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Abstract

Despite the vast literature on the energy-e�ciency gap, there is a general dearth of in-

vestment models which incorporate the consumer’s temporal freedom in the investment

decision. Focusing on the building sector, we formulate optimal investment in energy e�-

ciency as a problem of wealth growth-rate maximisation under uncertainty, subject to the

diminishing marginal utility of retro�tting. The resulting model provides an unambiguous

answer to the question of how much, and at what point in time, consumers with given

wealth dynamics and parameters should invest in energy-e�ciency measures for their

particular dwelling. We treat in detail two foundational wealth dynamics: consumers who

solely earn a �xed income, and those whose wealth grows multiplicatively. The di�erences

in decision-making between these cases is seen to be substantial, with the latter group

exhibiting further signi�cant heterogeneity. All of this has profound implications for the

social planner: on the one hand, we show how he must work harder to in�uence wealthier

consumers; on the other, the model provides a methodology for crafting highly targeted

policy interventions.
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1. Introduction and Background

The energy-e�ciency gap is commonly understood as the suggestion that the way individuals

make decisions about investing in energy e�ciency leads to a slower-than-optimal di�usion

of conservation technology. In this article we contribute to the theoretical underpinnings of

this hypothesis by proposing a decision-making procedure for optimal investment in energy

e�ciency. We focus on a prototypical and salient example of the same, namely the energetic

retro�t of a dwelling, and provide a de�nitive answer to a surprisingly non-trivial question:

“When and how much should a risk-neutral consumer invest in energy e�ciency?”

Although it is undeniable that only a minuscule share of the total building stock undergoes

meaningful energy retro�ts each year,
1

this fact on its own cannot constitute evidence for an

energy-e�ciency gap; an additional de�nition of optimal consumer behaviour is required. The

broad consensus in the literature is that a discounted cash �ow analysis is the appropriate

method of investment appraisal. The debate surrounding the gap therefore tends to focus

on discount rates, transaction costs, performance deviation of the technology, behavioural

phenomena such as the rebound e�ect, and other such factors (Allcott & Greenstone, 2012;

Gerarden et al., 2017). That is, each of the variables, or missing variables, in a net-present-

value–type model is investigated, and discussion around the existence or size of the gap framed

in this context.

A critical drawback to using the above class of models for baselining the energy-e�ciency

gap is the following: a discounted cash �ow appraisal simply cannot answer the basic question

of whether it is advantageous for the consumer to wait a year or two or �ve before investing.

This matters greatly for the energy-e�ciency gap, since conservation technology, like any

other technology, is subject to a di�usion process, and the consumer’s ability to put o� an

investment to a later date is a fundamental degree of freedom in the description of this dynamic

unfolding. Another relevant, and as it turns out related, weakness of the discounted cash �ow

model is that the burden of quantifying the investment risk typically falls on a single variable,

the discount rate, which consequently often becomes the most debated and prescient aspect

of the gap (Gillingham & Palmer, 2014). This substantially diminishes the usefulness of the

model as a baseline for optimal technological di�usion, since discount rates are known to

1
In the EU, for instance, only around 0.2% of the building stock undergoes deep-energy retro�ts per annum

(Esser et al., 2019).
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exhibit considerable heterogeneity (Newell & Siikamäki, 2015).
2

It is our contention that these

shortcomings make a discounted cash �ow analysis unsuitable for use as a yardstick for optimal

consumer investment in energy e�ciency.

Given the overwhelming dominance in the literature of this type of model, alternative

proposals are hard to come by. A prominent attempt is that of Hassett and Metcalf (1992), who

simultaneously address both de�ciencies outlined in the previous paragraph with an innovative

retro�t investment model based on real option theory. The main source of risk in such an

investment in their estimation, is the stochastic nature of the price of the energy carrier and the

cost of capital. Using mathematical machinery developed by McDonald and Siegel (1986), who

quantify the real option of waiting to invest, Hassett and Metcalf prescribe a fuel-price trigger to

inform optimal investment. In a subsequent publication, they demonstrate that their model leads

to a slower di�usion of conservation technology than a simple net-present-value–type decision

framework, and thereby make a case against the existence of a pervasive energy-e�ciency gap

(Hassett & Metcalf, 1993). We discuss their work in some detail in an appendix to this article.

Despite their di�erences, the above expected-utility investment model does hold one central

assumption in common with a discounted-cash-�ow analysis, namely, that the consumer seeks

to minimise the net present value of their heating expenses. But this is not the only possible

framing of the investment problem. A notable alternative is found in the �nance literature,

where the long-run wealth of the investor is maximised via a logarithmic utility function.
3

We

shall see in this article how this method, when combined with the assumption of diminishing

marginal utility in retro�tting, provides an unambiguous solution to our motivating question of

how much a risk-neutral consumer should optimally invest in energy e�ciency, and when. An

additional bene�t of this method is a natural integration of the consumer’s wealth parameters

into the investment problem.

We were nevertheless led us to ask if there was not a larger framework within which we

could situate this calculation. We discovered just such a schema in ergodicity economics (Peters,

2019), which has enjoyed much success in resolving long-standing microeconomic puzzles in

an integrated, fundamental way (Adamou et al., 2020; Peters & Gell-Mann, 2016; Peters, 2011a,

2011b). The approach seeks to provide new foundations for utility theory, among which is

2
Conversely, appealing to this heterogeneity to explain the energy-e�ciency gap simply begs the question

(Ja�e & Stavins, 1994a).

3
This approach was in fact central to the development of utility theory, and enjoys a long and fascinating

history (MacLean et al., 2011; Peters, 2011b).
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the axiom that the consumer’s speci�c utility function is related to the growth rate of their

wealth, and can be derived from the speci�ed wealth dynamic. Accordingly, a logarithmic utility

function corresponds to wealth that is growing exponentially; in contrast, for a consumer with

an additive wealth dynamic, i.e. one who only earns a �xed income, cost minimisation is in fact

equivalent to growth-rate maximisation.

In this article therefore, we show how optimal investment in energy e�ciency can be

formulated as a problem of wealth-growth-rate maximisation. The resulting model is rich in

economic and policy insight, demonstrating not only how consumers di�er in their decision

making as a result of their wealth dynamic, but further that the social planner’s task of in-

centivising the take-up of energy e�ciency will di�er markedly according to the consumer’s

wealth and wealth dynamic. Answering the question of optimal retro�t depth, i.e. investment

size, required us to mathematically formalise the concept of diminishing marginal utility of

energy retro�tting (Galvin, 2010) and quantify its implications for investment strategy. To the

best of our knowledge, this article is the �rst to do so.

We proceed as follows. Section 2 contains a brief treatment of diminishing marginal utility

in retro�tting. In the section following, we discuss how uncertainty enters the investment

decision, and introduce the relevant concepts from ergodicity economics. We bring these

preliminaries together in section 4, where we frame the growth-rate-maximisation problem.

Section 5 is a numerical proof of concept. We conclude in section 6.

Related literature.

