relative
interior of 𝑋 is defined as relint(𝑋) ≔ {𝑥 ∈ 𝑋 | ∃𝜀 > 0: 𝐵(𝑥, 𝜀) ⊆ 𝑋 ∩ aff(𝑋)}, where
aff(𝑋) is the affine hull of 𝑋 in ℝ𝑚.

Example 3.1.8. The relative interior of a vertex, i.e. a point, is the vertex itself.
For the three-dimensional torus 𝑇 ∗ and an edge 𝐴 the relative interior is the edge

without the vertex of the torus although the edge 𝐴 is ‘glued at its ends’, i.e. is topologically
the circle 𝑆1.

Definition 3.1.9 (Cubic Neighbourhood). Let 𝑀 be a cubic translation manifold
of dimension 𝑚 and let 𝐴 be a 𝑘-face of 𝑀.
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3.2 Singularities of Cubic Translation Manifolds

𝐴

(a)

𝐴

(b)

𝐴

(c)

𝐴

(d)

𝐴

(e)

Figure 3.2: Cubic neighbourhoods in ℝ2 and ℝ3

The cubic neighbourhood 𝑁𝑀(𝐴) of 𝐴 is the interior of all cubes touching 𝐴 with the
codimension 2 skeleton removed. More precisely

𝑁𝑀(𝐴) ≔ int( ⋃
𝐶∈𝒞(𝐴)

𝐶 ) ∖ codim 2 skeleton (3.3)

where 𝒞(𝐴) ≔ {𝐶 closed face of 𝑀 | 𝐶 ∩ relint(𝐴) ≠ ∅}. This neighbourhood is open and
path-connected.

Remark 3.1.10. Taking the interior of the cubes is strictly speaking not necessary.
Doing so ensures that we have an open neighbourhood, which has its merits. Using the
closed cubes has the advantage that also all faces of the cubes of the cubic neighbourhood
are in the neighbourhood except those of codimension 2 and greater, i.e. the blocks we
build the closed cubic neighbourhood with are precisely the building blocks which we
used for gluing the cubic translation manifold to begin with.

Example 3.1.11. We consider ℝ𝑚 as a cubic translation manifold (cf. example 3.1.2 b)).
Figure 3.2 depicts different cubic neighbourhoods 𝑁ℝ𝑚(𝐴) for different dimensions and
faces: 3.2(a) is the cubic neighbourhood of a 0-face (point) in two dimensions; (b) and
(c) are the two different cubic neighbourhoods of a 1-face (edge) in two dimensions;
(d) is the cubic neighbourhood of a 1-face (edge) in three dimensions; (e) is the cubic
neighbourhood of a 0-face (point) in three dimensions; in (d) and (e) are the edges not
part of the neighbourhood.

For an example of a cubic neighbourhood not in ℝ𝑚 see figure 3.5.

Example 3.1.12. Let 𝑇 ∗ be the three dimensional torus without the edges and let 𝐴
be an edge. Then 𝑁𝑇 ∗(𝐴) = 𝑇 ∗. In particular 𝑁𝑇 ∗(𝐴) consists only of one cube where
we would have expected four cubes and 𝐴 touches this one cube in four edges.

We will see later that this poses a problem (which we can circumvent) as 𝑁𝑇 ∗(𝐴)
cannot be embedded into ℝ3.

3.2 Singularities of Cubic Translation Manifolds
As described in the construction in definition 1.1.14, the singularities of a cubic translation
manifold are the union of the (glued) (𝑚 − 2)-skeletons of the cubes. Again we want
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3 Cubic Translation Manifolds

Figure 3.3: The three-dimensional L-shaped translation manifold. After the identification
(cf. figure 3.1) the translation manifolds has a single vertex and six edges
(one of which is highlighted). The non-removable singularities consist of the
single vertex and the three edges which are all part of the centre cube. The
edge singularities have order 3 each (see proposition 3.2.2).

to classify and understand the singularities, in particular we want to find criteria for a
singularity to be removable.

Example 3.2.1. a) The set of singularities of the torus 𝑇 ∗ is the (𝑚 − 2)-skeleton
and all singularities are removable.

b) ℝ𝑚 as cubic translation manifold (cf. example 3.1.2 b)) has only removable singu-
larities.

c) Figure 3.3 shows the L-shaped surface and its singularities.

d) For the construction 𝑀 × 𝑇 𝑛 of example 3.1.2 d), the non-removable singularities
are 𝛴 × 𝑇 𝑛, where 𝛴 is the set of non-removable singularities of 𝑀. A singularity
{𝜎} × 𝑇 𝑛 is removable if and only if 𝜎 is removable in 𝑀.

3.2.1 Faces of Codimension 𝟐

Let us start by looking at the codimension 2 faces of a cubic translation manifold – in
three dimensions they would correspond to edges. Denote by 𝐸 the codimension 2 face of
𝐶1 which is perpendicular to 𝑥1 and 𝑥2 and lies in positive 𝑥1 and positive 𝑥2 direction,
cf. figure 3.4.

If the relative interior of 𝐸 only consists of removable singularities, then walking around
that face in the 𝑥1-𝑥2-plane with an angle of 2𝜋 will end in the same cube 𝐶1 and at
the same point were we started at. Walking around in the described way corresponds
to first walking one cube in 𝑥1-direction, then one cube in 𝑥2-direction, then one cube
in negative 𝑥1-direction and finally one cube in negative 𝑥2-direction. Note that the
cubes we are walking in might all be the same cube (as it is the case for the torus
𝑇 ∗) but entered from different directions. As described earlier in definition 3.1.4 and
section 3.1.1, we can express the walk with the group operation of the fundamental
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𝐶

𝐸
𝐸′

𝑥1

𝑥2

𝑥−1
1

𝑥−1
2

𝑥1

𝑥2

𝑥3

Figure 3.4: The edge 𝐸 is the codimension two face of the cube 𝐶 perpendicular to the
𝑥1-𝑥2-plane and in (+𝑥1, +𝑥2)-direction. The edge 𝐸′ is also perpendicular
to the 𝑥1-𝑥2-plane but in (−𝑥1, +𝑥2)-direction.
If 𝐸 is removable, then the path 𝑥1𝑥2𝑥−1

