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1 Introduction

“Not only is the universe
stranger than we think, it is
stranger than we can think.”

Werner Heisenberg
Across the Frontiers, 1975

Quantum mechanics is one of the most successful theories of modern physics. It
did not only help to explain countless physical phenomena, but entailed a vast
impact on applications such as lasers and electronic devices, which are shaping
our everyday life. To this date, the potential of quantum mechanics has by far not
yet been exhausted. It was Dr. Richard Feynman in 1982, to suggest the use of
quantum effects in the field of computing [Fey82]. By exploiting the quantum me-
chanical effects of superposition and entanglement, an exponential computational
advantage can be achieved compared to a classical computer. Such computational
advantage would be of tremendous importance for the simulation of quantum
chemistry problems, which are exponentially hard for a classical computer [Bab+15;
Lan+10; Hem+18]. Furthermore, the implementation of quantum algorithms such
as Grover’s search algorithm for searching lists [Gro97] or Shor’s algorithm for
factorization of prime numbers [Sho94] would outperform a classical computer
and be of practical use.

At the heart of the quantum computer is the quantum bit (qubit) - a quantum two-
level system (|0〉 , |1〉). In contrast to its binary classical counterpart, its quantum
state allows for any complex superposition of its states |ψ〉 = α |0〉+ β |1〉. Over
the years various physical implementations of qubits have been realized, including
nitrogen-vacancies in diamonds [Dut+07], trapped ions [Lei+03], polarized pho-
tons [KLM01], quantum dots [Pet05], and superconducting qubits [CW08]. Since
the demonstration of the first superconducting qubit in 1999 [NPT99], tremen-
dous experimental progress has been made with an exponential increase in qubit
coherence [DS13]. Although state of the art qubits still suffer significantly from
decoherence [Kja+20], within the current era of NISQ (noisy intermediate scale
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1 Introduction

quantum computing) [Pre18] a breakthrough experiment with 53 qubits outper-
formed a classical supercomputer [Aru+19]. Furthermore, first basic quantum
error correction schemes have been demonstrated with superconducting qubits
[Kel+15; Ree+12; Cór+15]. With respect to these achievements, superconducting
qubits have presented themselves as one of the most promising platforms for a
future realization of a quantum computer.

A key ingredient of quantum computing and quantum information processing is
strong light matter interaction: photons are not only used to excite, manipulate
and to readout the qubits, but are also required to mediate interactions between
them. Roughly speaking, the so-called strong-coupling limit is defined as the limit
where the qubit coupling to a desired channel exceeds the coupling to other
dissipative channels [Wal+04]. In most of today’s quantum information systems
strong coupling is achieved by embedding the qubit in a resonator or cavity. The
interaction of qubits with the quantized single modes of cavities is treated in
the framework of cavity quantum electrodynamics (cQED) [Bla+04]. Through the
resonator, strong coupling can be realized and the qubit is simultaneously protected
from noise of the environment. Even more importantly, the detuned resonator qubit
system allows for a dispersive quantum non-demolition readout of the qubit state
[Bla+04]. In more recent works a further enhancement of the coupling strength
in multi-qubit cQED systems with a strong collective non-linear response was
demonstrated [Shu+17; Yan+20; Sha+15; Mac+14].

A different approach is required when qubits should be strongly coupled to prop-
agating light, as used for information exchange, instead of standing waves in a
cavity. The coupling to propagating light can be achieved when the qubits are
electromagnetically coupled to the mode continuum of a waveguide. However, in
three-dimensional waveguides it is hard to reach a coherent and strong interaction
of light and qubits due to spacial mode mismatches [RWF17]. By confining the
waveguides to one dimension, strong [RWF17] and even ultra-strong [For+16]
light-qubit interaction can be achieved. In analogy to cQED, the field of qubits
interacting with the one-dimensional open space of a waveguide is considered as
waveguide quantum electrodynamics (wQED) [Gu+17]. wQED systems have the
appealing feature of providing a non-linearity, which is observable at the single
photon level in an open space configuration. For single qubits coupled to a waveg-
uide this gives rise to various non-linear quantum effects like the Mollow triplet,
Autler-Townes splitting and anti-bunched light [Gu+17].

If multiple qubits are coupled to a common waveguide, it can be shown that the
qubits obtain an infinite range interaction mediated by virtual and real photons
in the waveguide [Lal+13]. Furthermore, this interaction also leads to collective
qubit excitations, which can have radiative lifetimes much bigger (subradiance)
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1 Introduction

or much smaller (superradiance) than those of the constituting qubits [Lal+13].
The infinite range interaction between qubits could be of great benefit for multi-
node quantum computing and quantum networks [Kim08], where propagating
photons are used to transfer information between local processing units. Over
the recent years numerous applications of multi-qubit wQED systems such as
arbitrary Fock state synthesis [Pau+18; Gon+17], generation of entangled states
[ZB19], number resolving photon detection [MC19], atomic mirrors [Cha+12],
quantum computation [PKG16], and the generation of non-classical light [FZB14]
have been proposed. A further highly relevant application would be the realization
of slow and even stopped light [Eve+19] and quantum memories [LS12] based on a
collective electromagnetically induced transparency protocol. A quantum memory
would allow for coherent storage and on-demand retrieval of light pulses and is
thus a crucial ingredient of a future quantum computer [LST09].

Besides applications in quantum information processing, a different way of viewing
multi-qubit wQED systems is in the context of quantum metamaterials [ZFR16]. It ex-
tends the idea of classical metamaterials [SPW04] to a regime where its meta-atoms
(qubits) can hold their quantum coherence longer than a light pulse traversing
the medium. Similar to classical metamaterials, a large ensemble of qubits with
periodic, but sub-wavelength inter-qubit spacings allows for an effective medium
description. It is predicted that quantum metamaterials can provide global optical
response functions that depend on the quantum state of the participating qubits
[Rak+08]. Moreover, quantum metamaterials are expected to feature exotic localized
polaritonic excitations [Zho+20]. Therefore, large scale multi-qubit wQED system
do not only offer numerous applications in quantum information processing, but
could also be used to study fundamental excitations in solids.

Experimentally, superconducting wQED systems with single qubits have been
studied extensively. The first demonstration of resonance fluorescence was demon-
strated by Astafiev et al. [Ast+10a] using a flux qubit coupled to a waveguide,
followed by demonstrations of time resolved dynamics [Abd+11] and the Autler-
Townes effect [Abd+10] as well as other non-linear effects like frequency mixing
[Dmi+17; Hön+18] and amplification [Ast+10b]. Similar experiments with trans-
mons [Hoi+13] showed generation of non-classical light, photon-photon correla-
tions [Hoi+12] and an implementation of a single photon router [Hoi+11].

Even though superconducting qubits show the strongest light matter interaction
compared to wQED systems based on other physical implementations [Gu+17],
multi-qubit systems have been barely studied to this date. A first demonstration
of super- and subradiance was given on a two-qubit wQED system [Loo+13].
Very recently an atomic mirror [Mir+19] and the generation of entangled photons
[Kan+20] were demonstrated.
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In this work, first experiments with one and two qubits are extended to multiple
qubits in order to study cooperative effects in a scaled wQED system. We realize
a densely spaced periodic array of eight transmon qubits with local frequency
control, which are coupled to a common coplanar superconducting waveguide.
In the first part of this thesis, we investigate the collective excitations of this
quantum metamaterial [Bre+21]. The individual qubit tunability allows us to
consecutively tune the qubits to a common resonance frequency and to observe
their collective excitations in the transitioning regime between an individual qubit
and a continuous band structure of a full-blown metamaterial. These collective
excitations are delocalized polaritons, which have radiative relaxation rates ranging
from extremely subradiant to superradiant compared to the individual qubits.
Furthermore, we observe the emergence of a polaritonic band gap and present
results on the collective Autler-Townes effect, which enables us to effectively control
the band gap and the overall optical response of the metamaterial. Concluding
the first part, the effect of artificial disorder on the transmission of light in the
metamaterial is investigated, which might serve as a tool to study Anderson
localization.

In the second part, we utilize the quantum metamaterial for a first realization of
slow light in a superconducting wQED system, where the qubits are directly used
as dispersive elements. Employing either the collective Autler-Townes effect or an
engineered band structure, we are able to achieve a strong reduction of the group
velocity of light. This paves the way towards the realization of a quantum memory
in superconducting wQED.

In a concluding chapter, we present first experimental efforts to increase the system
size to 90 non-tunable qubits. Our preliminary results show that it is possible
to achieve a partial collective behavior even in the presence of disorder and also
motivate further research in the direction of large scale wQED systems.
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2 Superconducting Quantum Bits

This chapter provides a brief introduction to superconducting quantum bits
(qubits). It is written for readers from other fields of research. First, the funda-
mental concept of an idealized two-level system and its mathematical description
is provided, which is at the heart of all applications in quantum computing. It is
followed by an introduction of the Josephson effect (quantum-tunneling of electron-
pairs through a barrier), which provides a strong intrinsic non-linearity and is thus
of crucial relevance for the experimental realization of almost all superconducting
qubits. This chapter concludes with the introduction to a special kind of super-
conducting qubit called the transmon, which is not only the qubit of choice in this
work, but one of the most widely and successfully used superconducting qubit to
this date.

2.1 The Quantum Bit

2.1.1 Bloch Sphere

The basic building block of every quantum computer is the quantum bit (qubit).
It is the quantum analogue to a classical bit, which can either be in state 0 or 1.
The quantum state of a qubit |ψ〉 however allows for any complex superposition of
these two states:

|ψ〉 = α |0〉+ β |1〉 = α

(
0
1

)
+ β

(
1
0

)
=

(
β

α

)
, α, β ∈ C (2.1)

From the normalization condition of the wavefunction follows 〈ψ|ψ〉 = 1 = |α|2 +
|β|2. In order to visualize the qubit state |ψ〉, it is typically regarded as a Bloch
vector in three-dimensional real space [Kra+19]. Without the loss of generality it
can be re-expressed in terms of spherical coordinates:

|ψ〉 = cos(
θ

2
) |0〉+ sin(

θ

2
) exp(iφ) |1〉 , 0 ≤ φ < 2π, 0 ≤ θ ≤ π (2.2)
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2 Superconducting Quantum Bits

Figure 2.1: Schematic of the Bloch sphere. Every pure state |ψ〉 can be represented as a Bloch
vector pointing to the surface of the Bloch sphere with radius 1. The axes of the three dimensional
coordinate system are related via Eq. 2.3 with the states |0〉 , |1〉 of the qubit.

By comparing a Bloch-unit vector a = sin(θ) cos(φ) |x〉+ sin(θ) sin(φ) |y〉+ cos(θ) |z〉
with Eq. 2.2, the basis of the real space coordinate system can be associated with
the qubit states via:

|x〉 = 1√
2
(|0〉+ |1〉) |y〉 = 1√

2
(|0〉+ i |1〉) |z〉 = |0〉 (2.3)

With these relations at hand, any pure qubit state |ψ〉 can be visualized as a unit
Bloch-vector lying on the surface of the Bloch-sphere (compare Fig. 2.1). It is noted
that a qubit state in the Schroedinger picture evolves in time according to:

|ψ(t)〉 = exp(−iω10σzt/2) |ψ(0)〉 = cos(
θ

2
) |0〉+ sin(

θ

2
) exp(i(φ−ω10t) |1〉 (2.4)

Here, ω10 denotes the qubit frequency and σz is the corresponding Pauli matrix
with σz |0〉 = − |0〉 and σz |1〉 = |1〉. From Eq. 2.4 follows, that the Bloch vector
|ψ(t)〉 is constantly precessing around the z-axis at the transition frequency of the
qubit ω10. In order to regard the qubit state as stationary, typically a transformation
into the rotating reference frame of the qubit is applied. The transformation of the
Hamilton operator H in a resting frame to the rotating frame (H′) of the qubit can
be achieved with:

H′ = U(t)HU†(t)− ih̄U(t)U̇†(t) with U(t) = exp(i
ω10

2
σzt) (2.5)

2.1.2 Driving a Qubit

In order to manipulate the qubit, it can be driven with an oscillating microwave
drive. The Hamilton operator of a driven two-level system is given by:

H = h̄
ω10

2
σz + h̄Ω cos(ωt + ϕ)σx (2.6)
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2.1 The Quantum Bit

Ω is the Rabi-strength of the drive, ω is its frequency, and ϕ accounts for a phase
offset. For a the relation between the Rabi-strength Ω and the actual microwave
power P driving the qubit, see section 5.3.2. It is instructive to transform Eq. 2.6
into a reference frame rotating with the frequency of the drive, such that a time
independent Hamiltonian H′ is obtained. This can be done by using again Eq. 2.5
with U = exp(iωσzt/2). Thus, in the rotating frame of the drive H′ is given by:

H′ ≈ −h̄
ω−ω10

2
σz + h̄

Ω

2
(cos(ϕ)σx + sin(ϕ)σy) (2.7)

Note that here the so-called rotating wave approximation (RWA) was applied,
meaning that fast rotating terms in H′can be neglected (exp(±2iωt) ≈ 0). Eq. 2.7
indicates that, depending on the phase-offset ϕ, the microwave drive induces a
rotation around an axis in the xy-plane of the Bloch sphere. This can be better
understood by calculating the time-dependent probability to find the qubit in
the excited state P1(t) = | 〈1|ψ(t)〉 |2. Solving the time-dependent Schroedinger
equation with H′ from Eq. 2.7, with ϕ = 0 yields:

P1(t) = | 〈1|ψ(t)〉 |2 =
Ω2

Ω2 + ∆2 sin2

(√
Ω2 + ∆2t

2

)
, ∆ = ω10 −ω (2.8)

If the microwave drive is resonant with the qubit (∆ = 0), Eq. 2.8 yields that the
probability to find the qubit in the excited state oscillates periodically between zero
and one. These drive-induced oscillations of a qubit are called Rabi oscillations.

2.1.3 Decoherence

In any realistic implementation of qubits the idealized picture of a perfectly isolated
two-level is incomplete and can’t fully capture its dynamics [Kra+19]. Since the
qubits have to be controlled and read out from outside, they have to be coupled to
the environment to some extend. Moreover, spurious couplings to the environment
via for example electromagnetic modes cannot be avoided. Therefore a qubit is in
fact an open quantum system and subject to noise and decoherence, which destroy
the quantum state of the qubit. As such, the qubit state has to be characterized in
terms of the density matrix ρ, because it allows for a statistical mixture of pure
states |ψi〉 [Man20]:

ρ = ∑
i

pi |ψi〉 〈ψi| ∑
i

pi = 1 (2.9)

Here, pi is the probability to find the qubit in the state ψi. When mixed states are
represented with the Bloch sphere, they are no longer lying on the surface, but
inside the unit sphere [Kra+19].
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2 Superconducting Quantum Bits

The time evolution of the density matrix of a dissipative quantum system is
described by the Lindblad master equation [Man20]:

ρ̇(t) = − i
h̄
[H, ρ] + ∑

i
ΓiD[Ai]ρ with D[A]ρ = [AρA† − 1

2
{A† A, ρ}] (2.10)

The first term on the right hand side of Eq. 2.10 describes the unitary time evolution
of ρ, while the second term contains a sum over all decoherence channels of the
corresponding system. Each of these channels is characterized by a decoherence
rate Γi and a collapse operator Ai.

For the case of a two level system, which is subject to transversal and longitudinal
noise, there are three decoherence channels with the collapse operators σ+, σ− and
σz/
√

21. In the limit of low temperatures (kBT � ω10 h̄) thermal activation of the
qubit through the environment via σ+ can be excluded. The transversal decay rate
is denoted with Γ10 and describes the energy relaxation of the qubit population.
The longitudinal rate is denoted with Γφ and accounts for pure dephasing. With
H = h̄ω10σz/2 the Lindblad equation of the system is given by:(

ρ̇11 ρ̇10
ρ̇01 ρ̇00

)
=

(
0 −iω10ρ10

iω10ρ01 0

)
+

(
−Γ10ρ11 −( Γ10

2 + Γφ)ρ10

−( Γ10
2 + Γφ)ρ01 Γ10ρ11

)
(2.11)

Solving this set of differential equations yields

ρ(t) =

(
a exp(−t/T1) b exp(−t/T2) exp(−iω10t)

b∗ exp(−t/T2) exp(iω10t) 1− a exp(−t/T1)

)
(2.12)

Here, a and b are some introduced constants, which depend on the initial state of
the qubit at t = 0. As can be seen from Eq. 2.12, the qubit population, which is
given by ρ11 decays exponentially on a timescale given by T1 = 1/Γ10. The phase
information of the qubit state decays exponentially too on a timescale given by
T2 = 1/γ10 = 1/(Γ10/2 + Γφ).

2.2 Josephson Tunnel Barriers

2.2.1 A Brief Review of Superconductivity

Materials in the superconducting state feature a variety of hallmark phenomena,
which separate them from conductors in the normal state. The most prominent

1 σ+ = 1/2(σx − iσy), σ− = 1/2(σx + iσy)
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2.2 Josephson Tunnel Barriers

property of superconductors is the complete loss of electrical resistance below a cer-
tain critical temperature Tc. The effect was first observed in 1911 by H. Kamerlingh
Onnes, in resistance measurements of mercury at different cryogenic temperatures
[Kam11]. Several years later a further hallmark property was found by Meissner
and Ochsenfeld [MO33]: superconductors can not be penetrated by magnetic fields
smaller than a critical field-strength Hc. While this behavior resembles the one
of any perfect conductor, a superconductor also repels magnetic field lines when
being cooled down below Tc in the presence of a magnetic field. The Meissner-
Ochsenfeld-Effect was explained in 1935 by F. London with the London equations
[LLL35]. These phenomenologically derived equations explain the effect by the
exponential decay of magnetic fields inside the superconductor on a character-
istic length-scale λL. It took another 22 years until the the microscopic origin of
superconductivity was explained in 1957 by Bardeen, Cooper and Schrieffer in
the BCS-theory [BCS57]. They showed that a weak attractive interaction between
electrons, which is mediated by phonons, can lead to an instability to the electronic
groundstate of a superconductor and to a transition into a new superconduct-
ing groundstate at lower energy. This is caused by the pairing of electrons into
bosonic particles called Cooper-pairs with zero spin and total momentum. A major
prediction of the theory was that the quasi-particle excitation spectrum in a super-
conductor possesses an energy gap ∆(T) and that at least an energy of E = 2∆(T)
is required to create a pair of quasi-particle excitations [Tin04]. It is also the energy
gap which causes the electrical resistance to vanish due to the lack of scattering
states. Moreover the critical temperature Tc is connected with the gap energy by:

2∆(0) = 3.528kBTc (2.13)

A further important finding was that the BCS-groundstate (i.e. the electronic ground
state of the superconducting condensate) can be described with a macroscopic
wave function ψ(r, t), with a well defined coherent phase θ(r, t) over the whole
superconductor [Tin04]:

ψ(r, t) =
√

ns(r, t) exp (iθ(r, t)) (2.14)

ns(r, t) is the density of superconducting electrons. The number N of Cooper
pairs (or their associated charge Q = 2eN) and the superconducting phase θ are
conjugate variables and thus fulfill Heissenbergs uncertainty relation [Tin04]:

δNδθ & 1 (2.15)

A further consequence of the macroscopic wave function in Eq. 2.14 is the quanti-
zation of magnetic fluxoids Φ = nΦ0 penetrating a superconducting loop, since
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2 Superconducting Quantum Bits

the phase θ can only change by integer multiples of 2π around a ring. Φ0 is the
superconducting flux quantum:

Φ0 =
h
2e

(2.16)

2.2.2 The Josephson Effect

In 1962 B. D. Josephson solved the problem of tunneling Cooper pairs through a
thin insulating barrier between two superconductors (S-I-S) [Jos62]. He showed
that the interference of the two macroscopic wavefunctions ψ1 and ψ2 of the two
bulk superconductors leads to coherent tunneling of Cooper pairs in dependence
on the phase difference ϕ = θ1 − θ2 between the superconductors (Fig. 2.2). The
effect is described by two Josephson equations:

I = Ic sin ϕ (2.17)

V =
Φ0

2π

dϕ

dt
(2.18)

The first equation describes the remarkable property that a supercurrent I flows
through the barrier between the two superconductors which depends only on the
phase difference ϕ, without any voltage drop across the barrier. This is therefore
also referred to as dc Josephson effect. The second equation states: if a dc current
larger than a critical current Ic is applied to the junction, a voltage V appears
across the barrier, which oscillates periodically in time and thus generates high
frequency waves with ω = 2eV/h̄ [Sch+97]. Later it was found that the above
equations do not only hold for S-I-S junctions, but in fact for every form of a weak
link between two superconductors [Tin04]. The dependence of the critical current Ic

on other model parameters, such as the used superconductors, junction geometry,
room temperature resistance of the barrier Rn and temperature was solved by
Ambegaokar and Baratoff for S-I-S type junctions [AB63]:

IcRn =
π∆

2e
tanh

(
∆

2kBT

)
(2.19)

Further, the energy stored in a Josephson junction is given by the integration of the
electrical power with respect to time:

E =
∫

I(t)V(t) dt =
∫

Ic sin(ϕ)
Φ0

2π

dϕ

dt
dt = EJ(1− cos (ϕ)) (2.20)

Here, EJ is the Josephson energy defined by:

EJ =
Φ0

2π
Ic (2.21)
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2.2 Josephson Tunnel Barriers

c

CJ

a b

I SS

ψ1=
√

n1eiθ1 ψ2=
√

n2eiθ2
S S

I

Figure 2.2: (a) Schematic of a Josephson tunneling barrier of S-I-S type. Left and right superconduc-
tors are described by macroscopic wave functions ψ1 and ψ2. (b) Actual realization of a Josephson
junction with thin metallic films. (c) Circuit diagram of a Josephson junction. Note that the intrinsic
capacitance CJ of the contact is accounted for.

Using Faradays law V = −LJ
∂I
∂t

combined with Eq. 2.17 and Eq. 2.18, an effective
inductance LJ can be associated to a Josephson junction:

LJ =
Φ0

2π Ic cos(ϕ)
(2.22)

It is noted that LJ is non-linear due to its dependence on the phase difference
ϕ. As shown in the next section this non-linearity is of crucial importance for
adding anharmonicity to the superconducting qubits, allowing to realize a two-
state computational basis. As shown in Fig. 2.2, a real Josephson junction resembles
a plate capacitor and therefore possesses a shunting capacitance CJ. Thus, a junction
has the electrostatic charging energy:

1
2

CJU2 =
1
2

CJ

(
Q
CJ

)2
= 4EcN2 with Ec =

e2

2CJ
(2.23)

2.2.3 Superconducting Quantum Interference Devices

Superconducting Quantum Interference Devices (SQUIDs) are one of the most
prominent applications of the Josephson effect. They are used for extremely sen-
sitive detection of magnetic fields and the flux-tunability of superconducting
resonators and qubits [Ken+19; Kra+19]. The most common type are dc SQUIDs,
where two Josephson in parallel form a superconducting ring (Fig. 2.3(a)). The
working principle of a dc SQUID is based on quantum interference between two su-
percurrents (Ia and Ib), passing through a ring penetrated by an external magnetic
field B.

Itot = Ia + Ib (2.24)

= Ic sin(θ2 − θ1︸ ︷︷ ︸
ϕa

) + Ic sin(θ4 − θ3︸ ︷︷ ︸
ϕb

) (2.25)

= 2Ic sin((ϕa + ϕb)/2) cos((ϕa − ϕb)/2) (2.26)

11
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Ib
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C

Figure 2.3: (a) Sketch of a dc superconducting quantum interference device (SQUID). The SQUID is
formed by two Josephson junctions in parallel, forming a loop which encloses a magnetic flux Φ

from an outer magnetic field density. (b) Absolute value of the SQUID’s maximal super current
Ic,eff for symmetric and asymmetric Josephson junctions (see Eq. 2.29)).

