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The most mature aspect of applying artificial
intelligence (AI)/machine learning (ML) to problems
in the atmospheric sciences is likely post-processing of
model output. This article provides some history and
current state of the science of post-processing with AI
for weather and climate models. Deriving from the
discussion at the 2019 Oxford workshop on Machine
Learning for Weather and Climate, this paper also
presents thoughts on medium-term goals to advance
such use of AI, which include assuring that algorithms
are trustworthy and interpretable, adherence to FAIR
data practices to promote usability, and development
of techniques that leverage our physical knowledge
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of the atmosphere. The coauthors propose several actionable items and have initiated one
of those: a repository for datasets from various real weather and climate problems that can
be addressed using AI. Five such datasets are presented and permanently archived, together
with Jupyter notebooks to process them and assess the results in comparison with a baseline
technique. The coauthors invite the readers to test their own algorithms in comparison with
the baseline and to archive their results.

This article is part of the theme issue ‘Machine learning for weather and climate modelling’.

1. Background
Artificial intelligence (AI) and machine learning (ML) show promise for improving modelling
and forecasting for a host of problems. Environmental science is one of many applications of
this useful technology [1]. Although weather and climate have been traditionally modelled using
dynamical and physical models built from first principles, more empirical methods have also
proven useful; thus, it is natural that AI/ML would find applications in this field. Hereafter, we
will use AI to encompass ML in our terminology.

A workshop on Machine Learning for Weather and Climate was convened at Oxford, UK, in
September 2019 to assess the state of the science, evaluate progress, and propose next steps along
the pathway to realize the potential of AI in the atmospheric sciences. Some of the first lectures
segmented the research broadly into three primary groups: post-processing, emulating processes
and using ML to build full models [2,3].

The workshop provided time and space to discuss each of these topics more broadly. Most of
these coauthors became part of the working group assessing opportunities for AI to improve the
output of environmental science models, known as post-processing, while the rest contributed to
the on-going conversation and effort to archive datasets to help advance the science. This group
not only assessed the successes of the environmental science community in leveraging AI for
post-processing to date but also discussed the importance of disclosing failures as a measure to
help advance the science more rapidly. The authors believe that a vigorous effort should be made
to explore and validate modern AI methods. We see a host of opportunities to further improve
numerical weather prediction (NWP) forecasts and climate projections at a minimal cost when
compared with other model development efforts. We suggest what is needed to move forward,
discuss what will constitute success and make some concrete recommendations for the next steps,
including beginning an archive of example problems that can be used to test emerging methods.

Model post-processing corrects systematic errors in model output by comparing hindcasts
to observations. This is becoming increasingly important, but also challenging, as NWP model
resolution has increased to the point that it attempts to resolve hyper-local effects and structures
with a stochastic nature. Similarly, in climate projections, there is a drive towards more localized
information, which is inherently uncertain. For context, NWP forecast systems, through model
improvements and assimilation of additional observational data, have historically achieved a
root-mean-square error (RMSE) skill improvement of approximately one day every 10 years [4].
However, this skill has arguably been attributable to increases in supercomputing power that has
enabled higher model resolution and more comprehensive data assimilation [5]. Unfortunately,
this progress is unlikely to continue under the death of Moore’s Law (https://www.nature.com/
news/the-chips-are-down-for-moore-s-law-1.19338). In this context, model post-processing
becomes yet more important to help drive skill improvements at uncertain length-scales and with
ever more limited compute resources. AI is a prime candidate for developing more powerful post-
processing approaches that can represent cheap transfer functions in fractions of the development
time of traditional approaches (e.g. [6]).

AI also brings the ability to optimize output for specific tasks by choosing appropriate loss
functions. The same set of NWP forecasts may be post-processed in different ways according
to the needs of particular end-users and the decisions they have to make. Built on statistical
foundations, AI post-processing systems not only have the capability to correct biases and phase
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shifts in numerical forecasts, but also have the potential to quantify forecast uncertainty—both
epistemic (due to lack of knowledge) and aleatoric (natural randomness of a process)—more
comprehensively than NWP approaches, and in doing so provide better information for decision
support. In this sense, AI post-processing can act as a bridge between the physical representation
of the atmosphere provided by NWP and the decision-making requirements of end-users. One
must also recognize the observation error in the ‘truth’ data to which the AI is trained. If that
error is systematic, AI will often discover and correct it. Even if that error is aleatoric, AI can learn
a correction on average to minimize the error.