1 𝑥−1
2 is a closed path starting and

ending in 𝐶.

group. Therefore, 𝐸 is removable if and only if 𝐶1 = 𝐶1𝑥1𝑥2𝑥−1
1 𝑥−1

2 = 𝐶1[𝑥1, 𝑥2], where
[𝑥1, 𝑥2] ∈ 𝜋1(𝑇 ∗, 𝑐) denotes the commutator of 𝑥1 and 𝑥2 considered as elements in
𝜋1(𝑇 ∗, 𝑐). If we express the above equation in terms of coset, where 𝐶1 = 𝜋1(𝑀, 𝑐1),
we get 𝜋1(𝑀, 𝑐1)𝑥1𝑥2𝑥−1

1 𝑥−1
2 = 𝜋1(𝑀, 𝑐1) in 𝜋1(𝑇 ∗, 𝑐), which is equivalent to [𝑥1, 𝑥2] ∈

𝜋1(𝑀, 𝑐1) ⊆ 𝜋1(𝑇 ∗, 𝑐) (recall that we consider 𝜋1(𝑀, 𝑐1) as a subgroup of 𝜋1(𝑇 ∗, 𝑐)).
This is a nice group theoretic description of a removable codimension 2 singularity.

Now let 𝐸 be a codimension 2 face of any cube 𝐶, not necessarily the base cube,
but still being in positive 𝑥1 and positive 𝑥2 direction. We can express 𝐶 as 𝐶1𝑔 with
𝑔 ∈ 𝜋1(𝑇 ∗, 𝑐) a path whose lift to 𝑀 connects 𝐶1 with 𝐶. The above reasoning still
applies and we obtain that 𝐸 is removable if and only if 𝐶[𝑥1, 𝑥2] = 𝐶 if and only if
𝑔[𝑥1, 𝑥2]𝑔−1 ∈ 𝜋1(𝑀, 𝑐1) ⊆ 𝜋1(𝑇 ∗, 𝑐) The last equation corresponds to starting in 𝑐1,
then first walking along 𝑔 to the cube 𝐶, then following the commutator around 𝐸 and
eventually walking back along 𝑔−1 to 𝑐1 yielding a closed path.

If the codimension two face 𝐸 is not removable, then, in order to come back to the
starting point, we have to walk around 𝐸 with an angle of 2𝜋𝑘 for a certain 𝑘, which
corresponds to using the 𝑘th power of the commutator.

Summarising the findings above, we have showed the following proposition:

Proposition 3.2.2. Let 𝑀 be a cubic translation manifold, with basepoint 𝑐1 ∈ 𝑀 and
let 𝐶 = 𝐶1𝑔 = 𝜋1(𝑀, 𝑐1)𝑔 be a cube in 𝑀, where 𝑔 ∈ 𝜋1(𝑇 ∗, 𝑐) and 𝐶1 is the cube
containing the basepoint 𝑐1.

For the codimension two face 𝐸 of the cube 𝐶 perpendicular to the 𝑥𝑖-𝑥𝑗-plane and
located in the (±𝑥𝑖, ±𝑥𝑗)-direction the following is equivalent:

(i) 𝐶[𝑥±
𝑖 , 𝑥±

𝑗 ]𝑘 = 𝐶

(ii) 𝑔[𝑥±1
𝑖 , 𝑥±1

𝑗 ]𝑘𝑔−1 ∈ 𝜋1(𝑀, 𝑐1).
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3 Cubic Translation Manifolds

In this case we say that 𝐸 has order 𝑘.

If 𝑀 is a normal covering over 𝑇 ∗, then we have the following statement:

Corollary 3.2.3. In the situation of proposition 3.2.2, if 𝑝: 𝑀 → 𝑇 ∗ is a normal
covering map, then the following is equivalent:

(i) 𝐸 has order 𝑘 ∈ ℤ,

(ii) 𝑔[𝑥±1
𝑖 , 𝑥±1

𝑗 ]𝑘𝑔−1 = 1 in the quotient 𝜋1(𝑀, 𝑐1)\𝜋1(𝑇 ∗, 𝑐) ≅ Deck(𝑀/𝑇 ∗).

Remark 3.2.4. The second entry in proposition 3.2.2 has two interpretations:
First, the interpretation as (lifted) paths in 𝑀, which asks the question whether the

concatenation of lifted paths yields a closed path in 𝑀.
Second, the interpretation as elements in the fundamental group of the torus 𝑇 ∗,

where the question becomes whether the product of paths lies in a certain subgroup, viz.
𝜋1(𝑀, 𝑐1).

Remark 3.2.5. Forming a local tubular neighbourhood around the interior of a codimen-
sion two face 𝐸 and orthogonally projecting this neighbourhood to the plane perpendicular
to 𝐸 yields a translation surface, where 𝐸 corresponds to the singularity in the centre
and that singularity has the same order as 𝐸.

Example 3.2.6. In the construction of examples 3.1.2 d) and 3.2.1 d), if 𝜎 ⊆ 𝛴 is a
codimension two face in 𝑀, then 𝜎 × 𝑇 𝑛 is a codimension two face in 𝑀 × 𝑇 𝑛 and the
order of 𝜎 × 𝑇 𝑛 is equal to the order of 𝜎.

This also shows that codimension two faces of any order exist: It is well-known (or
easily constructable) that cubic translation manifolds of dimension two – better known as
square-tiled surfaces – can have singularities of any order 𝑘 ∈ ℕ. The above construction
then yields singularities of order 𝑘 in any dimension 𝑚.

3.2.2 Faces of Codimension 𝟑 and higher
Next we are looking at the lower dimensional parts of the skeleton of the cubic translation
manifold. In three dimension this would be the vertices/corners of the cubes.

Theorem 3.2.7. Let 𝑀 be a cubic translation manifold of dimension 𝑚 and 𝜎 a point
in the skeleton of codimension 𝑘 with 𝑘 ≥ 3. If 𝜎 is not part of a codimension two face
which is non-removable, i.e. not part of the relative boundary of a codimension two face
with order greater than one, then 𝜎 is removable.

In other words, in a cubic translation manifold the singularities must have codimension
two unless they are removable.