It is naturally with the work of Hassett and Metcalf (1992) and related literature, i.e. prescriptive

investment-decision models concerned with technological adoption, that we most closely

identify our contribution (e.g. Sunding & Zilberman, 2001; Grenadier & Weiss, 1997). On the

other hand, descriptive models of technology di�usion abound; Geroski (2000) provides an

overview of the literature. The most relevant example of the same is by Ja�e and Stavins (1994b),

authors of an extremely in�uential summary (Ja�e & Stavins, 1994a) of the economic theory

underlying the energy-e�ciency gap. More recent surveys of the discourse around the gap

can be found in the widely-cited articles by Gerarden et al. (2017) and Gillingham and Palmer

(2014).

Other retro�t-investment decision tools of varying scope and potential for scalability exist

in the literature. A typical application of the real option framework (McDonald & Siegel, 1986)

4



to a single building is the simulation model of Kumbaroğlu and Madlener (2012). Articles

by Gabrielli and Ruggeri (2019) and Hong et al. (2014) are exemplary of the large class of

decision support models with speci�c foci (here, large building portfolios and multi-family

housing complexes respectively). Friege and Chappin (2014) and Ma et al. (2012) review this

vast literature.

Finally, a detailed treatment of the history and theory of long-run wealth maximisation via

the logarithmic utility function can be found in the book edited by MacLean et al. (2011). The

article by Pirvu and Žitković (2009) is exemplary of the questions in this �eld that continue to

stimulate research in �nance.

2. The Diminishing Marginal Utility of Retro�t Investments

It is a straightforward consequence of building physics and economic reality that investments

in energy e�ciency diminish in marginal utility. Consider thermal insulation, the quintessential

retro�t measure: building physics tells us that the energy saved increases linearly with the

thickness of the insulation; ceteris paribus, this means that each x% increase in insulation

thickness reduces energy loss through that medium by x%; but as the x% increase in insulation

thickness is absolute, whereas the x% decrease is relative to the energy consumption before

the new insulation was added on, it is clear that we have diminishing marginal energy savings

for increasing insulation thickness. Colloquially, “the �rst centimetre of insulation is the most

important”. See Galvin (2012) for a further discussion of the non-linearity in retro�t costs.

To capture this concept, we assume that the energy saved post-retro�t s (kWh/m
2
/yr) as a

function of retro�t cost k (€/m
2
) has the form of a classic diminishing-marginal-utility function:

s(k) ⋅⋅= s1k − s2k
2
, (1)

for constants s1, s2 > 0. In the case of retro�tting, we usually have s1 ≫ s2 > 0; see table 1.

We make a few mathematical observations. The function s(k) is maximised for km
⋅
⋅= s1/(2s2),

taking on the value sm
⋅
⋅= s

2

1
/(4s2), and begins to decrease after this point. This decrease is

not physically sensible, so we must restrict the domain of our function to [0, km].
4

This is of

course in keeping with the intuition of diminishing marginal utility; in fact, it is straightforward

to demonstrate that on this domain the conditions s1, s2 > 0 are necessary and su�cient to

4
When �tting real data, this e�ectively reduces the number of degrees of freedom from two to one.
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guarantee both that s(k) is positive, and that it satis�es the assumption of diminishing marginal

utility on the investment, i.e. )ks > 0 and )
2

k
s < 0.

The variable s is in a one-to-one relationship with thermal standards for dwellings, usually

advertised by their expected �nal-energy consumption, e.g. 45 kWh/m
2
/yr for a Passivhaus for

heating and hot-water usage (Georges et al., 2012). Indeed, s is exactly equal to the di�erence

between the initial �nal-energy consumption and the thermal standard to which the con-

sumer chooses to renovate, with higher standards, and hence higher energy savings, incurring

increasing marginal costs.

It is obvious that it is not possible to retro�t with arbitrary precision. That is, there are

usually only a handful of retro�t options available to the consumer: she may have the choice

of adding 8 cm of insulation to her roof, or increasing that to 12 cm and installing basement

insulation too, and so on (see table 2). We assume here that the domain and range of s(k) are

subsets of ℝ so that we can carry out standard algebraic manipulations. It will become clear

that this assumption does not a�ect the conclusions of our analysis in any meaningful way.

3. Energy E�ciency Investments and Uncertainty

In order to introduce a stochastic element into the analysis, we take as a starting point the

central assumption in Hassett and Metcalf (1992), with which we are in agreement, that the

chief source of uncertainty in energy e�ciency investments is the price of the energy carrier.
5

Suppose then that the price pt of the fuel that the consumer uses for heating follows a

geometric Brownian motion with trend � and variance � > 0,

dpt /pt = � dt + � dzt , (2)

where zt is a standard Wiener process with mean zero and unit variance. To simplify the

discussion we will assume that � > 0 throughout. Now in order to work with this stochastic

process, it is necessary to somehow remove the randomness to discover what happens “on

average”. But this turns out to be more challenging than one might suspect, and the consequent

divergent de�nitions of averaging lie at the heart of ergodicity economics. What follows is

the briefest of summaries of these ideas, restricted to geometric Brownian motion and the two

5
Hassett and Metcalf assume further that the cost of capital also follows a geometric Brownian motion. We

avoid this assumption, which does not a�ect our argument, in order to simplify the presentation. See also the

discussion in section 6.
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wealth dynamics that we will consider in this article.

Consider that there are at least two ways of computing what happens to pt as time passes.

On the one hand, its expectation value at time t is given by

E [pt ] = p0 exp �t , (3)

whence we would conclude that the price of the fuel grows exponentially at rate �. But it is

possible to compute another growth rate, namely that of the logarithm of pt ,

E [log pt ] = log p0 + (� − �
2
/2) t . (4)

From this equation, one would again conclude that the fuel price grows exponentially, but now

with rate � − �
2
/2. The existence of these two growth rates for the same stochastic process

is a fundamental result of Itô calculus, and is universally employed to estimate returns in

�nance (Hull, 2017). Its explanation is usually couched in terms of the non-commutativity of

the log and expected-value operators, or as the di�erence between the arithmetic and geometric

means of the multiplicative process pt . For ergodicity economics however, this phenomenon

is an example of ergodicity breaking (Peters & Klein, 2013), and forms the cornerstone of the

argument for a new axiom of economic decision-making (Peters & Gell-Mann, 2016).

The rate � computed in equation 3 is the familiar average growth rate over the ensemble

of all possible realisations of the process pt . On the other hand, the rate � − �
2
/2 computed

in equation 5 answers the question, “what happens to any single realisation of this stochastic

process as time passes?”. One way to see this is as follows. If we rearrange equation 5 to isolate

for the growth rate, we can in fact write

� − �
2
/2 = E

[

1

t

log

pt

p0
]
; (5)

that is, the growth rate can be thought of as being computed from the observable (log pt /p0)/t .

This particular observable turns out to be ergodic, i.e. its expectation value equals its time

average (Peters & Gell-Mann, 2016).
6

This means that by de�nition, the expectation value of

6
Formally, an observable f ∶ ! → ℝ on the probability space (Ω, !,ℙ) is called ergodic if it satis�es Birkho�’s

equation:

lim
T→∞

1

T
∫

T

0

f (!(t)) dt =
∫
Ω

f (!)ℙ(!) d! . (6)

On the left is the time average of f , and on the right, its expectation value (Peters, 2019).
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(log pt /p0)/t , which is constant in time, is observed with probability one in any single, su�ciently

long, random sample of the process pt .

