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Abstract
In this article, we present the behavior of two-mode phase field crystal (2MPFC)
method under a concentration dependent deformation. A mixed finite ele-
ment formulation is proposed for the 2MPFC method that solves a 10th-order
parabolic equation. Lithium concentration diffusion in the electrode particle is
captured by the Cahn–Hilliard (CH) equation and the host electrode material,
LixMn2O4 (LMO), which has a face-centered cubic (fcc) lattice structure, is mod-
eled using 2MPFC. The coupling between 2MPFC and CH models brings about
the concentration dependent deformation in the polycrystalline LMO electrode
particle. The atomistic dynamics is assumed to operate on a faster time-scale
compared to the diffusion of lithium, thereby both the 2MPFC and CH models
evolve on two different time-scales. The coupled 2MPFC–CH system models the
diffusion induced grain boundary migration in LMO capturing the charging and
discharging state of the battery.
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1 INTRODUCTION

A lithium-ion battery is an electrical device consisting of two electrodes, namely anode and cathode, which are separated
by an electrolyte.1,2 One of the commonly used electrode particles in lithium-ion batteries is lithium manganese oxide
spinel LixMn2O4 (LMO).3 Considering the case when the battery is in discharge mode, lithium-atoms migrate from the
interior of the anode-particle to the interface between the anode-particle and the electrolyte. At this point, they are oxi-
dized into Li+-ions and enter the electrolyte. In the electrolyte region, these ions migrate toward the cathode. As they reach
the interface between the electrolyte and cathode-particle, they are reduced back to lithium atoms. This intercalation
process creates two different phases within the electrode particle, a lithium-rich phase and lithium-depleted phase.4

Li-ions diffuse into preferential sites in the host electrode material. This intercalation process is highly complex and
can structurally transform the electrode material,5 resulting in defect formation,6 lattice expansion,7 grain boundary
migration8 and fracture.9 One can potentially use molecular dynamics (MD)10 to model the electrode and simulate the
diffusion of Li-ions or use density function theory (DFT)11 to study local preferential sites of Li-atoms. Although MD
and DFT can capture certain effects in great detail, both cannot completely model the phase-separation process in a
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
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electrode particle. While MD does not reach time-scales of hours, DFT cannot model more than few hundred atoms.
The charging and discharging of a battery can take hours12 and the average size of an electrode particle can vary from
hundreds of nanometers to few micron meters.13 Therefore, one has to rely on continuum techniques such as the phase
field method14,15 to overcome limitations posed by MD and DFT. As phase field methods seek to homogenize atomistic
processes, they do not capture the change in structural transformation in the host electrode material due to lithiation.

Here we take a multi-scale approach16,17 to study the phase transition in electrode particles by coupling the
Cahn–Hilliard (CH) model18 and the phase field crystal method.19 The phase-field-crystal (PFC) method is proposed to
study the material behavior of crystalline solids, which was previously only possible using atomistic models. The PFC
model19 has its origins in the Swift–Hohenberg (SH) model20 for pattern formation but is reformulated to have conserved
dynamics. It incorporates the effects of elastic interactions and dislocations due to perturbation of the field density.21 Just
like in DFT, the PFC method represents the material as a functional of its density. But unlike in DFT, the field density is
only limited to a few number of reciprocal lattice vectors.22 This approximation allows PFC to model certain crystalline
structures for larger length and time scales.23 The PFC method has been successfully applied to study problems such
as crack propagation,19 dislocation dynamics,24 grain growth,25 grain boundaries,26 and solid to liquid transition.27 The
crystal field density 𝜓 can be expressed as the sum of wave densities28

𝜓 = 𝜓0 +
n∑

j=1

(
Ajeiqj⋅x + A∗

j e−iqj⋅x
)
, (1)

where𝜓0 is the mean field density, A is the amplitude of the wave, and q denotes reciprocal lattice vectors. The free energy
functional has the form

ℱ = ∫Ω
f (𝜓,Δ𝜓) dx

with the one-mode free energy density22

f (𝜓,Δ𝜓) = 1
2
𝜓(x)

(
a + 𝜆

(
Δ + q2

0
)2
)
𝜓(x) +

g
4
𝜓(x)4,

where 𝜆, q0, a, and g are phenomenological parameters. In this one-mode case, the sum of (1) is limited to wave vectors
of magnitude |qj|= q0. This mode is suitable to model crystal lattice structures of the hexagonal and BCC type in two and
three dimensions, respectively. The mode-two free energy density22 can be expressed as

f (𝜓,Δ𝜓) = 1
2
𝜓(x)

(
a + 𝜆

(
Δ + q2

0
)2

((
Δ + q2

1
)2 + r

))
𝜓(x) + g 1

4
𝜓(x)4,

where q1 and r are phenomenological parameters. In this case, lattice vectors allow two different magnitudes, |qj|= q0 and
|q′

j|= q1. This mode is suitable to model crystal lattice structures of square and FCC type in two and three dimensions,
respectively.

