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ABSTRACT | The increasing need to slow down climate change

for environmental protection demands further advancements

toward regenerative energy and sustainable mobility. While

individual mobility applications are assumed to be satisfied

with improving battery electric vehicles (BEVs), the grow-

ing sector of freight transport and heavy-duty applications

requires alternative solutions to meet the requirements of long

ranges and high payloads. Fuel cell hybrid electric vehicles

(FCHEVs) emerge as a capable technology for high-energy

applications. This technology comprises a fuel cell system

(FCS) for energy supply combined with buffering energy stor-

ages, such as batteries or ultracapacitors. In this article, recent

successful developments regarding FCHEVs in various heavy-

duty applications are presented. Subsequently, an overview

of the FCHEV drivetrain, its main components, and different

topologies with an emphasis on heavy-duty trucks is given. In

order to enable system layout optimization and energy man-

agement strategy (EMS) design, functionality and modeling
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approaches for the FCS, battery, ultracapacitor, and further

relevant subsystems are briefly described. Afterward, common

methodologies for EMSs are structured, presenting a new tax-

onomy for dynamic optimization-based EMSs from a control

engineering perspective. Finally, the findings lead to a guide-

line toward holistic EMSs, encouraging the co-optimization of

system design, and EMS development for FCHEVs. For the EMS,

we propose a layered model predictive control (MPC) approach,

which takes velocity planning, the mitigation of degradation

effects, and the auxiliaries into account simultaneously.

KEYWORDS | Component degradation; co-optimization; energy

management strategies; fuel cell hybrid electric vehicles

(FCHEVs); heavy-duty applications; holistic approaches; proton

exchange membrane fuel cell (PEMFC).

I. I N T R O D U C T I O N
Environmental protection is in demand to slow down
climate change and stimulates the developments of sus-
tainable technologies, in particular, in the transporta-
tion domain [1], [2]. Therefore, a significant trend has
been emerging to research into innovative approaches for
renewable technologies with a strong interest in electric
mobility [3]. Over the last decades, a rising variety of
hybrid electric vehicles (HEVs) as a combination of electric
drives with internal combustion engines (ICEs), as well as
pure BEVs, have become available for individual traffic,
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satisfying an initial demand for regenerative and locally
emission-free mobility [4].

While HEVs play a role in the transition toward
wide electric mobility, shortcomings of BEVs remain. This
includes a limited driving range in comparison to HEVs
and the additionally needed charging infrastructure. The
requirement of sufficient mileage per battery charge for
individual mobility seems to be met by BEVs through
research and future development of battery technolo-
gies, which leads to higher gravimetric and volumetric
energy density. In contrast, for heavy-duty and long-haul
trucks, the available battery technology may be insufficient
in regard to the combination of high power and long
distances forming challenging requirements. In addition,
the demand for fast charging to minimize the overall trip
time and high component durability are more prevalent in
this application field and act as economic constraints. Here,
the deployment of FCS technology as the main energy
source may be a favorable solution for heavy-duty vehicles
due to the high gravimetric energy density of hydrogen
and the ability for fast refueling. While challenges, such
as large-scale hydrogen production, distribution, storage
infrastructure, and the handling of hydrogen in infrastruc-
tural and vehicle fuel storage systems, still remain [5],
fuel cell (FC) vehicles have a viable chance in high-energy
applications [6].

The use of additional energy and power buffering tech-
nologies, such as batteries or ultracapacitors, is motivated
by the restricting power dynamics in FCSs and brings
advantages toward the fuel cell hybrid electric vehicle
(FCHEV) drivetrain. However, an FCHEV drivetrain with
multiple sources and loads of high energy or power, such
as in FCHEVs for heavy-duty applications, presents a highly
complex system. Therefore, Das et al. [7] emphasize the
need for improved control strategies as an enabling tech-
nology for FCHEVs concerning regenerative braking and
the transient power supply of the FCS. Hence, FCHEVs
necessitate a more holistic EMS approach to account for
the prevailing complexity and the additional degrees of
freedom (DOFs).

A. FCHEV in Heavy-Duty Applications

Applications and prototypes of FCHEV in the heavy-
duty domain already range from public transportation
with buses [8]–[10], heavy-duty trucks [6], [11], rail
bound trams and trains [12]–[16], maritime applications
[17]–[19], and construction machines [20]. Moriarty and
Honnery [21] proclaim that FCHEVs may be superior to
BEVs for the heavy-duty transport sector, and the impact
of hydrogen in this domain is likely not to decrease in
the future. Instead, it may be the future alternative in the
transportation domain [22].

FC technology, power systems, and their application in
the transport sector have been thoroughly studied in the
literature (see [23]–[25]). For the next quarter-century,
a sharp increase in their applications is expected [26].

Thereby, the utilization of emission-free produced hydro-
gen is seen as a crucial factor for paving the way to a
wide reduction of CO2 in transit and transportation [6],
[27]–[29]. Considering hydrogen production and storage,
Singh et al. [24] present a broad overview, including a
safety ranking of fuels and a comparison to the storage and
infrastructure of carbon fuels. Furthermore, the FCHEV
drivetrain system costs are modeled and analyzed [30],
pointing out production costs of the proton exchange mem-
brane fuel cell (PEMFC) as a key point for wide adoption in
transportation applications. Ribbau et al. [31] conducted a
study in public transportation with FC hybrid electric buses
showing the advantage of lower operating costs compared
to diesel buses when regarding the energy consumption
per mileage. However, to achieve general competitiveness
with conventional buses, there are still present challenges
and barriers to overcome [32].

Designing an FCHEV drivetrain comes along with
challenges to the energy storage sizing and placement
for heavy-duty applications [33], [34]. Nevertheless, its
technological feasibility has already been shown for
medium-sized and heavy-duty trucks since the require-
ments regarding range, payload, power, and fuel economy
can be met [35], [36]. However, the system durability for
long-life applications, especially due to FCS lifetime, is still
a great concern [35], [37]. Thus, forecast of degradation
regarding cyclic loads has been studied and may be a
bottleneck for commercial adoption in certain heavy-duty
fields [38]. Miller et al. [16] point out heavy-duty specific
issues regarding heat transfer in the FCS, as well as shock
loads and steep power transients during drivetrain oper-
ations. These drawbacks in FCHEVs for heavy-duty appli-
cations call for an intelligent and predictive EMS. Thus,
system efficiency and degradation as the main challenges
can be taken into account simultaneously.

B. Contribution and Structure

This work is based on a broad literature review and
focuses on FCHEVs for heavy-duty applications in the
transportation domain. It aims to provide an extensive
understanding of the design and development of EMSs
for the FC hybrid drivetrain and motivates the future
research direction to holistic EMSs. For this purpose, it con-
tributes relevant approaches and aspects toward dynamic
optimization-based EMSs for FCHEVs in heavy-duty appli-
cations from a system-and-control-engineering point of
view. An individual review of the developments and chal-
lenges in the operation or control of single components,
such as FCs, power electronics (PEs), or electric machines
(EMs), is not in the scope of this article.

For the design and development of EMSs, a general
system overview of the FCHEV drivetrain and its topologies
is presented in Section II. In regard to model-based strate-
gies and system optimization, the modeling approaches
of relevant subsystems, components, and their dynamic
behavior with an emphasis on the recent research regard-
ing degradation and wearing effects for FCSs and batteries
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are elaborated in Section III. Afterward, a thorough presen-
tation of the current research in regard to methodologies
for EMSs of hybrid drivetrains is given and structured in
Section IV. Thereby, the challenges, constraints, and oppor-
tunities for EMS design are pointed out, and a new taxon-
omy for dynamic optimization-based methods is proposed.
Section V focuses on the scientific path toward holistic
EMSs in FCHEVs combining the findings in Sections II–IV.
Thereby, the potential of holistic strategies for heavy-duty
and long-haul trucks is highlighted.

II. S Y S T E M O V E R V I E W
FCHEV drivetrains consist of a combination of at least two
energy storages or converters. The hydrogen tank in com-
bination with the FCS acts as the primary energy source,
while energy buffer storages contribute to the hybrid char-
acteristics. For a comprehensive overview, the reader is
referred to [39] and [40], which also describes different
components and motor types. Das et al. [7] give a thorough
survey of the FCHEV drivetrain, various energy storage
systems (ESSs), and topologies for FCHEVs that are in the
focus of the contribution. Furthermore, several types of
FCs and their characteristics are described and evaluated
in terms of applicability in FCHEVs [7].

In this article, FC hybrid electric trucks are discussed as
a fitting example system of the FCHEV drivetrain in heavy-
duty applications. The later presented EMSs are adaptable
to various applications or drivetrain topologies and can be
complemented with specific components or requirements.
FCHEV technology provides a high efficiency on low loads
and the possibility of local zero emissions when using pure
hydrogen without preceding reformers [41].