Proof. In dimension 𝑚 = 2 there is nothing to prove. Let 𝑚 ≥ 3 and 𝜎 be a singularity
in the skeleton of codimension 𝑘. It suffices to show that there are no singularities in
the 0-skeleton, i.e. the statement that vertices are regular except when part of a singular
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𝜎 𝜎

𝑁ℝ𝑚(0)𝑁𝑀(𝜎)

𝐷

Figure 3.5: A cube of dimension 𝑚 has 2𝑚 codimension three faces in ℝ𝑚, therefore 𝜎
touches 2𝑚 different ‘kinds’ of cubes in 𝑀. Here each type occurs twice.
Note that the outer sides are not glued.

codimension two face. Indeed, if one point of a 𝑘-face is singular, then all points of that
face are singular and since a 𝑘-face contains its (𝑘 − 1)-skeleton, (𝑘 − 2)-skeleton, … it
contains a point of the 0-skeleton. So let 𝜎 be a singular vertex (i.e. 0-face) which is not
contained in a codimension two face of order greater than one.

We subdivide the cubes of 𝑀 into smaller cubes with a third of the edge length and
call this refined cubic translation manifold 𝑀 ′. Note that a point 𝑝 is removable in 𝑀 if
and only if it is removable in 𝑀 ′ because the chart used for removing 𝑝 can be used in 𝑀
and 𝑀 ′. We take the neighbourhood 𝑁𝑀′(𝜎) of 𝜎, which consists of all the refined cubes
having 𝜎 as one of their vertices (cf. definition 3.1.9 and figures 3.2(a) and 3.2(e)). A
cube in dimension 𝑚 has 2𝑚 vertices, so one vertex is contained in 2𝑚 cubes and because
we split the edge length these cubes are distinct cubes in 𝑀 ′.

The developing map for this neighbourhood 𝑁𝑀′(𝜎) descends to a well-defined map
𝐷: 𝑁𝑀′(𝜎) → 𝑁ℝ𝑚(0) because the neighbourhood is glued out of equally sized cubes and
the position of the vertex 𝜎 in the cube uniquely determines one of the 2𝑚 cubes in the
image 𝑁ℝ𝑚(0), see figure 3.5 and since the ‘outer sides’ of 𝑁𝑀′(𝜎) are not glued to any
other side of 𝑁𝑀′(𝜎).

Because all codimension two faces consist of removable singularities, we can remove
them yielding a new slightly larger neighbourhood 𝑈 and extend 𝐷 to it. Then the
image of 𝑈 under 𝐷 in ℝ𝑚 consists of 2𝑚 glued cubes where only the central codimension
three faces are omitted. In particular the image 𝐷(𝑈) ⊆ ℝ𝑚 is simply connected. Thus,
corollary 2.3.19 is applicable and since the codimension three part in the image is
removable in ℝ𝑚, so is the singularity 𝜎. �

Remark 3.2.8. Here is a sketch for proving theorem 3.2.7 in a different way using the
fundamental group of 𝑁𝑀′(𝜎). The induced map 𝐷 is for the same reason as above
a covering map. Looking at the generators of 𝜋1(𝑁ℝ𝑚(0)), i.e. the paths around the
codimension two faces in ℝ𝑚, we can find pre-images under 𝐷∗ in 𝑁𝑀′(𝜎), which shows
that 𝐷∗: 𝜋1(𝑁𝑀′(𝜎)) → 𝜋1(𝑁ℝ𝑚(0)) is surjective. Because 𝐷 is a covering map, 𝐷∗ is
also injective, hence 𝜋1(𝑁𝑀′(𝜎)) ≅ 𝜋1(𝑁ℝ𝑚(0)) and 𝐷 is the identity covering.
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𝐴
𝐵′

𝐴′
1

𝐴′
2

Figure 3.6: When subdividing a single cubes gets split into 3𝑚 smaller cubes. The edge
𝐴 gets split into three subparts 𝐴′

1, 𝐴′
2 and 𝐴′

3 (the last one is not named in
the figure).
A side effect is that new singularities arise for example the vertical edge 𝐵′.
However, these new singularities are all removable, cf. lemma 3.2.11.

3.2.3 Subdividing Cubic Translation Manifolds
In the proof of theorem 3.2.7 we have subdivided the cubes of the cubic translation
manifold 𝑀 into smaller cubes yielding a new cubic translation manifold 𝑀 ′ which is
the same as 𝑀 except being built out of smaller cubes. We did this to ensure that the
cubes we use to construct 𝑁𝑀′(𝜎) are distinct and yield a covering of (a subset of) ℝ𝑚.

In this subsection we will discuss the process of subdividing showing that it is sadly
necessary but merrily a technical detail imposed by our choice of cubic neighbourhood
and not a feature of cubic translation manifolds or their singularities themselves. We
could define the cubic neighbourhood differently but this leads to other difficulties which
can be surmounted by dealing with a lot of corner cases resulting in more complex
definitions which in turn need more thorough argumentations later on. In this work we
do not follow this alternative path.

Definition 3.2.9. Let 𝑀 be a cubic translation manifold of dimension 𝑚. We denote
by 𝑀 ′ the cubic translation manifold which is essentially 𝑀 but each cube is subdivided
into 3𝑚 equally sized smaller cubes. In other words, we divided the edge length by 3. As
we are considering 𝑀 ′ to be a cubic translation manifold this also means that we remove
all codimension 2 faces with respect to the smaller cubes as these are now considered
singularities.

Definition 3.2.10. Let 𝑀 be a cubic translation manifold, 𝑀 ′ its subdivision, 𝑘 ∈ ℕ0
and 𝐴 a 𝑘-face of 𝑀. We call a ℓ-face 𝐴′ of 𝑀 ′ a subpart of 𝐴 iff 𝑘 = ℓ and 𝐴′ ⊆ 𝐴, cf.
figure 3.6.