In this work, we limit our focus to capturing lattice expansion and grain boundary migration during phase separation.
Since the phase field crystal method23 works on atomistic length scale and diffusive time scales, it is used to model the host
electrode material, while the CH equation models the diffusion of lithium-ions. This was first proposed by Balakrishna
et al.,29 where a one-mode phase field crystal method was used to model FePO4/LixFePO4 (LFPO) and CH to capture
lithium diffusion. A transition matrix25 was introduced to transform from hexagonal basis to rectangular basis to model
FePO4/LixFePO4. This approach introduced an artifact resulting in atoms having an ellipsoidal shape. In this article,
we directly work with the two-mode phase field crystal (2MPFC) method22,30 suited to study cubic structures such as
Mn2O4/LixMn2O4 (LMO).

Our choice of numerical scheme for this problem is based on finite-elements.31,32 Although dependence of
phase-separation on particle shape33 is not part of the current work, it is known to have an significant impact and finite
elements are especially suited to model arbitrarily shaped electrode particles. Such schemes have been already developed
to study one-mode phase field crystal34,35 with body-centered cubic (BCC) crystal structure. Work presenting simulations
on 2MPFC36-38 all use spectral methods to solve the system. In this article, we propose a mixed finite element formula-
tion to solve the 2MPFC system, which is a 10th order parabolic equation, to model face-centered cubic (FCC) crystals.
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The atomistic dynamics is assumed to operate on a faster time-scale compared to the diffusion of lithium, thereby both
the 2MPFC and CH models evolve on two different time-scales. A composition-dependent coordinate transformation
is introduced to include the effects of lattice expansion due to lithiation. The coupled 2MPFC–CH system was imple-
mented within the MOOSE framework, an object-oriented finite element based solver for non-linear partial differential
equations.39

In Section 2, a formulation to include lattice expansion in the free energy of the 2MPFC as a function of concentration
is introduced. In Section 3, the framework used to solve the CH equation is presented. In Section 4, the finite element
framework to couple 2MPFC and CH is presented. In Section 5, numerical results are presented to simulate a 2MPFC–CH
system to model phase-separation in LMO in a multi-scale setting.

2 TWO-MODE PHASE FIELD CRYSTAL MODEL

Let Ω ⊂ R2 with points denoted by x = [x1, x2]. In this article, Ω is always a rectangle. We define the differential operators
𝛁 = [𝜕1, 𝜕2] ≡ [𝜕x1 , 𝜕x2 ], Δ = 𝛁 ⋅ 𝛁 = 𝜕2

1 + 𝜕
2
2 .

2MFPC energy. For sufficiently smooth 𝜓 ∶ Ω → R, we denote its free energy of 2MPFC in dimensionless form
corresponding to FCC symmetry as [22, Sect. 2.3]

ℱ (𝜓) = ∫Ω

1
2
𝜓(x)G(Δ)𝜓(x) + 1

4
𝜓(x)4 dx = ∫Ω

1
2
𝜓(x)

(
−𝜀 + (Δ + 1)2

((
Δ + Q2)2 + R

))
𝜓(x) + 1

4
𝜓(x)4 dx, (2)

can be obtained using the affine transformations

q0x → x,
√

g
𝜆q8

o
𝜓 → 𝜓,

g
𝜆2q13

0
ℱ → ℱ,

with

𝜀 = − a
𝜆q8

0
, R = r

q4
0
, Q =

q1

q0
,

where 𝜀> 0, Q≥ 0, and R≥ 0 are dimensionless parameters controlling the phase, crystal symmetry, and relative
amplitudes of density waves, respectively, and define the polynomial

G(s) =
(
−𝜀 + (s + 1)2 ((s + Q2)2 + R

))
of fourth order.

In order to minimize the free energy ℱ , we need its variation ℱ ′(𝜓) from which we obtain the gradient 𝛿𝜓ℱ (𝜓) that
is defined by

ℱ ′(𝜓)[𝜙] = ∫Ω
𝛿𝜓ℱ (𝜓)(x) 𝜙(x) dx

for all appropriate 𝜙. Then a minimizer is approached by the parametric flow

𝜕𝜏𝜓(𝜏, ⋅) = Δ𝛿𝜓ℱ (𝜓(𝜏, ⋅)). (3)

Deformations. The aim of this presentation is to consider the behavior of the method under a concentration depen-
dent deformation. We start with the energy (2) and assume that the actual domain Ω̃ has been deformed out of the
reference configuration Ω by some process. Thus starting from

ℱ̃ (�̃�) = ∫Ω̃

1
2
�̃�(y)G(Δ)�̃�(y) + 1

4
𝜓(y)4 dy
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we get by applying the deformation y ∶ Ω → Ω̃, x → y(x) the expression

