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ABSTRACT. The spectrum of the normalized complex Laplacian for electrical
networks is analyzed. We show that eigenvalues lie in a larger region compared
to the case of the real Laplacian. We show the existence of eigenvalues with
negative real part and absolute value greater than 2. An estimate from below for
the first non-vanishing eigenvalue in modulus is provided. We supplement the
estimates with examples, showing sharpness.
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1. INTRODUCTION

The purpose of this note is to analyze the complex Laplacian for a class of
finite weighted graphs. In the following we consider finite electrical networks (cf.
[13, 14, 15]). These consist of finite sets of vertices and edges (V,E), where loops
are excluded. For any edge xy, x,y ∈ V , there are non-negative real numbers Lxy,
Dxy, Rxy satisfying

Lxy +Dxy +Rxy > 0.
For s ∈C with Res > 0, we consider the finite weighted graph (V,E) with weights
given by the admittances

(1) ρ
(s)(x,y) =

s
Lxys2 +Rxys+Dxy

.

Since s will be clear from context, we write ρxy for ρ(s)(x,y) for the sake of brevity.
We set ρxy ≡ 0 if xy is not an edge. Then, any electrical network is uniquely
determined by the pair (V,ρ). Let

ρ(x) = ∑
y∈V

ρxy.

The admittance in form (1) corresponds to the case of electrical networks with
passive elements (coils, capacitors, and resistors). In this case s corresponds to a
complex frequency (cf. [4, 8, 9]). We consider the normalized complex-weighted
Laplacian:

(2) ∆̃ρ f (x) = f (x)− 1
ρ(x) ∑

y∈V
f (y)ρxy.

Set ρxy = τxy + iσxy, where τxy,σxy ∈ R and ρ(x) = τ(x)+ iσ(x). Clearly, τ(x) =
∑y τxy and σ(x) = ∑y σxy.

Since admittance is positive real function (cf. [4, 13, 15]), i.e., Res > 0, when-
ever ρ

(s)
xy > 0 (in particular, ρ

(s)
xy has no poles), the normalized complex-weighted

Laplacian is well-defined. For the sake of completeness, we show this in Proposi-
tion 5.
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The real Laplacian (Lxy = Dxy = 0 for any x,y) arises in both electrical networks
with resistors and random walks (cf. [7, 10, 12, 16]). The complex Laplacian arises
in AC electrical networks and corresponds to Kirchoff’s law (cf. [8, 11, 14, 15]).
Note that if s ∈ R+, then the resulting Laplacian is still real and corresponds to
some random walk.

For s∈R+ the resulting Laplacian is a self-adjoint, non-negative operator acting
on a Hilbert space with scalar product depending on ρ . The real Laplacian is
studied extensively (cf. [3, 6, 10]). In this case, the eigenvalues lie in the interval
[0,2]. In Section 2 we recall among basic facts how 2 is attained as an eigenvalue
for bipartite graphs.

In Section 3 we show the following generalization:

Theorem 1. Let λ denote an eigenvalue of (2). Then, we find the following esti-
mate to hold:

(3) |1−λ | ≤
(
|s|

Res

)
.

Secondly, we show that eigenvalues are additionally confined to the region de-
scribed below:

Theorem 2. Let ∆ρ be a normalized complex-weighted Laplacian. Then the fol-
lowing holds:

• All its eigenvalues with positive real part lie in the circle with center at
(1, | Ims|/Res) and radius

√
1+(Ims/Res)2.

• All its eigenvalues with negative real part lie in the circle with the center
at (1,−| Ims|/Res) and radius

√
1+(Ims/Res)2.

• All its real eigenvalues lie in [0,2].

We shall see that for the linear graph P4 a particular choice of weights exhausts
the radii of the circles from the above theorem.

In Section 4 we prove the following bound on the smallest eigenvalue in modu-
lus:

Theorem 3. Let λ1 denote the smallest eigenvalue in modulus for the complex
Laplacian ∆̃ρ , and let D denote the diameter of the underlying graph. Let

C1 = min
x ∑

y

( 1
Lxy +Rxy +Dxy

)
, C2 = ∑

x,y

1
Lxy +Rxy +Dxy

and suppose that

(4) C1 Resmin(|s|2, |s|−4)−C2
| Ims|
Res

max(1, |s|2)
Res

> 0.

