KIT | KIT-Bibliothek | Impressum | Datenschutz

Towards detecting, characterizing and rating of road class errors in crowd-sourced road network databases

Guth, Johanna; Keller, Sina ORCID iD icon; Hinz, Stefan; Winter, Stephan

Abstract:

OpenStreetMap (OSM), with its global coverage and Open Database License, has recently gained popularity. Its quality is adequate for many applications, but since it is crowd-sourced, errors remain an issue. Errors in associated tags of the road network, for example, are impacting routing applications. Particularly road classification errors often lead to false assumptions about capacity, maximum speed, or road quality which could then result in detours for routing applications. This study aims at finding potential classification errors automatically, which can then be checked and corrected by a human expert. We develop a novel approach to detect road classification errors in OSM by searching for disconnected parts and gaps in different levels of a hierarchical road network. Different parameters are identified that indicate gaps in road networks. These parameters are then combined in a rating system to obtain an error probability in order to suggest possible misclassifications to a human user. The methodology is applied exemplarily for the state of New South Wales in Australia. The results demonstrate that (1) more classification errors are found at gaps than at disconnected parts and (2) the gap search enables the user to find classification errors quickly using the developed rating system that indicates an error probability. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000130445
Veröffentlicht am 11.03.2021
Originalveröffentlichung
DOI: 10.5311/JOSIS.2021.22.677
Scopus
Zitationen: 3
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
KIT-Zentrum Klima und Umwelt (ZKU)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 1948-660X
KITopen-ID: 1000130445
Erschienen in Journal of spatial information science
Verlag University of Maine
Band 22
Seiten 31
Nachgewiesen in Scopus
Dimensions
Relationen in KITopen
Globale Ziele für nachhaltige Entwicklung Ziel 11 – Nachhaltige Städte und Gemeinden
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page