ℱ̃ (�̃�) = ℱ (𝜓) = ∫Ω

(1
2
𝜓(y)G(L)𝜓(y) + 1

4
𝜓(y)4

)
det(𝛁y(x)) dx, (4)

with 𝜓(x) = �̃�(y(x)) and L is a second order differential operator with respect to x due to the coordinate transformation.
We derive the form of the operator L in case of Δ. Let y → x(y) be the inverse deformation and A(x) ∶= 𝛁yx(y(x))t be

its Jacobian. Then we have �̃��̃�(y(x)) = A(x)𝛁𝜓(x) and by the transformation theorem

∫Ω̃
Δ̃�̃� �̃� dy = ∫Ω

1
J
𝛁 ⋅

(
AtJ A𝛁𝜓

)
𝜙 J dx,

with J(x) ∶= det(𝛁y(x)). From this, we conclude

L𝜓(x) = Δ̃�̃�(y(x)) = 1
J(x)

𝛁 ⋅
(

A(x)tJ(x) A(x)𝛁𝜓(x)
)
= 1

J(x)
𝛁 ⋅ (H(x)𝛁𝜓(x)) ,

where we let H(x) ∶= A(x)tJ(x) A(x). We further conclude for the biharmonic operator

Δ̃2
�̃� = 1

J
𝛁 ⋅

(
H𝛁

(1
J
𝛁 ⋅ (H𝛁𝜓)

))
,

and this continues to the higher order operators Δ̃k, k= 3, 4.
Concentration-induced deformation. We assume that Ω has been deformed by changing concentration, that is,

Ω̃ = Ω̃(c). Following Reference 25, we insert the deformation gradient 𝛁y(x) = 1∕𝛼(c(x)) Id into this model. We find
H(x) = 1 and J(x) = 1∕𝛼(c(x))2. Defining 𝛽(c) = 𝛼(c)2, we get the formulas

�̃��̃� =
√
𝛽 𝛁𝜓, Δ̃�̃� = 𝛽Δ𝜓, Δ̃2

�̃� = 𝛽Δ(𝛽Δ𝜓),

Δ̃3
�̃� = 𝛽Δ (𝛽Δ(𝛽Δ𝜓)) , Δ̃4

�̃� = 𝛽Δ (𝛽Δ (𝛽Δ(𝛽Δ𝜓))) .

We reduce the order of the resulting equation by introducing the additional states

Δ𝜓 = 1
𝛽

v, Δv = 1
𝛽

w, Δw = 1
𝛽

u, Δu = 1
𝛽

z,

that is, solving boundary value problems with boundary conditions 𝝂 ⋅ 𝛁𝜓 = 0, and so on.
In the perturbed form, we now have

ℱ (𝜓) = ∫Ω

{1
2
𝜓G(𝛽Δ)𝜓 + 1

4
𝜓4

} 1
𝛽

dx.

We write G(s) =
∑4

k=0 aksk and correspondingly we get

ℱ (𝜓) =
4∑

k=0

1
2

ak∫Ω
𝜓(𝛽Δ)k𝜓

1
𝛽

dx + 1
4∫Ω

𝜓4 1
𝛽

dx = 1
2

4∑
k=0

ak𝒥k(𝜓) +
1
4∫Ω

𝜓4 1
𝛽

dx,

with the definition 𝒥k(𝜓)[𝜙] ∶= ∫Ω𝜓(𝛽Δ)k𝜓
1
𝛽

dx for k= 0, … , 4. In order to derive the formal derivative of ℱ with
respect to 𝜓 , we can do this for 𝒥k, k= 0, … , 4. This yields the representation providing us with a formula for 𝛿𝜓ℱ (𝜓)

ℱ ′(𝜓)[𝜙] = ∫Ω

(
1
𝛽

a0𝜓𝜙 − 𝛁 (a1𝜓 + a2v + a3w + a4u) ⋅ 𝛁𝜙 + 1
𝛽
𝜓3𝜙

)
dx

= ∫Ω

(
1
𝛽

a0𝜓 + Δ (a1𝜓 + a2v + a3w + a4u) + 1
𝛽
𝜓3

)
𝜙 dx,
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where

a0 = −𝜀 + Q4 + R, a1 = 2(Q2 + Q4 + R), a2 = 1 + 4Q2 + Q4 + R,
a3 = 2(1 + Q2), a4 = 1.

In this derivation, we only consider the volume gradient of ℱ, that is, we neglect all boundary terms in the formal
differentiation. For periodic boundary conditions, this would not be necessary.

We thus have to solve (3) starting from an initial state𝜓(0, ⋅) = 𝜓0. This amounts to an equation of 10th order in space,
but we will reduce this into a system of second-order equations (10)–(14). The corresponding time-discretized system is
given in (15)–(19).