We come to the �rst premise of ergodicity economics for optimal decision-making under

uncertainty: for an individual contemplating a stochastic investment opportunity, the average

over an in�nite ensemble is often irrelevant; what matters in the long run is the time-average

growth rate of a single realisation of the random process. This is computed via an ergodic

growth rate function.

The second premise of the decision axiom of ergodicity economics is that a consumer acts so

as to maximise the growth rate of her wealth. A consequence of this axiom is a natural de�nition

of the consumer’s utility function. To build intuition, we consider the two foundational cases:

the multiplicative and additive wealth dynamics. In the �rst is assumed that the decision-

maker’s wealth is continuously reinvested at return � so that the increase in her wealth after a

passage of time Δt is given by

w(t + Δt) = w(t) exp �Δt . (7)

In the additive dynamic in contrast, the consumer simply earns a �xed income per unit time r ,

and does not reinvest her wealth, so that wealth grows as

w(t + Δt) = w(t) + rΔt . (8)

In each case, there is a natural growth rate of wealth, and extracting it calls for di�erent

mathematical operations. In the multiplicative case we have

� =

1

Δt

log

w(t + Δt)

w(t)

, (9)

while for the additive we compute

r =

w(t + Δt) − w(t)

Δt

. (10)

We see that the growth rate in the multiplicative dynamic is in fact computed from a logarith-

mic function of the wealth; ergodicity economics argues that this provides a �rst-principles

explanation for the logarithmic utility function (Peters, 2011b, cf. MacLean et al., 2011). In

8



contrast, the additive dynamic corresponds to a linear utility function. We restrict ourselves to

these cases in this article, but more complicated wealth dynamics are of course possible, and

each dynamic corresponds to a utility function; appendix B contains an illustrative example.

Given these ideas, we can state the decision axiom of ergodicity economics: the consumer

acts so as to maximise the time-averaged growth rate of their wealth under the speci�ed wealth

dynamic.7 The connection to our topic of interest, investments in energy e�ciency, consists in

recognising that energy expenses are a “drag” on the wealth growth rate, a drag which may be

eased by investing in conservation technology.

A �nal point of interest, given the prominence of the discount rate in the energy-e�ciency

gap debate, is that the above decision axiom has been framed free of any discount function:

it is a remarkable result of ergodicity economics that the proper discount function is in fact

automatically speci�ed once the wealth dynamic and decision time-frame are �xed (Adamou et

al., 2020; see also appendix B).

4. Investment in Energy E�ciency as a Problem of Wealth Growth-Rate

Maximisation

Given these preliminaries, it is straightforward to formulate optimal investment in energy

e�ciency as a problem of maximising the growth-rate of wealth.

We assume �rst of all that the consumer retro�ts “anyway” in cycles of L years (e.g. 25 years),

which may be thought of as the lifetime of the building insulation or heating system (Galvin,

2014). The consumer wishes to know if there exists some optimal investment time t
⋆
< L such

that her wealth growth-rate would be maximised if she invested at t
⋆

rather than letting the

lifetime of her equipment run its course. Hence in this setup, “no investment” corresponds to

t
⋆
= L.

In addition, given the assumption of diminishing marginal utility in retro�tting, the con-

sumer is also looking for the optimal investment k
⋆
∈ [0, km], where the s(k) parameters s1 and

s2 are speci�c to her dwelling.

We further assume that all energy-carrier prices follow geometric Brownian motions. As

per the discussion in the previous section, we de�ne the action of the time-average operator

7
Whether decision-making in the real world proceeds according to this axiom is the subject of active research,

with promising initial results (Meder et al., 2020; Peters, 2019).
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T[⋅] on a geometric Brownian motion (pt , �, � ) as

T [pt ] ∶= p0 exp �t , (11)

where � ⋅⋅= � − �
2
/2 is then the e�ective trend of the fuel price (see equation 5).

Finally, we allow that the consumer might wish to upgrade, at cost ℎ, her boiler with

e�ciency � to one with e�ciency � > �, including a possible switch of the energy carrier from

one with current price and e�ective trend (p0, �) to another with parameters (q0, �).

The multiplicative wealth dynamic.

In the case of the multiplicative wealth dynamic, since all wealth is reinvested at return � , we

compute the net future value of the energy expenses and the retro�t investment using this rate

(cf. Adamou et al., 2020). If the consumer makes her decision at time t , and the lifetime of the

new equipment is again L, the relevant future reference point becomes L + t . The consumer’s

expenses stream is then divided into three logical parts. First we have the net future value of

the time-averaged energy costs per square meter for the period up to the retro�t:

T
[
∫

t

0

ps

u

�

exp �(L + t − s) ds
]
= p0

u

�

e
�L

(e
�t
− e

�t

)

� − �

, (12)

where we introduce the consumer’s per-square-meter �nal-energy need u. Then, the per-

square-meter cost of the retro�t and heater at the temporal reference point L + t is simply given

by

(k + ℎ)e
�L
. (13)

Finally, post retro�t, the net future value of the time-averaged energy costs per square meter is

T
[
∫

L+t

t

qs

u − s(ke
�L
)

�

exp �(L + t − s) ds
]
= q0

u − s(ke
�L
)

�

e
�t

(e
�L
− e

�L

)

� − �

. (14)

Assuming now that the consumer starts o� with wealth w0, the growth rate of wealth in

the presence of energy costs over the period L + t can be computed as (cf. equation 9)

gm(k, t) =

1

L + t

log
[
exp �(L + t) −

a

w0
(
p0

u

�

e
�L

(e
�t
− e

�t

)

� − �

+ (k + ℎ)e
�L
+ q0

u − s(ke
�L
)

�

e
�t

(e
�L
− e

�L

)

� − � )]
, (15)
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where a is the heated area of the dwelling in square meters.

It is this growth rate that the consumer seeks to maximise.
8

We see that the consumer’s

wealth parameters w0 and � are naturally integrated into the optimisation problem.

The additive wealth dynamic.

In the case of the additive wealth dynamic, the linear utility function means that there is no

discounting of future costs (Adamou et al., 2020). The sum of the time-averaged energy costs

per squared-meter up to the investment time t is therefore given by

T
[
∫

t

0

ps

u

�

ds
]
= p0

u

�

e
�t
− 1

�

, (16)

and the sum of the time-averaged energy costs per squared-meter post-retro�t is computed as

T
[
∫

L+t

t

qs

u − s(k)

�

ds
]
= q0

u − s(k)

�

e
�(L+t)

− e
�t

�

. (17)

Hence from equation 10, we can write the growth rate of the consumer’s wealth over the

relevant time period as

ga(k, t) = r −

a

L + t (
p0

u

�

e
�t
− 1

�

+ k + ℎ + q0

u − s(k)

�

e
�(L+t)

− e
�t

� )
. (18)

Maximising this function is the same as minimising the subtrahend, i.e. minimising the an-

nualised total expenses on energy for heating.
9

We see that in contrast to the case of the

multiplicative wealth dynamic, reference to the consumer’s wealth has disappeared, and the

growth rate r is also irrelevant for optimisation. We address this conceptual challenge in section

6.

Features of the solution.