Then, we find the following estimate to hold:

|λ1| ≥
C1(Res)2

D ·C2 ·min(1, |s|2)
.

Outline of the paper. In Section 2 we recall basic identities, which are needful
for the proofs in later sections. Furthermore, we record symmetries of the problem.
In Section 3 we prove Theorems 1 and 2. The eigenvalues for the linear graph P4
are computed for a particular choice of weight. In Section 4 we prove Theorem 3.
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2. PRELIMINARIES

We start with the following repetition concerning the real Laplacian:

Proposition 4. Let (V,E) be a finite connected graph with real weights and ∆̃ρ be
the real Laplacian. Then, we find the following to hold:

1. The eigenvalues lie in the interval [0,2] of ∆̃ρ , where 0 is a simple eigen-
value.

2. 2 is an eigenvalue if and only if V is bipartite, i.e., there is a partition of
vertices V = V+∪V−, V+∩V− = /0 such that for any x ∈ V+ x ∼ y implies
that y ∈V−.

3. V is bipartite if and only if for any eigenvalue λ we find 2−λ to be another
eigenvalue.

Recall the following Green’s formula ([14, 15]):

(5) ∑
x∈V

∆̃ρ f (x)g(x)ρ(x) =
1
2 ∑

x,y∈V
(∇xy f )(∇xyg)ρxy,

where we denote

∇xy f = f (y)− f (x).

Applying Green’s formula to g = f (complex conjugate), we get

(6) ∑
x∈V

∆̃ρ f (x) f (x)ρ(x) =
1
2 ∑

x,y∈V
|∇xy f |2ρxy.

Note, that the right hand side of the last equation corresponds to the complex power
(cf. [1, 2, 5, 15]). For estimates on the eigenvalues we will need estimates for ρxy.
These are collected in the following proposition:

Proposition 5. Let ρxy be as in (1) with the notations from above. Then, the fol-
lowing holds:

1. If x and y are related, then Reρxy > 0.
2.

(7) |ρxy| ≤
|s|

Res
Reρxy.

3.

(8) |ρ(x)| ≤∑
y

1
Lxy +Dxy +Rxy

max(1, |s|2)
Res

.

Proof. 1. Note that for any complex number z ∈ C, Rez > 0 if and only if
Re 1

z > 0. We have

Re
1

ρxy
= Lxy Res+Rxy +Dxy Re

1
s
> 0, whenever Res > 0.

Therefore, Reρxy > 0.
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2.
Reρxy

|ρxy|
=|ρxy|Re

1
ρxy

=
1∣∣∣Lxys+Rxy +

Dxy
s

∣∣∣
(

Lxy Res+Rxy +Dxy Re
1
s

)

=
1∣∣∣Lxys+Rxy +

Dxy
s

∣∣∣
(

Lxy Res+Rxy +Dxy
Res
|s|2

)

≥ 1

Lxy|s|+Rxy +
Dxy
|s|

(
Lxy Res+Rxy +Dxy

Res
|s|2

)

≥ 1

Lxy|s|+Rxy +
Dxy
|s|

(
Lxy Res+Rxy

Res
|s|

+Dxy
Res
|s|2

)
=

Res
|s|

,

from which (7) follows.
3.

|ρ(x)|=

∣∣∣∣∣∑y
ρxy

∣∣∣∣∣≤∑
y
|ρxy| ≤∑

y

1∣∣∣Lxys+Rxy +
Dxy

s

∣∣∣ ≤∑
y

1

Re
(

Lxys+Rxy +
Dxy

s

)
=∑

y

1(
Lxy Res+Rxy +Dxy

Res
|s|2

) = ∑
y

1

Res
(

Lxy +Rxy
1

Res +Dxy
1
|s|2

)
≤∑

y

1

Res(Lxy +Rxy +Dxy)min
(

1
Res ,

1
|s|2 ,1

) = ∑
y

max
(
Res, |s|2,1

)
Res(Lxy +Rxy +Dxy)

=∑
y

max
(
|s|2,1

)
Res(Lxy +Rxy +Dxy)

,

where in the last line we have used the fact that either Res ≤ 1 or 1 <
Res < (Res)2 ≤ |s|2.

�

Proposition 6. 0 is a simple eigenvalue of the complex Laplacian.

Proof. It is clear that f ≡ 1 is an eigenfunction with eigenvalue 0. On the other
hand, for an eigenfunction f with eigenvalue 0, (6) yields

0 =
1
2 ∑

x,y∈V
|∇xy f |2ρxy.