Integrating the gauge invariant London equation j = Λ(∇ϕ− 2π/Φ0A) around
the path C indicated in Fig. 2.3(a) under the assumption that j = 0 in the middle of
the ring, the following relation is obtained [Sch+97]:

ϕa − ϕb =
2π

Φ0

∮
C

A dl =
2πΦ

Φ0
(2.27)

Here, Φ is the magnetic flux penetrating the SQUID. Combining Eqs. 2.26 and 2.27
the total current through the SQUID is given by:

Itot = Ic,eff sin(ϕb +
2πΦ

Φ0
) with Ic,eff = 2Ic cos

(
πΦ

Φ0

)
(2.28)

The SQUIDs effective critical current Ic,eff in Eq. 2.28 features a strong dependence
on external magnetic fields and can thus be used as a magnetic sensor (Fig. 2.3(b)).
If two different Josephson junctions with critical currents Ic,a and Ic,b are used to
form a SQUID, Ic,eff gets renormalized [Koc+07]:

Ic,eff = (Ic,a + Ic,b) cos
(

πΦ

Φ0

)√
1 + m2 tan2

(
πΦ

Φ0

)
with m =

Ic,a − Ic,b

Ic,a + Ic,b
(2.29)

2.3 Physical Implementation of Superconducting
Qubits

2.3.1 From a Josephson Junction to a Qubit

The properties of quantum circuits can be best understood by first studying the
quantum harmonic oscillator, which is one of the most well-known models in

12



2.3 Physical Implementation of Superconducting Qubits

physics. In a superconducting electrical circuit, in the absence of restive losses, a
quantum harmonic oscillator is realized by a capacitance C and an inductance L in
parallel (Fig. 2.4(a)). If driven with a current, the electromagnetic energy stored in
the inductor is associated with a potential energy and the charging energy of the
capacitance is associated with a kinetic energy:

H =
1
2

CU2 +
1
2

LI2 =
1
2

Q2

C
+

1
2

Φ2

L
= 4EcN2 +

1
2

EL ϕ2 (2.30)

The so called node-flux Φ and charge Q are connected to the voltage V across the
capacitor and the current I through the inductor by [VD17]:

Q(t) =
∫ t

−∞
I(t′) dt′ Φ(t) =

∫ t

−∞
V(t′) dt′ (2.31)

Equivalently, the dimensionless variables of charge number N = Q/2e and phase
ϕ = Φ2π/Φ0 can be used. Ec = e2/2C is the charging energy of the capacitor,
i.e. the amount of energy needed to add a cooper pair to the capacitor, and EL =

(Φ0/2π)2/L the inductive energy. In the quantum regime the conjugate variables
Φ and Q are replaced by non-commuting operators Φ̂, Q̂ with [Φ̂, Q̂] = ih̄. Using
the second quantization procedure with Q̂ ∝ i(a† − a) and Φ̂ ∝ (a + a†) Eq. 2.30
reduces to [Kra+19]:

H = h̄ωr

(
a†a +

1
2

)
with ωr =

1√
LC

(2.32)

As depicted in Fig. 2.4(a) the eigenenergies of the quantum harmonic oscillator are
equally spaced by its resonance frequency h̄ωr. The degeneracy in the transition
energy between the energy levels prevents an application of the harmonic resonator
as a qubit, since photons at frequency ωr can also excite higher levels. The situation
changes drastically if the linear inductor is exchanged by a Josephson junction
(Fig. 2.4(b)) which provides an anharmonic potential energy given by the cosine
potential of Eq. 2.20 and an additional contribution to the charging energy by
Eq. 2.23. The Hamilton-operator of the total system is then given by:

H = 4ECN2 − EJ cos(ϕ) with EC =
e2

2CΣ
=

e2

2(CJ + C)
(2.33)

Due to the anharmonic potential the degeneracy of the eigenenergies is lifted and
the spacing between energy levels is uneven. For a quantitative calculation see
section 2.3.2. The anharmonicity is defined by the frequency difference of the first
two quantum levels (here, the energy of the m-th level is denoted as Em):

α =
1
h̄
((E2 − E1)− (E1 − E0)) = ω21 −ω10 (2.34)
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Figure 2.4: (a) Sketch of the harmonic LC-oscillator. Due to its harmonic potential energy with
respect to the phase ϕ its quantum levels are spaced equidistantly by h̄ωr. (b) The oscillator
becomes anharmonic if the linear inductance is replaced by a Josephson junction and therefore the
degeneracy between its transition energies gets lifted. (c) Effective circuit of a charge qubit with
additional gate capacitance Cg to control the offset charge Ng on a superconducting island. (d)
Charge dispersion of the lowest three energy levels of the charge qubit with respect to the offset
charge Ng. Black dashed parabolas correspond to the unperturbed charging energy.

Even though a perfect two-level system would require α → ∞, already in a real
system with finite α, two levels can be picked (usually the first two) which serve as
a computational space [Kra+19]. When dealing with superconducting qubits it is
therefore important to keep in mind that one is not operating a two-level system
but in fact an anharmonic multilevel system. Parasitic effects of higher levels come
into play by multiphoton-transitions at higher microwave powers [Bra+15] or by
utilizing ultra-short pulses to operate the qubits [Kra+19].

The first superconducting qubit realized on this principle was the so called charge
qubit [Bou+98; NPT99; SSH97]. It is based on the circuit shown in Fig. 2.4(c),
which is in close resemblance to the circuit of Fig. 2.2(c), but with an added gate
capacitance Cg to control the number of offset charge Ng on a superconducting
island. Thus, its Hamiltonian is given by:

H = 4EC(N − Ng)
2 − EJ cos(ϕ) with EC =

e2

2CΣ
=

e2

2(CJ + Cg)
(2.35)

An important hallmark characterizing the dynamics of a quantum circuit is the ratio
between the Josephson energy and the charging energy EJ/EC. The charge qubit
is operated in the charge-regime where EC > EJ and therefore the charge number
N is a well defined quantum number. Its energy levels are plotted in Fig. 2.4(d).
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2.3 Physical Implementation of Superconducting Qubits

Typically, the charge qubit is operated at Ng = 1/2, where the energy degeneracy
between the N = 0 and N = 1 state is lifted by the small contribution of the
periodic Josephson potential. The exact eigenenergies Em and wavefunctions ψm(φ)

of Eq. 2.35 (Fig. 2.4(d)) can be found by solving the corresponding Schroedinger
equation in the phase basis:[

4EC(−i
∂

∂ϕ
− Ng)

2 − EJ cos (ϕ)

]
ψm(ϕ) = Emψm(ϕ) (2.36)

As shown in Ref. [Koc+07], Eq. 2.36 can be mapped to Mathieu’s differential
equation, with the following eigenenergies:

Em(Ng) = ECa2(Ng+k(m,Ng))

(−EJ

2EC

)
(2.37)

Here, aν(x) is the Mathieu characteristic value with characteristic exponent ν and
k(m, Ng) a sorting function defined in Ref. [Koc+07].

2.3.2 The Transmon Qubit

Despite successful demonstration of coherent quantum oscillations in the charge
qubit [NPT99], its coherence times turned out to be insufficient for quantum error
correction and other advanced applications in quantum computing [Koc+07].
For charge qubits the main cause of decoherence is charge noise, i.e. fluctuation
in the qubits energy splitting due to fluctuations in the charge number on the
superconducting island [Sch+08]. In 2007 Koch et al. proposed a new type of
qubit called transmon (transmission-line shunted plasma oscillation qubit), which
operates in a regime of EJ/EC � 1 [Koc+07]. This regime can be achieved by
adding a shunting capacitance Cs in parallel to the Josephson junction to the circuit
of the charge qubit (compare Fig. 2.4(c), Fig. 2.5(a)). The circuit is still described
by the same Hamiltonian as the charge qubit (Eq. 2.35), but with a larger total
capacitance CΣ = Cs + Cc and a therefore reduced charging energy EC. The main
advantage of the transmon qubit is an exponential suppression of charge noise with
EJ/EC, while the qubits anharmonicity is only reduced by a weak power law with
respect to EJ/EC [Koc+07]. This can be qualitatively understood with the flattening
of the charge dispersion of the transmons energy levels with increasing EJ/EC
(compare Fig. 2.5(d)). Since the level spacing of the transmon becomes increasingly
harmonic for EJ/EC � 1, analytic expressions for the eigenenergies can be obtained
with leading-order perturbation theory where the cos(ϕ) potential in Eq. 2.35 is
expanded around ϕ = 0 [Koc+07]:

H ≈ 4ECN2 − EJ +
EJ

2
ϕ2 −

EJ

24
ϕ4 (2.38)
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Figure 2.5: (a) Effective transmon circuit with coupling capacitance Cc and shunt capacitance Cs.
(b) Sketch of a transmon qubit as realized in the experiment. The transmon (island 2 and 3) is
embedded in a ground plane (island 4) and coupled to a waveguide (island 1). (c) Full lumped
element circuit model of the transmon qubit. (d) Charge dispersion of the transmon qubit. With
increasing EJ/EC the charge dispersion flattens exponentially, which reduces the impact of charge
noise. In the transmon regime EJ/EC & 50 the energy levels are almost flat with respect to Ng.

Here, the offset charge Ng was eliminated by a gauge transformation. Re-expressing
the Hamiltonian in terms of bosonic creation and annihilation operators (ϕ =

(2EC/EJ)
1/4(a† + a) and N = i(EJ/(32EC))

1/4(a† − a)) yields:

H =
√

8EJEC

(
a†a +

1
2

)
− EJ −

EC

12

(
a† + a

)4
(2.39)

Thus, in leading order the eigenenergy Em of the m-th transmon level is given by:

Em =
√

8EJECm− EC

2
(m2 + m) + const (2.40)

Using Eq. 2.40 it is straightforward to find the anharmonicity of the transmon
qubit: α = E21 − E10 = (E2 − E1)− (E1 − E0) = −EC.

In an actual circuit as used in the experiment, the transmon qubit is realized as
two interdigitated superconducting islands connected by a Josephson junction
(islands 2 and 3 in Fig. 2.5(b)), embedded in a ground plane. Coupling to external
circuitry for qubit readout and manipulation is realized via capacitive coupling
to superconducting leads (island 1). Its effective capacitance network (Fig. 2.5(c))
can be simplified to the general transmon circuit (Fig. 2.5(a)) with the effective
coupling capacitance Cc and the shunting capacitance Cs. In the limit of a large
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2.3 Physical Implementation of Superconducting Qubits

waveguide capacitance to ground (C14 → ∞) and negligible cross capacitances2

(C24 ≈ C13 ≈ 0) the expressions simplify to (see appendix B.1):

Cc ≈
C12C34

C12 + C34
(2.41)

Cs ≈ CJ + C23 (2.42)

If a flux-tunable qubit with a SQUID instead of a single junction qubit is used, the
transmon Hamiltonian Eq. 2.35 can still be applied, but with an effective Josephson
energy EJ, eff(Φ) = Ic, eff(Φ)Φ0/(2π) and the SQUIDs effective critical current Ic, eff
from Eq. 2.29 [Koc+07].

2.3.3 Qubit Coupling and Cavity Quantum Electrodynamics

Even though in this work the transmon qubits are coupled to the continuum
of electromagnetic modes in a waveguide (giving rise to the field of waveguide
quantum electrodynamics, see Sec. 3), the problem of a qubit coupled to the single
mode of a resonator should be treated first to understand the coupling of the
transmon to external modes in general. From a circuit analysis similar to the one in
Sec. 2.3.2, it can be shown that the Hamiltonian of the transmon qubit coupled to a
resonator with frequency ωr via the coupling capacitance Cc is given by [Koc+07]:

H = 4EC(N − Ng)
2 − EJ cos(ϕ) + h̄ωrb†b +

2eCc

CΣ
NVrms(b + b†) (2.43)

Vrms is the rms voltage in the resonator and b, b† are its bosonic creation and
annihilation operators. The last term in Eq. 2.43 is the dipolar-type interaction
between qubit and resonator with the dipole operator µ = 2eCc

CΣ
N. In the basis of

the uncoupled transmon eigenstates |i〉 Eq. 2.43 reads:

H = h̄ ∑
j

ωj |j〉 〈j|+ h̄ωrb†b + h̄ ∑
i,j

gij |i〉 〈j| (b + b†) (2.44)

The matrix elements of the coupling strength gij are given by:

gij =
µij

h̄
Vrms with µij =

2eCc

CΣ
〈i|N|j〉 (2.45)

2 For the transmon geometries used in this work numerical simulations of the capacitances indicate
that both approximations are fulfilled.
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2 Superconducting Quantum Bits

For the transmon, the expectation values of the charge operator N can be calculated
analytically within the perturbative treatment in Sec. 2.3.2 to:

| 〈j + 1|N|j〉 | ≈
√

j + 1
2

(
EJ

8EC

)1/4
(2.46)

All other matrix elements can be shown to vanish for large enough ratios of EJ/EC
[Koc+07]. The fact that only neighboring transmon states have a large transition
matrix element is explained by dipole selection rules based on the parity of the
transmon states. If the Hilbert space of Eq. 2.44 is truncated to the first two
transmon levels and the rotating wave approximation is applied, the well-known
Jaynes-Cummings Hamiltonian is obtained:

H =
1
2

h̄ω10σz + h̄ωrb†b + h̄g10(b†σ− + bσ+) (2.47)

In most applications for quantum computing coupled qubit-resonator systems
in the limit of ωr − ω10 � g10 are of crucial importance since they shield the
qubits from Johnson-Nyquist noise in the microwave lines used for readout and
manipulation. At the same time the qubit infers a frequency shift of the resonator in
dependence on its quantum state and can therefore be used for readout [Bla+04].
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3 Superconducting Waveguide
Quantum Electrodynamics

This chapter provides an introduction to waveguide quantum electrodynamics
(wQED), where qubits interact with the electromagnetic mode continuum of a
waveguide instead of the single mode of a cavity. First, the properties of a single
qubit side-coupled to a one dimensional waveguide are addressed, including the
well known resonance fluorescence and the Autler-Townes effect, which gives
rise to many practical applications in quantum information processing. In the
second part of this chapter the collective properties of multiple qubits coupled to a
waveguide are examined. It is shown that the waveguide introduces an effective
infinite-range interaction between qubits by exchange of real and virtual photons.
This results in an ensemble of collective polariton excitations with varying lifetimes.
Finally, the optical response of the ensemble is calculated using band structure and
transfer matrix methods.

3.1 Single Qubit wQED

Resonance fluorescence, meaning the resonant absorption and remission of an
atom of electromagnetic waves into free space, is one of the most fundamental
phenomena in quantum optics. The basic principle of this effect at low incident
powers, where incoherent scattering can be neglected, is depicted in Fig. 3.1. On
resonance, an impinging wave couples to the atom via its electromagnetic dipole-
moment, which starts to oscillate. Thereby, electromagnetic waves with a phase
shift of π are remitted in all directions [Zum+08]. Due to destructive interference,
the transmitted wave is suppressed and partially reflected. It is noted that at
higher powers this simple picture of elastic scattering is incomplete since light
can then also be scattered incoherently and the Mollow triplet can be observed in
the incoherent spectrum [Ast+10a]. In experiments with 87Rb atoms in 3D space a
suppression of 10 % in transmission (extinction) was found [Tey+08]. In wQED the
dimension of free space is reduced to one, by using waveguides which have only a
significant dimension in the direction of propagation compared to the wavelength
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3 Superconducting Waveguide Quantum Electrodynamics

Figure 3.1: Qualitative explanation of the elastically scattered light on a two-level system at low
powers. An impinging wave in the open space of a waveguide interferes with the dipole radiation of
a qubit, which is phase shifted by π. In the direction of propagation the interference is destructive
leading to suppressed transmission and enhanced reflection. Figure inspired by Ref. [Kan18].

λ at the relevant frequencies. On the one hand, the confinement of the modes
to one dimension increases the interaction strength with the qubits by reducing
the mode volume. On the other hand it enhances interference effects, because it
allows for perfect mode matching between the incoming signals and the emitted
fields from the qubits [Gu+17]. Beyond resonance fluorescence, wQED systems are
particularly suited to study non-linear effects at the single photon level. Due to
the intrinsic, strong nonlinearity of the underlying two- or anharmonic multi-level
systems, non-classical light, frequency mixing, and amplification can be observed.

Experimentally, superconducting circuits are particularly well suited to study
wQED effects because of low-loss waveguides, good coherence times of the qubits,
and the absence of parasitic effects like Doppler-broadening in atomic physics. Over
the last decade superconducting wQED systems with single qubits were extensively
studied experimentally: resonance fluorescence was first demonstrated by Astafiev
et al. [Ast+10a] using a flux qubit coupled to a waveguide, followed by demonstra-
tions of time resolved dynamics [Abd+11] and the Autler-Townes effect [Abd+10],
as well as other non-linear effects like frequency mixing [Dmi+17; Hön+18] and
amplification [Ast+10b]. Similar experiments with transmons [Hoi+13] showed the
generation of non-classical light, photon-photon correlations [Hoi+12] and a single
photon router [Hoi+11] was implemented.

3.1.1 Two-Level Systems

The Hamiltonian for a two-level system embedded in a waveguide can be de-
rived from its effective lumped element circuit in Fig. 3.2(a) based on a circuit
quantization procedure [Lal+13]:

H =
1
2

h̄ω10σz + h̄
∫

dk ωka†
k ak + h̄

∫
dk gk(a†

k σ− + akσ+) (3.1)

ak, a†
k are the bosonic creation and annihilation operators of the waveguide-mode

at frequency ωk and gk is the coupling strength of the corresponding mode to the
qubit. As a next step, the expected elastic scattering properties of the two level
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Figure 3.2: (a) Lumped element circuit of a transmon qubit coupled to a waveguide with inductance
L0 and capacitance C0 per length. VL/R

1/2 denote in- and outgoing fields in the waveguide. (b) Input-
output model of a two-level system coupled to the mode-continuum of a waveguide. First, only the
dynamics of the atomic system (green shaded area) are solved and later the photonic degrees of
freedom are recovered with the input-output relation of Eq. 3.9.

system based on Eq. 3.1 are calculated. The elastic scattering of light is typically
characterized in terms of its scattering matrix (S-Matrix). Experimentally, it is
probed by sending coherent microwave states to the qubit through the waveguide
and detecting the elastically scattered reflected or transmitted field. For a reciprocal
two-port network as shown in Fig. 3.2 the S-Matrix is defined in the following way
[Poz11]: (

VL
1

VR
2

)
=

(
S11 S12
S21 S22

)(
VR

1
VL

2

)
with S11 = S22, S12 = S21 (3.2)

Here, VL/R
1/2 denote the left- and right propagating fields on the two sides of

the waveguide (compare Fig. 3.2(a)). The expected reflection and transmission
coefficient (S22(ω), S21(ω)) are calculated in a two-step process: first, the full
problem in Eq. 3.1 is reduced to an individual driven dissipative two-level system.
Second, the photonic degrees of freedom of the waveguide are recovered by using
input-output theory [GC85] (Fig. 3.2(b)).

The Hamiltonian of a two-level system driven by a classical drive at frequency ω

and strength Ω was derived in section 2.1.2:

H = −h̄
ω−ω10

2
σz + h̄

Ω

2
σx (3.3)

Since the qubit is coupled to a transmission line and other intrinsic loss-channels
it is in fact an open quantum system and the Lindblad-Master equation has to be
used to calculate the non-unitary dynamics of the system (see section 2.1.3):

ρ̇(t) = − i
h̄
[H, ρ] + Γ10D[σ−]ρ +

Γφ

2
D[σz]ρ with ρ =

1

∑
i,j=0

ρij |i〉 〈j| (3.4)
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Relaxation with a rate Γ10 = Γ1D + Γl is included, where Γ1D is the radiative
relaxation rate into the waveguide and Γl is accounting for all intrinsic non-radiative
relaxation processes. Pure dephasing is accounted for with a rate Γφ. For the sake
of simplicity, dissipation due to incoherent pumping of the qubit from thermal
activation of the bath is neglected (h̄ω10 � kBT). With the condition ρ11 + ρ00 = 1,
Eq. 3.4 can be solved analytically in the steady state (ρ̇ = 0):

ρ11 =
γ10Ω2

2(γ10Ω2 + Γ10(γ
2
10 + (ω−ω10)2)

(3.5)

ρ10 =
Γ10Ω(−iγ10 + ω−ω10)

2(γ10Ω2 + Γ10(γ
2
10 + (ω−ω10)2)

(3.6)

ρ00 = 1− ρ11 (3.7)

ρ01 = ρ∗10 (3.8)

In the steady state solution above, the decoherence rate γ10 = Γ10
2 + Γφ is introduced.

Furthermore, it makes sense to define an intrinsic decoherence rate Γnr =
Γl
2 + Γφ

to account for all intrinsic decoherence channels, such that γ10 = Γ1D
2 + Γnr. For the

relation between the Rabi-strength Ω and the actual microwave power P driving
the qubit, see section 5.3.2.

After having solved the steady state properties of the driven dissipative qubit,
the scattering problem of a photon field in the waveguide on the qubit can be
addressed. From input-output theory it can be shown that ingoing and outgoing
photon fields (ain, aout) are related via [FKS10]:

〈aout〉 = 〈ain〉 − i

√
Γ1D

2
〈σ−〉 with 〈σ−〉 = Tr(ρσ−) (3.9)

The input field 〈ain〉 is related with the drive strength Ω by [Mir+19]:

〈ain〉 =
Ω√
2Γ1D

(3.10)

The transmission and reflection coefficient is given by:

S21(ω) =
〈aout〉
〈ain〉

= 1− Γ1D

2γ10

1 + i ω−ω10
γ10

1 + (ω−ω10
γ10

)2 + Ω2

(Γ1D+Γl)γ10

(3.11)

S22 = S21 − 1 (3.12)

It is worth noting that S22(ω) ∝ χ(ω) (see Appendix B.4), where χ is the linear
electric susceptibility of the qubit. Accordingly, <(χ) is a measure for dispersion
and =(χ) for absorption.
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Until now, the relaxation rate Γ1D of the 1 → 0-transition of the qubit into the
waveguide was introduced purely phenomenologically. It can be related to the
circuit parameters by modeling the relaxation of the qubit due to Johnson-Nyquist
noise in the waveguide with spectral density SJN

V (ω) [Mar+03]:

SJN
V (ω) = 2h̄ω coth(

h̄ω

2kBT
)<(Z0) (3.13)

Here, Z0 = 50 Ω is the impedance of the waveguide. The relaxation rate of the
qubit is then given by Fermis golden rule [Kra+19]:

Γ1D =
1
h̄2

∣∣∣∣〈0|∂H
∂V
|1〉
∣∣∣∣2 SJN

V (ω10) (3.14)

The relevant part of the Hamiltonian which couples to the voltage noise of the
waveguide is contained in Eq. 2.44. In agreement with [Hoi13; Loo14], evaluating
these expressions in the limit of h̄ω10 � kBT yields:

Γ1D =
µ2

10ω10Z0

h̄
≈

C2
c ω2

10Z0

2CΣ
(3.15)

It is noted that relaxation rates ΓjD of the higher j → j− 1-level transition of the
transmon into the waveguide scale due to Eq. 2.46 like:

ΓjD ≈ jΓ1D (3.16)

The calculated transmission coefficient S21 of Eq. 3.11 is plotted in Fig. 3.3(a),
(b) for the ideal case of vanishing non-radiative decoherence Γnr = 0. For low
power P of the incoming photon field (i.e. well below the single photon regime,
which is defined here as P = h̄ω10Γ1D), transmission is perfectly suppressed
(full extinction) on resonance with the qubit. Simultaneously, the corresponding
reflection coefficient |S22| is unity, which means the qubit acts as a perfect mirror. If
the power is increased beyond the single photon limit, the transmission at resonance
gradually approaches unity. This due to the fact that the qubit cannot scatter more
than one photon back per average lifetime given by 1/Γ1D, which is an intrinsic
signature of the qubits non-linearity (compare Fig. 3.3(b), (d)). If the qubit is subject
to internal decoherence Γnr 6= 0, the extinction is imperfect, even for low power
(compare Fig. 3.3(c)), since the qubit is not coherently remitting all light back
into the waveguide. A quantitative measure for the extinction is the extinction
coefficient which is defined as 1− (Γnr/γ10)

2 [Ast+10a]. It captures the probability
resonant photon absorption and remission by the qubit. A similar measure, which
is prevalently used in atomic physics, is the Purcell factor, given by the ratio Γ1D/Γl
of radiative and non-radiative relaxation rates [Fan17]. In previous experiments
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a b

c d

Figure 3.3: Complex transmission coefficient S21(ω) of a two-level system side-coupled to a waveg-
uide. (a) S21(ω) as function of frequency and power P of a microwave probe tone, in the case of
perfect qubit coherence (γ10/2π = Γ1D/2/2π = 3.2 MHz). At resonance with the qubit and for
low power, transmission is completely suppressed and the qubit acts as a perfect mirror. At higher
drive power the qubit gets saturated and the transmission increases to unity for full saturation. (b)
Saturation of the qubit with increasing power. (c) Comparison of absolute transmission |S21|2 at
low power for perfect qubit coherence (blue dotted) and the realistic case of non-vanishing intrin-
sic decoherence Γnr/(2π) = 1.9 MHz (orange). (d) Saturation of resonant absolute transmission
coefficient |S21(ω10)|2 with power.

extinction coefficients between 94 % [Ast+10a] and 99.9 % [Mir+19] were achieved
with superconducting qubits.

Another interesting property of the derived transmission and reflection coefficients
of Eq. 3.11 is that generally |S22|2 + |S21|2 < 1, even in the limit of vanishing non-
radiative decoherence Γnr = 0. The reason for this counter intuitive behavior is,
that S22 and S21 only account for coherently and elastically scattered light. It can be
shown that at increased microwave power beyond the single photon regime light
is inelastically and incoherently scattered at the qubit [Ast+10a]. This is caused
by the Mollow-triplet which is created by sideband transitions in the hybridized
qubit-microwave drive system [Mol69].

In the limit of weak driving, far below the single photon regime, the transmission
and reflection coefficient of the qubit (Eq. 3.11) reduce to those of a harmonic
oscillator coupled in a so-called notch-type configuration to a waveguide [Pro+15;
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3.1 Single Qubit wQED

Kha+12]. Intuitively, the analogy between strongly anharmonic qubits and har-
monic systems in the low power limit becomes clear, when considering that the
systems are almost exclusively in their ground state such that ρ00 ≈ 1. This implies
that a photon will never impinge on a qubit or resonator in the first excited state.
Consequently, higher levels beyond the first excited state and non-linear effects
can be neglected in the scattering properties [WR20]. In this case, quality factors,
typically used for the characterization of resonators, can be associated with the
relaxation and decoherence rates:

Qc =
ω10

Γ1D
Ql =

ω10

2γ10
Qi =

ω10

2Γnr
(3.17)

The fact that both, harmonic systems and qubits, show a suppression of transmis-
sion in the low power regime implies that the additional observation of non-linear
effects is necessary to discriminate them. Besides non-linear saturation with power,
the Autler-Townes effect is a hallmark non-linear effect, which will be treated in
the next section.