We consider the multiplicative and additive cases together in discussing the solution to the

optimisation problem . Firstly, the existence of an optimal tuple (k
⋆
, t
⋆
) maximising the growth

rates gm and ga is guaranteed since they are continuous functions on a bounded domain. How-

8
Note that in order for the problem to be well-de�ned, we must have the argument of the logarithm be greater

than unity, which simply translates to the reasonable requirement that the total costs (energy plus retro�t) up to

time L + t not exceed the total wealth accumulated by that point.

9
This is the the derivation of what was claimed in the introduction, namely, that the expected-utility and

net-present-value models assume a linear utility function.
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ever, given their analytical complexity, closed-form solutions to the growth-rate–maximisation

problem could not be located. This is ultimately no great loss for the practicability of our

framework, since the optimisation problem is numerically tractable. Nonetheless, in this section

we present the features of the solution that could be determined analytically, in order that

the behaviour of the growth-rate functions may be understood to the greatest extent possible.

In particular, we examine the conditions under which we expect to �nd non-trivial solutions,

i.e. conditions which ensure that t
⋆
< L.

10

We begin with the optimal investment size k
⋆
. Due to the assumption of diminishing

marginal utility, there exists a unique optimal investment k
⋆
< km for each moment in time t ,

both in the multiplicative and additive cases:

k
⋆

m
(t) ⋅⋅=

s1

2s2
(
1 −

(� − �)� e
�L−�t

q0s1(e
�L
− e

�L
))

, (19)

k
⋆

a
(t) ⋅⋅=

s1

2s2 (

1 −

�� e
−�t

q0s1(e
�L
− 1))

. (20)

The expressions lend themselves to intuitive interpretation: as the fuel price or its trend

increases, or as the cost of renovation or the e�ciency of the new heater decreases, k
⋆

gets

larger, approaching its upper bound km = s1/(2s2) asymptotically. The expressions correctly

contain no reference to the previous energy carrier. Further, we see that k
⋆
> 0, i.e an optimal

investment in insulation exists, if and only if the expression in parentheses is positive. This can

be rewritten, for instance, as a lower bound on the fuel price of the energy-carrier post retro�t:

we must have

q0

!

> qmin,m(t)
⋅
⋅=

(� − �)� e
�L−�t

s1(e
�L
− e

�L
)

(21)

in the multiplicative case, and

q0

!

> qmin,a(t)
⋅
⋅=

�� e
−�t

s1(e
�L
− 1)

(22)

in the additive.

For ease of terminology, we refer to the above as the “qmin-criterion”. If the set of constants

in the functions ga and gm are positive, which is the usual case and which we will assume

throughout in what follows, the strictest possible lower bound on q0 corresponds to taking limit

10
Recall that the consumer’s total investment is always a ⋅ (k

⋆
+ ℎ); this means that if k

⋆
= 0, we can only

conclude that the consumer should not invest in insulation. She may still invest in energy e�ciency by upgrading

her heater at cost a ⋅ ℎ if t
⋆
< L.
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t → 0, and the laxest to taking the limit t → L, in equations 21 and 22. That is, if q0 > qmin(0),

the new fuel is expensive enough to make an investment in insulation worthwhile no matter

the value of t
⋆
; on the other hand, if q0 < qmin(L), the new fuel is cheap enough that insulation

is not economically viable, no matter the value of t
⋆
.

Given the above solutions k
⋆
(t) to the insulation-depth problem, we have two cases: either

the qmin-criterion is satis�ed, or it is not. We accordingly have the following pair of results for

the additive dynamic, the proofs of which are given in appendix A.

Proposition 1. If the set of constants in the wealth growth-rate ga are such that the qmin,a-

criterion is not satis�ed, then k⋆ = 0 and the consumer should not invest in insulation. The optimal

investment time t⋆ to upgrade her heating system at cost a ⋅ ℎ is given by the implicit equation

p0 =

�� (��ℎ − q0u (e
�L
− 1) e

�t
⋆

(�(L + t
⋆
) − 1))

��u (e
�t

⋆

(�(L + t
⋆
) − 1) + 1)

. (23)

In particular, if

p0 >

� (��ℎ − q0u (e
�L
− 1) (�L − 1))

��Lu

, (24)

the consumer should invest immediately; conversely, if

p0 <

�� (��ℎ − q0ue
�L

(e
�L
− 1) (2�L − 1))

��u (e
L�
(2L� − 1) + 1)

, (25)

she should not invest at all.

Proposition 2. If the set of constants in the wealth growth-rate ga are such that the qmin,a-criterion

is satis�ed, the optimal investment time t⋆ for a consumer to upgrade her heating system and

invest in insulation at cost a ⋅ (k⋆
a
(t
⋆
) + ℎ) is given by the implicit equation

p0 =

��(q0 (e
�L
− 1) e

�t
⋆

(−2�� (2ℎs2 + s1) − q0 (e
�L
− 1) (s

2

1
− 4s2u) e

�t
⋆

(�(L + t
⋆
) − 1))

+ �
2
�
2
(�(L + t

⋆
) + 1))

4��q0s2u(e
�t

⋆

− e
�(L+t

⋆
)
)(e

�t
⋆

(�(L + t
⋆
) − 1) + 1)

,

(26)

In particular, if

p0 >

�(�
2
�
2
(�L + 1) − 2��q0 (2ℎs2 + s1) (e

�L
− 1) − q

2

0 (e
�L
− 1)

2

(�L − 1) (s
2

1
− 4s2u) )

4��Lq0s2u (1 − e
�L

)

, (27)
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the consumer should invest the amount a ⋅ (k⋆
a
(0) + ℎ) immediately; conversely, if

p0 <

��(�
2
�
2
(2�L + 1) − 2��q0 (2ℎs2 + s1) e

�L

(e
�L
− 1)

− q
2

0
e
2�L

(e
�L
− 1)

2

(2�L − 1) (s
2

1
− 4s2u) )

4��q0s2u (e
�L
− e

2�L

) (e
L�
(2L� − 1) + 1)

, (28)

she should not invest at all.

The unwieldy expressions in these propositions perhaps mask the intuitive nature of the

result: if the current energy carrier is expensive enough (equations 25 and 28) it is bene�cial

to undertake an energy-e�ciency investment according to either equation 23 or 26. That is,

propositions 1 and 2 are the resolution to the motivating question of this article in the case of

the additive dynamic.

Corresponding results exist in the multiplicative case, but these could only be numerically

studied; the equivalent algebraic expressions are unfortunately analytically intractable (see

appendix A).

The role of the social planner.

Consider now that the function ga contains 12 relevant degrees of freedom. It is helpful for

our purposes to divide these 12 into two sets: a �rst set of �ve, {a, L, u, �, �}, describing the

immutable physical aspects of the consumer’s dwelling and equipment, and a second set of

seven, {p0, �, q0, �, s1, s2, ℎ}, describing parameters over which the consumer has no control,

but which the social planner may control to some degree.
11

The above propositions imply that

if two constraints, namely the qmin-constraint plus one of equations 25 or 28, are satis�ed, a

non-trivial solution to the optimisation problem exists, and consumer sees incentive to retro�t.

In the case of multiplicative dynamics, a similar statement holds, except that there a total of

three constraints are required to completely specify the solution to the optimisation problem

(see appendix A). We hence have the following result.