Numerical validation. In the remainder of this section, we report on a validation of the proposed numerical scheme.
We minimize (2) for an example with square symmetry in 2D, that is, the energy minimizing function 𝜓 will be of
the form

𝜓0(x1, x2) = 𝜓 + 2A (cos(qx1) + cos(qx2)) + 4B cos(qx1) cos(qx2). (5)

Values for 𝜀 and 𝜓 that correspond to a square phase can be chosen from the phase diagram in Figure 1. Inserting the
(5) with q= 1, 𝜀= 0.15, R= 0, Q =

√
2 and 𝜓 = −0.23 [22, Sect. 2.3] into (2) results in

ℱ (𝜓0) = 2
(
−𝜖 + 3𝜓 2

)
A2 + 2

(
−𝜖 + 3𝜓 2 + R

)
B2 + 24𝜓A2B + 36A2B2 + 9A4

+ 9B4 + 1
2
(4 + R − 𝜖)𝜓 2 + 1

4
𝜓

4
. (6)

A minimization of the above equation with respect to A and B gives A≈ 0.10183 and B≈ 0.062177. These values
have been used to define an initial condition. An H1- and L2-error analysis for linear (P1) and quadratic (P2) elements
compared to the steady solution 𝜓h

0 achieved using cubic C1-elements over a periodic domain of size 6𝜋 × 6𝜋 is per-
formed. The results collected in Tables 1 and 2 show optimal convergence rates measured in the experimental order
of convergence (eoc), given by eock = 2 log(errork∕errork−1)∕ log(Nk−1∕Nk) (observe the relation N ∼ h−2 on uniform
meshes in R2).

F I G U R E 1 (A) Lattice
expansion of LMO and (B) 2MPFC
phase diagram taken from Reference
44 for R= 0 and Q =

√
2

T A B L E 1 Error analysis for order one Lagrange elements (P1) N H1 eoc L2 eoc

1445 2.270 1.160

5445 8.68−1 1.450 8.25−2 3.990

21,125 4.32−1 1.030 1.68−2 2.350

83,205 2.16−1 1.010 4.12−3 2.050
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N H1 eoc L2 eoc

5445 2.63−1 4.54−2

21,125 6.56−2 2.050 5.88−3 3.020

83,205 1.64−2 2.020 7.43−4 3.020

330,245 4.09−3 2.010 9.30−5 3.010

T A B L E 2 Error analysis for order two Lagrange elements (P2)

3 CAHN–HILLIARD EQUATION

In this section, we study phase-separation of the lithium-rich and lithium-depleted phases in LMO material modeled
by the CH equation. A logarithmic multi-well potential W ∶ [0, 1] → R, used in the bulk to study the two phases in
dimensionless form,3 is stated as

W(c) = 𝛼1c + 𝛼2

2
c2 + c ln(c) + (1 − c) ln(1 − c),

where c presents the concentration of lithium and 𝛼1, 𝛼2 are constants that determine the height of the well.
The total free energy has contributions both from bulk energy and gradient energy. The latter arises due to the presence

of a diffuse interface between the two phases. The gradient energy term is stated as 𝜅∕2 |𝛁c|2, where 𝜅 is the gradient
energy coefficient, which is used to control the width of the interface. Thus the total energy 𝒲 for a given concentration
c is defined as

𝒲(c) = ∫Ω
W(c(x)) + 1

2
𝜅|𝛁c(x)|2 dx.

The variation of 𝒲 with respect to c is expressed as

𝒲 ′(c)[𝜙] = ∫Ω
𝛿c𝒲 (c)(x)𝜙(x) dx = ∫Ω

(
W ′(c(x)) − 𝜅Δc(x)

)
𝜙(x) dx,

where 𝜙 is a continuously differentiable function.
From the following conserved dynamics, we seek c ∶ R≥0 × Ω → [0, 1] satisfying the CH equation

𝜕tc(t, ⋅) = 𝛁 ⋅ (M(c(t, ⋅)) 𝛁𝛿c𝒲 (c(t, ⋅)))
= 𝛁 ⋅

(
M(c(t, ⋅)) 𝛁

(
W ′(c(t, ⋅)) − 𝜅Δc(t, ⋅)

))
,

where M(c) is the mobility. Here the mobility is taken as

M(c(t, x) = D0 c(t, x) (1 − c(t, x)) ,

where D0 is the diffusion coefficient of lithium. Since this amounts to an equation of fourth order in space, we will reduce
this to a system of two second-order equations40 for the concentration c and the chemical potential 𝜇. The dynamics
equation is thus split into

𝜕tc(t, x) = 𝛁 ⋅ (M(c(t, x)) 𝛁𝜇(t, x)) ,

𝜇(t, x) = W ′(c(t, x)) − 𝜅Δc(t, x).