Since Reρxy > 0 provided that x and y are related, taking the real part of the
above display we find that |∇xy f | = 0 whenever x and y are related. Since the
graph is connected, f ≡ c. The proof is complete. �

Proposition 7. The sum of the all eigenvalue of Laplacian, counted with algebraic
multiplicities, is equal to the number of vertices in the graph, i.e

(9) λ0 +λ1 + · · ·+λn−1 = n,

where n = |V |.
Moreover,

(10) max
i

Reλi ≥
n

n−1
> 1,
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and
min

i
Reλi ≤

n
n−1

.

Proof. The first fact follows from the consideration of the trace of the Laplacian
matrix A. Indeed, since Aii = 1, i = 1, . . . ,n, we find

λ0 +λ1 + · · ·+λn−1 = traceA = n,

where n = |V |.
Further, since λ0 = 0, we have

n = Reλ1 + · · ·+Reλn−1 ≤ (n−1)max
i

Reλi.

and
n = Reλ1 + · · ·+Reλn−1 ≥ (n−1)min

i
Reλi.

Therefore,
max

i
Reλi ≥

n
n−1

> 1

and
min

i
Reλi ≤

n
n−1

.

�

Remark 8. Note that if we assume that

0 = |λ0|< |λ1| ≤ |λ2| ≤ · · · ≤ |λn−1|,
then from (10) follows that

|λn−1| ≥
n

n−1
.

Moreover, from (9) follows that

Imλ1 + Imλ2 + · · ·+ Imλn−1 = 0,

and, therefore,
min

i
Imλi ≤ 0≤max

i
Imλi.

Next, we show that switching to the dual network conjugates eigenvalues and
eigenvectors:

Proposition 9. If we consider the dual network, i.e., the network with the weights
ρxy, eigenvalues (eigenvectors) of its complex Laplacian will be conjugated to the
corresponding eigenvalues (eigenvectors) of the Laplacian of the original network.

Proof. Let λ f (x) = ∆̃ρ f (x). Then

λ f (x) =∆̃ρ f (x) = f (x)− 1

ρ(x)
∑
y

f (y)ρxy = ∆̃ρ f (x).

�

The claims about eigenvalues for bipartite graphs in the real case generalize as
follows:

Proposition 10. With the above notations, let ∆̃ρ be the complex Laplacian of an
electrical network. Suppose that the underlying graph is bipartite. Then for any
eigenvalue λ we find 2−λ to be another eigenvalue.
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Proof. If V+ and V− are suitable partitions of the graph, and (λ , f ) is an eigenpair,
then the function g, given by

g(x) =

{
f (x),x ∈V+,

− f (x),x ∈V−,

is the eigenfuction, corresponding to the eigenvalue 2−λ . Indeed, for x ∈V+,

∆̃ρg(x) =g(x)− 1
ρ(x) ∑

y
g(x)ρxy = f (x)+

1
ρ(x) ∑

y
f (x)ρxy

=2 f (x)−

(
f (x)− 1

ρ(x) ∑
y

f (x)ρxy

)
=2 f (x)− ∆̃ρ f (x) = (2−λ ) f (x) = (2−λ )g(x).

The case x ∈V− can be treated analogously. �

3. EIGENVALUE REGIONS

3.1. Proof of Theorems 1 and 2. Firstly, we show Theorem 1:

Proof of Theorem 1. We choose an eigenfunction f of ∆̃ρ with | f (y)| ≤ 1 for any
y ∈V and maxx | f (x)|= 1. By (7), we find

|1−λ || f (x)| ≤

∣∣∣∣∣∑y

ρxy

ρ(x)
f (y)

∣∣∣∣∣
≤∑

y

|ρxy|
|ρ(x)|

| f (y)|

≤ |s|
Res ∑

y

Reρxy

|ρ(x)|
=
|s|

Res
Reρ(x)
|ρ(x)|

≤ |s|
Res

.

�

Note how (3) generalizes the claim for real s. The eigenvalues of the Laplacian
in the real case lie in the interval [0,2]; hence, the estimate is clearly sharp by
comparison with the real case.

Next, we prove Theorem 2:

Proof of Theorem 2. Let λ = u+ iw be an eigenvalue of the normalized complex-
weighted Laplacian ∆̃ρ with the eigenfunction f , i.e,

λ f (x) = ∆̃ρ f (x).