A. FCHEV Drivetrain

In Fig. 1, an FCHEV drivetrain topology of a heavy-duty
truck is depicted. The drivetrain comprises the FCS with
preceding hydrogen fuel tank (H2 tank system) and an
electric high voltage bus (HV bus) with connected ESSs,
which act as buffers. Widely used electric ESSs in HEVs are
batteries and ultracapacitors, which are operated bidirec-
tional offering degrees of freedoms (DOFs) for an EMS.
The ESSs supply the dc/ac-inverter [power electronics
(PE)] and, subsequently, the EM, as well as the mechanical
drivetrain with power. The mechanical drivetrain may
comprise transmissions in form of a gear box (GB) with the
respective mechanical advantage (MA) in order to cover a
wide torque range in heavy-duty applications.

The FCS consists of one or more FC stacks with serially
connected cells and various auxiliaries for the operation,
such as pumps for hydrogen, atmospheric oxygen, moist-
ening and dewatering subsystems, and a cooling cycle
for the heat losses. Thus, the high efficiency of single
laboratory FCs or stacks is reduced in favor of a stable
operation and the ability to be precisely controlled with
regard to the demanded power. The prevalent FC tech-
nology are PEMFCs for applications with requirements

Fig. 1. FC hybrid drivetrain of a heavy-duty truck with its

electrical and mechanical domains, including a retarder as

hydrodynamic brake.

regarding compact systems and comparably low operating
temperatures. In addition, the fast startup time and a high
power density of PEMFCs are favorable for transportation
applications [5]. Therefore, PEMFCs are exclusively con-
sidered in this work.

The electric powertrain voltage levels, e.g., the ESS
voltages, can be separated from the main dc-link (HV
bus) by inserting dc/dc-converters. Therefore, addi-
tional flexibility can be provided if needed and volt-
age levels can be stabilized more easily. However, this
comes along with costs regarding the system efficiency.
In general, the use of dc/dc-converters at the ESSs is
optional, and the resulting topologies are of ongoing
research [7].

Auxiliaries for specialized applications, safety func-
tions, or comfort features exist across the various volt-
age levels of the power network. High-power auxiliaries,
such as compressors for the braking system in heavy-
duty applications, air conditioning, or cooling cycles, are
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Fig. 2. Example of drivetrain modes for operation in an FCHEV

with effects to the ESSs (green).

mostly operated from the higher voltage bus (HV bus).
Since these auxiliaries are significant power consumers,
it may be beneficial to consider them in the developing
process of the EMS. Furthermore, trailers can be connected
to the vehicle power network, e.g., in freight transport,
and should be considered as relevant energy consumers.
In conclusion, the vehicle power network is a complex
system, and complexity may even be further growing due
to highly automated and assisted driving applications com-
prising a multitude of sensors and computational units.

The mechanical drivetrain is very dependent on the spe-
cific application and may comprise various braking systems
and sometimes additional ESSs, such as flywheels [7]. For
heavy-duty applications, it is necessary to minimize the use
of the friction braking system; thus, components, such as
retarders, are used, which dissipate the braking power to a
fluid. During regenerative braking in heavy-duty vehicles,
the occurring high-power levels must often be distributed
across different braking systems in the mechanical drive-
train as well since the currents of the EM, PEs, and electric
ESSs are limited.

During drivetrain operation, various modes with respect
to different energy flows are needed to fulfill a specific
driving or application task. For an FCHEV, a wide variety
of drivetrain modes can be derived in this regard. Fig. 2
shows the operating modes ranging from single energy
source operation of the FCS across specialized powertrain
modes, such as the startup of the FCS at the beginning
of the operation up to strategic decisions concerning ESS
states, such as the control of battery state of charge (SOC).

For intended charging of the ESSs, the operating point
(OP) of the FCS can be raised to supply energy in addition
to the demand for the driving task. Vice versa, for an
explicit discharge of the ESSs, the FCS can be lowered
while simultaneously drawing more power from the bat-
tery or ultracapacitor. Further operating modes may be a
power boost by supplying the drivetrain with all storages
for a temporary overdrive of the inverter (PE) and the
EM or the regenerative braking (recuperation) loading the
ESSs with dissipated kinetic energy of the vehicle and,
thus, decelerating.

Fig. 3. Qualitative Sankey diagram of an FCHEV energy flow

during boost mode.

In Figs. 3–5, Sankey diagrams depict the energy flow
between components along with the drivetrain in a quali-
tative manner. Here, a subset of operation modes, namely
boosting, ESS loading by raising the FC OP, and regener-
ative braking in an FCHEV drivetrain, is visualized. These
modes are implicitly and explicitly used in EMSs. While
operating in the propulsion mode in Figs. 3 and 4, the FCS
provides electric energy to the dc-link from its hydro-
gen tank with losses regarding the FCS auxiliaries. The
additional ESSs, namely battery and ultracapacitor, are
connected to the dc-link. The electric energy is distributed
to the internal low-voltage (LV) link, as well as the electric
drive of the PE and the EM with losses (PE losses and EM
losses). The mechanical (mech.) (see Figs. 3–5) drivetrain
leads the power with additional losses (mech. losses)
through the wheels to surmount the driving resistances.

During the boost mode, all ESSs supply the vehicle
high voltage dc-link with energy (see Fig. 3), whereas a
raised FCS OP contributes to charging the battery and
ultracapacitor (see Fig. 4). In contrast, Fig. 5 shows an
inverted energy flow originating from the kinetic vehicle
energy and resulting in the charging of the ESSs.

Fig. 4. Qualitative Sankey diagram of an FCHEV energy flow

during a raised OP of the FCS.
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Fig. 5. Qualitative Sankey diagram of an FCHEV energy flow for

regenerative braking.

B. Electric Powertrain Topologies in FCHEV

FCHEVs are solely energy sourced from the electric
power network. The term powertrain topology describes
the types and placement and the structural interactions
of the components used in the network of the electric
powertrain. The employed ESSs contribute differently to
the network depending on their energy capacity and their
dynamic response to power demands or their buffering
capability. In Fig. 6, a schematic power distribution ΦP ,
subject to the electric power load dynamics P (t) with load
frequencies νP and the prevalent maximum load frequency
νP, max, is depicted.

The FCS is the dominant ESS and covers the electric base
load at lower load frequencies. The battery and ultraca-
pacitor support the electric powertrain as buffering energy
supplies for highly dynamic loads and at high total electric
loads. Furthermore, they store energy from regenerative
braking operation [43]. The highest power dynamics are
buffered by the dc-link capacitor at very low absolute
power values. In [42], ultracapacitors in single dc/dc-
converter topology of an FCHEV are used as a buffer for
high-frequency loads. Subsequently, this topology design
technique can be used to further adapt a drivetrain accord-
ing to the load profile of its application. Various topolo-
gies have been studied aiming to further increase fuel
efficiency by enhancements with additional or fewer com-
ponents [40]. In [44], ESSs and the role of bidirectional
dc/dc-converters are described in detail.

However, the more flexibility is added through addi-
tional components, such as dc/dc-converters, the higher
the monetary costs and power losses due to these compo-
nents are. In [7], a comprehensive study regarding FCHEV
topologies is presented, discussing single-stage and mul-
tistage dc bus topologies and pointing out possible advan-
tages of the single-stage topology. Thereby, the single-stage
advantage is reasoned with simplicity and higher system
efficiency. Though, dc/dc-converters bring the needed flex-
ibility for intelligent EMSs in special applications, such as
demanding heavy-duty trucks. Thus, the developed EMS
has to take advantage of this flexibility in order to justify
the additional costs and losses.

C. Topology Optimization and Dimensioning

For leveraging hybrid energy storage systems (HESSs) in
an intelligent EMS, a dedicated topology design in combi-
nation with a precise dynamic model of the total topology
and components are needed for the EMS development.
Decisions are usually based on an extensive simulation and
development framework, supporting the static designing
and dimensioning process with accurate physical models of
the drivetrain and the ESSs [39]. The prevalent questions
are as follows.

• Which components have to be used?
• Which components should be added for the needed

flexibility in regard to the specific application?
• How should these components be dimensioned?
• What are the resulting system constraints?

A static optimization is often used to guarantee a general
fulfillment of the expected load profiles in driving cycles.
However, this does not imply an efficient or low-wear
operation of the drivetrain in the target application or in
combination with the operating EMS. Therefore, studies
have been conducted toward the combination of static
optimization with an underlying optimization of the EMS
to further optimize the vehicle’s global efficiency [45]. The
framework comprises an outer loop varying the component
size and an inner loop that relies on dynamic programming
(DP) and full knowledge of the future driving cycle to
assess the performance of the chosen component sizes. In
[10] and [46], similar frameworks are described for the
simultaneous optimization of the component sizing, EMS
parameterization, and the powertrain hybridization. This
combined approach of the powertrain and the EMS design
is called co-optimization.

