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Abstract

In this thesis, a unified error analysis for discretizations of nonlinear first- and second-order wave-type
equations is provided. For this, the wave equations as well as their space discretizations are considered
as nonlinear evolution equations in Hilbert spaces. The space discretizations are supplemented with
Runge-Kutta time discretizations. By employing stability properties of monotone operators, abstract

error bounds for the space, time, and full discretizations are derived.

Further, for semilinear second-order wave-type equations, an implicit-explicit time integration scheme is
presented. This scheme only requires the solution of a linear system of equations in each time step and
it is stable under a step size restriction only depending on the nonlinearity. It is proven that the scheme
converges with second order in time and in combination with the abstract space discretization of the

unified error analysis, corresponding full discretization error bounds are derived.

The abstract results are used to derive convergence rates for an isoparametric finite element space dis-
cretization of a wave equation with kinetic boundary conditions and nonlinear forcing and damping terms.
For the combination of the finite element discretization with Runge—Kutta methods or the implicit-explicit
scheme, respectively, error bounds of the resulting fully discrete schemes are proven. The theoretical re-

sults are illustrated by numerical experiments.
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CHAPTER 1

Introduction

Motivation

Wave equations are fundamental models in physics that describe the propagation of various types of
waves. One example is the acoustic wave equation which models the propagation of sound waves or the
vibration of a membrane. If the wave propagation is modeled in a bounded domain, further conditions
have to be imposed on the boundary. Usually, these boundary conditions simply prescribe the value or
derivatives of the solution at the boundary. In the case of a vibrating membrane, prescribing the value

would simply model that the membrane is fixed at the boundary.

In contrast to standard boundary conditions, kinetic boundary conditions model the propagation of the
wave on the boundary. For example, they can be derived by considering a vibrating membrane which is
not fixed, but where its boundary carries a mass density and is subject to linear tension (cf. [Goldstein,
2006, Section 5]). This leads a wave equation in the interior domain coupled to a wave equation on the
boundary. Kinetic boundary conditions also can serve as an effective model for the interaction of an
acoustic wave with a thin boundary layer with distinctive elastic or damping properties, and where the

wave length is large compared to the width of the boundary layer (cf. [Nicaise, 2017, Section 3.2]).

Analysis and numerics of wave equations with kinetic boundary conditions have developed significantly in
recent years. The analysis of the continuous problem already includes problems with nonlinear damping
and forcing (cf. Vitillaro [2013, 2017]). However, to our knowledge, there are only results for the numerical

analysis of linear (cf. Hipp [2017]) and semilinear problems (cf. Hochbruck and Leibold [2020]), so far.

In this thesis, we aim at proving error bounds for suitable space and time discretizations of wave equations

with kinetic boundary conditions including nonlinear forcing and damping terms.



2 Chapter 1. Introduction

Thereby, two main difficulties arise:

¢ Nonlinearities: The nonlinear forcing and damping terms appearing in the equations render the
numerical discretization as well as the error analysis and the implementation much more involved:
One has to use suitable space and time discretization schemes that preserve properties of the
nonlinear operators which yield stability of the equations. Furthermore, the error analysis of space
and time discretization schemes involves nonlinear error terms that have to be bounded. In addition,
to run a numerical method, nonlinear systems of equations have to be solved, which makes the

implementation more involved and is computationally expensive.

¢ Non-conforming space discretizations: Equations with dynamic boundary conditions are usu-
ally posed on domains with smooth and possibly curved boundaries. Hence, numerical schemes
as, e.g., finite element schemes, have to approximate the boundary of the domain which renders
the discretization non-conforming. This significantly complicates the error analysis of the spatial

discretization.

The main goal of this thesis is to present tools and techniques to tackle these difficulties in a systematic

way. In the following, we outline our main contributions.

Unified error analysis

To analyze non-conforming space discretizations in a systematic way, a unified error analysis for first- and
second-order linear wave-type equations was introduced in Hipp [2017] and Hipp et al. [2019]. Thereby,
the differential equations as well as their space discretizations are considered in a framework of abstract
linear evolution equations in Hilbert spaces. The authors employ stability bounds from semigroup theory
to derive abstract error bounds in terms of interpolation, data, and conformity errors of the method.
These abstract error bounds can then be used to derive convergence rates for a large class of problems in
a simple, systematic and modular way by plugging in approximation properties of the corresponding space
discretization. Thus, the main advantage of this unified approach is that one does not have to perform
the error proof from scratch for every single problem, but gains precise insights into which terms have
to be bounded. In particular, this applies to errors caused by the non-conforming space discretizations.
For instance, in Hipp [2017], the unified error analysis was used to prove error bounds for finite element
discretizations of wave equations with various types of boundary conditions on smooth domains and for
discontinuous Galerkin discretizations of Maxwell equations. Further, it was used in Hochbruck et al.

[2019] to prove error bounds for a heterogeneous multiscale method for linear Maxwell equations.

A first step towards nonlinear problems was made in the Master’s thesis Leibold [2017], where the
unified error analysis was extended to semilinear problems. To consider more general nonlinear problems,
we extend the framework of the unified error analysis to abstract space discretizations of nonlinear
evolution equations with maximal (quasi-)monotone operators. Using analytical stability properties of
such evolution equation, we derive abstract error bounds in this nonlinear setting. Thus, our analysis
shows which properties must be preserved when discretizing the nonlinearities and which nonlinear error

terms must be estimated to derive convergence rates for specific examples.



It is also possible to combine the abstract space discretizations with time discretization schemes and
to derive corresponding abstract time and full discretization error bounds. In this thesis, we show this
exemplary for algebraically stable and coercive Runge-Kutta methods based on an error analysis from
Hansen [2006b], where time discretization errors were analyzed in a similar framework as the one we use
here. The combination with the unified error analysis has again the advantage that these results apply

to all equations that fit into the framework.

We are not aware of other results that allow one to analyze non-conforming space and full discretizations
of wave-type equations that involve nonlinear damping terms. Nevertheless, we should mention the
following works, which go in the same direction. In Emmrich et al. [2015], an abstract full discretization
in a framework similar to the one used in this thesis was considered. However, only a conforming space
discretization was analyzed and no error bounds but only weak convergence of the discretization was
shown. A related framework for quasilinear equations was introduced in Hochbruck and Maier [2021],
Maier [2020], covering both quasilinear wave and Maxwell equations. But the error analysis in this work

relies on properties of quasilinear operators that cannot be used for nonlinear damping terms.

Efficient time integration via implicit-explicit (IMEX) schemes

The time integration of nonlinear problems suffers from the necessity that, in general, nonlinear systems
of equations have to be solved in each time step. IMEX time integration schemes overcome this problem
in the case of semilinear equations. By semilinear we mean that the equation can be splitted into an
unbounded, stiff linear and a (locally) Lipschitz continuous, nonstiff nonlinear part. In this case, the
idea of IMEX schemes is to integrate the stiff linear part implicitly while the non-stiff part is treated
explicitly. If done properly, this leads to stable schemes, where the time step size is only restricted by
the Lipschitz constant of the nonlinearity. In particular, they do not suffer from a CFL condition when
they are applied to spatial discretizations of partial differential equations. Additionally, the schemes are
efficient, since due to the explicit treatment of the nonlinear part, only linear systems of equations have

to be solved.

IMEX schemes are widely used in applications, e.g., in structural dynamics and fluid-structure interaction
(van Zuijlen and Bijl [2005]), hydrodynamics (Kadioglu et al. [2010]), sea-ice dynamics (Lemieux et al.
[2014]), or atmospheric dynamics (Gardner et al. [2018]).

There is a rich literature on IMEX schemes for first-order equations, in particular, there is a well-
developed theory for IMEX multistep schemes (Akrivis et al. [1999], Ascher et al. [1995], Frank et al.
[1997], Hundsdorfer and Ruuth [2007]) or IMEX Runge-Kutta schemes (Ascher et al. [1997], Boscarino
[2007]). In Boscarino [2007], Hundsdorfer and Ruuth [2007], an error analysis for ordinary differential
equations is presented, while Akrivis et al. [1999] contains discretization errors for IMEX schemes applied

to conformal space discretizations of quasilinear parabolic evolution equations.

In contrast, there are only few articles on IMEX schemes that take advantage of the special structure of
second-order equations. We refer to Stern and Grinspun [2009], Zhang and Skeel [1997], where IMEX

schemes for undamped second-order ordinary differential equations are considered.
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In this thesis, we propose a very efficient IMEX scheme which is tailor-made for semilinear second-order
differential equations including linear damping terms. It is a combination of the explicit leapfrog method

and the implicit Crank—Nicolson scheme.

We show that our scheme is unconditionally stable in the sense that the time step size is only restricted
by the Lipschitz constant of the explicitly treated nonlinearity. Further, we prove a second-order error
bound. We then combine the scheme with the abstract space discretization of the unified error analysis
and prove an error bound that is second-order in time and contains the abstract space-discretization errors
of the unified error analysis. This result allows us to derive full discretization error bounds for specific
equations and space discretizations. To our knowledge, such a general and rigorous full discretization

error analysis for IMEX schemes has also not been considered in the literature so far.

We emphasize that, although there already exists a so-called Crank—Nicolson-leapfrog IMEX scheme
which is obtained from a combination of the Crank—Nicolson and the leapfrog scheme for first-order
equations (cf. Layton and Trenchea [2012], Layton et al. [2016], and references therein), this scheme is
not equivalent to the scheme we present in this thesis. This is due to the fact that the leapfrog schemes
for first- and second-order equations are not equivalent and indeed have completely different stability
properties. More precisely, the Crank—Nicolson-leapfrog scheme is only stable if the explicitly treated

part is linear and skew symmetric, which is not the case in our setting.

The results on the IMEX scheme contained in this dissertation were already published in the paper
Hochbruck and Leibold [2021].

Numerical analysis of a wave equation with kinetic boundary conditions

As an application of our abstract theory we study wave equations with kinetic boundary conditions. In
Hipp [2017], based on the bulk-surface finite element method from Elliott and Ranner [2013], a non-
conforming isoparametric finite element space discretization was introduced for linear wave equations
with kinetic boundary conditions. In this thesis, we extend the discretization to nonlinear forcing and
damping terms. Then, by using the results of the unified error analysis, we derive novel convergence rates

for the space discretization and full discretization error bounds for suitable Runge-Kutta methods.

Further, we apply our IMEX scheme to the wave equation in the semilinear case and combine it with the
finite element discretization. This yields a very efficient fully discrete scheme for which we also obtain

error bounds using the abstract results in the framework of the unified error analysis.

Finally, we illustrate our theoretical results with some numerical experiments.

Conclusion

The main contributions of this thesis are:

e A unified error analysis for space and time discretizations of nonlinear first- and second-order

wave-type equations in a quite general framework of nonlinear evolution equations with maximal



monotone operators.

e A novel, efficient IMEX time integration scheme for semilinear second-order wave equations and its

stability and error analysis in the general framework of the unified error analysis.

o The numerical analysis of the wave equation with kinetic boundary conditions and nonlinear forcing
and damping terms, consisting of an isoparametric finite element space discretization, Runge-Kutta

or IMEX time discretization, and a full discretization error analysis.

Outline

This thesis is organized as follows. We introduce the unified error analysis for first- and second-order
nonlinear wave-type equations in Chapter 2. More precisely, we define the analytical framework, introduce

general non-conforming space discretizations, and perform the abstract space discretization error analysis.

In Chapter 3, we analyze Runge-Kutta methods applied to first- and second-order nonlinear wave-type

equations. We prove wellposedness and time discretization error bounds.

Chapter 4 is devoted to an IMEX scheme for second-order semilinear evolution equations. We present

the construction of the scheme, show stability, and prove a second-order error bound.

In Chapter 5, the time discretization error analyses of the Runge-Kutta methods and the IMEX scheme
are combined with the unified space discretization error analysis to obtain abstract full discretization

error bounds for first- and second-order wave-type equations.

Finally, we consider the numerical analysis of the wave equation with kinetic boundary conditions in
Chapter 6. We introduce an isoparametric finite element space discretization and prove space, time and
full discretization error bounds by employing the abstract theory from Chapters 2 to 5. Furthermore, we

illustrate the theoretical results with some numerical experiments.
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Preliminaries

Here, we introduce some conventions and notion that we use throughout this thesis.

Hilbert spaces Let X be a real Hilbert space with norm ||| x. If p is a scalar product on X we use

the notation (X, p) for X equipped with the scalar product p, i.e., we then have

()x =)
We further use the notation ||-||2 := p(-,-) for the norm induced by p.

We denote the dual space of X by X* and the corresponding dual pairing by

(b, ) x*xx = P(x), dpe X xeX.
Let Y be another real Hilbert space. For elements in the product space X X Y we use the notation

[z,y]" = [x] eEXxY.
Y

Linear operators We denote by £(X;Y) the space of all bounded linear operators from X to Y and
endow £(X;Y) with the norm

B
|Blly—x = sup | xHY,
lzlx0 llZllx

Be L(X;Y).

By D(A) C X, we denote the domain of an operator A: D(A) — X on X.

The identity operator on X is denoted by I. We refrain from adding an additional X to the notation

since the space should be clear from the context in each case.

Hilbert space valued functions By C([0,T]; X) we denote the space of all continuous functions and
by C*([0,T]); X),k € N, the spaces of all k-times (Fréchet) differentiable functions from a time interval
0,7],T > 0, to X.

The Hilbert space valued Lebesgue spaces L4([0,T]; X),q € [1,00], consist of all measurable functions
f:10,T] - X with

T 1
(Jo lF®Ian?, g <o,

esssup;epo, 7| f (1), ¢ = oo.

(1.1)

00 > |[fllLaqo,r1ix) =
The spaces L}, ([0,00); X) contain all measurable functions f: [0,00) — X which satisfy (1.1) for all
0<T < oo.

We make also use of the Hilbert space valued Sobolev spaces

Wha([0,T); X) = {f: [0.7] = X | £() :f(o>+/0’g(s) ds, g€ L9(0,7); X)) and

Wit ([0.00): X) == {: [0.00) = X | f],

loc

0.1 € Whe([0,T]; X) for all T > 0}.



Differential equations Time dependent differential equations in this thesis are usually posed on the
infinite time interval [0,00). We consider solutions of differential equations on compact time intervals

[0, T] for some T € (0,t*), where t* € (0, 00] denotes the maximal existence time of the solution.

Partial derivatives Derivatives in this thesis are always understood in the sense of distributions.

Let Q ¢ R% d € N, be an open and bounded domain and 7" > 0. For a function u: [0,7] x Q — R, we
denote the temporal derivative by u;. By Vu and Awu, we denote the gradient and the Laplacian of u

w.r.t. the spatial variables.

For a function f: Q x R, we use the notation O f for the derivative of f w.r.t. the second variable, i.e.,

D f(x,8) = 0c f(x, ).

Lebesgue and Sobolev spaces Let  have a Lipschitz boundary I' = 9€). For ¢ € [1, 00|, we denote
the usual Lebesgue spaces over Q and I by LI(Q) and L4(T), respectively. The Lebesgue measures of
and T' are denoted by ¢(Q2) and o(T'), respectively.

The usual Sobolev spaces of order k € N over 2 are denoted by H*(Q) = Wk2(Q).

We also make use of the corresponding boundary Sobolev spaces H*(T') = W*2(I") which can be defined
if T is at least C* regular (cf. [Grisvard, 2011, Section 1.3]).

Dirichlet trace We denote the usual Dirichlet trace operator by v: H'(Q) — L?(T') and define

Hy(Q) = {v € H'(Q) | 7(v) = 0}.

Normal vector and surface integrals We denote the unit normal vector of I' by n: I' — R and the

surface integral of a function ¢ € L'(T") by

pds.
r

Surface differential operators Let I' be C! regular. For the normal derivative of a function v €
H(Q) we write Opv :==n - V.
Further, we define the surface gradient by

Vv = (0;rv)L, = (I—nnT)Vu.

The differential operators ;r and Vr can be generalized to operators d;r € L(H(I'); L*(T)) and
Vr € L(HY(T); (L*(I'))?) by defining them in terms of local variables (cf. Kashiwabara et al. [2015] or
Disser et al. [2015] for details). Now, let I' be C? regular. For v € H?(Q), the surface Laplacian (or

Laplace-Beltrami operator) is defined via

d
Arv = E 32141.
i=1
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Constants In the whole thesis, C' denotes a generic constant which may have different values at different

occurrences.

All constants with a hat (e.g., ¢) appear in the context of spatial discretizations which are related to
a discretization parameter h (e.g., the mesh width of a spatial grid). The hat above a constant then

indicates that the constant is independent of h.



CHAPTER 2

Abstract space discretizations of first- and second-order evolution equations

In this chapter, we present our unified error analysis for first- and second-order wave-type equations. We
introduce a framework to consider both the equations and the corresponding abstract non-conforming
space discretizations as nonlinear evolution equations in Hilbert spaces. As main results of this chapter, we
derive abstract error bounds that can be applied to all equations that fit into the framework, e.g., to wave
equations with kinetic boundary conditions which we consider in Chapter 6. We are mainly interested in
second-order wave-type equations with nonlinear damping. However, we start by considering first-order

equations, since these are easier to analyze. We then transfer the results to the second-order case.

This work generalizes the results from Hipp et al. [2019] for the linear and from Hochbruck and Leibold

[2020] for the semilinear to the nonlinear case. We closely stick to the framework used in these papers.

Outline In Section 2.1 we introduce our setting for first-order evolution equations and corresponding
non-conforming space discretizations and derive abstract error bounds. Afterwards, in Section 2.2, we use
these results to prove error bounds for abstract space discretizations of second-order wave-type equations

with nonlinear damping. We illustrate the application of the abstract results with a basic example.
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2.1 First-order evolution equation with monotone operators

2.1.1 Analytical setting

We consider the following abstract first-order nonlinear evolution equation in a Hilbert space (X, p):

2’ (t) + S(x(t)) = G(x(t)) + g(t), t>0, (2.1a)
z(0) = 2% € D(S). (2.1b)

In the following, we will suppress the ¢ arguments in evolution equations.

Definition 2.1 (Wellposedness).

a) For T > 0 a function x € W1>°([0,T]; X) is called strong solution of (2.1) on [0,T], if
x(t) € D(S) for allt € [0,T], x(0) = 2°, and (2.1a) is satisfied for almost all t € [0,T).

b) The evolution equation (2.1) is called locally wellposed, if for every initial value there exists a
mazimal ezistence time t*(2°) € (0,00], s.t. (2.1) has a unique strong solution on [0,T] for all

T < t*(29).

Remark 2.2. Note that by [Showalter, 1997, Proposition II1.1.1], we have that all y € W*°([0,T]; X)
are continuous and weakly differentiable with y' € L*°([0,T); X). Thus, all conditions in Definition 2.1
a) and especially point evaluations of strong solutions are well defined. We will use this frequently in this

thesis.

We make the following assumptions on S, G, and ¢ such that (2.1) is locally wellposed.

Assumption 2.3.

a) The nonlinear operator S: D(S) — X is quasi-monotone and maximal, i.e., there is a cqgm > 0 s.t.
p(S(y) — S(2),y — 2) > —cqmlly — 2|% for all y,z € D(S),
and there exists some X\ > cqm s.t. range(A + S) = X. Furthermore, D(S) is dense in X.

b) The nonlinearity G: X — X is locally Lipschitz continuous, i.e., for all p > 0 there exists a constant

L, s.t. for ally,z € X with ||y|/x, ||z x < p we have

IG(y) = G(2)llx < Lylly — zllx-

¢) The inhomogeneity satisfies g € Wli’cl([O, 00); X).

Theorem 2.4. Under Assumption 2.3 the evolution equation (2.1) is locally wellposed.

Proof. The result is stated in [Chueshov et al., 2002, Theorem 7.2] and generalizes the classical result from

[Showalter, 1997, Corollary IV.4.1], which only covers the case of global Lipschitz continuous nonlinearities
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G. Since in [Chueshov et al., 2002, Theorem 7.2] the additional assumption S(0) = 0 is made, we obtain

the assertion by applying this theorem to the equivalent evolution equation
7 +8x)=Gx)+37

with

O

Remark 2.5. Note that in the semilinear setting presented in Hochbruck and Leibold [2020], the Lipschitz-
continuous nonlinearity G is also allowed to depend on the time t. However, the wellposedness results we
mention in the proof of Theorem 2.J are only stated for time-independent nonlinearities. The generaliza-
tion of these results to time-dependent nonlinearities is out of the scope of this thesis.

Further, we have the following stability result which is essential for the latter error analysis.

Theorem 2.6. Let Assumption 2.3 be satisfied and for a T >0 and i = 1,2 let x; € WH>°([0,T]; X) be

strong solutions of

x, + S(x;) = G(x;) + gi, t € [0,T],

7;(0) = ¥

with g; € WH([0,T); X) and ||zi]| L (0,r:x) < p, for some p > 0. Then for all t € [0,T]
t

Jor(6) = 220l < o2 (Jab =l + [ lon(s) ~ 9l s ).
0

Proof. The result can be derived with energy estimates as done in [Showalter, 1997, Theorem IV.4.1A].

The difference A(t) = x1(t) — x2(¢) is the strong solution of the evolution equation

A"+ S(21) = S(x2) = G(x1) — G(22) + g1 — 92, t€[0,77, (2.2a)
A(0) = 2) — 9. (2.2b)

The following calculations hold true almost everywhere on [0, 7] and derivatives are meant in the weak
sense. We assume without lost of generality, that [|A(t)||x # 0 for almost all ¢. Taking the inner product
of (2.2a) with A and exploiting p(A’,A) = &A% = ||A||X%||A||X yields

2 dt
d
1Al 1AlLx = =p(S(21) = S(@2), A) + p(Glar) = Glx2), A) +p(g1 — g2, A).
By using the Cauchy—Schwarz inequality and the properties from Assumption 2.3, we obtain

d
1Al 1Al < (cam + L) AI% + llgr = g2l x Al x-

We divide by ||A||x and integrate from 0 to ¢ which yields together with (2.2b)

t t
IA®)Ix < |29 = 25]|x + (cqm +Lp)/0 [1A(s)]lx ds+/0 l91(s) — g2(s)|lx ds.

Finally, the assertion follows from applying Gronwall’s lemma stated in Lemma A.la). O



12 Chapter 2. Abstract space discretizations of first- and second-order evolution equations

2.1.2 Space discretization

We now introduce an abstract space discretization of the evolution equation (2.1). Let (Xp,pp)n be a
family of finite dimensional vector spaces related to a discretization parameter h, e.g., the maximal mesh
width of a finite element discretization. In each X} € (Xj), we want to obtain an approximation z to
the solution x of (2.1). We assume that Sy, G, and g, are approximations of S,G, and g, respectively,

that satisfy similar properties.

Assumption 2.7.

a) The nonlinear operator Sp: X, — X}, is quasi-monotone, i.e., there is a Cqm > 0 s.t.
P (Sh(n) — Sn(zn),yn — 21) = —Camllyn — 2nl%, Jor all yp, zn € Xp. (2.3)

b) The nonlinearity Gp: X, — Xy, is locally Lipschitz continuous, i.e., for all p > 0 there exists a

constant Ep s.t. for all yp, zn, € Xp with ||ynl x,, |2nllx, < p:
G (yn) = Gn(z)lixn < Lollyn — 2l x,.-
¢) The inhomogeneity satisfies gp € Wﬁ)’cl([O; 00); X3).
The constants ¢qm and Zp are independent of h.