The additional singularities are a technical artifact as the following lemma shows:

Lemma 3.2.11. Let 𝑀 be a cubic translation manifold and 𝑀 ′ be its subdivision. All
new singularities which are created by the subdividing process, i.e. all singularities of 𝑀 ′

which are not singularities of 𝑀, are removable (cf. figure 3.6).
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𝐴

𝐴′
1 𝑁𝑀′(𝐴′

1)

𝐴′
2 𝑁𝑀′(𝐴′

2)

Figure 3.7: The face 𝐴 in a translation manifold 𝑀 together with two subparts 𝐴′
1 and

𝐴′
2 and their cubic neighbourhoods 𝑁𝑀′(𝐴′

1) and 𝑁𝑀′(𝐴′
2), respectively. The

subparts, and thus their cubic neighbourhoods in 𝑀 ′, are isometric by a
translation along 𝐴.

Proof. A visual argument for the statement is given by realizing what subdivision does:
It merily renames some interior points of a cube to be now part of the codimension 2
skeleton, i.e. to be singularities.

A more thorough argument is this: The metric completion 𝑀 ′ of 𝑀 ′ can be identified
with the metric completion 𝑀 of 𝑀 because 𝑀 ′ is dense in 𝑀. If 𝜎 is a singularity of
𝑀 ′, i.e. 𝜎 ∈ 𝑀 ′ ∖ 𝑀 ′, which is not a singularity of 𝑀, i.e. 𝜎 ∉ 𝑀 ∖ 𝑀, then 𝜎 ∈ 𝑀 ∖ 𝑀 ′

and 𝜎 was a regular point of 𝑀. Hence, 𝜎 has a neighbourhood and a chart compatible
with the translation atlas of 𝑀. The same chart is also compatible with the translation
atlas of 𝑀 ′ as the latter is a subset of the atlas of 𝑀. Thus, 𝜎 is removable. �

Remark 3.2.12. Let 𝑀 be a cubic translation manifold built out of unit cubes. Sub-
dividing 𝑀 and considering it to be glued out of smaller cubes, is equivalent to scaling
𝑀 up and considering it to be built out 3𝑚 times as many unit cubes as before.

The following lemma emphasizes that the subdivision is more a technical artifact and
does not change the description of a singular face, namely that they have isomorphic
neighbourhoods:

Lemma 3.2.13. Let 𝑀 be a translation manifold, 𝑀 ′ its subdivision and 𝐴 a 𝑘-face
of 𝑀. If 𝐴′ and 𝐵′ are 𝑘-faces of 𝑀 ′ with 𝐴′, 𝐵′ ⊆ 𝐴, then 𝑁𝑀′(𝐴′) and 𝑁𝑀′(𝐵′)
are isometric as translation manifolds.

Proof. In a cube 𝐶 of 𝑀 the parts 𝐴′ and 𝐵′ of the face 𝐴 are related by a translation.
Applying this translation cubewise in 𝑀 to all cubes of the neighbourhood 𝑁𝑀′(𝐴′) gives
an isometry between 𝑁𝑀′(𝐴′) and 𝑁𝑀′(𝐵′), cf. figure 3.7. �

Lemma 3.2.14. Consider ℝ𝑚 as cubic translation manifold and let 𝐴 be a 𝑘-face of ℝ𝑚

and 𝐴′ a subpart of 𝐴, i.e. a 𝑘-face in (ℝ𝑚)′ with 𝐴′ ⊆ 𝐴. Then,

𝜋1(𝑁ℝ𝑚(𝐴)) ≅ 𝜋1(𝑁(ℝ𝑚)′(𝐴′)). (3.4)
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𝑇 ∗

𝐵 𝐵

𝐵′ 𝐵′

Figure 3.8: The three-dimensional torus 𝑇 ∗ with (glued) face 𝐵. The cubic neighbourhood
of 𝐵 consists of only one cube, viz. 𝑇 ∗. Hence, cannot be a covering of a
cubic neighbourhood in ℝ3.
After subdividing, the cubic neighbourhood of the subpart 𝐵′ consists of two
cubes. Hence, we obtain a covering over a cubic neighbourhood in ℝ3.

Proof. In the case of ℝ𝑚 the subdivided cubic translation manifold (ℝ𝑚)′ is just a
scaled version of ℝ𝑚. �

The following example shows that subdividing the cubes is necessary if we want to use
the cubic neighbourhood for a covering like in the proof of theorem 3.2.7.

Remark 3.2.15. Consider the torus 𝑇 ∗ (cf. section 3.1). To keep things simple, we
consider the three-dimensional torus, though other dimensions exhibit the same problems.
Let 𝐴 be an edge of 𝑇 ∗, i.e. an edge of the cube the torus is built of.

(i) If we do not subdivide the torus, then we have for the above definition of cubic
neighbourhood 𝑁𝑇 ∗(𝐴) = 𝑇 ∗. Later we want that this cubic neighbourhood covers
a cubic neighbourhood 𝑁ℝ3(𝐵) of an edge 𝐵 of ℝ3 (as cubic translation manifold).
But 𝑁𝑇 ∗(𝐴) = 𝑇 ∗ cannot cover 𝑁ℝ3(𝐵) as the former consists of one cube and the
latter consists of four cubes, see also figure 3.8.
If we subdivide first, then the one cube of the torus splits into multiple cubes and
𝑁(𝑇 ∗)′(𝐴) has enough cubes to cover 𝑁(ℝ3)′(𝐵) like we want.
We can also see the problem by using covering theory: The fundamental group of
𝑁ℝ3(𝐵) is ℤ which does not have the free group 𝐹2 as a subgroup, which is the
fundamental group of 𝑁𝑇 ∗(𝐴) = 𝑇 ∗ by lemma 3.1.3.

(ii) If we want to use 1/3 × 1/3 × 1 cuboids as the building blocks for the cubic
neighbourhood of 𝐴 (now better named cuboidal neighbourhood), we must break
the cycle in the direction of the edge 𝐴; see figure 3.9. This can be achieved by
removing the facets on the ends of the edge, i.e. those which intersect with 𝐴 in
a single vertex, but not the facets which have 𝐴 as an edge. This works but has
the drawback that it is difficult to describe and that it cannot be isometrically
embedded into ℝ3.
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𝑇 ∗

𝐴
𝛾

𝑁(𝐴)

Figure 3.9: Cuboidal neighbourhood 𝑁(𝐴) of the edge 𝐴 in the torus 𝑇 ∗. This is not
a covering over a cuboidal neighbourhood of ℝ3 because the fundamental
group of 𝑁(𝐴) also contains the non-trivial loop 𝛾 which is not present in ℝ3

because the front and back are not glued as it is the case in the torus.