This manuscript reports on the state of the science of AI post-processing for weather and
climate and provides a foundation for further progress through recommending a repository
of methods and data that can enable the community to move forward. Section 2 provides a
brief history of the development and use of AI for post-processing weather and climate model
output without attempting to be comprehensive. The working group considered the current
challenges and how the community might most effectively address them, including setting some
medium-term goals as discussed in §3. Section 4 considers what successful application of AI
post-processing in weather and climate will look like. The workshop attendees decided to make
a distinct impact through concrete deliverables as laid out in §5. In particular, we describe the
need for a repository to provide common assessment tools and datasets for ML scientists to test
methods and set the stage for intercomparison. The repository and initial datasets are described.
Section 6 summarizes and provides some concluding thoughts.

2. Emergence of AI post-processing—A brief literature review
Although the dynamic models of weather and climate have formed the basis for prediction, the
community has long recognized the value of post-processing the forecasts to improve accuracy
and to quantify uncertainty.

Global Climate Models (GCMs) and NWP models provide the atmospheric variables necessary
to determine predicted atmospheric states based on numerical integration of a discretized
version of the Navier–Stokes equations [7]. However, due to uncertainty in initial conditions and
numerical approximation as well as the non-linearity of the system, the chaotic error tends to
swamp skill from initial information [8]. In addition, model deficiencies add systematic error
and insufficient observations put a limit on the resolution of initial conditions. For as long as
NWP forecasts have been officially issued there have been attempts to statistically correct these
methods, given observational data (e.g. [9]). This can be viewed directly as a supervised machine
learning task. Current weather forecasting centres, including the UK Met Office, US National
Center for Environmental Prediction (NCEP), European Center for Medium-Range Forecasting
(ECMWF), and many others rely on statistical methods that have been proven successful. The
initial methods employed multilinear regressions and became known as Model Output Statistics
(MOS [9]). These systems expanded to treat ensembles and became Ensemble Model Output
Statistics (EMOS) [10,11]. These statistical learning methods have been used in practice since
1968 by the U.S. National Weather Service to improve systematic model error (e.g. [12,13]). These
methods are continually refined with new observational data and show major skill improvement
in correcting forecasts from 0 to 10 days [14]. MOS and EMOS, however, are inherently linear
techniques that are notoriously rigid and require significant tuning (e.g. specification of predictive
distribution and estimation of the parameters, e.g. the mean and the standard deviation in the
case of a Gaussian distribution). AI methods, which typically allow for the resolution of complex
nonlinear processes, open up opportunities for more effective corrections.

(a) Forecast improvements with AI
Despite the success of statistical corrections, weather forecasting has a tradition of human
forecasters weighing the relative merits of the various models according to the situation. AI
came into play as the private sector began to forecast beyond a single country, and it became
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Figure 1. DICast post-processing progresses in a two-step process using historical forecasts: 1) bias-correcting each model’s
input using any of a number of MOS-like methods and 2) determining optimal weighting for each model for each forecast time
and each lead time [15]. (Online version in colour.)

obvious that human forecasters could no longer do corrections from experience for the entire
globe. The Weather Company realized this in the late 1990s and collaborated with the National
Center for Atmospheric Research (NCAR) to develop the Dynamic Integrated foreCast system
(DICast®) that learns the appropriate weights for input models given paired historical forecasts
and observations [15]. Figure 1 demonstrates the DICast post-processing methodology, which
is representative of the many other systems currently being used. DICast has evolved over
time to include additional machine-learning methods and has been shown to dramatically
improve forecasts across multiple weather-dependent applications including road conditions
[16], precision agriculture, wind and solar energy [17–20], among others. Now, many commercial
weather companies and national centres employ AI-based post-processing methods [21].

