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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 

Procedia CIRP 93 (2020) 1448–1453

2212-8271 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems
10.1016/j.procir.2020.03.043

© 2020 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems

53rd CIRP Conference on Manufacturing Systems

 

Available online at www.sciencedirect.com 

ScienceDirect 
PROCIR-D-19-02268. 

  
     www.elsevier.com/locate/procedia 
   

 

 

 

2212-8271 © 2019 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems 

53rd CIRP Conference on Manufacturing Systems 

Intelligent Anomaly Detection of Machine Tools based on Mean Shift 
Clustering  

 Markus Netzer*, Jonas Michelberger, Jürgen Fleischer 
Institute of Production Science (wbk), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, Germany 

* Corresponding author. Tel.: +49 1523 9502601; fax: +49 721 608 - 45005. E-mail address: markus.netzer@kit.edu 

Abstract 

For a fault detection of machine tools, fixed intervention thresholds are usually necessary. In order to provide an autonomous anomaly detection 
without the need for fixed limits, recurring patterns must be detected in the signal data. This paper presents an approach for online pattern 
recognition on NC Code based on mean shift clustering that will be matched with drive signals. The intelligent fault detection system learns 
individual intervention thresholds based on the prevailing machining patterns. Using a self-organizing map, data captured during the machine’s 
operation are assigned to a normal or malfunction state.  
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1. Introduction 

Machine learning algorithms have led to significant 
breakthroughs in anomaly detection of machine tools [1-3].  
Current state monitoring on machine tools depends largely on 
specific parameters with fixed values must be selected and 
examined by experts. The adaption to changing production 
processes and uncertain conditions requires expensive explicit 
re-specification of fixed intervention thresholds and monitoring 
through expert personnel. Moreover, in many real time machine 
tool processes, the required knowledge is not sufficiently 
available to deploy rule-based algorithms to meet the 
requirements of flexible and complex machine operations. Due 
to the increasing complexity of most modern machine tool use 
cases, autonomous systems for recognition and detection of 
anomalies are getting more and more important and, in many 
cases, mandatory [4].  
Under these conditions a powerful anomaly detection is not 
satisfactorily applicable with respect to the current state of the 
art and justify the aspiration for autonomous self-learning fault 

detection systems. The main challenge for such an autonomous 
system is to learn which machine states are acceptable and 
which are not, especially when machine operations patterns are 
changing from time to time. Apart from a reliable accuracy, a 
further crucial requirement is an adequate run time efficiency, 
which facilitates a near real time fault detection under changing 
machine conditions.  
Anomalies within the production process usually reflect quality 
defects in the underlying product or malfunction of the machine 
tool. To ensure the functionality of machine tools and to 
improve product quality, several data signals are available as 
data input for an anomaly detection system. The approach in 
this work focuses on the information stored in position, current 
and torque signals, but can be extended to further applications.  
Based on a mean shift clustering algorithm, a new approach for 
an autonomous anomaly detection system is introduced. The 
combination of a density-based algorithm for the identification 
of recurring position patterns in combination with self-
organizing maps for state capturing provides unique advantages 
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detection systems. The main challenge for such an autonomous 
system is to learn which machine states are acceptable and 
which are not, especially when machine operations patterns are 
changing from time to time. Apart from a reliable accuracy, a 
further crucial requirement is an adequate run time efficiency, 
which facilitates a near real time fault detection under changing 
machine conditions.  
Anomalies within the production process usually reflect quality 
defects in the underlying product or malfunction of the machine 
tool. To ensure the functionality of machine tools and to 
improve product quality, several data signals are available as 
data input for an anomaly detection system. The approach in 
this work focuses on the information stored in position, current 
and torque signals, but can be extended to further applications.  
Based on a mean shift clustering algorithm, a new approach for 
an autonomous anomaly detection system is introduced. The 
combination of a density-based algorithm for the identification 
of recurring position patterns in combination with self-
organizing maps for state capturing provides unique advantages 
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and presents a novel approach for anomaly detection on 
machine tools.   
 