Corollary 1. For the social planner to be able to maximise the growth-rate function gm (resp. ga)

at a tuple (k⋆, t⋆) of his choosing, it is necessary that the set of parameters {p0,�,q0,�,s1,s2, ℎ}

allows him at least three (resp. two) of degrees of freedom.

This result quali�es the intuition that if the fuel and retro�t prices and trends can be changed

arbitrarily, any desired goal can be achieved: in point of fact, the social planner needs to pull

11
Although s1 and s2 depend on physical characteristics of the dwelling, we include them here since they could

be changed by introducing subsidies on energetic retro�ts.
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exactly two levers in the additive case (increasing for example the energy-carrier price trends

� and � via a carbon tax), and three in the multiplicative (increasing � and � via a tax, and

reducing the cost of retro�tting s1 via a subsidy, say). That the social planner has to pull a whole

extra lever to in�uence the decision-making of consumers with multiplicatively-growing wealth

is a non-trivial result, which simply falls out of the mathematics of growth-rate maximisation.

It con�rms the idea that a wealthier consumer is harder to in�uence than a one less well-o�:

the wealth dynamic of the wealthier consumer corresponds to a utility function which is simply

more robust against changes in the environment.

The e�ectiveness of these policy instruments are is another matter entirely. Mathematically,

this involves comparing derivatives: for instance, the relative sizes of )g/)� and )g/)s1 could be

used to give a rough indication of the e�ectiveness of a carbon tax relative to a subsidy scheme

in generating consumer incentive. We expound on these points in the discussion in section 6.

5. Case Study: German Single Family Dwelling

By way of example, consider the parameters in table 1 for a typical single-family home built in

Germany between 1979–1983, which currently relies on an older oil boiler for heat. The retro�t

measures used to estimate the parameters s1 and s2 are listed in table 2. We list the parameters

for the various options for an upgrade of the heating system, along with arbitrarily selected

e�ective price trends � for the corresponding energy carriers.

The additive wealth dynamic.

To understand the mechanics of the optimisation problem, let us begin in the simpler case of

additive dynamics, and further imagine that the consumer only has a single choice for her new

energy carrier, say gas. We leave the price parameters {p0, �, q0, �} unspeci�ed for the moment.

Given the dwelling and heating-system parameters in tables 1 and 3, and additionally setting

� = 0.02, we �rst compute qmin,a(t); this curve is depicted in �gure 1. If a (q0, t) tuple lies in the

shaded region depicted in the �gure, k
⋆

a
(t) will be positive.

Next, consider �gure 2, which depicts the surface r − ga(k, t), i.e. the annualised energy

expenses, for di�erent values of p0 and q0, where we set (�, �) = (0.01, 0.02); also depicted is the

point on the surface where energy expenses are minimised. For the consumer, this highlighted

point is the precise answer to the question, “how much should I invest in energy e�ciency and

15



Table 1. Physical retro�t parameters for a typical single-family home built in Germany between 1979–

1983, obtained from the episcope database of representative buildings in the European Union (Loga et

al., 2016). In the expression for �, the denominator 1.67 is the energy-expenditure coe�cient and includes

the e�ciency of the heating system and any transmission losses. Note also the intuitive interpretation

of the �t constant s1: it is the cost of saving a kilowatt-hour of �nal energy consumption per year.

Physical Parameters of Dwelling

Description Variable Value Unit

Retro�t cycle L 25. yrs

Heated area a 142. m
2

Final-energy need u 108.9 kWh/m
2

Heater e�ciency � 1/1.67 –

Energy carrier – Oil –

Max. retro�t investment km 257.4 €/m
2

Max. �nal-energy saved sm 55. kWh/m
2
/yr

s(k) �t constant s1 0.38 (kWh/yr)/€

s(k) �t constant s2 7.2 × 10
−4

(kWh m
2
/yr)/€

2

Table 2. Example combinations of retro�t measures, in increasing order of price, with corresponding

reductions in �nal-energy need for the dwelling described in table 1. The data were obtained from

a freely-available retro�t calculator developed by Bosch Thermotechnik GmbH and the Fraunhofer

Institute for Building Physics IBP. (Available at https://www.e�zienzhaus-online.de/sanierungsrechner/.

Last accessed 10.12.2020.)

Retro�t measures Price Final energy saved
k (€/m

2
) s(k) (kWh/m

2
/yr)

Insulation (cm)

Roof Basement External wall Windows

– – – – 0. 0.

8 – – – 14.4 13.2

8 4 – – 33.3 19.1

8 4 8 – 150.9 31.1

8 4 8 Double glazing 206.9 43.1

28 4 8 Double glazing 231. 49.1

28 12 16 Double glazing 257.4 55.

16

https://www.effizienzhaus-online.de/sanierungsrechner/


Table 3. Typical options for a heating system upgrade. Analogous to table 1, the denominator in the

“e�ciency” column is the energy-expenditure coe�cient. Note that in the case of electricity, the e�ciency

is the coe�cient of performance of the heat pump, which is greater than unity.

Heating System Upgrade Options

Energy carrier Parameters

Investment E�ciency
a ⋅ ℎ (€) � (–)

Oil 9,000 1/1.16

Gas 15,000 1/1.08

Elec. 25,000 3
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t
s
/
k
W

h
)

Additive Dynamics, Upgrade to Gas-Fired Boiler: q0 − t Plane

Figure 1. The curve is equation 22, with the parameters taken from tables 1 and 3, and additionally

setting � = 0.02. The shaded region depicts the (q0, t) tuples that lead to k
⋆

a
> 0.
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Additive Dynamics, Upgrade to Gas-Fired Boiler: Price Scenarios

0
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(p0, q0) = (4, 9) : Insulation Investment
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(p0, q0) = (4, 5) : Immediate Heater Upgrade

Figure 2. Depicted here are the annualised expenses for heating energy from equation 18, r − ga(k, t), in

four di�erent cases, with (�, �) = (0.01, 0.02). These expenses are minimised at the point indicated in red.

The title of each �gure gives the (p0, q0) tuple in cents/kWh; the remaining parameters come from tables

1 and 3. The axis labels k, t and r − ga have units €/m
2
, “years from present time”, and €/yr respectively.

Clockwise from the top-left, the �rst three �gures have q0 < qmin,a(L), and illustrate the three cases in

proposition 1. Finally, the �gure in the bottom-right is an illustration of the general case, equation 28 in

proposition 2.

when?”.

Simultaneously, �gure 2 is an illustration of corollary 1 in action. The top-left scenario is

one in which neither the qmin,a-criterion nor equation 25 are satis�ed. Proceeding clockwise

from this case we see how, since all other variables are held �xed, increasing p0 alone is enough

to ensure that equation 25 is satis�ed (top-right scenario), and if increased still further (bottom-

right scenario), that equation 24 is ful�lled. But to now get from this scenario to one in which

the consumer has incentive to additionally invest in energy-e�ciency measures requires that

social planner introduce another degree of freedom (here, q0) in order that the qmin,a-bound

be satis�ed. In sum, two degrees of freedom are required to produce a (k
⋆
, t
⋆
) of the social

planner’s choosing.