4 COUPLED 2MPFC–CH SYSTEM

The combined energy. In this section, we formulate a multi-scale scheme to study phase separation by coupling the
2MPFC and CH models together. The combined free energy functional is stated as
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ℰ (c, 𝜓) = ∫Ω

(
W(c(x)) + 𝜅

2
|𝛁c(x)|2 + 𝛾 (1

2
𝜓(x)G (𝛽(c(x))Δ)𝜓(x) + 1

4
𝜓(x)4

) 1
𝛽(c(x))

)
dx,

where 𝛾 relates the free-energy normalization of the CH and 2MPFC model. Here, in the case of LMO, we consider a
model with stress generation under small strain assumption, therefore we treat the CH part as decoupled from the elastic
part.3 The deformation is thus applied in the second integral only.

We define the variations of ℰ by

𝜕cℰ (c, 𝜓)[𝜁] = ∫Ω
𝛿cℰ (c, 𝜓) 𝜁 dx and 𝜕𝜓ℰ (c, 𝜓)[𝜙] = ∫Ω

𝛿𝜓ℰ (c, 𝜓) 𝜙 dx. (7)

From this we derive the coupled system for the time-dependent concentration c ∶ R≥0 × Ω → R and the phase
function 𝜓 ∶ R≥0 × Ω → R

𝜕tc = 𝛁 ⋅ (M(c) 𝛁𝛿cℰ (c, 𝜓)) , (8)
𝜕𝜏𝜓 = Δ

(
𝛿𝜓ℰ (c, 𝜓)

)
(9)

that evolve on two different time scales t and 𝜏, respectively. It is assumed that 𝜓 changes on a faster time scale requiring
to take smaller time steps compared to c, that is, c remains constant when 𝜓 evolves.

In order to derive the system of evolution for this energy, we need to develop the term 𝛿cℰ (c, 𝜓), more precisely the
expression resulting from the second integral in (7). For this we define, similar to the before, 𝒥k(c) ∶= ∫Ω𝜓(𝛽Δ)k𝜓

1
𝛽

dx
for k= 0, … , 4. In terms of the functions v, w, u, z introduced in Section 2, we find the simplified forms

𝒥0(c) = ∫Ω
|𝜓|2 1

𝛽
dx, 𝒥1(c) = −∫Ω

|𝛁𝜓|2 dx, 𝒥2(c) = ∫Ω

1
𝛽
|v|2 dx,

𝒥3(c) = −∫Ω
|𝛁v|2 dx, 𝒥4(c) = ∫Ω

1
𝛽
|w|2 dx.

We now calculate the functional derivative with respect to c and perturbation 𝜆

𝒥 ′
0 (c)[𝜆] = −∫Ω

𝛽′

𝛽2 |𝜓|2𝜆, 𝒥 ′
1 (c)[𝜆] = 0, 𝒥 ′

2 (c)[𝜆] = ∫Ω

𝛽′

𝛽2 |v|2𝜆,
𝒥 ′

3 (c)[𝜆] = ∫Ω
2 𝛽

′

𝛽2 vw𝜆, 𝒥 ′
4 (c)[𝜆] = ∫Ω

𝛽′

𝛽2

(|w|2 + 2uv
)
𝜆,

where we again only consider the volume gradient for this part, that is, we neglect all boundary terms in the formal
differentiation.

We finally obtain

𝛿cℰ (c, 𝜓) = W ′(c) − 𝜅Δc + 𝛾

2

(
−a0|𝜓|2 + a2|v|2 + 2a3vw + a4

(|w|2 + 2uv
)
− 1

2
|w|4) 𝛽′

𝛽2

and

𝛿𝜓ℰ (c, 𝜓) = a0

𝛽
𝜓 + Δ (a1𝜓 + a2v + a3w + a4u) + 1

𝛽
𝜓3.

The now resulting 10th-order parabolic equation (9) is reduced to a system of second order equations, which gives

1
𝛽(c)

v = Δ𝜓, (10)

1
𝛽(c)

w = Δv, (11)

1
𝛽(c)

u = Δw, (12)
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p = a0

𝛽(c)
𝜓 + Δ (a1𝜓 + a2v + a3w + a4u) + 1

𝛽(c)
𝜓3, (13)

𝜕𝜏𝜓 = Δp. (14)

We define z = [𝜓, v,w,u, p] and collect the equations (10)–(14) in a system of the form  = 0, with the components
of  being

𝜓 (z)[𝜙] = (𝜕t𝜓, 𝜙) + (𝛁p,𝛁𝜙) ,

p(z)[𝜙] = (p, 𝜙) + (a1𝛁𝜓 + a2𝛁v + a3𝛁w + a4𝛁u,𝛁𝜙) −
(

a0
𝜓

𝛽(c)
+ 𝜓3

𝛽(c)
, 𝜙

)
,

v(z)[𝜙] = (𝛁𝜓,𝛁𝜙) +
(

v
𝛽(c)

, 𝜙

)
,

w(z)[𝜙] = (𝛁v,𝛁𝜙) +
(

w
𝛽(c)

, 𝜙

)
,

u(z)[𝜙] = (𝛁w,𝛁𝜙) +
(

u
𝛽(c)

, 𝜙

)
.