The discretized version of (2.1) is then given by
a:;l + Sn(xn) = Grlxr) + g, t>0, (2.4a)
z,(0) = z. (2.4b)

Since the assumptions are similar to the continuous case, we obtain by Theorem 2.4 that (2.4) is locally

wellposed.

In the following, we present a framework for the error analysis of the abstract space discretization that is
similar to the linear case presented in Hipp et al. [2019]. We allow for non-conforming space discretiza-
tions, where X), ¢ X. To still be able to relate the discrete and the continuous solution, we make the

following assumptions:

Assumption 2.8.

a) There exists a lift operator Ly, € L(Xy, X) that satisfies for some constant Cx >0
ILhynllx < Cxllynllx, — for all y, € Xy (2.5)
By L € L(X, Xp,) we denote the adjoint of the lift operator which is defined via
pr(Lrysyn) = (Y, Lryn), forally € X,yn € Xp.

b) Let Z — X be a densely embedded subspace of X on which a reference operator J, € L(Z; X}) is

defined which satisfies for some constant a]h >0

||JhHXh<*Z < aJh'
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The constants éx and éJh are independent of h.

The reference operator should satisfy £, Jpz = z for all z € Z in a suitable sense and could, e.g., be an

interpolation or a projection operator.

Definition 2.9 (Remainder terms).

a) The remainder of the nonlinear monotone operator is defined via
Ry: D(S)NZ — Xy, Rp(z) = L;S(z) — S (Jnz) .
b) The remainder of the Lipschitz continuous nonlinearity is given by
rh: 2 — Xp, ri(z) = L3 G(2) — Gp(Jh2).

We are now able to prove the following abstract error bound.

Theorem 2.10. Let Assumptions 2.3, 2.7 and 2.8 be satisfied and x be the strong solution of (2.1) on
[0,T] with z,2" € L>=([0,T]; Z). Furthermore, let z;, be the solution of (2.4) on [0,T], and

Ph = Max {C,Ih”xHLOO([O,T];X)» ||33h||Loo([o,T];Xh)} .

Then, for allt € [0,T] the lifted discrete solution satisfies the error bound

|Lnan(t) — a(t)x < CxeTront@m) By (1) 1 (1L dn)a ()]l x (2.6)
with
En(t) = |« - JthHXh (L~ T2 | o) o
+ | Ra(@) || Loe j0,:x5) + lrn (@)l oo 0,60:x0) + HILRG = gnllLos((0,1:x,)-
Proof. We split the error via Lpap(t) — z(t) = Lpep, + (LpJn — Da(t), where
en(t) = zp(t) — Jpz(t) € Vi
is the discrete error. Thus, the error can be bounded by
12z (t) = 2(t)llx < Cxllenllx, + [(Ladn = Da(t)]x (2.8)
and we have to further investigate the discrete error.
Applying the adjoint lift to (2.1a) yields
Lrx' + L;8(x) = L5,G(x) + Lf,g.
By adding J,z' on both sides we obtain
Jnt' 4+ Sp(Jnz) = Gu(Jnz) + gn + dn (2.9)

with

¢n = (Jn — L},) 2" + Sn(Jnz) — LS () + L5,G(2) — Gr(Jnz) + L9 — gn- (2.10)
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The stability estimate from Theorem 2.6 holds also true in the discrete case with ¢qm and Ep instead of
cqm and L,, respectively, since we made the same assumptions. Note that due to our assumptions we

have
[ Jhx(®)]lx, < Cupllz®)lz < pn-

Hence, we obtain by Theorem 2.6 applied to (2.4) and (2.9) the following bound for the discrete error

~ ~ t
len(®)lx, < o)t (et = el + [ hon(o)lx, o)
0

Pt T 2.11
< e(ComtZon)t (129 — a5, + tlénll i~ o175 (2.11)

S e(/c\qm‘i‘fph)tEh (t)
Here, we used (2.10) and the definitions of the remainder terms from Definition 2.9. Together with (2.8),
we finally obtain (2.6). O
In Theorem 2.10, we assume the existence of the numerical approximation z;, on [0,7]. Under a suitable

consistency assumption, it is possible to ensure the existence and boundedness:

Theorem 2.11. Let Assumptions 2.3, 2.7 and 2.8 be satisfied and x be the strong solution of (2.1) on
[0,T] with z,2" € L>([0,T]; Z). Further, we assume that Ep(t) — 0 for h — 0 and for all t € [0,T].

Then, there exists h* > 0 s.t. for all h < h* the strong solution xj of (2.6) exists on [0,T] and satisfies

2 o115 < 2= 2C, |2 L= (o.13:2)- (2.12)
Additionally, the error bound (2.6) holds true with py, = p. If furthermore

I—LpJp)z(t)|x =0 forh— 0 andallt€[0,T)
holds, then the lifted numerical solution converges to the continuous solution, i.e.,
]lig%)ﬂﬁhxh(t) —z(t)||x =0, for allt € [0,T].

Proof. We only have to show the existence of z;, on [0,7] and the bound (2.12). The other assertions
follow directly by Theorem 2.10.

The proof works by a standard contradiction argument: Let

Ty =sup {t > 0 | [|zall Lo (0,1:x,) < P}

be the maximal time s.t. the discrete solution is bounded by p. Since (2.6) is locally wellposed we have
Ty, > 0. We now show that for sufficiently small h we have T, > T.
Assume that Tj, < T. By (2.12) we obtain for all t < T},

p

lzn@llxn < llzn(t) = Jaz@)lx, + [ Taz@)llx, < lea(t) = Jnz@)llx, + 5

The first summand is ||e;||x, and we obtain with (2.11) for all ¢t < Tj,

len(®)lx, < eCmtlo) By + £ 5 £ nso,
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Hence, there is a h* > 0 s.t. for all h < h* and t < T},

3
lan®llx, < 5

This is a contradiction to the definition of T}, since, due to the continuity of x; in time, there is some
e > 0 s.t. we have ||z (t)| x, < p for all t € [0,T), + ¢]. Hence, T, > T holds true for all h < h*. O

2.2 Second-order evolution equations with nonlinear damping

In this section, we present an abstract framework for second-order differential equations and corresponding
space discretizations. We follow the structure of Section 2.1 and use Theorems 2.10 and 2.11, to prove

abstract error bounds for the second-order case.

We also illustrate how to use the abstract results to prove an error estimate for a finite element discretiza-

tion of a nonlinear damped wave equation.

2.2.1 Analytical setting

Second-order formulation Let V, H be Hilbert spaces and V' be densely embedded in H. We consider
the following second-order differential equation in variational form, as it is typical for weak formulations

of second-order differential equations

m(u",cp) + m(D(u’),gﬁ) + a(u,g@) = m(F(u),gp) + m(f, <p), for t > 0 and all p € V|

(2.13)
u(0) = u°, u'(0) =02,
where we make the following assumptions:

Assumption 2.12.

a) The bilinear form m: H x H — R is a scalar product on H with induced norm ||-||m. In the

following, we equip H with m.
b) The bilinear form a: V x V — R is symmelric and there exists a constant cg > 0 s.t.
a:=a+cgm
is a scalar product on V' with induced norm ||-||z. From now on, we equip V with a.
¢) The nonlinearity D: V — H is quasi-monotone, i.e., there is a constant Sqm > 0 s.t.
m(D(v) — D(w),v — w) > —Bamllv — w2, for all v,w e V.
Furthermore, we have that D € C(V,V*).

d) The nonlinearity F': V. — H is locally Lipschitz continuous with Lipschitz constant L,, i.e., for all

v,w €V owith ||v]|v, |lwllv < p we have

1F(0) = F(w)llm < Lpllv — wlla.
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e) The inhomogeneity satisfies f € W,2' ([0, 00); H).

loc

By Cg,v we denote the embedding constant of V' into H, i.e.,
lvllm < Cryvvla forallv e V. (2.14)

Example 2.13. To illustrate the abstract results of this section, we apply them to the following basic
example: Let Q C R? be a polygonal domain with boundary T'. We consider the scalar wave equation with

nonlinear forcing and damping terms and homogeneous Dirichlet boundary conditions

uge(t, x) + (ut(t,x))3 — Au(t,x) = (u(t,x))Q, t>0,x €, (2.15a)
u(t,x) =0, t>0,x €09, (2.15b)
u(0,x) = u’(x), ut (0,%) = v°(x), x € Q. (2.15¢)

The weak formulation of (2.15) is of the form (2.13) with V. = H}(Q), H = L?(R2), the usual L*(Q2) scalar

product m,

Fz(v,w) = a(v,w) = (Vv, Vw) D(v) = 3, F(v) =v* and f=0.

L2(Q)’

This example fits into the setting of Assumption 2.12. It is straightforward to see that parts a), b), c),
and e) of Assumption 2.12 are satisfied with cq = Bqm = 0, while part d) is proven for a more general

application in Lemma 6.4.

To apply the results from Section 2.1, we rewrite (2.13) as a first-order evolution equation.

Formulation as an evolution equation We identify H with its dual space H*, such that we have a
Gelfand triple
d d
Vo HXH < V" (2.16)

We define the operator A € L(V,V*) associated to the bilinear form a via

(Av,w)v=xv = a(v,w) for all v,w € V. (2.17)

The equation (2.13) can then be written as an evolution equation in V*:

v + D)+ Au = F(u) + f, t>0,

(2.18)
u(0) =u®,  /(0) = °.
By A: D(A) — H we denote the restriction of A to H, i.e.,
D(A)={veV|Av e H}, and Av=Av forall v € D(A).
The restriction of (2.18) to H is then given by
u’ + D)+ Au= F(u) + f, t>0,
(«) ) (2.19)

u(0) =u", 4/(0) ="

By construction, a solution of (2.19) is also a solution of (2.18) and hence of (2.13).



2.2. Second-order evolution equations with nonlinear damping 17

First-order formulation We now rewrite (2.19) as a first-order evolution equation and show that it

fits into the setting of Section 2.1. Therefore, let v’ = v and define

x = lu] S(x) = = [O] z¥ = luol (2.20)
I ) DV A ] R

The nonlinear operator S is defined on its domain D(S) = D(A) x V. With X =V x H, (2.19) has the
form (2.1). Since V is dense in H, D(A) is dense in V and, hence, D(S) is dense in X.

—v

Au+D()|’ Glo) =

0
F(u

Lemma 2.14. The nonlinear operator S is maximal and quasi-monotone with constant

1
Cqm = §CGCH,V + ﬁqm-

Proof. Let 1 = [u1,v1]7 , 22 = [ug,v2]" € X =V x H. Using the definition of A and the properties from

Assumption 2.12 we then calculate

p(S(xl) — S(z2), 21 — xg) —d(vl — Vg, U — 'LLQ) + m(A(u1 —u2) + D(v1) — D(ve),v1 — vg)

fd(’ul — Vo, U] — UQ) + a(u1 — U, V1 — vg) + m(D(vl) — D(vs),v1 — 1)2)

> —ch(vl — V2,U1] — UQ) - quH'Ul - UQHEn
> —cgllvr = vallmllur — uzllm — Bymllvr — val|2,
> —caChv|lur — usllallvr — vallm — Bamllvr — vall2,
1
> —§CGCH,V (HU1 —us|Z + |1 — 'U2||$n> — Bamllv1 — valf7,
1
> — <2CGCH,V Jm@’qm) 21 — 2% -

This proves the quasi-monotonicity.

We prove the maximality similar as in the proof of [Vitillaro, 2017, Theorem 4.1]. We have to show that
there exists a A > cqm s.t. range(A + §) = X. This is equivalent to proving that for every [hy,ha]" €
V x H = X there exists a solution [v,w]" € D(A) x V = D(S) of the stationary problem

Av —w = hy, (2.21a)
Aw + Av + D(w) = ha. (2.21b)

From (2.21a) we obtain .
V= (w4 hy). (2.22)

We would like to plug this into (2.21b) and solve for w, but since w and h; are not in D(A), we replace
A by A before doing so. We obtain

1 1
Aw + X.Aw +D(w) = hy — X.Ahl =h (2.23)
with h € V*.

We will prove that T = X + %A +D:V — V* is surjective for A > cqm large enough. In this case, there
exists a w € V s.t. (2.23) is satisfied. By defining v via (2.22), we have that

Aw + Av + D(w) = he < Av = hy — Aw — D(w).
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Since he — Aw — D(w) € H, it follows by definition that v € D(A) and that (2.21b) is satisfied.

Hence, it remains to prove the surjectivity of 7. We use [Barbu, 2010, Corollary 2.3] stating that
operators (from a reflexive Banach space to its dual space) that are continuous, monotone, and coercive

are surjective, and hence will show that T" has these three properties.

For this, we rewrite the operator as T'= T} + T with

1 /A2 A
=< (% T, =2 +D.
] A(2+A>, 2=+

We now choose a fixed

A > max{cqm, V2¢q, 28qm }

and then have

o T € C(V,V*) as the sum of continuous operators,
o T is monotone as the sum of monotone operators,
e T is coercive, i.e.,

(T(v),v)v=xv

— oo for ||v||z — oo,
]|

which can be seen by the following calculation:

(T(v),v)vexv = (T1(v),V)v+xv + (T2(v), V) v=xv

Sl 4 (T(0) = T(0), 0~ O)y-evr + (T2(0), v) v

Y

Y

1
$IolE = Illal T2 (0) v,

where we used that, due to the choice of A, T} is coercive and T3 is monotone. Hence, we have

(T(),v)vexv

[v]la

1
> < lolla = I172(0)]

v+ = oo for ||v]g = oo.
O

The following corollary shows that the first-order formulation of (2.19) fits into the setting of Section 2.1.1.
Corollary 2.15. Assumption 2.12 implies that the first-order formulation of (2.19) satisfies Assump-
tion 2.3.

Proof. By Lemma 2.14, we have that Assumption 2.3 a) is satisfied. Assumption 2.3 b) and c¢) follow
directly by Assumption 2.12 d) and e). O
Corollary 2.16. Let [uo, UO] T € D(A)xV. Then, the second-order evolution equation (2.18) and, hence,

(2.13) are locally wellposed.

Proof. Follows with Corollary 2.15 directly by Theorem 2.4. O
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2.2.2 Space discretization

Let (Vi)n be a family of finite dimensional vector spaces related to a discretization parameter h. In each
Vi, € (Vi)n, we consider the following discretized version of (2.13):

my, (ufl, on) + mp (Da(uy,), on) + an (un, on) = mu(Fy(un), on) + ma(fa, on), forall 5 € Vi, t >0
un(0) =ujl,  w(0) = v
(2.24)
Here, mp,ap, Dp, F, and fj, are approximations of their continuous counterparts for which we assume

that they satisfy similar properties:

Assumption 2.17. All constants in the following statements are independent of h.

a) The bilinear form my, is a scalar product on Vi,. We denote Vj, equipped with this scalar product

mp, by Hy, and the induced norm by ||-||m,, -

b) The bilinear form ap: Vi, x Vi — R is symmetric and there exists a constant ¢g > 0 s.t.
ayp = ap + camp,
is a scalar product on Vi, with induced norm ||-||a, . In the following, we equip Vi, with ay.
¢) The nonlinearity Dy,: Vi, — Hy, is continuous and quasi-monotone with constant Ban
d) The nonlinearity Fy: Vi, — Hy, is locally Lipschitz-continuous with constant Ep.
e) The inhomogeneity satisfies fr, € W1 ([0,00); Hy,).

f) There exists a constant éHy >0 s.t.

||'Uh||mh, < aH’V”’UhHah fOT‘ all vy, € V3. (225)

Example 2.13 (continued). Let (Tn)n be a quasi-uniform family of matching simplicial triangulations
of Q (c¢f. Definition C.1). For each Ty, € (Tn)n let Vi, be the standard linear finite element space over

Th, i.e., Vi, is the space of piecewise linear functions defined on Tp. This is a conformal finite element

method since Vi, CV and we set
mp, == m, ap = a. (2.26a)

Further, we define the discretizations of the nonlinearities via

m(Dp(vn), wn) ::/szwhdx7 (2.26b)
m(Fy (vn), wn) IZ/Q’U,%wth (2.26¢)

for all vy, w, € Vi,. Note that we can evaluate these integrals exactly by a quadrature formula of order
> 5. This discretization fits into the framework of Assumption 2.17. As in the continuous case, it is

easy to see, that the parts a), b), c), e), and [) are satisfied. Part e) is proven in Lemma 6.6 for a more

general example.
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We define Ay, € L(Vi; V) via
mp (Ahl}h, wh) = ap (’Uh, wh) for all vy, wy, € Vp,.
Then, (2.24) can be written as an evolution equation in Vj:

uy + Dy (uy) + Apun = Fr(un) + frs t>0

(2.27)
up(0) = ul), u}, (0) = vy

As in the continuous case, we can rewrite this as a first-order equation. We define the finite dimensional

Hilbert space X5, =V}, x Hy, and set

Ty = [uh] , Sulwn) =

Up

—u,
Apup, + Dp(vn)

Then, (2.27) has the form (2.4).
Corollary 2.18. Assumption 2.17 implies that the first-order formulation of (2.27) satisfies Assump-

tion 2.7. Furthermore, (2.3) holds true with Cqm = %EGGH,V + qu.

Proof. As in Lemma 2.14, we obtain that S, satisfies (2.3) with constant ¢4, = %EgéHy + Eqm. The

other assumptions from Assumption 2.7 follow directly by Assumption 2.17. O
As in the first-order case, we require the existence of appropriate operators to relate continuous and
discrete functions:

Assumption 2.19.

a) There exists a lift operator L) € L(V,,; V) satisfying
£} vnllm < Crrllonllms — 11£X vnlla < Cvllvallan, (2.29)
for all vy, € V}, with constants C“H, év > 0 independent of h.

b) There exists an interpolation operator Iy, € L(ZV;V},), defined on a dense subspace ZV of V', which
satisfies
nll g, e zv < Ch, (2.30)

with a constant éfh > 0 independent of h.

Example 2.13 (continued). Since the discretization in our example is conformal, i.e., we have Vi, CV,

we can set LY =1. Recall that we have

lonllm, = lvnllm, — llonllay = llvalla,  for all vn € V4

and hence, Assumption 2.19 a) is trivially satisfied. Further, we choose ZV = H?*(Q) C C(Q) and define
Iy: H?(Q) — V3, as the standard Lagrange interpolation operator in the basis nodes of the triangulation.

The Lagrange interpolation satisfies (2.30).
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We now analyze the space discretization error by applying the theory of Section 2.1.2. Therefore, we

have to specify the appearing operators.

Definition 2.20.

a) The adjoint lift operators L)*:V — V,, and LI*: H — Hj, w.r.t. the scalar products of V and
H are defined via

mh(ﬁhH*v,wh) = m(U,Eth) for allv € H,wy, € Hy,

(2.31)
an (Ex*v,wh) = d(v,ﬁ%wh) for allv € V,wy, € Vj,.
b) We define the first-order lift operator L;: X;, — X by
LY vy,
Wh Eh Wh,
¢) We define the first-order reference operator Jy,: Z — X by
£V*
I lv] S (2.32)
w Iyw

onZ=VxzVhX,

Remark 2.21. We use I}, instead of LI* in the second component of the reference operator because the

adjoint lift operator only leads to suboptimal error bounds.

Lemma 2.22. The first-order lift and reference operators from Definition 2.20 satisfy Assumption 2.8
with Cx = max{Cy,Cy} and C;, = max{Cy,Cy, }.

Proof. This is a direct consequence of Assumption 2.19. O

For z = [v,w]" € Z, the remainder terms are given by

Ru(z) = £18(2) — Snnl2) ~(4 = D (2.33)
z) = z) — z) = s .00A
N M L (Av + D(w)) — (ALY 0+ Da(hw))
0
rr(z) = L1G(2) — Gp(Jpz) = 2.33b
n(z) nG(z) r(Jn2) LHF(v) — Fy(LY*v) ( )
The norm of r5,(2) is obviously given by
lra(2)llx, = 1£5F(0) = Fa(Ly *0)lmn, 2= [o,0]" € Z. (2.34)

To bound the remainder of the monotone operator, we make use of the following errors in the scalar
products, that are for vy, wy € V}, defined via
Am(v;“wh) = m(ﬁth, £,‘L/wh) —my, (v;“wh)7

(2.35)
Ad(Uh, wh) = EL(,CXU}L, [,th) — Elh (Uh, U)h).
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Lemma 2.23. Let Assumptions 2.12 and 2.17 be satisfied. Then, for z = [v,w|" € Z, the remainder of

the monotone operator can be bounded by

||Rh(z)||Xh§C( max |Aa(lyw,¢n)|+ max |Aa(Iv, ¢)]

llenlla, =1 llenlla, =1
+ Wrrulax 1|Am(Ihv,¢h)| + 1T =LY In)v|la (2.36)
hilmy =

+ (XL 1) w]|a + || £ D(w) — Dh(fhw)Hmh)’

i.e., against errors in the scalar products, interpolation errors, and the discretization error of the nonlinear

damping term.

Proof. The proof works similar to the proof of [Hipp et al., 2019, Lemma 4.7]. We use the identity

1Bn(2)lx, = max pa(Ra(2),9n).

llynllx, =
For y = [n, tn]T € Xn with [lyn]lx, = 1 we obtain by (2.33a)
pr(Ru(2),yn) = = an (L} — In)w, on) +mp (L (Av + D(w)) — (AnLy v + Da(Ihw)), ¥n)
= — (a(w, £ on) = an(Tnw, on) ) + (alo, £ 6n) = an (£ "0, 0) ) (2.37)
+ mp (L4 D(w) — Du(Inw), ¥n),

and bound the three summands separately. For the first, we obtain by (2.35), (2.29) and ||¢p|la, <1

IA

a(w, Ly on) — an(Inw, o) = a(w, £} o) — a(Ly Inw, L} on) + Aa(Iyw, on)
1L} In) wlal| £} enlla + |Aa(Thw, on) | (2.38)
Cvl(I—£f ) wla+ max |Aa(Lyw,en))-

H‘ph”&;lzl

IN

The second summand in (2.37) can be bounded with the definitions of @, an, ||[Yn|lm, < 1 and (2.14),
(2.25), (2.29), (2.31) and (2.35) by

a(v, L ¥n) — an (L) v, ¢n) — (cam(v, L} 1bn) — Somn (L) *v,¢))
max{ca, g Hm(v, £} ¥n) — ma (L} v, 9n)|

< maX{CG,EG}Om((I —L} In)v, £} ) | + | Am(Ihv, 4n) |

+mp ((In = £ *)v, 7/%))

gmax{cG,eG}(éHcH,VH(I—cth)vna+“ max_ [ Am(Inv, )|

Unllmy, =

a(v, L,‘fi/}h) —ayp (£X*v, Un)

IN

+ Cory (I = £l ).
We further estimate similar to (2.38)
100 = X" )ollay = | max_an((Fs — £ 7)v.0)
rlla, =

= max &h(Ihv,sﬁh)*&(Uvﬁ}z/S@h)
lenlla, =1

< GVH (I —EZIh) vl|a + ”wnﬁax 1|Ad(1hv, cph)|
nlla, =
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Finally, the last summand in (2.37) is bounded by
Hx Hx
my (L3 D(w) = Dp(Iyw), vn) < L3 D(w) = Pp(Ipw)|lm,,

and the assertion follows by collecting all terms. O

With the results we have already obtained in this section, the following two theorems are now direct
consequences of Theorem 2.10 and Theorem 2.11. The first one is a space discretization error bound

under the assumption, that the numerical approximation wy, exists on [0, .