Furthermore, co-optimization goals are mitigation of
component degradation and the optimization of auxiliary
and its placement, especially in demanding applica-
tions, such as heavy-duty trucks and goods transporta-
tion with high energy consumption by auxiliaries [47].
An intelligent combination and sizing of different ESSs
reduce fast transients of the PEMFC and battery cur-

Fig. 6. Schematic power prevalence to load bandwidth in regard

to the dominant ESS, adapted and extended from its appearance

in [42].
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rents, contributing to slower degradation [48]–[50]. Here,
Hu et al. [49] compare a battery-only approach with an
HESS approach for an FC hybrid electric bus by applying
an optimization-based and health-conscious design frame-
work. The systematic analysis regarding fuel economy and
degradation effects leads to the optimal dimensioning of
the ESSs for power demands and regenerative braking
with respect to different driving patterns [51]. Comparing
several EMS approaches while optimizing the ESS size,
Song et al. [52] conclude that the application of an HESS
with a battery and an ultracapacitor along with an ade-
quate EMS results in reduced life-cycle costs. Thereby,
a dynamic battery degradation model is used in order
to compare the effects of various ESS sizes and EMS
approaches. Another optimization framework for FCHEV,
which also takes battery lifetime into account, is given
in [53].

In conclusion, the combination of a static development
framework [39] and co-simulation of the intended EMS
in a hybrid co-optimization framework is highly recom-
mended and contributes toward a more holistic develop-
ment process [49], [52], [53].

III. S Y S T E M M O D E L I N G
Facilitating holistic EMS approaches, accurate modeling
of electrical, mechanical, thermal, and aging behavior is
needed, in particular, for intelligent and suitable problem
formulation regarding dynamic optimization-based meth-
ods. In this section, models describing the physical behav-
ior of the FCS, batteries, and ultracapacitors are depicted.
Here, the emphasis is put on the recent literature regarding
aging and degradation processes that are key aspects for
the durability of FCHEVs. Furthermore, mechanical and
thermal models in regard to the drivetrain of FCHEVs are
briefly presented.

For further studies, Guzzella and Sciarretta [54] give
a comprehensive overview of the modeling of electric
and nonelectric vehicle propulsion systems focusing on
quasi-static and dynamic models for various components
in the electrical and mechanical powertrains. The recent
development of degradation and aging models for lithium-
ion batteries and FCs is elaborated and summarized
in [50]. Advantages and disadvantages for various mod-
eling approaches are depicted in a clear manner in order
to enable a reasonable choice of particular models for
health-conscious EMSs or prognostics and health manage-
ment. In [55] and [56], extensive studies on modeling
approaches for battery cells, FCs, a wide range of other
storage technologies, and components of the mechanical
powertrain for BEVs, HEVs, and FCHEVs are elaborated.

A comprehensive source for drivetrain and vehicle
models or driving cycles, including FCHEV components,
is offered by the ADVISOR toolbox for MATLAB, developed
up to the early 2000s (see [57] and [58]). The simulation
toolbox is widely used in the development of FCHEVs
[59], [60]. Further development has been made with
the vehicle simulation and development framework

Fig. 7. Equivalent circuit diagram of the PEMFC voltage VFC with

its ohmic behavior and RC elements for the activation and

concentration polarization effects based on [54].

Autonomie [61], which is used for simulations regard-
ing energy consumption and performance of FCHEVs
(see [28]). However, there are efforts toward comparable
simulation frameworks [62].

A. Models of Energy Sources

In the following, the most relevant technologies of ESSs
for FCHEVs, namely FCSs, batteries, and ultracapacitors,
and their key characteristics for energy and power supply
are presented. The contribution to the dynamic power
supply of each presented ESS in the frequency domain is
depicted in Fig. 6. Further descriptions for various energy
storage technologies for electric vehicle applications and
classification in regard to the underlying physical princi-
ples are given in [44], [55], and [63].

1) Fuel Cell System: In contrast to batteries and ultra-
capacitors, which are presented subsequently, an FC is
not an energy storage but an energy conversion technol-
ogy. The fundamental working principle and character-
istics of different FCs are described in [18] and [23].
In general, PEMFC has advantages over other FC types
for the application in transportation and is, therefore,
the mainly used and researched technology. A PEMFC
converts hydrogen (mostly stored in a tank) and oxygen
in a chemical reaction into electricity and the byproducts,
heat and water vapor. (Heat and water vapor are the
byproducts.) Since there are no reaction products, such
as CO2, NOx, or soot in the chemical conversion process,
PEMFCs, directly sourced from an H2 tank (see Fig. 1), are
regarded as locally emission-free and clean electric power
sources. The FCS comprises various pumps, compressors,
and heat-transfer devices that are mandatory auxiliaries
for the operation of the FC. These auxiliaries for operation
and the produced heat are the main losses responsible for
the mitigation of the FC efficiency. Nevertheless, compared
to ICE, FCs excel in a superior efficiency from tank to
wheel.

The fundamental specifications of FCs as energy sources
are a high specific energy density but low dynamics in
transient power demands (see Fig. 6). The low power
dynamic of an FC is particularly caused by the operation
of the FCS, including various pumps and compressors.
In Fig. 7, the most relevant physical phenomena limiting
the transient power supply are depicted in an exemplary
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Fig. 8. Qualitative characteristic curve of the relative efficiency of

an FCS in relation to its rated output power.

equivalent circuit diagram. Thereby, VNernst describes the
open-circuit voltage of the FC in regard to the Nernst
equation describing the fundamental correlation to vary-
ing temperature or pressure. The parameters Ract, Cact,
Rohm, Rconc, and Cconc quantify the voltage losses for
the activation polarization Vact, ohmic losses Vohm, and
concentration polarization Vconc, respectively [54]. These
voltage losses occur over the operation region of the FC.
Favorably, the FCS is operated in the ohmic region, which
is marked as the desired range of operation in Fig. 8 [39].
Besides the low dynamics, the FCS needs some time to
warm up until it is fully operational. This behavior has to
be taken into consideration in the design process of HESSs
for FCHEVs [39]. For efficient operation of the FCS by the
EMS in the initial heating-up and further starts and stops
while driving, precise modeling is needed [7].

FCSs suffer from degradation processes causing reduced
efficiency over operation time and a limited lifetime.
Therefore, the intelligent operation of the FCS has to be
addressed by the EMS in order to mitigate degradation
and meet durability requirements, which are of partic-
ular importance in demanding heavy-duty applications.
Jouin et al. [64] elaborate the state-of-the-art prognostics
and health management for FCs and, in particular, PEMFCs
for application in transport systems. Due to the limited life-
time of FCs, a better understanding of wearing processes
resulting in optimized operation is needed for the compet-
itiveness of FCHEVs.

The mechanisms of PEMFC degradation and physical
and chemical phenomena have been studied besides var-
ious modeling approaches. The effects of gas, heat, and
water management on PEMFC degradation are analyzed in
[65] and [66], while strategies to mitigate these wearing
effects mainly caused by cyclic loads are derived [66].
A behavioral model for PEMFCs based on a static modeling
approach, which takes into account the activation phenom-
enon at the cathode and the anode, and a dynamic model
part based on an electrical equivalent circuit, is developed

in [67]. The proposed model is fit and validated with
experimental data from long-term tests. Hereby, electro-
chemical impedance spectroscopy (EIS) and polarization
curve measurements are applied to update the model
parameters regularly. Further efforts in the analysis of the
degradation phenomena and aging modeling for health
assessment of PEMFC are presented in [68]. Critical com-
ponents and power losses in the FCS are identified and
modeled in a holistic framework for prognostics. More-
over, variations, the trend of parameters, and characteristic
measurements allow for estimations of aging and degra-
dation effects. Further developments in modeling and
diagnosis for PEMFC are based on multivariate statistical
methods for diagnosis [69], neural networks (NNs) for
black-box modeling [70], or linear subspace identification
methods for fault detection and isolation with a Kalman
filter [71].

2) Battery: Applied in an adequate operation region
regarding temperature, power demand, and discharg-
ing or charging currents, batteries provide a durable and
safe power supply with little efforts for maintenance [72].
In order to ensure safe and effective operation, bat-
tery management systems determine the battery states
and request necessary measures, such as current limita-
tion or thermal control [73]. As the capacity of single cells
in battery packs varies due to production or aging devia-
tions, active balancing algorithms are applied to maintain
full storage potential [74].

Through their chemical compounds, battery technolo-
gies reveal differences in specific power, specific energy,
durability, efficiency, temperature dependence, and costs.
To fulfill the requirements of the electric propulsion sys-
tem, a reasonable choice of the battery technology for
FCHEVs in heavy-duty applications is needed [55], [75].
Lead-acid, lithium-ion, and nickel-based batteries are the
commonly used technologies. Due to the highest specific
power and energy density, lithium-ion batteries are most
relevant for application in vehicular propulsion. Accurate
measurement and estimation of battery states, such as
voltage, SOC, temperature, or state of health (SOH), are
the key factors for efficient management of battery cells
and correct consideration in the EMS [73].