𝑀

𝛾

𝐹 ′

𝑁𝑀′(𝐵′)

𝐵′

Figure 3.10: 𝑀 are two cubes as depicted with opposite sides glued (a cuboidal torus).
After the subdivision by the factor of 2, the neighbourhood 𝑁𝑀′(𝐵′) of the
newly created edge 𝐵′ is not a covering of a cubic neighbourhood of ℝ3

because the fundamental group of 𝑁𝑀′(𝐵′) has the additional loop 𝛾.
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Remark 3.2.16. The reason that we subdivide by a factor of 3 instead of a factor of 2
is more another technicality. We have to decide which faces 𝐴′ of 𝑀 ′ are allowed when
considering cubic neighbourhoods 𝑁𝑀′(𝐴′). If we only allow 𝑘-faces 𝐴′ that are a subpart
of a 𝑘-face 𝐴 of 𝑀 for the same 𝑘, then factor 2 would be enough. This restriction, for
example, rules out the vertex point which appears in the middle of an edge.

However, if we allow all 𝑘-faces 𝐴′ of 𝑀 ′, then we need a factor making the edge length
strictly smaller than 1/2 otherwise we have the following problem:

For the three dimensional torus 𝑇 ∗ and edge 𝐴, let 𝐵′ in (𝑇 ∗)′ be the newly created
edge orthogonal to 𝐴, similar to figure 3.10. The cubic neighbourhood 𝑁(𝑇 ∗)′(𝐵′) of 𝐵′

are four cubes which are also glued on the outer sides facing away in directions orthogonal
to 𝐵. This neighbourhood deformation retracts to ⋁3

𝑖=1
𝑆1, three circles glued together

on a single point and its fundamental group is the free group in three generators 𝐹3. As
above, this neighbourhood cannot cover a cubic neighbourhood in ℝ3.

3.2.4 Classification of Singularities

We have seen in proposition 3.2.2 that the order 𝑘 of a codimension two face classifies it
completely. What is missing is the classification of the places where two such singularities
meet, i.e. the codimension 𝑘 faces with 𝑘 ≥ 3. To classify those we again use the map 𝐷
induced by the developing map on a neighbourhood similar to the one in the proof of
theorem 3.2.7.

As promoted earlier, in this section we will encounter the point where we see that we
need to subdivide the cubes into smaller cubes in order to obtain a covering map for
our cubic neighbourhoods (definition 3.1.9). As mentioned before this can be avoided
by defining a suitable neighbourhood for faces differently but this in turn would lead to
more complex argumentations elsewhere. More philosophically, by choosing to subdivide
we make the neighbourhoods smaller which is morally the better choice because order
and type of a singularity should be regarded as – and indeed are – local properties of
that point.

Remark 3.2.17. Throughout this section we formulate and prove all the statements
with respect to the original (i.e. not subdivided) cubic translation manifold 𝑀. This
increases the length of the statements and increases the complexity of the arguments.

To get the gist it is therefore recommended to consider 𝑀 already subdivided and then
read all the statements for 𝑀 = 𝑀 ′ ignoring the subdivision and choosing of subparts
altogether.

For the classification of singularities we first need to define when two singularities are
considered equal. There are two kinds of equality for translation manifolds which pop
into mind: via translations and via isometries.

Definition 3.2.18 (Isomorphism for Singularities/Faces). Let 𝑀 and 𝑁 be cubic
translation manifolds and denote by 𝑀 ′ and 𝑁 ′ their respective subdivisions. Let 𝐴 be
a 𝑘-face and 𝐵 be an ℓ-face of 𝑀 and 𝑁, respectively.
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𝐴

(a)

𝐴

(b)

𝐴

(c)

𝐴

(d)

Figure 3.11: The faces 𝐴 (as a singularity) in (a) and (b) are isometric but not translation-
isomorphic (because they are rotated by 𝜋/2). Neither of them is isometric
to the faces of (c) or (d) and thus also not translation-isomorphic. Note that
the faces 𝐴 in (a) and (c) are isometric when considered as metric spaces,
i.e. as a line and without their neighbourhood, but they are not isometric as
a singularity of a translation manifold.

(i) We say that 𝐴 and 𝐵 (as a singularity) are translation-isomorphic or isomorphic via
a translation iff there exists a 𝑘-face 𝐴′ of 𝑀 ′ which is a subpart of 𝐴, i.e. 𝐴′ ⊆ 𝐴,
and a ℓ-face 𝐵′ of 𝑁 ′ which is a subpart of 𝐵, i.e. 𝐵′ ⊆ 𝐵, such that 𝑁𝑀′(𝐴′) and
𝑁𝑁′(𝐵′) are isomorphic as translation manifolds.
In this case we write 𝐴 ≅ 𝐵 and denote the equivalence class of a face 𝐴 as [𝐴]≅.

(ii) We say that 𝐴 and 𝐵 (as a singularity) are isometric or isometric-isomorphic or
isomorphic via an isometry iff there exists a 𝑘-face 𝐴′ of 𝑀 ′ which is a subpart of
𝐴, i.e. 𝐴′ ⊆ 𝐴, and a ℓ-face 𝐵′ of 𝑁 ′ which is a subpart of 𝐴, i.e. 𝐵′ ⊆ 𝐵, such
that 𝑁𝑀′(𝐴′) and 𝑁𝑁′(𝐵′) are isometric, i.e. isomorphic as Riemannian manifolds.
In this case we write 𝐴 ≊ 𝐵 and denote the equivalence class of a face 𝐴 as [𝐴]≊.

Some examples are given in figure 3.11.

Remark 3.2.19. By lemma 3.2.13 all the neighbourhoods of subparts of a face 𝐴 are
isomorphic as translation surfaces. Thus, the above definition is well-defined with respect
to the choices of 𝐴′ and 𝐵′.