Theorem 2.24. Let Assumptions 2.12, 2.17 and 2.19 be satisfied and u be the strong solution of (2.19)
on [0,T] with u,u’,u" € L>®([0,T); Z"). Further, assume that the semidiscrete solution uj of (2.27)
exists on [0, T]. Then, for all t € [0,T), the lifted semidiscrete solution satisfies the error bound

. N 5
1EH un(t) — ()l + I1CK wi () = u/ () < Celbonteam(L44) Y By (2.39)
i=1

with a constant C that is independent of h and t. The other constants are given by Cqm = %EGaHy +B\qm,
prp = max {5V||u||L°°([O,T];V)a HuhHLoo([o,T];vh)} ,
and the abstract space discretization errors
Epy =up, — £ a, + 1o} = 160y, + L5 F = fullzoe o, r1:0)s

Eno =[IL* D) = Di(Inu)) || oo (0,77 Hn)
Ens =)L F(u) = Fu(Ly*u)ll L 0,717 1)

Ena =||(T—=Ly In)ull Lo o730y + 1A =LE In)v | oo o,735v) + 1A —LE In)w” | oo ((0,7): 1) (2.40)
Ep, —H max Aa(lpu, op H +H max Am(Ipu, Yy H
* ignlls, =1 (T, 20,7 onllony, =1 (T, L= (0,7)
—|—‘ max Aa(lpu H ’ max Am(Iu”, H .
lonlla, =1 (Tt on L=©1) " ignlim, =1 (T L=(0,T)

Proof. We apply Theorem 2.10 to the first-order formulations of (2.19) and (2.27). By Corollarys 2.15
and 2.18 and Lemma 2.22 all assumptions are satisfied. Note that (2.12) would also require that uj, and
u’ are bounded by pp. But, since the nonlinearities G and G, in the first-order formulations of (2.19)
and (2.27) only depend on the first component, it is sufficient that v and uj are bounded to exploit the

local Lipschitz continuity.
The error estimate (2.6) yields
L3 un () = u)lla + 1€ up () — o' ()l < 2 (125 wn(t) — w@®F + L5 wi () — ' #)]7,)
= 2|[Lazn(t) —2(®)]x
< 2CxelFrmteam) g, (1) 4 2/ (1L Jn)a (D)l x

1
2

with
En(t) = ||=} — JWOHXh +[|(L5 -~ Jh)x/HLw([o,T];Xh)

+ | Ru ()| oo (0,10:x0) + tlra(@) | 2o 0,10:x0) + tILRG — gnll o= ([0,17:x)-
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It remains to bound the different terms against Ej, ;,4 = 1,...,5. By the remainder bounds (2.34) and
(2.36) we obtain for all ¢ € [0, 7]

[Br(x(t)llx, < C(Enz+ Ena+ Ens),  ra(z(t))lx, < CEpgs,
and by the definition of J;, and L we further have

[|zh — Jhonxh +11£59 = gull Lo (0, 17:x,) < CEp1-

For the reference error we have for all ¢t € [0, T
I =Lrdn)e(®)lx < =LY LY Yu@)lla + 1LY ) ()m (2.41)
where the second summand is bounded by E}, 4. For the first summand, we obtain as in (2.38)

IT=Ly L} yulla < IA=L3 In)ulla + I1£3 (In = L3 )ulla

< CEpa+ C’V max (dh (Ihu, cph) — d(u,ﬁX(ph))

llenlla, =
~ (2.42)
< CEp4+ C"Q/H( Evlh) ulla + C’V | nﬁax |Aa(]hu, <ph)|
Phllay,
< C(Epa+ Ens).
Similarly, we finally bound
1025 = Tn)a'[|x,, < (L = Tn)u”||m,
< aHH<I—EXIh) " + Hwrrulax ‘Am([hu J/Jh)|
hillmy,
< C(Ens + Epp).
O

As in Section 2.1, we can conclude existence and convergence of the numerical solution under an additional

consistency assumption.

Corollary 2.25. Let Assumptions 2.12, 2.17 and 2.19 be satisfied and u be the strong solution of (2.27)
on [0,T] with u,u’,u" € L>([0,T); ZV). We then define

p= 26V||U||L°°([O,T];V)~

Further, let Ey; — 0 for h — 0, ¢ =1,...,5. Then, there exists h* > 0, s.t. uy, exists in [0,T] for all
h < h* with

lunllLoe o,mv1) < P

Additionally, the error bound (2.39) holds true with py, = p and the lifted semidiscrete solution converges

to the continuous solution, i.e.,

Tim, (/123 un(t) = u(®)la + |1£5 ui () =o' (O)]lm) =0, t€[0,T].
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Proof. This is a direct consequence of Theorems 2.11 and 2.24. O

Finally, we now can prove an error bound for our illustrative example:

Example 2.13 (continued). We now illustrate for our example equation (2.15), with corresponding space
discretization (2.26), the application of Theorem 2.24 and Corollary 2.25 to a concrete equation. Let u €
C2([0,T); H3(Q)) be the solution of (2.15). In the following, we estimate the error terms Ep i =1,...,5

from (2.40). Since we are in the case of a conformal discretization with
L _ vV _
ap = a, mp=m, and L; =1,

the error term Ey, 5, containing the errors in the bilinear forms, vanishes. Further, note that in this case
we have

LI =10, LI =T,

where 12 and Il denote the L?- and H'-orthogonal projections, respectively. We discretize the initial
values via

uy = Iu®, v = Iv°.

Then, by usual interpolation and projection error bounds and f = 0, we obtain
Eny, Epa < Ch.

It remains to bound the discretization errors of D and F, and we bound exemplary Ey o. We have by the

definition of Dy, and the usual interpolation error bounds for all t € [0,T]

I£3*D(u') = Du(Ipu)m, = max _ (Hz2D(u’) = Dy (Ipu'), wp)

||wh|\L2(n):1

=  max /Q () = (Inu')?)wy dx

lwnllL2@y=1
< I(w')? = (Inu')?[| 22 ()
< I(w')? 4+ ' Ty’ + (Int')? || oo oy 10 = Tntd'| L2 (0

< C ([l s (s |10/ | 112y ) CR2.

L2()

Note that ||[u'||p(q) is bounded due to the continuous embedding H*(Q) — C(Q), cf. Theorem A.J.
Hence, we obtain Ej o < Ch? and similarly B3 < Ch?.

We already showed in the previous parts of the example, that Assumptions 2.12, 2.17 and 2.19 are satisfied.
Recall that we have V.= H*(Q)) and H = L?(Q). Hence, we can apply Corollary 2.25 and have that, for

h sufficiently small, the linear finite element approximation uy satisfies the error bound
lun () = w(@®) [z () + l[uh (8) — ' (B)]|2(0) < CePo* (L +t)h,

with a constant C independent of h and t.
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CHAPTER 3

Runge—Kutta time discretization of first- and second-order evolution

equations

In this chapter, we introduce and analyze Runge-Kutta time discretization schemes for abstract evolution

equations in the framework of the unified error analysis from Chapter 2.

The main goal in this chapter is to approximate the solution u of the continuous second-order evolution
equation (2.19). Since Runge-Kutta methods are usually formulated for first-order equations, we start
by considering Runge-Kutta methods applied to the first-order formulation (2.1) of (2.19), cf. (2.20). By
7 > 0 we denote the time step size and set ¢,, := n7,n > 0. The iterates 2" = [u",v"]T of the Runge-Kutta

method applied to the first-order formulation of (2.19) then satisfy u™ = u(t,),v"™ = v'(t,).

Based on results from Hansen [2006b], we prove order ¢ time discretization error bounds for coercive
and algebraically stable Runge-Kutta methods of stage order ¢ (cf. Definitions B.3 to B.5). A short
introduction to Runge-Kutta methods and a summary of the results from Hansen [2006b] that are

necessary for our analysis can be found in Appendix B.

Outline In Section 3.1, we analyze Runge-Kutta methods applied to first-order equations in the frame-
work of the unified error analysis of Section 2.1.1. In Section 3.2, we then use these results to prove error

bounds for Runge-Kutta methods applied to second-order equations in the framework of Section 2.2.1.
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3.1 Runge-Kutta methods for first-order evolution equations

A Runge-Kutta method with coefficients b = (b;){_;, ¢ = (ci){_;, @ = (ai;); ;—, applied to the evolution
equation (2.1) has the form

X = a:"—!—TZaij(—S(X"j) +G(X™) + g(tn +¢;7)), i=1,...,s,
j=1

a" =g Y b (S(XM) + GX™M) + gt + 7)) -
i=1

We first prove an error bound under the assumption that bounded Runge-Kutta iterations exist. Af-
terwards, we prove the existence of the iterations for sufficiently small 7. The error bound is a direct
application of the error bound from Hansen [2006b] stated in Theorem B.12, since the framework in this

paper is very similar to our framework.

Theorem 3.1. Let Assumption 2.3 be satisfied, ¢ € N, x € CT1([0,T]; X) be the solution of (2.1), and
x", for t, € [0,T], be the approzimations obtained by an algebraically stable and coercive Runge—Kutta

method of stage order q. Further, we define
— n ni
p = max { ] oo,y magfla”lx, mase X" x } (3.1)
i=1,...,5

and assume that T satisfies the step size restriction
T(Cqm + Lp) < ORK- (32)

Here, ark is the coercivity constant of the Runge—Kutta method, cf. Definition B.5, and cqm and L, are
given in Assumption 2.35.
Then, the error bound
o — () x < S 1
" —x x < T
" CRK(Cqm + Lp)

holds true with a constant Crx only depending on the coefficients of the Runge—Kutta method, a constant

C which depends on x, T and the Runge—Kutta method, but is independent of n and T, and the constant

Crp= (aRK — T(Cqm + Lp))_l.

Proof. We use a standard trick and replace G in (2.1) by G,, where G, is globally Lipschitz continuous
with constant L, and satisfies G,(y) = G(y) for all ||y||x < p. Note that due to (3.1), we have that
is also a solution of the modified equation with corresponding Runge-Kutta approximation =", i.e., we
now consider (B.1) with F(t,z) = —S(x) + G,(x). We then have that Assumption B.6 is satisfied with
Cqm,F = Cqm + L, and can apply Theorem B.12.

This immediately gives the assertion. O

Theorem 3.2. Let Assumption 2.5 be satisfied, ¢ € N, and let x € CIL([0,T]; X) be the solution of
(2.1). We define

p = 2[|z|| Lo (jo,17:x)
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and consider an algebraically stable and coercive Runge—Kutta method of stage order q.

Then, there exists a 7* > 0, s.t. for all T < 7" the Runge—Kutta method applied to (2.1) yields unique
approzimations ™ € X with ||2™|x < p, t, € [0,T], which satisfy the error bound (4.7).

Proof. As in the proof of Theorem 3.1, we replace G in (2.1) by a function G, that coincides with G
on {y € X | |lyllx < p} and is globally Lipschitz continuous with constant L,. Then, for the modified
equation

o+ 8(x) = Gylz) + g (3.3)

Assumption B.6 is satisfied with cqm, 7 = ¢qm + L,. Due to [|z(t)||x < p for all ¢ € [0,T], we further
have that z is also a solution of (3.3). We obtain by Lemma B.8 that under the step size restriction (3.2)
there exist unique Runge-Kutta iterations z”, ¢, € [0,7], to (3.3) and by Theorem B.12, that the error
bound (4.7) holds true.

It remains to show that, for 7 sufficiently small, we have ||2"|x,[|X™||x < p for all ¢, < T and

i=1,...,s, since then, the 2™ are also the Runge-Kutta approximations to the original equation (2.1).

Using the bound (4.7), we can conclude that for 7* > 0 sufficiently small and all 7 < 7* we have

p
lz"lx < llz" = 2(ta)llx + llz(ta)llx <25 = p.

For the inner stages we calculate

X" [l < X = X7 41X = 2t + eir)|| + [l (tn + i)l x-

Here, X" i = 1,...,s, denote the inner stages of the Runge-Kutta method applied to the modified
equation (3.3) starting from x(¢,) at time ¢,,. By the local error and the stability bounds (B.5) and (B.6),

respectively, we obtain

IX7 — a(tn + em)lx < CCrpr™*,

[X™ — X" x < CrrCrpllz™ — 2(ty)|x < C(eCRKC’th" —1)7e
Hence, by possibly further reducing 7%, we have for all 7 < 7* and i = 1,...,s

IX™x < p.

3.2 Runge—Kutta methods for second-order evolution equations

We now use Theorems 3.1 and 3.2 to prove error bounds for Runge—Kutta methods applied to the first-

order formulation of the second-order equation (2.19).

Corollary 3.3. Let Assumption 2.12 be satisfied, ¢ € N, and let uw € C972([0,T); H) N C41([0,T]; V)
be the solution of (2.19). Further, let u™, 0™, for t, € [0,T], be the approrimations obtained by an

algebraically stable and coercive Runge—Kutta method of stage order q applied to the first-order formulation
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of (2.19). By agk we denote the coercivity constant of the Runge—Kutta method, cf. Definition B.5, and
we define
pi= maX{|\U||L°°([o,T];V),g?%%“unﬂav max 1U™[la},
i=1,....5
where U™ denotes the first component of the inner Runge-Kutta stages. If T satisfies the step size
restriction

T(cqm + L,) < amrx
with cqm = %CGCH’V + Bym, the error bound

CriCZ (Cqm+Lp)tn _
" = uta)lla + [[o" =o' (tn)llm < C° - d Lo (3.4)
Cr (Cqm + Lp)

holds true with a constant Crk only depending on the coefficients of the Runge—Kutta method, a constant

C which depends on x, T and the Runge—Kutta method, but is independent of n and T, and the constant

C‘,—,p = (aRK - T(Cqm + Lp))il.

Proof. This is a direct application of Theorem 3.1, since by Corollary 2.15, we have that the first-order
formulation of (2.19) satisfies Assumption 2.3. Note that we only need bounds on the first components
of the exact and the numerical solution, since G in the first-order formulation of (2.19) only depends on
the first component. Hence, it is sufficient that w,u™, and U™ are bounded to exploit the local Lipschitz

continuity. O

Corollary 3.4. Let Assumption 2.12 be satisfied, ¢ € N, and let u € C12([0,T); H) N C9T1([0,T); V) be
the solution of (4.1). We define

p = 2||ul| L (jo,1;v)

and consider an algebraically stable and coercive Runge—Kutta method of stage order q.

Then, there exists a ™™ > 0, s.t. for all T < 7 the Runge—Kutta method yields unique approzimations
u™ € Vo™ € H with ||u"||z < p,n > 0,t, € [0,T] which satisfy the error bound (3.4).

Proof. This is a direct application of Theorem 3.2 with the same arguments as in the proof of Corollary 3.3.
O

Remark 3.5 (BDF methods). The paper Hansen [2000a] contains an error analysis for BDF methods
in the same framework as used in Hansen [2006b] for the analysis of Runge—Kutta methods. This can be
adapted with the same techniques as presented in this chapter to our framework to obtain error bounds
for BDF methods applied to (2.1) and (2.18).
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CHAPTER 4

An implicit-explicit (IMEX) scheme for semilinear second-order evolution

equations

In this section, we present and analyze an efficient IMEX time integration scheme for semilinear second-
order evolution equations in the setting of Section 2.2.1. By semilinear we mean that the nonlinear part
of the evolution equation is Lipschitz continuous. The scheme is a combination of the implicit Crank—
Nicolson method and the explicit leapfrog scheme. We show wellposedness of the scheme, comment on

the efficiency, and, as the main result of this section, prove a second-order error bound.

This chapter mainly presents the content of [Hochbruck and Leibold, 2021, Section 2 (2.2-2.5)]. We

always refer to the corresponding results in this paper.

Outline In Section 4.1, we introduce the analytical framework in which we consider and analyze the
IMEX scheme. Since the construction and analysis of the IMEX scheme is based on the Crank—Nicolson
method, we present the numerical analysis of the Crank—Nicolson method in Section 4.2. Section 4.3 is
devoted to the construction of the IMEX scheme of which we prove wellposedness in Section 4.4. For
the error analysis, it is advantageous to consider a first-order formulation of the IMEX scheme, which we

derive in Section 4.5. Finally, we prove a second-order error bound for the IMEX scheme in Section 4.6.
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4.1 Analytical setting

We consider the evolution equation (2.18) in the setting from section Section 2.2 in the semilinear case,

i.e., where Bv := D(v) is a linear operator. The equation then takes the form
u'+Bu +Au=F(u)+f, t>0, u(0) =u", 4/(0) =" (4.1)
In the first-order formulation (2.20), we thus have

0 -1

S(z) = Sz, where S =
A B

is a linear operator. The corresponding first-order equation (2.1) in this case is of the form
¥+ Sx=G(x)+g, t=>0, 2(0) = zo. (4.2)

Remark 4.1. Note that part c) of Assumption 2.12 translates for (4.1) to: The operator B € L(V; H)

is quasi-monotone, i.e., there is a constant Bqm > 0 s.t.

m(Bv,v) = —Bam V][5, (4.3)

As in Chapter 3 we set t,, == n7,n > 0, and denote by 2™ = [u™,v"]T the iterates of a time discretization
scheme applied to (4.2) or (4.1), respectively. Furthermore, to simplify the following presentation, we use

the short notations
0

Fu™) + f(tn)

G =

= G(xn) + g(tn)~

4.2 Motivation: The Crank—Nicolson scheme

Since we derive the IMEX scheme as an adaption of the Crank—Nicolson scheme, and the error analysis is
based on the Crank—Nicolson error analysis, we start by recalling the Crank—Nicolson scheme and some
of its properties. The Crank—Nicolson scheme is a time integration method for first-order equations, see,
e.g., [Hairer and Wanner, 2010, Section IV.3]. Applied to the first-order formulation (4.2) of (4.1) it is

of the form

InJrl =" %( _ S(Z‘n + xn+1) +G" + Gn+1) (44)
and can be written as
R+£Un+1 —R_ 2"+ % (Gn + Gn-l-l) with R:t =]+ gS (45)

The operators Ry have the following properties:

Lemma 4.2 ([Hochbruck and Leibold, 2021, Lemma 2.4]). Let Assumption 2.12 be satisfied and cqm =
%CGC’HJ/ + Bqm with Cr v defined in (2.14). Then, for Tcqm < 2, the following assertions hold true:

a) R is invertible with | Ry |x—x <1 and R{'x € D(S) for allz € X.
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b) R:=R;'R_ has a continuous extension on X satisfying ||R|xcx < eT¢am.

Proof. By Lemma 2.14 we have that S is maximal and quasi-monotone with constant cgy,. This implies

the stated properties of R4, as shown in the proof of [Hipp, 2017, Lemma 2.14]. O

In the following, we assume Tcqm < 2, s.t. Lemma 4.2 is valid. This allows us to apply R;l to (4.5) and

we obtain

"= Ra" 4 CRIH(GM 4G, (4.6)

We will now prove an error bound for the Crank—Nicolson scheme. This was done in Hipp [2017] for the
linear and in Leibold [2017] for the semilinear case. The idea of the proof is based on Sturm [2017], where

the Crank—Nicolson scheme applied to Maxwell equations was analyzed.

Theorem 4.3. Let Assumption 2.12 be satisfied, u € C*([0,T]; H) N C3([0,T); V) be the solution of
(4.1), and 2" = [u™, 0", t, € [0,T], be the approximations obtained by the Crank—Nicolson scheme
(4.4). Further we set

L— n ~
p = max { [l o,y ma " |

and assume that T satisfies the step size restriction

2 1
7 < min {Cq—m, L—p}
with cqm = %CGCH’V + Bqm-
Then, the error bound
" = () + 0™ = ()l < Celoomt =857 )12 (47)

holds true with a constant C' which depends on x and T but is independent of n and 7.

Proof. We use the notation
F=altn), G =G@E")+g(tn),

where x = [u,u/]" is the exact solution of (4.2), and denote the error by

e =" — 2"

The proof consists of three main steps.

(a) Error recursion. We insert the exact solution into the Crank—Nicolson scheme (4.4) and obtain
T =G 2 (@) G+ ) - o (4.8)

where 6¢;;" is a defect. By the differential equation (4.2) we have

% (' (tns1) + 2" (tn)) = % (—S(E“ + 3+ G+ énﬂ) 7
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and by comparing to (4.8), we derive the following representation of the defect:

58?\_11 = % (' (tny1) + 2" (tn)) — (E"H — f") = % (' (tny1) + 2 (t,)) — /t " 2’ (s) ds. (4.9)

n

Similar to (4.6), we can reformulate (4.8) to
F = R+ TR (G + G+ RENOGEL (4.10)
By subtracting this equation from (4.6), we obtain the error recursion

"t = Re" + %R;l (G” —GM G - é”“) + RUYAE (4.11)
(b) Stability. By solving the error recursion (4.11) with ¢® = 0, we obtain
n - ~ _
e = Z R <2R;1 (Gm —Gm et - Gm_l) + R;l(SE”N).
m=1

Taking the norm, using the triangle inequality, and ||R||x« x < e7%m, ||R;1||XeX <1 from Lemma 4.2
yields

n

= 1 ~ 1 ~
Hen”X <7 Z e(nfm)rcqm <2HGm _ GmHX + §||Gm71 _ Gm1||X> + Z e(nfm)‘rcquagzNHX.
m=1 m

=1

Since we have ||u(t)| a, |u"|la < p for all t,,,t € [0,T], we can employ the local Lipschitz continuity of G
and end up with

n n
e—m—cqm”enllx < LPT Z e—mrcquemHX + Z H(SgNHX'
m=1 m=1

By applying Gronwall’s lemma stated in Lemma A.1 b) and multiplying by "7 we obtain for 7 < 1/L,,

L, n
el < eleamt =t )i S g (4.12)

m=1

(c¢) Defect. The Crank-Nicolson defect (4.9) consists of the quadrature error of the trapezoidal rule,

which is due to our regularity assumptions bounded by

168x1Ix < CT32® || Lo (ftn st )sx) < CT (||u(3)||Lm([tm,tm_1];V) + HU(4)HL°C<[tm,tm_1];H)) <C7.

(4.13)

Inserting this into (4.12) finally yields

c Lo -
" = ultn)lla + 07 = ()l < V™ = alta)lx = VBl < Celeamt i)t 12

m=1

< Celem+ )iy 12
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4.3 Construction of the IMEX scheme

In the following, we explain how the IMEX scheme can be derived by combining the Crank—Nicolson with
the leapfrog scheme. To do so, we state now a formulation of the Crank—Nicolson scheme that exploits

the second-order structure of (4.1).