3.1.2 Three-Level Systems

As pointed out in Sec. 2.3.2 the transmon qubits employed in this work are not
perfect two-level systems, but in fact anharmonic multilevel systems. As will be
discussed below, it is particularly interesting to study the properties of a three-
level system coupled to a waveguide which is subject to two microwave tones
(compare Fig. 3.4): a weak microwave probe tone (at frequency ωp and strength
Ωp) is probing the reflection and transmission of the system around the 0 → 1-
transition. A second control (ωc, Ωc) drives the 1 → 2-transition. The reflection
and transmission coefficient are calculated in analog to the two-level case. First, the
Lindblad master equation is solved and afterwards the photonic degrees of freedom
of the probe fields are extracted using input-output theory. The Hamiltonian of a
three-level system in the presence of the two microwave tones in the doubly-rotating
frame of both drives is given by (see Appendix B.2):

H/h̄ ≈ (ω10 −ωp)σ11 + (ω10 −ωp + ω21 −ωc)σ22

+
Ωp

2
(σ01 + σ10) +

Ωc

2
(σ12 + σ21) (3.18)
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ωp, Ωp Γ10

Γ21
γ20

γ10

Ωc
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|+〉
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Figure 3.4: (a) Schematic of the ladder-type first three energy levels of the transmon and corre-
sponding relaxation and decoherence rates. The system is subject to two microwave tones: a weak
microwave probe tone and a stronger control tone driving the 1 → 2-transition. (b) Calculated
Autler-Townes effect for varying control tone power Pc and ωc = ω21. For large control power,
the region of the 0 → 1-transition is completely transparent. (c) Amplitude and phase of the
transmission coefficient for different drive strengths. Used parameters: ω10/2π = 8 GHz, Γnr = 0,
Γ1D/2π = 6.4 MHz, γ20 = Γ1D

Here, a generalized version of the Pauli-matrices with σij = |i〉 〈j|, i, j ∈ {0, 1, 2} is
used. The three-level version of the Lindblad master equation reads [Abd+10]:

ρ̇(t) = − i
h̄
[H, ρ] + Γ21ρ22(σ11 − σ22) + Γ10ρ11(σ00 − σ11)

+ Γ20ρ22(σ00 − σ22)−
2

∑
i 6=j

γijρijσij with ρ =
2

∑
i,j=0

ρij |i〉 〈j| (3.19)

Γij with i > j are the relaxation rates of the i → j-transition. In addition Γij = 0
for all i < j since h̄ωij � kBT is assumed, which would correspond to thermal
activation. Furthermore Γ20 ≈ 0 is assumed, since the 2 → 0-transition is dipole
forbidden (see Sec. 2.3.3) and in this work the relaxation rate is strongly dominated
by radiative emission into the waveguide. γij are phenomenologically introduced
decoherence rates as off-diagonal elements in the dissipator. Full expressions for
the rates γij in terms of the pure dephasing rates Γ

ij
φ and relaxation rates are derived

in Appendix B.3. An analytical solution to Eq. 3.19 can be found in the limit of a
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3.1 Single Qubit wQED

weak probe tone Ωp � Ωc [Gea+95; Hoi13]. In the steady state the off-diagonal
elements of Eq. 3.19 read:

0 = ρ̇10(t) = −
i
2
(−2δωpρ10 + Ωcρ20 + Ωp(ρ00 − ρ11))− γ10ρ10 (3.20)

0 = ρ̇20(t) = −
i
2
(−2(δωp + δωc)ρ20 + Ωcρ10 −Ωpρ21)− γ20ρ20 (3.21)

0 = ρ̇21(t) = −
i
2
(−2δωcρ21 −Ωpρ20 + Ωc(ρ11 − ρ22))− γ21ρ21 (3.22)

δωc = ωc −ω21 δωp = ωp −ω10 (3.23)

In the limit of Ωp � Ωc, Eq. 3.21 simplifies to:

ρ20 ≈ −
iΩc

2(γ20 − i(δωp + δωc))
ρ10 (3.24)

Inserting this result in Eq. 3.20 and assuming that higher qubit levels are not
saturated (ρ22 = ρ11 ≈ 0, ρ00 ≈ 1) by the weak probe tone yields:

ρ10 = −
iΩp

−2iδωp + 2γ10 +
Ω2

c
2(γ20−i(δωp+δωc))

(3.25)

Finally the transmission and reflection coefficient are calculated by utilizing the
input-output equations (Eqs. 3.9, 3.10) and Tr(ρσ01) = ρ10:

S21(ωp) = 1− Γ1D

2γ10

1

1− i ωp−ω10
γ10

+ Ω2
c

4γ10(γ20−i(ωp−ω10+ωc−ω21))

(3.26)

S22 = S21 − 1 (3.27)

In the limit of a vanishing control tone Ωc and weak probe tone strength Ωp,
Eq. 3.26 reduces to the transmission of a two-level system (Eq. 3.11).

The calculated transmission coefficient of Eq. 3.26 is plotted in Fig. 3.4(b), (c).
Whereas for low control power transmission is strongly suppressed around ω10, at
a larger power a window of high transmission opens up which is enclosed by two
new resonances. The splitting between these resonances is called Autler-Townes
splitting (ATS) [AT55]. The ATS is a type of dynamic ac-Stark effect. This implies
the strong resonant control tone hybridizes with the first qubit level, which splits
up into two new non-degenerate eigenstates |+〉 and |−〉. For Ωp � Ωc, ωp = ω10,
and ωc = ω21 diagonalization of Eq. 3.18 yields:

|±〉 = 1√
2
(|1〉 ± |2〉) with ω± = ±Ωc

2
(3.28)
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Figure 3.5: (a) Amplitude of the transmission coefficient |S21|2 under the ideal condition of γ20 =

0.01Γ1D and two different control powers Pc (color scale and other parameters are the same as in
Fig. 3.4). The narrow transparency window for Ωc < Γ1D (purple line) is the signature of EIT. (b)
Under EIT conditions the system features vanishing absorption =(χ) but simultaneously large
dispersion <(χ) around ω10, whereas in the absence of a control tone the absorption is maximal and
a strong anomalous dispersion is present (black dashed line). (c) Schematic of a Λ-type three-level
system with the 0→ 2-transition being dipole-forbidden. It is the only type of three-level system
which can feature perfect EIT.

Therefore, in agreement with the calculated transmission in Fig. 3.4, the splitting
between the new eigenstates is exactly given by Ωc. A practical application of
the ATS was demonstrated by Hoi et al. with a superconducting transmon qubit
coupled to a waveguide [Hoi+11]. By switching the control tone between on- and
off-state, the transmission around ω10 can be switched between transparent and
fully reflecting. Therefore, the qubit acts as a photon router or switch in the single
photon regime. Figure 3.5(a) shows the ATS for small γ20 � Γ1D. In contrast to
the case in Fig. 3.4, the transparency window remains intact with |S21(ω10)| ≈ 1,
even for small control tone strengths Ωc < Γ1D. In this limit the transparency is
created by a destructive quantum interference by two excitation pathways (0→ 1
and 0→ 1→ 2→ 1) in the driven three-level system [FIM05]. This effect is called
electromagnetically induced transparency (EIT). The interference between the two
excitation paths is only perfect if γ20 = 0, since any finite 2 → 0-decoherence
rate would reduce the contribution of the 0 → 1 → 2 → 1 path. Therefore, in
ladder type three-level systems perfect EIT with γ20 ≈ 0 can not be realized since
in these systems always γ20 > Γ2D/2 (or specifically for the transmon γ20 > Γ1D)
holds [YRZ01] (see Appendix B.3). It can only be observed in Λ-type three-level
systems, where the third level with a dipole-forbidden transition to the first level
is energetically lower than the second level (compare Fig. 3.5(c)). While two-
level systems (or three-level systems in the absence of a control tone) feature a
maximum of the absorption coefficient and strong anomalous dispersion around
the resonance, the appealing feature of an EIT system is, that it features both,
strong dispersion and low absorption around the atomic resonance (Fig. 3.5(b)). For

28



3.2 Multi-Qubit wQED

effective media made of an ensemble of three-level systems under EIT conditions,
the large dispersion manifests itself to measurable group delays of propagating
light pulses. This can be exploited in experiments with slow light and quantum
memories which are discussed in detail in Sec. 3.2.4.

Even though ATS and EIT are closely related phenomena, they are distinct ef-
fects whose discrimination is part of current research [Abi10; ADS11; Hao+18].
Throughout this work, the convention of Refs. [Abi10; Hao+18; ADS11] is used,
where Ωc & Γ1D is considered as ATS-regime. In the regime Ωc . Γ1D, EIT due to
quantum interference is possible. This means an interference between dressed states
can only happen if their splitting is smaller than their linewidth (see Fig. 3.5(a)).
However, depending on the strength of the 2→ 0 decoherence, ATS can still be the
dominating effect in this regime and an information theoretic quantitative analysis
based on AIC (Akaike’s information criterion) has to be used to discriminate the
two effects [ADS11].

3.2 Multi-Qubit wQED

Coupling more than one qubit to the same waveguide changes the physical situation
drastically, since now multiple scattering and interference between waveguide
photons can occur. As will be more rigorously shown below, the mutual exchange
of photons leads to an effective infinite range interaction between the qubits
giving rise to collective excitations. Due to correlated decay, these excitations have
radiative relaxation rates which range from orders of magnitude smaller (subradiant)
to larger (superradiant) than the ones from the individual qubits [Alb+19]. A
direct consequence of the strong non-linear response of the qubits combined with
the inter-qubit scattering is that transmitted and reflected light is predicted to
show time dependent quantum correlations [FZB14]. Although multi-qubit wQED
Systems are expected to have numerous applications in the field of quantum
optics and quantum computing (see Ch. 1), they have been to the date of this
work barely studied with superconducting qubits: a first study demonstrated the
photon-mediated qubit-qubit coupling of two transmon qubits via a common
waveguide [Loo+13], followed by the demonstration of an artificial atomic-cavity
using a wQED system of aperiodically spaced qubits [Mir+19] and the creation of
entangled light in a three qubit system [Kan+20].
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3 Superconducting Waveguide Quantum Electrodynamics

3.2.1 Effective wQED Hamiltonian

The Hamiltonian of N qubits coupled to a one-dimensional bi-directional waveg-
uide with symmetric coupling reads [Can+15]:

H =
1
2

h̄
N

∑
j=1

ω
j
10σ

j
z + h̄ ∑

ν=±

∫
dk ωka†

k,νak,ν + h̄ ∑
ν=±

N

∑
j=1

∫
dk gk(a†

k,νσ
j
− exp(iνkdj) + h.c.) (3.29)

Here a†
k,ν, ak,ν are bosonic creation and annihilation operators of the waveguide

mode with wavenumber k and ν for the left and right propagation direction. The
waveguide dispersion is assumed to be linear with ωk ≈ ck. The last term in Eq. 3.29
describes the dipole type interaction between qubits and waveguide modes in the
rotating wave approximation with coupling strength gk. Note, that the coupling
term includes a phase factor exp(iνkdj) which accounts for the phase between
the qubits when they are placed at finite distance d from each other. Similar to
the single-qubit case of Sec. 3.1.1, solving the full problem of Eq. 3.29 can be
facilitated by formally integrating out the waveguide degrees of freedom, solving
the master equation for the atomic part of the effective Hamiltonian which then
only depends on the qubit operators and input field, and later recover the photonic
degrees of freedom with input-output theory. This formal integration is carried
out in Refs. [Can+15; Lal+13], and here only the relevant results are presented. The
effective qubit Hamiltonian (without the driving term due to the input field ain)
reads:

Heff = h̄
N

∑
j=1

ω
j
10b†

j bj +
α

2
b†

j b†
j bjbj − ih̄

Γ1D

2

N

∑
j 6=l

exp (iω10d|j− l|/c)b†
j bl (3.30)

For this result the effective radiative relaxation rate Γ1D = 4πg2/c was introduced
and the Markov approximation was applied [Can+15]. Moreover, instead of Pauli
operators the bosonic operators b†

j , bj were introduced to describe the qubits. In
order to prevent multiple excitation of the same qubit an interaction energy was
introduced. The case of ideal two-level systems can be recovered in the limit α→ ∞.
Within the Markov approximation, ω10 is an average of all ω

j
10, around which the

atomic dynamic is centered. The corresponding input-output relations are given
by [Can+15]:

aν,out(z, t) = aν,in(t− νz/c)− i

√
Γ1Dc

2

N

∑
j=1

bj exp(iνωin(z− jd)/c) (3.31)

The second term in Eq. 3.30 is the signature of an effective qubit-qubit coupling,
which is of infinite range. Furthermore, the interaction is complex, making Heff
non-hermitian. The real-part (∝ sin(ω10d|j − l|/c)) describes an exchange type
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a b

Figure 3.6: (a) Calculated eigenvalues based on Eq. 3.30 in the single-excitation manifold in depen-
dence on the number of qubits N. Each eigenmode represents a polariton with radiative relaxation
rate Γξ = 2=(ωξ ) and frequency <(ωξ ). With increasing N, a band gap emerges between ω10 and

the superradiant mode. (b) Coefficients cj
ξ of the polariton wave-function for N = 8 obtained from

the eigenvectors of Eq. 3.30 (orange points) and their analytic approximation of Eq. 3.32 (blue
lines). Each polariton corresponds to a delocalized standing wave. Used parameters: ω10 = 8 GHz,
d = 400µm, Γ1D/2π = 12.7 MHz.

qubit-qubit coupling, while the imaginary part (∝ cos(ω10d|j − l|/c)) describes
cooperative emission into the waveguide [Lal+13]. Due to the periodic dependence
of the interaction on the qubit separation (d|j− l|) a pure exchange type (dissipative)
interaction is achieved for separations of d|j− l|ω10/(c2π) = (2n + 1)/4 (= n/2).
Whereas the exchange type interaction gives rise to a measurable frequency shift
due to exchange of virtual photons, the dissipative interaction alters the dissipation
rate by exchange of real photons [Loo+13]. This dependence of the interaction on
inter-qubit distance was experimentally first shown in Ref. [Loo+13], using two
transmon qubits coupled to a waveguide.

3.2.2 Eigenmode Analysis and Properties

Diagonalizing Heff in Eq. 3.30 in the single excitation sector (α→ 0) gives access to
its N eigenvalues ωξ

1 and eigenvectors |ψξ〉 = ∑N
j=1 cj

ξ |1j〉, where |1j〉 = b†
j |0〉

⊗N is
the excited state of the j-th qubit. Each eigenstate corresponds to a polariton formed
by a collective excitation of the qubit chain [Ivc05]. Since the Heff is non-hermitian,
the obtained frequencies ωξ are complex, with their real part corresponding to the
frequency of the associated polariton. The imaginary part of ωξ is proportional
to the radiative polariton relaxation rate (=(ωξ) = Γξ /2). The distribution of the

1 Here, the convention is used that the eigenvalues ω0...ωN−1 are sorted from brightest to darkest,
meaning by decreasing =(ωξ )
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eigenvalues over the complex plane is strongly dependent on the qubit separation d.
For the trivial case of d ≈ 0, the interaction term of Eq. 3.30 is purely dissipative and
its N eigenstates are degenerate with the bare qubit frequency ω10. Furthermore
N − 1 eigenstates have a vanishing imaginary part and are therefore non-radiative
and are thus referred to as dark or subradiant states. One mode however retains a
finite line-width of 2=(ωξ) = NΓ1D and therefore radiates superradiantly compared
to the individual qubits. The limit d = 0 thus reproduces the well known result of
superradiance in the Dicke-Model, where all emitters radiate coherently into the
same continuum [Alb+19; Dic54]. If d > 0, the degeneracy between the eigenstates
is lifted and a non-degenerate polariton spectrum is obtained (compare Fig. 3.6(a)).
Here, the relaxation rates range from strongly sub-radiant (Γξ < Γ1D) to superradi-
ant (Γξ > Γ1D). With increasing qubit number N the polaritonic modes form two
continuous bands, separated by a band gap without any allowed frequencies, which
is discussed in detail in Sec. 3.2.3. It can generally be shown, that the radiative
relaxation rate Γξ of the most subradiant state fulfills a universal scaling with the
qubit number N of Γξ ∝ N−3, which even holds for multi-dimensional systems
[TL08; Alb+19; Ase+17]. Analogously, the brightest of the subradiant modes fulfills
a complementary scaling of Γξ ∝ N3 ([Bre+21] and Appendix B.5). The calculated

coefficients cj
ξ of the eigenvector |ψξ〉 of Heff are shown in Fig. 3.6(b), for N = 8 res-

onant qubits. Apparently, the polariton eigenmodes of the qubit chain in the single
excitation sector are delocalized and correspond to standing waves. Although the
wavenumber k is only unambiguously defined in the infinite lattice limit [Ase+17],
in a finite system the dominant wavenumber can be defined as k ≈ ξπ/dN and the
effective coefficients can be approximated2 as [Bre+21]:

cj
ξ ≈

√
2
N

cos(
πξ

Nd
d(j +

1
2
)) with ξ = {1....N − 1}, cj

0 ≈
√

1
N

(3.32)

The mode profiles shown in Fig. 3.6(b) provide a simple explanation for their
different radiative relaxation rates Γξ : The larger the overlap η of the mode with
the wave driving the system, the brighter it is. η is defined as:

η =
N−1

∑
j=0
|E(jd)cj

ξ |
2 with E(jd) =

√
1
N

exp(iωdj/c) (3.33)

3.2.3 Transfer Matrix Approach

Solving the full Lindblad master equation associated with Eq. 3.29 quickly becomes
unfeasible for larger numbers of qubits N, since the dimension of the Fock-Louiville

2 In the relevant limit for this work: d� λ and Nd < λ
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Figure 3.7: Schematic representation of the transfer matrix for a system of N qubits coupled to a
waveguide. The inter qubit distance is given by d.

space scales exponentially with 2N [Man20]. In the regime of purely elastic scat-
tering at low incident photon powers (P � h̄ω10Γ1D), which is here called linear
regime, the optical response of a linear chain of qubits of almost arbitrary size can
be calculated using the transfer matrix (T-matrix). This semi-classical approach
is based on the steady state solutions of the Lindblad master equation of the in-
dividual qubits (Eqs. 3.11 and 3.26) and incorporates interference effects of light
scattered between them. The transfer matrix connects the in- and outgoing fields
of a two-port network in the following way [Ase+17]:(

VR
2

VL
2

)
= T

(
VR

1
VL

1

)
(3.34)

For a combined network of multiple subsystems in series, the T-matrix has the
advantage compared to the S-matrix, that it is multiplicative, i.e. it can be written as
the product of transfer matrices. For a system of N qubits coupled to a waveguide,
separated by the distance d (compare Fig. 3.7), the total transfer matrix Ttot reads:

Ttot = TQN TφTQN−1 ...TφTQ2 TφTQ1 (3.35)

TQn is the transfer matrix of the n-th qubit and is given by [Deu+95]:

TQn =

(
1+2r
1+r

r
1+r

− r
1+r

1
1+r

)
(3.36)

r denotes the reflection coefficient of a qubit in steady state given by Eq. 3.12 and
Tφ accounts for the propagation along a bare piece of transmission line in between
two qubits:

Tφ =

(
exp (iφ) 0

0 exp (−iφ)

)
(3.37)

Here, the propagating field accumulates a phase of φ = kd = ω
c d with length d and

phase velocity c. Once the T-matrix is calculated, the transmission coefficient S21
and reflection coefficient S22, as measured in the experiment, can be recovered from
Ttot with the following relations (assuming VL

2 = 0 for transmission experiment
and VL

1 = 0 for reflection experiment):

VR
2

VR
1

=
1

Ttot
22

= S21 and
VR

2
VL

2
=

Ttot
12

Ttot
22

= S22 (3.38)
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a
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Figure 3.8: (a) Calculated transmission |S21| of 8 qubits coupled to a waveguide. Peaks of unity
transmission are produced by Fano interference of polaritonic eigenmodes of the system. Black
arrows mark calculated eigenfrequencies <(ωξ ) from Eq. 3.30. For finite non-radiative qubit
decoherence Γnr the modes are damped and only visible when Γξ /2 > Γnr. (b) Dependence of
the transmission coefficient on the qubit number N. The width of the band gap saturates at
Nc = 19 to ∆ω. (c) Dependence of the transmission coefficient on qubit distance d. ∆ω marks the
expected width of the band gap, according to Eq. 3.41. Used parameters: d = 400µm, ω10 = 8 GHz,
Γ1D/2π = 12.7 MHz.

It is easy to see from the definition in Eq. 3.34 that the T-Matrix itself is linear,
meaning it has to be independent from the incoming field to retain its multiplicative
property. Even though the transmission coefficient S21 of Eq. 3.12 can also be used
in the non-linear regime of larger probe powers, it is therefore wrong to use this
case also in the T-matrix method of several qubits in a linear chain. This would
lead to the unphysical situation that all qubits experience the same drive strength
Ω, which is, due to multiple scattering in the array, not necessarily the case. It is
noted that the T-matrix method is not restricted to one-dimensional qubit chains
made of identical qubits with equidistant spacing, but is capable of accounting for
arbitrary individual qubit parameters and frequencies.
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The calculated transmission coefficient for eight resonant qubits with a spacing
of d = 400µm is shown in Fig. 3.8(a). The transmission spectrum features several
peaks corresponding to the collective polariton modes (see Sec. 3.2.2), where the
line shape is created by Fano interference [HFS16; Bre+21; Lep+19]. This inter-
ference effect explains why the peaks do not exactly coincide with the calculated
real parts of the eigenvalues <(ωξ) of Eq. 3.30. The wide spectral region of sup-
pressed transmission above the common resonance frequency ω10 is created by
the superradiant mode and the gap between the latter and the subradiant modes.
In the realistic case of finite non-radiative damping, only subradiant modes with
Γξ /2 > Γnr are observable in the transmission spectrum. Excited darker modes de-
cay in the qubits before they can be remitted into the waveguide and are therefore
not visible. With the T-Matrix approach at hand, the dependence of the waveguide
transmission |S21| on the number N of resonant qubits and their distance d can
be further elaborated (see Fig. 3.8(b), (c)). Increasing N does not only increase the
number of polariton modes and alters their lifetime (Fig. 3.6(a)), but increases the
width of the band gap region until it saturates to a certain width ∆ω (Fig. 3.8(b)) at
a certain critical number of qubits Nc. Here it is phenomenologically found that
Nc ≈ λ/2/d. This is most likely due to partial constructive interference between
the emitted light of individual qubits, which is only possible if they are not further
apart than λ/2. When the distance d between neighboring qubits is varied between
0 and λ/2, several different physical regimes are crossed. A spacing comparable or
larger than λ is considered as photonic crystal regime [SPW04]. The most relevant
configurations in this regime are d = λ/4 (d = λ/2) or multiples thereof, where
the structure behaves as a resonant anti-Bragg (Bragg) structure. The calculated
transmission coefficient in Fig. 3.8(c) shows that transmission is indeed strongly
enhanced for the anti-Bragg structure (except a narrow band gap of width Γ1D due
to the local resonance of the qubits). Whereas for a Bragg structure, it is strongly
suppressed in a large spectral region around ω10, due to constructive interference
in the direction of reflection. Therefore, qubit chains in the Bragg regime are often
called atomic mirrors, which have been investigated in Refs. [Cha+12; Mir+19].
The intuitive explanation for Bragg and anti-Bragg structures is analogue to the
either purely dissipative or exchange type interaction of Eq. 3.30. The structures
realized in this work are in the limit, where the inter-qubit spacing is substantially
smaller than the wavelength (d� λ), which is called the metamaterial limit. Due to
the dense spacing, some of its features are similar to a Bragg structure, however its
band gap appears close to the center of the Brillouin zone instead of at its edges.
Moreover, and most importantly, the dense spacing allows for an effective medium
description [SPW04].

For an infinite one-dimensional artificial lattice made of equally spaced and iden-
tical qubits, the full dispersion relation can be calculated based on the T-Matrix
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[Deu+95]. The transfer matrix of a unit cell of such a lattice is given by TU = TQTφ.
Since det TU = 1, it has necessarily the eigenvalues exp(±ikd), which is an analog
statement to Bloch’s theorem. Therefore, calculating the trace of TU yields due to
the independence of the trace with respect to the chosen basis:

cos(kd) =
Tr(TU)

2
= cos

(
ωd
c

)
+ i

r
1 + r

sin
(

ωd
c

)
(3.39)

Solving Eq. 3.39 for ω(k) gives full access to the dispersion relation as shown
in Fig. 3.9(a). The discrete polaritonic modes, as discussed above, now form two
continuous polariton branches, separated by a band gap. This is due to the sig-
nificant hybridization of the bare waveguide modes and the qubits, caused by
their interaction [Alb+19]. In the metamaterial limit, where d � λ, the ensemble
of two-level systems behaves like an effective medium characterized by simple
optical response functions like the permittivity ε(ω) [Ivc05]. In this limit Eq. 3.39
simplifies to:
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(3.40)

Using the reflection coefficient of Eq. 3.12 in the limit of vanishing probe strength
Ω, the effective permittivity becomes:

ε(ω) =

(
ck
ω

)2
≈ 1 +

∆ω

ω10 −ω− iΓnr
with ∆ω =

Γ1Dc
ω10d

(3.41)

The variable ∆ω characterizes the regime, where <(ε) is negative and the corre-
sponding refractive index n =

√
ε is purely imaginary, i.e. the width of the band

gap. If instead of Eq. 3.12, the three-level case of Eq. 3.26 is used to calculate the
band structure according to Eq. 3.39, it can be seen that it is modified drastically
compared to the two-level case (see Fig. 3.9(b)): depending on the strength of the
control tone Ωc, a third band opens up in between the upper and lower polaritonic
branches splitting up the band gap into two, both of which are signatures of the
collective ATS. This can be understood in the dressed state picture of ATS. Instead
of state |1〉 of the individual qubits, it is now the two dressed states |±〉 giving rise
to two independent Bloch bands [WS10]. The collective ATS reveals the appealing
property that the band structure of the artificial medium made of three-level qubits
can be manipulated actively with the help of an external control parameter Ωc.
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a b

Figure 3.9: (a) Calculated band structure of an infinite chain of two-level systems coupled to a
waveguide with dense qubit spacing, in the metamaterial limit (d = 400µm, φ = ω10d/c ≈ 0.17).
The waveguide mode and the qubits at ω10/2π = 8 GHz hybridize into two polariton branches,
separated by a band gap with width ∆ω = Γ1Dc

ω10d . The corresponding absolute transmission for
N = 100 and N = 10 show strong suppression in the band gap region. (b) Band structure for the
same chain of qubits under the conditions of the ATS with control strength Ωc/2π = 111 MHz.
Due to the presence of the dressed states of the ATS, a third central band with allowed transmission
around ω10 emerges, sandwiched between two band gaps. Qubit coherence parameters for the
numerical model: Γ1D/2π = γ10/π = 12.7 MHz, γ20 ≈ 0 MHz.