The dynamic modeling of the battery cell voltage Vcell

is usually based on equivalent circuit diagrams, such as
in Fig. 9 [72]. The included parameters VOC, R0, R1, C1,
R2, and C2 are fit for particular battery cells utilizing data
from EIS measurements [76]. Considering and empha-
sizing different physical phenomena of batteries, various
equivalent circuit diagrams have been developed. In order
to improve the battery model fidelity for varying tempera-
tures, the parameters VOC,R0,R1, and C1 may be adaptive
to temperature and SOC changes, as presented in [77].
In addition, battery models are extended with approaches
to consider the battery lifetime [78]. With respect to the
form of EIS measurements, alternative dynamic model-
ing approaches, such as fractional models based on RQ
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Fig. 9. Equivalent circuit diagram of a battery and the resulting

cell voltage Vcell of the open circuit.

elements instead of RC elements, are studied [79]. The
advantages of these more detailed models are a higher
precision in voltage and current prediction but may lead to
an increased effort due to adequate parameterization and
higher computational efforts for the EMS. Nevertheless,
the precision of battery models with RC elements, such as
in Fig. 9, is usually suitable for consideration in the EMS in
a well-tempered battery system.

Considering the durability of batteries, aging and degra-
dation effects are a major concern in recent research and
development with BEVs, HEVs, and FCHEVs in mind [50].
Adapting an aging model based on accumulated charge
throughput, Marano et al. [80] study the wearing effects
on lithium-ion batteries. The proposed aging model takes
overcharging, temperature, and depth of discharge as
weighting factors represented in a severity map into
account. Regarding aging models for lithium-ion batteries,
a classification in two categories is proposed. On the one
hand, physical–chemical models are used to describe the
inner mechanisms of each battery cell. The overall aging
and degradation process is divided into various aspects of
the electrochemical cell architecture [81]. On the other
hand, empirical models simplify the aging process to the
main aspects. By fitting the parameters, which describe
these main physical relations of cell aging, with the aid
of experimental data, empirical models are adapted to
a particular cell category. In order to develop a control-
oriented battery aging model suitable for real-time opti-
mization, Tang et al. [82] adapted a semiempirical model
that is based on a generic aging model presented in [83].
Further research in the field focuses on models of battery
packs [84] and frameworks for the onboard estimation of
the battery lifetime [85].

3) Ultracapacitor: The physical working principle of
ultracapacitors offers the highest specific power den-
sity compared to batteries and FCs [86]. In contrast,
the energy density is relatively low and the main focus
of recent research efforts [55]. Therefore, ultracapacitors
are deployed in FCHEVs for transient power demands in
regenerative braking or hard accelerating (see Fig. 6). The
exemplary equivalent circuit model in Fig. 10 comprises
the capacity C, the parallel resistance REPR, and the
series resistance RESR, which depict the electric storage

capability, the self-discharging losses, and the efficiency
losses in charging and discharging, respectively [56], [87].
Contrary to FCs and batteries, for the dynamic modeling
of ultracapacitors, no additional time constants, such as
RC elements, are used in this model representation.

Besides their high power density, ultracapacitors excel
in a long lifetime and the independence of temperature.
Due to their simple physical working principle, no main-
tenance and no management system for effective and
safe operation are needed. As the output voltage VUC is
directly dependent on the SOC, ultracapacitors are usu-
ally employed with a dc/dc-converter to the HV bus (see
Fig. 1). If no dc/dc-converter is applied, the ultracapacitor
works like a dc-link capacitor with improved energy stor-
age capability [7].

B. Mechanical and Thermal Models

1) Mechanical Loads: For an accurate reference genera-
tion and prediction of the demanded torque from a road
profile, depending on the system, road, and environment
parameters, a driving load model is needed [88]. These
models are, in particular, needed for predictive EMSs and
take friction, point mass propelling forces, the air drag,
road slopes, and rolling resistances into account. They
are extended by decelerating forces to model regenera-
tive braking by EM recuperation, friction braking, or the
hydrodynamic retarder in heavy-duty road applications.
Mechanical load models, the influence of the drivetrain
inertia by the EMs, GBs, or wheels are thoroughly pre-
sented in [39], while a reduced model for an optimal
control design is used in [88].

2) Hydrodynamic Braking and Retarder: In heavy-duty
applications, braking systems are of exceptional interest
due to the large vehicle mass and the inertial momentum.
For longer braking phases during travel, permanent fric-
tion braking, which would result in heavy wearing effects
and overheating, is strongly avoided. Thus, hydrodynamic
braking systems are used to dissipate kinetic energy into
heat, e.g., by using a Föttinger fluid coupling for the con-
version, which is further dissipated in a cooling cycle [89].
An exemplary integration of a hydrodynamic retarder as
an additional braking system is shown in Fig. 1. Fluid

Fig. 10. Equivalent circuit diagram of an ultracapacitor with

equivalent series and parallel resistances RESR and REPR.
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Fig. 11. Equivalent circuit diagram for the thermal behavior of a

component (C) with the temperature ϑC and the thermal capacity CC.

couplings in the retarder create a braking torque Tret,
which is quadratic to the impeller rotational velocity ωret

and can be further increased by the power of five by the
parameter of the rotor’s diameter dret. The braking torque
is also proportional to the fluid density ρfluid, as well as
further constructional parameters kret, and is described by

Tret = kret · d5
ret · w2

ret · ρfluid.

With respect to the fluid, parameters change dynam-
ically and have to be taken into account in the system
design and the EMS.

3) Thermal Modeling: The component tempering, e.g.,
in the FC operation phases, or in the fulfillment of the
battery temperature sweet spot, and the control of cooling
cycles, have a great influence on the overall system effi-
ciency and degradation effects in the FCHEV drivetrain. In
Fig. 11, an exemplary equivalent circuit diagram describ-
ing the thermal behavior of a general component (C) is
depicted.

The heating power Q̇C of the component increases the
temperature ϑC as it loads the thermal capacity CC. Subse-
quently, the heat is conducted across the component casing
with the thermal capacity C1. The ambient temperature
ϑamb determines the thermal reference point across the
system. The heat conduction between the reference points
{C, 1, amb} is modeled with the resistances RC, 1 and
R1, amb.

The placement of a cooling cycle is subject to the design
of the individual system. In the study of Bauer et al. [90],
a cooled battery storage is described as a lumped mass
heat capacity Cth, bat with a dynamic model of the battery
temperature ϑbat

ϑ̇bat =
1

Cth, bat
· (Ploss bat + Q̇amb + Q̇cool).

Thereby, the dynamic battery temperature ϑ̇bat depends
on the electric power losses of the battery Ploss bat,
the ambient heat emission Q̇amb, and the heat emis-
sion Q̇cool into a cooling cycle. The authors optimize the
energy for battery tempering versus drivetrain efficiency.

This lumped-sum approach is widely used in the liter-
ature to factor in thermal dependencies. For example,
Cheng et al. [9] design a model-based temperature control
for a city bus as a part of its EMS.

IV. M E T H O D O L O G I E S F O R E M S
Efficient operation of FCHEVs is strictly related to intelli-
gent and accurate design of the EMS. Up to the present,
much research work regarding EMSs with respect to the
mechanical drivetrain of heavy-duty trucks has been con-
ducted, e.g., efficient gear switching for heavy-duty trucks
[91], [92]. Reviews and surveys on a broad range of
EMS methodologies for hybrid vehicles are presented in
[93]–[97], while recent reviews focus on health-conscious
[50] or learning-based [60] methods for EMSs. Thereby,
the developed methodologies for the EMS in HEVs can be
adapted and transferred to a promising application in the
EMS for FCHEVs.

The optimization for a high system efficiency by an
intelligent power split is the primary task of the EMS
for FCHEVs [3]. However, respecting the degradation
processes of the FCS and ESSs for an increased lifetime
[50] and low total cost of ownership (TCO) is crucial
for economic competitiveness [6]. Therefore, the combina-
tion of multiple optimization objectives to simultaneously
account for both an efficient operation and a minimum
degradation is the key challenge for further research. Addi-
tional challenges for heavy-duty applications are robust
energy supply for safety-related components and auxil-
iaries, as well as the managing of component temperatures
across the system. Furthermore, the problem formulations
often show nonlinear and even mixed-integer characteris-
tics for approaches with combined objectives. Thus, real-
time optimization of the EMS is exceptionally challenging
due to the resulting high computational efforts.

On the other hand, combining these objectives for
EMS design brings opportunities due to increased flexi-
bility around the thermal management, auxiliaries, and
the driving strategy. Taking advantage of this potential is
important for EMS development but is in need of com-
prehensive system knowledge. These approaches benefit
from information about future component behavior and
driving cycle. Thus, predictive optimization and dynamic
weighting of the multiple objectives lead to a superior
system operation than optimizing separated subproblems
with possibly contradicting objectives.

With a multiobjective optimization approach, the prob-
lem dimensionality increases and is subject to the different
domains. Thereby, each controlled subsystem introduces
dedicated input variables to the optimization problem,
e.g., the power split factors of the ESSs, the FCS OP, or the
vehicle velocity. Switching components, such as a GB
(see Fig. 1), add additional problem dimensionality and
complexity and often lead to mixed integer programming
(MIP).