Remark 3.2.20. The subdividing of the cubic translation manifolds is necessary as
otherwise glueings might change the metric structure. Thus, the neighbourhoods might
not be isometric any more. For example, we want to consider the edge of the torus 𝑇 ∗

and the edge of ℝ𝑚 translation-isomorphic. However, the edge in the torus is glued to a
𝑆1 and is thus not isometric to an edge in the Euclidean space.

Remark 3.2.21. We may skip subdividing the cubic translation manifold given that
no cube is glued to itself (not even in a vertex) and any two cubes are only glued in a
single face. By glued in a single face we mean that the two cubes are glued along a face
𝐴 and all other faces in which they touch each other are contained in that face 𝐴. The
fine print is necessary because if two cubes are glued along an edge then they are also
glued in the vertices of that edge which are faces in their own right.
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Remark 3.2.22. The isomorphism up to translation is the canonic definition for a
translation manifold where nearly everything is considered up to translation. However,
when we are purely interested in the ‘look’ of a singularity we often do not care whether
it is a line along the 𝑥-axis or along the 𝑦-axis, we only care that it is a line. In this case
the second definition is the more useful one.

For cubic translation manifolds this is enough as we have a nice cubic lattice fixing
all faces and hence singularities into discrete places and directions. In contrast, for a
generic translation manifold this should be relaxed even a little further, e.g. such that a
straight line and a bent line ‘with the same order’ are considered isomorphic singularities.
However, these considerations are not scope of this work.

Lemma 3.2.23. Let 𝐴 be a 𝑘-face of 𝑀 and 𝐵 be an ℓ-face of 𝑁 with 𝑀 and 𝑁 cubic
translation manifolds not necessarily of the same dimension. If 𝑘 ≠ ℓ, then 𝐴 ≇ 𝐵
and 𝐴 ≊̸ 𝐵; or equivalently 𝐴 ≊ 𝐵 ⇒ 𝑘 = ℓ.

Proof. If 𝑀 and 𝑁 have different dimension, then the neighbourhoods of 𝐴 and 𝐵
cannot be homeomorphic. Thus, the cubic neighbourhoods of 𝐴 and 𝐵 consist of
cubes of the same dimension. We now prove the contraposition of the statement above:
𝐴 ≊ 𝐵 ⇒ 𝑘 = ℓ.

If the cubic neighbourhoods of 𝐴 and 𝐵 are isometric, then surely, 𝐴 and 𝐵, which are
in the centre of the neighbourhoods, are isometric. Thus, they have the same dimension.�

Lemma 3.2.24 (Equivalence classes of faces in ℝ𝒎). Consider ℝ𝑚 as cubic trans-
lation manifold and let 𝑘 ∈ ℕ0.

(i) All 𝑘-faces are isomorphic up to isometry, i.e. there is only one equivalence
class up to isometry. Stated differently, for a 𝑘-face 𝐴 and a ℓ-face 𝐵 we have
𝐴 ≊ 𝐵 ⇔ 𝑘 = ℓ.

(ii) There are (𝑚
𝑘 ) different 𝑘-faces up to translation.

Proof. If two faces 𝐴 and 𝐵 of two cubes have the same dimension 𝑘, then – because
we are in ℝ𝑚 – we can use an isometry to map one to the other. Thus, their cubic
neighbourhoods are isometric and there is only one equivalence class up to isometry.

The second statement follows from counting the 𝑘-faces, which we have already done
in section 3.1.1. �

Example 3.2.25. In a three-dimensional cube there are 22(3
1) = 12 different 1-faces but

only three different cubic neighbourhoods up to translation; see figure 3.12. The three
different neighbourhoods correspond to the three directions, which in turn correspond
to the (𝑚

𝑘 ) factor. The position of the edge within the cube (corresponding to the 2𝑚−𝑘

factor) does not matter for the neighbourhood as we can use translations to switch to
another cube where the edge is located at a different position relative to the cube.

Before we state the classification theorem, we need one last things: the shape of the
singularity itself, i.e. how it looks without its neighbourhood.
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𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3

Figure 3.12: Representatives of all equivalence classes up to translation of 𝑘-faces of ℝ3.

Definition 3.2.26 (Shape of a Face/Singularity). We consider ℝ𝑚 to be a transla-
tion manifold glued out of cubes (cf. example 3.1.2 b)). Let 𝑀 be a cubic translation
manifold of dimension 𝑚 and 𝐴 a 𝑘-face of it. The face 𝐴 belongs to a cube and that
cube can be identified with a cube of ℝ𝑚 ignoring possible glueings of faces. The shape
of the face 𝐴 is the corresponding face of that cube in ℝ𝑚, which we denote by 𝐴shape.
Note that 𝐴shape depends on the cube choosen in ℝ𝑚, however, the shape becomes unique
when considered up to translation, i.e. we get a well-defined map 𝐴 ↦ [𝐴shape]≅. Similar,
the shape up to isometry is the equivalence class [𝐴shape]≊ and is also well-defined.

Because the choice of the cube in ℝ𝑚 is not important, we will call any representative
of the equivalence class [𝐴shape]≅ the shape of 𝐴.

Remark 3.2.27. Often it is not important whether a 𝑘-face of a cube is part of an
(abstract) cubic translation manifold 𝑀 or part of ℝ𝑚, in this case we denote both, the
𝑘-face 𝐴 in 𝑀 and the 𝑘-face 𝐴shape in ℝ𝑚, i.e. its shape, by the symbol 𝐴.

Remark 3.2.28. In ℝ𝑚 there is – by definition – no difference between the face 𝐴 and
its shape 𝐴shape. In particular the shape determines the cubic neighbourhood of the face
in ℝ𝑚.

Theorem 3.2.29 (Classifying Singularities of Cubic Translation Manifolds).
Let 𝑚 ≥ 2 and 𝑘 ∈ {0, … , 𝑚 − 2}. Further, fix a 𝑘-face 𝐹 of ℝ𝑚 as cubic translation
manifold – this determines the shape of the singularities we classify.