Here we used (⋅ , ⋅) to denote the L2-scalarproduct over Ω.
The combined scheme. As before, in Section 2, the above system of  is applicable for both periodic and zero flux

boundary conditions and this defines the set of test functions 𝜙. The following time-discretized system of equations with
test functions 𝜙h ∈ Vh to perform the step from 𝜓n to 𝜓n+1 via intermediate steps 𝜓n+(j−1)∕M for j= 1, … , M (M ∈ N), is
stated as follows

𝜓 (z)[𝜙h] =
(
𝜓n+j∕M − 𝜓n+(j−1)∕M , 𝜙h

)
+ 𝜏

(
𝛁pn+j∕M ,𝛁𝜙h

)
, (15)

p(z)[𝜙h] =
(

pn+j∕M , 𝜙h
)
+
(

a1𝛁𝜓n+j∕M + a2𝛁vn+j∕M + a3𝛁wn+j∕M + a4𝛁un+j∕M ,𝛁𝜙h
)

(16)

− 1
𝛽(cn+1)

(
a0𝜓

n+j∕M + 3
(
𝜓n+(j−1)∕M)2

𝜓n+j∕M − 2
(
𝜓n+(j−1)∕M)3

, 𝜙h

)
, (17)

v(z)[𝜙h] =
(
𝛁𝜓n+j∕M ,𝛁𝜙h

)
+
(

vn+j∕M

𝛽(cn+1)
, 𝜙h

)
,

w(z)[𝜙h] =
(
𝛁vn+j∕M ,𝛁𝜙h

)
+
(

wn+j∕M

𝛽(cn+1)
, 𝜙h

)
, (18)

u(z)[𝜙h] =
(
𝛁wn+j∕M ,𝛁𝜙h

)
+
(

un+j∕M

𝛽(cn+1)
, 𝜙h

)
. (19)

Note that the state of c is constant during these intermediate steps as already remarked.
As in Section 3, the fourth-order parabolic equation (8) is reduced into a system of second-order equations. For this

we let

𝜕tc = 𝛁 ⋅ (M(c)𝛁 (𝜇 + 𝛾𝜂)) ,
𝜇 = W ′(c) − 𝜅Δc,

𝜂 = 1
2

(
−a0|𝜓|2 + a2|v|2 + 2a3vw + a4

(|w|2 + 2uv
)
− 1

2
|w|4) 𝛽′(c)

𝛽(c)2 .

We define z = [c, 𝜇, 𝜂] and collect the equations in a system of the form  = 0, with the components of  being

𝜇(z)[𝜙] = (𝜕tc, 𝜙) + (𝛁𝜇,𝛁𝜙) + 𝛾 (𝛁𝜂,𝛁𝜙) − ⟨𝜈 ⋅ M(c)𝛁𝜇, 𝜙⟩ ,
c(z)[𝜙] =

(
W ′(c), 𝜙

)
− (𝜇, 𝜙) + 𝜅 (𝛁c,𝛁𝜙) ,

𝜂(z)[𝜙] = (𝜂, 𝜙) −
(

1
2

(
−a0|𝜓|2 + a2|v|2 + 2a3vw + a4

(|w|2 + 2uv
)
− 1

2
|w|4) 𝛽′(c)

𝛽(c)2 , 𝜙

)
,

where ⟨⋅, ⋅⟩ denoted the L2-scalar product on 𝜕Ω, the constant normal flux is taken as J = 𝜈 ⋅ M(c)𝛁𝜇, and 𝜂 has a zero
flux boundary condition.
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The above system is solved implicitly and the time discretized system of equations with test functions𝜙h ∈ Vh is stated
as follows

𝜇(z)[𝜙h] =
(

cn+1 − cn, 𝜙h
)
+ △t

(
M(cn+1)𝛁𝜇n+1,𝛁𝜙h

)
+ △t 𝛾

(
M(cn+1)𝛁𝜂n+1,𝛁𝜙h

)
− △t ⟨J, 𝜙h⟩ , (20)

c(z)[𝜙h] =
(

W ′(cn+1), 𝜙h
)
−
(
𝜇n+1, 𝜙h

)
+ 𝜅

(
𝛁cn+1,𝛁𝜙h

)
, (21)

𝜂(z)[𝜙h] =
(
𝜂n+1, 𝜙h

)
−
(

1
2

(
−a0|𝜓n|2 + a2|vn|2 + 2a3vnwn + a4

(|wn|2 + 2unvn) − 1
2
|wn|4) 𝛽′(cn+1)

𝛽(cn+1)2 , 𝜙h

)
. (22)