Problem complexity of EMSs in FCHEVs is further
increased by the constraints that arise. These constraints
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Fig. 12. Classification of EMS methodologies and structuring of Section IV with root methodologies (red), grouping for dynamic

optimization-based methodologies (green) and further subdivisions (blue).

comprise the FCS power dynamics, the thermal lim-
its of components, restricted ESS capacities, or the
maximum power of the PEs, as well as the EMs,
among others. In terms of the driving strategy, this
constrains the propulsion power and the regenera-
tive braking for the FCHEV. In contrast, the occur-
ring limitations mitigate the degradation and wearing
effects through lower thermal stress and damped peak
powers.

Taking the complexity of FCHEVs into consideration,
EMSs are usually designed as a hierarchical supervisory
control, which is responsible for the high-level deci-
sions [98], [99]. High-level decisions are used as refer-
ences, e.g., for the voltage levels, the power demands,
the SOC, or the velocity of the vehicle. The resulting set
points are applied by underlying control loops on the
component level, e.g., classic PID control [48], differential
flatness-based controllers [100], advanced control meth-
ods [101], or dynamic evolution control for continuously
updated control laws [102].

In the following, rule-, dynamic optimization-, and
learning-based strategies in the literature are succes-
sively presented and discussed. The presented EMSs are
applied to different HEVs or FCHEVs that differ in tech-
nologies, topologies, or application sector. Nevertheless,
the considered problem of energy management with mul-
tiple objectives and requirements is comparable. Hence,
the described approaches may give valuable insights and
hints for possible EMS problem solving regarding FCHEVs
in heavy-duty applications. In contrast to previous works
and reviews, we propose a new classification of dynamic
optimization-based approaches for the EMS, oriented
around optimal control, and depicted in Fig. 12. The
classification of optimization-based methods is proposed in
categories based on [103] and [104], namely DP, direct
methods, and indirect methods. Furthermore, we add
learning-based methods as a new category, which may be
a promising field for future research activities regarding
EMSs [60].

A. Rule-Based Strategies

Rule-based control strategies are a simple and easy
to implement methodology to control power distribution
and power flow within FCHEVs in real time [7], [95].
Generally, rule-based control strategies are divided into
deterministic rule-based strategies (applying fixed rules
and thresholds) and fuzzy rule-based strategies (based on
fuzzy set theory [105]).

For the implementation, neither deterministic nor fuzzy
rule-based approaches need an underlying model. There-
fore, both methodologies are suitable for the control of
complex and strongly nonlinear systems as FCHEV pow-
ertrains combining electrical, mechanical, chemical, and
thermal domains. Especially in drivetrains with multiple
DOFs due to different energy buffers, such as batteries and
ultracapacitors, heuristic approaches have been dominant
in recent years as stated by Ansarey et al. [106]. Fur-
thermore, the computational efficiency makes rule-based
approaches ideal for fast integration in real-time applica-
tions [107]. Hence, referring to the state of the art, rule-
based approaches are widely applied in many production
vehicles [94]. A comprehensive and comparative study of
various rule-based EMSs for an HESS comprising a PEMFC,
a battery, and an ultracapacitor is presented in [108].

Since one reason for nonoptimal control perfor-
mance is the fixed rules and nonaccurate thresh-
olds, current development and research focus on the
adaption, tuning, and optimization of these parame-
ters in rule-based control strategies. Hereby, the fun-
damental parameters are adjusted in terms of driving
cycle, powertrain characteristics, and various vehicle
states [108], [109]. Taking these adjustments into
account, today’s implementation and adaption of rule-
based approaches for a particular FCHEV are time-
consuming and complex processes. These processes
include, but not limited to, off-line optimization of para-
meters [109]–[113], instantaneous optimization of OPs
[114], [115], real-time optimization in a restricted search
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space [116], driving cycle recognition [59], [117]–[119],
and driving cycle prediction [120].

1) Deterministic rule-based strategies: They are com-
monly implemented via lookup tables and state machines.
The thermostat strategy is the simplest control strategy.
With this strategy, the FCS always operates around its
most efficient OP and is switched on or off to maintain
battery SOC. In [121], the durability of FCs in a plug-in
FCHEV is enhanced by applying a novel FC configuration,
which works at fixed OPs. A thermostat control approach
with the ON–OFF switching of three FCs and hysteresis is
developed aiming at a reduced operation time of the FCs.
In [122], the advantages of a blended thermostat and a
power follower strategy are used for the control of a hybrid
city bus. Extensions of the thermostat approach are often
based on efficiency maps for the FC operation, including
the most efficient OPs [123].

In the frequency-based strategy, a low-pass fil-
ter or wavelet transform is used to split the traction
power demand in components of low and high frequen-
cies [14], [124], [125]. Low-frequency demands will be
covered by the FC, while high-frequency components with
steep power transients are covered by the battery or the
ultracapacitor. Therefore, on the one hand, demanding
transients of the FCS and, on the other hand, high currents
of the battery are mitigated leading to higher fuel economy
and an increased battery and FC lifetime, respectively. An
equivalent power distribution in the frequency domain for
FCHEVs with FC, battery, and ultracapacitor as the HESS
is shown in Fig. 6. Applying a frequency-based approach
with cascaded control loops, Azib et al. [42] illustrate the
effectiveness of a simple HESS comprising a PEMFC and
an ultracapacitor for FCHEVs.

2) Fuzzy logic control (FLC): These systems are based on
fuzzy set theory introduced by Zadeh [105] and are usually
grounded on human expertise, existing heuristics, or engi-
neering intuition. While fuzzy rule-based strategies are
deterministic as well, they have emerged as a dedicated
class of rule-based strategies in the literature due to sig-
nificant differences in the approach. The development of
an FLC system is composed of membership functions for
input and output variables and fuzzy rules mapping input
sets onto output sets. In a fuzzy rule-bused controller, three
steps are performed.

1) In the fuzzification, the input variables are assigned
to fuzzy input sets by corresponding membership
functions.

2) In the inference, with the aid of predefined fuzzy
rules, these fuzzy input sets are mapped to fuzzy
output sets.

3) In the defuzzification step, to get applicable output
values, the inverse fuzziness step is applied in which
quantified output variables are computed from fuzzy
output sets via membership functions.

A thorough overview of the FLC, its mathematical the-
ory, and general applications and adaptations is given

in [126]. In [127], classification and comparison of various
EMSs are presented. The review focuses on fuzzy rule-
based control strategies categorized in conventional, adap-
tive, and predictive FLC methods.

Conventional fuzzy rule-based EMSs for power distribu-
tion, allocation, or electric-assisted control in FCHEVs are
studied in [128]–[130]. In order to achieve two partly con-
tradicting objectives, an adaptive neural fuzzy inference
system is implemented and trained with data from two
different controllers in [131]. Another implementation of
FLC with machine learning is studied in [132]. With the
help of the machine learning algorithm Learning Optimal
Power Sources (LOPPS), a fuzzy rule-based controller for
varying power demands and vehicle states is developed.
In [133], an adaptive FLC with the ability to compensate
different vehicle operating states and uncertainties is pre-
sented. The proposed controller is composed of a fuzzy
neural network (FNN) as the main controller. With respect
to multiobjective optimization in [43], a basic fuzzy rule-
based strategy for FCHEVs is adapted considering various
driving cycles. In [134], membership functions for input,
output, and fuzzy rules are adapted via off-line optimiza-
tion with respect to specific driving cycles.

B. Dynamic Optimization-Based Strategies

In contrast to the prior presented rule-based strategies,
profound system knowledge and accurate models are often
necessary for dynamic optimization-based approaches.
This is usually considered as a white-box approach in
the optimization field. However, as an example for black-
box approaches, learning-based strategies are presented
in Section IV-C, which may also have optimization char-
acter included in the process of learning approximations.
Dynamic optimization-based strategies solve an optimiza-
tion problem by calculating an optimal solution that min-
imizes a set of objective functions. The objective function
set can be weighted to quantify the importance of certain
criteria or goals. Further objectives, external information
about the future driving cycle, or internal information
about system states may be added to the designed objective
function set. Hence, dynamic optimization-based strategies
are easier to scale or adapt than rule-based strategies,
though the application of optimization-based approaches
is often connected to high computational efforts for solving
the optimization problem and calculating the control input
[96], [104], [135]. Besides the objective function set, con-
straints to input or state variables provide the opportunity
to restrict the optimal solution to a feasible set.

With respect to the problem formulation, system mod-
eling, input and output variables, and the considered
optimization horizon, substantially differing optimization
problems occur. Considering the different properties
of optimization problems, we propose three categories
as a new taxonomy for dynamic optimization-based
approaches in EMSs, namely DP, direct methods, and indi-
rect methods, based on [103] and [104]. For each class of
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optimization methods, there are various algorithms for the
numerical calculation of the optimal control inputs. The
goal is to find the optimal solution of the provided objec-
tive function set with respect to constraints, either alge-
braic, numeric, or in the form of the computational power.
As there is a wide range of solvers, open-sourced and
proprietary, which compile the problem in a provided lan-
guage and compute matching sets of solutions, interfacing
the optimization problem to a software solver is often the
first step. Here, the solver interface frameworks, YALMIP
[136] and CasADI [137], provide a convenient way for
fast implementation with various external solvers. Solvers
differ depending on the characteristics of the problem for-
mulation, the optimization methodology, and the compu-
tational effort. Problem properties, such as differentiabil-
ity, convexity, boundedness, or mixed-integer, substantially
influence the choice of suitable solving algorithms.