The 𝑘-faces (up to isometry) of cubic translation manifolds which have the same shape
as 𝐹 up to isometry are classified by the conjugacy classes of the subgroups of 𝜋1(𝑁ℝ𝑚(𝐹)),
i.e. we have a bijection

{[𝐴]≊ ∣ 𝐴 face with [𝐴shape]≊ = [𝐹 ]≊}

1 ∶ 1
↕↕↕↕↕↕↕↕↕

{conjugacy classes of subgroups of 𝜋1(𝑁ℝ𝑚(𝐹))}

(3.5)

Likewise, we have a classification of the singularities up to translation: The 𝑘-faces
(up to translation) of cubic translation manifolds which have the same shape as 𝐹 up to

73



3 Cubic Translation Manifolds

translation are classified by the conjugacy classes of the subgroups of 𝜋1(𝑁ℝ𝑚(𝐹)), i.e.
we have a bijection

{[𝐴]≅ ∣ 𝐴 face with [𝐴shape]≅ = [𝐹 ]≅}

1 ∶ 1
↕↕↕↕↕↕↕↕↕

{conjugacy classes of subgroups of 𝜋1(𝑁ℝ𝑚(𝐹))}

(3.6)

Remark 3.2.30. The first bijection classifies a singular face up to isometry, i.e. it
classifies all singularities which ‘look’ like the reference face 𝐹: point, line, plane, …

The second bijection is a little more fine-grained as it also fixes the orientation of the
singularity in addition to its ‘look’: point, line in 𝑥-direction, 𝑥-𝑦-plane, …

The reason that the lower set is equal in both cases, is that we take slightly different
equivalence classes of the faces in the upper set. The equivalence relation chosen reflects
what we are interested in: if we only want the ‘look’ without orientation then there is no
need to use the translation-isomorphic relation.

Proof. Let 𝑀 be a cubic translation manifold of dimension 𝑚 and 𝐴 a face of dimension
𝑘 we want to classify. Denote by 𝑀 ′ the subdivided cubic translation manifold and pick
a 𝑘-face 𝐴′ of 𝑀 ′ with 𝐴′ ⊆ 𝐴, i.e. 𝐴′ is a subpart of 𝐴. We argue with this subpart as
isomorphism for edges is defined via subparts (see definition 3.2.18).

Because we subdivided the cubes, all cubes of 𝑁𝑀′(𝐴′) touch 𝐴′ only in one face
(counted without the identification by gluing). Thus, the developing map induces a
well-defined map 𝐷: 𝑁𝑀′(𝐴′) → 𝑁(ℝ𝑚)′(𝐴′

shape) and 𝐷 is a covering map, which we can
check easily as we are mapping cubes of 𝑁𝑀′ to cubes of 𝑁(ℝ𝑚)′ . We want to emphasise
that the whole point of subdividing the cubes was to ensure that this delevoping map
becomes a covering (in a ‘neighbourhood’ of 𝐴), i.e. ‘has enough cubes in its domain’, cf.
remark 3.2.15

Note that for a different representative of [𝐴shape]≊ the cubic neighbourhood of a subpart
of it is isometric to 𝑁ℝ𝑚(𝐴′

shape), thus in particular isometric to 𝑁ℝ𝑚(𝐹 ′). Similar, if 𝐵
is a side of another cubic translation manifold 𝑁 and 𝐴 and 𝐵 are isometric-isomorphic,
then their neighbourhoods of subparts 𝐴′ and 𝐵′ are isometric. Moreover, they also yield
isomorphic coverings of 𝑁(ℝ𝑚)′(𝐴′

shape).
From covering theory we know that the covering spaces of 𝑁(ℝ𝑚)′(𝐴′

shape) are classified
by the conjugacy classes of subgroups of its fundamental group 𝜋1(𝑁(ℝ𝑚)′(𝐴′

shape)). Since
the choice of the subpart 𝐴′ of 𝐴 does not matter (lemma 3.2.13) and because 𝐴shape ≅ 𝐹,
this becomes a bijection to the conjugacy classes of subgroups of 𝜋1(𝑁(ℝ𝑚)′(𝐹 ′)). Finally,
by lemma 3.2.14 we can replace 𝜋1(𝑁(ℝ𝑚)′(𝐹 ′)) with 𝜋1(𝑁ℝ𝑚(𝐹)) yielding the desired
bijection between the faces up to isometry and the subgroups of 𝜋1(𝑁ℝ𝑚(𝐹)) up to
conjugation.

Likewise, if instead of isometry-isomorphic we take isomorphic via translation, then
the above reasoning still applies. However, we have restricted us to those coverings where
the orientation of the face also matches the face 𝐹. �
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3.2 Singularities of Cubic Translation Manifolds

Figure 3.13: We have already seen that the edges around the central cube have order
three. The vertex has order four when considered as a 0-face on its own
because the subdivided cubic neighbourhood consists of 32 small cubes.

From the above classification we can derive two invariants for singularities:

Definition 3.2.31 (Type and Order of a Singularity). Let 𝑀 be a cubic transla-
tion manifold of dimension 𝑚 and 𝐴 a 𝑘-face of the singular set 𝛴 = 𝑀 ∖ 𝑀, i.e. a
face in the codimension two skeleton of 𝑀. We denote by 𝐷 the well-defined map
𝐷: 𝑁𝑀′(𝐴′) → 𝑁(ℝ𝑚)′(𝐴′

shape) induced by the developing map on the subdivided man-
ifolds of the proof of theorem 3.2.29 where 𝐴′ ⊆ 𝐴 is a 𝑘-face of 𝑀 ′, i.e. a subpart of
𝐴.

The type of 𝐴 is given by the conjugacy class of the subgroup 𝐷∗(𝜋1(𝑁𝑀′(𝐴′))) in
𝜋1(𝑁(ℝ𝑚)′(𝐴′

shape)).
The order of 𝐴 is given by the index [𝜋1(𝑁(ℝ𝑚)′(𝐴′

shape)) ∶ 𝐷∗(𝜋1(𝑁𝑀′(𝐴′)))] of the
subgroup 𝐷∗(𝜋1(𝑁𝑀′(𝐴′))) in 𝜋1(𝑁(ℝ𝑚)′(𝐴′

shape)).