Then by Green’s formula we have

(11) ∑
x∈V

λ | f (x)|2ρ(x) =
1
2 ∑

x,y∈V
|∇xy f |2ρxy.

Let us write separately real and imaginary parts of the last equality, assuming
ρxy = τxy + iσxy and ρ(x) = τ(x)+ iσ(x). Note that in this case τ(x) = ∑y τxy and
σ(x) = ∑y σxy.

Then,
λ ∑

x∈V
| f (x)|2ρ(x) = (u+ iw) ∑

x∈V
| f (x)|2(τ(x)+ iσ(x)),
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and

1
2 ∑

x,y∈V
|∇xy f |2ρxy =

1
2 ∑

x,y∈V
|∇xy f |2(τxy + iσxy).

Therefore, for the real part of (11), we have

(12) u ∑
x∈V
| f (x)|2τ(x)−w ∑

x∈V
| f (x)|2σ(x) =

1
2 ∑

x,y∈V
|∇xy f |2τxy,

and for the imaginary part,

(13) u ∑
x∈V
| f (x)|2σ(x)+w ∑

x∈V
| f (x)|2τ(x) =

1
2 ∑

x,y∈V
|∇xy f |2σxy.

Multiplying (12) by u and (13) by w and summing the obtained equalities up, we
get

(14) (u2 +w2) ∑
x∈V
| f (x)|2τ(x) =

1
2 ∑

x,y∈V
|∇xy f |2(τxyu+σxyw).

Let us estimate the left-hand side, using the obvious inequality

|∇xy f |2 = | f (y)− f (x)|2 ≤ 2(| f (y)|2 + | f (x)|2).

Moreover, the right-hand side of (14) is positive, this means also the left-hand side
is positive and at least one (τxyu+σxyw) is positive.

Let w > 0. Then, we have

(u2 +w2) ∑
x∈V
| f (x)|2τ(x) =

1
2 ∑

x,y∈V
|∇xy f |2τxy(u+

σxy

τxy
w)

≤ ∑
x,y∈V

(| f (y)|2 + | f (x)|2)τxy(u+
σxy

τxy
w)

≤ ∑
x,y∈V

(| f (y)|2 + | f (x)|2)τxy(u+wmax
x∼y

σxy

τxy
)

≤ 2 ∑
x∈V
| f (x)|2τ(x)(u+wmax

x∼y

σxy

τxy
).

Therefore,

u2 +w2 ≤ 2(u+wmax
x∼y

σxy

τxy
),

i.e.,

(u−1)2 +

(
w−max

x∼y

σxy

τxy

)2

≤ 1+
(

max
x∼y

σxy

τxy

)2

.
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Let w < 0. Then, we have

(u2 +w2) ∑
x∈V
| f (x)|2τ(x) =

1
2 ∑

x,y∈V
|∇xy f |2τxy(u+

σxy

τxy
w)

≤ ∑
x,y∈V

(| f (y)|2 + | f (x)|2)τxy(u+
σxy

τxy
w)

≤ ∑
x,y∈V

(| f (y)|2 + | f (x)|2)τxy(u+wmin
x∼y

σxy

τxy
)

≤ 2 ∑
x∈V
| f (x)|2τ(x)(u+wmin

x∼y

σxy

τxy
).

Therefore,

u2 +w2 ≤ 2(u+wmin
x∼y

σxy

τxy
),

i.e.,

(u−1)2 +

(
w−min

x∼y

σxy

τxy

)2

≤ 1+
(

min
x∼y

σxy

τxy

)2

.

Let w = 0. Then, we have

u2
∑
x∈V
| f (x)|2τ(x) =

1
2 ∑

x,y∈V
|∇xy f |2τxyu

≤ 2 ∑
x∈V
| f (x)|2τ(x)u.

Therefore,

u2 ≤ 2u,

which means that the real eigenvalues of the normalized complex Laplacian lie in
[0,2].

From (7) follows by squaring

Re2
ρxy

Re2
ρxy + Im2

ρxy
≥ Re2 s

Re2 s+ Im2 s
.