3.2.4 Slow Light and Quantum Memories

A consequence of the quasi-flat central band around ω10 for an ensemble of qubits
under EIT/ATS condition (compare Fig. 3.10) is the associated low group velocity
vg of light, which is of high practical relevance:

vg =

(
dk(ω)

dω

)−1

=
c0

n + ω
dn
dω

=
c0

ng
(3.42)

Here c0 is the vacuum speed of light, n the refractive index, and ng the effec-
tive group index. As mentioned in Sec. 3.1.2, the advantage of an EIT resonance
compared to a simple atomic resonance is that it does not only provide a strong
dispersion, but at same time almost unity transmission. In the case of a medium
showing perfect EIT (γ20 = 0) in the metamaterial limit, a simple expression for
the expected group velocity vg in the center of the transparency window at ω10 can
be calculated. Rewriting Eq. 3.40 yields:

(kd)2 ≈ φ2 − 2ξφ with ξ = i
r

1 + r
, φ =

ωd
c

(3.43)
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Figure 3.10: Calculated band structure of an infinite qubit array under ATS conditions. The slope of
the central band around ω10/2π = 7.8 GHz determines the group velocity vg of light and can be
tuned with the control tone strength Ωc. Used parameters: Γ1D/2π = γ10/π = 12.7 , γ20 ≈ 0 MHz.

For φ > ξ (which is in the case of perfect EIT, meaning r(ω10) = 0, always true)
this further simplifies to:

kd ≈ φ− ξ (3.44)

Inserting Eq. 3.26 for the reflection coefficient in the limit of ωc = ω21, γ20 = 0
yields the expected group velocity vg in the center of the transparency window:
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(3.45)

Therefore, by reducing Ωc, the group velocity of light can be effectively reduced and
eventually even stopped [FIM05] (Fig. 3.10). The more complicated scenario of non-
vanishing γ20, leading to a minimal value of vg, is treated in Sec. 5.5. Experimentally,
the slow light effect was observed in various cold atom systems, reaching ultra-
slow group velocities up to 17 m/s [Hau+99]. A second important hallmark of
the extreme group indices is that light pulses get spatially compressed inside the
slow light medium. The origin of the slow light effect can be well explained in the
dressed state picture of EIT/ATS [FIM05]. Diagonalizing Hamiltonian 3.18 in the
limit of a two-photon resonance (ωp −ω10 = ωc −ω21) yields:

|+〉 = sin(θ) sin(β) |0〉+ cos(β) |1〉+ cos(θ) sin(β) |2〉 (3.46)

|−〉 = sin(θ) cos(β) |0〉 − sin(β) |1〉+ cos(θ) cos(β) |2〉 (3.47)

|D〉 = cos(θ) |0〉 − sin(θ) |2〉 (3.48)

tan(θ) =
Ωp

Ωc
tan(2β) =

√
Ω2

p + Ω2
c

ω10 −ωp
(3.49)

The states |±〉 always comprise a component of state |1〉, which decays radiatively,
and are therefore always bright. |D〉 has no contribution from |1〉 and is therefore
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considered as dark3. In the limit of Ωp � Ωc, the dark state is given by |D〉 = |0〉
and in the opposing limit Ωp � Ωc by |D〉 = − |2〉. For a collective EIT-medium,
|D〉 manifests itself as a dark-state polariton [FIM05]. Before an electromagnetic
pulse enters the slow light medium, the first condition is fulfilled and the dark-state
is given by |D〉 = |0〉. As soon as the pulse penetrates the medium and its electric
field starts to rise, |D〉 is rotated to have an admixture of the qubit state |2〉 or, in
other words, an increasing amount of energy is transferred from electromagnetic
photons into an atomic excitation. When the pulse leaves the medium, the whole
process is reversed and the energy of the dark-state polariton is transferred back to
the photon field. Therefore, by varying the control strength Ωc, the mixing angle
between photons and qubit excitation, and with it the effective group velocity, can
be tuned.

One of the most prominent applications of the slow light effect is the realization
of quantum memories, which are able to store and release arbitrary light pulses
on demand. Here, a light pulse is send to an slow light medium with Ωc � Ωp.
Inside the medium the pulse is slowed down and spatially compressed. As soon
as the pulse has fully entered the medium, Ωc is adiabatically ramped to zero,
which rotates the dark-state polariton to a pure qubit excitation and thus stores the
pulse. After a waiting time, the pulse is released on demand by ramping up the
control again and transferring the spin excitation back to a photon field. Quantum
memories were experimentally realized in atomic vapors at optical frequencies
[Phi+01; Liu+01] and, more recently, with atoms coupled to nanofibers, allowing
for several micro seconds of storage time [Gou+15].

3 Strictly, this only true for Λ-type three-level systems. For ladder-type systems the state |2〉 is also
radiative and therefore |D〉 is not perfectly dark.
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4 Experimental Techniques

This chapter introduces the reader to the experimental methods used in this work,
which includes the fabrication of the transmon qubits and the experimental ap-
paratus needed to probe them in a controlled and protected environment. The
section on fabrication depicts optical- and electron-beam lithography processes
to pattern the qubits from thin aluminum films. Here, special focus is drawn on
the reduction of parameter spread in the fabrication of the Josephson junctions
using a bridge-free shadow evaporation procedure. In order to observe the quantum
nature of the qubits, dissipation and thermal population has to be suppressed by
cooling to millikelvin temperatures. In this work, these temperatures are achieved
using a wet dilution cryostat. The chapter concludes by providing an overview of
the microwave setup used to control and probe the qubits in spectroscopic and
time-domain experiments.

4.1 Sample Fabrication

The samples used in this work were fabricated in the cleanroom facilities of the
Nanostructure Service Laboratory (NSL) of the Center for Functional Nanostruc-
tures at Karlsruhe Institute of Technology.

As mentioned in the Introduction (Ch. 1), two main samples were investigated
in this work: a short metamaterial comprising eight locally frequency-tunable
transmon qubits (sample A) and a longer structure of 90 non-tunable qubits (sample
B). The lack of local frequency control leads to two main design requirements: low
spread of the critical currents of the qubits on one chip and strong coupling of the
qubits to the waveguide (for details see Ch. 6). These requirements translate to
high demands regarding the fabrication procedure, which differ from the processes
used for sample A.
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4.1.1 Thin Film Lithography

All samples in this work are made from thin evaporated aluminum films on 500µm
thick c-plane sapphire wafers with a permittivity of ε = 11.5. It is under current
debate, whether sapphire improves the coherence of microfabricated supercon-
ducting devices compared to other substrates like intrinsic silicon, since interface
losses might be dominating [McR+20].

Prior to fabrication the used wafers are rinsed with piranha solution (sulfuric
acid H2SO4 and hydrogen peroxide H2O2) to remove organic contaminations.
For both samples (A and B) the transmon qubits are patterned in a first step,
before any other structures are made (Fig. 4.1). This is done in order to deposit
the qubits on the cleanest possible surface. From other works it is known that
dirty interfaces between qubits and substrate, e.g. due to photo-resist residuals
from prior fabrications steps, can significantly reduce the intrinsic qubit coherence
without extensive cleaning [Qui+14]. After spincoating the wafer with a PMMA-
MAA copolymer (EL-13) / PMMA (A-4) double photo resist stack, the qubits are
patterned with electron-beam lithography using a 50 keV JEOL JBX-5500ZD. A
thin gold layer (≈ 5 nm) is sputtered on the resist stack to prevent charging of the
sample in the e-beam writing process. The thin aluminum films which make up
the qubits are thermally evaporated in a PLASSYS MEB550s shadow evaporator.
More details on the bridge-free shadow evaporation process of the qubits are given
in section 4.1.2.

For sample A this first e-beam step is followed by a positive optical lithography
step, where all other structures on the chip (being flux-bias lines, groundplane and
waveguide) are formed (compare Fig. 4.1(a)). This second step is necessary to save
e-beam writing time for all structures where nanometer resolution is not required.
Here, S1805 optical photo-resist is spincoated on the substrate with the ready-made
qubits. The chip is aligned with an optical chromium mask (soda lime glass) in a
Carl Suess MA6 maskaligner and exposed with 240 nm UV light. After development
of the resist, 75 nm of aluminum are evaporated in the Plassys subsequently to an
in-situ 20 s 5 sccm Ar/ 10 sccm O2 descum. The fabrication of sample A is concluded
with a lift-off process of the unexposed resist in N-Ethyl-2-pyrrolidon (NEP).

For sample B the fabrication procedure differs from sample A after the first qubit
fabrication step. Here, the required large coupling capacitance (Cc ≈ 17 fF) of the
qubit to the waveguide with simultaneously compact qubit dimensions leads to
a coupling distance of 500 nm (see Sec. 6.1). Therefore, an additional e-beam step
with a EL-13/A-4 resist stack is required to ensure the needed resolution. Since this
resolution is only needed in the vicinity of the coupling areas, solely the center strip
of the coplanar waveguide and a 12.5µm wide strip of the surrounding groundplane
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a
resist application e-beam exposure develop, O-clean2

exposed resist substrate

aluminumoptical mask

UV exposure develop, Al evap., lift-off

application of optical mask

b resist application e-beam exposure develop, O-clean2

exposed resist substrate

e-beam exposure resist application shadow evap., lift-off

0.5μm

0.5μm aluminum

resist application shadow evap., lift-off

optical mask
UV exposureapplication of optical mask develop, Al evap., lift-off

Figure 4.1: Process flow chart of the used fabrication techniques. (a) Fabrication steps for sample
A. The qubits are patterned with e-beam lithography, whereas the waveguide and the metallic
groundplane are made with optical lithography. (b) Fabrication steps for sample B. Here, the qubits
are patterned with e-beam lithography, while the waveguide and groundplane is patterned with
a hybrid of optical and e-beam lithography, due to the small gap of 0.5µm between qubit and
waveguide.
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are written with the electron beam (see Fig. 4.1(b)). Before development, the
exposed resist is covered with an optical silica glass mask in the maskaligner and
the residual parts of the groundplane are flood exposed with 240 nm UV light for
35 min. Silica glass is needed because it is partially translucent for UV light, as
required to expose the EL-13/A-4 resist stack. After this additional optical exposure,
the resist is developed and the groundplane and waveguide are evaporated from
aluminum in a lift-off process, similar to sample A. For a detailed description of
the used fabrication recipes, see appendix A.

4.1.2 Josephson Junctions

Despite the trend for more streamlined fabrication processes in the field of super-
conducting qubits, involving non-angle dependent desposition of trilayer Josephson
junctions [Ste+20; Wu+17] for large scale quantum-computing, angle-dependent
shadow evaporation techniques are still widely spread due to their fast in-situ
junction fabrication in a single lithography step. In this work, the Josephson
tunnel barriers are fabricated from an Al/AlOx/Al-stack in a bridge-free shadow-
evaporation process [Lec+11] based on a PMMA-MAA copolymer (EL-13) / PMMA
(A-4) double resist stack (see Fig. 4.2). After spincoating the two layers of resist
(≈ 850 nm EL-13 and ≈ 150 nm A-4), the junction geometry is written using e-beam
lithography. Due to the different sensitivity of the resists it is possible to create
overhangs, where only the lower resist is fully exposed and gets removed in the
development process. The development is done in a cooled 6 ◦C mixture of 3:1
IPA:H2O to improve contrast [OS06]. The developed resist stack (Fig. 4.2(b)) is first
treated with 6 min of cleaning with an oxygen plasma and then mounted in the
Plassys shadow evaporator. Here it is additionally cleaned with a 40 s 5 sccm Ar/
10 sccm O2 descum. The first (lower) 45 nm thick layer of aluminum is evaporated at
a rate of 1.0 nm/s under an angle of θ = −30◦, followed by static in-situ oxidation
for 10 min at an oxygen partial pressure of 10 mbar (for sample B slightly varying
parameters were used, see appendix A). Thereafter, the second (top) 55 nm thick
layer of aluminum is evaporated at a rate of 1.0 nm/s under an angle of θ = +30◦,
followed by a lift-off in NEP.
In this work, the bridge-free fabrication technique is preferred over the widely
spread Dolan-Niemeyer technique [NK76; Dol77], since the lack of an overhanging
bridge comes with two advantages. First, the junction area of the developed resist
stack is open and can be more effectively cleaned. Second, arbitrarily large junction
areas can be fabricated [Lec+11]. Both of the latter are required to optimize the
Josephson junctions for low spread in critical current across a wafer, as required
for sample B.
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Figure 4.2: Fabrication of Josephson junctions using a bridge-free shadow evaporation process. (a)
Left: top view of developed double resist stack after e-beam lithography. Right: cross-sections of
junction connection wires (top, bottom) and the area of the Josephson contact (center) during two-
angle evaporation of aluminum. Overhanging parts of the top resist cut the connection wires, which
would short the contact. (b) SEM image of developed double resist stack after shadow evaporation.
The inset shows a cross-section obtained with a focused ion beam (FIB) of the connection wires,
depicting the overhang and the residual undercut. (c) SEM image of a completed Josephson junction
after lift-off of the double resist.
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The inhomogeneity of per design identical Josephson junctions across a wafer is
mainly caused by [MBD99]:

1. junction area variations in the lithography process

2. thickness variations of the oxide barrier

3. diffusion processes in the oxide barriers (known as aging)

4. leakage currents through pinholes in the barrier

In this work, special focus is drawn on improving points 1.) and 3.). Junction area
fluctuations across a wafer are caused by imperfections of the e-beam lithography
process, being finite resolution, proximity effects, inhomogeneous development and
local variations in the used resist stack. Since the amplitude of these fluctuations
is to first order independent of the used junction area AJ, the spread in Ic can be
decreased by increasing AJ. This comes however at the cost of increasing the amount
of strongly coupled parasitic two-level systems (TLS) in the amorphous oxide in
the junction barrier, which are known to reduce qubit coherence [Mar+05; MCL19].
Furthermore, the maximum AJ is limited by the maximal junction capacitance
CJ ≤ 60 fF ≈ CΣ for the desired transmon parameters. Here, the junction capacitance
CJ is calculated by approximating the Josephson contact as a plate capacitor:

CJ = ε0εr
AJ

d
with εAlOx

r ≈ 10, d ≈ 2 nm (4.1)

Table 4.1 summarizes the obtained spreads σRn /Rn in normal resistance Rn of 64
identical test-contacts over an area of 5 mm×5 mm, fabricated with the bridge-free
technique for different AJ. Even though sufficiently small spreads (σRn /Rn ≈ 1 %)

Table 4.1: Spread in normal resistance σRn /Rn in dependence on junction area AJ. Measured for
arrays of 64 test-junctions over an area of 5 mm × 5 mm.

AJ (µm2) σRn /Rn (%) σRn /Rn (after anneal) (%) CJ (fF)
0.6× 0.6 1.8 3.2 16
0.8× 0.8 1-1.6 2.1-3.1 28
1.0× 1.0 0.87 3.6 44

can be reached, annealing the test-contacts (200 ◦C for 10 min) increases the spread
and the normal resistance Rn by roughly 50 %. The process of annealing is similar
to an accelerated aging process of the tunnel-barrier, where Rn increases due to
diffusion processes of photo resist residuals into the AlOx [Pop+12]. Therefore, for
the junctions used in this work the developed double resist stack was additionally
treated with an oxygen plasma for 6 min prior to shadow-evaporation, such that
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the junction area contains fewer resist residuals and the effect of aging can be
partially mitigated [KVM07; Pop+12].

Table 4.2 summarizes the characteristics of the Josephson junctions used for sample
A and B. The parameters were extracted from test-contacts fabricated on the same
wafers as the used samples. Whereas for sample B large area junctions (0.8µm
× 0.8µm) are used, sample A is based on smaller junctions (0.34 µm × 0.34µm and
0.28µm × 0.28 µm in a SQUID configuration), since high junction homogeneity
is not needed because of the local frequency control. For the fabrication of both
samples the additional O2 plasma cleaning step was used. The full fabrication
parameters are listed in appendix A.

Table 4.2: Josephson junction parameters of samples A and B. The qubits of sample A have two per
design different junctions in parallel, forming a dc-SQUID. The normal resistance spread σRn /Rn

of the Josephson junctions of sample B is measured on 64 test contacts fabricated in the same batch
as the sample.

Device AJ (µm2) Ic
1 (nA) σRn /Rn (after anneal) (%) CJ (fF)

Sample B 0.8× 0.8 27 2.2 28
Sample A 0.34× 0.34 39 - 5
Sample A 0.28× 0.28 31 - 3

4.1.3 Sample Housing

In order to interface the on-chip structures to the microwave coaxial cables and to
thermally anchor the chip to the base plate of the cryostat, the sample is embedded
into an aluminum sample holder. Simultaneously, the superconducting holder
shields it from outer magnetic fields, mechanical damage and provides a highly
coherent electromagnetic environment for the qubits [Lie+19]. This is achieved by
designing the geometry of the sample holder, such that its own electromagnetic
modes don’t fall into the relevant frequency range of 5− 10 GHz and provide an
additional decay channel for the qubits [Lie+19].

The completed chips after lithography are diced from a larger wafer to their final
form (sample A 5 mm× 5 mm, sample B 10 mm× 5 mm) using a wafer dicing saw
(DISCO DAD3350). The chips are glued with GE-varnish or silver conducting
paste into their sample holder together with printed circuit boards (copper on

1 Derived from measured normal-state resistance Rn and the Ambegaokar-Baratoff relation (Eq. 2.19)
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Figure 4.3: Sample housings for shielding and thermally anchoring the chips. (a) Housing for
sample A. The qubit chip is glued with GE-varnish to the aluminum housing. On-chip wires are
wire bonded to custom copper printed circuit boards, which provide the connection to coaxial
rf and dc cables in the cryostat. (b) Sample housing for sample B. Due to the lack of local flux
tunability, only rf connections are needed.

TMM10 dielectric), which are soldered to microwave SMA connectors and dc-cables
to connect the samples from outside the holders (see Fig. 4.3). The connection
between circuit boards and on-chip structures is made with aluminum bond wires.
In addition several on-chip bond wires are placed, shorting different parts of the
ground plane, to reduce the number of spurious on-chip modes and therefore to
increase qubit coherence. Due to the different dimensions of sample A and B, as
well as the need for eight additional dc-control lines for sample A, two different
designs of sample holders were used (compare Fig. 4.3).
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4.2 Cryogenic Setup

Millikelvin temperatures are required to reach the quantum regime with supercon-
ducting qubits, meaning their energy-level separation is larger than their linewidth
due to dissipation and thermal excitations are sufficiently suppressed [VD17].
Although superconductivity is already reached at significantly higher temperatures
(TAl

c ≈ 1.2 K [CM58]), the limiting factor for the qubit coherence at nonzero-
temperatures are dissipation due to superconducting quasi-particles and ther-
mal population of higher qubit states. Reducing the thermal population of the
first excited qubit state below 0.05 ≈ exp (− h f10

kBT ) at a typical level splitting of
f10 = 5 GHz requires a temperature of T = 80 mK. Whereas cryogenic tempera-
tures of 1.5− 4.2 K (> 300 mK) are typically reached with evaporative cooling of
liquid 4He (3He) at different vapor pressures, temperatures below 300 mK require
adiabatic demagnetization or 3He/4He dilution refrigerators [Pob07].

In this work, the qubits are cooled down to temperatures of 10− 20 mK with a wet
custom build 3He/4He dilution refrigerator as depicted in Fig. 4.4. "Wet" means
here, that the cryostat has two reservoirs of liquid nitrogen and liquid helium,
shielding and pre-cooling the colder parts of the cryostat by evaporative cooling.
Both of the reservoirs have to be refilled periodically to keep the cryostat cold. An
outer vacuum chamber (OVC) decouples the reservoirs and the other cold parts of
the cryostat from the room temperature environment. The main cooling unit of a
3He/4He dilution refrigerator is based on a phase separation of a mixture of the
helium isotopes 3He and 4He into a diluted phase of both isotopes and a phase of
pure 3He below temperatures of 867 mK [Pob07]. A cooling effect is achieved by
exothermically forcing 3He-atoms from the pure phase into the diluted phase. It is
crucial for the process that even for temperatures below 100 mK the fraction of 3He
in the diluted phase does not drop below 6.6 %, ensuring a large molecular flow of
3He between the two phases.

As shown in Fig. 4.4, in a cryostat this effect is exploited in the following way:
the 3He/4He mixture is used in a closed cycle, driven by a 3He-pump, allowing to
obtain continuous cooling power. Central element is the mixing-chamber, which
is thermally anchored to the base plate at 20 mK of the cryostat and contains
both phases of the mixture. The pure 3He is floating on top of the diluted phase
due to its lower density. A continuous transfer of 3He into the diluted phase is
realized by pumping on the diluted phase in the still at 600 mK. Since at this
temperature the vapor pressure of 3He is significantly larger than of 4He, only

2 Picture taken from [Sch19] with permission of S. Schloer.
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Figure 4.4: Working principle of a 3He/4He dilution refrigerator2 as used in the experiments for
this work. The cooling is based on a phase separation of the 3He/4He mixture into a diluted phase
of both isotopes and a concentrated 3He-phase. Here, a "wet" cryostat is used, relying on liquid
nitrogen and helium baths to shield and precool the lower temperature stages. The qubit samples
are mounted with their housing to the base plate of the cryostat at 10− 20 mK.
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3He gets removed from he diluted phase. Due to osmotic pressure there is a
constant flow of 3He between mixing chamber and still. The 3He-vapor gets re-
condensed in the condenser by heat exchange with the 1K-Pot, a separate 4He-
evaporation cooler at 1.5 K. On the way back to the mixing chamber the liquid 3He
passes several impedances, which establish the needed pressure in the condenser.
Simultaneously it passes several heat-exchangers to get further cooled by the
diluted phase counterpropagating to the still. Because of the closed-cycle design a
dilution refrigerator can, if necessary, be run for several months.

4.3 Microwave Setup

The electronics used for experiments with superconducting qubits is divided in
radio-frequency (rf) and direct-current (dc) components, as well as in cryogenic and
room temperature components. The rf-components are in the microwave frequency
range of 4− 8 GHz to drive and probe the qubits around their transition frequency.
The dc-components are used to flux-bias frequency-tunable qubits.

4.3.1 Cryogenic Microwave Setup

The samples mounted to the base plate of the cryostat are connected to the mi-
crowave electronics at room temperature (see Sec. 4.3.2) via 50Ω coaxial cables.
Since thermal noise from room temperature is known to strongly contribute to
qubit dephasing [Yeh+17], special care has to be taken to attenuate, to filter and
to thermalize the coaxial cables [Kri+19]. The thermal noise of a resistor R at
temperature T, is known as Johnson-Nyquist noise. Its two-sided power spectral
density is given by [GZ04]:

Sth(T, ω) = 2Rh̄ωnBE(T, ω) with nBE(T, ω) =
1

exp
(

h̄ω
kBT

)
− 1

(4.2)

In order to prevent this noise from room temperature (TRT = 300 K) reaching
the sample, three 20 dB microwave attenuators (attenuation Ai = 100 = 20 dB),
thermalized at the helium bath (T4K = 4.2 K), intermediate stage (TIM ≈ 50 mK) and
base plate (TB = 20 mK) are inserted into the coaxial cables (see Fig. 4.5). Therefore,
the mean noise photon occupation number ni(T, ω) at stage i ∈ {RT, 4K, IM, B} is
given by [Kri+19]:

ni(Ti, ω) =
ni−1

Ai
+

Ai − 1
Ai

nBE(Ti, ω) (4.3)
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Figure 4.5: Cryogenic radio-frequency (light green) and direct-current (light orange) setup with
indicated temperature stages. Two coaxial rf input lines are used for transmission and reflection
experiments, while for the output signal always the same amplification line is used.

The first term of Eq. 4.3 accounts for the attenuated noise from the stage above,
whereas the second term accounts for its own noise contribution due to its finite
temperature. With three cascaded attenuators the mean noise photon occupation
number at the base plate is reduced to nB ≈ 0.002 at a typical frequency of
ω/2π = 6 GHz, meaning only 0.002 photons of thermal noise are added per signal
photon. By dividing the total attenuation of 60 dB in separate 20 dB attenuators,
the noise coming from stage i − 1 is roughly reduced to the intrinsic thermal
noise of stage i. Any further attenuation would thus not significantly improve the
noise reduction. At the same time it is ensured that the major part of the power is
dissipated at the 4K-stage, which has sufficient cooling power. As shown in Fig. 4.5,
additional high pass filters are used at the base plate to shield the sample from
frequency components outside of the used frequency band (4− 8 GHz). Stainless-
steel coaxial cables are used for all ingoing rf-signals to the sample, since they
provide good thermal decoupling of the temperature stages of the cryostat and
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their slightly increased resistive losses (≈ 10− 25 dB from room temperature to
base, depending on the frequency) are not harmful as described above.