In the general case, our consumer has several choices for a new energy carrier. She should

proceed by computing g
⋆

a
for each energy carrier (q0, �), including the case (q0, �) = (p0, �) for

the insulation-only option, and rank-order them; her optimal investment strategy is the one

that results in the lowest annualised energy costs. An example calculation is presented in table

18



Table 4. Numerically-obtained solutions to the optimisation problem speci�ed by tables 1 and 3 in the

case of additive wealth dynamics, for the fuel parameters listed below. The status-quo parameters (p0, �)

are the same as those in the “insulation-only” row. The optimal investment strategy (lowest annualised

energy costs) is highlighted.

Additive Dynamics, Example Investment Decision

Energy carrier scenario Optimisation result

Energy carrier Price parameters

Price Price trend Min. annul.
energy expenses

Opt. invest. Opt. invest.
time

q0 (cents/kWh) � (–) r − g
⋆

a
(€/yr) k

⋆
(€/m

2
)

t
⋆

(yrs. from

present)

Insul. only 4 0.01 1785.1 0. 0.

Oil 4 0.01 1599.9 0. 0.

Gas 9 0.02 3356.4 102.6 17.0

Elec. 23 0.015 2951.1 47.3 22.6

4. We see that the best strategy for the given set of constants is an immediate investment in a

new oil boiler, with no further investment in insulation.

The multiplicative wealth dynamic.

We turn now to the multiplicative dynamic, where the growth rate function gm(k, t) contains

express reference to the wealth parameters w0 and � . It is an interesting and essential feature

of this function that it is ill-de�ned if the argument of the logarithm in the expression (equation

15) is negative; this imposes an immediate restriction on w0 and � : they must both be large

enough, relative to each other, to ensure that the argument of the logarithm remains positive.

We hence restrict ourselves to the upper wealth quantiles in Germany for the calculation

presented in table 5, where we show how the same physical parameters result in starkly di�erent

optimal investment decisions depending on w0 and � .
12

If one looks along a given row (i.e. for

�xed w0), one sees that as � increases, k
⋆

decreases while t
⋆

increases; i.e. the consumer should

invest less and later, the faster her wealth grows. On the other hand, if one looks down a given

column (i.e. for �xed �), as w0 increases, both k
⋆

and t
⋆

increase, though the increase in k
⋆

is far less signi�cant (cf. equation 19). That is, the wealthier consumer should invest slightly

more, but at a signi�cantly later point in time.

12
As corollary 1 speci�es, three degrees of freedom were required to generate table 5.
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Table 5. Numerically-obtained solutions to the optimisation problem speci�ed by table 1 for an upgrade

to a heat pump (i.e. oil to electricity) in the case of multiplicative wealth dynamics. Various wealth

scenarios are considered. The fuel price parameters, listed in the title of the table in the units we have

been using throughout, were chosen (cf. corollary 1) so that non-trivial solutions resulted.

Multiplicative Dynamics, Optimal Investment in a Heat Pump

(p0, �, q0, �, � ) = (8, 0.04, 40, 0.015, 3)

Optimal investment
g
⋆

m

(k
⋆
, t
⋆
)

Wealth, w0 (€) Growth rate, �

2.5% 3% 5%

215,400
0.56%

(78.2, 7.4)

1.25%

(74.3, 10.1)

3.87%

(55.6, 22.4)

428,400
1.68%

(82.1, 12.0)

2.26%

(77.5, 14.8)

4.51%

(56.3, 25)

861,600
2.13%

(84.2, 14.5)

2.66%

(79.2, 17.4)

4.77%

(56.3, 25)

6. Policy Implications and Outlook

In this article, we have presented a novel investment-decision model that answers the question

“when and how much should a risk-neutral consumer invest in energy e�ciency?” Our frame-

work can be readily employed to model the di�usion of energy-e�ciency technology in the

absence of market barriers, thereby generating a baseline against which an energy-e�ciency

gap may be measured.

We address here a perceived shortcoming of the preceding calculation, namely, that the

model appears to be less prescriptive in the additive case than in the multiplicative because the

wealth parameters in the former case drop out. This turns out to not be a shortcoming of the

model, but rather of the additive dynamic itself, which is an extremely simpli�ed description of

wealth growth. In appendix B, we derive the utility function and growth rate for a more realistic

wealth dynamic: a consumer one who earns a �xed income while regularly saving a portion

of wealth. Instead of the linear utility function of the additive dynamic we obtain a mixed

log-linear utility function, and in contrast to a strict “no discounting”, we derive a power-law

discount function (see �gure 3). The optimisation problem as described in section 4 considered

for this wealth dynamic will now be a function of the consumer’s wealth parameters instead

of independent of them, as in the additive case. We see the application of our framework to

di�erent wealth dynamics as an exciting avenue of research.
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Indeed, the �rst main policy takeaway is that heterogeneity in consumer decision-making,

down to the very form of the discount function itself, can be understood as stemming from

underlying wealth dynamics. This knowledge empowers the social planner to model the e�ects

of policy instruments along multiple dimensions in novel ways. For instance, in contrast

to the dominant discounted-cash-�ow approach, where the burden of explaining consumer

heterogeneity falls almost exclusively on a single variable, the hard-to-measure discount rate

(Newell & Siikamäki, 2015; Allcott & Greenstone, 2012; Ja�e & Stavins, 1994b), modelling policy

measures in our framework relies instead on household wealth data and dynamics, which are

usually readily available (e.g. Deutsche Bundesbank, 2019).

A second immediate implication for policy planning comes from corollary 1, where we

demonstrated that the social planner must deploy additional policy measures to generate

investment incentive for consumers, typically wealthier, whose wealth grows multiplicatively

as compared to those whose wealth grows additively; table 5 further showed how consumers

within the multiplicative case itself can di�er signi�cantly in their decision-making due to

their speci�c wealth parameters. These ideas can be extended and generalised to other, more

realistic, wealth dynamics, such as the one described in appendix B, so that the workings of

policy instruments can be better di�erentiated both between and within wealth quantiles.

Another aspect of corollary 1 that bears highlighting is the lower bound on the number

of policy levers that the social planner must exercise to generate a desired level of consumer

incentive. Considering again the set of seven variables {p0, �, q0, �, s1, s2, ℎ} ostensibly within

the planner’s sphere of in�uence, it is clear in reality, he should expect to have far fewer than

seven degrees of freedom. For instance, if we consider the two classic policy levers of a carbon

tax and retro�t subsidies, the planner will be left with just three degrees of freedom, since the

four fuel-price parameters {p0, �, q0, �} will typically move in tandem in response to a carbon

tax,
13

and the retro�t parameters s1 and s2 are jointly in�uenced by subsidies. Once again,

extensions of this article to more complex wealth dynamics will reveal both if the number of

policy levers is su�cient, and the extent to which they need to move independently from each

other, in order to generate retro�t incentive for di�erent wealth quantiles. Targeted and creative

policy instruments can be thereby conceived and implemented. As an example, the German

government recently began to o�er steep discounts on the upgrade of heating systems (BMWi,

13
Except of course if the consumer is upgrading to an electric heating system, in which case q0 and � are

una�ected by a carbon tax.
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2021): in our framework, this can be interpreted as the social planner taking advantage of the

fact that the cost of the heating system ℎ can be subsidised independently of retro�t-measure

costs s1 and s2.