1) Problem Formulation for Optimization: Regarding
optimization problems, the problem formulation as the
first step has been an important research field in mathe-
matics, computer science, and engineering. In the follow-
ing, various approaches for the problem formulation, such
as MPC, convex optimization (CO), MIP, market-based
and game-theoretic methods, and equivalent consumption
factor (ECF), are introduced.

Model predictive control (MPC) is a popular and widely
applied advanced control methodology. In general, MPC is
defined by four properties [138].

1) A dynamic optimization problem is formulated, and
the arising objective function is solved in every time
step, yielding the next optimal control variable.

2) The behavior of the controlled system is predicted by
an internal system model with respect to the control
variables.

3) The optimization problem has to be solved with
respect to constraints on control or state vari-
ables or both.

4) MPC uses a moving or receding horizon to predict the
system behavior. Therefore, optimal control variables
for a predefined planning horizon are calculated,
whereas only the first control variable is applied to the
system. Afterward, the MPC gets the measured or esti-
mated feedback from the system and repeats the
procedure for the next time step, while the horizon
is moving forward in time.

The simple handling of constraints in optimization prob-
lems is one advantageous characteristic of MPC. Taking
the depicted properties into account, MPC is a particu-
larly suitable approach for EMSs in FCHEVs, which allows
for simple handling of constraints and real-time capable
implementation. Thereby, a real-time capable implemen-
tation of the MPC is achievable by adjusting the step
size in discrete-time optimization problems or the pre-
diction horizon in order to reduce computational efforts.
Regarding the varying power demands with high peak
power requirements in heavy-duty applications, the MPC

is able to compensate the slow power dynamics of the
FCS by adding power from the battery and the ultra-
capacitor. Thus, the MPC takes advantage of the peak
power capabilities of the HESS in FCHEVs (see Fig. 6)
by planning an adequate power split between the ESSs
over the moving horizon [139]. In [20] and [140], a sto-
chastic model predictive control (SMPC) is implemented
for the optimization of the fuel economy. As the input
of the SMPC, the future velocity or the mechanical load
is forecast by a Monte Carlo method based on a Markov
chain. The SMPC performance in the overall system shows
a slightly increased fuel consumption compared to the
global optimization approach using DP with the ground
truth of the future velocity. A blended EMS comprising
an MPC and a rule-based approach for the operation of
an HESS is developed and evaluated in [141]. In [47],
recent MPC algorithms for EMSs are classified in terms
of prediction methods for the driving cycle forecast (as
in [135] and [142]) and with respect to the applied
models. Finally, a comprehensive list of factors affecting
the MPC performance and the current challenges for MPC
approaches in the EMS are summarized [47].

The arising optimization problem of an MPC is usu-
ally solved by direct methods, e.g., quadratic program-
ming (QP) [142], as well as indirect methods [143]. An
approach based on an MPC for FCHEVs that switches
between driving modes for propulsion and braking is pro-
posed in [88]. In order to allow the effective exploitation
of elevation information and to reduce fuel consumption,
Lattemann et al. [144] proposed an MPC for a heavy-duty
truck that varies the speed in a predefined speed band
around a preset speed.

Market-based and game theoretic methods are designed to
imitate and simulate human behavior in certain situations,
which are modeled as a business process, negotiation,
game, or auction. In recent research, the methods of
market and game theory are transferred to other domains
where interaction between humans, machines, or humans
and machines happens. In [145], the game theory is
used to develop a novel EMS taking multiple objectives
and interaction with the driver into account. Despite the
problem formulation as a noncooperative game between
driver and vehicle, experimental validation demonstrates
good characteristics in drivability and efficient fuel con-
sumption. Gielniak and Shen [146] propose an EMS based
on game theory for an FCHEV with respect to the objectives
drivetrain efficiency and vehicle performance. Thereby,
the ESSs, namely an FC, a battery, and an ultracapac-
itor, are designed as the players that maximize their
payoffs [146].

Mixed integer programming (MIP) results from discrete
integer control variables, such as gear choices in the GB of
the mechanical drivetrain or switching component states
included in the problem formulation [3], [92]. A holis-
tic approach, taking advantage of the DOFs in the sys-
tem operation, namely vehicle velocity, gear shifting, and
torque split, is extensively studied in [147]. An integrated
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MPC approach for simultaneous velocity planning and an
EMS for FCHEVs yielding to an MIP is proposed in [148].

With growing system complexity or nonlinear problems,
the MIP complexity grows disproportional due to com-
binatorial states and permutations but remains viable as
an EMS design approach [3]. Caux et al. [3] describe a
derivative-free optimization approach for an FC drivetrain
with two types of ESSs, addressing additional ultraca-
pacitors. The authors transfer the drivetrain model into
a data-driven linear MIP approach with a combinator-
ial formulation. The need for further research regarding
robustness in the case of changing FC efficiency character-
istics is suggested [3].

Convex optimization (CO) is an approach to problem for-
mulation with an advantageous characteristic that enables
derivative-based solving algorithms to effectively find the
global optimum. If the optimization problem is convex and
feasible, the calculated solution is guaranteed to be the
global optimum. In contrast to CO problems, nonconvex
optimization problems may have multiple feasible local
optima. Thus, the complexity of finding the global opti-
mum is significantly increased, and as a result, convexity is
desirable for optimization problem design. Unfortunately,
CO problems with convex objective function sets and at the
same time convex constraints are rare. Especially, nonlin-
ear functions and constraints, such as obtained by EMSs for
FCHEVs, lead to nonconvex problems. Convexification of
nonconvex optimization problems leads to approximated
and potentially oversimplified problems. As the nonlinear
functions of components and systems describe their exact
characteristics and behavior, simplified optimization prob-
lems lead to less accurate and possibly infeasible solutions.
Comprehensive studies regarding CO for a wide range of
technical problems are presented in [149]. The application
of CO in the EMS for FCHEVs is studied in [51]. The
design of CO problems and the approaches for convexi-
fication in the field of electric mobility are addressed by
Egardt et al. [150].

The equivalent consumption factor (ECF) is originally
used to, respectively, compare the electrical and the chem-
ical energy of the battery with an ICE and is proposed in
[151]. Applying this factor reduces the dimension of the
optimal control problem as the battery charge is compared
to fuel consumption and, thereby, substituted. As a transfer
to the application in FCHEVs, the mass flow of hydrogen
ṁH2 is conditioned in regard to an FCS efficiency lookup
table and using the gasoline equivalent lower heating value
(LHV) hLVH,H2 of hydrogen [106]

ṁH2 =
PFC

ηFC(PFC) · hLVH,H2

with PFC as the FC power and ηFC as the dependent
FC efficiency. The ECF approach needs a thorough para-
meterization, also depending on the driving cycle, and
can suffer from suboptimal behavior in terms of wide
power demand variation. Thus, an intelligent adaption is

needed to achieve improved optimization results [152].
Recent literature for the application of the ECF in various
approaches of equivalent consumption minimization strat-
egys (ECMSs) for FCHEVs is presented in Section IV-B4.

2) Dynamic Programming: DP is an optimization
methodology developed by Bellman who applied it to solve
optimal control problems. The basic principle is the decom-
position of the global optimization problem into sub-
problems. The subproblems can be regarded as branches
that are sequentially solved. Finally, a path through the
branches is leading to the optimal solution. In order to
reduce the computational burden, the principle of opti-
mality is used to cut some of the nonoptimal branches.
Thereby, the principle of optimality states that, in the
branch leading to the optimal solution, every subprob-
lem has to be optimal itself. In general, DP suffers from
the curse of dimensionality, which describes the fact that
an additional optimization variable yields a significantly
increased complexity of the optimization problem [153].

DP is mostly used in order to find the global optimal
solution for evaluation and benchmarking [106], [135],
[147], [154]. For this purpose, a noncausal problem for-
mulation is used as the full a priori knowledge about the
driving cycle and route information is assumed. Another
purpose is the adaption of real-time capable approaches,
such as rule-based strategies by the parameters derived
from off-line optimization with DP. This procedure is suit-
able for complex optimization problems in terms of nonlin-
ear FC performance or high-dimensional problems [155].
In [156], a comprehensive overview on optimization-
based control strategies for energy-efficient driving with
an emphasis on DP is elaborated. For further reference,
Bertsekas [153] provides a thorough overview of DP
approaches, methodologies, and implementations for opti-
mal control problems. The extension of DP by introducing
stochastic variables in the optimization problem leads to
stochastic dynamic programming (SDP). The stochastic
input variables are applied in order to include uncertain
information, such as future driving patterns in the problem
formulation [157].