Lemma 4.4 ([Hochbruck and Leibold, 2021, Lemma 2.5]). The Crank-Nicolson scheme (4.4) can equiv-

alently be rewritten in a half-full-half step formulation

2

ot — ot~ Toaun — T Aty _ T gyntd o Z(Fn + P, (4.14a)
2 4 2 4
W = " o tE (4.14b)
2
ot =gty T qun _ T gyt T pynts 4 z(F" + Pt (4.14c)
2 4 2 4
Proof. With
1

S . (" +v"1) (4.15)

the two components of (4.4) have the form

; 1
u7z+1 = " 4 Tvn—i-z’

T 1
V" =" — Z A" +u™T) — 7B e 4

5 (F™ + F™+1,

|3

The first equation is identical to (4.14b). In the second equation, we eliminate u™! using the first one
and obtain

2
v =" — T AU — 7—?Av"j% — 7Bv"tE 4 g(F” + Fth),

which can be expressed equivalently by the two half steps (4.14a) and (4.14c). O

The leapfrog or Stormer—Verlet scheme is an explicit time integration scheme for second-order differential
equations of the form y” = ¢(t,y), cf. Hairer et al. [2006]. Applied to (4.1) with A = B = 0, the scheme

can be expressed in a half-full-half step formulation similar to (4.14) via

1 T
V"I =" ZF,
2
1
un+1 =" + T’l)n+2,

1 T
Un+1 _ vn+§ 4 §Fn+1.

By combining the Crank—Nicolson scheme for the linear part of (4.1) with the leapfrog scheme for the

nonlinear part we obtain the following IMEX scheme:

o tE = g gAu” - 7—ZAU”‘F% - %Bv"+% + an, (4.162)
Wl =y oo tE (4.16b)

"t = e Ay - LAyt %Bv""'% + %F"H. (4.16¢)
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Remark 4.5 ([Hochbruck and Leibold, 2021, Remark 2.6]). By subtracting (4.16a) from (4.16c), we

obtain an equivalent representation of v™+!

o = o2t Tt ) (4.16d)
which is computationally more efficient because of the elimination of the operators A and B.

The implementation is comprised by solving the linear system in (4.16a), and then computing (4.16b)
and (4.16d). Altogether, each time step requires the solution of one linear system, one application of A

and one evaluation of the nonlinearity. Note that F™"1 can be reused in the next time step.

4.4 Wellposedness of the IMEX scheme

The linear system that has to be solved in (4.16a) is of the form
QuumtE =" — %Au” + %F” (4.17)

with Q1 : D(A) — H given by

2

T T
=[4+-B4+ —A.

Q+ 5 1

These operators play an important role in the analysis of the IMEX method and satisfy the following

properties:

Lemma 4.6 ([Hochbruck and Leibold, 2021, Lemma 2.7]). Let Assumption 2.12 be satisfied and

2
%CG + T7Bqm < 1. (4.18)

Then, the operator Q4 is invertible and its inverse Q_T_lz H — D(A) satisfies the bounds

T T2 _
|G+ Ta)es|, <t (4.19)
_ V2
HQ+1HV<—H = T (4.19D)
fo-ap], = e s

Proof. By b: V x V we denote the bilinear form associated to the operator B, i.e.,
b(v,w) = m(Bv,w) for all v,w € V.

The quasi-monotonicity of B (4.3) transfers directly to b. Together with Assumption 2.12 b) and the

step size restriction (4.18) we see that the bilinear form

P T 2 T 2
v la=(1-L8m— T ) + G R
m+2b+4a ( 2,6q 4cG>m+2(b+Bq m)+4a VXV —

>0
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. . o . . K 2 ~ K
is coercive, cf. Definition A.2, as the sum of the coercive bilinear form 7-a and two monotone bilinear

forms. Hence, by the Lax—Milgram lemma (Theorem A.3), we have that for a given v € H C V* there

exists a unique z € V such that
T 72
m(z,w) + §b(2,w) + Za(z,w) = (v,w)y*xy = m(v,w) for all w € V,
where we used the Gelfand triple structure (2.16). Using (2.17), we can rewrite this equivalently as
T2 72 T T
Z(Az,wﬁ/*xv = Za(z,w) = m(v —z— §Bz7w) =@v—z— §Bz,w>v*xv for all w € V.
Thus, we have

2
%Az:v—z—%BzEH
which implies z € D(A) and Q12 = (I+5B + éA)z = v. This proves that Q4 is invertible.

We now show the bounds (4.19): Let v € H and set z = Qllv € D(A). Using Assumption 2.12 b), c),

and the step size restriction (4.18), we obtain
2 2

2 T T
= [(1+3B+ T-a)|
It = | (1+58+ F4)4,

2 T 72
- + 2m(<§B + ZA)Z’ z)

72 T 72 2
= (1= o = 7ban ) I=lE + | (58 + T 4)]

T 7'2
|G )

2
T T
+ 2§m((B + Bam 1)z, 2) + QZm((A +cg 1)z, 2)
T > 1|12 > —1,.012
>||(38+ F4)ast]), + Fhesvii
This directly implies the bounds (4.19a) and (4.19b).

We further note that B + A is maximal and quasi-monotone with constant B + 5cg. The bound
(4.19¢) then follows by Lemma 4.2 with S replaced by B + F A. O

By Lemma 4.6 we obtain directly the wellposedness of the IMEX scheme:

Corollary 4.7 ([Hochbruck and Leibold, 2021, Corollary 2.8]). The IMEX scheme (4.16) is wellposed
in D(A) x H, i.e., for u® € D(A) and v° € H, the numerical approzimations satisfy

u" € D(A), v"€H, "t eD(4), n>0.
Proof. We prove this by induction over n. The statement holds for n = 0 by assumption. We now assume

that u™ € D(A) and v™ € H for some n > 0. By Lemma 4.6, we have that Q4 is invertible and hence,
(4.17) implies v™*2 € D(A). By (4.16b) and (4.16¢) we then immediately obtain

W =yt s € D(A) and "t = ot — gAu" — ZAU”Jr§ - %Bv’”% + %F"H €H.
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4.5 IMEX scheme in first-order formulation

To derive an error bound, we rewrite the IMEX scheme (4.16) as a perturbation of the first-order formu-
lation of the Crank-Nicolson scheme (4.6). This formulation of the Crank—Nicolson scheme was used in
Theorem 4.3 to prove an error bound for the Crank—Nicolson scheme; we will adapt this for the IMEX
scheme. A similar idea was used in Hochbruck and Sturm [2016] to analyze the leapfrog scheme and

locally implicit schemes for Maxwell equations.

Lemma 4.8 ([Hochbruck and Leibold, 2021, Lemma 2.10]).

a) The operators Rll and R can be expressed via

—1 —1
I+IB z
R | @ U43B) 50 (4:200)
—s+7Q7(I+3B) Q%
~1+Q7' (2I+7B e
—| +1Qi1( +7B) e (4.20b)
—214+:Q7 (41+27B) Q-QY
b) For allw €V, we have
-1
R Y | = @y w - (4.21)
—Bw — (B + gA) Q w
¢) The IMEX scheme (4.16) is equivalent to the first-order formulation
2 —1 Fn o Fn+1
xn+1 ZRiL'n-f—zR_T_l(Gn—i—GnJrl) _|_L Qj—- ( . ) -~ (4‘22)
2 T s e

Proof. a) First note that by Lemma 4.6 the right-hand side of (4.20a) is a well-defined mapping from
X =V x H to D(S) = D(A) x V. The identities (4.20) can be verified by straightforward calculations.

b) Using (4.20a), we calculate

w
—Bw

Q7' (I+3B) Q%
-2+2Q7'01+5B) QY

_ [ Q:'w

R

—Bw

2w+ 2Q7'(1+3B)w — Q7' Bw|
For the second component, we obtain

2 2 7 B 2 2
2 T 72 _ 2
= —; (I+ZB + 4A> QJrl’LU + ;wa
= —(B+ gA)wa.

c) We start by showing the equivalence of the IMEX scheme and (4.22) under the additional assumption
v, 0" € V. By subtracting (4.16¢) from (4.16a), we obtain

rUnJF% _ % (vn + ,UnJrl) + % (Fn o Fn+1) , (423)
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which differs from the representation of v"*3 in the Crank Nicolson scheme by the contributions of the
nonlinearity F, cf. (4.15). Inserting (4.23) into (4.16b) yields
n+l _ . n z n n+1 LQ n _ pn+l
u"t = +2(v +v )+4 (F"—F"*). (4.24)
On the other hand, by adding (4.16a) and (4.16¢) and inserting (4.16b), we obtain
ntl _ n z n n+ly n+i I mn n+1
VT =0 2A(u +u"™) —7Bv 2+2(F + FHh .

Hence, with (4.23) we have

2
o — gA(u" oty - %B (,Un +vn+1) + g (Fn + Fn+1) _ TZB (Fn _ Fn+1) . (4.25)
Using the definition (4.5) of Ry, we can express (4.24) and (4.25) simultaneously as

2 n n+1
n+1l __ n z n n+1 L Fr"—F
Ryz"™ =R_a" + 5 (G"+ G + B (P - )

i (4.26)

Note that by (4.23) we have F™ — F"t! € V since we assumed v™,v"*! € V and have by Corollary 4.7
v"t2 € D(A) C V. By multiplying (4.26) with R and using (4.21), we obtain the representation (4.22)
of the IMEX scheme under the additional assumption v™,v"*1 € V. Since the IMEX scheme (4.16) as
well as the equation (4.22) are well defined for v, v"*! € H, and since V is dense in H, we also obtain

the equivalence of both formulations for v™,v"*! € H.

4.6 Error bound for the IMEX scheme

As the main result of this chapter, we now present a second-order error bound for the IMEX scheme.

Theorem 4.9 ([Hochbruck and Leibold, 2021, Theorem 2.9]). Let Assumption 2.12 be satisfied and let
u € CH[0,T); H)NC3([0,T); V)N C%([0,T); D(A)) be the solution of (4.1). Then, there exists 7* > 0 s.t.
for all T < 7* and all t,, € [0,T] the approximations u™ from the IMEX scheme (4.16) are bounded by

[u™lla < p = 2[Jul| o< o,77;v)- (4.27)

Moreover, the approximations u™,v™ satisfy for all t, € [0,T] the error bound
lu™ = uta)lla + 0" = u'(t0) [l < CeMing? (4.28)
(1+3/2)"/?)L,

1-(1+(3/2)1/2) L~
T but is independent of T and L.

with M = cqm + , Cqm = %CGC’Hy + Bam, and a constant C' that only depends on u and

Proof. For the proof of the error bound (4.28) we use the first-order formulation (4.22) of the IMEX

scheme and the notation
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for the exact solution u of (4.2). Further, we denote the first-order error by

e =" - 1"

Let 7 be sufficiently small, such that the assumptions of Lemmas 4.2 and 4.6 are satisfied. Further, we
assume for the moment that for all approximations u”,t, € [0,T7], (4.27) is satisfied. At the end of the

proof, we will show that this is valid for sufficiently small 7.

The proof consists of four main steps, where the first three steps are similar to the error proof of the Crank—

Nicolson scheme from Theorem 4.3. In the last step we show the boundedness of the approximations.

(a) Error recursion. To derive a recursion for the error, we insert the exact solution into the IMEX
scheme in first-order formulation (4.22) and obtain

2

En—&-l = R7" + %Rjrl (én+1 + én) + TZ

QM (Fr —Frt)

o — A" 4.29
- (8+54) Q7 (P - ) -

with a defect A"*! which is yet to be determined. Comparing (4.29) with (4.10), we can interpret the

defect as a perturbation of the Crank—Nicolson defect 58;1 via

Qi (Fn —Fr )

A" = RUVSEE + Pians where 0"t =T ~ (4.30)
4= (B+354) Q7 (F" = F1)
Subtracting (4.29) from (4.22) yields the error recursion
— Re" + %R:Ll (Gn+1 _ én+1 + G" — én)
7_2 Q:Ll (Fn _ ﬁn _ Fn+1 + ﬁnJrl) il (431)
— 1 ~ ~ + A"
4 | = (B+ZA) Q' (F" — F™ — Fntl 4 prtl)
(b) Stability. Solving the error recursion (4.31) with €® = 0 gives
_ Z R (;—R+1 (Gm _ ém + Gm—l _ ém—l)
m=1
2 -1 Fm—l _ ﬁm—l _Fm oy ﬁm,
+ L Q:— ( -1 m—1 m—1 }:n) mm +A™ ).
4 |- (B+3A)Q (Fmt —Fm L —Fm 4 F™)
Taking the norm, using the triangle inequality, and the bounds from Lemma 4.2 yields
n < - (n—m)Tcqm 1 am ém 1 Gm—l é’rn—l
Il <73 SlIGm =G+ Glem - G
N z -T- (Fm 1 Fm 1)
4 I Q 1 Fm— 1 mel
(e e e
+7 Qyt(Em—Fm) H )
= (B+34) @ (Fm = F™) [lix
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Since we have |lu(?)||a, |u™]la < p for all ¢,,t € [0,T], we can further investigate the terms in the first

sum by employing the local Lipschitz continuity of G and F', respectively. We have

|G™ = G™|| < Lplle™|x, (4.33)
and, by using || Q7' ||ven < Q,’ (B+ ZA) Q;lHH " < 2 from Lemma 4.6, we obtain
—
S (o L
|| et o) ol < v, (434
NERE G ) | M

Inserting the bounds (4.33) and (4.34) into (4.32) yields with C3/o = 1+ (3/2)%/2

i Rn—mAm

n
e le xS CajaLpr ) e TE €| + e e H
m=1 X

m=1

For 7 < 1/(C3/2L,) we obtain, by applying Gronwall’s lemma Lemma A.1 b), multiplying by e"7“, and
inserting (4.30),

03/2Lpn1'
||e’I’LHX S el*CS/QLP‘r

Zn: R (R ot + ™) H )
m=1 X
o (4.35)

n n
<P (s St [ 3 0] )
m=1 m=1 X

(c¢) Defects. We bounded the Crank—Nicolson defect already in (4.13) by

ol < €7 (1 ot 1) + 1@l ot ) < O

To bound the additional defect arising in the IMEX scheme, we split it into

- 2 —1(pm—1 _ m _ _
=7 PR N O
Ll-Brye(Fnt -
with
g T | TQE(FT - FT) S _ T 0
B e (e | e L a0

The terms S{” and Sgn are of order 72, which is not sufficient to obtain a global error of order two,
since we loose one order of 7 when summing the defects up. To gain an additional factor of 7 we use a
combination of both terms from two successive time steps. With the explicit representation of R from
(4.20b) we obtain

%Q-_i-l( _ ﬁm—Z + 2ﬁm—l _ ﬁ'm)

~ ~ T
S+ ROy =~ - - -
P2 [éQ-QIl( — P2 g gfmet

Using this together with the bounds (4.19), the differential equation (4.1), and B € L(V; H) leads to the
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bound
107" + RoyV|x < Cr||(— F~2 +2F™~ ! — F™)||

m
2

L (Fw+ )

3
=0 ae

Loo([thZatth)

<cr?

2
el (u" + Bu' + Au)

Lx([t7n727tm];H)

< O ([0 oty 18 e iy + 140 s an))
(4.36)
and, hence,

R0} 4635 + Y RM(OT + Rog)

m=2

|3 7], <] R

< eftTam <||5%le + 1183 11x + D lIo7 + R5?lllx>

m=2

< CenTCamy?,
Inserting the bounds of the defects into (4.35) yields
el x < CeMinr?,
This finally gives the error bound (4.28), since

[u™ = u(tn)lla + 0" = v/ (tn) lm <V2[|2"™ — 2(tn) | x = V2[|e"|x < CeMinr?.

(d) Boundedness of numerical solution. It remains to prove that for sufficiently small 7 the bound (4.27)
holds true, since only then the error analysis we presented so far is valid. To do so, we proceed similarly

as in the proof of Theorem 3.2.

Let F,: V — H be a function that is globally Lipschitz continuous on V' with Lipschitz constant L, and
satisfies F,(v) = F'(v) for all v € V with [Jv[|a < p. Further, let uj be the iterates of the IMEX scheme
(4.16) with F replaced by Fj,. Note that due to the definition of p in (4.27) we have

F(u(t)) = F,(u(t)) for all t € [0,T]

and u is also a solution of (4.1) when F is replaced by F,. Since F), is globally Lipschitz continuous, part
(a) to (c) of the proof hold true for the modified equation independent of ||uj ||z and we obtain similar
to the error bound (4.28)

Jul} — u(tn)||la < CeMinr? (4.37)

for all t,, <T. Furthermore, C is independent of 7 and we can choose 7* > 0 s.t. for all 7 < 7* we have
[up —u(tn)lla <

and, hence, by the choice of p, we can conclude
luglla < llup — u(tn)lla + lu(tn)la < g + [lutn)lla < p.

This implies that for all ¢, < T' the iterates uj, coincide with the original iterates u™ and thereby

[u™la = lluplla < p- U
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CHAPTER D

Abstract full discretization error analysis

In this chapter, we show how the unified space discretization error analysis from Chapter 2 can be
combined with the error analysis of the time discretization schemes from Chapters 3 and 4 to derive fully

discrete error bounds.

As in Chapter 3, we aim at approximating the solution u of the continuous second-order evolution
equation (2.19). We denote the step size of the time discretization by 7 > 0 and set ¢,, :== n7,n > 0. The
fully discrete approximations of u and v’ are denoted by uj ~ u(ty), v’ ~ u(t,), respectively, and are
obtained by applying the time discretization schemes from Chapters 3 and 4 to the spatially discretized

equation (2.27) or its first-order formulation (2.4), respectively. We further write

where x solves the first-order formulation (2.1) of (2.19), cf. (2.20).

We bound the errors of the fully discrete schemes in terms of the order of the corresponding time dis-
cretization scheme and the abstract space discretization errors from Chapter 2. These error bounds can
be used to derive full discretization error estimates for concrete wave equations as we explain in Chapter 6

for the wave equation with kinetic boundary conditions.

Outline In the first two sections of this chapter, we prove error bounds for fully discrete schemes where
Runge-Kutta methods are used for the time discretization. We analyze discretizations of first-order
evolution equations in Section 5.1 and use these results to prove error bounds for second-order wave-type
equations in Section 5.2. Section 5.3 is devoted to analyze full discretizations of second-order semilinear

wave-type equations where the time discretization is performed with the IMEX scheme from Chapter 4.
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5.1 Runge—Kutta methods for first-order evolution equations

A Runge-Kutta method with coefficients b = (b;);_;,¢ = (¢;)i_1, @ = (a4;); j—; applied to the spatially

discretized equation (2.4) reads

xh—l—TZa” X)) 4 Gu(X) + gnltn + 7)), i=1,....s,
(5.1)
ot = gy +sz (=Sn(XE') + Gu(X3) + gn(tn + 7)) -

To prove full discretization error bounds, we adapt the results from Hansen [2006b], that are summarized
in Appendix B, to the semidiscrete setting presented in Section 2.1.2. By this, we obtain fully discrete
versions of Theorems 3.1 and 3.2. Theorem 5.1 is a fully discrete error bound under the assumption
that the numerical approximations are bounded, while in Theorem 5.2, under additional consistency

assumptions, existence and boundedness of the numerical approximations is shown.

Theorem 5.1. Let Assumptions 2.3, 2.7 and 2.8 be satisfied, ¢ € N, and v € C4T1([0,T); X) be the
solution of (2.1) with x,x’ € L*>®([0,T];Z). Furthermore, let x}, for t, € [0,T], be the approzimations
obtained by an algebraically stable and coercive Runge—Kutta method of stage order q given by (5.1). By

ark we denote the coercivity constant of the Runge—Kutta method, cf. Definition B.5, and we define

pn = max {C |z L= (o.17.2), max [l | x,., max [ X3 |x, }- (5:2)

i=1,...,s

If T satisfies the step size restriction
7(Cqm + Lp,) < ark;, (5.3)

then the error bound

n eCRKC-r oh (CquFZﬂh,)tn -1
[Lrzy — 2(tn)|x < C e 1 ) (En(tn) +79) + [[(T=LpJn)x(t) ]| x (5.4)
RK\€qm Ph

holds true with constants Crk, only depending on the Runge—Kutta method, C, which depends on x, T

and the Runge—Kutta method, but is independent of n and T, and
~ —~ = -1
Crpn = (aRK - T(Cqm + Lph))

The term En(t,) contains abstract space discretization errors and is defined in (2.7).

Proof. As in the proof of Theorem 2.10, we split the error between the lifted fully discrete approximation
and the exact solution via Lpz} — x(t,) = Lre}} + (LaJn —Dx(t,), where

ey =xp — Jpa(t,) € Vy
is the discrete error. We then have by (2.5)

IChah = a(t)llx < Cxllehllx, + I(Lndn — Dax(tn)llx- (5.5)
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We now proceed as in Appendix B and use the same trick as in the proof of Theorem 3.1. We replace Gy,
in (2.4) by Gf, where G¥(yn) = Gh(ys) for all y, € X, with ||ys|/x, < pn, and G} is globally Lipschitz

continuous with constant Eph,' The modified equation then reads
xﬁl + Sh(zp) = GZ(.’L‘}L) + gh, t>0. (5.6)

By (5.2), we have that z}! are also the Runge-Kutta iterations when the method is applied to (5.6).
Furthermore, (5.6) fits into the setting of Appendix B with X replaced by X} and

F = —Sh-i-GZ: Xh —)Xh.
Assumption B.6 is satisfied with c¢qm, 7 = Cqm + Eph.

We cannot apply Theorem B.12 directly, since additionally the space discretization errors enter. There-
fore, we now derive the defects in this fully discrete case. Then, we apply the local error and stability

results from Appendix B to obtain the global error bound of the fully discrete scheme.

For the exact solution x of (2.1) we use the short notation
I =a(tn), X™ =ty +ar).

As in (B.4), we obtain for the exact solution plugged into the Runge-Kutta method

=" +7'Za”( (X™) + G(X™) + g(tn + ;T ))—i—AﬁiK, i=1,...,s, (5.7a)

= TZb (=S(X™) + GIX™) + gltn + 7)) + O5E, (5.7b)

where, by Lemma B.9, the defects satisfy
AR x. 105 [1x < Cret!
with a constant C' = C(z(9t1)). By applying the adjoint lift operator L} to (5.7b), we obtain
L = L Z b (—LRS(R™) + LLG(R™) + Ligltn +im)) + LEOE,

which can be rewritten as

JE T = Jp3t + TZ bi ( —Sp(I XY + GE (T X™) + gn(tn + ci )) 4 Lpomdt 4 L
where the additional defect is given by

St =(Jp — Lyy) (@ —3)

+7 Z b (Sh(In X™) = LiS(X™) + L1 GX™) = Gu(InX™) + Ligltn + 67) = gnlta + ci7)).

Note that, due to (5.3), we have Gj,(J, X"") = G (J, X""). With the identity

tnt1
gt = / 2'(s)ds
t

n
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and the definition of the remainders from Definition 2.9 we can bound the defect (5;1”1 via
167 I, < TC(H(ﬁZ = I Lo ([t b a:X0) I BR @) Lo ([t 0 417550)
F rn (@)l oot tusalixn) + [1£h9 — 9h||Loc([tn,t,,L+1];Xh)),
where C' is independent of 7 and h. Similarly, we obtain for i = 1,...,s for the inner stages

S
T X" = JhE 4Ty ag (—Sh(JhX"j) + G (JnX™) + gn(tn + ch)) + Lh ARk + A

J=1

with
187 1 < 7C (128 = T o (0 + IR @ 01750

+ Hrh(x)HL°°([tn,tn+1];Xh,) + H‘C;;g - gh”L"o([tn,thrl];Xh))'

The local error bound from Lemma B.10 translates then to

lzp ™ = T (tnin)lx, < IL50RE Ix, + 1167 x, +C (1 + Cr) max (125 AR x, + 1A% ]Ix,)
<C(1+Cr) (TqH + T(H(ﬁi — In)Z || Lo ((tn tn )i Xn) + I BR@) | Lo ([t 0 411:0)

+ ||rh(x)||Loo([tn7tn+l];Xh,) + H‘ng - thL"o([tn,thrl];Xh)))'

n

In this case, xhﬂ is defined as one step of the Runge-Kutta method applied to (5.6) and starting from

Jrx(ty) at time ¢,. In the second inequality we used the continuity of £} and the bounds of the defects.