In this work, typical on-chip single photon powers are P ≈ −128 dBm, which
corresponds to voltages of 0.1µV. Since the electronics for detection of the scattered
microwave signals is typically sensitive for voltages 1 mV− 1 V, the microwave
signals have to be strongly amplified before detection. Here, a cascaded system
of a cryogenic high electron mobility transistor (HEMT, Low Noise Factory LNC4
8C s/n 200A) and room temperature amplifiers (see Sec. 4.3.2) is used. For the
effective noise-temperature Teff of such a system Friis formula applies [Fri44]:

Teff = T1 +
T2

G1
+

T3

G1G2
+ · · · (4.4)

Ti and Gi are noise-temperature and gain of the i-th amplifier. As can be seen from
Eq. 4.4, the noise performance of the first amplifier is dominating the overall noise
performance of the chain. Here, the noise temperature of the used HEMT is 2 K.
It is noted that the noise performance of the amplification setup could be further
improved by resorting to near quantum noise limited amplifiers as first elements
in the amplification chain [RD16; Mac+15]. To improve the signal to noise ratio
and prevent signal loss before amplification, superconducting cables are used from
the sample to the HEMT amplifier. Additional high pass filters and microwave
circulators (Quinstar CTH1392KS) are employed to shield the sample from HEMT
noise radiated backwards. In the used configuration, the circulators also allow
for measurements of signals reflected from the sample (Fig. 4.5). In this work, the
reflected signals are always probed on the right side of the sample (defined here
as port 2 of the two-port networks of samples A and B, corresponding to S22(ω)),
whereas transmission is probed from left to right (port 1 to 2, corresponding to
S21(ω)).

Following the principle of noise reduction as explained above for the coaxial lines,
thermal noise in the dc-flux bias lines gets reduced by 14:1 current dividers and
RCR lowpass T-filters at the 4 K stage. Copper-powder lowpass filters at the base
plate are used to further reduce high-frequency noise and to thermalize the wires
before reaching the sample [LU08].

4.3.2 Room Temperature Microwave Setup

In this work, two main classes of microwave experiments are conducted: spectro-
scopic and time-resolved measurements. Depending on which technique is used,
the employed microwave room temperature setup varies (see Fig. 4.6). Both setups
share a common microwave frontend, which is directly attached to the cryostat. For
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incident signals it provides, in dependence on the experiment, variable additional
attenuation and offers the possibility to combine the signals with an additional
drive or control microwave tone using a directional coupler. For outgoing signals,
the frontend additionally amplifies the signal with a pair of room temperature
amplifiers (Mini-Circuits ZVA-213+, +26 dB gain) before detection.

In spectroscopic measurements, the steady state scattering response of the sample
under investigation is probed by using a commercial vector-network analyzer
(VNA, Agilent E5071C). With a VNA the complex matrix elements of the scattering
matrix S(ω) (Eq. 3.2) can directly be accessed. Its working principle is based on
sending sinusoidal microwaves with varying frequency to the sample, followed by
a narrow-band heterodyne detection of the scattered signal [Poz11]. By comparing
the detected signal to a reference, changes in phase and amplitude or in-phase and
quadrature components can be measured.

In time-domain measurements microwave pulses with varying envelope and carrier
frequency are generated, sent to the sample and the full time dependent response
by means of the scattered light is detected. To cover the full dynamics of the system
a large detection bandwidth is required. The central element of the setup is a Xilinx
ZCU111 evaluation board featuring an RFSoC architecture. This combines CPUs,
an FPGA, DACs and ADCs for signal generation and detection on a single chip.
The system is operated with custom firmware and an effective sampling rate of
1 GS/s [Geb+20a; Geb+20b]. Since to this date there are no fast enough DACs to
synthesize arbitrary microwave signals in the desired band (4− 8 GHz) directly,
a heterodyne setup based on single-sideband mixing with IQ-mixers is used (see
Fig. 4.6). This means the DACs generate the desired pulse shapes modulated with
an intermediate frequency fIF = 115 MHz. The in-phase and quadrature component
of the signal are created independently. In the IQ-mixer the pulses at intermediate
frequency get mixed with a local oscillator at frequency fLO (in the GHz range)
and are therefore up-converted to radio-frequency frf = fLO + fIF. It is noted that
the corresponding mirror-frequency f ′rf = fLO − fIF, which normally is created in
a mixing process, destructively interferes in the IQ-mixer. Thus, only the single
upper-sideband at frf is send to the cryostat after the IQ-mixer. In contrast to a
homodyne setup (where fIF = 0 and frf = fLO) the heterodyne technique mitigates
the effect of local oscillator leakage through the mixer, since it is detuned from the
frequency of the sample ( frf). Here, additional low-pass filtering directly after the
DACs is used to remove parasitic high frequency components due to the finite
sampling rate. The detection of scattered microwave pulses is realized analogously
to the up-conversion process: a second IQ-mixer is used to down-convert the
incoming rf signal with the local-oscillator to intermediate frequency, separated in
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Figure 4.6: Sketch of the used room temperature microwave electronics. For spectroscopic mea-
surements a commercial vector network analyzer is used, while time resolved experiments are
conducted with a custom build FPGA-based heterodyne setup. For both types of measurements
a common microwave frontend is used: signals first pass variable attenuators and are optionally
combined with an additional microwave tone, before being sent into the cryostat. Incoming signals
are further amplified by a pair of room temperature amplifiers before detection.

in-phase and quadrature component. Additional low-and bandpass filters are used
to remove amplifier noise outside of the frequency band of interest.
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5 Waveguide Band Gap Engineering
with a Qubit Metamaterial

This chapter provides the results on the experiments with an eight qubit waveguide
quantum electrodynamics (wQED) system featuring local frequency control. After
providing some general information on the circuit layout, qubit characterization
and the calibration of magnetic crosstalk, the effective qubit-qubit interaction is
addressed. The collective polariton excitations in the single excitation sector are
spectroscopically probed. By consecutively tuning the qubits to a common reso-
nance frequency, insights into the dependence of polariton lifetimes on the number
of participating qubits and the emergence of a band gap are obtained. Furthermore,
collective non-linear properties as saturation and collective Autler-Townes split-
ting (ATS) are studied. The latter effect is then used to demonstrate with pulsed
experiments in the time-domain slow light in the eight qubit metamaterial, where
the group velocity of light is reduced by a factor of 1500. Furthermore, using the
frequency control, tailored band structures with an engineered dispersion profile
are used to obtain a similar effect. In the last section of this chapter experiments
on artificial frequency disorder are presented which might serve as a useful tool to
study Anderson localization in one-dimensional photonic systems.

5.1 Design Considerations

Fig. 5.1 shows an overview of sample A as used for the experiments presented in
this chapter. Here, the wQED system is formed by eight locally frequency tunable
transmon qubits side-coupled to a coplanar waveguide. Its circuit layout was chosen
based on the following design requirements:

1. Metamaterial limit: a dense spacing between adjacent qubits of d = 400µm
is chosen to fulfill the metamaterial limit of sub-wavelength dimensions,
which is at all accessible frequencies (≈ 3 − 8 GHz) significantly smaller
than the corresponding wavelength λ. The phase drop between neighboring
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5 Waveguide Band Gap Engineering with a Qubit Metamaterial

qubits is φ = 2π
λ d ≈ 0.05 − 0.161. Furthermore, the transmon qubits are

designed as compact as possible to mitigate the effect of a phase drop over
the spacial extend of the qubit. Due to the dense spacing, the effective qubit-
qubit interaction of Eq. 3.30 between neighboring qubits is by a factor of ≈ 10
dominated by the cooperative dissipation term.

2. Strong coupling: large Purcell factors or extinction coefficients (this requires
radiative decoherence to dominate the non-radiative intrinsic decoherence
Γ1D/2� Γnr) close to unity are desirable since they increase the subradiant
state visibility (see Sec. 3.2.3). This can be best satisfied with a large coupling
capacitance Cc of the qubit to the waveguide (Eq. 3.15). Simultaneously,
the corresponding qubit lifetime T1 ≈ 1/Γ1D has to be large enough that
time-dependent qubit dynamics can be resolved with the given microwave
electronics (see Sec. 4.3.2). Here, Cc ≈ 7 fF is used, which leads to 1/Γ1D ≈
25 ns at a qubit frequency of 8 GHz.

3. Local frequency control: individual qubit frequency control is required to
tune the qubits to a common resonance frequency and to alter the number of
resonant qubits N. The qubit frequency is tunable via magnetic flux which
controls the Josephson energy of the qubit’s split Josephson junction (SQUID).
Each SQUID is inductively coupled to an individual on-chip flux coil that
consists of a dc-current biased transmission line which is terminated at the
common ground plane (see Fig. 5.1, right inset). Magnetic crosstalk between
the lines and non-adjacent qubits is calibrated out by using a crosstalk-
compensation scheme (see Sec. 5.2).

4. No direct qubit-qubit coupling: The model Hamiltonian of Eq. 3.30 does
not account for additional direct qubit-qubit interactions via a mutual cross-
capacitance. The qubit-qubit capacitance was calculated using a finite-element
solver ANSYS Maxwell for the used spacing d (not reported here), and turned
out to be negligible compared to the qubit-transmission line capacitance Cc.

The experimentally obtained parameters of the individual qubits are listed in table
5.1 of Sec. 5.3.1.

1 The employed coplanar waveguide has an effective speed of light of c = 1.2 · 108 m/s and an impedance
of Z0 = 50Ω for the used geometry and materials (center conductor width: 14.4µm, gap width: 7.7µm,
sapphire substrate). The value was obtained in a numerical simulation using TX-Line [Cad].
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Figure 5.1: Microscopic images of the eight qubit metamaterial (sample A) consisting of transmon
qubits capacitively side-coupled to a common coplanar waveguide. Local dc flux bias lines ensure
individual qubit frequency control. The spacing between adjacent qubits is d = 400µm, which is at
all accessible qubit frequencies smaller than the corresponding wavelength λ (d� λ). The qubits
are numbered from left to right in the direction of the transmission measurement (ports of the
two-port microwave network are indicated with blue numbers).

5.2 Flux Tunability and Crosstalk Calibration

As shown in Sec. 2.2.3, the energy splitting of a qubit can be tuned with a magnetic
flux penetrating its SQUID. The flux Φi used to tune qubit i is generated by
applying a dc-current Ii (given as current provided by the current source at room
temperature and not as on-chip current) to its corresponding on-chip bias coil.
Quantitatively, the frequency of the 1 → 0-transition f10 in dependence on the
magnetic flux Φ of the bias coils is given by (Eqs. 2.29 and 2.40):

f10(Φ) =

√
8EJ(Φ)EC − EC

h
=

√
8 Φ0

2π Ic,eff(Φ)EC − EC

h

=

√
8 Φ0

2π (Ic,a + Ic,b) cos
(

πΦ
Φ0

)√
1 + m2 tan2

(
πΦ
Φ0

)
EC − EC

h
(5.1)

Here, m is the asymmetry between the critical currents (Ic,a, Ic,b) of the two Joseph-
son junctions constituting the SQUID (see Eq. 2.29). Fig. 5.2 shows the measured
frequency dispersion of qubit 1. In good agreement with Eq. 5.1, the qubit can be
periodically tuned between its upper- and lower sweet spot ( f min

10 and f max
10 ). The

extracted sweet spot frequencies and junction asymmetries for all eight qubits are
listed in Tab. 5.1 of the following section. The tuning precision is limited by the
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Figure 5.2: Frequency tunability of qubit 1 with applied current I1 in its corresponding flux bias
coil between f min

10 and f max
10 . Due to the per design asymmetric Josephson junctions in the SQUID,

the qubit dispersion obtains a lower sweet spot. The red dashed line is a fit to the expected qubit
dispersion of Eq. 5.1. The inset shows an avoided-level crossing of the qubit with a strongly coupled
TLS.

resolution of the DAC, used to set the currents, to 0.1µA. This translates in the
frequency range 7− 8 GHz close to the upper sweet spot, where all experiments of
this work are conducted, to a frequency precision of < 100 kHz. Stability measure-
ments over 15 h (not shown) indicate that current drifts are negligible. However,
depending on the operating frequency, the qubits feature strongly coupled parasitic
TLS in their spectrum, which are visible as avoided level crossings in the qubit
spectrum (see inset in Fig. 5.2) [Mar+05; Bil+21]. Due to the large coupling strength
these TLS are believed to reside in the amorphous oxide of the Josephson junction
and are known to strongly reduce the qubit coherence [Bil+20]. Furthermore, TLS
can lead to time dependent fluctuations in qubit frequency and coherence times
[Bre+17; Sch+19; Kli+18].

Due to close proximity of the qubits and their flux bias coils in sample A (see
Fig. 5.1), magnetic crosstalk can not be completely suppressed with circuit design.
In this work, a calibration scheme of Ref. [Yan+20] is used to compensate for this
effect and to allow for independent and individual frequency control. The following
description of the scheme is taken from [Bre+21].
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ba

c

Figure 5.3: (a) Transmission |S21|2 at 6 GHz, while I2 and I3 are changed. Slopes of the measured
qubit traces are proportional to M−1

23 and M−1
32 . (b) Mutual inductance matrix M between the bias

coils and the qubits. The placement of the on-chip bondwires explains why only every second
neighbours have large crosstalk. (c) Transmission measurement with qubit 2 being tuned, while
crosstalk calibration is used. Horizontal lines are the other 7 qubits, not changing their frequency.2

The fluxes (Φ1...Φ8) applied to the SQUIDs are related with the applied currents
via the mutual inductance matrix M:

Φ1
Φ2
Φ3
Φ4
Φ5
Φ6
Φ7
Φ8


=



M11 M12 M13 M14 M15 M16 M17 M18
M21 M22 M23 M24 M25 M26 M27 M28
M31 M32 M33 M34 M35 M36 M37 M38
M41 M42 M43 M44 M45 M46 M47 M48
M51 M52 M53 M54 M55 M56 M57 M58
M61 M62 M63 M64 M65 M66 M67 M68
M71 M72 M73 M74 M75 M76 M77 M78
M81 M82 M83 M84 M85 M86 M87 M88





I1
I2
I3
I4
I5
I6
I7
I8


(5.2)

The mutual inductance matrix elements Mxy can be extracted by observing the
transmission through sample A at a fixed frequency. Simultaneously, the frequency
of two qubits x and y are sweeped through this observation frequency by tuning

2 Subfigures (b) and (c) are adapted from Ref. [Bre+21].
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the currents Ix and Iy (Fig. 5.3(a)). The observation frequency of 6 GHz is chosen
such that the qubits have a steep flux-dispersion. It is assumed that the qubit
frequencies are proportional to the flux in their coils, which is satisfied for not too
large frequency changes. Eq. 5.2 gives:

const = Φx = Mxx Ix + Mxy Iy → Iy = −Mxx

Mxy
Ix +

Φx

Mxy
(5.3)

const = Φy = Myy Iy + Myx Ix → Ix = −
Myy

Myx
Iy +

Φy

Myx
(5.4)

Therefore, by fitting the slopes of the two qubit lines visible in this measurement,
the mutual inductance matrix elements Mxy

Mxx
and Myx

Myy
can be extracted. In case of an

8-qubit chip, all 28 possible combinations between two coils have to be measured
and fitted. The extracted mutual inductance matrix (with each element normalized
to the diagonal element of its line) for the 8-qubit chip is shown in Fig. 5.3(b).
The figure shows that only the nearest neighbor coupling goes beyond 10% of the
self-inductance. The crosstalk is only large for every second pair of neighbors, due
to the specific placement of the on-chip bond-wires on this sample. As soon as the
mutual inductance matrix is known, the crosstalk can be compensated by setting a
compensation current to all seven other coils, while one qubit is effectively tuned.
If, for example, qubit 2 is effectively tuned, the compensation currents for all other
coils can be calculated by solving the following system of linear equations:



0
0
0
0
0
0
0


!
=



Φ1
Φ3
Φ4
Φ5
Φ6
Φ7
Φ8


=



M11 M12 M13 M14 M15 M16 M17 M18
M31 M32 M33 M34 M35 M36 M37 M38
M41 M42 M43 M44 M45 M46 M47 M48
M51 M52 M53 M54 M55 M56 M57 M58
M61 M62 M63 M64 M65 M66 M67 M68
M71 M72 M73 M74 M75 M76 M77 M78
M81 M82 M83 M84 M85 M86 M87 M88





Icomp
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Icomp
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Icomp
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Icomp
5

Icomp
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Icomp
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Icomp
8


(5.5)

Figure 5.3(c) shows the applied compensation procedure. While only qubit 2 is
effectively tuned, all seven other qubits don’t change their frequency. The residual
crosstalk is estimated to be below 0.1 %.

5.3 Qubit Characterization

5.3.1 Extraction of Γ1D and γ10

The decoherence and relaxation rates (Γ1D, γ10, Γnr) of the individual qubits are
obtained by measuring their resonance fluorescence at a certain frequency ω10,
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b

a

a

Figure 5.4: Measured resonance-fluorescence of qubit 1 at different probe powers P. (a) Red dashed
line is a best fit of Eq. 3.11 to the measured complex S21 at low powers, giving access to the qubit
decoherence rates. The asymmetry in the line shape of the single qubit resonance due to interference
with the microwave background is removed following the procedure in Ref. [Pro+15]. (b) Saturation
of qubit 1 with increasing powers.

Table 5.1: Summary of individual qubit parameters of sample A.

Parameter Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
f max
10 (GHz) 8.097 7.900 8.088 8.114 8.115 7.95 8.066 8.136

f min
10 (GHz) 3.029 3.091 2.912 2.986 2.970 2.936 2.588 2.484

m (%) 15.6 17.0 14.5 15.0 14.9 15.3 11.8 10.7
α

2π (MHz) -283 -279 -273 -275 -267 -281 -273 -276
EJ
EC

3 110 107 117 116 123 107 117 116
Γ1D/2π (MHz)4 5.8 7.1 7.1 8.0 7.23 5.8 5.7 4.6
γ10/2π (MHz)4 3.1 3.8 3.8 4.5 4.0 3.3 3.3 2.9
Γnr/2π (MHz)4 0.24 0.31 0.29 0.48 0.38 0.45 0.48 0.56
Ext. Coeff. (%)4 99.4 99.4 99.4 98.7 99.1 98.2 97.9 96.2

while the other seven qubits are far detuned. The experimentally observed trans-
mission coefficient S21 shown in Fig. 5.4 is in good agreement with Eq. 3.11. In
the limit of low probe powers (here P ≈ −147 dBm) far below the single photon
regime (h̄ω10Γ1D ≈ −126 dBm), a circle fitting routine of Ref. [Pro+15] is used to
fit the measured complex transmission data to Eq. 3.11. This gives direct access
to the rates Γ1D, γ10 and Γnr, which are listed in detail in Tab. 5.1. On average
Γ1D/2π ≈ 6.4 MHz, γ10/2π ≈ 3.6 MHz and Γnr/2π ≈ 400 kHz are found at fre-
quencies close to the upper sweet spot of the qubits, which corresponds to extinction
coefficients of ≈ 99 %.
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Figure 5.5: Frequency dependence of decoherence rates Γ1D and Γnr of qubit 1 close to the upper
sweet spot, where all experiments of this work are conducted. The frequency dependence of Γ1D
is caused by standing waves in the cryostat, resulting in frequency dependent coupling strengths
of the qubit. The non-radiative decoherence Γnr (or the according extinction coefficient) increases
(decreases) for qubit frequencies further away from the sweet spot, due to increasing susceptibility
to flux-noise [Hut+17].

Fig. 5.5 shows the frequency dependence of the qubit decoherence and relaxation
rates in the upper part of the qubit dispersion close to the upper flux sweet spot.
With decreasing frequency, the flux dispersion becomes steeper, which results in an
increased non-radiative decoherence rate Γnr (or decreasing extinction coefficient),
due to increased susceptibility to flux noise [Hut+17]. Therefore, all of the following
experiments are performed at frequencies close to the upper sweet spot. The radia-
tive relaxation rate Γ1D shows a strong frequency dependence, which is however
not in agreement with the theoretical scaling Γ1D ∝ ω2

10 of Eq. 3.15. The observed
behavior is most likely caused by standing waves in the microwave background of
the cryostats wiring, which lead to frequency and spacially dependent variations
of the qubit-waveguide coupling strength [Loo14].

5.3.2 Calibration of Absolute Power and Extraction of γ20

To quantitatively evaluate the measured data, it is crucial to know how much of the
applied power of the microwave sources at room temperature reaches the qubits

3 Measured at the upper sweet spot f max
10 .

4 Here, the listed coherence rates are obtained for all qubits at 7.898 GHz.
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a b

Figure 5.6: (a) The Autler-Townes splitting of qubit 2 is used for calibration of absolute power.
Pappl is the power set at the microwave generator, driving the 2→ 1-transition of the qubit. Black
crosses mark the center of the dressed state resonances. The red dashed line is a fit of the splitting
to Ωc = a

√
Pappl, which is used to calibrate the on-chip power Pc. (b) |S21|2 on resonance with the

0 → 1-transition of qubit 2 in dependence on the control power Pcal
c . The orange line is a fit to

Eq. 5.11, giving access to γ20.

at the base plate of the cryostat. A rough estimate of the total attenuation of the
microwave line going to the sample can be made by measuring it with a VNA
when the cryostat is not in use and at room temperature (here ≈ −85 dB from
3× 20 dB attenuators and additional cable and insertion losses, compare Sec. 4.3.1).
This value might however change significantly when the cryostat is cold and at
the same time the simple measurement scheme of the attenuation is not applicable
anymore. To resolve this issue, typically the qubit itself is used as a power-sensor.
Here, a calibration protocol is used, employing the Autler-Townes splitting (ATS)
[Hön+20], which is analogous to the ac-Stark shift calibration in cQED [Sch+05].

The measured ATS of qubit 2 is shown in Fig. 5.6. Since the splitting between the
dressed states is exactly given by the Rabi strength of the control tone Ωc, it can
be used for calibration of the power Pc. Generally, the Rabi strength Ωj+1j of the
j + 1→ j-transition of a transmon coupled to a single mode is given by (compare
Sec. 2.3.3):

h̄Ωj+1j = µj+1jV = 2e
Cc

CΣ
〈j + 1|n̂|j〉V ≈ 2e

Cc

CΣ

√
j + 1

(
EJ

8Ec

)1/4
Vrms (5.6)

The dipole moment of the corresponding transition is denoted by µj+1j, Vrms =

V/
√

2 is the root-mean square voltage of the incoming wave, and Pj+1j =
V2

rms
Z0

=
V2

2Z0
is the corresponding power. The rate of incoming photons in the transmission

line is given by:

ν =
Pj+1j

h̄ωj+1j
=

V2
rms

Z0 h̄ωj+1j
=

h̄Ω2
j+1j

Z0ωj+1j2µ2
j+1j

(5.7)
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With the relaxation rate Γ1D of Eqs. 3.15, 3.16, this can be written as:

ν =
Ω2

j+1j

2(j + 1)Γ1D
(5.8)

In case of the ATS, the 2 → 1-transition is driven with a control tone. For this
specific case, the control Rabi-strength Ωc is associated with Ω21 and following
connection between the latter and the incident power Pc holds:

Pc =
Ω2

c
4Γ1D

h̄ω21 (5.9)

By measuring and fitting the single-qubit ATS, as shown in Fig. 5.6(a) with a simple
Ωc = a

√
Pappl law, the calibration factor b between applied power Pappl and the

correct incident on-chip power Pc ( Pc = bPappl) is then given by:

b = a2 h̄ω21

4Γ1D
(5.10)

It is noted that the obtained calibration constants for the power are only valid at
the specific qubit frequency, which was also used in the calibration. This is due to
the fact that the radiative decay rate Γ1D of the qubit depends on frequency (see
Sec. 5.3.1). In the following experiments, calibrated powers are marked with the
index cal. For all experiments where exact knowledge of power is not needed, the
power is estimated with the approximate attenuation of the microwave cables of
−85 dB.

Once the power is calibrated, the decoherence rate γ20 of the 2→ 0-transition can
be extracted by using the same ATS measurement. If the control and probe tone
are both on resonance with the transitions, the transmission coefficient of Eq. 3.26
for a three-level system simplifies to:

S21(ω10) = 1−
Γ1D
2γ10

1 + Ω2
c

4γ20γ10

= 1−
Γ1D
2γ10

1 + 4Γ1D
4γ20γ10 h̄ωc

Pc
(5.11)

When Γ1D and γ10 are known, fitting Eq. 5.11 to the measured trace gives an
estimate for γ20 (Fig. 5.6(b)). As discussed in Sec. 3.1.2 and Appendix. B.3, the
decoherence rate γ20 has got a lower limit even the absence of pure dephasing and
non-radiative relaxation, as well as Γ20 = 0, which is set by the radiative relaxation
rate Γ2D of the 2→ 1-transition (γ20 ≥ Γ2D/2). Combined with the scaling of the
radiative relaxation rates of Eq. 3.16, this implies γ20 ≥ Γ1D. The measured rates
for γ20 (see Tab. 5.2) for Sample A partially don’t fulfill this theoretical limit. This
can be explained with the strong frequency dependence of the radiative relaxation
rates ΓjD, which is observed experimentally (Sec. 5.3.1).
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5.4 Metamaterial Properties

The results on the collective properties of the 8 qubit metamaterial which are
presented in this section follow Ref. [Bre+21].