To deal with the aforementioned inherent uncertainty in NWP forecasts, the national centres
now run ensembles of model forecasts with perturbations to initial conditions or other methods of
initiating perturbations in the simulations [22–25]. As with deterministic forecasts, these ensemble
forecasts may have biases in their mean and the spread may not be calibrated against the actual
uncertainty. Thus, methods to ameliorate these problems have been devised to bias correct the
mean deterministic value as well as to calibrate the spread. The first techniques developed
were statistical methods such as the EMOS described earlier [10,11], quantile regression [26,27],
Bayesian model averaging [28], linear variance calibration [29,30], among others. This challenge
also can be met through the application of AI methods. Some of these methods involve identifying
regimes using some clustering or another method to identify similar past forecasts. Hamill and
Whittaker [31] and Hamill et al. [32] describe an analogue approach to calibrating ensembles
of precipitation forecasts. Greybush et al. [33] describe a multi-step approach that first splits
the forecasts into regimes using principal component analysis then applies AI-based methods
to distinguish among weather regimes to produce weighted consensus forecasts of surface
temperature. McCandless et al. [34] tested multiple AI methods for improving ensemble member
weighting for predicting snowfall accumulation.

Several methods have been used to more directly provide probabilistic information with AI
approaches. Krasnopolsky [35] reviews the use of Artificial Neural Networks (ANNs) to form
ensembles for various applications. He compares nonlinear ANN approaches to linear ones
and demonstrates marked improvements using the nonlinear approaches for several variables.
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Evolutionary programming (EP) has also proven useful for generating AI ensembles. EP methods
have been used to evolve ensembles, demonstrating that smaller temperature RMSEs and
higher Brier Skill Scores could be generated than with a 21-member operational ensemble [36].
This method is also useful for minimum temperature forecasts, then demonstrated further
improvements for adaptive methods [37,38]. The analog ensemble (AnEn) method has arisen as a
machine-learning technique to directly predict both deterministic forecast values and to quantify
uncertainty directly from a single high-quality NWP run of sufficient length [39]. The AnEn uses
a time series of historical forecast variables and their corresponding verifying observations. For
each current forecast being made, the AnEn looks back in the historical record to find the n most
similar forecasts. The verifying observations then become an n-member ensemble that is used
to estimate the uncertainty of the forecast. The mean of that ensemble becomes the improved
forecast value. The AnEn has been shown to improve upon raw ensemble output as well as upon
some common statistical methods [39].

(b) Applications driving post-processing
AI methods have been highly used in applications that derive from NWP forecasts. For instance
prediction of severe weather has seen a plethora of AI methods applied to improve predication
[40]. Random forests [41], for instance, can model nonlinear relationships including arbitrary
predictors while being robust to overfitting. In weather post-processing, quantile regression forest
models have been proposed by Taillardat et al. [42] and extended to include combinations with
parametric approaches [43]. The prediction of mesoscale convective areas has been shown to be
successful with decisions trees by Gagne et al. [44] and Ahijevych et al. [45]. Gradient boosted
regression trees proved the most accurate method for predicting storm duration and forecasting
severe wind [46]. Gagne et al. [47,48] have applied machine learning methods including random
forests and gradient boosted regression to predict the probability of severe hail.

Where applications have financial implications may be where AI has been applied most
frequently to improve forecasts. For instance, as more renewable energy is being deployed, it
becomes increasingly important to accurately predict the daily variations in wind speed and
solar irradiance directly at the plants using local observations. AI combined with NWP models
has proven to be a best practice to estimate the timing of changes [17,19,49]. Methods such
as autoregressive models, Artificial Neural Networks, Support Vector Machines, and blended
methods have shown success at providing nonlinear corrections to models [15,50,51]. Such
techniques can improve upon a forecast by 10–15% over the best model forecast [15,19,49].
Probabilistic forecasts of these variables are also important to industry [52–54]. The AnEn
described above has proven useful for predicting both wind [55] and solar power [56].