Following exactly the lines of the proof of Theorem B.12, and by the definition of E}, we can bound the
discrete error by.

lenllxy = ok — Jnz(tn)llx,
eC}{}(a’z_’ph (/C\qm-'rfp)tn _

= Tq—|-< Ly — T2 | o (0.4 01:x0) + 1 RA(@) | Lo ((0.6,041:
Gt (7 (0 = 0 ot + IR

+ Hrh(x)|‘L°°([07tn+1];Xh) + Hﬁzg - gh||L°°([07tn+1];Xh)>)
~2

eORKCE,, (Cam+Lp)tn

— — (t7+ Ep(tn)) -
Cri (Cqm + Lyp,)

Together with (5.5), this gives the assertion. O

Theorem 5.2. Let Assumptions 2.3, 2.7 and 2.8 be satisfied, ¢ € N, and x € C971([0,T]; X) be the
solution of (2.1) with z,2’ € L*([0,T);Z). Further, we assume that for Ej defined in (2.7) we have
En(t) — 0 for h — 0 and for all t € [0,T]. We define

p = 2[|z|| Lo (jo,17:x)
and consider an algebraically stable and coercive Runge—Kutta method of stage order q.

Then, there exist 7*,h* > 0 s.t. for all 7 < 7" and h < h* the Runge—Kutta scheme (5.1) yields for all
t, € [0, T] unique iterations x} € Xy, with ||z}]|x, < p which satisfy the error bound (5.4) with pp, = p.
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Proof. This can be concluded from Theorem 5.1 by following exactly the lines of the proof of Theorem 3.2.
For proving the boundedness of z', X', n > 0,i = 1,...,s, one additionally has to use that the space
discretization errors collected in E}, satisfy Ej,(t) — 0 for h — 0 and all ¢ € [0, T7. O

5.2 Runge-Kutta methods for second-order semilinear equa-

tions

Since the first-order formulations of both the continuous second-order equation (2.19) and the corre-
sponding spatially discretized equation (2.27) fit by Corollarys 2.15 and 2.18 and Lemma 2.22 in the
setting of Section 2.1, Theorems 5.1 and 5.2 transfer directly to the second-order case and we obtain the

following results:

Corollary 5.3. Let Assumptions 2.12, 2.17 and 2.19 be satisfied, ¢ € N, and let u € C9T2([0,T); H) N
CIt1([0,T); V) be the solution of (4.1) with u,u’,u" € L°>([0,T); Z"). Further, let ull,v?, t, € [0,T], be
the approxzimations obtained by an algebraically stable and coercive Runge—Kutta method of stage order q
applied to the first-order formulation of the semidiscrete equation (2.27). By ark we denote the coercivity
constant of the Runge—Kutta method, cf. Definition B.5, and we define

o ~ ny| _ ni || _
pn = max { Oy [l o ryv i [ . o U5 a, },
i=1,...,s
where U denotes the first component of the inner Runge-Kutta stages. If T satisfies the step size
restriction

7(Cqm + Lp,) < arx
with ¢qm = %/c\gCH,v + Bam, the error bound

CriC2,, (Cam+Lp, )tn

TPh

€3 up = uta)lla + £ 0" = u'(t)llm < C

Crk (Eqm + Eph,)

5
—1
+1 (7‘1 +y Eh> (5.9)
1=1

holds true with constants Crk, that only depends on the coefficients of the Runge—Kutta method, C', which
depends on u, T' and the Runge—Kutta method, but is independent of n and T, and

aT;Ph = (aRK - 7'(/C\qm + Em))_l

The constants E},; contain the abstract space discretization errors and are given in (2.40).
Proof. This follows directly from Theorem 5.1. As we mentioned above the corollary, all assumptions are
satisfied and we have ¢gm = %EGaH’V + qu. The first-order space discretization errors contained in Fp,

and ||(I—LpJp)z(t)||x can be bounded against Ej, ;,¢ = 1,...,5, as shown in the proof of Theorem 2.24.
O

Corollary 5.4. Let Assumptions 2.12, 2.17 and 2.19 be satisfied, ¢ € N, and let uw € C972([0,T]; H) N
CIHL([0,T); V) be the solution of (4.1) with u,u’,u” € L>([0,T); ZV). We then define

p= 25V||UHL°°([O,T];V)
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and consider an algebraically stable and coercive Runge—Kutta method of stage order q. Further let the

space discretization error terms Ej, ; defined in (2.40) satisfy Ep; — 0 for h—0,i=1,...,5.

Then, there exist T*,h* > 0 s.t. for all T < 7™ and h < h* the Runge—Kutta method yields for all
tn € [0, T] unique iterations uj, vy € Vi, with ||u}||la, < p which satisfy the error bound (5.9) with pp, = p.

Proof. Follows directly by Theorem 5.2 with the same arguments as in the proof of Corollary 5.3. O

Remark 5.5 (BDF methods). Based on the time discretization error analysis of BDF methods from
Hansen [2006a], and by using the same techniques as presented in this section, it is also possible to prove

full discretization error bounds for BDF methods in our setting (cf. also Remark 3.5).

5.3 IMEX scheme for semilinear second-order evolution equa-

tions

In this section, we present the results from [Hochbruck and Leibold, 2021, Section 3]. We consider the
IMEX scheme from Chapter 4 applied to the spatially discretized second-order evolution equation (2.27)
in the semilinear case, i.e., where B = D € L(V;H) and, hence, B, = D, € L(Vj; Hy,) are linear

operators. The evolution equation (2.27) is then of the form
uy + Bpuy, + Apup = Fp(up) + frn, t>0, up(0) = u),  uj,(0) = v, (5.10)
and with the first-order operator

0 -I

S :S =
h h A, B,

S ,C(Xh;Xh)

in (2.28), the corresponding first-order reformulation for z;, = [up,vs]" reads

z), + Spr = Gp(x) +gn, t>0, z,(0) = .
To simplify the presentation, we use the short notations

0
By

0

Fuu)+ fa(ta)| — R T onlin)

ap =

The IMEX scheme (4.16) applied to (5.10) then reads

ntld 2 nal il
vh+2 =y — ZAhUZ - LAhUh+2 - IBhvthz + zFfCLv (5.11a)
2 4 2 2
1
“ZH =P+ TUZJ’_Z, (5.11b)
1 2 1 1
v2+1 = v;H_Q — %Ahuz - %Ahv;b""z - gBhUZ+2 + gF;;Jrl, (5].1(3)

As in the continuous case, we can replace (5.11c) by the more efficient update

1
ot — 420 g (Fptt — F). (5.11d)
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Analogously toChapter 4, we define the operators

N T T2
Q4+ = I:thh + ZA}L: Vi, — Vg,

~

R — IigSh : X, — X,

~ ~

= RIIR,.

)

Since Assumption 2.17 is similar to Assumption 2.12 in the continuous case with constants independent
of h, Lemmas 4.2 and 4.6 transfer directly to the discrete case with the continuous constants replaced by

the discrete ones.

As for the Runge-Kutta methods, we now first prove an abstract error result that depends on the bound
of the numerical solution. In Theorem 5.8, we then show that, for sufficiently small 7 and h and under
additional consistency assumptions for the space discretization, the fully discrete approximations are

bounded in terms of the exact solution only.

Theorem 5.6 ([Hochbruck and Leibold, 2021, Theorem 3.3]). Let Assumptions 2.12, 2.17 and 2.19
be satisfied and let u € C*([0,T]; H) N C3([0,T];V) N C2([0,T); D(A)) be the solution of (4.1) with
u, ' u”" € L®([0,T); ZV). Further, let ull,v}, t, € [0,T], be the approzimations obtained by the fully
discrete IMEX scheme (5.11) and set

P = max {C’v ||U||Loo([0,T};V)7 {Ilg);HUZHah }

If T satisfies the step size restriction
1/2\7 Cam T2 >
maX{T(l + (3/2) )Lph7T 2 ) ?CG + Tﬁqm} < 1

with Cqm = %EGaH’V + qu then, for allm > 0 with t, < T, the error bound

. 5
1EY g~ uta)lla + 1EYof — ()l < CeTE <Z Bni + ) (5.13)
=1
holds true with R
—~ 14+ (3/29)Y)L
M = o + (14 (3/2)'/2)L,,

1— (14 (3/2)2)L,, 7

and a constant C that only depends on T and u but which is independent of T, h, and L. The constants

E} i contain the abstract space discretization errors and are defined in (2.40).

Proof. This proof follows the lines of the proof of Theorem 4.9 but we additionally have to consider the
errors arising from the space discretization. These errors were already bounded against E, ;,7 = 1,...,5,
in the proof of Theorem 2.24. As in Theorem 4.9, the proof relies on the first-order formulation of the

IMEX scheme and we use the notation

0
Fh(ﬁx*an) + fh(tn)

0
Fy

. GP = Gu(Jn@") + gn(ty) =

)

where J, is the first order reference operator defined in (2.32). The proof consists of four main steps.
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(a) Splitting of the error. As in the proof of Theorem 2.10, we split the error via
Lrxy — 2" = Lpe; + (LpJp —1)Z", where e} =z — Jpz" € X3,
is the fully discrete error. Due to the continuity of the lift operator, and by (2.41) and (2.42) we have
[Lnxy, — 2" x < Clleyllx, + |(Lndn = D" x < C(lleyllx, + Ena+ Ens) - (5.14)
In the next three steps, we proceed as in the proof of Theorem 4.9 to bound the discrete error [|e}}| x, -
(b) Error recursion for ejr. Analogously to Lemma 4.8 we can rewrite the fully discrete scheme 5.11 as

QM (Ey — By

2
xn+1:§xn+z§71 n+Gn+1 +L ~
5 h 9 + ( h h ) _(Bh_’_%Ah) Qll(F/"L’L_F;Z+1)

1 (5.15)

To derive an error recursion, we insert Jpz into the fully discrete IMEX scheme (5.15) and obtain

2

. R N N A—1 ﬁn B ﬁn+1
I = BRI+ DR (G 4 Gr) + O -

o h T — Att 5.16
S oo | R

with a defect AZH. Similar to (4.30), we can interpret AZH as a perturbation of the defect A’é#h of

the fully discrete Crank—Nicolson scheme, i.e.,

Afl ~n ~’I’L 1
An-i—l _ An-‘rl +gn+1 S’n+1 _ ﬁ Q+ (Fh - F‘h+ )
he T HReNa T O A T AN O-L(Fr — )|
(Bh+2 h)Q+ (Fh F )
where A’éﬁh satisfies
InF = R+ CRT (G + Gr) - AR (5.17)

To determine Ag{!,, we note that by (4.8) we have
L+ = LiFn o g (—5;5(5" +EY) + LG + z;é"“) — Lol (5.18)
Using the remainder terms from Definition 2.9, we set
Gt == (Jh = L) @ = &) 4 SRA@E ™ 4 F) = S (rn(tarr, ) Fraltn, &), (5:19)
Then, (5.18) can be expressed equivalently as

thn—H — J, 7"+ g (_Sth(%n + gn-i-l) 4 éz + GZJrl) — §Z+1 _ ,C;;(Sg;rll

= Redy@ ™ = Rogud™ + 2 (Gt + Gr) — o3t — Lhout! (5.20)
By applying }Afj_l to (5.20), we see that in (5.17) we have
Agon = R + RELLOE
Subtracting (5.16) from (5.15) yields the error recursion

el = Rel + gﬁf (G;;“ G G - é;;)

2 (5.21)

I (R S e o)
4

N 3 _ 4+ AL
— (Bu+ 5AR) Q7 (Fp — Fp — Pyt Y "
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(c) Stability. Analogously to part (b) of the proof of Theorem 4.9, we can employ the stability of the

scheme and obtain from (5.21) the bound

C3/2Lphn-r n
n 1-Cq /oLy, T pn_0 Dn—m Am
leEllx, < etcarmtn (HR g+ > Bomap| )
Xn

m=1

~ (5.22)
C3/2 L;:}\L tn R n n
< e Caratonr ( (ne%nxh + 3 (ol + ||£;66”N||xh>) +|32 R”maz”HXh)
m=1 m=1
Note that in contrast to the semidiscrete case we cannot employ 62 = 0 here.
(d) Defects. We now bound the different defects from (5.22). The initial error €9 is bounded by
lehllx, < CEny.
For the defect containing the space discretization errors we obtain from (5.19)
1 [t _ SO | ~ _
H(S;TH = TH* / (Jp — L;)x'(s)ds + %Rh(m"H +2") — 7(Th(tn+1,$n+l) + Th(tn,x”)) H .
Xn T trm—1 2 X

All of these terms were already bounded in the proof of Theorem 2.24 and we have

5
ol ey B
H h Xpn ; b,
The Crank—Nicolson defect was bounded in (4.13) and with the continuity of the adjoint lift we obtain

1€508xx, < ClERlx < 7 ([l oty + 10O ot alian) < OT.

To bound the additional IMEX defect we split it into

~ 2 A—1(m—1 _ 1om _ - .
o= % (F’Z_l ~Fh_2 N R
B sy @ (- By
with
N BT G e )
MU A = (Bt 5 A) QTN (BT = Lf P — By L F

B

i

o7 [ Qe (- )
M 0 gy g (Fet - P

W~

=

Tm
5h,2 — Y

0

where we used the additional notation F™ = F(a™) + f(t,). Note that (57’1”1 and ShmZ are similar to g{”
and 6~§” in the proof of Theorem 4.9 while g}To is an additional defect in the fully discrete case. Using the

bounds from Lemma 4.6 for Q\I_l, we have

1670 llx, < CT(En + Ens). (5.23)
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As in the semidiscrete case, the terms g}jﬁ and g}% are only of order 72, and we use a combination of both
terms from two successive time steps to gain an additional factor of 7. With the explicit representation
of R analogous to that of R in (4.20b), we obtain

_ — 1@—1(7f‘m*2+2f‘m’1 fﬁm)
5m +R5m 1_ z 2\ t - ~ ~
h,1 h,2 2 [%QQ+1( _ Fm—2 + 2Fm—1 _ Fm)

Using this together with the bounds from Lemma 4.6 for Q\_T_l and @,Q\;l, the continuity of the adjoint
lift operator, and (4.36), leads to the bound

167y + ROy Hlx,, < Or||Li*(— Fm=2 4 2Fm~t — ™) ||

mp
2

L (F)+f)

3
<Crt KTE

Lo ([tm—2,tm |3 H)

<cr (Hu(4)HL°C([tm_2,tm];H) + HU(B)HLOQ([tm_2,tm];V) + HAU/,HLOO([tm_Q,tm];H)) ;

and, hence, together with (5.23)
én—mgmH < H En—m (gm + gm + 6~m )H
|52 R, <30 R (5o )

n
< Ce" (B + Ep3) + HR"‘%S}LJ +opa+ Y RO + Ry

m=2

‘Xh

o~

S enTCqm (O(Eh,l + Eh,3) + ||gill,1| Xn + HSEQ

[+ D107 + ﬁg::fglnxh)
m=2
< CenT/C\qxn (Eh,l + Eh,3 + 7_2) ]
Inserting the bounds of all defects into (5.22) yields

. 5
leqllx < CeMt (Z Epi + 72> : (5.24)

i=1

Finally, the error bound (5.13) follows from
123 uhy — utn)lla + €5 vf — ' (ta)llm <V2ILpaf —(t)llx,
(5.14), and (5.24). O

Remark 5.7.

a) Similar to Theorem 5.6, it is also possible to show a full discretization error bound for the Crank—

Nicolson scheme. In this case, the error recursion (4.31) simplifies to
et = Rep + SRT (G = Git G = Gr) + 0 + R L0

and the assertion of Theorem 5.6 holds with 1 + (3/2)1/2 replaced by 1 in the step size restriction

and the error bound.

b) The step size restriction in Theorem 4.9 is not a CFL condition, since it only depends on constants
that are independent of the mesh width h. Note that in the monotone case, where g = qu =0,
the step size is only restricted by the Lipschitz constant Ep, which is usual for the time integration

of semilinear problems.
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Theorem 5.8 ([Hochbruck and Leibold, 2021, Corollary 3.5]). Let Assumptions 2.12, 2.17 and 2.19
be satisfied and let uw € C*([0,T]; H) N C3([0,T);V) N C2([0,T); D(A)) be the solution of (4.1) with
u, ' u” € L°°([0,T); ZV'). Further, let the space discretization error terms Ey, ; defined in (2.40) satisfy
En:"2%0 fori=1,...,5.

Then, there exist T*,h* > 0 s.t. for all h < h*,7 < 7 the iterations uy, vy of the fully discrete IMEX
scheme (5.11) satisfy

max [|ujla, < p = 2Cvlull L (0,131 (5.25)

and the error bound (5.13) holds true with pp = p.

Proof. We only have to prove the bound (5.25) for 7 and h sufficiently small, then the other assertions

follow immediately from Theorem 5.6. This can be proven similar to part (d) in the proof of Theorem 4.9:

Let uf™ be the iterates of the IMEX scheme (5.11) with F}, replaced by F}, where Ff: V}, — Hj is a

function that is globally Lipschitz continuous on Vj, with Lipschitz constant L, and satisfies
FP(vp) = Fy(vp) for all v, € V, with |log|la, < p.

Due to (5.25), we have
Fn (LY u(t)) = FL (L) *u(t)) for all t € [0,T].

Hence, as in the proof of Theorem 5.6, we obtain similar to the bound of the first component in (5.24)
R 4
W™ = YR a, < Cellin (Z Eni+ )
i=0

for all t,, < T'. Since C is independent of h and 7, and Ej, ; "0 for i = 1,...5, we can choose h*, 7* > 0
s.t., for all h < h*,7 < 7%, we have

uf™ — L3 *upla, <

[N

Hence, we obtain together with (5.25)

[[uf™ =

| _ _ P A
lan < lluf™ — L7 o, + 1LY 5 &, < 5 Cvy |luplla < p-

This implies that for all ¢, <T we have u}™ = ]’ and therefore also ||u}![|a, = [|u)"|la, < p- O
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CHAPTER 6

Wave equation with kinetic boundary conditions and nonlinear forcing and

damping

In this chapter, we use the abstract results from the previous chapters for the numerical analysis of
a wave equation with kinetic boundary conditions. We present a non-conforming finite element space
discretization and show that both the equation and the space discretization fit in the setting of the unified
error analysis presented in Chapter 2. By using the abstract error bounds presented there, we prove a
space discretization error bound of order p for a discretization with order p finite elements. Moreover, we
use the abstract time discretization analysis from Chapters 3 to 5 to analyze time and full discretization

errors for the wave equation with kinetic boundary conditions.

On the one hand, these are new results for the numerical analysis of the wave equation with kinetic
boundary conditions. But on the other hand, this chapter also aims to show exemplarily the application

of the abstract theory of this thesis to a concrete example.

The wave equation with kinetic boundary conditions was also considered in Hipp [2017] in the linear case
and in Hochbruck and Leibold [2020, 2021] in the semilinear case. In this thesis, we additionally add

nonlinear damping terms and extend the numerical analysis to this nonlinear case.

Outline We introduce the analytical setting and the wave equation with kinetic boundary conditions
in Section 6.1. In Section 6.2, we present a suitable finite element space discretization for which we prove
an error bound in Section 6.3. Then, in Section 6.4, we study time and full discretization errors for
algebraically stable Runge-Kutta methods and our IMEX scheme. Finally, in Section 6.5, we comment

on the implementation of the different schemes and present numerical experiments.
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6.1 Analytical equation

Let Q C R? be a bounded domain with CP*! boundary T' = 95 for d € {2, 3} and some p € N.

We consider the wave equation with kinetic boundary conditions given by

Uy + (aQ(x) + Ba(x) - V)ut + Da(x,us) — Au = Fo(x,u) + fo(t,x), fort > 0,x € Q, (6.1a)
Ut + Onu 4+ Dr(x, u) — Aru = Fr(x,u) + fr(t,x), fort>0,xeTl, (6.1b)
u(0,x) = u’(x), us (0, %) = v°(x), in Q. (6.1c)

Here, we have suppressed the arguments (¢, x) of the unknown .

Physical motivation A physical example for kinetic boundary conditions in the case d = 2 can
be found in [Goldstein, 2006, Section 5]. In this paper, they were derived by considering a vibrating
membrane where its boundary carries a mass density and is subject to linear tension. An example for
this situation is the membrane of a bass drum with a whole in the interior having a thick border. In
addition to this inner border, I' then also consist of the outer boundary of the membrane on which, e.g.,

Dirichlet boundary conditions can be posed (cf. also Vitillaro [2017]).

As shown in [Nicaise, 2017, Section 3.2], kinetic boundary conditions can also serve as an effective model
for the interaction of an acoustic wave with a thin boundary layer with distinctive elastic or damping

properties, and where the wave length is large compared to the width of the boundary layer.

In (6.1), Dq, Dr are nonlinear damping terms and Fgq, Fr are nonlinear forcing terms in the interior of
the domain and on its boundary, respectively. Further, (aq + 8o - V) is a linear damping term in the

interior.
Remark 6.1.
a) Similar to the linear damping term in the interior, it is possible to add a linear damping term on
the boundary (cf. Hipp [2017]). We do not include it here for the sake of readability.

b) In contrast to Hochbruck and Leibold [2020, 2021], in our case the nonlinear forcing terms are not
allowed to depend on time. This case is not covered by the abstract framework in Section 2.2 (cf.
Remark 2.5).

c) Wellposedness and stability of (6.1), without the linear damping term but in more general spaces

than we consider in this thesis, was analyzed in Vitillaro [2017].

In the following, we rewrite (6.1) in a variational formulation and pose suitable assumptions such that it
fits into the setting of Section 2.2.

Assumption 6.2.

a) The nonlinearities satisfy Fo € C*(Q x R;R), Do € C(Q x R;R), Fr € CYT x R;R), and
Dr € O(T x R;R).
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b) There exist

< oo, d=2,
1< (g and 1< (r < oo,
<3, d=3,

and a constant C' > 0 such that for all x € Q and all £ € R

|Fo(x,£)| < C(1L+ [¢]),
|02Fa(x, )| < C(1+ €97, (6.2)

and for allx €T and all £ € R

|FF(Xv 5)' < C(l + |§|CF)7
‘aZFF(X7 5)' S C(l + |§|CF_1)a
|DF(X3 £)| < C(l + |§|CF)7

hold true. Here, 0o denotes the derivative w.r.t. the second variable, i.e., w.r.t. £.
¢) There exists a constant ¢ > 0 s.t. for all x € Q and all £ € R we have
92Da(x,£) > =,
and for allx €' and all £ € R
9>Dr(x,8) > =
holds true.
d) The inhomogeneities satisfy fo € W([0,00); C(Q)), fr € W21 ([0, 00); C(T)).
e) The coefficients satisfy ag € C(Q) is non-negative, Bo € C1(Q)?, and
OéQ—%diVBQZO in €, Bao-n>0 onl.