5.4.1 Spectroscopy of Polariton Excitations

In order to investigate the mode properties of the 8 qubit metamaterial in the single
excitation sector and their dependence on the number N of resonant qubits, first
the qubits are consecutively tuned to a common resonance frequency ω10. The
probe power is kept well below the single photon regime (P� h̄ω10Γ1D) to avoid
saturation of the qubits and multiple excitations in the metamaterial. Here, the
frequency ω10/2π ≈ 7.898 GHz is used, which corresponds to the upper sweet
spot of qubit 2. Among the other qubits it has got the smallest frequency. Choosing
ω10 to be as close as possible to the upper sweet spot is beneficial to minimize
non-radiative decoherence rates Γnr of the qubits due to flux-noise (see Sec. 5.3.1).
The measured transmission coefficient |S21| is shown in Fig. 5.7. While for N = 1
only a single resonance is observed (see Sec. 3.1.1), the system becomes multi-mode
for N > 1 and the super- and subradiant polariton modes start to emerge. The
subradiant polariton modes are visible as peaks in the transmission spectrum
below ω10 created by Fano-type interference (see Sec. 3.2.3, [HFS16; Bre+21]). The
superradiant mode is manifested as a wide dip above ω10. The frequency of the
modes is in agreement with the real part of the eigenfrequencies <(ωξ) obtained
from Heff (see Eq. 3.30 and Fig. 5.7(b)). It is noted that the calculated frequencies
do not perfectly coincide with the peaks due to the Fano interference, which shifts
the maximum of the peak slightly away from the actual resonance frequency
[Lep+19]. For N < 6 only the brightest of the subradiant modes is visible, because
darker modes with Γξ /2 < Γnr decay in the qubits before their excitation can be
remitted into the waveguide and be detected. For N ≥ 6 also the second brightest
subradiant mode is visible in the transmission spectrum. Fig. 5.7(b) shows that
an area of strongly suppressed transmission emerges (|S21|2 < −25 dB) between
ω10 and the superradiant mode with increasing N. This stop band is the signature
of an emerging polaritonic band gap, where the refractive index becomes purely
imaginary as expected for any kind of periodic resonant structures [Ivc05; TL08].
For N = 8 the width of the bandgap is ∆ω ≈ 1.9Γ1D. Compared with the expected
bandgap of ∆ω = Γ1Dc/(ω10d) ≈ 6.3Γ1D (Eq. 3.41) of an infinite metamaterial, this
places the 8 qubit array in the intermediate regime between a single atom and a
fully extended crystal.

67



5 Waveguide Band Gap Engineering with a Qubit Metamaterial

a
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Figure 5.7: (a) Transmission coefficient |S21| at low powers for N resonant qubits at ω10/2π ≈
7.898 GHz. Starting from N = 2, a second peak emerges, associated with a subradiant polariton
mode. For N ≥ 6 also the second brightest polariton mode is visible. The black dashed line is a fit
to the corresponding T-matrix model of Eq. 5.13. Black arrows mark the real part of the relevant
eigenfrequencies of Heff (Eq. 3.30). (b) Measured |S21|2 and overview of all calculated eigenfre-
quencies and radiative decoherence rates (here without non-radiative decay). With increasing N, an
area of strongly suppressed transmission is opening up between the superradiant mode and the
subradiant modes, which is a manifestation of the emerging band gap.
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Figure 5.8: Schematic representation of the transfer matrix for a system of 8 qubits coupled to
a waveguide with distance d between neighbouring qubits. An additional cable resonance is
introduced to account for the asymmetric line shape as measured in the experiment. TLi introduce
partial reflectance due to impedance mismatches from inductances in the waveguide.

The overall line-shape of the observed resonances is asymmetric due to interference
with standing waves, caused by impedance mismatches in the cabling of the cryostat
[Kha+12]. In order to fit the observed transmission coefficient of Fig. 5.7(a) to a
T-matrix model (see Sec. 3.2.3), the cable resonance has to be incorporated. This
is done by introducing two inductances acting as semi-transparent mirrors before
and after the qubit array (compare Fig. 5.8). In the cryostat they could represent
impedance mismatches of the bond wires between the qubit chip and the cryostats
wiring. The T-Matrix TL of an inductance reads:

TL =

(
1 + iωL

2Z0
iωL
2Z0

−iωL
2Z0

1− iωL
2Z0

)
(5.12)

The total inductance matrix of the 8 qubit system is therefore given by:

Ttot = TL2 Tφ2 TQ8 Tφ...TφTQ2 TφTQ1 Tφ1 TL1 (5.13)

All other T-matrices are defined in Sec. 3.2.3. In order to reduce the number of free
parameters in the model, all qubits are assumed to have the same frequency and
decoherence rates. The fits of the T-matrix model to the measured transmission
coefficient for N resonant qubits is shown in Fig. 5.7(a). For N = 8 the best fit to
the experimental data provides the radiative relaxation rate Γ1D/2π = 6.4 MHz
and decoherence rate γ10/2π = 3.4 MHz, which is in good agreement with the
average of all individual rates of Tab. 5.1.

5.4.2 Lifetime Scalings of Subradiant Polariton Modes

When probed in reflection, the subradiant modes are visible as dips (compare
Fig. 5.9). It can be generally shown that the lineshape around each polariton
resonance is described by a Lorentzian function [TL08; Ase+17]. Here, an additional
skew is introduced in the Lorentzian function L(ω) to account for the asymmetric
background:

L(ω) = a + b(ω−ω0)−
c

1 + 4(ω−ω0)2

(Γξ+2Γnr)2

(5.14)
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Figure 5.9: (a) The measured reflectance data |S22|2 shows the subradiant polariton modes as
pronounced dips. Lorentzian fits are used to extract their radiative relaxation rates Γξ (here shown
exemplary for N = 8, 4). (b) Extracted Γξ for all visible subradiant modes. The brightest subradiant
mode shows a scaling Γξ ∝ N3 with the number of resonant qubits. A best fit to the experimental
data gives a power law with the exponent b = 2.93± 0.13 and therefore confirms the predicted
scaling of Ref. [Bre+21].

By fitting the observed dips to Eq. 5.14, the radiative relaxation rate Γξ of the
visible polaritons can be accessed. Some exemplary fits are shown in Fig. 5.9(a).
All extracted rates of the brightest and second brightest subradiant modes are
shown in Fig. 5.9(b). The rates are in agreement with the rates obtained from the
eigenvalues 2=(ω10) of Heff. Small deviations are caused by imperfect qubit tuning
and interference with the microwave background. Furthermore, the brightest of the
subradiant states follows the analytically obtained scaling Γξ = 8N3(ω10d)2/(c2π4)

(see Appendix B.5 and Ref. [Bre+21]). A fit to a power law ∝ Nb gives an exponent
of b = 2.93± 0.13 and thus confirms the predicted scaling. The obtained scaling
of the brightest subradiant mode with N is the complementary asymptotic of the
extensively discussed universal Γξ ∝ N−3 scaling of the most subradiant state
[TL08; Alb+19; Ase+17; DHB20]. A remarkable property of this scaling is that it is
independent how the wQED system is physically realized (e.g. one dimensional
or three dimensional open space). It occurs universally in so called 1D boundary
dissipation models, where dissipation happens only at the ends of the qubit chain
[Alb+19].
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Figure 5.10: (a) Measured reflection coefficient |S22| for the off-resonant situation, where qubit 8
is tuned through the collective resonance of qubit 1 to 7 at ω10 = 7.897 GHz (right column: qubit
1 is tuned through qubit 2). The subradiant polariton modes are visible as dips in |S22|. (b) The
corresponding T-matrix calculation reproduces the measured reflection coefficient. Colored lines
mark the relevant calculated eigenfrequencies <(ωξ ) of Eq. 3.30. (c) Calculated decoherence rates
=(ωξ ) and mode-overlap η (Eq. 3.33) explain the visibility of the subradiant modes in the reflection
experiment.
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5.4.3 Mode Visibility and Off-resonant Qubit Frequencies

The mode-spectrum in the single excitation regime can be further elaborated
by studying the off-resonant situation, where the qubits have a finite detuning.
Fig. 5.10(a) shows the measured reflection coefficient |S22| when an individual
qubit (at frequency ω0) is tuned through an ensemble of already resonant qubits
(ω10/2π ≈ 7.897 GHz), using the qubits tunability. For large detunings |ω10 −
ω0| � Γ1D (not shown in Fig. 5.10(a)) the polariton modes of the ensemble and
the mode of the qubit are not hybridized. For smaller detunings an additional
partially hybridized subradiant mode appears, which becomes for zero detuning
the brightest of the subradiant modes. The level repulsion between the observed
collective states is caused by the residual exchange type interaction between the
qubits, due to their finite distance d. The measured results are in good agreement
with the T-matrix model and the calculated eigenvalues ωξ from Heff (compare
Fig. 5.10(b)). The subradiant states in Fig. 5.10(a) show several blind spots, where
they turn completely dark. This occurs when the frequency of the detuned qubit
matches the frequency <(ωξ) of an eigenstate of the full system. This can be
explained by the Fano-like interferences between the detuned qubit resonance
and the modes of the resonant qubits, which are analyzed in more detail in the
Appendix B.6. Additionally, for the blind spots close to the common resonance ω10,
the overlap η (Eq. 3.33) between the wave driving the qubit chain and the polariton
mode vanishes and therefore turns them completely dark (compare Fig. 5.10).
Similar observations have been made also in cavity QED with two interacting
qubits via a cavity bus [Fil+11].

5.4.4 Power Saturation and Collective Autler-Twones Splitting

As indicated in Sec. 3.1.1, the elastic scattering properties of light in the single
excitation sector alone does not allow for a discrimination between two-level
systems and harmonic oscillators. Also for multiple qubits, the elastic scattering
in the single excitation sector as observed above is similar to an array of coupled
harmonic oscillators [Mir+18]. The simplest way to experimentally establish a
discrimination between them is to increase the probe power beyond the single
photon regime (see Fig. 5.11). Analogous to the single qubit case (treated in
Sec. 3.1.1), the collective resonance of several qubits saturates with increasing
power (Fig. 5.11(a)). It is highlighted that in fact all spectroscopic features are
saturable, including the polariton modes and the band gap, in agreement with the
prediction of saturability of materials made of qubits [Ast+10a]. Whereas for a
single qubit the saturation is well described by Eq. 3.11 (see Fig. 5.11(b)), to the
best of the author’s knowledge no such analytical solution exists to describe the
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a

cb

Figure 5.11: (a) Left: saturation of qubit 1 with power. Right: saturation of the N = 8 collective
resonance. All features are saturable, including the super- and subradiant modes and the band
gap. (b) Saturation of the transmission coefficient at the collective resonance frequency ω10/2π ≈
7.898 GHz. For the N = 8 qubit resonance, more power is needed to saturate the array. The N = 1
saturation is well described by Eq. 3.11, whereas to the best of the author’s knowledge for the
N = 8 data no analytical solution exists. (c) Scaling of the power required to saturate |S21|2 to 50%
with qubit number N. The measured scaling is best described by ∝ ln(N), whereas the numerical
model of Ref. [Lal+13] predicts a linear scaling.

saturation of N qubits. It is found, that in general the power needed to saturate N
resonant qubits grows monotonously with N. Here, P50% sat is introduced as figure
of merit to quantify the saturation power needed to saturate the transmission |S21|2
to 0.5. Fig. 5.11(c) shows the measured scaling of P50% sat with N, which is best
described by ln(N). This experimental result is in conflict with a numerical master
equation simulation of an array of N two-level systems based on Ref. [Lal+13],
which predicts a linear scaling. Due to an exponentially growing Fock-Liouville
space with N, this simulation was on a desktop computer only feasible up to N = 6.
A potential reason for the failure of the numerical model is the approximation of
the qubits as perfect two-level systems, wheras the used transmon qubits are in
fact only weakly anharmonic. Thus, multi-photon transitions to higher qubit levels
could have significant contributions to the observed saturation [Bra+15].
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experiment simulation

Figure 5.12: Left: measured collective N = 8 Autler-Townes splitting. With increasing control-
power, the band gap splits and a band with finite transmission is opening up around the common
resonance frequency, demonstrating active control over the band structure. The red-dashed line is a
fit to the splitting given by the Rabi-strength Ωc of the control-tone. Right: a T-matrix simulation
reproduces the measured collective ATS. Small deviations arise due to imperfections in the qubit
tuning and slightly differing qubit anharmonicities. Used parameters: ω10

2π = 7.898 GHz, Γ1D/2π =

6.4 MHz, γ10/2π = 3.4 MHz, γ20/2π = 11.1 MHz.

Beyond saturation with power, the quantum non-linearity of the qubit metamaterial
can be unambiguously shown by demonstrating the collective Autler-Townes
splitting (ATS). As discussed in detail in Sec. 3.1.2 and 3.2.3, this effect necessarily
requires an anharmonic three-level system. In order to observe it for N resonant
qubits, they are first tuned to a collective resonance frequency ω10/2π ≈ 7.898 GHz.
Then, an additional microwave control tone with frequency ω10 + α is applied to
drive the 1→ 2-transition of the qubits. For the anharmonicity α/2π = −275 MHz
is used, corresponding to an average of the values for α listed in Tab. 5.1. Similar
to the single qubit ATS (compare Fig. 5.6(a)), here the collective ATS is observed
for up to N = 8 (see Fig. 5.12). Again, the splitting between the two dressed
collective resonances is given by the Rabi-strength Ωc of the control tone. As
shown in Fig. 5.12, the observed collective ATS is in good agreement with the
calculation based on the T-matrix of Eqs. 5.13, 3.26. Minor deviations are caused by
the slightly differing anharmonicities between the qubits (compare Tab. 5.1). In the
band structure picture it is the two dressed states |±〉 (Eq. 3.28) of the individual
qubits giving rise to two independent Bloch bands of the collective ATS [WS10].
The collective ATS provides a useful tool to actively control the band structure and
with it the optical response of the qubit metamaterial via an external microwave
control tone. To the best of the author’s knowledge, this is the first demonstration
of a collective ATS in superconducting wQED. A direct application of the presented
collective ATS is an extension of the single-photon router of Ref. [Hoi+11] to
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the few-photon domain: due to the demonstrated higher saturation powers of
the collective qubit resonance, the band gap region is even in the few photon
limit still perfectly reflecting. Moreover, the collective resonance has a strongly
enhanced extinction coefficient and can thus compensate for reduced extinction
coefficients, which reduce the routing performance in the single qubit case. Due to
the enhanced width of the band gap compared to the single qubit line width, it
is also possible to route microwave pulses with a larger spectral width. Another
even more relevant application of the collective ATS is the creation of slow light
and quantum memories which will be discussed in the next section.

5.5 Slow Light

Controlling the speed of light in artificially structured media, slowing it down and
eventually stopping it, has recently gotten into the focus of quantum information
processing. It is crucial for controlling and synchronizing the flow of information
[Kro+19] and for the realization of long living quantum memories [LST09]. As
introduced in Sec. 3.2.4, a reduction of the group velocity of light vg can be generally
achieved by engineering steep dispersion profiles (or conversely flat bands in the
band structure). Simultaneously, it is desirable to have a large bandwidth at high
transmittance and low group velocity dispersion in the spectral region of slow light
[Bab08].

Here two approaches to create slow light are realized with the eight qubit meta-
material: first, the collective ATS, which can be controlled by a microwave tone, is
used to demonstrate the effect. It is in close resemblance to EIT-based slow light,
which has been extensively studied with cold atoms (including a reduction of vg

to 17 m/s [Hau+99] and atoms coupled to nano-fibers [Gou+15]). However, this
effect is not realized in superconducting wQED to this date. Second, the slow
light effect is achieved by using the qubits as tunable dispersive elements and
arranging them in detuned collective resonances as proposed in Ref. [She+07]. By
doing so, a similar band-structure as in the ATS case can be engineered [Yan+04].
Even though this effect is purely classical, it can be shown that analogously to EIT,
slow light and quantum memory protocols can be realized [She+07; YF04]. This
approach is similar to classical slow light photonic crystal waveguides, where the
steep dispersion near the photonic bandgap is exploited [Bab08] or it is introduced
with local resonant elements [MF19]. This approach was used in superconducting
circuits to realize a slow-light waveguide based on an array of superconducting
resonators [Mir+18].
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Table 5.2: Measured5 individual qubit properties around 7.812 GHz. All other relevant qubit pa-
rameters are listed in Tab. 5.1

Parameter Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Γ1D/2π (MHz) 7.3 9.5 11.3 13.9 14.5 14.6 12.1 11.9
γ10/2π (MHz) 4.2 5.3 6.7 8.4 8.1 8.1 6.7 7.2
Γnr/2π (MHz) 0.52 0.56 1.0 1.36 0.83 0.83 0.65 1.3

γ20/2π (MHz)6 8.7 8.3 - 6.7 5.6 6.2 - 5.7
Ext. Coeff % 98.4 98.9 97.7 97.4 99.0 99.0 99.1 96.8

5.5.1 Dressed State based Slow Light

The collective ATS, as presented in Sec. 5.4.4, gives in the infinite lattice case rise
to a band structure, which is shown in Fig. 3.10. In the following the effect of the
flat band around the 1→ 0-transition on the group velocity vg is probed.

The data presented in this section was measured in a separate cooldown compared
to the data shown in Sec. 5.4. Due to the specific appearance of strongly coupled
TLS in the qubit spectrum, in the cooldown for the slow light experiment it was
not possible to find a common TLS-free resonance frequency for all 8 qubits near
the upper flux sweet spot. Therefore, the following experiment was conducted
with a maximum of N = 7 (qubits 1-7) around a common resonance frequency
of ω10/2π ≈ 7.812 GHz. The relevant qubit coherence rates at this frequency are
listed in Tab. 5.2.

The N = 7 collective ATS is shown in Fig. 5.13. In contrast to the ideal case of
vanishing 2 → 0-decoherence, the transmission |S21| around ω10 is smaller than
unity. The finite decoherence rate γ20/2π ≈ 6.8 MHz suppresses the quantum
interference between the excitation pathways in the three-level system and thus
dampens the effect of EIT. This is most dramatic in the limit of low control tone
strengths (Ωc < βγ10

7, considered as EIT regime). This indicates that the observed
transparency window and its dispersive feature in Fig. 5.13 is mainly caused by
the collective resonances of the ATS and quantum interference effects from EIT
are only playing a secondary role. In contrast to experiments with Λ-type three-
level systems, which can show almost perfect EIT [Hau+99], the comparably large

5 Data measured after a thermal cycle of the cryostat compared to the slow light measurements.
6 γ20 was not accessible for all qubits at the given frequency, due to spurious TLS distorting the single

qubit ATS.
7 βγ10 = (N2 − 1)φγ10/3 is the approximate width of the band gap for the N qubit resonance. βγ10 is

used as an approximation for the line width of the dressed resonances of the collective ATS which is
in the single qubit case just given by Γ1D.

76



5.5 Slow Light

a

b

-1 -1 -1

Figure 5.13: (a) Measured collective ATS for N = 7. With increasing control tone power Pcal
c , the

dressed collective resonances are split by the corresponding Rabi-strength Ωc. Vertical dashed
purple lines mark a spectral width of 20 MHz of the transparency window. (b) Absolute transmission
|S21| and phase Arg(S21) of the N = 7 collective ATS for selected control powers. For small control
powers quantum interference from EIT is suppressed and with it also the transmission around ω10
due to finite 2→ 0-decoherence (γ20/2π ≈ 6.8 MHz). In agreement with Eq. 5.15, the slope of the
phase roll-off in the transparency window, controlled by Ωc, dictates the expected group velocity
vg. Black dotted lines represent best fits to the T-matrix model. Vertical grey dashed lines mark
transmission threshold according to |S21| ≈ exp(−1/2)|Smax

21 (ω10)|, used for the determination of
the transparency window bandwidth.
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decoherence rate γ20 is a consequence of the ladder-type level structure of the used
transmon qubits (see section 3.1.2 and Appendix B.3), which can therefore only
show incomplete EIT [YRZ01]. To quantitatively discriminate between ATS and
EIT in the observed splitting, the information theoretic method based on Akaike’s
information criterion (AIC) as proposed in Ref. [ADS11] can be used. However,
the method can here not directly be applied to the experimental data since it is
asymmetric due to interference with the microwave background. Moreover, even
under ideal circumstances the collective ATS shows intrinsic asymmetric features
due to internal reflectance and interference effects. If applied to a calculated single
qubit ATS, based on Eq. 3.26 and an average of the measured qubit parameters in
Tab. 5.2, the AIC yields that the transmission is described by almost 100 % certainty
by the ATS8.

The phase of the transmission signal Arg(S21) in the center of the transparency
window features a steep roll-off which indicates low group velocities (compare
Fig. 5.13(b)). Quantitatively, the expected group velocity can be calculated from the
measured phase-gradient [Ase+17; LS12]:

vg =

(
1

(N − 1)d
dArg(S21(ω))

dω

)−1
∣∣∣∣∣
ω=ω10

(5.15)

The inferred time delays τ = (N − 1)d/vg (traversal times) from Eq. 5.15 and the
experimental data from the N = 7 ATS of Fig. 5.13 are plotted in Fig. 5.14(c). In
agreement with a numerical T-matrix calculation, it can be seen that the expected
traversal time, or similarly the effective group index ng

9, can be tuned over a
large range with the applied control power Pcal

c . Contrary to the textbook case
of EIT in the limit of γ20 ≈ 0, where τ ∝ 1/Ω2

c diverges for small Ωc (compare
Eq. 3.45), it can be seen that τ is approaching a maximum of 15 ns (ng ≈ 1900)
at Pcal

c ≈ −124 dBm before it starts to decrease again for even lower control tone
strengths. Similar behaviors were observed in room temperature vapor of 4He
[Gol+09]. In order to obtain an analytical expression for vg in the limit of finite
γ20, Eq. 3.43 can be approximated in the limits for large and small control tone
strengths Ωc, translating to φ� ξ and φ� ξ. For the first case Eq. 3.43 simplifies
to:

k ≈ (
ω

c
)− ir

1 + r
1
d

(5.16)

dk
dω
≈ 1

c
− 1

d
d

dω

(
ir

1 + r

)
(5.17)

8 In the relevant control power range for the slow light experiment: Pcal
c = −130...− 110 dBm

9 The group index ng is given with respect to the vacuum speed of light c0 ≈ 3 · 108 m/s and not with
respect to the bare waveguide speed of light (c ≈ 1.2 · 108 m/s)
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For the second case, i.e. φ� ξ, Eq. 3.43 simplifies to:

k2 ≈ −2φξ

d2 (5.18)

dk
dω
≈ dξ

dω

√
−φ/2√

ξd
(5.19)

The expected time delay τ for a traversal of an N qubit metamaterial in the center
of the transparency window can then be computed by:

τ =
(N − 1)d

vg
= (N − 1)d<

(
dk
dω

∣∣∣∣
ω=ω10

)
(5.20)

Inserting Eqs. 5.17 and 5.19 in 5.20 then gives:

τ(ω10, Ωc) ≈


(N−1)Γ1D(2Ω2

c−8γ2
20)

(4Γnrγ20+Ω2
c )2 φ� ξ

(N−1)Γ1D(2Ω2
c−8γ2

20)

(4Γnrγ20+Ω2
c )3/2

√
φ

8Γ1Dγ20
φ� ξ

(5.21)

In the limit of γ20 ≈ 0, the limit φ � ξ is always fulfilled and the corresponding
expression in Eq. 5.21 reduces to the formula of textbook EIT (see Eq. 3.45). As
shown in Fig. 5.14(c), the asymptotic for φ� ξ matches the measured time delays
accurately. In the opposing limit for φ� ξ, only qualitative agreement is found,
which is most likely caused by the fact that Eq. 5.21 is derived based on a band
structure calculation but the experimental system is finite. Nevertheless, the calcu-
lation accurately predicts the existence of a maximum in τ and its corresponding
control power Pcal

c .

To test the spectroscopically inferred time-delays τ in Fig. 5.14(c), pulsed mea-
surements in the time-domain are required. Here, an FPGA based heterodyne
microwave setup is used to generate and detect the pulses (see Sec. 4.3.2). The used
pulses have a Gaussian envelope A(t) with a temporal width of σ = 50 ns:

A(t) = A exp
(
− (x− µ)2

2σ2

)
(5.22)

To avoid saturation of the qubits, the amplitude A of the pulses is chosen such that
the power corresponding to the maximum A of the pulse is still well below the
single photon regime P < h̄ω10Γ1D ≈ −124 dBm. Fig. 5.14(a) shows a measured ref-
erence pulse with a center frequency of ω10/2π = 7.812 GHz, which is sent through
the 8 qubit metamaterial with all qubits far detuned. The pulse is detected by the
measurement electronics separately in its I and Q component, which is at that point
still modulated with the intermediate frequency ( fIF = 115 MHz). Thereafter, the
complex signal is digitally down-converted to dc, lowpass-filtered with a 5th order
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a

b

c

Figure 5.14: (a) Top: detected Gaussian pulse in the I and Q quadrature at the intermediate fre-
quency of fIF = 115 MHz. Bottom: digitally down-converted and low-pass filtered amplitude of the
pulse. (b) Measured pulses after propagation through the transparency window of the collective
ATS with N = 7 for different control tone powers Pcal

c . With decreasing Pcal
c , the pulses get more

delayed compared to a reference pulse with far detuned qubits. For better visibility, the pulses are
compressed by a factor of 20, with their maximum at time µ staying at the original position. (c)
Measured pulse delays τ compared to the reference. The obtained delays of pulsed time-resolved
measurements agree with the delay derived from the spectroscopic data of Fig. 5.13 and with
the numerical simulation based on the T-matrix method. Purple and pink lines indicate the two
asymptotes of Eq. 5.21 in the limit of a strong and weak control tone.
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5.5 Slow Light

Butterworth filter with 115 MHz cutoff and its amplitude is computed10(compare
Fig. 5.14(a)). Following the reference measurement, the experiment is repeated for
the N = 7 collective ATS at different control powers (Fig. 5.14(b)). The pulses have
again a center frequency of ω10/2π = 7.812 GHz, corresponding to the center of
the transparency window. The time delay τ of the measured pulses is extracted by
the difference of their temporal center µ (extracted by a fit of the detected pulse
amplitude to Eq. 5.22) and the one of the reference measurement. The extracted
time delays (Fig. 5.14(c)) agree with the numerical model and the spectroscopically
inferred delays. Due to the finite spectral width of the used pulses (1/σ = 20 MHz,
see purple lines in Fig. 5.13(a)) and the width of the transparency window, the
minimal accessible control tone power is limited to Pcal

c ≈ −122.5 dBm. This leads
to a maximal accessible delay of τ ≈ 12 ns (ng ≈ 1500) in the time-resolved mea-
surements.