(c) Longer time scales
Beyond the NWP forecasting timescales of 10–14 days, forecast centres are increasingly providing
subseasonal and seasonal-scale forecasts. At seasonal to decadal timescales, initialized coupled
climate models are used to skilfully forecast shifts in regional climates [57]. However, this skill
relies on extensive post-processing to correct for regression from initialized climatology to model
resting climatology known as ‘bias-correction’ [58].

A growing area of research is to use known knowledge of physics in terms of physical laws
and conservation properties in machine learning algorithms to constrain the training and improve
the algorithms further. For example, a generative adversarial network (GAN)-based model for
simulating turbulent flows can be further improved by incorporating physical constraints, e.g.
energy spectra [59], in the loss function. Convolutional neural network (CNN)-based models for
parameterizing subgrid-scale physics can be further improved to represent the mean climate by
constraining global conservation properties e.g. conservation of momentum [60].

Climate model simulations routinely have spatial and temporal (e.g. seasonal) biases with
respect to observations, some of which are systematic across climate models (e.g. Southern Ocean
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warm bias as described in [61,62]). When constructing future climate predictions using available
simulations run under set future emission scenarios, it is important that any model biases are
corrected before making impact assessments (e.g. crop yield projections which may be a function
of the number of days above/below a given threshold within the growing season). These bias
corrections are often made by calculating the differences (deltas) in probability distribution
functions (PDFs) between the historical climate model and observations and then applying
these deltas to the future climate simulation. This assumes that the biases are not time-varying.
Similarly, another post-processing method known as change factor calculates the PDF deltas
between historical and future climate runs within the same climate model and then applies these
deltas to the observed distribution. Depending on the shape of the climate variable’s distribution
(Gaussian versus skewed), the PDF deltas may be calculated by using the PDF means, means and
variance, or quantile mapping [63,64]. There is great potential here to use AI to perform nonlinear
multivariate and spatial-temporal bias correction on climate model output.

A similar process was applied to assess the changes in the wind and solar resources over
the United States in a projected climate change scenario for a period spanning 2040–2069 based
on GCM simulations [65]. In that work, self-organizing maps (SOMs) were used to distinguish
patterns representative of climate regimes, then to simulate a proxy future climate through Monte
Carlo simulation of the correct pattern for a given month in the future, utilizing a computed bias
correction (similar to the change factors) for future temperature changes.

(d) Deep learning for forecast improvement
More recently, deep learning (DL) techniques have been revolutionizing how spatial data can
be analysed and better predicted. DL neural networks and their subclasses (convolution, long-
short term memory, etc.) are known to be able to approximate nonlinear functions [66] with
the developed transfer functions learned from the data alone. Gagne et al. [48] have applied
convolutional neural networks (CNN) to NWP data to identify storms most likely to develop
severe hail, then to identify features of those storms that make them hail producing. Lagerquist
et al. [67] used CNN to predict the movement of weather fronts, and Chapman et al. [68] showed
these methods to be superior for predicting integrated water vapour, an indicator of atmospheric
rivers. McGovern et al. [69] demonstrated how to advance beyond just blindly applying these
methods to better understand physics. These methods have proven successful for deterministic
forecast improvement that encodes spatial information while also being able to provide tuned
probabilistic estimates of uncertainty (e.g. [6,70]). Gronquist et al. [71] demonstrate applying DL
methods to substantially improve uncertainty quantification skills for global weather forecasts,
including for extreme weather events.

(e) Beyond post-processing and toward decision-making
In addition to the use of AI for post-processing individual weather models, there is an
opportunity, and perhaps a need, to use AI as an ‘algorithmic interface’ to weather model output.
As ever more weather models come online, each with increasingly high resolution and with more
numerous ensemble members, meteorologists are increasingly stretched to reliably and accurately
summarize the available information into meaningful forecasts for end-users. While this is less
of an issue in day-to-day forecasting (where, for example, reporting a simple ensemble mean—
human out of the loop—may be sufficient) it becomes much more significant in the context of
hazard warnings, where probabilistic forecasts need to be well-calibrated in order to be effective.