To derive a weak formulation, we multiply (6.1a) by a test function ¢ € C*°(Q), integrate over €, and

use Gauss’ Theorem. This yields for all t > 0

(utt ©) pa(qy + (a0 + Ba - V) s, @) o) + (Pal 1), 0) 2y = (91 0) oy + (Vi1 V) 2 g (6.3)
= (FQ(a U), @)LQ(Q) + (fQ(t7 ')7 QO)L2(Q)

On T, the following version of Gauss’ Theorem holds true for all v € H*(T'),w € H(T') (cf. [Kashiwabara
et al., 2015, (3.1)]):

— /(Apv)w ds = / Vrv - Vrwds.
r r
Thus, from the boundary equation (6.1b) we obtain similarly to (6.3)

(utta 90) L2(I) + (anU7 90) Lz(p)+(DF('7 Ut)7 (P) L2(D) + (VFU> VF(P) L2(D)

(6.4)
= (FF(W“)’%")Lz(r) + (fF(t")v‘P)w(r)'
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By adding (6.3) and (6.4), we end up with
m(utt,go) + m(D(ut),go) + a(u,gp) = m(F(u),gp) + m(f(t),tp), for t > 0, (6.5)

where

m(v, p) :/vgoder/vgods, (6.6a)
Q r

a(v, ) :/QVv-Vgodx—k/FVp%Vp@ds, (6.6b)

m(D(v), ¢) :/ ((ag—i—ﬁg-V)v—}—DQ(xw))gadx—}—/Dp(x,v)apds, (6.6¢)
Q r

m(F(v),¢) :/QFQ(x,v)godx—I—/FFp(x,v)cpds7 (6.6d)

m(f, ) :/Qfggodx—i—/rfpgods. (6.6e)

To obtain from (6.5) a well-defined weak formulation, we have to specify suitable Hilbert spaces on which

the objects from (6.6) are defined. Therefore, we set
H:=1*Q) x L*T) and V:=HY(%T), (6.6f)

where
HH@T) = {v € HNQ) |y(v) € HXD)}, k>1,

and ~ denotes the Dirichlet trace operator. As shown in [Kashiwabara et al., 2015, Lemma 2.5], the

spaces H*(Q; ") are Hilbert spaces w.r.t. the scalar product
(va)m(n;r) = (U’w)Hk(Q) + ('Y(U)W(w))m(r)'

Further, in the proof of [Hipp, 2017, Corollary 6.7] it was shown that V is densely embedded into H via
the embedding
v (o, y(0)]T.

By definition, m is the standard scalar product on H and @ = a + m is the scalar product on V.
Remark 6.3. We use the following conventions:
a) From now on and as in Section 2.2.1, we understand the weak solution u: [0,T]xQ — R of (6.1) on

a time interval [0, T| as a function u: [0,T) — V = HY(Q;T'). This is common, when reformulating

a time-dependent partial differential equation into a weak formulation or an evolution equation.

b) For a function v = [vg,vr]T € L*(Q) x L3(T'), we use the notation

/vdx::/vgdx, and /vds ::/vpds,
Q Q r Q

since by the domain of the integral, it is clear which component of v is used. Similarly, we use for

v € HH(Q;T), k > 1, the notation
/vds ::/’y(v) ds.
r r
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In the next lemma, we verify that the weak formulation of (6.1) fits into the setting of Section 2.2.1.

Lemma 6.4 (Weak formulation of (6.1)). Let Assumption 6.2 hold true. Then, with the objects defined
in (6.6), the weak formulation of (6.1) is of the form (2.13). Further, Assumption 2.12 is satisfied with
cg=1,8qm = and

L,=C(1+p% 4 pr1).

Here, (o and (1 are given in Assumption 6.2 ¢), and the constant C is independent of p.

Proof. We derived in (6.5), that the weak formulation of (6.1) is of the form (2.13). In the following, we
show that Assumption 2.12 is satisfied.

We already noticed that Assumption 2.12 a) and b) are satisfied. Assumption 2.12 e) follows directly
by Assumption 6.2 d), since C(Q2) C L?(Q) and C(I') € L?(T"). Part d) was proven in [Leibold, 2017,
Lemma 4.2], where the semilinear wave equation with kinetic boundary conditions was considered, but
since it is written in German, we recall the proof here: By Corollary A.6 and the growth conditions from

Assumption 6.2 b), we have that
v Fo(,v) € C(HYQ); L*(Q),  ve Fr(,v) € C(HY(T), L*(I))
and, hence, F € C(V; H). Now let v,w € V with ||v]|z, ||w|la < p. By the definition (6.6d) of F we have
IF(v) = F(w)ll7, = 1Fa(,v) = Fal )72y + 150 (v) = Fr( w2 n)-

With Holder’s inequality, the Sobolev embedding theorem (cf. Theorem A.4), and the growth condition
(6.2) we obtain

1
I1Fa() = FaCowlase = I | (2ot + €0 =) ) (v = w)dé12(0
< [ N@Fatsw+ €00 = w) (0 = W)l de
0

1
S/ [02Fa(,w+&(v—w))|l 200 [[(v—w)|12¢0(q)d§
0 Lée—1(Q)

< sup [|O2Fa(H @)l 20 (v —w)|H1 (o)
llella<p Lea—1(Q)

< sup [CA+]el® N 20 [(v—w)a
llella<p Léa~1(Q)

—1
SC<1+ sup HSOHE%(Z(Q))H(U_w)Ha
llella<p

<01+ sup ol )l —wls
lella<e
<0149l = w)lla
and similarly

1Fr(0) = B w)llzaey < C(1+ 651 ) (0 = w)lls.

This proves the Lipschitz continuity.
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It remains to prove Assumption 2.12 ¢). As for the nonlinear forcing terms, we obtain by Corollary A.6

and the growth conditions from Assumption 6.2 b)
v Do(,v) € C(HY(Q); L*(Q)), v+~ Dr(-,v) € C(H (), L*(I)).
Furthermore, we have
v (ag + Ba - V)v e LIHY(Q); LA(Q)), (6.7)

and, hence, D € C(V;H) C C(V;V*) as a sum of continuous functions.

In [Hipp, 2017, Lemma 6.3] the monotonicity, i.e., the quasi-monotonicity with constant 0, of the linear

damping term (6.7) was shown. We now prove the quasi-monotonicity of the nonlinear damping term
v+ [Da(,v), Dr(-,v)]T: V — H.

Then, D is quasi-monotone as the sum of two quasi-monotone functions.

For v,w € V we have

. lpﬂ(.,u) — Fo(-,w)
DF(-,U) — DF(-, w)

1 =) :/Q (Da(x, v(x)) — Dalx w(x))) (v(x) —w(x)) dx
+ [ (e v(0) =~ Dl ) () — )

:/Q (/01 92Dy (x, v(x) + €(w(x) — v(x))) d§> (v(x) — w(x))? dx

+/F (/01 9 Dr (x,v(x) + {(w(x) — v(x))) dg) (0(x) — w(x))2 ds

> ¢ ( [ 000 - wiax+ [0 - wio2as)

=~ v - w3

Since the linear damping term is monotone, the quasi-monotonicity constant Sqm of D is equal to the

quasi-monotonicity constant of the nonlinear damping term given by ¢'. O

By Lemma 6.4 and Corollary 2.16, we have that that the variational formulation of (6.1) is locally

wellposed.

6.2 Finite element space discretization

To discretize (6.1) in space, we use the bulk-surface finite element method with isoparametric elements
of order p. The method was introduced in Elliott and Ranner [2013] and we give a short summary on
the construction and important properties in Appendix C. The bulk-surface finite element method was
also used to discretize the wave equations with kinetic boundary conditions in the linear and semilinear
case (cf. Hipp [2017], Hochbruck and Leibold [2020]).



6.2. Finite element space discretization 61

Let (T)r be a quasi-uniform family of triangulations of  consisting of isoparametric elements of order p
with corresponding finite element spaces V}, = Vhffp as defined in (C.1). We recall that the computational
domain is denoted by Q;, = |J e, K = Q with boundary I', &= I To discretize the nonlinearities, we
make use of the nodal interpolation operators I, o: C(Q) — Vi and I, r: C(I') — V,Ep, where Vhljp is
the corresponding surface finite element space (cf. (C.2)). Additionally, we make use of two elementwise

defined quadrature formulas

> dx: C(Qn) » R, > -ds: C(Tw) > R
Qh Fh

that approximate the integrals fﬂh -dx and th -ds, respectively. We require that the quadrature formulas

have positive weights and are of order greater than 2p, s.t. we have for all vy, w, € V},

mp (vh,wh) = thu)h dx + thwh ds. (6.8)
Qp Tn

For the discretization of the nonlinear damping terms, we have to pose the additional assumption
Do € C(QUxR;R) and Dr e C(T x R;R),

where Q,f C R? are open neighborhoods of € and T, respectively. This ensures tha for h sufficiently
small we have Q}, C ﬁ, Iy, C T and, hence,

Do € C(Q xR;R) and Dr € C(T', x R;R). (6.9)

The spatial discretization of (6.1) with isoparametric finite elements is then given by (2.24), where we

define the discretized quantities via

mh(vh,wh) ::/ VRWY, dx+/ vpwy, ds, (6.10a)
Qh 1—‘h.

ap (vh, wh) = Vuy, - Vwy, dx + Vr, un - Vr,wp ds, (6.10b)
Qh Tn

mp (Dh (Uh), wh) = / ((Ih’QOéQ)'Uh + (Ih’QBQ) . Vvh)wh dx + Z DQ (X7 Uh)wh dx + Z DF (X, Uh)’wh ds,

Qp Qp, Tn
(6.10c¢)
my, (Fh(vh),wh) = /Q (Ih’QFQ(','Ui)) wp, dx—i—/F (Ihprp (~,v£)) wy, ds, (6.10d)
h h
mp (fh,wh) = /Q (Inafa)wn dx—!—/F (In,r fr) wy ds, (6.10e)
n h
for all vy, wy, € Vi,. Here, v, € C(Q) denotes the lifted version of v, defined in (C.3).
Remark 6.5.
a) The nodal interpolation only requires function evaluations in the basis nodes aq,...,an of the finite

element space. Since these are invariant under the lift operator, the computation of vfb s not
necessary. The lift is only needed for the definition of F} since the interpolation operator acts on

functions over §2.
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b) The definition of Dy, relies on (6.9), since the quadrature points are in general not contained in

or I, respectively.

¢) The use of the quadrature formulas in the definition of Dy, is required to prove that Dy, is quasi-
monotone (Lemma 6.6). It is possible to discretize F in the same way, but the definition via the
interpolation is more efficient with respect to the implementation. We discuss this in Section 6.5.1.

We now prove, that this discretization fits into the abstract setting of Section 2.2.2.

Lemma 6.6. Let Assumption 6.2 hold true and additionally let
1
I qaq >0, Inqoq — 5 divIpafa >0 inQ, Inafa-n>0 onT. (6.11)

Then, the bulk-surface finite element space discretization of (6.1) satisfies Assumption 2.17 with ¢g =1,
qu =/, CA'H,V =1, and

L,=C (14 pfo=t 4 pfr=1y.

Here, (o and Cr are from Assumption 6.2 c), and the constant C' is independent of p.

Proof. Assumption 2.17 a) and b) are trivially satisfied, since we have
Vi C HY(Qn;Tn) = L*(Q1) x L*(Th),

and ap = ap + my and my, are the corresponding scalar products on these spaces and, hence, also scalar

products on the subspace V},. Part f) follows directly by the definition of a, = ap, + my,.

Assumption 2.17 d) was proven in Hochbruck and Leibold [2020] where the semilinear case was considered.
Further, Assumption 2.17 ¢) follows from Assumption 6.2 d) and the continuity of the interpolation

operators, cf. Lemma C.4.

It remains to prove c). As in the continuous case, we can split Dy, in the linear part, that was also

considered in Hipp [2017], and the nonlinear part. For the linear part, given for for vy, wy, € V3, by
/ ((In,000)vn + (InaBa) - Vo) wy, dx,
Qp

it was shown in the proof of [Hipp, 2017, Theorem 7.4], that under the assumption (6.11) it is continuous

and monotone, i.e., quasi-monotone with constant 0.

We now prove the continuity of the nonlinear part of Dy. Since V}, is a finite dimensional vector space,

we have for v, w, € V),

sup <Z (DQ('7vh) - DQ(vwh)) Ph dx + Z (DF('vvh) - DF('a wh)) Ph d8>

lenllm, =1 \ g, Ty
N 1
= max ( > (Dal-,vn) = Dal,wn)) ¢idx + Y (Do, vn) — Dr(-,wn)) ¢ d8>7
= time N g Ty
where ¢;,i = 1,..., N, are the nodal basis functions of V},. For v, — wy, in V},, we have foralli =1,... N

Z (Da(-;vn) — Dal-, wn)) ¢i dx + Z (Dr(,vn) — Dr(-,wp)) ¢ids — 0,

Qh 1—‘h.
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where we used (6.9) and the fact that convergence in V3, implies pointwise convergence. This proves the

continuity of Dj,.

The proof of the quasi-monotonicity works similar to the continuous case, cf. the proof of Lemma 6.4.

Let vy, wp € V. The nonlinear part of my, (’Dh (vn) — Dp(wp), v — wh) then satisfies

Z (DQ(X, ’Uh) — DQ(X7 wh)) (Uh — wh) dx + Z (DF(X, Uh) — DF(X, wh)) (’Uh — wh) ds
Qp IV

= %; (/01 02D (x,vn + E(wn — vp)) df) (v, — wp)?dx
+ %: (/01 3>Dr (x, vp + &(wn — vp)) d§> (v — wp)?ds

> ( Z(Uh —wp,)? dx + Z(Uh — wy)? dS)

Qh, Fh,

2
= —lon —wnllz,,
where we used Assumption 6.2 ¢) and (6.8). This finishes the proof. O

Remark 6.7. Note that by Assumption 6.2 e) and the interpolation error bound (C.7), we have that
(6.11) is at least asymptotically satisfied for h — 0.

6.3 Space discretization error bound

To apply the abstract error results from Section 2.2, we have to specify the operators appearing in this

context.

Definition 6.8.

a) The lift operator L) € L(Vy; V) is defined via
Eth = ’Uﬁ for all vy, € Vp,
with v}, defined in (C.3).
b) We set ZV = H?*({4;T).
c) We define the interpolation operator via Iy, := I, q.

Lemma 6.9. The operators defined in Definition 6.8 satisfy Assumption 2.19 with
Cv = max{Cq,0,,Crr, },

where Cq q, and Crr, are given in Lemma C.2.

Proof. This follows directly by Lemma C.2, and Lemma C.5 a) with k = 1. O
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In the following, we bound the different error terms arising in the abstract error results of Sections 2.2.2,

5.2 and 5.3. To do so, we first state the required regularity of the exact solution.
Assumption 6.10.
a) Let T > 0, ag € HP(Q) and Bq € HP(Q)?. For the inhomogeneities and the nonlinear damping
terms we assume the additional reqularity
fa € L>=([0,T]; H™*>223(Q)),  fr € L>([0,T); H™>ZPH(D)), (6.12a)
Dg € C>2PH() x R;R), Dp € C™>2PHT x R;R), (6.12b)

where Q and T are defined as prior to (6.9). Furthermore, we assume that the strong solution u of

(6.1) exists on [0,T] and satisfies

u,u' € L ([0, T); HP T T)), W € L ([0,T); H™>2PH (1)),  (6.12c)
Fo(-,u(t)) € L ([0, T); H™>{2r}(Q)), Fr(-u(t) € L=([0,T]; H™*>2PX(T)),  (6.12d)
Do(-,u/(t)) € L([0, T); H™>2PH(Q)),  Dp(,d/(t)) € L=([0,T]; H™>PHT)). (6.12¢)

We then set
p = 2max{Coq,, Cr.r, Hull L=< (o, 11 (0:1)) (6.13)

with Cq q, and Crr, given in Lemma C.2.
b) Let the discrete initial values satisfy
[uh, = Inu® | @iy + lon — In° L2 @) x L2y < Civh?
with a constant Ci, independent of h.

Lemma 6.11. Let Assumption 6.10 be satisfied and u be the strong solution of (6.1) on [0,T]. Then, for
the space discretization with isoparametric finite elements of order p, the error terms defined in (2.40)
satisfy Ep; < ChP,i=1,...,5, where the constant C = C(u) is independent of h.

Proof. The terms Ej,; for i = 1,4,5 arise already in the linear case and were bounded in [Hipp, 2017,
Theorem 7.4] under Assumption 6.10 by
Ep; < ChP.

The discretization error of the Lipschitz continuous nonlinearity Ej, 3 was bounded in [Hochbruck and
Leibold, 2020, proof of Theorem 2.7]. But since this was based on the additional regularity assumption
u € LO"([O,T];H‘l(Q;F)7 we recall the proof here and show that this assumption is not necessary, if
instead (6.12d) is satisfied.

Since most of the bounds in Assumption 6.10 only hold true for almost all ¢ € [0, 7], we keep in mind
that the following calculations are only valid for almost all ¢ € [0, 7], but this is sufficient for our purpose.
By the local Lipschitz continuity of Fj we have
Bna = L3 F(yu) = Fa( L3 w)l| e (o, 71:10)
<LK F(yu) = Fu(es Inw) || oo o, 11:0,) + 1Fn (-5 Inte) = Fo(, £ w) | Los o,11:00,) (6.14)
< IERF (o) = Bu( In) | o qorssan,) + Loll (I — £ )ull 2= qom1ovs)-



6.3. Space discretization error bound 65

In the following, let ¢ € [0,7] and we use the short notation u = u(t). We start by bounding the second
summand in (6.14). We have with (2.38)
(I = £Y*)ulla, = | nﬁax X (an (Inu, wy) — a(u, £} wy))
wh|la, =

§6V||(I—£th) ulla + max 1|A&(Ihu,wh)|

lwnlla, =
< C(En4+ Ens)
< ChP.

To bound the first summand in (6.14), we derive using the definition of F and F},

L5 F(w) = Fn(Inw)llm, = sup  mp (L5 F(u) — F(Ipu),wy)

llwnllm, =1

= sup (m(Fw), £} wn) = mn(Fu(Tu), wn) )

”whHmh:]-

= sup (/QFQ(X7U(X)>’LU;;<X> dx —/ InaFal(, (Ih,gu)e)(x)wh(x) dx

lw llm, =1 Qp

+ /F Fr(x, u(x))wfl(x) ds — /1‘ InrFr(., (Ihju)é)(x)wh(x) ds).

h

Let wy, € V}, with ||wp]||m, = 1. For the error in © we obtain

/ Fo(x, u(x))wh (x) dx — / InaFo(-, (Inou)") (x)wp (x) dx
Q Qp

— [ Fabeub)uf ) dx— [ DaFolu)Goun() dx
° n (6.15)

:/Fg(x,u(x))wfb(x)dx—/ (Ih7QFQ('7U,))€ (x)wﬁ(x) dx
Q Q

+ /Q (InaoFal, u))g (x)wfl(x) dx — /Qh In oFo(-,u)(x)w,(x) dx,

where we used the definition of the nodal interpolation in the first step: The inner interpolation and the
lift can be omitted, since the outer interpolation only depends on the function values at the interpolation

nodes which are invariant under the inner interpolation and the lift.

The first term on the right hand side of (6.15) can be bounded by
[ Fatxux)utx) dx — [ (TnaFalw) (9uh(x) dx
Q Q

SHFQ(~, u) — (Ih,QFQ(-7u))‘\

¢
L2(Q) lwhllzz()

SCQ,Q;LCthFQ(') U) HHmax{2,p}(Q)7

where we used (C.5), Lemma C.2, and ||wp | z20) < |wh|lm, = 1. Since I oFo (-, u) € th?p and Ip o €
L(H?*(Q); L?>(Q4)), we can bound the second term in (6.15) using (C.4a) by
/ (InaFal(, u))e (x)wp, (x) dx — / In aFa(-,u)(x)wp(x) dx
Q Qp

§Chp||1h,QFQ('au)||L2(Qh)||wh||L2(Qh)

SCthFQ("u)Hm(Q)'
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The error term on I' can be bounded analogously and we obtain

Eps < ChP.

It remains to bound the discretization error of the nonlinear damping term
Bhz = LD (') — Du(Inu')l| o o,77; ,)-
Therefore, let ¢ € [0,7] and we denote v = u/(t). We then have, due to (6.6¢) and (6.10c),
1L D(v) = Du(Lnv) |l

= sup (m(D(v),[,th) —mp (Dh(fhv),wh)>

”wh”nlh =1

= sup </ (aq + Ba - V) vwj, dx — / ((In,ooa)Inov+ (Inoba) - VILov)w, dx
Q

”wh”mhzl Qp

+ / DQ('vv)wa dx — ZDQ('7Ih,QU)wh dx + / DF(', U)wﬁ ds — ZIDF(.’ Ihvpv)wh ds)
Q Qh r Fh

We again bound only the error terms in €; the surface error terms can be bounded analogously. We start
with the linear term. In [Hipp, 2017, Theorem 7.4] it was proven that for all wy € Vi, with |Jwp||m, =1

we have under Assumption 6.10

/ (OéQ + ﬂQ . V) ”UU)fL dx — / ((Ih@aQ)Ih’Q”U + (I}%Qﬂg) . VIh7QU) wy, dx
Q Qp

< C(h? + |lag — (Inga) | =(9) + 1B — (Inaba) [l L= @))-
We can bound the whole term by O(hP) by using the L interpolation result (C.7a) with & + 1 =
max{2, p}.

To bound the nonlinear damping term, we have to consider

/’DQ(-,v)wadX—ZDQ(-,Ihﬂv)whdx:/’DQ(-,v)wf;dx—/ (Ih’QDQ(',’U))ZU}f;dX
Q o Q Q

+/ (Ih@DQ(',v))wadef/ (In.oDal(-,v)) wy, dx
Q Qp

—I—/ (Ih,Q'DQ(-,v)) wp, dx — Z'DQ(-,Ih,QU)wh dx
n szh
(6.16)

for all wy, € V3, with ||wp||m, = 1. We bound the three terms on the right hand side of (6.16) separately.

The first term is an interpolation error and can be bounded by
[ Pat vt ax~ [ (1aDato) whdx < [Pal.) - (Dol o))
Q Q

< Ch?,

¢
Lz(Q)HwhHL2(Q)

where we used Dg(-,v) € H™>{2P}(Q), the interpolation bound (C.5a), and the continuity of the lift.
The second term in (6.16) is a geometric error that, by (C.4a) and the continuity of the lift, can be
bounded via

/ (Ih,Q'DQ(-,’U))e wf; dx — / I}LQDQ(',U)UUL dx S th||Ih,QDQ('7U)||L2(Qh) S Chp||DQ(,U)||H2(Q)
Q Qp
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For the last term, we use that I, oDq(-,v) = Ino (Dg(~,[h)gv)é) € Vhffp, since the inner interpolation
and the lift do not change the values in the interpolation points. Furthermore, we obtain by the discrete

Holder inequality

/ (Ih’QDQ(',U))Wh dx — ZDQ(',Ih7QU)wh dx
Qh Qh

= Z (Inq (Da(-, Inqv)")) wy dx — ZDQ(', I ou)wy, dx

Qp
1 1
9 2 2
( IhQ DQ( Ih,Q’]_))é)—DQ(~,Ih’QU)) dX) (Zw%dx)
Qp
() HIhQ Da (-, Inqv) ) _DQ('th,QU)H lwnll 22 (0n)

Loe (Q; )

A

S Chp Z HDQ(',Ih’Q/U)”Hrnax{Z,p}(K),
Keﬂz

where o(€,) denotes the measure of €, and we additionally used that the order of the quadrature

formula is greater than 2p and the L* interpolation error bound (C.7a).