2. Related work 

The introduced approach to anomaly detection in this work 
is strongly interrelated with an autonomous cycle detection 
system which is based on a mean shift cluster algorithm. Apart 
from classic approaches with fixed fault detection limits 
predetermined by human, the research field on anomaly 
detection consists only of few works in the context of machine 
tool applications.  

Fault detection approaches based on clustering are focused 
on the peer-to-peer comparison of machines as part of machine 
fleets [5] or not related to machine tool application [6-9]. 

Further works on fault detection that focus on varying 
operating conditions are based on unsupervised approaches and 
compare several distance measures [10,13]. 

First state-based and self-adapting approaches [11,12] are 
based on different kinds of state triggers which require little a 
priori knowledge about the concrete use case. Moreover, the 
handling of changing use cases such as varying production 
series is an unsolved challenge [11]. The approach presented in 
this work can handle with a higher degree of uncertainty and a 
lower information degree of the input data due to the 
advancement of a mean shift clustering algorithm.  

Existing time series pattern recognition studies are mainly 
based on the early breakthroughs of Keogh [14,15,16] and 
Moen [15] and Lin [14,16]. These are the foundation of most 
following time series motif detection approaches and have a 
strong influence on the introduced combination of pattern 
recognition and anomaly detection.  

The mean shift algorithm originates from the early works 
from Fukunaga et al. [17] who were the first to propose the 
basic clustering idea and introduced the term ‘mean shift’. The 
implemented and slightly modified algorithm is based on the 
non-blurring mean shift introduced by Comaniciu and 
Meer [18].  
The Anomaly Detection Ensemble Approach (ADE) from 
Buda et al. (2017) [19] combines several state-of-the-art 
anomaly detection techniques not just to detect but also to 
predict anomalies on live data. Besides, ADE is coupled with a 
weighted window on incoming data to reward early detection. 
They employ different window weights to maximize various 
evaluation metrics, such as early detection, precision, and 
recall. They showed that adjusting these weights had the 
expected effect and that anomalies were on average detected 16 
hours before they occurred. 

The introduced intelligent fault detection system learns 
individual intervention thresholds based on the mean shift 
clustering algorithm. Using a self-organizing map, data 
captured during the machine’s operation is assigned to a normal 
or malfunction state. Apart from previous works this procedure 
is not relying on any knowledge about the machine operations 
on a machine tool and moreover, it can handle changing 
production series and patterns without human interaction.  

3. Anomaly Detection 

The main challenge for detecting anomalies for an autonomous 
machine learning based system is to learn which states are 
correct and which data fragments indicate a fault behaviour. 
This includes anomalies of the machine tool, the underlying 
operation process or the product, as long as they are represented 
in the available data signals.  

To transfer this objective on a data problem the approach is 
divided into four major parts as shown in Figure 1. 

The time series segmentation aims to cut an arbitrary time 
series into logical distinct potential patterns. Opposed to Putz 
et al. (2017) [11] these are not event-based, but logical and 
consistent basic units which can be compared with each other. 
This comparison is performed through distance metrics and 
operates as input for the mean shift clustering algorithm.  
Through the segmentation of sequences into clusters the 
algorithm seeks recurring patterns in the position data signal. 
The discovered recurring patterns are matched with the 
corresponding drive signals. To ensure that two recurring 
patterns with identical position signals but differing drive 
signals are recognized as different machine states, a self-
organizing map (SOM) is used. The resulting machine states 
describe the recurring behavior of the machine tool and 
represent the learned information of the system and function as 
input for a subsequent anomaly detection. 
Consequently, the system has learned relevant machine states 
and corresponding historic data signals as well as the individual 
intervention thresholds. This gained information provide a data 
base for the online comparison of incoming online live data 
streams of a machine tool with referenced signal patterns to 
detect anomalies. For the anomaly detection four methods for 
cycle detection (Simple Full Match Method, Delta Match 
Method, Delta Match Early Stop Method and Semantic 
Segmentation), five methods for cycle prediction (LSTM 
Networks, classification approaches like support vector 
machines, k-nearest neighbours, and decision trees), and three 
configurations for anomaly were presented. For each method, 
multiple different implementations with small variations were 
tested, resulting in a total number of over 240 system 
configurations excluding different signal clustering methods 