We turn now to the other key assumption in our model, namely, diminishing marginal

utility in retro�tting. Our formalisation of this economic and physical reality, and subsequent

discovery of an optimal retro�t depth for given dwelling and wealth parameters, provides a

quantitative method of corroborating the observed fact that consumers everywhere do invest in

shallow and medium retro�t measures, while resisting deep retro�ts (Esser et al., 2019). Table

5 indicated strikingly that even the very wealthy may not stand to gain by retro�tting to the

maximum thermal standard possible.

Our decision framework may also be used for other analytical exercises, such as locating

the Pareto-optimum level of greenhouse gas emissions due to heating (Garcia, 2017), with the

consumer’s utility function speci�ed by the wealth dynamic (see appendix B). The socially-

optimal level of subsidies for retro�tting can be similarly determined (Allcott & Greenstone,

2012). Additionally, we indicated in section 4 how the derivatives of the growth rate function

can be used to compare the e�ectiveness of di�erent policy instruments.

Finally, at the macroeconomic level, our investment criterion can form the basis of a

representative-agent di�usion model. For instance, since our framework can be used to model

the di�usion of energy e�ciency technology in the absence of market barriers, increasing the

trend in fossil-fuel prices to mimic a carbon tax would give an upper-bound on the e�ects

of such a tax on the uptake of conservation technology. Similar policy experiments could be

carried out, scenarios charted, and even optimisation problems framed.
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Appendix A. Proofs of Mathematical Results

We brie�y sketch the proofs of propositions 1 and 2, and corollary 1.

We consider the additive and multiplicative dynamics together, di�erentiating by a sub-

script where necessary. Consider �rst the case where the qmin-criterion is not satis�ed. A

straightforward application of the Karush-Kuhn-Tucker conditions (Kemp, 1978) reveals that in

order for g to attain a maximum for 0 < t < L, the following conditions must be satis�ed:

)kg|k=0 = � , (29)

)tg|k=0 = 0 . (30)

Here � ≠ 0 is a constant. Eliminating � between the two equations gives us equation 23 (to

wit, one condition) for the additive growth function ga. Hence, the qmin-criterion together

with equation 23 determine the existence of a non-trivial solution to the optimisation problem.

On the other hand, eliminating � in the above system of equations for gm leads again to two

conditions instead of one,
14

leading to a total of three degrees of freedom. The expressions

here, and in the paragraph below, are too unwieldy to display in print, but are contained in a

Mathematica notebook which is available upon request.

On the other hand, if the qmin-criterion is not satis�ed, locating a growth-rate-maximising

14
This is due to the appearance of a fraction with a non-trivial denominator, which cannot be allowed to vanish.
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tuple (k
⋆
, t
⋆
) requires �rst of all solving the simultaneous equations

)kg = 0 , (31)

)tg = 0 , (32)

to �nd a critical point (k
⋆
, t
⋆
). We further require that at the point (k

⋆
, t
⋆
), one of the two second

partial derivatives be negative, and that the determinant of the Hessian matrix be positive; i.e.

)
2
g

)k
2

|
|
|(k⋆,t⋆)

!

< 0 , (33)

[

)
2
g

)k
2

)
2
g

)t
2
−
(

)
2
g

)k)t)

2

]
(k
⋆
,t
⋆
)

!

> 0 . (34)

It turns out that equation 33 is trivially satis�ed in both the additive and multiplicative cases,

while equation 34 is only trivially satis�ed in the additive case. Hence, we end up at the same

result as in the previous paragraph: two degrees of freedom in the additive case, and three in

the multiplicative.

Appendix B. Derivation of the Utility Function, Growth Rate and Dis-

count Function for a General Wealth Dynamic

We sketch, with recourse to an example, how one computes the utility function, growth rate

and discount function for a general wealth dynamic. The interested reader is referred to Peters

and Gell-Mann (2016) for further intuition and details.

We consider a non-trivial wealth dynamic, a hybrid of the additive and multiplicative cases:

a consumer with net annual income r who continually invests a share � < 1 of her wealth

(e.g. 20%) to grow at some annual rate � (e.g. 2%). That is, we have the recurrence relations

w(0) = w0 , (35)

w(n + 1) = �w(n)e
�
+ (1 − � )w(n) + r , (36)

which can be solved to yield

w(t) =
((e

�
− 1) � + 1)

t

(r + (e
�
− 1) �w0) − r

(e
�
− 1) �

. (37)
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For � ≪ 1, if we de�ne � ⋅⋅= �� , this simpli�es to

w(t) ≈

(1 + �)
t
(r + �w0) − r

�

. (38)

Computing the growth rate and utility function.

In essence, the growth rate g is a quantity that we extract out of the wealth dynamic w(t) which

conveys time-independent information about the growth of our wealth. Intuitively, it must

therefore have units “something/time”. In the additive case the “something” is “dollars”, and in

the multiplicative it is “annual percentage growth”. For a general dynamic it may be something

more complicated; it is usually di�cult to say simply by inspection. Indeed, although it is clear

that the consumer’s wealth in equation 37 grows over time, it is not obvious how the growth

rate should be de�ned.

But since we know that the growth rate must have units “something/time”, the following

procedure su�ces: we simply linearise the relation wt = w(t) to bring it to the form u(wt ) = gt

for g a constant; then u is the consumer’s utility function, and g is the growth rate of her wealth

per unit time t .
15

This is easily seen to work in the additive and multiplicative cases:

wt = w0 + rt → u(wt ) = wt − w0 = rt , (39)

wt = w0e
�t

→ u(wt ) = log

wt

w0

= �t . (40)

For our dynamic, equation 37, we arrive at

log

r + (e
�
− 1) �wt

r + (e
�
− 1) �w0

= log ((e
�
− 1) � + 1) t , (41)

whence we can read o� the utility function and growth rate. In the small-� limit, the expression

is approximated by

log

r + �wt

r + �w0

= �t , (42)

which means that the growth rate is in fact approximated by �. On the left-hand-side of the

equation, we see that the consumer’s utility function is a hybrid of the additive and dynamic

cases. Crucially, in contrast to the pure additive dynamic, optimal investment in energy

15
In practice, one accomplishes this by solving wt = w(t) for t and then reading o� the constant; in other

words, we invert w(t). The invertibility of w(t) is guaranteed by the inverse function theorem as long as )tw(t) is

continuous and non-vanishing. Whether a closed-form expression for the inverse exists is of course another matter.
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e�ciency will not be simply a problem of cost minimisation (cf. equation 18), but will involve

the consumer’s wealth parameters.

Computing the discount function.

The calculation of the discount function for a given wealth dynamic within the framework

of ergodicity economics is detailed in Adamou et al. (2020). We brie�y sketch the argument.

Since the fundamental premise in ergodicity economics is that consumers should maximise the

growth-rate of their wealth, it is necessary to specify the time frame of the economic decision

in order to compute a discount function. This can be either �xed or adaptive, where the former

corresponds to a decision that does not a�ect future choices, whereas in the latter, future choices

do in fact depend on the present decision. An energy-e�ciency investment corresponds to a

�xed-time-frame decision, so we restrict ourselves to this case here.