As shown in Fig. 5.14(b), the amplitude of the detected pulses decreases for in-
creasing delay τ. This is in agreement with the measured transmission coefficient
in Fig. 5.13 and is caused by the finite 2 → 0-decoherence rate γ20, spoiling the
quantum interference of EIT [FIM05]. Following Ref. [NWX11], a coefficient ι can
be calculated to characterize the efficiency of the slow light effect. It is defined as
an energy ratio of the incoming and outgoing pulse, which reduces for Gaussian
pulses to their squared amplitude ratio:

ι =
Eout

Ein
=

A2
out

A2
in

(5.23)

At maximal delay (Pcal
c ≈ −122.5 dBm) an efficiency of ι = 16 % is found. Fur-

thermore, a delay-bandwidth product (DBP) can be defined, which is given by the
product of the time delay τ and the bandwidth of the transparency window11.
The DBP measures how well a light pulse fits spatially inside the metamaterial
[Ase+17]. For the N = 7 ATS, a DBP of 0.2 is found, indicating that a general
on-demand storage and retrieval memory can not be efficiently realized. Neverthe-
less, the demonstrated slow light effect can be used as a tunable pulse retarder or
fixed-delay quantum memory [Ras+19] at the given efficiency ι.

10It is noted that the complex detection in terms of I and Q components is not necessarily required
for the experiments shown here, because only the amplitude of the signal is used. A separate digital
down-conversion on I and Q is used to compensate for oscillating components in the signal amplitude
due to imperfections in the IQ-Mixer.

11The bandwidth is measured between the frequencies above and below ω10, where the transparency
decreases to |S21| ≈ exp(−1/2)|Smax

21 (ω10)| (see Fig. 3.9(b)). |Smax
21 (ω10)| is the maximal value of the

transmission in the center of the transparency window for large Pc, which is here smaller than 1 due
to interference with the microwave background.

81
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While the presented experiment marks the first demonstration of EIT/ATS-based
slow light in a superconducting wQED system, it is limited in its performance by
the large decoherence rate γ20, which is inherently large for ladder-type three-level
systems [YRZ01] (see also Sec. 3.1.2 and Appendix B.3). Dramatic improvements
can therefore be expected by using Λ-type three-level systems, such as flux or
Fluxonium qubits, biased far from flux degeneracy [Joo+10].

5.5.2 Dispersion Engineered Slow Light

As pointed out in Refs. [She+07; Yan+04; YF04] an EIT-like band structure can
also be engineered by using the qubits directly as dispersive elements without the
need for a third level or an additional microwave control tone. In order to realize
the required band structure, again a one-dimensional metamaterial realized by
an array of densely spaced qubits is used. However now, a unit cell consists (in
contrast to the case in Eq. 3.39) of two qubits at frequencies f1 and f2 (compare
Fig. 5.15(a)). In the infinite lattice limit, this results in a similar band structure to the
ATS/EIT-metamaterial shown in Fig. 3.9(b). As derived in Refs. [She+07; Yan+04;
YF04], this gives not only rise to slow light because of a flat central band, but also
allows for quantum memory protocols and even negative group indices. Instead of
using a second microwave control tone to regulate the slope of the central band
and the group velocity vg, it is now the detuning between qubits f1- f2, changed
with the local flux bias lines.

Fig. 5.15(b) shows the measured transmission coefficient S21 for qubits 2,4,6,8 being
tuned to frequency f2 = 7.882 GHz and qubits 1,3,5,7 being tuned to a varied
frequency f1. The measured S21 resembles that of the collective ATS resonance
(Fig. 5.13): a transparency window with a steep phase roll-off, sandwiched between
two resonances. In good agreement with the T-matrix calculation, both collective
four qubit resonances show their brightest subradiant state as pronounced peaks
a few Megahertz below f1 and f2. Using Eq. 5.15, the expected time-delay τ and
group index ng in the center of the transparency window (( f1 + f2)/2) can be
derived from Arg(S21) (see Fig. 5.15(c)). Analogously to the previous section,
pulsed measurements with σ = 50 ns pulses are used to validate the inferred delays
in the time domain. In agreement with numerics, delays up to τ = 17 ns (ng = 1850)
are found, which can be tuned with the detuning between f1 and f2. For a group
index of ng ≈ 1500, where in the ATS-case an efficiency of ι = 16 % was measured,
here an efficiency of ι = 50 % is found. The over three times higher efficiency is
possible since γ20 is not reducing the transmittivity of the transparency window.
The numerical T-matrix model furthermore suggests, that for smaller detunings
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Figure 5.15: (a) Sketch of the used qubit configuration for the dispersion engineered slow light.
Every second qubit is tuned to a frequency f1 and every other second to f2, creating an ATS like
band structure. (b) Left: transmission |S21| for a pair of detuned collective four qubit resonances
at frequencies f1 and f2. The black dashed line indicates the center frequency of the transparency
window and the purple dotted lines show a corresponding bandwidth of 20 MHz as required by
50 ns pulses. Right: |S21| for a detuning of f2 − f1 = 32 MHz. Similar to the ATS, the phase Arg(S21)
features a steep roll-off between the two resonances, indicating a strongly reduced group velocity
vg. The black dashed line marks the best fit to the corresponding T-Matrix. (c) Both, time-resolved
pulsed measurements and spectroscopy data indicate in agreement with numerics pulse delays up
to 17 ns. This corresponds to extreme effective group indices of ng ≈ 1850.
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5 Waveguide Band Gap Engineering with a Qubit Metamaterial

f1 − f2 than shown in Fig. 5.15, time delays of up to 46 ns (ng ≈ 5000) can be
reached with the dispersion engineering method and the 8 qubit metamaterial.

Since only the first two qubit energy levels are used, the demonstrated slow light
effect with an engineered dispersion partially mitigates the problem of damping
and is therefore of higher efficiency as in the EIT/ATS case. Even though the
realization of a quantum memory is theoretically possible in dispersion engineered
media [She+07], it is experimentally significantly harder to realize since it requires
fast control of multiple qubits simultaneously. This is in contrast to the EIT case,
where the memory can be controlled with just an additional microwave control
tone. The dispersion engineering approach however offers a much wider variability
and more complicated band structures can be created readily. For example instead
of only a flat center band, several bands with tailored group velocities can be
engineered, which route on demand pulses at different frequencies, resembling the
ideas of multi-color EIT [Wan+14].

5.6 Artificial Disorder and Anderson Localization

As discussed in the previous sections, the resonant situation is the most relevant for
practical applications of qubit metamaterials like quantum memories [LS12], multi-
port photon routers [Hoi+13], and the generation of non-classical light [FZB14].
In sample A 8 qubits can easily be brought to resonance with the demonstrated
near crosstalk-free individual qubit control. If however large scale metamaterials
with hundreds of qubits should be realized, local frequency control might not
be feasible anymore. In contrast to atomic qubits, non-tunable superconducting
qubits will unavoidably show a certain degree of frequency disorder [Kre+20]. The
random scattering in disordered materials is known to give rise to an exponential
suppression of transmission as soon as the disorder is greater than a certain
critical value, known as Anderson localization [And58]. The exponential decay of
transmission is described by the dimensionless Anderson localization length ζ,
which is defined in an N qubit array as [MS18]:

1
ζ
= −〈ln(|S21|2)〉

N
(5.24)

The brackets 〈〉 denote an average over different realizations of disorder. First
experiments demonstrated Anderson localization with the scattering of light in
semiconductor powders [Wie+97]. More recent publications showed that Ander-
son localization is also expected in wQED systems with either disorder in qubit
frequency or position [HFS16; WS10; Mir+18; MS18].
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Figure 5.16: (a) Transmission |S21| for a random disorder realization with very small frequency
spread σf 10/(Γ1D/2π) = 0.16, showing the features of the perfectly ordered case. (b) |S21| for two
random disorder realizations with large frequency spread σf 10/(Γ1D/2π) = 2.04. Vertical numbered
dashes represent the frequency of the corresponding qubit in the disorder realization. (c) Overview
of 50 disorder realizations as used for the disorder averaging. (d) Histogram of all (8× 50) random
qubit frequencies of the data show in (c) and the corresponding Gaussian probability distribution
P(ω).

Here, the frequency tunability of the eight qubit metamaterial is used to artificially
introduce frequency disorder into the system to study its effect on the transmission
of light and the emergence of localization effects. The experiments follow the idea
of tunable localization as presented in Ref. [WS10]. In the following experiments
always all eight qubits are used and tuned to different random frequencies ωi

10,
which are picked according to a Gaussian probability distribution P(ω):

P(ω) =
1√

2πσf 10
exp

(
− (ω/2π − fc)2

2σ2
f 10

)
with fc = 7.835 GHz (5.25)

The strength of frequency disorder is therefore given by the frequency standard
deviation σf 10. Fig. 5.16 shows the measured transmission coefficient |S21| for
different random realizations of disorder. For weak disorder (σf 10/(Γ1D/2π) =

0.16, Fig. 5.16(a)) the measured transmission does not differ significantly between
different disorder realizations and the resonant case (Fig. 5.7). For strong disorder
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(σf 10/(Γ1D/2π) = 2.04, Fig. 5.16(b)) the line shape of the collective resonance is
completely scrambled for each disorder realization. In agreement with the results
of Ref. [MS18], a numerical calculation based on the T-matrix method shows
that |S21|2 indeed decays exponentially with N as soon as frequency disorder
is introduced (Fig. 5.17(d)). This is an indication of Anderson localization and
motivates the computation of a corresponding localization length ζ according to
Eq. 5.24. As derived in Ref. [Mir+18], it is however not only disorder giving rise to
an exponential decay of the transmission coefficient with coherence length ζdisor,
but also the non-vanishing imaginary part of the wave vector =(k) associated with
coherence length ζloss. The latter has two main contributions: intrinsic non-radiative
qubit decay Γnr > 0 (red line in Fig. 5.16(d)) and a large contribution of =(k) > 0 in
the region of the polaritonic bandgap, where the metamaterial is reflective (Fig. 3.9).
The measured localization length ζ is therefore given by [Mir+18]:

1
ζ
=

1
ζdisor

+
1

ζloss
(5.26)

Outside of the band gap region, especially in the lower polariton branch close to fc,
and for the given amount of non-radiative damping in the eight qubit metamaterial
(Γnr/Γ1D ≤ 0.1), the localization length is expected to be strongly dominated by
ζdisor (ζ ≈ ζdisor).

In order to calculate the effect of localization from the created frequency disor-
der according to Eq. 5.24, the logarithmic average over an ensemble of disorder
realization is required. For each value of σf 10, 50 different disorder realizations
are measured (Fig. 5.16(c) and (d)). The resulting measured dependence of ζ on
disorder strength σf 10 is shown in Fig. 5.17(a),(b). A T-matrix simulation based on
the parameters of the experiment shows qualitative agreement with the measured
localization length (Fig. 5.17(c)). At low frequency disorder, significant localiza-
tion12 is only present in the region of the band gap above the center qubit frequency
fc = 7.835 GHz. However, with increasing disorder σf 10, ζ is also reduced in the
frequency regions above and below the band gap. In the infinite lattice case in
these regions =(k) is close to zero, the observed reduction of ζ is expected to be
dominated by Anderson localization [Mir+18].

To the best of the author’s knowledge it was to the point of this work not rigorously
shown, whether this argument still holds for short structures as in the case of the 8
qubit metamaterial. In the experiment (Fig. 5.17(b)), the most significant reduction
of ζ (from ζ ≈ 18 to ζ ≈ 2) happens close to fc at ω/2π = 7.828 GHz, the
position of the brightest of the sub-radiant polariton modes (see Sec. 3.2.2). At

12Since ζ is defined by |S21|2 ∝ exp(−N/ζ), localization is considered as strong if ζ � 8.
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a b

c d

Figure 5.17: (a), (b) Measured localization length ζ for increasing frequency disorder. Each trace
is based on an average over 50 different random disorder realizations. With increasing disorder
the transmission below the center frequency of ω/2π = 7.835 GHz gets strongly suppressed.
(c) Simulation based on the T-matrix reproduces the observed features of the experiment. (d)
Calculation based on the T-matrix shows that the transmission is exponentially suppressed as soon
as disorder is introduced, being an indication of Anderson localization (here at a frequency of
ω/2π = 7.828 GHz). Non-radiative decay Γnr > 0 of the qubits introduces an additional exponential
decay due to losses. Used parameters: Γ1D/2π = 6.4 MHz.
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the current state of this work, it is unknown whether the suppression of single
modes in finite metamaterials is a manifestation of Anderson localization or just
caused by the averaging over different disorder configurations and needs further
theoretical investigation. If the arguments above do also hold for short structures,
which is supported by the numerics (Fig. 5.17(d)), the presented experiment is a
demonstration of tunable Anderson localization as introduced in Ref. [WS10].
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6 Towards Large Scale wQED
Systems

This chapter provides first experimental results on a large scale wQED system
consisting of 90 non-tunable transmon qubits coupled to a waveguide. Due to its
size, this system is much closer to the continuum limit of an infinitely extended
structure, than the 8 qubit metamaterial discussed in the previous section. The
experimental efforts to dramatically increase system size is motivated by theoretical
proposals comprising quantum metamaterials with large (infinite) qubit numbers
[Rak+08; Asa+15] and the realization of an efficient quantum memory [Ase+17].
Since local frequency control is at the current state of technology not feasible
for the given number of qubits, necessarily some disorder in the qubit transition
frequencies is present. Therefore, first the design and fabrication requirements
are addressed to minimize the amount of disorder in the metamaterial below a
critical threshold to still be able to observe cooperative effects. Even though these
requirements could not be fully met experimentally, the presented metamaterial
features a broad band gap. Using spectral hole burning techniques [Put+16; PV09],
it is shown that the latter is caused by partial homogenous broadening due to
cooperative effects.

6.1 Design Considerations

Fig. 6.1 shows an overview of sample B, a metamaterial consisting of 90 transmon
qubits as used for the experiments presented in this chapter. At the current state
of technology, local flux control of individual qubits as used for sample A is not
feasible. Using non-tunable qubits with only a single Josephson junction instead of
a SQUID, introduces a spread in frequency σf 10

1 between different qubits on the
same chip due to varying critical currents Ic (see Sec. 4.1.2 for a detailed discussion).
If the qubits are much further detuned than their linewidth Γ1D, no cooperative

1 Here, a normal distribution with standard deviation σf 10 for the qubit frequencies is assumed.
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d=800μm

100μm

4mm

Figure 6.1: Microscopic image of sample B, consisting of 90 non-tunable transmon qubits coupled
to a coplanar waveguide. The spacing between neighbouring qubits is significantly smaller than the
wavelength λ, corresponding to the qubits transition frequency d/λ ≈ 0.033. The overall length
of the metamaterial is given by 90d ≈ 3λ. The qubits are spaced in close vicinity (500 nm) to the
waveguide and the groundplane in order to realize the desired effective coupling capacitance
CC ≈ 17 fF.

interaction between them is expected (see Sec. 5.4.1). Thus, the qubit linewidth Γ1D
sets an upper threshold for the tolerable frequency spread σf 10: σf 10 < Γ1D/2π.
Using Eqs. 2.19 and 2.40, the spread σf 10 is related with the spread in normal state
resistance σRn by:

σf 10 =

√
|α|/(2π)∆

4Rne2 σRn /Rn (6.1)

In order to be able to observe collective effects, it is therefore desirable to decrease
σRn as far as possible and increase Γ1D by strong qubit waveguide coupling (for
strategies and results in decreasing σRn see Sec. 4.1.2). Here, a realistic value for
the coupling of 1/Γ1D = 10 ns is targeted, which translates into a relative normal
resistance spread of 0.6 %. At a qubit frequency of ω10/2π ≈ 5 GHz, this coupling
strength results in a coupling capacitance of Cc ≈ 17 fF (Eq. 3.15). Furthermore,
to reduce the impact of disorder, the anharmonicity α of the transmon qubits is
intended to be large, translating into small ratios of EJ/EC ≈ 30.

Similarly to sample A, a dense qubit spacing of d = 800µm is chosen to have a sub-
wavelength qubit spacing of a metamaterial. Despite being in the sub-wavelength
limit, a twice as large value for d is chosen compared to sample A, to extend the
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Table 6.1: Summary of individual qubit parameters of sample B, measured on a separate individual
qubit, which was fabricated on the same wafer as sample B. The values were extracted analogously
to the procedure in Sec. 5.3.1.

parameter value
f10 (GHz) 4.885
α

2π (MHz) -343
EJ
EC

29
Γ1D/2π (MHz) 8.6
γ10/2π (MHz) 5.6
Γnr/2π (MHz) 1.2
Ext. Coeff. (%) 95

total length of the structure to multiple wavelengths (90d ≈ 3λ). To fit the whole
metamaterial of sample B on one chip, a chip size of 10 mm×5 mm is used. The
waveguide is arranged in a meander shape, in order to fit all of the employed
qubits to this chip size.

6.2 90 Qubit Metamaterial

In order to get an estimate for the individual parameters of the qubits used in
the 90 qubit metamaterial, a single qubit coupled to a waveguide, which was
fabricated on the same wafer, is characterized first. Using the same methods as in
Sec. 5.3.1, the parameters listed in Tab. 6.1 are found. Moreover, the relative spread
in normal resistances of the Josephson junctions is found to be σRn /Rn ≈ 2.2 %2

(Tab. 4.2). Since these values do not meet the design goals of σRn /Rn < 0.6 % and
1/Γ1D = 10 ns, the qubits in the metamaterial are expected to only partially overlap
in frequency space and show cooperative effects.

The measured transmission coefficient |S21|2 3 of sample B is shown in Fig. 6.2. It
features a ∆ω/2π ≈ 260 MHz wide stop band of suppressed transmission around a
center frequency of ω10/2π ≈ 5 GHz. With increasing microwave power, the band
gap is saturable, indicating that it is indeed created by the non-linear qubits (see

2 The used test junctions where fabricated in the same process as sample B.
3 It is noted that the transmission of sample B is for frequencies far away from the band gap suppressed

by ≈ −15 dB, which indicates a non-conducting interrupt of the cpw-waveguide or of the on chip
bondwires. This offset is removed in the data shown in Fig. 6.2 by normalizing to the transmission
at high microwave powers. Numerical simulations based on the T-Matrix indicate that the interrupt
(modelled as a capacitance) does not have a large influence on the overall lineshape.
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a
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Figure 6.2: (a) Measured transmission coefficient |S21|2 of the 90 qubit metamaterial, featuring
a ≈ 260 MHz wide band gap of suppressed transmission around the average qubit frequency
ω10/2π ≈ 5 GHz. The band gap shows saturation with increasing microwave power due to the
qubits non-linearity. The non-saturable resonance below 5.2 GHz is a classical parasitic slotline
mode. (b) Low power transmission (P ≈ −124 dBm). (c) Calculated transmission of the 90 qubit
metamaterial based on the T-matrix approach. Random qubit frequency disorder, according to a
Gaussian probability distribution P(ω), is included. The orange line is an average over 100 different
disorder realizations, indicating strong localization in the vicinity of the band gap of the perfectly
ordered case (blue). The overall spectral region of suppressed transmission is broadened to the
width of P(ω), compared to the ideal case. Used parameters: σf 10 = 54 MHz, decoherence rates are
taken from Tab. 6.1.
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Figure 6.3: Spectral hole burning experiment. A pump microwave tone is applied in the center of
the band gap at ω/2π ≈ 4.95 GHz (black dashed line), while a weak probe tone is continuously
monitoring the transmission |S21|2. With increasing pump power, the band gap gets partially and
evenly saturated over a much wider spectral region than a single qubit linewidth Γ1D/2π ≈ 8.6 MHz.
This indicates that the band gap is a partially homogenously broadened feature due to cooperative
effects. For pump powers P > −100 dBm the 1→ 2-transition is directly visible as a dip in |S21|2
around ω21/2π ≈ (ω10 + α)/2π = 4.607 GHz (red dashed line).

Sec. 5.4.4). Below 5.2 GHz an additional classical resonance is visible, which is not
saturable with power. It is most likely caused by a parasitic slotline mode, which is
created by imperfect on chip grounding [Wen+11]. The observed band gap is sig-
nificantly larger than the theoretical value of ∆ω/2π = Γ1Dc/(dω102π) ≈ 41 MHz
(Eq. 3.41), which is a consequence of the frequency disorder. To reproduce this
observation, the transmission coefficient of the 90 qubit metamaterial is calculated
using the T-matrix method (see Fig. 6.2(c)). Frequency disorder is included by
randomly choosing the qubit frequencies according to a Gaussian probability dis-
tribution P(ω) with standard deviation σf 10 = 54 MHz (derived from Eq. 6.1 and
the measured relative normal resistance spread σRn /Rn ≈ 2.2 %) and center fre-
quency of 5.0 GHz. In agreement with the experiment, the calculated transmission
coefficients show a much wider region of suppressed transmission compared to
the case of no disorder, which is a consequence of localization (see Sec. 5.6). The
width of the disorder-broadened band gap is approximately given by the width of
the probability distribution P(ω). In contrast to the disorder experiment in Sec. 5.6,
here an averaging over several different disorder realizations is not possible to
compute the localization length ζ. In order to discriminate between a homoge-
neously broadened band gap due to collective interactions between the qubits and
inhomogeneous broadening induced by the random frequency spread, spectral
hole burning is used (Fig. 6.3). The latter is a two-tone spectroscopy technique,
where holes are burned selectively into the spectrum of inhomogeneously broad-
ened emitters [Put+16; PV09]. Here, a weak probe tone is continuously probing
the transmission, while a second pump is applied at a certain frequency in the
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band gap region (ω/2π ≈ 4.95 GHz). If the band gap was an inhomogeneously
broadened feature, for large enough pump powers, a hole of width Γ1D would be
burned into the band gap where transmission is increased4. However, if the band
gap is a homogeneously broadened feature, it is expected to saturate as a whole.
As visible in Fig. 6.2, with increasing pump power, the band gap region does
not saturate completely collectively. However, a region around ω/2π = 4.95 GHz
saturates with a much larger bandwidth than Γ1D. This indicates that the observed
band gap is not purely inhomogeneously broadened, but shows partial collective
behavior.

In summary, the first realization of a 90 qubit metamaterial features a broad band
gap in transmission measurements, which shows partial collective behavior. Due
to an optimized Josephson junction fabrication procedure, the qubit frequency
was reduced to an extend that most of the 90 qubits are found in a 260 MHz wide
frequency range. The presented experiment demonstrates that the realization of
large quantum metamaterials with collective interactions is within reach, even
without the possibility of local frequency control. Recent results on reducing the
critical current spread of Josephson junctions show that reaching homogeneities
of σRn /Rn < 1 % is possible [Kre+20] and an overlap of a majority of qubits in
frequency space could be ensured.

4 For even larger powers, the hole of large transmission broadens since also neighbouring qubits get
saturated.
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7 Conclusion

The working objective of this thesis was to realize a quantum metamaterial formed
by a one-dimensional waveguide loaded with a periodic array of qubits. The
presented work extends previous experiments with one and two qubits towards a
large scale waveguide quantum electrodynamics (wQED) system and is a crucial
effort to increase system size in order to study cooperative effects. Our work
was motivated by the benefits a realization of such systems would entail for
the fundamental study of metamaterials and the field of quantum information
processing.

In the first part of this work, we realized a quantum metamaterial comprising a
densely spaced array of eight locally tunable transmon qubits [Bre+21]. In cali-
bration measurements we extracted the full mutual inductance matrix between
the qubits and the flux-bias lines and developed an active crosstalk compensation
scheme allowing for true individual qubit control. In spectroscopic measurements
we brought the qubits one by one to a common resonance frequency and observed
the emergence of super- and subradiant collective polariton modes and the emer-
gence of a polaritonic band gap. Since the number of resonant qubits N could
be varied, we were able to extract a scaling of the radiative relaxation rate of the
brightest sub-radiant state ∝ N3. The scaling is the complementary asymptotic
of a widely discussed universal scaling in wQED of the darkest subradiant state
following ∝ N−3. We probed the quantum non-linearity of the system by increasing
the power beyond the single photon limit and observed that the polariton modes
and the band gap are saturable. Furthermore, we used the first three quantum
levels of the transmon qubits to demonstrate a collective Autler-Townes splitting
(ATS) for up to eight resonant qubits. This also showcases active control of the
band structure via an external control parameter. The collective ATS is of high
relevance in terms of applications of the metamaterial in the field of quantum
information processing and could be used for quantum memories, slow light and
photon switches. Concluding the first part, we presented an experiment where
artificial frequency disorder was introduced into the metamaterial. Although this
experiment still needs a more thorough theoretical analysis, preliminary numerical
simulations indicate that the observed suppression of transmission with disorder
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is caused by Anderson localization and its strength can be controlled with the
amount of added disorder.