Figure 1: The system architecture relies on four subsequent data processing 
steps. 
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detection (Self Organizing Maps (SOM) and Agglomerative 
Clustering for drive signal clustering) and different datasets. 
 

3.1 Time series partitioning  

Time series partitioning denotes the partitioning of an 
individual time series into segments according to logical 
partition criteria. If the context of the use case is sufficiently 
available to the developer, an event-based trigger can be 
powerful as segmentation criteria [11]. But in many cases, such 
potential events are not a priori known. Then an arbitrary but 
consistent and topological partition criterion can be used to 
create time series subsequences as shown in Figure 2. 
Moreover, a combination of event-based and arbitrary topology 
criteria can be used to craft further information regarding to the 
machine tool data states. 

Definition 1 (Time Series Subsequence): 

A Time Series is a sequence 𝑇𝑇 = (𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3 … , 𝑡𝑡𝑛𝑛) which is an 
ordered set of length n. A Time Series Subsequence is a subset 
of adjacent observations of a time series with length k ≤ n. 
 
Contrary to pattern discovery approaches using a sliding 
window, the partitioning procedure in combination with 
clustering is not restricted by a fixed window length and 
focuses only on potentially relevant patterns rather than 
searching through all possible pattern compositions. As a 
result, it enables to reach lower run times without the use of 
data pre-processing approximation practises.  

3.2 Mean shift clustering 

To seek recurring time series subsequences and which are 
subsequently recurring patterns, a clustering approach is 
applied. For the comparison, a distance metric is needed which 
describes how similar the outlines of the position signal 
subsequences are. To enable full comparability a position offset 
adjustment of the subsequences is necessary. Therefore, a 
Discrete Fourier Transformation (DFT) of the subsequences is 
used to archive the following representation:   
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By removing the component Xn=0= ∑ x(n) n  for each 

subsequence, the offsets are removed, and the representation 

can be transformed back to a position-time signal. Afterwards, 
the subsequences are compared with each other by calculating 
pairwise the point by point distance of two subsequences each. 
To ensure comparability for patterns with differing lengths and 
to avoid distortion for patterns with a higher number of data 
points, a useful metric must fulfill the following definition:  

Definition 2 (Comparable distance): 

Independent from the amount of data points the comparable 
distance between two time series subsequences is described by 
the average point-by-point distance.   
 
Following this requirement, a classic Euclidean distance is not 
useful because of the surrounding square root which applies a 
higher weight per point-by-point distance to shorter 
subsequences with less data points. Figure 3 illustrates the short 
coming of the Euclidean distance in a numerical example. 

Depending on the expected dataset and the weighting of 

outliers, metrics that correspond to the following formula (2) 
can be applied to calculate a length-relative distance metric: 
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Where 
𝑙𝑙 =  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 compared pattern 
𝑝𝑝 =  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝    
𝑦𝑦𝑖𝑖,𝑛𝑛 = 𝑛𝑛 − 𝑡𝑡ℎ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦 𝑜𝑜𝑜𝑜 𝑖𝑖 − 𝑡𝑡ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
 
The resulting pairwise distances between n time series 
subsequences are stored in a n x n distance matrix which 
functions as input for the mean shift cluster algorithm.   
Because the number of recurring subsequence patterns is not 
known a priori a fix number of clusters can not be set as input 
parameter. Moreover, a clustering algorithm with predefined 
assumptions about the shape of the resulting clusters will lose 
information. Therefore, an algorithm is needed that combines  
these requirements together with the aim of a short run time and 
a low parameter choice complexity.  
 