It remains to bound || Dg (-, Ihygv)HHmax{z,p}(K) for all K € Ty,. Since Dy, is sufficiently smooth (cf. (6.9)),
we have that Dq and all of its partial derivatives up to order max{2,p} are bounded on bounded sets.

Hence, we obtain by the chain and the product rule

1Da (-, In.v) | prmaxtzoy (56) < C([1In.avll Lo (50 ) Hh, 00| grmaxcz.01 ()

where the constant C'(||I5,qvl| . (x)) depends on Dg, and its derivatives, and || I5,qv|| L (). The constant
is bounded, since we have by the continuity of the interpolation w.r.t. the L> norm (cf. Lemma C.4) and
the Sobolev embedding theorem (Theorem A.4)

[1h.0vll (k) < CllvllLe k) < Cllvllg2(x)-

Finally we have by Lemma C.2 and (C.6a)

[n,00 ]| grmasczn (16 < Cl(In,00) || stz 5ty
<C (||(I]—L7QU)Z - UHHmax{z,p}(Ktz) + ||11||Hmax{2,p}(Ke))

< CHUHHmax{z,p}(Ke).

This concludes the proof. O

The space discretization error bound of the finite element space discretization follows now directly from

Corollary 2.25.

Theorem 6.12. Let Assumption 6.2 be satisfied and u be the solution of (6.1) on [0,T]. Further, let
Assumption 6.10 be satisfied and let the condition (6.11) hold true for all h sufficiently small. Then,
there exists h* > 0 s.t. for all h < h* the spatial approzimation uy of u, obtained with the bulk-surface

finite element method of order p, exists on [0,T] and satisfies the error bound
luf, (8) = w(®) | ury + [1(uh) (8) = &/ (8)| 2@y 2y < Colbo 3T 4 )P

with Ep from Lemma 6.6, p from (6.13), and a constant C independent of h.
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Proof. We have by Lemmas 6.4, 6.6 and 6.9 that all assumptions of Corollary 2.25 are satisfied with
Cqm = %EGcA’Hy + Eqm = % + . The assertion follows then directly from Corollary 2.25, since we have
shown in Lemma 6.11 that all error terms appearing in the abstract error bound (2.39) are bounded by

O(h?). O

6.4 Time and full discretization error bounds

With all the results obtained in Chapter 6 so far, it is now straightforward to prove time- and full-
discretization error bounds for the wave equation with kinetic boundary conditions, using the abstract

results from Chapters 3 to 5.

We first consider the time discretization with Runge-Kutta schemes and afterwards the IMEX time

discretization in the semilinear case.
Theorem 6.13. Let Assumption 6.2 be satisfied and for some ¢ € N
u € CT2([0,T]; L2 (Q) x LA(T)) N CeTi([0, T); H(Q;T))

be the solution of (6.1). We consider an algebraically stable and coercive Runge—Kutta method of stage

order q. By ark we denote the coercivity constant of the Runge—Kutta method(cf. Definition B.5).

a) There exists " > 0 s.t. for all T < 7" the Runge—Kutta method applied to the wave equation with
kinetic boundary conditions (6.1) yields for allt, = nT < T unique approximations u™,v™. Further,
the error bound

CR,KC?.,,J(Ler%+C/)tn -1

[u" = u(tn) g @) + 0" — W' (ta) | L2@)xL2r) < C Cre(L, + L+ ¢) m
P 2

is satisfied with the Lipschitz constant L, from Lemma 6.4,

p = |[ullze (0,131 (1))
a constant Crk only depending on the coefficients of the Runge—Kutta method, a constant C which
depends on u, T and the Runge—Kutta method, but is independent of T, and the constant

1 _
CT)p = (aRK — T(Lp + 5 + C/)> 1.

b) Let additionally Assumption 6.10 be satisfied and let (6.11) hold true for all h sufficiently small.
Then, there exist T*,h* > 0 s.t. for all T < 7 and h < h* the fully discrete approximations uj, v}
obtained by the bulk-surface finite element method of order p and the Runge—Kutta method exist

uniquely for all t, = nt <T and satisfy the error bound

eCRKcz,p(2p+%+c/)t7L 1
(v + 1)

uM = wlt) | gia.r + [0 = o/ ()| 22 2 < C —
)" sl + ) — W el < O

with Ep from Lemma 6.6 and p from (6.13). The constant Crk depends only on the coefficients
of the Runge—Kutta method, the constant C' depends on u, T and the Runge—Kutta method, but is

independent of T, and the constant C; , is given by

Crp = (arx — 7(L, + % +)) 7
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Proof.

a) This is a direct application of Corollary 3.4. By Lemma 6.4, we have that all assumptions are

satisfied and that cqm = %CGC’Hy + Baqm = % +c.

b) By Lemmas 6.4, 6.6 and 6.9, we have that all assumptions of Corollary 5.4 are satisfied and that
Cqm = %Egava + B\qm = % + /. Corollary 5.4 directly implies the assertion, since we bounded the

space discretization error terms appearing in (5.9) in Lemma 6.11 by O(hP).

Theorem 6.14. Let Assumption 6.2 be satisfied and
ue CH([0,T]; L*(Q) x L*(I) N C*([0,T]; H' (1)) N C*([0, T]: H* (1)) (6.17)

be the solution of (6.1) in the semilinear case, i.e., with Do = Dr = 0.

a) There exists T* > 0 s.t. for all 7 < 7* the iterations u™,v"™ of the IMEX scheme (4.16) applied to

the wave equation with kinetic boundary conditions (6.1) satisfy for all t,, < T the error bound

Hu” — u(tn)”Hl(Q;F) + ||”Un — ul(tn)||L2(Q)><L2(F) < CeMing?

(1+(3/2)1/2)LP
1—(1-"—(3/2)1/2)1107'

with M = % + ,L, from Lemma 6.4,

p= HUHLOO([O,T];Hl(Q;I‘))a
and a constant C' that only depends on T and u but is independent of T.
b) Let additionally Assumption 6.10 be satisfied and let (6.11) hold true for all h sufficiently small.
Then, there exist T, h* > 0, s.t. for all T < 7* and h < h* the fully discrete approximations uj,, vy

obtained by the bulk-surface finite element method of order p and the IMEX scheme satisfy for all

t, =nt < T the error bound
(i) = ultn) | @ir) + (™) = v/ (ta) L2 @) x 2y < CeMm (WP + 72)
with M = 1 + (1+/2)/2)Lr,

2 1 (143/2)1/2)L,r
depends on T and u but which is independent of T and h.

,Ep from Lemma 6.6, p from (6.13), and a constant C that only

Proof. Note that we have D(A) = H?(2;T), and, hence, by (6.17) in terms of the abstract framework

uwe CH[0,T]; H)nC3([0,T]; V) N C?([0,T); D(A)). (6.18)

a) This is a direct application of Theorem 4.9. By Lemma 6.4, we have that all assumptions are

satisfied and, since we are in the semilinear case, Do = Dr = 0 implies cqm = %Cgc "V + Bqm = %
b) We apply Theorem 5.8. All assumptions are satisfied by Lemmas 6.4, 6.6 and 6.9 and we have
Cqm = %EGaH’V + qu = % This directly implies the assertion, since, in Lemma 6.11 we bounded

the space discretization error terms appearing in (5.9) by O(h?).
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6.5 Numerical experiments

In this section, we illustrate the theoretical results of this thesis with numerical experiments for the wave
equation with kinetic boundary conditions (6.1) on the unit disc Q = B;(0) C R?. Before presenting the

results, we give some details about the implementation.

6.5.1 Implementation details

We used version 9.2 of the C++ finite element library deal.Il Arndt et al. [2020], Bangerth et al. [2007])
to implement our numerical experiments. The source code to reproduce the experiments is available on
https://doi.org/10.5445/IR/1000130223. We ran the experiments on a computer with an i5 processor
(3.5 GHz) and 16 GB RAM.

Remark 6.15. The finite element library deal. Il supports only quadrilateral and hexahedral elements.
Simplicial elements, for which we prove our results, are not implemented. However, we emphasize that our
theoretical results rely on the construction and approximation properties from FElliott and Ranner [2013,
2020] where only the case of simplicial elements is considered. Thus, if these results can be transfered to
the quadrilateral case, then our results transfer as well, but this it out of the scope of this thesis. Note
that for standard Lagrange finite elements without domain approximation, it is well-known that finite
element spaces consisting of quadrilateral and hexahedral elements have the same approximation orders

as the corresponding spaces consisting of simplicial elements.

Finite element space discretization

Let {¢1,...,¢n} be the nodal basis of the finite element space V}, with dim(V},) = N. For a finite element
function vy, € Vj, we denote the corresponding coefficient by v € RY. Further, we denote by M € RV*HN
the mass matrix and by A € RV¥*N the stiffness matrix corresponding to the bilinear forms my,, ay,

respectively. This means

Mi,j == mh(¢i7¢j)7 Ai,j = ah(¢i7¢j)a Za] € {]waN}

The representations of the nonlinearities Dy, F}, and the inhomogeneity f, with respect to the nodal
basis are denoted by D, F: RY — R¥ and f: [0,00) — R¥, respectively. The spatially discretized wave

equation with kinetic boundary conditions (2.24) is then equivalent to the ordinary differential equation
Mu” +D(u’) + Au = F(u) +f, t>0, (6.19a)
u(0) = u°, u’(0) = v°. (6.19b)

In our implementation, we discretized the initial values via v = I,u® v9 = I,v? and by u®, v® we denote

the corresponding coefficient vectors. In this case, Assumption 6.10 b) is satisfied.

We shortly comment on how we compute the discretization of the nonlinearities (6.10c) and (6.10d).
Let ¢%,.. '7¢1;Vr be the nodal basis functions of the boundary finite element space V}E p- Further, let

Mg € RV*N he the mass matrix corresponding to the L? (Q) scalar product on V}, and Mr € RN xNr
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be the mass matrix corresponding to the L?(T") scalar product on V,E iy Then, for v € RV, we compute
F(v) by
F(V) = MQFQ (V) + MFFF (V)

with
FQ(V)Z‘:FQ(VZ‘), izl,...7N7 FF(V)jZFF((’yV)j), jzl,...,NF.

Here, vv € RYT is the coefficient vector of Uh’r with respect to the basis ¢!, ... ’¢er'

The computation of Dy, as in (6.10¢) is computationally quite expensive since it requires the application
of quadrature rules to Dq(v;,) and Dr(vy) and, hence, the evaluation of these functions outside the nodal

basis. Therefore, we implemented the discretization of D similar to the discretization of F' via

D(v) = Bv + MqDq(v) + MrDr(v), v eRY, (6.20)

RNXN

where Do and Dr are defined similarly to Fo and Fr, respectively, and B € is the matrix

corresponding to the bilinear form

b (vp, wp) = / ((In.ooq)ve + (InaBa) - Vop) wp, dx.
Qp

Since the nonlinear part has to be evaluated in every time step, this reduces the computational effort
significantly. Despite not being covered by our analysis, our numerical experiments show that using (6.20)

does not decrease the order of convergence.

Note that the numerical computation of the lift of a finite element function is very laborious. Therefore,
in our numerical experiments we refrain from computing the error from the error bound in Theorem 6.12,

but instead consider the discrete error

E(t) = [lun(t) — u(t)]o, Il @uirn) + i (8) = 0/ ()], 2200 < z2(0s)-

For computing E, we evaluate the integrals with a quadrature rule of sufficiently high order such that the
quadrature error is negligible. The restriction of u to €2} is possible since we are running our experiments

on the unit disc and, hence, have ; C € for all A > 0.

Runge-Kutta methods

A Runge-Kutta method with coefficients b = (b;);_;, ¢ = (c;)j_1, @ = (a;5); ;1 applied to (6.19) is of

the form

S
U =u"+r1 E a;; V'Y,

j=1 )
. 1=1,...,s,
MV™ = Mv" + 7> a;;( — D(V™) — AU™ + F(UY) + £(t, + ¢;7)),
j=1

s (6.21)
"t =u" 47 Z bV,
i=1

Myt =Mu" + 7Y bi( = D(V") = AU™ + F(U™) + f(ty + ¢i7)).

i=1
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Note that for a general implicit Runge-Kutta method the solution of a nonlinear system of equations of
dimension 2sN is required in every time step to compute the inner stages in (6.21). We implemented the
implicit midpoint method, i.e., the 1-stage Gaufl method, which can be written in the form
T
un+1 _ un o Vn Vn+1 ,
oV
1 1
Myt = Mv" + gA(u” +u"th) — TD(E(Vn + V”H)) + TF(i(u" + u"“)) + f(tn + %)
This method is algebraical stable, coercive, and of stage order ¢ = 1. Note that by plugging the first
equation into the second one, we only have to solve a nonlinear equation of dimension N for v**! given
by
-

2 1
(M + TZA)V"'H + TD(§(V" + V"'H)) —7F (u" + Z(Vn-H + v"))

72 n n T
= (M——A)v —T17Au —I-Tf(tn-i-*).
4 2
This equation is solved with the simplified Newton method where we choose the tolerances such that the

total error is not affected. Then, u”*! can be computed explicitly.

For comparison, we also implemented the classical Runge—Kutta scheme. This is an explicit scheme of
order four that is suited for hyperbolic problems because its stability region contains an interval on the

imaginary axis. The scheme is given by the coefficients

O = = O
S O e O

O = O

0

D= W= Wi o=

We implemented it using mass lumping (cf. [Zienkiewicz et al., 2013, Section 12.2.4]) to obtain a fully

explicit scheme.

IMEX and Crank—Nicolson scheme in the semilinear case

In the following, we discuss the implementation of the IMEX and the Crank—Nicolson scheme in the
semilinear case, i.e., for Do = Dr = 0. Due to (6.20), we see that in this case the ordinary differential

equation (6.19a) reduces to

Mu” +Bu' + Au=F(u) +f, t>0. (6.22)
This was already presented in [Hochbruck and Leibold, 2021, Section 4.4].
IMEX scheme The fully discrete IMEX scheme (5.11) applied to the semilinear equation (6.22) reads

2

Myt = Myt = ZAut - Tavit - TRyt o T (6.23a)
Wt =y 4 vt (6.23b)
Mvn+1 = —_Mv" + 2Mvn+% + z (Fn+1 o Fn) (623(‘,)

[\
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with
F*"=F(u") + £(t,).

The linear system in (6.23a) is of the form

2
Qv =My - AW TF", Qp =M+ B+ LA (6.24)

Since we perform runtime comparisons between the IMEX and the Crank—Nicolson scheme to compare
the efficiency, we go into more detail about the implementation. We solve the linear system (6.24) with
the GMRES solver provided by deal.Il and either a sparse incomplete LU or a geometric multigrid pre-
conditioner. For the measurement of the error in the GMRES iterations, the residual r with corresponding

coefficient vector r is used. A suitable stopping criteria would be
l7lla, < 72 tol,

where tol is a given tolerance. Then, in (6.23b) the error in u™*! caused by the solution of the linear
system measured in ||-||z, is of order 72 which corresponds to the local error of the IMEX scheme.

However, the computation of ||r||z, is rather expensive. Thus, we use the stopping criterion
I7[ln.2 = [[xlln.2 < 7 tol

in the grid dependent scaled Euclidean norm ||-||;,2 = h%2||-||o. This is significantly more efficient since
|lr||n,2 is available within the GMRES algorithm at no additional cost. The criterion worked well in our
numerical experiments as we show in Section 6.5.3. We always use tol = 0.01 in our numerical examples,
which was chosen by experiment s.t. the errors caused by solving the linear systems do not affect the

overall order of convergence.

Note that in the IMEX scheme (6.23) only Mv"*! n > 0, is required so that we only compute Mv"+!

but not v**+! itself.

Crank—Nicolson scheme In our experiments, we compare the IMEX scheme with the Crank—Nicolson

scheme (4.4). Applied to the first-order formulation of the semilinear equation (6.22), it is of the form
Mun+1 — Mun + g(Mvn + h/‘[‘/vn""1>7 (6.25&)
M A ) B @ (oo

with F* = F(u") + f(t,). These are two coupled nonlinear equations. However, by plugging (6.25b)
into (6.25a) to eliminate Mv"*! and using (6.25a) to replace v* + v**! in (6.25b), the scheme can be

written in the form

n+1 T2 n+1 T T2 n n T2 n
Quu — - F = (M + 5B~ ZA)U +TMV" 4 - F", (6.26a)
Mv" ! = Mv"™ — gA(u" +u"t) + B(u" —u"t) + g(F" + F*H) (6.26b)

with Q4 given in (6.24). The formulation (6.26) has the advantage that we only have to solve the nonlinear
equation (6.26a) since (6.26b) can then be computed explicitly. We solve the nonlinear equation (6.26a)

with a simplified Newton method where we approximate the Jacobian by Q4 and stop the Newton scheme
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when the update Au satisfies ||Aulp,2 < 73tol with a given tolerance tol. In the numerical examples, we
use tol = 0.1 which is chosen based on experiments such that the Newton errors do not affect the overall
convergence of the Crank—Nicolson scheme. The matrix vector products appearing in (6.26a) and (6.26b)
are computed only once and are stored in temporary vectors. This is also done for all terms that can be

n+1

reused in the next time step. As in the IMEX scheme, we only compute and store Mv and not v*+1.

6.5.2 Experiments for the nonlinear damped case

In this section, we consider the wave equation with kinetic boundary conditions (6.1) on the unit circle
Q = B;(0) C R? with

Do(v) = v°, Dr =0,

Fo(v) = [vlv, Fr(v) =7,
fa(t,x) = — (47% + |sin(2mt)x1X2|) sin(27t)x;x2 + (2 cos(2mt)x1X2)°
fr(t,x) = —47r?sin(27t)x;Xo + 6 sin(27t)x; X2 — (sin(27t)x;%7)

for x = [x1,x2]". Further, we set aq = Bq = 0 and choose the initial values
w(0,x) =0, u(0,%x) = 27X1X2.
In this case, the exact solution is given by
u(t,x) = sin(27t)x1x2
which can be verified by a straightforward calculation using Ar(x1x2) = —4x31x3 and 9, (X1X2) = 2X1X2
on the unit circle 0f2.

In Figure 6.1, the space discretization error is plotted against the maximal mesh width A when discretizing
with isoparametric elements of orders p = 1 and p = 2. For the time discretization, we use the implicit
midpoint rule with sufficiently small time step size such that the time discretization error is negligible.
One can observe that the space discretization error converges with order p which is consistent with the

error bound from Theorem 6.12.

107t - .
)
S L
M 08| =1 |
g --- order 1
5} —e—p:2
10-5| — B order 2 | |

102 107!
maximal mesh width A

Figure 6.1: Error E(0.8) of the isoparametric finite element discretization with order p = 1 and p = 2

plotted against the maximal mesh width h
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In Figure 6.2, the error of the implicit midpoint rule is plotted against the time step size 7. We observe
that the scheme converges with order two until the plateau of the space discretization error is reached.
Although this is one order larger than predicted by Theorem 6.13, as the stage order of the implicit
midpoint rule is ¢ = 1, this is not a contradiction, since Theorem 6.13 states a worst case error bound.
However, it does raise the question whether the estimate is too pessimistic. For example, in Hochbruck
et al. [2018] an error bound for Runge-Kutta methods applied to quasilinear hyperbolic evolution equa-
tions of order g+1 is proven. However, the framework considered in Hochbruck et al. [2018] is not suitable

for nonlinear damping terms since they are not quasilinear.

As a further test, we perform the same experiment with fo = fr = 0. In this case, we do not know
the exact solution and, therefore, test against a reference solution that we calculate with a smaller time
step size and on a finer grid. The results are shown in Figure 6.3. We see that in this case the implicit
midpoint rule converges with order one. This might suggest that the error bound from Theorem 6.13 is
sharp. However, note that in this case we do not know whether the exact solution u satisfies the regularity
assumptions of Theorem 6.13. A more detailed analysis under which conditions Runge-Kutta methods

converge with order ¢ 4+ 1 or ¢ is beyond the scope of this thesis.

10_1 E T T T ™ E

| | =& impl. midpoint ]

Y order 1 - i

.10 8 order 2 - E
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T

Figure 6.2: Error E(0.8) of the implicit midpoint rule plotted against the step size T
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Figure 6.3: Error E(0.8) of the implicit midpoint rule in the case fo = fr = 0 plotted against the step

size T



76 Chapter 6. Wave equation with kinetic boundary conditions and nonlinear forcing and damping

6.5.3 Experiments for the IMEX scheme in the semilinear case

The experiments presented in this section are taken from [Hochbruck and Leibold, 2021, Section 4.5]. We
consider the wave equation with kinetic boundary conditions (6.1) on the unit circle Q = B;(0) C R? in

the semilinear case, i.e., with Dy = Dr = 0. Further, we set

ag =1, Ba(x) = x,
Fo(u) = |v]v, Fr(v) =7,
fa(t,x) = — (47% + [sin(27t)x1x2|) sin(2mt)x1x2 + 67 cos(2mt)x;Xa,
fr(t,x) = —4x? sin(2nt)x; X, + 6sin(27t)x1x5 — (sin(27t)x;x5)°

and choose the initial values

u(0,x) =0, u(0,%x) = 27x1X2.

As in Section 6.5.2, fo and fr are chosen such that the exact solution is given by

u(t,x) = sin(27t)x1x2.

For the following experiments we always use isoparametric elements of order p = 2 for the space dis-
cretization. In Figure 6.4, the errors of the IMEX, the Crank—Nicolson, and the classical Runge-Kutta
scheme are plotted against the time-step size 7 for a coarse (h = 0.014) and a fine (h ~ 0.007) space dis-
cretization, respectively. As predicted by Theorem 6.14, the IMEX and also the Crank—Nicolson scheme
converge with order two until the space discretization error is reached. The classical Runge-Kutta scheme
is only stable under a strong CFL condition and, in this case, the error reaches immediately the space
discretization error plateau. The Crank—Nicolson scheme is only considered for the coarse grid, since on

the fine grid it is computational very expensive.