This yields

Im2
ρxy

Re2
ρxy
≤ Im2 s

Re2 s
,

and hence,

−
∣∣∣∣ Ims
Res

∣∣∣∣≤ Imρxy

Reρxy
≤
∣∣∣∣ Ims
Res

∣∣∣∣ .
The proof is complete. �

3.2. Examples and sharpness of the estimates. With the following example we
illustrate the estimates from above and point out how we cannot scale down the
radii of the circles in Theorem 2 . We consider the linear graph P4 with four vertices
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and edges weighted s, 1/s, s. The complex normalized Laplacian is given by the
matrix

(15) A =


1 −1 0 0
−s2

1+s2 1 −1
s2+1 0

0 −1
s2+1 1 −s2

s2+1
0 0 −1 1

 .

We find for the eigenvalues

(16)
1

1+ s2 , 0, 2,
1+2s2

1+ s2 .

The corresponding eigenvectors are computed as

(−1,
−s2

1+ s2 ,
s2

1+ s2 ,1), (1,1,1,1), (−1,1,−1,1), (1,
−s2

1+ s2 ,
−s2

1+ s2 ,1).

In the Figure 1 we have plotted the eigenvalues as red dots for s = 1+2i, which
are 0, 2, −1/10−2i/10, 21/10+2i/10. The green circles correspond to the esti-
mates from Theorem 2, blue circles correspond to Theorem 1. Note that in this case
there is an eigenvalue with real part larger than 2, and an eigenvalue with negative
real part.

Let s = s1 + is2, s1,s2 > 0. We shall show sharpness of Theorem 2 considering
the eigenvalue

z = 1+
s2

1+ s2 .

For eigenvalues of the complex Laplacian with positive imaginary part w and real
part u we have shown the estimate

(u−1)2 +(w−m)2 ≤ 1+m2, m = max
Imρxy

Reρxy
.

Note that in our example the maximum ratio is m = s2/s1. We show that for any
ε > 0 the estimate

(17) (u−1)2 +(w−m)2 ≤ 1+m2− ε,

fails, choosing a sufficiently large value of s1.
Firstly, we compute

(u−1)2 =
((s2 + s̄2)/2+ |s|4

|1+ s2|2
)2

=
(s2

1− s2
2 +(s2

1 + s2
2)

2

|1+ s2|2
)2
,

(w−m)2 =
( 2s1s2

|1+ s2|2
− s2

s1

)2
.

Multiplying (17) with |1+ s2|4 we find

(s2
1− s2

2 +(s2
1 + s2

2)
2)2 +(2s2

1s2−
s2

s1
|1+ s2|2)2 ≤ |1+ s2|4(1+ s2

2

s2
1
− ε).

Multiplying the above with s2
1 gives

s2
1(s

2
1− s2

2 +(s2
1 + s2

2)
2)2 + s2

2(2s2
1−|1+ s2|2)2 ≤ |1+ s2|4(s2

2 +(1− ε)s2
1).

Subtracting s2
2|1+ s2|4 on both sides and dividing by s2

1 yields

(s2
1− s2

2 +(s2
1 + s2

2)
2)2 +4s2

1s2
2−4s2

2|1+ s2|2 ≤ (1− ε)|1+ s2|4.
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We consider s2 � 1� s1 such that the highest power of s1 dominates. But on
the left-hand side, we find s8

1 and on the right-hand side (1− ε)s8
1. Therefore, the

inequality (17) fails choosing s1 large enough (for fixed s2).

s1

s2

0 1

FIGURE 1. Location of eigenvalues for s = 1+2i

4. ESTIMATE FOR SMALLEST EIGENVALUE IN MODULUS

For the real normalized Laplacian the smallest positive eigenvalue (also called
spectral gap) plays a crucial role finding the mixing properties of the associated
random walk. In the real case, a lower bound is provided by the Cheeger constant
(cf. [6]). Roughly speaking, this measures the connectedness when removing ver-
tices. Evidently, the geometry of the underlying graph plays the crucial role. Here,
we do not know how to generalize the Cheeger constant to the case of complex
weights because eigenspaces of eigenvalues are not necessarily orthogonal. We
can still prove the lower bound depending on the diameter. We start with a lower
bound on Reρxy.

Lemma 11. Let

C1 = min
x ∑

y

( 1
Lxy +Rxy +Dxy

)
, C2 = ∑

x,y

1
Lxy +Rxy +Dxy

.

Then, we find the following estimate to hold:

min
x

Re(ρ(x))− | Ims|
Res ∑

x
Re(ρ(x))

≥C1 Resmin(|s|2, |s|−4)−C2
| Ims|
Res

max(1, |s|2)
Res

.