For an efficient numerical solution of DP, search algo-
rithms, such as A�, B�, or D�, as well as backtrack-
ing, or branch-and-bound algorithms, are applied. Another
class of solving algorithms is summarized as stochastic
search approaches. The stochastic search uses probabilistic
strategies mostly motivated by nature to find the opti-
mal solution. Commonly known algorithms, which are
applied and adopted to a wide range of problems in the
EMS design, are genetic algorithm (GA) [158], particle
swarm optimization (PSO) [59], [159], simulated anneal-
ing (SA) [98], or the bees algorithm [134].

3) Direct Methods: In direct methods, a continuous
dynamic optimization problem is approximated through
discretization in the time domain, which subsequently
yields a static optimization problem with discrete-time
optimization variables [103]. In contrast, in direct
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collocation methods, both the control variables and the
state variables are replaced by discrete variables [103].
Direct methods are usually deployed by solving optimal
control problems arising from MPC approaches. Here,
the discretization of control variables in time over the
moving horizon leads to static optimization problems that
are iteratively solved. The quality of the obtained solution
depends on the parameterization, solving algorithm, and
the conditioning of the optimal control problem. Further-
more, control variable parameterization methods suffer
from nonlinear inequality constraints, as they arise in EMS
problems of FCHEVs [160]. Yielding strongly nonconvex
optimization problems, these inequality constraints cause
various local optima that are often far from the global
solution (see CO in Section IV-B1).

In order to overcome these drawbacks of control vari-
able parameterization methods, Pérez and García [161]
propose an EMS approach based on direct collocation
methods (or direct transcription). Another approach,
applying direct collocation methods to deal with the aris-
ing constraints in control and state variables, is presented
in [162]. In [163], a direct collocation approach for a
multiobjective EMS for FCHEVs is studied.

For several static optimization problems, there are effi-
cient solving algorithms. In regard of available derivatives,
derivative-based solving algorithms, such as Newton’s
method, the quasi-Newton method, sequential quadratic
programming (SQP), or Broyden–Flechter–Goldfarb–
Shanno algorithm (BFGS) surpass derivative-free
algorithms. For additional consideration of boundaries,
active-set methods and interior-point methods are applied.
Unfortunately, in most algorithms, it is not guaranteed
that the global optimum is obtained. Heuristics to solve
optimization problems without analytical knowledge of
the derivatives are derivative-free methods, such as the
simplex algorithm for linear optimization problems or the
Nelder–Mead method and other pattern search algorithms
applicable for nonlinear problems [122].

4) Indirect Methods: Indirect methods make use of
the necessary conditions for an optimal solution [104].
Approaches are usually based on the calculus of varia-
tions and derive formulations of the solution for an opti-
mal control problem. For simple optimization problems,
a closed-form solution is achievable. Regarding the com-
plex and nonlinear optimization problems linked to EMSs
for FCHEVs, an analytical solution is often not possible for
the desired objectives [95]. Thus, numerical solutions with
shooting techniques or direct collocation are needed [103].

Pontryagin’s minimum principle (PMP) is the most widely
applied indirect method approach because of its capability
to cope with the arising constraints in EMS optimization
problems [156]. Because PMP redefines the original opti-
mal control problem into a local optimal control problem
that is easier to solve, it allows no guarantees of optimality
[160]. Ambühl et al. [164] derive an explicit solution from
a simplified hybrid powertrain model to leverage PMP with

a motor power-dependent piecewise Hamiltonian function
for optimization with input constraints.

In [165], an EMS based on PMP is introduced, which
takes battery aging and minimizing fuel consumption into
account. The approach makes use of a factor map for quan-
tification of several aging effects occurring in particular
vehicle-operating conditions. Various research works study
PMP for EMSs with respect to a wide range of objectives
and constraints [53], [82], [90].

In addition to the ECF introduced in Section IV-B1,
the equivalent consumption minimization strategy (ECMS)
approach simplifies the original optimal control problem
to local optimization problems that are solvable with less
computational effort. The fundamental ECMS is based on
instantly available information. Therefore, deployment of
ECMS results in a reformulated optimal control problem,
which facilitates real-time applicability [166]. Serrao et al.
[160] highlight the equivalence of PMP and ECMS ana-
lytically and state that, assuming a CO problem, PMP,
and, hence, the ECMS yields the optimal solution. The
ECMS methodology is also extendable to other combina-
tions of ESSs in various HESSs for FCHEVs [167], [168].
Furthermore, a combination of energy and thermal man-
agement based on ECMS is implemented and validated
in [169]. Emphasizing component lifetime, recent devel-
opments apply and extend ECMS methodology for health-
conscious degradation minimization [50].

As the ECF is fixed for the instantaneous local optimal
control problem, ECMS suffers from suboptimal behavior
in a global sense. In order to overcome these disadvantages
of the ECMS regarding the fixed ECF, extensive develop-
ment and research address the intelligent adaptation of
the ECF. These intelligent adaptation approaches include
global optimization for the driving cycle, on the one hand,
and online adaptation based on state estimation and pre-
diction or recognition of driving patterns, on the other
hand [7], [50], [95], [152], [170]. Further research efforts
facilitating the online adaptation of the ECMS approach,
initially proposed in [168], are presented in [170]. In order
to estimate the SOH of ESSs, an unscented Kalman filter
approach is developed and validated.

For an ECMS in FCHEVs, a time-dependent objective
function J as the integral over the sum of the provided
power by the fuel mass flow ṁfuel and a fuel equivalent
function ψ is formulated

J =

�
t

t0

ṁfuel(u) + s · ψ(ΔSOC,u)dτ.

Here, the equivalent fuel consumption of a further ESS
ψ represents a battery (see [135], [160], and [171]). Thus,
ψ is dependent on the charging state difference ΔSOC and
is multiplied with the ECF s ∈ R for equivalence weighting.

C. Learning-Based Strategies
Sutton and Barto [172] distinguish three categories of

learning methods, namely supervised, unsupervised, and
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reinforcement learning (RL). Hereby, supervised learning
describes methods that learn behavior based on given
rules or labels. After the training with the labeled data,
supervised learning algorithms are able to apply these
rules to new data. Here, the challenge is to apply the
rules to known situations and adequately extrapolate
the rules for unknown data or situations. In order to
implement adaptive fuzzy rule-based strategies, supervised
learning approaches are applied and validated for EMSs in
[131]–[133]. Furthermore, in [117] and [118], a learning
vector quantization network for driving cycle recognition is
developed. In [173], driving modes are switched based on
the detection of the driving behavior with long short-term
memory in a recurrent neural network (RNN). In contrast
to supervised learning, unsupervised learning is used to
identify structures or patterns in unlabeled data.

The third category, RL, differs from both aforemen-
tioned learning methods. RL is the process of learning by
interaction with the environment based on instantaneous
rewards and a value function that considers estimated
rewards. A comprehensive introduction of RL and its char-
acteristics is elaborated in [172]. In the act of learning,
RL approaches try to maximize their reward and, hence,
solve an optimization problem. However, in contrast to
dynamic optimization-based methods, RL does not apply
an explicit and constant model as a representation of its
environment. As a result, RL is, in general, very adaptive
to changes in its environment. In recent years, RL has
been an emerging and popular technology [172], and
thus, its applications have been studied in a wide range
of domains. Hu et al. [60] highlight applications of RL in
EMSs and give an overview of current research efforts
and future prospects. The authors distinguish RL methods
for EMSs into two categories, pure RL [174] and blended
approaches combining RL with forecasting information
[175], [176] or MPC [177]. In [178], a multiobjective-
based EMS with RL is developed. The proposed EMS is
updated at discrete times with respect to a divergence
factor. First approaches with RL for EMSs in FCHEVs are
studied in [179].

V. T O W A R D H O L I S T I C A P P R O A C H E S
In Sections I–IV, recent research efforts and the state-of-
the-art concerning applications, the system design, the sys-
tem modeling, and EMS methodologies in regard to
FCHEVs for heavy-duty applications have been presented.
This section is intended to combine the different aspects
and give a guideline for the development of FCHEVs start-
ing with the system design, over EMS considerations, up
to the verification and validation process with an emphasis
on heavy-duty trucks.

A. Co-Optimization in the Powertrain
and EMS Design

The first step in the system design is the definition
and assessment of requirements for the intended use. For

heavy-duty and long-haul trucks, requirements comprise,
in particular, the torque, the payload, the range, and
the durability. Regarding the economic competitiveness,
further aspects that have to be considered are the initial
investment and the life-cycle costs contributing to the
TCO. Thereby, life-cycle costs involve efficient operation
and maintenance efforts. Based on the weighted require-
ments, various decisions regarding technologies, topolo-
gies, and component sizing have to be made. Several
options concerning ESSs for a suitable HESS are presented
in Section II. In terms of heavy-duty applications, the com-
bination of an FC, a battery, and an ultracapacitor is advan-
tageous in order to meet the peak power requirements
for acceleration or deceleration via regenerative braking
under payload condition [49]. The usage of PEs as the
dc/dc-converter to connect the ESSs in the dc-link (see
Fig. 1) is always a tradeoff between the additional costs,
the losses, the weight, and the flexibility for the subsequent
EMS design.