We note that the time step 𝜏 used to evolve 2MPFC introduces a pseudo-time primarily to relax the system. In
Reference 25, it was proposed that for each CH time step △t, the PFC model is evolved till the system equilibrium 𝛿𝜓ℰ ≈ 0
is approximately reached. However, such a criterion would result in an overall equilibrium of the PFC system without
further need for minimization. Instead, it is the stress induced due to lattice expansion for each CH time step that needs
to be at equilibrium.41 However, computing stress would require expressing 𝜓 in terms of amplitudes (1) and solving for
the amplitudes as it is done in References 27,42, and 43 for 1MPFC models. But the amplitude formulation for 2MPFC
has not yet been accomplished and such a formulation would be beyond the scope of the current work. Here, we have
equally divided each time step △t into intervals of length 𝜏, assuming that △t is large enough for the dynamics of 𝜏 to
reach equilibrium.

5 NUMERICAL RESULTS FOR PHASE-SEPARATION

In this section, we apply the developed formulations to study phase-separation in an electrode particle. During lithiation of
the electrode the particle swells, which can cause structural transformation in the electrode material. The expansion coef-
ficient is defined as 𝛼(𝜒) = 𝛼MO + (𝛼LMO − 𝛼MO)𝜒 for 𝜒 ∈ (0,1). The MO and LMO parameters for lattice expansion taken
from Reference 7 are listed in Table 3, whereas the pictorial representation of the expansion can be seen in Figure 1(A).

2MFPC formulation. First the proposed 2MFPC formulation (15)–(19) is tested before we study the effect of chemical
cycle. We consider the domain Ω = [−200, 200]2 and apply homogeneous Neumann conditions on all variables, that is,
𝜓 , v, w, u, and p at 𝜕Ω. The parameters in the free energy functional are taken as 𝛽 = 1.0 (no expansion), 𝜀= 0.15, and
Q =

√
2. The system is initialized for𝜓0

h with random numbers between −0.5 and 0.1, as seen in Figure 2(A), and with the
other variables set to zero. We employed linear Lagrange elements and a constant time step size of one to evolve in time.
A grid size of 0.8 is used to discretize the spatial domain. The 2MPFC system (15)–(19) was solved using the Jacobian-free
Newton–Krylov method (JFNK)45 preconditioned with block diagonals.46

As seen from the 2MPFC phase diagram in Figure 1(B), there are two stable solid phases, namely, hexagonal and
square. This is exhibited in Figure 2(B) at time 150 where a mixture of both phases can be noticed. As time evolves the
square phase grows at the expense of the hexagonal phase as seen in Figure 2(C) at time 600. This phenomenon was
previously observed by Shuai et al.38 during their study on hexagonal-to-square phase transitions. Finally at time 1200,
we see a polycrystalline structure composed only of square lattices with different orientations. This demonstrates the
applicability of the proposed mixed formulation for the 2MPFC model.

2MFPC and Cahn–Hilliard. The 2MPFC system (15)–(19) is now coupled with CH (20)–(22) to study
phase-separation in LMO. The material properties for LMO listed in Table 4 are taken from Huttin et al.3

We consider a particle given by Ω = [−L0,L0]2 and apply a constant normal flux J on the particle surface in order to
completely lithiate the particle in 1 hour. This flux J is calculated to

J = CrateCmaxL0

2 ⋅ 3600
= 0.0277.

This serves as a non-homogeneous Neumann condition on the boundary of the particle. The sign of the flux determines
whether the particle is lithiated or delithiated. Here, we assign a positive sign for lithiation. An initial state of c(0)= 0.001 is

T A B L E 3 Lattice constants Electrode a (nm) b (nm) 𝜶

Mn2O4 (MO) 80.3 80.3 1.0

LixMn2O4 (LMO) 82.692 82.692 1.0297
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F I G U R E 2 Time evolution of
two-mode phase field crystal model (with
homogeneous Neumann boundary
conditions) at selected times 0, 150, 600,
1200

Parameter Value Unit Non-dim form

l0 25 ⋅ 10−10 m 1

t0 1 sec 1

L0 0.5 ⋅ 10−6 m 200

D0 7.08 ⋅ 10−15 m2/s 1132.8

𝜅 7 ⋅ 10−16 1/m2 112

Cmax 2.29 ⋅ 104 mol/m3 1

𝛼1 2.5 –

𝛼2 −5.2 –

Crate 1 –

T A B L E 4 Material parameters3

assigned to avoid numerical blow-up due to the presence of the logarithmic term in the multiwell potential W . Physically
such an assumption is not unreasonable as particles are hardly in a perfect zero lithiated state, whereas for 𝜇 an initial
value of zero is assigned. The value of 𝛾 is taken as 1 ⋅ 10−4. The spatial discretization adopted is the same as before,
whereas the adaptive time stepping method of Reference 47 is used to evolve in time. The poly-crystalline state, as shown
in Figure 2(D), is selected as the initial state for 𝜓0

h before lithiation. It can be seen that the polycrystal consists of grains
of many different orientations with each grain having a square lattice structure.