(18)

Proof. Let r = ρxy for brevity. Note that

Re(r) = |r|2 Re
(

1
r

)
= |r|2

(
Re(s)Lxy +Rxy +Dxy

Res
|s|2

)
.
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Moreover, ∣∣1
r

∣∣= |Lxys+Rxy +
Dxy

s
| ≤ Lxy|s|+Rxy +

Dxy

|s|
≤ (Lxy +Rxy +Dxy)max(|s|,1/|s|).

Consequently,

Re(r)≥ 1
(Lxy +Rxy +Dxy)2 max(|s|2,1/|s|2)

(Lxy +Rxy +Dxy)min(Res,Re
s
|s|2

)

because min(1,Res,Res/|s|2) = min(Res,Res/|s|2), which can be seen by con-
sidering |s| ≤ 1 and |s| ≥ 1. Hence,

Re(ρxy)≥
Res

Lxy +Dxy +Rxy

min(1, |s|−2)

max(|s|2, |s|−2)

=
Re(s)

Lxy +Rxy +Dxy
min(|s|2, |s|−4).

Hence, we find by (8)

min
x

Re(ρ(x))− | Ims|
Res ∑

x
Re(ρ(x))

≥ Re(s)
[

min
x ∑

y

( 1
Lxy +Rxy +Dxy

)]
min(|s|2, |s|−4)− | Ims|

Res ∑
x
|ρ(x)|

=C1 Resmin(|s|2, |s|−4)−C2
| Ims|
Res

max(1, |s|2)
Res

.

�

Thus, for fixed Res, we can find the above quantity to be positive choosing Ims
sufficiently small only depending on Res and the electrical network. Moreover, for
s = 1 the lower bound is attained. We are ready to prove Theorem 3.

Proof. Let λ1 be the smallest eigenvalue in modulus and let f be a corresponding
eigenfunction. We normalize f such that f (x0) = 1 and max | f (x)| = 1. Green’s
formula yields that

∑
x

∆̃ρ f1(x)ρ(x) = λ1 ∑
x

f1(x)ρ(x) = 0.

Indeed, in (5) set f2 ≡ 1 and integrate by parts. Hence,

∑
x

f1(x)ρ(x) = 0.

Therefore,

Re(ρ(x0))+Re
(

∑
x 6=x0

f1(x)ρ(x)
)
= 0

⇔ Re(ρ(x0))+ ∑
x 6=x0

Re f1(x)Reρ(x)− ∑
x 6=x0

Im f1(x) Imρ(x) = 0,

but ∣∣ ∑
x 6=x0

Im( f1(x)) Im(ρ(x))
∣∣≤ ∑

x 6=x0

| Imρ(x)|.
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Hence, by Lemma 11 and assumption (4),

minReρ(x)− ∑
x 6=x0

| Imρ|> 0,

we find that

∑
x 6=x0

Re( f1(x))Reρ(x)< 0.

Since Re(ρ(x))> 0, there is xn+1 such that Re( f1(xn+1))< 0.
Another application of Green’s formula gives

λ1 ∑ | f (x)|2ρ(x) =
1
2 ∑

x,y
| f (x)− f (y)|2ρxy,

which implies

|λ1|=
1
2

∣∣∑x,y | f (x)− f (y)|2ρxy∣∣∑x | f (x)|2ρ(x)
∣∣

We estimate the numerator from below by finding a path x0, . . . ,xn+1:

1
2

∣∣∑
x,y
| f (x)− f (y)|2ρxy

∣∣
≥ 1

2 ∑
x,y
| f (x)− f (y)|2 Reρxy

≥ 1
2 ∑

x,y
| f (x)− f (y)|2 minReρxy

≥
n

∑
k=0
| f (xk)− f (xk+1)|2 minReρxy

≥
n

∑
k=0
|Re f (xk)−Re f (xk+1)|2 minReρxy

≥
minReρxy

n

∣∣ n

∑
k=0

Re f (xk)−Re f (xk+1)
∣∣2

≥
minReρxy

n
≥ Res C1 min(|s|2, |s|−4)

D
.

For the denominator we find by (8)∣∣∣∣∑
x
| f (x)|2ρ(x)

∣∣∣∣≤∑
x
|ρ(x)| ≤C2

min(1, |s|2)
Res

.

This finishes the proof of Theorem 3. �
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