Remark 3.2.32. By lemma 3.2.13 the choice of 𝐴′ does not matter and the above defini-
tions are well-defined. Moreover, by lemma 3.2.14 we could even replace 𝜋1(𝑁(ℝ𝑚)′(𝐴′

shape))
with 𝜋1(𝑁ℝ𝑚(𝐴shape)) (but sadly not 𝜋1(𝑁𝑀′(𝐴′)) with 𝜋1(𝑁𝑀(𝐴))).

Remark 3.2.33. Be aware that order and type is defined for faces not for individual
points of 𝑀 which can be part of multiple faces! We can define the order and type of a
point 𝜎 ∈ 𝑀 to be the order and type of the face containing 𝜎 with the lowest dimension,
see figure 3.13.

Remark 3.2.34. Let 𝐴 be a face of codimension 2 in a cubic translation manifold. If we
compare the above result of theorem 3.2.29 with the investigation for faces of codimension
2 of section 3.2.1, then we see that 𝑁(ℝ𝑚)′(𝐴′

shape) consists of 22 = 4 glued cubes and (a
scaled version of) [𝑥𝑖, 𝑥𝑗] is precisely the generator of 𝜋1(𝑁(ℝ𝑚)′(𝐴′

shape)). The order of
the generator in 𝜋1(𝑁(ℝ𝑚)′(𝐴′

shape))/𝐷∗(𝜋1(𝑁𝑀′(𝐴′))) corresponds to the order of 𝐴 as
defined earlier in proposition 3.2.2. Thus, the new definition coincides with our old one
and is also applicable to faces other than codimension 2.
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3 Cubic Translation Manifolds

Corollary 3.2.35 (Classification of Singularities). The shape 𝐹 ⊆ ℝ𝑚 (as metric
subspace of ℝ𝑚) and type 𝐺 ⊆ 𝜋1(𝑁ℝ𝑚(𝐹)) (as subgroup) completely determine a
face/singularity up to translation or isometry.

Proof. Follows directly from theorem 3.2.29 as this is merely a rephrasing of that
statement with the new terms. �

Corollary 3.2.36 (Classification of Singularities up to Isometry). The numbers
𝑚, 𝑘 ∈ ℕ0 with 0 ≤ 𝑘 ≤ 𝑚 and type 𝐺 ⊆ 𝜋1(𝑁ℝ𝑚(𝐴)) (as subgroup) of an arbitrary
𝑘-face 𝐴 in ℝ𝑚 completely determine a face/singularity up to isometry.

Proof. By lemma 3.2.24, ℝ𝑚 has only one 𝑘-face up to isometry. The claim follows now
from corollary 3.2.35. �

Remark 3.2.37. The type as abstract group does not determine the singularity uniquely.
For example, a neighbourhood of a vertex 𝜎 of ℝ2 (as cubic translation manifold) has
fundamental group 𝜋1(𝑁ℝ2(𝜎)) = ℤ. All non-trivial subgroups of ℤ are of the form 𝑛ℤ
for some 𝑛 ∈ ℤ ∖ {0} and thus are all isomorphic as abstract groups.

Likewise, the type as (abstract) subgroup of an (abstract) group alone also does not
determine the singularity uniquely. For example, a vertex of ℝ2 and an edge of ℝ3 (both
as cubic translation manifold) have the same type, namely ℤ ⊆ ℤ, but are obviously not
isomorphic.
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4 Conclusion and Prospects

We have seen how the concepts of (finite) translation surfaces can be generalised to
higher dimensions. An important observation was that the different definitions which
are equivalent in dimensions two, split into distinct concepts in higher dimensions. The
consequence is that results proven for one definition do not necessarily apply to all
translation manifolds. However, they provide a good indication of what to expect.

Our research on the singularities shows that the developing map and translation
coverings are useful tools to describe and compare singularities and their nature. We
have seen criteria when singularities are removable using these methods. We explicitly
gave a construction for how to remove isolated singularities and generalised the idea to
make it applicable to arbitrary singularities.

All the examples we have seen show that all the non-removable singularities are
of codimension two, i.e. if singularities are too ‘low-dimensional’, then they become
removable. For arbitrary topological spaces the definition of dimension is difficult.
However, corollary 2.3.19 and theorem 2.3.21 give criteria for removability using simply
connected neighbourhoods and this matches up with the observation of the dimensions:
If the singularities have codimension two, e.g. a point in a plane or a curve in ℝ3, then
they induce a non-trivial fundamental group. On the other hand, if they are of lower
dimension, then the fundamental group is trivial, e.g. a point in ℝ3 or a curve in ℝ4.

Based on our investigation and the examples we have seen, in particular in the chapter
about cubic translation manifolds, we propose the following definition:

Definition 4.0.1. A singularity 𝜎 ∈ 𝑀 ∖ 𝑀 is tame if and only if there exists a neigh-
bourhood 𝑈 ′ ⊆ 𝑀 of 𝜎 such that the developing map of 𝑈 ≔ 𝑈 ′ ∩ 𝑀 descends to a well
defined map 𝐷: 𝑈 → ℝ𝑚.

In this case we define the type and order of the singularity as:
The type is the group 𝐷∗(𝜋1(𝑈)) as subgroup of 𝜋1(𝐷(𝑈)).
The order is the index [𝜋1(𝐷(𝑈)) ∶ 𝐷∗(𝜋1(𝑈))] of the subgroup 𝐷∗(𝜋1(𝑈)) in 𝜋1(𝐷(𝑈)).

This definition coincides with the classification of singularities in two dimensions: For a
conic singularity with angle 2𝜋𝑘 the type would be 𝑘ℤ as subgroup of 𝜋1(�̇�(0, 1)) ≅ ℤ
and the order is [ℤ ∶ 𝑘ℤ] = 𝑘. It also coincides with the definitions for cubic translation
manifolds (see chapter 3).

Please note that we did not require 𝐷 to be a covering. We believe that the requirement
of theorem 2.3.16 that 𝐷(𝑈) ∖ 𝐷𝑈(𝛴) is open in 𝐷(𝑈) can be satisfied by choosing 𝑈
appropriately. Then, theorem 2.3.16 is applicable and 𝐷 is a covering map on 𝑈 ∖ 𝑆𝑈(𝛴).
In this case the type of the singularity is the subgroup of the fundamental group
corresponding to that covering.
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