The coupled 2PFC–CH system is evolved and in Figure 3 we present different status of charge (SOC) by concentration
plots. It takes 1 hour for the particle to completely lithiate. Next we observe the changes in the crystal structure due
to lithiation of the electrode particle. This is done by comparing the crystal structure of a lithiated particle from the
2MPFC–CH system to a crystal structure, which is not lithiated from the 2MPFC system evolved for the same duration.
The comparison of the two crystal structures is shown in Figure 4. The change in crystal structure is primarily governed by
grain boundary (GB) migration, which is induced by the reduction of GB curvature.48 This is observed by the GB marked
as red and in all GB motions from the 2MPFC simulation runs, which further validates the formulation. It can be seen in
Figure 4(A) that interior grains demarcated green shrunk faster and disappeared in Figure 4(B), leading to the conclusion
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F I G U R E 3 Lithiation of electrode
particle using the 2MPFC–CH model at
different status of charge (SOC) due to
the application of a constant flux
boundary condition

F I G U R E 4 Comparison of crystal
structure at 1 hour from (A) 2MPFC and
(B) 2MPFC–CH

that there is grain boundary acceleration due to lithiation. This phenomenon was also reported in Reference 25 during
the lithiation of FePO4/LixFePO4 electrode particles.

In order to access the volume change achieved during lithiation of the electrode particle, in Figure 5, the averaged 𝛼
is plotted as a function of SOC. It was found that for SOC at 0.97 the volume change is 2.88%.

Now the electrode structure in Figure 4(B) is taken as the initial state before delithiation. A constant normal flux
of J =−0.0277 is applied as Neumann condition on the boundary to delithiate the particle for an hour at Crate = 1. The
initial concentration field is taken as the one from Figure 3 at SOC 0.95. The coupled 2MPFC–CH system is evolved. The
evolution of the concentration seen in Figure 6 exhibits similar behavior as observed during lithiation. A final comparison
between the crystal structure from the 2MPFC–CH and 2MPFC systems after the same duration can be seen in Figure 7.
As before the interior grains demarcated as green in Figure 7(A) have fully disappeared from the crystal structure in
Figure 7(B), leading to the same conclusion that there is grain boundary acceleration. It is noted that the chemical cycle
accelerates the GB migration and the process is not reversed.

It is noted that no real PFC material parameters were used to model LMO, due to the lack of availability of such data.
Using the correct parameters to model materials is one of the challenges facing the PFC community in general. There
are a few exceptions. In Reference 37, for instance, elastic constants using two-mode PFC model for fcc Ni and one-mode
PFC model for bcc Fe were predicted, but showed disagreements with MD simulations. In a recent attempt there was
more success by using a fractional-Laplacian49 in the free energy functional and by fitting it to the first order peak in
experimental measurements of the structure factor to model Cu, Al, In, Ti, Sn, and Pb. However, such a formulation is
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F I G U R E 5 The averaged 𝛼 over the domain achieved during
lithiation of the electrode particle as a function of status of charge
(SOC)

F I G U R E 6 Delithiation of
electrode particle using 2MPFC–CH
model at different states of charge (SOC)
due to the application of a constant flux
boundary condition

F I G U R E 7 Comparison of crystal
structure at 2 hours from (A) 2MPFC
and (B) 2MPFC–CH
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not widely adopted. In the current work, major focus has been on capturing the correct crystal symmetries of LMO and
lattice expansion due to lithiation. We report here, although only qualitative, that there is grain growth due to lithiation
in LMO. This phenomenon was also observed by Reference 25 in the lithiation of LFPO. In a recent study,50 it was found
that external magnetic fields can support grain coarsening in polycrystalline structures. It can be said that perturbing
grain boundaries due to external fields can in general lead to the acceleration of grain growth.

6 CONCLUSIONS

The proposed mixed finite element formulation for 2MPFC system is demonstrated to produce a square lattice structure
in 2D to model LMO. The 2MPFC–CH allows to study phase separation in electrode particles by taking into account the
crystallographic changes in the host material during chemical cycle. The multiscale system is solved using a semi-implicit
scheme. Numerical results show that there is an acceleration of grain boundary migration due to lithiation of the electrode
particle. The coupling terms also include anisotropic phase separation effects via the term 𝛾

𝜓

2
G (𝛽Δ)𝜓 in the free energy

functional. For larger values of 𝛾 , the evolution of𝜓 can also in-return influence the diffusion of concentration. As 2MPFC
free energy functional includes the contribution of elastic energy, it is yet to be verified if mechanical equilibrium is
established at every time. In the future, we would incorporate the work of Skaugen et al.41 into 2MPFC to account for the
separation of elastic and plastic time scales.
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