Thereby, a strong coupling between the system design
and the layout, on the one hand, and the EMS, on the other
hand, is pointed out. Thus, the iterative co-optimization
and the simultaneous development of the system and the
EMS are crucial for capable and competitive FCHEVs. As
the system design for heavy-duty applications is of even
higher complexity, a suitable framework for the iterative
co-optimization is necessary [49], [53]. This framework
comprises a simulation environment with precise models
for components and characteristic driving cycles. While the
co-optimization for the system design takes place offline,
the computational burden plays a subordinate role [45].
Hence, the use of complex component models to ensure
the necessary performance of the drivetrain and high
demands for the durability of heavy-duty and long-haul
trucks is advisable. The basis for durable operation is
already set in the early development stage with the crucial
choices regarding the applied technologies of ESSs, their
dimensioning, and the overall powertrain topology (see
Fig. 1). Because optimal topology and component dimen-
sioning are varying for changing requirements in terms of
intended range and payload, the ambitious development
of a comprehensive co-optimization framework definitely
pays off in the long term.

B. Holistic Energy Management Strategies

Future information on the driving cycle and power
demands is usually utilized in order to find the optimal
solution and unleash the full potential of EMSs. There-
fore, most presented methodologies for the EMS incorpo-
rate some form of prediction or driving cycle recognition
in order to intelligently adapt static parameters, thresh-
olds, or rules while driving [95]. With respect to long time
scales, tour forecasting concerning the hydrogen tank sys-
tem and the battery SOC may improve the overall energy
efficiency and reduce the component stress. Thereby, a new
trip can be started with a fully loaded battery and ultraca-
pacitor while having a lower hydrogen tank pressure at
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the end of the former trip. This enables a moderate startup
regarding power and dynamic electric load for the FCS by
primarily using battery and ultracapacitor as energy supply
during the first minutes of operation.

For shorter horizons in terms of the next minutes
of driving, the information about the route profile,
the weather, traffic lights, and the traffic congestion is
important to consider in a holistic EMS. This information
affects the planning of velocity and regenerative braking
phases directly, as well as it influences the battery SOC and
the power split planning in the HESS implicitly. At present,
some information regarding the route profile, the weather,
and the nearby traffic is already available from onboard
sensors and navigation systems [47]. Moreover, further
improvements and the dissemination of intelligent trans-
portation systems with vehicle-to-vehicle (V2V) or vehicle-
to-infrastructure (V2I) communication will increase the
availability of information [96]. In order to cope with
uncertainties and disturbances, recent research addresses
forecasting and prediction of the velocity or driving pat-
terns via stochastic methods, such as the Markov chain
Monte Carlo method [140], [142], [157], [180] or suitable
postprocessing with filter approaches [140]. Regarding the
different horizons of the prediction, the MPC approach
is a promising methodology for intelligent EMS taking
advantage of future information [47], [96]. In order to
overcome the still prevalent computational limitations,
a layered design comprising various methodologies for
the arising subproblems and the customized modeling is
promising [88], [116]. The combination of advantages
with respect to the presented rule-, dynamic optimization-,
and learning-based methodologies in a holistic EMS is
seen to be an encouraging path [60], [177]. This holistic
approach addresses the many subproblems with a blended
and layered MPC strategy.

For heavy-duty trucks, velocity planning plays a sig-
nificant role as the payloads, and therefore, the inertial
momentum is high. With longitudinal planning in auto-
mated or assisted driving, a balanced velocity and accel-
eration profile is achievable, which has positive influences
on the system efficiency and degradation effects regarding
the whole drivetrain and, in particular, the FC and the
battery [72]. Hence, adapting velocity and acceleration
profiles with a holistic EMS reveals major advantages in
terms of an efficient operation and further mitigation of
wearing effects [148]. Thus, combining the velocity plan-
ning and the power split decisions is the key aspect toward
a holistic EMS with the highest potential.

Another important factor is the operation of auxiliaries.
Heavy-duty trucks, in general, and FCHEVs, in particu-
lar, have a noticeable power consumption by auxiliaries
[181], [182]. Thus, intelligent auxiliary management in
the EMS is highly recommendable [47], [183]. Using
thermal capacities in cooling cycles and a flexible operation
of auxiliaries as virtual power plants adds DOFs to the EMS
and, thereby, offers the possibility to balance the power
consumption of the system. Energy from recuperation

phases and at high battery SOCs can be consumed by
auxiliaries and may subsequently prevent the need for
this energy at a later time when power may be rare due
to a high driving load. Summarizing, intelligent usage of
auxiliaries, in particular, for heavy-duty trucks increases
the system efficiency and durability.

While the proposed holistic EMS and velocity planning
imply balanced power consumption and mitigate power
transients, a health-conscious operation of the FC and
the battery is already included [50], [68], [72]. However,
for heavy-duty applications that have demanding require-
ments concerning the strongly varying power supply with
prominent peak powers, accurate monitoring of the FC and
the battery is needed to ensure longevity [49]. Thereby,
a changing health status of ESSs can be taken into account
in the EMS objective function at an early stage, which
reduces further damage to the ESS through a reduced
peak or highly dynamic power loads by an intelligent
power split. Hereby, the proposed MPC approach for the
EMS allows for an online adaption of constraints, which
facilitates the health-conscious ESS operation.

C. EMS Verification and Validation

For a thorough testing of the chosen system layout
and the EMS, methodologies and algorithms are mostly
verified against a broad variety of driving cycles in simula-
tions [43]. In later stages, they are validated in laboratory
hardware-in-the-loop (HiL) environments, such as roller
dynamometers or FC test benches [100], software-in-the-
loop (SiL) testing, and further evaluated in the field.
In order to facilitate a successful co-optimization of the
system design and the EMS for heavy-duty applications,
specific driving cycles for the intended use and payloads
are necessary. Particularly, the precise reproduction of load
cycle dynamics and load peaks is an important factor
in testing the system topology, component dimensioning,
and the intended EMS for heavy-duty trucks. A promising
approach may be the application of statistical data rep-
resenting real driving behavior in order to analyze long-
term wearing and degradation effects of the FC and the
battery [80], [184]. Furthermore, driving cycles can be
altered in regard to slope profiles of interest, as well
as new high or average speeds to test edge-cases and
limitations of the FCHEV and the EMS design and increase
the test coverage [185]. Including specific driving cycles
and complex models for verification and validation within
an iterative co-optimization framework for the system
layout and the EMS design guarantees a structured and
sustainable development process.

VI. C O N C L U S I O N
In this article, a comprehensive review regarding FCHEVs
for heavy-duty applications has been presented rang-
ing from a system overview and modeling of drivetrain
components to EMS methodologies. The enumeration of
prototypes in Section I regarding FCHEVs in heavy-duty
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applications for a wide range of domains has illustrated the
capability of the PEMFC as the power supply for transport
systems. A brief description of the drivetrain topology and
models of the main components in Sections II and III has
given insights into relevant FCHEV characteristics. Hereby,
the emphasis has been put on the recent research work
regarding the modeling of wearing and degradation effects
for the FCS and the battery, as there is a strong interest and
need for the lifetime optimization of these components in
FCHEVs [50].

The EMS methodologies in Section IV have been classi-
fied in three categories: rule-based, dynamic optimization-
based, and learning-based. We have suggested a new
taxonomy for the dynamic optimization-based approaches
from a methodical perspective in the categories DP, direct
methods, and indirect methods, respectively. This new tax-
onomy corresponds to the findings of Serrao et al. [160]
who point out the equivalence between PMP and
ECMS analytically, which are subgroups of the indirect
methods.

While recent research efforts are focusing on single
problems of optimization, the co-optimization of the drive-
train topology and the component dimensioning in com-
bination with the EMS development are important to be
addressed. In order to successfully improve FCHEV per-
formance, we propose a comprehensive co-optimization
framework for system layout and simultaneous EMS

design. With this ambitious framework, system and control
engineers are able to pay attention to the coupled decisions
regarding technology, topology, and sizing, on the one
hand, and an application-suitable and intelligent EMS,
on the other hand. Thereby, the development framework
may comprise precise models describing the complex
FCHEV system for heavy-duty trucks and specific driving
cycles for verification and validation. For the development
of a holistic EMS, a hierarchical MPC approach seems to
be promising. The MPC seamlessly allows the inclusion
of external and internal information and the adaption to
constraints in order to facilitate health-conscious opera-
tion, especially for the FCS and the battery. For an effi-
cient and durable FCHEV, great potentials are expected
by simultaneous optimization of the velocity planning,
the auxiliary management, and the thermal management,
as well as the power split between the FC, the battery,
and the ultracapacitor. For this purpose, reliable infor-
mation about the future route profile, power demands,
and environmental parameters is crucial. This informa-
tion can be extracted from onboard sensors, navigation
systems, or the communication with vehicles (V2V) and
the infrastructure (V2I). To conclude, a comprehensive
framework for co-optimization with an intelligent holistic
EMS approach may contribute significant improvements to
heavy-duty FCHEVs to be highly competitive in transport
applications.
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