Mean Shift Algorithm  
The mean shift algorithm is a hill-climbing algorithm that seeks 
modes of a density function using a generalized kernel 
approach. The algorithm is centroid-based and works iterative 
by updating centroid candidates to be the mean of the points 
within a given region [18]. Intentionally the mean shift 

Figure 2: Time series partitioning into subsequences. In this case a local 
minimum search is used for partitioning. 

Figure 3: Numerical example showing that Euclidean distance cannot be used 
due to the interest in a distance metric relative to its underlying subsequence 
length l. 
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algorithm was applied to cluster analysis in computer vision 
and image processing.  

Algorithm 1 (Mean Shift) 
Input: Bandwidth parameter h 
Output: Clusters with member points 
Filtering: 
For 𝑖𝑖 = 1, … , 𝑁𝑁 do 
 Initialize 𝑗𝑗 = 1 and 𝑦𝑦𝑖𝑖,𝑗𝑗 = 𝑐𝑐𝑖𝑖 = (𝑥𝑥𝑖𝑖

𝑠𝑠, 𝑐𝑐𝑖𝑖
𝑟𝑟)  

 While not converged do 
            Calculate 𝑦𝑦𝑖𝑖,𝑗𝑗+1 according to  

           

2
,

1

, 1 2
,

1

n
i j i

i
i

i j
n

i j i

i

y c
c g

h
y

y c
g

h







 
 
 
 
 
 
 
 




 

𝑦𝑦𝑖𝑖,𝑗𝑗+1 𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  
number of points in the spatial kernel centred on 𝑦𝑦𝑖𝑖,𝑗𝑗 

 𝑦𝑦𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑦𝑦𝑖𝑖,𝑗𝑗+1 
 Assign 𝑧𝑧𝑖𝑖 = (𝑥𝑥𝑖𝑖

𝑠𝑠, 𝑦𝑦𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑟𝑟 ) 

Segmentation: 
For 𝑖𝑖 =  1, … , 𝑁𝑁 do 

identify clusters {𝐶𝐶𝑝𝑝}𝑝𝑝=1,…,𝑃𝑃 of convergence points by 
linking together all 𝑧𝑧𝑖𝑖 with distance 𝑑𝑑 = ℎ𝑟𝑟

2  from cluster 
centre where ℎ𝑟𝑟 is the radius of a cluster 

For 𝑖𝑖 =  1, … , 𝑁𝑁 do 
 assign label 𝐿𝐿𝑖𝑖 = {𝑝𝑝|𝑧𝑧𝑖𝑖  ∈  𝐶𝐶𝑝𝑝} 

eliminate spatial regions containing less than 2 
subsequences  

 
The bandwidth parameter represents the search radius and 

thereby the maximum distance between the cluster centres and 
the circumjacent data points [17]. Therefore, this parameter can 
be set as small as possible depending on the general white noise 
of the signal. With this the bandwidth can be directly linked to 
a signal-to-noise ratio (SNR) and implemented as adaptive 
autonomous parameterisation.  

The computational complexity of the mean shift algorithm 
can be written as 𝑂𝑂(𝑇𝑇𝑛𝑛2), where T is the number of iterations 
and n is the number of entries in the distance matrix. So, by 
doubling the amount of compared subsequences the run time 
increases by a factor of 4.  

As opposed to Keogh et al. (2005) [14] this time series 
subsequence clustering approach is meaningful because the 
subsequences are not crafted using a sliding window with a 
fixed length and because of the missing specification for a fixed 
number of cluster centres which is a main advantage of the 
mean shift algorithm.  

3.3 Self-organizing map for signal allocation 

After receiving patterns from given time series, especially in 
position data, there must be an allocation of different time-
corresponding signal parameters for example motor current or 
torque. Due to the matching of related signals the detected 
patterns can be found in online signals.  