]_00 T T T T ]_OO e e e e T T T T T
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o 10_3 || - - - order 2 N 10_3 | N
© o107t = . 1074 | .
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10-* 1073 102 10! 10-* 1073 102 101
T T

Figure 6.4: Error E(0.8) of the IMEX scheme, the Crank-Nicolson scheme, and the classical Runge-Kutta
method plotted against step size 7 for coarse space discretization (328193 degrees of freedom, left) and

fine space discretization (1311745 degrees of freedom, right)

We now compare the efficiency of the different schemes for our test case. In Figure 6.5, the errors of the
schemes are plotted against the runtime for the same coarse and fine space discretization as in Figure 6.4.
We observe that the IMEX scheme is significantly faster than the Crank—Nicolson scheme. For obtaining
errors of the magnitude of the space discretization error plateau, the classical Runge-Kutta scheme is

more efficient than the IMEX scheme, but the IMEX scheme is faster than the the Runge-Kutta scheme if
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less accuracy is sufficient. Additionally, the Runge-Kutta method has the disadvantage that the stability
limit in applications is not exactly known and, hence, there is a risk that it will not be stable if the
time step size is chosen too large, or the effort is unnecessarily high if the time step size is too small.
Further, we see that for the fine space discretization and large time step sizes the usage of the multigrid

preconditioner is quite efficient.
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Figure 6.5: Error E(0.8) of the IMEX scheme, solved with GMRES and ILU /multigrid(MG, F-cycle with 8
levels) preconditioner, the Crank—Nicolson scheme, and the classical Runge-Kutta method plotted against
runtime for coarse space discretization (328193 degrees of freedom, top) and fine space discretization

(1311745 degrees of freedom, bottom)

Finally, Figure 6.6 shows a comparison of the runtimes of the IMEX scheme when using the different
stopping criteria for the GMRES solver discussed in Section 6.5.1, namely using ||7||z, or ||7|ls2 to
estimate the error, respectively. It can be seen that the effort of computing the (better suited) ||r||a, is
too high and does not pay off. It is noticeable that the runtimes, when using |75, , are not monotonically

decreasing. So far, we are not aware yet where this phenomenon stems from.
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Figure 6.6: Error E(0.8) of the IMEX scheme plotted against the runtime when using the two different
error estimates as stopping criteria for the GMRES scheme as discussed in Section 6.5.1 for a coarse space

discretization (328 193 degrees of freedom)
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CHAPTER [

Outlook

This thesis provides some starting points for further research which we will briefly discuss these here.

We developed a unified error analysis for nonlinear wave-type equations in a general setting. However,
so far, we only applied these results to a specific wave equation with kinetic boundary conditions. We
emphasize that these abstract results can be used in future research to analyze discretizations of other
equations that have not been considered so far. Especially in our CRC project, we are interested in the
numerical analysis of other types of nonlinear and non-trivial boundary conditions. We plan to accomplish

this using the theory developed in this dissertation.

Further, we analyzed a novel and efficient implicit-explicit scheme for semilinear second-order wave-type
equations. As mentioned in the introduction, we are not aware of other implicit-explicit schemes in the
literature that also exploit the structure of such equations. Thus, it would be interesting to investigate
whether it is possible to systematically derive and analyze higher-order implicit-explicit methods which

are tailor-made for this type of equation.

Finally, we encountered in our numerical analysis that under some conditions Runge-Kutta methods
might converge one order faster than predicted by our theory (cf. Section 6.5.2). Thus, the question
arises whether it is possible to refine the error analysis in order to recognize under which conditions this

is the case.
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APPENDIX A

Collection of auxiliary results

In this chapter we collect some results that are necessary for this thesis.

Lemma A.1 (Gronwall’s lemma).

a) Continuous case: Let ®: [0,T] = R and M, > 0 s.t. for allt € [0,T]
t
0< () < M+a/ ®(s) ds.
0
Then,
O(t) < Me™
holds true for allt € [0,T].

b) Discrete case: Let 7 > 0 and M,a > 0 with at < 1. If {e,}n is a non-negative sequence with

5n§M+a725j forn=0,...,N.
j=1
Then,

anTt

en <M —ar)™ < Mel-or

holds true for alln=0,..., N.

Proof.
a) Cf. [Qin, 2016, Theorem 1.1.2].
b) The first inequality follows by induction and the second with (1 —s)~! < eT= for all s € R\ {1}.

O
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Definition A.2 (Coercivity). Let V be a Hilbert space. A bilinear form A: V xV — R is called coercive,
if there exits a constant a > 0, s.t. for allv eV

Afv,v) > alfo]§,-

Theorem A.3 (Lax-Milgram theorem). Let V be a Hilbert space and let A: V x V — R be a bounded

and coercive bilinear form. Then, for every £ € V* the equation
Aw,w) = {l,wyy=xy forallweV

possess a unique solution v € V.

Proof. Cf. [Brenner and Scott, 2008, Theorem 2.7.7]. O

Theorem A.4 (Sobolev embedding theorem). Let M C R? be a bounded domain with Lipschitz boundary

or let M C R be a d-dimensional compact C manifold. Then, there exist continuous embeddings

1 < 7% d=3,

H* (M) — LY(M) forall qe€
< 00, d=1,2.

Furthermore, for d € {1,2,3}, there exists a continuous embedding

HA(M) — C(M). (A1)

Proof. Cf. [Adams and Fournier, 2003, Theorem 4.12] and [Aubin, 1982, Chapter 2]. O

Theorem A.5 (Continuity of functions in L%-spaces). Let M C R? be a measurable set and let ¢ €
C(M x R;R) satisfy for some q € (1,00) the growth condition

lo(x,8)] < C(1+|¢]?) for almost all x € M and all §{ € R.

Then,

defines a function ® € C(LI(M); L*(M)).

~—

Proof. Cf. [Goldberg et al., 1992, Theorem 4]. O

As a direct combination of Theorems A.4 and A.5 we obtain the following corollary:

Corollary A.6. Let d € {1,2,3} and let M C R? be a bounded domain with Lipschitz-boundary or let
M C R be a d-dimensional compact C*-manifold. Further let ¢ € C(M x R;R) satisfy for some

the growth condition
lp(x, )| < C(1+ |€]°) for almost all x € M and all § € R.

Then

defines a function ® € C(H'(M); L2(M)).



87

APPENDIX B

Runge—Kutta time discretization of nonlinear dissipative evolution equations

In this chapter, we recall results of Hansen [2006b] that we use for the error analysis of Runge-Kutta
methods in Sections 3.1 and 5.1. Hansen [2006b] generalizes the classical B-convergence theory for Runge—
Kutta approximations of stiff ordinary differential equations (cf. Dekker and Verwer [1984]) to evolution

equations in infinite-dimensional Hilbert spaces.

We start by giving a short introduction of Runge-Kutta methods applied to a first-order initial value

problem
¥ =F(x)+g, t>0, 2% = (0), (B.1)
in a Hilbert space X with F: D(F) — X and g: [0,00) = X.

Let 7 denote the time step size and t,, := n7 for n € Ny. A Runge-Kutta method applied to (B.1) has
for n > 0 the form

Xm’ :xn+Tzaij]:(an)+g(tn+ch)v 1= 17“_,3’ (B.Qa)
j=1

2" =2 ST B F(X™) 4 gt + T, (B.2b)
=1

with coefficients @ = (a;5); =1, b = (bi)j—1,¢ = (ci)j_;-
We recall some basic properties of Runge-Kutta methods.

Definition B.1 (Local error). The local error of a Runge—Kutta method (or more generally of a one
step method) is defined as

ot — I(tn+1),

where x"+1 s obtained by applying one step of the method to (B.1) starting from x(t,) at time t,.
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Definition B.2 (Classical order). A Runge—Kutta method (or in general a one step scheme) has classical

order p > 0, if for sufficiently smooth F and solutions x of (B.1) the local error satisfies

27+ = @ (tnsa) |l x € O(PH).

Even for ordinary differential equations, Runge-Kutta methods suffer from order reduction in the stiff
case, i.e., for nonlinearities F with large Lipschitz constants. Since in (B.1) F can even be an unbounded
operator, it is not possible to prove convergence with the full order of the scheme. Instead, in Hansen

[2006b], convergence with the so called stage order is proven.

Definition B.3 (Stage order). A Runge—Kutta method has stage order g > 0, if the coefficients satisfy

the conditions
s k
i

1 ® c
k-1 k—1
Zbi :E7 ZaUCJ :Z, I{lzl,,q
=1 Jj=1

Important properties of Runge—Kutta methods, which are required for the analysis in Hansen [2006b],

are algebraic stability and coercivity.

Definition B.4 (Algebraic stability). A Runge—Kutta method is called algebraically stable if

a) b; >0 fori=1...,s, and
b) the matrix M = (b;a;; + bja;; — bibj)fyjzl is positive semidefinite.

Definition B.5 (Coercivity). We call a Runge—Kutta method coercive if the Runge—Kutta matriz Q is

invertible and there exists a diagonal matriz D > 0 s.t.

1 _ _

5 (DO + (DA™
is positive definite with smallest Eigenvalue agk > 0.

In Hansen [2006b], Runge-Kutta methods applied to an equation of the form (B.1) (without inhomogene-
ity g) are analyzed. We now summarize the results and incorporate the presence of the inhomogeneity g.
The analysis in Hansen [2006Db] relies on the following assumptions on the continuous equation and the
Runge—Kutta method:

Assumption B.6.
a) The Runge-Kutta method (B.2) given by @Q,b,c is algebraically stable, coercive with constant
agrk > 0, and has stage order q for some g € N.
b) The function —F is quasi-monotone with constant cqm 7 > 0 and mazimal.
c¢) There exists a T > 0 s.t. the solution of (B.1) satisfies x € C4T1([0,T]; X).
d) The step size T satisfies the step size restriction
TCqm,F < ORK

such that we can define
1
cC,=—+—— >0. (B.3)
QRK — TCqm,F
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Remark B.7.
a) Assumption B.6 a) is salisfied for, e.g., s-stage Gauss and Radau ITA methods with stage order
q = s (c¢f. Hairer and Wanner [2010]).
b) By part b) of Assumption B.6, we have that (B.1) is globally well posed (cf. [Showalter, 1997,
Theorem 1V.4.1]).
We now recall the results presented in Hansen [2006b]. In a first step, the wellposedness of the Runge—
Kutta method (B.2) is shown.

Lemma B.8. Let Assumption B.6 hold true. Then the Runge—Kutta method (B.2) is globally wellposed,

i.e., the approzimations x™ uniquely exist for all n € N.

Proof. This is shown in [Hansen, 2006b, Lemma 7.1, Theorem 5.2]. Note that the argument, that (B.2a)
can be solved for the inner stages X™,i =1,...,s, is not affected by the inhomogeneity g, since it only

appears as an additional right-hand side. O

In the next step, the defects of the scheme are bounded. The exact solution of (B.1) inserted into (B.2)

reads

X = Y 0 (FRY) 4 gl o) + Mfee = Looos,

= 4 szi (-F()A(;m) +g(tn + CiT)) + 517{;17

where we used the notation
= a(ty), X" =ty +ar),

and ARL Spt! are the defects.

Lemma B.9 (Defects). Let Assumption B.6 hold true. Then, for alli=1,...,s andn € Ny s.t. t, < T,
with T given in Assumption B.G ¢), the defects are bounded by

IARK x93k 1x < CToF,

with a constant C' only depending on 9tV and on the coefficients of the Runge—Kutta method.
Proof. This follows from Assumption B.6 c¢) by Taylor expansion of the exact solution. O

The local error defined in Definition B.1 can be bounded in terms of the defect.

Lemma B.10 (Local error). Let Assumption B.6 be satisfied. Then, for alln € N s.t. t, < T, with T

given in Assumption B.6 ¢), the local error is bounded by

.....

Further, the inner stages X™ of "+ satisfy for all t, <T andi=1,...,s the bound

| X7™ — 2(t, + ¢7)||x < CC- l:rrllaXéHAﬁzKHX < CC, T (B.5)
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The generic constant C' depends on 9tV and the coefficients of the Runge-Kutta method but are inde-

pendent of n, T, ark, and cqm,r. Further, C; is given in (B.3).

Proof. This follows from [Hansen, 2006b, Theorem 6.1]. In the notation of this paper we have
mp[A™'] = agk, hMx f] = Tcqm, 7,

and Lp x[A71] only depends on the coefficients of the Runge-Kutta method. Note that the proof in
Hansen [2006b] also works in the presence of the inhomogeneity g, since g vanishes when computing the
difference ™ — z(t,,) by subtracting (B.4) from the Runge-Kutta scheme (B.2). O

As a last step for the proof of a global error estimate, stability of the scheme is shown.

Lemma B.11 (Stability). Let Assumption B.6 hold true and let ™, y™, for somen € N, be the approzi-
mations obtained by a coercive and algebraically stable Runge—Kutta method applied to (B.1) with starting

values £° and y°, respectively. Then, the stability bound
"+ =y x < (14 7CrKCEcqm,7)l2" — " [|x
holds true. Further, the corresponding inner stages satisfy for allt, <T andi=1,...,s
X" = Y™ x < CriCrlla™ — ™| x- (B.6)

The constant C; is given in (B.3) and Crk depends only on the coefficients of the Runge—Kutta method.

Proof. The result follows by the proof of [Hansen, 2006b, Theorem 7.2]. As in Lemma B.10 we have in
the notation of Hansen [2006b]

mD[Ail] =ark and hMyx [ﬂ = TCqm,F-
Further, Cy in [Hansen, 2006b, Theorem 7.2] is given by
Co = CrrCZcqm, 7.

Additionally, the inhomogeneity does not affect the proof since g vanishes in the difference of the approx-

imations. O

Finally, by combining the local error bound of Lemma B.10 with the stability result from Lemma B.11

one obtains a global error bound.

Theorem B.12 (Global error). Let Assumption B.6 hold true and x™ be the approximations obtained
by a coercive and algebraically stable Runge—Kutta method applied to (B.1). Then, for all t, <T with T
from Assumption B.6, the error bound

eCRKCECqm,]—'tn -1

" —x(ty)||x < C T4
" ()| e

holds true, where the constants Crx and Cr are given in Lemma B.11 and C is independent of T and n.
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Proof. The proof can be found in [Hansen, 2006b, Corollary 7.3]. But, since we have a slightly different

representation of the constants in the error bound, we recall it.

We split the error via

2" = 2 (tnga)llx < ™ =2 I x + 2"+ — 2 (tpa)l|x-
By using the local error and the stability bound from Lemmas B.10 and B.11 we obtain
2"t = 2 (tni1)llx < (1+ 7CRKCEeqm7) 2" — x(ta)llx + C (1 + C7) 797

Solving this error recursion using 2° = x(ty) and

n

Z(l + CRKCECqm,]:T)i <

1=0

eCri CZcqm, Ftnt1 _ 1

TCRK 072— Cqm,F

yields

2
CRrk CT Cqm,]-_tn+1 _ 1

2" = 2(tnr)l|x < C° (1+Cp)

CRKC?—Cqm,F
(GCRKCECQ‘“I%“ - 1) (aRK — TCqm,F + 1) (ARK = TCqm, 7)°
CrKCqm,F (ORK — TCqm,F)

(eCRKCEC“’“ﬁ"“ - 1) (ark + 1) ark

C 74,
CRKCqm,]:

IN

C

T4

IN

where we additionally used the definition of C; (B.3). O
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APPENDIX C

Bulk-surface isoparametric finite element method

As in Section 6.2, we assume that for d € {2,3} and p € N, Q C R? is a bounded domain with CP*!
boundary I' = 9).

Since I is smooth, the domain €2 cannot be represented exactly by a polygonal mesh. Instead, it has to
be approximated by a computational domain €2;, with boundary I'j,. Isoparametric finite element spaces
of order p are based on piecewise polynomials of order p and the domain 2 is approximated with order
p as well. This is due to the fact that using only piecewise linear, i.e., polygonal approximations of the

boundary would not lead to the desired convergence order p.

For the kinetic boundary conditions considered in Chapter 6, we also need a suitable boundary finite
element space. Such a discretization using a combination of a finite element space for the domain (bulk)
Q and a corresponding finite element space for the boundary (surface) I' is called bulk-surface finite

element method.

In this chapter, we give a short introduction to the bulk-surface finite element method with isoparametric
elements that was introduced in Elliott and Ranner [2013]. We recall the construction of the meshes and
the finite element spaces and also some properties that are necessary for our error analysis in Section 6.2.

Some of the results are taken from the more general paper Elliott and Ranner [2020].
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Simplicial and exact Triangulation

The construction of the finite element spaces starts with a family (Q#) n of polygonal approximations Qf

of Q2. Furthermore, let (7;1#) r be a corresponding family of simplicial triangulations of (Qh#) hy 1.€.,

@ = U K# with closed simplices K7 € 7;L#.
KreTt
We denote by
h = max{diam(K#) | K# € T#}

the maximal mesh width. The analysis relies on the following properties of the triangulations:

Definition C.1 (Quasi-uniform family of matching simplicial triangulations). A triangulation 7;# €
(771#);1 is called matching triangulation, if for any K# € 771# with vertices {a1, ...ay}, the set OK# N
OK# for any K# € 7;1#,[?# # K¥ is the conver hull of a (possibly empty) subset of {ao, ..., ax}.

The family (E#)h is called quasi-uniform, if there exists a constant pqu > 0 independent of h such that
for all T € ()
min{pp# | K% € T7} > pquh

holds true. Here, pi# denotes the radius of the largest d-dimensional ball that is contained in K#.

In the following, we require that the family (Th#)h is quasi-uniform and consists of matching triangulations
771# € (771#) r which further satisfy the following conditions:

e The vertices of ’771# that lie on T# = 8Qh# also lie on I'.
« BEach K# € T, has at most one face on the boundary T#.

 The mesh width h is sufficiently small such that for all x € T'# a unique normal projection ,(x) € T
exists, i.e., z —m, () is orthogonal to the tangent plane of I in 7, (x) (cf. [Elliott and Ranner, 2013,
Section 2.1]).

Construction of isoparametric finite element spaces

We now construct the isoparametric finite element spaces starting from a triangulation 7;1#. Keep in mind
that this is done for all triangulations of the family (771#) n, we hence obtain a family of finite element

spaces.

Using the normal projection m,, it is possible to construct an exact triangulation 7, of {2 based on 771#,
ie., UKﬁeT; K¢ =Q (cf. [Elliott and Ranner, 2013, Section 4.1.2]): All internal mesh elements K¢ € 7,¢,
i.e., all elements K¢ with at most one point on I', coincide with the corresponding elements in 7;L#. The
other elements are modified in such a way that the domain €2 is triangulated exactly. Furthermore, each
element K¢ € T,° can be described by a CP*!-transformation Fg. : K — K° where K is the d-dimensional

unit simplex.
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The computational domain €2 is constructed by interpolating the exact triangulation. Let (Zl, e anp

~

be a Lagrangian basis of the polynomial space ,(K’) corresponding to basis nodes @i, ...@n,. Then, we
define for K¢ € 7,¢ the interpolation Fie of Ff. via

Fe () =) Fiee(@)0i(2)
i=1
and the element K := F.(K) ~ K¢. By this, we obtain a triangulation 7, := {K = Fre(K) | K¢ € T}

with the corresponding computational domain Qp, = U7, K.

The isoparametric bulk finite element space of order p is then defined via
Vi, = {vn € C(Q) | va|, = Bn o (Fice) ™" with B, € P,(K) for all K € T}, (C.1)

and the corresponding surface finite element space, for discretizing functions living on the boundary T,
is given by
r . . Q
Vh,p = {19}1 S C(Fh) | Iy, = Uh‘Fh with vy, € Vh,p}' (CZ)

We have that V,E » is a finite element space over the triangulation
Tr =Tl ={F=KNTx| K €Th}
of I'y, and it is defined in such a way that it satisfies the relation
V(Vhf,zp) = V{,,ﬂ

where ~y is the usual Dirichlet trace operator. Using the finite element space V,f}p together with the
surface finite element space V,E » o discretize differential equations in a domain coupled to a boundary

differential equation, as in the situation of Chapter 6, is called the bulk-surface finite element method.

In the following, we denote by ¢1,...,¢n € V,f?p, N = dim(th’zp), the nodal basis functions of V}f}p and

the set of the corresponding basis nodes by 2 = {ay,...,an} C QN Q. Similarly, S (bl;VF S VhF,p,
Nr = dim(V,Ep), are the nodal basis functions of V,Ep in the basis nodes B = {b1,...,bn.} C 2.

Lift operator

As in [Elliott and Ranner, 2013, Section 4.2], we define the element-wise smooth homeomorphism
Ghi Qh — Q via

Gy = Fee o (Fxe)™"  forall K* € T, and K = Fi«(K).
This allows to define for vy, € V,f}p, O € Vyy, lifted versions vy € C(Q),9% € C(T) via

vh = v 0 Gt and ¥, =U,0G; " (C.3)

In [Elliott and Ranner, 2020, Lemmas 5.3 and 7.3] the following element-wise norm equivalences related

to the lift are shown.
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Lemma C.2. There exists Cq.q, > ca.q, >0, Crr, > crr, > 0 independent of h s.t. for all vy, € th,lw
Iy, € V,Ep, k=0,1,...,p+1, and Kq € Ty, Kr € T,' we have

co.onllonll s (ia) < I0nll e xz) < Coonllvnll e ka),
er,m [[0nll e ey < N0l me iy < Crora 19nll e (e
where K = G(Kq), Kf = G (Kr). By construction, the lift additionally preserves the L norm, i.e.,

‘
thHLOO(Ké) = th||L°°(KQ)7

||19fl||Loo(Klé) = [[9n |l oo ()

We further have the following bounds of the geometric errors stemming from approximating the domain
(cf. [Elliott and Ranner, 2013, proof of Lemma 6.2]).

Lemma C.3. For up,¢p € Vhs?p and Uy, Py, € Vhr)p, the following bounds hold true:

|/Qqu<Pﬁ dx —/Q upen dx| < ChP||up | L2 lonll L2 (00)> (C.4a)
h
|/Q Vquchfl dx —/Q VuhV<ph dX| S Chp||Vuh||Lz(Qh)HVgthLz(Qh), (C4b)
h
[ ko= [ ouinaxl < OO o e, [ o, (C.4e)
h
|/FVF19£VF’(/J£ dx —/F Vrhﬁth,ﬂbh dX| S Chp+1||th19hHL2(Fh)||VFhwh||L2(Fh)- (C.4d)
h

Interpolation

By I q: C(Q) — V}f}p and I, r: C(T) — Vhljp we denote the usual Lagrange interpolation operators in
the domain and on the boundary, respectively. Note that the interpolations are well defined since, by

construction of the finite element spaces, the Lagrange nodal basis points lie in 2 or on I', respectively.

Lemma C.4. The interpolation operators Iy o and Iy r are continuous with respect to ||-||so, t.€., for all

ue C(Q),9 € C(T) we have
[noulloe < Coollttllos;,  Hnrdlse < Cooll oo

with Coo = ||Efi1|¢z|||oo This constant is independent of h since the number of non-vanishing basis

functions on each mesh element only depends on the polynomial degree p.

We further have the following interpolation error bounds, which follow from [Elliott and Ranner, 2020,
Theorem 4.28, Theorem 5.9] for the bulk and [Elliott and Ranner, 2020, Theorem 6.24, Theorem 7.10]

for the surface, respectively:



97

Lemma C.5. Let 1 <k <p.

a) Globally, the interpolation operators satisfy for allv € H*1(Q), and 9 € H*TY(T') the error bounds

[v = (Tn,0u)*ll L2 () + hllv = (Tnov) a1 @) < CREF o] grss o), (C.5a)
19 = (In,09) N 22y + 29 = (Tn,r9) | ey < CRMHI | s (), (C.5b)
with a constant C independent of h.

b) Locally, on each element Kq € 7719, Kr € 77?, the interpolation operators satisfy for all0 <r < k
and all v € H*Y(KE), 9 € HMY(KY), the error bounds

o = (Tna) e ety < CREF I ol st (C.6a)
|9 — (Ih,Fﬁ)EHHT(K{i) < Chk+17r||19||Hk+1(Klé), (C.6b)

with a constant C independent of h.

¢) Locally, on each element Kq € T, Kr € T, and for every v, € H*1(Kq), 9, € H*TY(Kt), the

L error bounds

[on = In.avh || L (kg) < CRF vnl st (k) (C.7a)

[0 = In.o 9| oo (k) < CRM MO0 s (1) (C.7b)

hold true with a constant C independent of h.
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