In the second part we used the eight qubit metamaterial to demonstrate slow
light. The reduction of the group velocity of light was achieved by employing
two different techniques: first, the collective ATS was used to engineer a quasi-
flat band, which is associated with the slow group velocity. We demonstrated in
spectroscopic and time-resolved pulsed measurements a reduction of the latter by
a factor greater than 1500 with respect to the vacuum speed of light. Moreover, we
showed that we can control the effective group velocity by changing the strength
of the microwave drive, which controls the ATS. The efficiency and maximal
achievable delay of this approach was limited by the ladder-type level structure
of the transmon qubits, which intrinsically dampens the quantum interference of
electromagnetically induced transparency. Second, we engineered a similar band
structure with a flat band based on two detuned collective 4 qubit resonances. Using
this approach we observed similar retardations at three times larger efficiency and
demonstrated that the group velocity can be tuned through the qubit detuning. The
presented experiments are a first demonstration of slow light in superconducting
wQED, where the qubits are directly used as dispersive elements and set a solid
foundation towards the implementation of a quantum memory.

Finally, we presented first experiments on a scaled up metamaterial with 90 non-
tunable qubits. Since the non-tunability comes at the cost of a random frequency
spread between the qubits, we optimized the fabrication procedure of Josephson
Junctions to mitigate this effect. Using a bridge-free fabrication procedure we
reached low spreads in normal state resistance of 2.2 %. In spectroscopic measure-
ments we found that the metamaterial features a disorder broadened and saturable
band gap. Employing a spectral hole burning technique, we showed that the lat-
ter is partially homogeneously broadened due to cooperative qubit interactions.
Our experiments provide a first indication that cooperative effects in disordered
metamaterials are possible and motivate further studies with improved device
parameters.

Outlook

Based on the foundation of this work, several further effects and applications
can be investigated. In the following we suggest three tangible experiments with
increasing complexity.

1. Non-classical light: collective quantum behavior of a multi-qubit wQED
system is expected to be observed when measuring the second order cor-
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relation function g2(τ) of the reflected or transmitted light. As derived in
Refs. [ZB13; FZB14], interference effects between the polaritonic eigenmodes
lead to quantum beats in g2(τ), meaning the temporal fluctuation between
bunched (g2(τ) > 1) and anti-bunched light (g2(τ) < 1). Very recent results
even indicate that these beats can occur on a much longer timescale than the
non-radiative coherence time of the individual qubits [PP20]. Observing this
genuine multi-qubit quantum effect is possible with the 8 qubit metamaterial
of this work and established techniques to measure g2(τ) with microwaves
[Sil+10].

2. Doubly excited polaritons: the intrinsic non-linearity at the few photon
level of the qubits leads to unique excitations when several photons are
inserted into wQED systems. Decaying doubly excited polaritons in the two-
excitation sector can be probed in the incoherent spectrum emitted from such
structures [Ke+19]. Recently it was theoretically derived that some of the
doubly excited polaritons show selfinduced localization, meaning one excitation
forms a standing wave and the second gets trapped in it and is thus spatially
localized [Zho+20]. Using a similar wQED system as in this work, but with
individual qubit readout, would allow to probe the spatial mode profile of
such exotic excitations.

3. Realization of a quantum memory: a quantum memory, which coherently
stores microwave pulses can be realized based on one-dimensional wQED
systems (see [LS12; Ase+17]). The memory protocol utilizes the concept of
electromagnetically induced transparency (EIT), which is closely related to the
demonstrated collective Autler-Townes splitting of this work. As discussed in
this thesis, efficient EIT can only be reached with Λ-type three-level systems.
Furthermore, efficient storage might require a longer structure than eight
qubits [Ase+17]. Therefore, an efficient quantum memory could be realized
based on a wQED system with fluxonium qubits which can feature a Λ-type
three-level structure, instead of transmons [LS12].

In conclusion, we have succeeded to realize a superconducting wQED system
with increased qubit number and local control. Beside a detailed analysis of the
polaritonic eigenmodes, we showcased a first demonstration of slow light in the
quantum metamaterial. Based on this work, further effects like non-classical light
can be explored and a foundation for the realization of a quantum memory was set.
We are therefore confident that our work is of relevance for the field of waveguide
QED, which has implications on the development of new technologies for quantum
information processing and the fundamental studies of quantum metamaterials.
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Appendix

A Fabrication parameters

A.1 Sample A

The fabrication steps listed in Tab. 1 were consecutively executed to fabricate
sample A (8 qubit metamaterial).

Table 1: Consecutive steps for the fabrication of Sample A (8 qubit metamaterial) with description
of involved devices and parameters.

# Step (Device) Parameters
1 substrate cleaning H2SO4+H2O2, 10 min
2 substrate cleaning NEP+IPA right before resist appl.
3 EL-13 spin coating (Po-

los MCD 200)
ramp rate: 1000 rpm/s, spin speed: 2000 rpm, spin
time: 100 s, HP: 200 ◦C, 5 min

4 A-4 spin coating (Polos
MCD 200)

ramp rate: 1000 rpm/s, spin speed: 2000 rpm, spin
time: 100 s, HP: 200 ◦C, 5 min

5 gold sputtering
(Kresington)

time: 30 s, current: 30 mA

6 e-beam exposure (JEOL
JBX-5500ZD)

7 gold removal 15 s Lugol solution (15 %)
8 resist development IPA/H2O 3:1 @ 6 ◦C, 90 s
9 O2-plasma clean flow: 15 %, power: 76 %, time: 6 min

10 shadow evap.
(Plassys MEB550s)
(1) descum 5 sccm Ar/10 sccm O2, voltage: 400 V, current: 15 mA,

time: 40 s
(2) Al evaporation rate: 1 nm/s, thickness: 45 nm, angle: +30.00◦

(3) oxidation static, O2-pressure: 10 mbar, time: 10 min
(4) Al evaporation rate: 1 nm/s, thickness: 55 nm, angle: −30.00◦

11 lift-off NEP @ 90 ◦C for 4 h + ultrasonic bath
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12 S1805 spin coating (Po-
los MCD 200)

ramp rate: 500 rpm/s, ramp speed: 500 rpm, ramp
time: 5 s, spin speed: 4500 rpm, spin time: 100 s, re-
flow: 30 s, HP: 115 ◦C, 1 min

13 optical exposure (Carl
Suess MA6)

dose: 13 (mW/cm2), contact mode: hard, time: 4 s

14 resist development MF 319, time: 30 s, stop development in H2O
15 Al evaporation (Plassys

MEB550s)
(1) descum 5 sccm Ar/10 sccm O2, voltage: 400 V, current: 15 mA,

time: 20 s
(2) Al evaporation rate: 1 nm/s, thickness: 75 nm, angle: 0.00◦

16 lift-off NEP @ 90 ◦C for 4 h + ultrasonic bath

A.2 Sample B

The fabrication steps listed in Tab. 2 were consecutively executed to fabricate
sample B (90 qubit metamaterial).

Table 2: Consecutive steps for the fabrication of Sample B (90 qubit metamaterial) with description
of involved devices and parameters.

# Step (Device) Parameters
1 substrate cleaning H2SO4+H2O2, 10 min
2 substrate cleaning NEP+IPA right before resist appl.
3 EL-13 spin coating (Po-

los MCD 200)
ramp rate: 1000 rpm/s, spin speed: 2000 rpm, spin
time: 100 s, HP: 200 ◦C, 5 min

4 A-4 spin coating (Polos
MCD 200)

ramp rate: 1000 rpm/s, spin speed: 2000 rpm, spin
time: 100 s, HP: 200 ◦C, 5 min

5 gold sputtering
(Kresington)

time: 15 s, current: 30 mA

6 e-beam exposure (JEOL
JBX-5500ZD)

7 gold removal 15 s Lugol solution (15 %)
8 resist development IPA/H2O 3:1 @ 6 ◦C, 88 s
9 O2-plasma clean flow: 15 %, power: 80 %, time: 6 min

10 shadow evap.
(Plassys MEB550s)
(1) descum 5 sccm Ar/10 sccm O2, voltage: 400 V, current: 15 mA,

time: 120 s
(2) Al evaporation rate: 1 nm/s, thickness: 45 nm, angle: +24.00◦

(3) oxidation static, O2-pressure: 25 mbar, time: 90 min
(4) Al evaporation rate: 1 nm/s, thickness: 55 nm, angle: −24.00◦
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11 lift-off NEP @ 90 ◦C for 4 h + ultrasonic bath
12 EL-13 spin coating (Po-

los MCD 200)
ramp rate: 1000 rpm/s, spin speed: 2000 rpm, spin
time: 100 s, HP: 200 ◦C, 5 min

13 A-4 spin coating (Polos
MCD 200)

ramp rate: 1000 rpm/s, spin speed: 2000 rpm, spin
time: 100 s, HP: 200 ◦C, 5 min

14 gold sputtering
(Kresington)

time: 15 s, current: 30 mA

15 e-beam exposure (JEOL
JBX-5500ZD)

16 gold removal 15 s Lugol solution (15 %)
17 optical exposure (Carl

Suess MA6)
constant power: 500 W, contact mode: hard, time:
2100 s

18 resist development IPA/H2O 3:1 @ 6 ◦C, 84 s
19 Al evaporation (Plassys

MEB550s)
(1) descum 5 sccm Ar/10 sccm O2, voltage: 400 V, current: 15 mA,

time: 20 s
(2) Al evaporation rate: 1 nm/s, thickness: 75 nm, angle: 0.00◦

20 lift-off NEP @ 90 ◦C for 4 h + ultrasonic bath
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Figure 1: (a) Full capacitance network of the transmon qubit. (b) Simplified network after neglecting
small cross-capacitances C24 and C13 and absorbing the junction capacitance CJ in C′23. (c) Effective
circuit of a transmon qubit.

B Derivations and Calculations

B.1 Capacitance Network of the Transmon Qubit

In the following the effective transmon circuit (compare Fig. 1(c)) is derived from
its actual circuit as implemented in the experiment (Fig. 1(a)). To simplify the
following calculation, the cross-capacitances C24 and C13 are neglected (compare
Fig. 1(b)). Numerical simulations of the capacitance matrix indicate that this is well
justified for the used geometries. The intrinsic junction capacitance CJ is absorbed
into C′23 = C23 + CJ. By using Thevenin’s theorem the circuit of Fig. 1(b) can be
replaced by a renormalized voltage source V′ = βVg = Va −Vb and one effective
capacitance CΣ. The latter is extracted by replacing the voltage source by a short:

CΣ = C′23 +

(
1

C12
+

1
C14

+
1

C34

)−1
≈ C′23 +

C12C34

C12 + C34
(1)

In the last step C14 → ∞ was assumed. It is now instructive to split CΣ into two
parallel capacitances (Cs and Cc with β = Cc/(Cs + Cc) = Cc/CΣ as depicted in
Fig. 1(c)), acting as a voltage divider by the factor β to regain the original voltage
Vg driving the circuit. The Thevenin voltage Va −Vb = V′ can be related with Vg

via Kirchhoff relations:

0 = Va(C12 + C′23)−VgC12 −VbC′23 (2)

0 = Vb(C′23 + C34)−VaC′23 (3)

Thus, β is given by:

β =
Va −Vb

Vg
=

C12C34

C′23C34 + C12(C′23 + C34)
(4)
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The coupling capacitance is therefore given by:

Cc = βCΣ =
C12C34

C12 + C34
(5)

The total effective capacitance can then be re-expressed by CΣ = Cc + C23 + CJ.

B.2 Transformation in a Doubly-Rotating Frame

This derivation is based on the calculations presented in reference [Hoi13]. The
Hamiltonian of a three level system with the levels |0〉, |1〉, |2〉 at frequencies ω0, ω1,
ω2 under the influence of two classical drives at strengths Ωp, Ωc and frequencies
ωp and ωc is given by:

H = h̄

ω0 0 0
0 ω1 0
0 0 ω2

+ h̄

 0 Ωp cos ωpt 0
Ωp cos ωpt 0 Ωc cos ωct

0 Ωc cos ωct 0

 (6)

In the next step the goal is to find a unitary transformation U, which eliminates all
time dependent oscillating parts of both drives in the Hamiltonian. As an ansatz
for U we chose:

U(t) =

exp(iφ0(t)) 0 0
0 exp(iφ1(t)) 0
0 0 exp(iφ2(t))

 with φi(t) ∈ R (7)

It is easy to check that U(t) fulfills UU† = 1. Applying the transformation of Eq. 7
to Eq. 6 yields:

H′

h̄
= U(t)HU†(t)/h̄− iU(t)U̇†(t)

=

 ω0 − φ̇0 (t)
Ωp (1+exp(−2iωp t))

2 exp(i(−ωp t−φ0 (t)+φ1 (t)))
0

Ωp (1+exp(2iωp t))
2 exp(i(ωp t+φ0 (t)−φ1 (t)))

ω1 − φ̇1 (t)
Ωc (1+exp(−2iωc t))

2 exp(i(−ωc t−φ1 (t)+φ2 (t)))

0 Ωc (1+exp(2iωc t))
2 exp(i(ωc t+φ1 (t)−φ2 (t)))

ω2 − φ̇2 (t)

 (8)

Neglecting the fast rotating terms (exp(±2iωpt) ≈ exp(±2iωct) ≈ 0) and using the
following constraints,

ω0 − φ̇0(t) = 0 (9)

−ωpt− φ0(t) + φ1(t) = 0 (10)

−ωct− φ1(t) + φ2(t) = 0 (11)
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the transformed Hamiltonian in the doubly-rotating frame evaluates to:

H′ ≈ h̄

 0 Ωp
2 0

Ωp
2 ω10 −ωp

Ωc
2

Ωc
2 ω21 −ωc + ω10 −ωp

 (12)

Here, the frequency differences (ω10 = ω1 −ω0, ω21 = ω2 −ω1) are used.

B.3 Decoherence Rates of a Three-Level System

The non-unitarian part of the Lindblad master equation is given by the sum of
dissipators ΓijD[A]ρ = Γij[AρA† − 1

2{A† A, ρ}] of all decoherence channels of the
system under investigation. For a ladder-type three level system, which is subject
to relaxation (but no thermal activation) and pure dephasing (with rates Γij and Γ

ij
φ

for the i→ j transition) the sum of all dissipators is given by [GR16]:

L[ρ] = Γ10D[σ01]ρ + Γ21D[σ12]ρ + Γ20D[σ02]ρ

+
Γ20

φ

2
D[σ22 − σ00] +

Γ21
φ

2
D[σ22 − σ11] +

Γ10
φ

2
D[σ11 − σ00]

=

Γ10ρ11 + Γ20ρ22 −γ01ρ01 −γ02ρ02
−γ10ρ10 −Γ10ρ11 + Γ21ρ22 −γ12ρ12
−γ20ρ20 −γ20ρ20 −Γ20ρ22 − Γ21ρ22

 (13)

with σij = |i〉 〈j|, ρ = ∑2
i,j=0 ρij |i〉 〈j| and the effective decoherence rates γij = γji as

introduced in Sec. 3.1.2 of the main text:

γ10 =
Γ10

2
+ Γ10

φ +
1
4
(Γ20

φ + Γ21
φ ) (14)

γ20 =
1
2
(Γ20 + Γ21) + Γ20

φ +
1
4
(Γ10

φ + Γ21
φ ) (15)

γ21 =
1
2
(Γ20 + Γ21 + Γ10) + Γ21

φ +
1
4
(Γ10

φ + Γ20
φ ) (16)

Note that γ20 has a contribution of the 2→ 1 relaxation, which makes the 2→ 0
decoherence rate comparably large, even in the limit of negligible pure dephasing
and Γ20 = 0. The implications on electromagnetically induced transparency is
discussed in the main text in Sec. 5.5.1.

B.4 Relation between S-Matrix and Susceptibility

The linear electrical susceptibility χ is defined as:

P = ε0χE (17)
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P is the polarization and E the electrical field. Simultaneously the polarization is
defined as total dipolemoment µ per volume:

P = −〈µ〉
V

= −Tr(ρµ)

V
≈ −2

µ10ρ10

V
(18)

In the last step only the contributions of the 0 → 1 transition to the optical
susceptibility where included and all other therms were dropped, since in this
work the optical response of the qubits is only probed around this transition.
Combining Eqs. 17 and 18 yields:

χ ∝ ρ10 (19)

Simultaneously, Eqs. 3.9, 3.9 and 3.12 of the main text and Eq. 19 indicate that
S22 ∝ χ.

B.5 Linewidth Scaling of Polariton Modes

In the following, an analytical expression for the subradiant state linewidth Γξ in the
single excitation sector is derived. The derivation is taken from the supplementary
material of Ref. [Bre+21] and was performed by A. N. Poddubny.

In order to extract Γξ , only the interaction term of Heff (Eq. 3.30) in the main text is
used:

Hrs = −i
Γ1D

2
exp(iφ|r− s|) with φ =

ω10d
c

(20)

with Hrs being the interaction matrix element between qubit r and s. The inverse
Hamiltonian of (20) [H−1]rs is exactly 3-diagonal [Pod20]:

[H−1]rs =
2

Γ1D



− 1
2 cot φ + i

2
1

2 sin φ 0 · · ·
1

2 sin φ − cot φ 1
2 sin φ · · ·

. . . . . .
· · · 1

2 sin φ − cot φ 1
2 sin φ

· · · 0 1
2 sin φ − 1

2 cot φ + i
2


(21)

This means that the Schroedinger equation

H−1ψξ =
1

ωξ
ψξ (22)

of the inverse Hamiltonian is just a tight-binding model. The radiative decay due
to the photon escape into the waveguide is present only at the edges of the qubit
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array and can be treated as a perturbation. For the lower polariton branch the
following eigenenergies is obtained [ZM19; VIK98]:

Γ1D/2
ωξ

= − 2
φ

sin2 k
2
− 2i

N
cos2 k

2
, k =

ξπ

N
(23)

where ξ = 1, 2, ...N − 1 is the eigenmode number, sorted from the brightest (largest
linewidth = =(ωξ)) to the darkest (smallest linewidth). The solution of Eq. 23 can
be recovered most easily in the limit φ� k� π. In this case one can assume that
cot φ ≈ 1/ sin φ = 1/φ. Neglecting the radiative decay, the Schroedinger equation
Eq. 22 yields the usual parabolic dispersion,

Γ1D/2

ω
(0)
ξ

= − k2

2φ
, ψξ,s =

√
2
N

cos k(s− 1
2 ) . (24)

Now the radiative decay in Eq. 21 is taken into account by considering the imagi-
nary terms in the first order of the perturbation theory:

Γ1D/2
ωξ

=
Γ1D/2

ω
(0)
ξ

+
i
2
(|ψξ,1|2 + |ψξ,N |2) = −

π2ξ2

2φN2 +
2i
N

, (25)

which is equivalent to Eq. 23 in the considered limit of small ξ � N. Inverting
Eq. 25 we find for φ� 1

Γξ = 2Im(ωξ) =
8Γ1DN3φ2

ξ4π4 . (26)

B.6 Fano Interference of Polaritonic Modes

In the following, the Fano-type interference between a detuned qubit and the
collective modes of an ensemble of resonant qubits is derived. The derivation is
taken from the supplementary material of Ref. [Bre+21] and was performed by A.
N. Poddubny.

In this section light reflection from the N-qubit array is considered, where first
N − 1 qubits are in resonance and the last qubit is detuned from the resonance.
The goal is to explain analytically the disappearance of the reflection dips for
certain values of the detuning, for example at the frequency 7.894 GHz in Fig. 5.10
of the main text. In order to obtain a better understanding of the resonances in
the reflection, an approach based on the Hamiltonian of Eq. 20 is used. When
the inductances L1,2 at the waveguide edges, leading to additional reflections, are
not taken into account, this approach is exactly equivalent to the transfer matrix
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a b

Figure 2: (a) Reflection spectra from an array of 3 qubits where the first two are tuned to the the
frequency ω10 (solid horizontal line) and last one to ω10 + ∆ (dashed inclined line). (b) Reflection
spectra for three values of detuning, that are indicated on the graph, and shown by the vertical lines
in (a). Solid curves present the results of a numerical calculation using Eq. 28, dashed curves have
been obtained from the analytical Eq. 32. The calculation has been performed for φ = ω0d/c = 0.15.

method [INJ94; KP07]. First, the equation for the dimensionless dipole moments of
the qubits ψs, induced by the incoming wave at the frequency ω, is solved

N

∑
s=1

[Hrs + (ωs −ω)δrs]ψs = ei(r−1)φ , r = 1 . . . N , (27)

where it is assumed that the qubits are located at the points x = 0, d, . . . (N − 1)d.
After the dipole moments ψs have been found from the solution of the system
Eq. 27, the amplitude reflection and transmission coefficients r and t are given by

r =
iΓ1D

2

N

∑
s=1

ψse−i(s−1)φ, t = 1 +
iΓ1D

2

N

∑
s=1

ψsei(s−1)φ . (28)

In the Markovian approximation the phase φ = ωd/c in Eqs. 27,28 is evaluated at
the qubit resonance frequency, φ = ω10d/c. Hence, Eqs. 27,28 reduce to a standard
input-output problem.

Now, the interferences in reflection for the specific case of N = 3 qubits with
the resonance frequencies ω10, ω10 and ω10 + ∆ will be illustrated. The goal is to
examine the light-induced coupling between the resonant dimer formed by the first
two qubits with the last qubit and the Fano-like interferences in more detail. Due to
the dense qubit spacing (φ� 1), the first two resonant qubits can be described by
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a symmetric superradiant state, ψ1 = ψ2 = 1√
2

ψSR . As a result, the system Eq. 27
in the reduced basis reads

(ω10 − iΓ1D −ω) ψ SR − iΓ1D

2
√

2
(eiφ + e2iφ)ψ3 =

1 + eiφ
√

2
, (29)(

ω10 + ∆− iΓ1D

2
−ω

)
ψ3 − iΓ1D

2
√

2
(eiφ + e2iφ)ψ SR = e2iφ .

and the reflection coefficient is given by

r =
iΓ1D

2

(
1 + eiφ
√

2
ψ SR + e2iφψ3

)
. (30)

In the following, the frequency range is restricted to the case where the frequency
is close to the detuned qubit resonance, i.e.

|ω−ω10 −∆| � ∆ . (31)

In this spectral range the reflection coefficient Eq. 30, obtained from the system
Eq. 29, can be approximately presented as

r ≈ −ir0
ω−ω10 −∆+ Γ1D

2 (1/r∗0 + i)

ω−ω10 −∆+ Γ1D
2 (r0 + i)

(32)

where
r0 =

1

i + 1
3 (2∆/Γ1D + 5φ)− 4iφ

3 ∆/Γ1D
, (33)

and assuming that φ� 1. Here, Eq. 33 describes the slow varying background of
the reflection coefficient Eq. 32. This background corresponds to the mode, where
the third qubit oscillates in phase with the first two. This interpretation becomes
most clear in the regime where all the qubits are in the same point, φ = 0, so that

r0 =
3

3i + 2∆/Γ1D
. (34)

Equation Eq. 34 describes just the resonant reflection determined by the superradi-
ant mode of 3 qubits [INJ94; Cha+12]. The second factor in the reflection coefficient
Eq. 32 describes the resonant coupling of the last qubit with the superradiant mode.
This factor has a resonance at the frequency ω10 + ∆−<(r0)Γ1D/2 with the radia-
tive decay rate (1 +=(r0))Γ1D/2. Both the radiative decay and the position of the
resonance depend on the phase of the background reflection Eq. 34 at the resonance
frequency of the detuned qubit ω10 + ∆. This is very similar to the general picture
of Fano interference between two scattering channels with broad and narrow spec-
tral resonances, resulting in characteristic asymmetric spectral lines [Lim+17]. The
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reflection coefficient Eq. 33 cannot be completely reduced to the Fano equation
because, contrary to the Fano case, both the superradiant mode and the last qubit
mode are directly coupled to the input and output channels in Eq. 29. However,
Eq. 33 also yields asymmetric reflection spectra, as is demonstrated by the calcula-
tion in Fig. 2. In this figure (similarly to Fig. 5.10 of the main text), the numerically
calculated reflection spectra in dependence on the detuning ∆ are shown. The right
panel presents the spectra for three values of the detuning (solid lines) compared
with the analytical result Eq. 32 (dashed lines). Similarly to Fig. 5.10 of the main
text, Fig. 2 has a blindspot for the detuning 2∆/Γ1D = −0.75 = −5φ (vertical black
line in Fig. 5.10(a)). The calculation in Fig. 2(b) demonstrates that the exact result is
well described by the approximation Eq. 32 in the vicinity of the resonance of the
detuned qubit. It can be seen, that for 2∆/Γ1D + 5φ = 0, the background reflection
coefficient Eq. 33 becomes purely imaginary. As such, the background provides
a constructively interfering contribution at the last qubit resonance and results
in the symmetric reflection peak. This is demonstrated by the black curves in
Fig. 2(b). When the last qubit frequency ω10 + ∆ is detuned from ω10 − (5/2)Γ1Dφ,
the interference stops being constructive, resulting in the asymmetric reflection
resonances (blue and red lines in Fig. 2(b)). The two-mode model Eq. 29, describing
Fano-like interferences between the modes of the last qubit and the given mode of
first N − 1 resonant qubits, has a very general character. It can be generalized for
arbitrary values of N, explaining the blind spots in Fig. 5.10 of the main text.
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