The mentioned allocation of drive signals to the detected 
pattern is represented by self-organizing map (SOM) 
clustering. Because of performance reasons, it is not 
appropriate to compare each online signal to all pattern-based 
drive signals in historical data. The SOM algorithm calculates 
the model 𝑚𝑚𝑖𝑖 by using the given training data. Afterwards, it 
maps new data elements to a model 𝑚𝑚𝑖𝑖 in the grid. The learning 
process has no need for labels during the learning phase 
(unsupervised) and therefore fits the requirements presented 
[20]. The unit space is a two-dimensional space whose length 
and width must be determined. First, the number of units 𝑛𝑛𝑢𝑢 is 
guessed by 𝑛𝑛𝑢𝑢 = 5 ∗  𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

0,5  samples, where 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the 
number of samples provided. In a second step, the algorithm 
calculates the ratio between the length and the width of the unit 
space by using the two largest eigenvalues of the 
autocorrelation matrix of the input data to compute the ratio 𝑟𝑟 
as 𝑟𝑟 = √𝑒𝑒1/𝑒𝑒2 . To calculate the length and width of a 
hexagonal lattice from the ratio and the number of models, the 
algorithm applies the following formulas (3):  
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After determining the size of the lattice, 
the model is trained. The result can be 
visualized as a so-called umap [20]. An 
example can be seen in Figure 4. Each 
hexagonal unit is represented on the 
lattice; the color depicts the Euclidean 
distance between the unit and its 
neighbors. The next step is to cluster the 
units in the grid by using a k-means 
algorithm for a range of k’s starting 
from 𝑘𝑘 = √𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  running for five 
iterations. The best value for k is 
determined based on the sum of squared 
errors. Finally, the Davies-Bouldin 
Index and the Silhouette coefficient are 
calculated to evaluate the result. 

3.4 Online Anomaly Detection 

Anomaly detection simplifies to a comparative analysis 
between two signals, by using the clustered cycle signal data as 
well as position and probability of the current cycle. The 
process of anomaly detection can be seen in Figure 5. The 
process starts with a transformation of the representative and 
the online data; the next step is the calculation of the distance 
between representative and online data. This distance is then 
passed to the detection component, which decides whether an 
anomaly is present by using a threshold. Process input is 
extracted signal data from online data and for each signal, the 
corresponding representatives of the current model cycle. If the 
model cycle is ambiguous, representatives of each possible 
model cycle are used.  

Figure 4: U-matrix consisting 
of hexagonal units. 
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The anomaly detection component can handle an arbitrary 
number of signal transformations to base a decision on. One 
transformation implemented is the power spectrum; this 
transformation aims to aid the detection of oscillating 

anomalies that could not be discovered without it. 
Transformations are applied to each pair of online data and 
their corresponding representatives. 

4. Experiments 

The above mean shift-based cycle detection approach for 
anomaly detection is used in this study to verify its 
effectiveness, run time efficiency and transferability.  
For this a drive signal data set is used which is generated by 
PLC signals input as shown in Figure 6. The milling pattern is 
described by several milling pockets in aluminium material 
using a conventional aluminium milling head. The aluminium 
block is prepared with irregularities produced by boreholes 
with differing diameters.  
 The data sampling rate of 500 Hz is chosen high enough to 
ensure correct representation of the signal patterns and to fulfil 
the Nyquist-Shannon-sampling theorem which is needed for 
meaningful Fourier transformation. Due to comprehension 
reasons the following observations are reduced to only one 
position axis and limited selected corresponding signals. The 
position signal of axis 1 serves as reference signal for the 
algorithm whereas the current and torque signals are assigned 
later after the mean shift clustering to represent the 
corresponding machine states.  