Mathematically, the discount function is computed via a so-called riskless inter-temporal

payment problem (RIPP): the consumer is simply asked to compare two cash payments p1 < p2

to be received at times t1 < t2 respectively; she should choose the one which make her wealth

grow faster over the speci�ed time frame. The horizon of the decision is t1, and the delay

between the two payments is t2 − t1. The discount function is that function which when applied

to the later payment p2 makes the consumer indi�erent between the payments p1 and p2.

We will stick to equation 38, the small-� limit for w(t), in what follows. For the �xed–time-

frame decision, we must compare the growth rate of the consumer’s wealth up to time of the

later payment t2 for each of the two payments. Wealth in each case grows to
16

w1(t2) = w(t2) + p1(1 + �)
t2−t1

, (43)

w2(t2) = w(t2) + p2 , (44)

whence the corresponding growth rates are

g1(t2) =

1

t2

log

r + �(w(t2) + p1(1 + �)
t2−t1

)

r + �w0

=

1

t2

log
(
(1 + �)

t2
+

�p1(1 + �)
t2−t1

r + �w0
)
, (45)

g2(t2) =

1

t2

log

r + �(w(t2) + p2)

r + �w0

=

1

t2

log
(
(1 + �)

t2
+

�p2

r + �w0
)
. (46)

The expressions are identical except for the term (1 + �)
−(t2−t1)

, which we immediately identify

16
The derivation of the expression for the growth of p1 follows easily from equation 38 by setting r to zero.
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Figure 3. Parameter values: � = 0.02, � = 0.2. We see that the in contrast to the pure additive dynamic

where no discounting function exists, the power-law function we derived here leads to a more realistic

gentle discounting of money.

as the discount function; see �gure 3 for a comparison with the additive and exponential cases.

The discount function (1 + �)
−t

, in combination with the utility function in equation 42,

can now be straightforwardly used to formulate the growth-rate maximisation problem as in

section 4.

Appendix C. Revisiting the Expected-Utility Investment Model

Hassett and Metcalf situate their investment model within expected utility theory, which is the

standard framework for dealing with choice under uncertainty in economics. They formulate

the decision to invest in energy e�ciency as a problem of minimising the expected value of the

net present value of energy and retro�t expenses. The mathematics is as follows.

Suppose that the consumer has some delivered-energy need
17
x , which she can reduce by

a factor � ∈ [0, 1] at cost k. We assume again that the price pt of the energy carrier that the

consumer uses for heating follows a geometric Brownian motion with trend � and variance �

(equation 2). The optimal time t to invest in energy e�ciency should then be chosen such that

the expected present value of the energy expenses plus the investment itself is minimised:

min
0<t<∞

E
[
∫

t

0

psxe
−s

ds + ke
− t

+
∫

∞

t

ps(1 − �)xe
−s

ds
]
, (47)

where  is the consumer’s discount rate. Hence, in this setup, “do not invest” corresponds to

17
We distinguish between delivered energy need x and �nal-energy need u, which we used in the main text.

The two are related by x = u/�.
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the optimal t being in�nity.
18

The proposed solution, based on a model of irreversible investment by McDonald and Siegel

(1986), is that the optimal time to invest is when the price of the energy carrier crosses the

threshold

p
⋆
⋅
⋅=

�

� − 1

( − �)k

�x

, (48)

where

� ⋅⋅=

�
2
− 2� +

√

8�
2
+ (�

2
− 2�)

2

2�
2

> 1 . (49)

We brie�y outline the idea. Firstly, the expression ( − �)k/(�x) in equation 48, the so-called

Marshallian investment trigger, is obtained by setting the net-present value of the monetary

savings due to the reduced energy consumption minus the investment to null, and solving for

the minimum-viable price p:

0 =

p�x

 − �

− k . (50)

The mathematics of real option theory requires that this price trigger be made larger by the

factor �/(� − 1) to account for the value of waiting due to the uncertainty in the path of the

fuel price. Notice that � → ∞ as � → 0, collapsing this investment rule to the Marshallian

criterion in the limit of zero uncertainty.

The result is plausible and the mathematics elegant, but equation 48 is unfortunately not a

solution to the optimisation problem posed in equation 47. The direct argument is as follows.

Consider that one can directly simplify equation 47 to obtain

min
0≤t≤∞

E
[
∫

t

0

psxe
−s

ds + ke
− t

+
∫

∞

t

ps(1 − �)xe
−s

ds
]
=

min
0≤t≤∞(

p0x

1 − e
−(−�)t

 − �

+ ke
− t

+ p0(1 − �)x

e
−(−�)t

 − � )
, (51)

where for convergence of the latter integral the economically natural condition  > � is required.

We further employed Fubini’s theorem and equation 3. The right-hand side of equation 51 now

contains no reference to � . Hence, the proposed solution, equation 48, which does contain � ,

has no direct mathematical connection to the cost-minimisation problem.

A second, more intuitive, argument against equation 48 as a solution can also be formulated

from equation 51 above. A direct comparison of the Marshallian criterion, equation 50, and the

18
Note that the energy carrier is not switched here, though allowing for such a consideration is straightforward.
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real-option–derived equation 48 reveals that the former, by de�nition, simply leaves out the

energy expenses incurred up to the moment of investment. Hence, although the Marshallian

criterion is appropriate for the irreversible investment opportunity which McDonald and Siegel

(1986) consider, it is not directly applicable to the case at hand, where the consumer has a

continuous stream of expenses which could be staunched by making an investment in energy

e�ciency. Indeed, here the task becomes to check if if the three terms in the consumer’s cost

stream, equation 51, might conspire to produce a non-trivial optimal investment time. In point

of fact, an elementary calculation produces the following result.

Lemma 1. If all the constants in the cost-minimisation problem equation 51 are assumed to be

positive, with � <  and 0 < � < 1, and if

x <

k

p0

, (52)

a positive optimal investment time exists and is given by

t
⋆
=

1

�

log

k

p0�x

. (53)

In other words, if her current energy need is not too large, the above optimisation problem

produces an optimal investment time for the consumer. Nevertheless, notice that � , the only

explicit quanti�er of uncertainty in the model, is conspicuously absent from the above result.

We have addressed this puzzle in our discussion of ergodicity breaking in section 3. The

solution is to switch from the using the expected-value operator to the time-average operator

(equation 11); our optimisation problem is then written as

min
0≤t≤∞(

p0x

1 − e
−(−�)t

 − �

+ ke
− t

+ p0(1 − �)x

e
−(−�)t

 − � )
, (54)

where we once again bring in the e�ective trend � = �−�
2
/2. We further impose the requirement

that the discount rate  > � . This leads to the main result of this section, which is a straight-

forward modi�cation of lemma 1 above, and the correct resolution of the cost-minimisation

problem posed by Hassett and Metcalf.

Proposition 3. Suppose that the price of the energy carrier pt follows a geometric Brownian

motion (�, � ) such that 0 < � − �
2
/2. If all the other constants in equation 54, the optimisation

problem, are positive, with � <  and 0 < � < 1, the optimal time for the consumer to invest so
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that the net present value of her energy and retro�t expenses is minimised is

t
⋆
=

1

�

log

k

p0�x

, (55)

provided that

x <

k

p0

. (56)
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