To gain a maximum of information without a priori 
knowledge about the expected position patterns a combination 
of arbitrary and event-based partition criteria is used. The latter 
is a prominence-based peek search applied to the 
corresponding current signal of the milling tool. Thereby all 
contact points with the work material can be separated from 
idle position sequences. Within the relevant sequences the 
arbitrary partition criterion enables a further subdivision to 
enforce necessary precision of the later anomaly detection.  

The used distance metric corresponds to the generic formula 
(2) with a power p=2 and thereby penalizing larger point-by-

point distances between two position subsequences.  
The bandwidth parameter is selected by an empirical non-

linear model considering the standardized average signal-to-
noise ratio and the peak prominence of the position data. As 
shown in Figure 7 the mean shift clustering result are recurring 
position patterns. In our experiments the mean shift provides 
reliable and highly accurate results for the identification of 
recurring position signal patterns.  

The experiments are conducted on an 8GB RAM laptop with 
quad core processor of 2.4 GHz. For the processing of the data 
set consisting of 520,228 data points and 712 subsequences the 
standard mean shift clustering implementation without pruning 
and boosting demands only 1.3 seconds. Therefore, run time 
evaluation shows that the approach is highly efficient and 
enables a near real time online learning of recurring patterns. 

After the identification of recurring position signal patterns, 
the time-corresponding current and torque signals are 
allocated, and sub segmented using a SOM. In combination the 
signal patterns represent recurring machine operations and 
served as input for an online-anomaly detection. The latter 
analyses the incoming online position data stream to determine 
the current ongoing machine process and compare assigned 
current and torque signals.  

Figure 6: Underlying data set consisting of 520,228 data points for each 
signal. The position is used as reference signal, whereas current and torque 
are later allocated to identified subsequence patterns. 

Figure 5: Online data anomaly detection procedure. 

Figure 7: A small extract of the 95 identified clusters of recurring position 
signal patterns. 
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As shown in Figure 8 the system detects the anomalies of 
the underlying current signal of tool 1 (milling head). The peak 
represents the irregularity within the aluminium material. The 

expected pattern of the current is learned and compared due to 
the recurrence of the position signal pattern.  

It must be mentioned that the displayed machine tool data 
show only a negligible noise behaviour for the position data. 
Further experiments disproved potential concerns that the 
clustering capability with noisy data is not appropriate. The 
validation is conducted on multiple datasets from different use 
cases of machine tools. Additionally, added white noise is used 
to constitute a worst-case scenario. Even in those cases the 
presented approach provided reliable results. The experiments 
show that the role of the bandwidth parameter selection gets 
more critical with an increasing noise level. Additional 
research on a refined use case specific bandwidth selection 
model could further increase the robustness of the presented 
algorithm.  

Due to the softness of aluminium and the very slow 
processing speed of the experiments, an even higher peak can 
be expected in almost all machine tool operations. Further 
experiments on ordinary steel approved this proposition. 

To reduce run time and complexity of the algorithm further 
investigation are necessary to effectively deploy the approach 
on more complex data signal combinations and therefor gain a 
higher information density. 

Consequently, the presented approach experimentally 
verified its ability to work reliably under the most important 
dimensions of varying conditions. These include a priori 
unknown machine tool processes and tasks, varying noise level 
and varying product material.  

5. Conclusions and outlook 

The work introduces a new approach to enforce an autonomous 
anomaly detection system through a clustering-based pattern 
recognition algorithm. Contrary to other anomaly detection 
approaches, the system is capable to work without a priori 

knowledge about the expected machine operations and under 
uncertain, varying machine conditions. The algorithm learns a 
suitable parametrization and individual intervention thresholds 
based on the prevailing machining patterns. The experiments 
have proven that the mean shift-based anomaly detection 
system is highly powerful and efficient. 

For further studies, we investigate on the application to 
broader time series problems including intelligent condition 
monitoring.  
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Figure 8: The system learns recurring position patterns and corresponding 
signals. An anomaly is detected due to the deviation of the assigned signal of 
the current of tool 1. 