In fact, there exists a gap between the information output by NWP models (a set of predictions
of weather outcomes, each likely to be carrying biases) and the information required to make
optimal decisions (which, according to decision theory, would be a well-calibrated probability
distribution over weather outcomes). While the outputs of traditional NWP modelling could be
viewed as a sparse approximation of the desired probability distribution over outcomes, the use of
AI to debias and ‘infill’ this probability distribution based on all available information seems an
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important area for AI post-processing. The development of such systems, which can optimally
extract and present information from the range of models they oversee, has the potential to
not only improve on probabilistic forecasting when it matters most but also facilitate individual
model development by providing overarching consistency in output, so that drastically changing
an individual model will not break the system (the overall output will be carried by the other
unchanged models until the performance of the updated model is sufficiently well learned to be
given influence). This behaviour could be achieved through dynamically weighing the influence
of the separate forecasting models, according to a model stacking procedure (e.g. [15]). This ‘AI
overseer’ approach also opens the door to use more experimental forecasting model designs in
operational settings, for example, purely statistical forecasts could be run alongside numerical
ones, with their optimal weightings in the final output learned dynamically on-the-fly.

(f) Cost value of AI post-processing
As with any method, there is a cost to modelling that involves obtaining sufficient amounts of
data, computational time and researcher time. These costs vary widely depending on the task to
be performed, the data requirements, the method employed, and the accuracy desired. Although
there are rules of thumb for data requirements for some methods, there are many exceptions to
those rules. For instance, for a simple temperature forecasting post-processing method with an
ANN, one typically desires at least a year’s worth of data to capture diurnal and seasonal cycles
in the data (one may wish to include day-of-year and hour-of-day variables). With multiple years
of data, accuracy may improve. These data requirements are not dissimilar to those of statistical
methods such as MOS. For dynamic methods such as DICast that are retrained frequently, less
data may be required to produce optimal results—DICast can be optimized with 90 days of data
or less [15,20]. The computational time for these methods is trivial in comparison with the time
to accomplish the NWP simulations. Standard applications have become rather inconsequential
in terms of required person time to train, test and apply the methods. Research into how to
design optimal methods, such as any research problem, can consume as much personal time as
the researcher has interest. In contrast, deep learning problems with many inner nodes require
substantially more data and computational time to train the DL model.

One of the few examples of a cost/benefit analysis of an AI application was accomplished by
Delle Monache et al. [39] who trained an AnEn on a single high-quality NWP simulation and
compared it to running a coarser resolution 21-member ensemble with EMOS post-processing.
They found that the AnEn performed better in terms of both deterministic and probabilistic
forecasts at a substantially lower computational cost.

3. What is needed to move forward
We see an expeditious and successful post-processing AI and ML community being predicated
on four features: trustworthiness, interpretability, usability and technique.

(a) Trustworthiness
Since AI is now being used across many domains for decision-making that affects people’s
lives, there is growing realization by funding bodies that trustworthiness is a key factor
in the continued uptake of such systems. For example, in the UK, UKRI has already
established doctoral training centres for ‘Accountable, Responsible and Transparent AI’
and ‘Safe and Trusted Artificial Intelligence’ (as examples, ref UKRI website: https://
www.ukri.org/research/themes-and-programmes/ukri-cdts-in-artificial-intelligence/, and in
the US https://www.technologyreview.com/2020/01/07/130997/ai-regulatory-principles-us-
white-house-american-ai-initiatve/). In scientific domains, robustness and reproducibility are
important factors that influence trust. In the past, AI research has often ignored these factors,
but the community is becoming more aware of the issues. For example, some recent studies
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have attempted to apply greater rigour to benchmarking and comparing similar techniques
[72] and also proper evaluation of the claim that metric learning systems have been achieving
ever-increasing accuracy [73]). These studies found various deficiencies such as the way
algorithms were compared, poor training and hyperparameter tuning strategies and weaknesses
in accuracy metrics. In particular, Musgrave et al. noted that the AI community lacked proper
benchmarking strategies. Direct and interpretable method success and failure metrics are
crucial for impactful and trustworthy post-processing methods. In practice, this means testing
against classic techniques (MOS, EMOS, Bayesian model averaging, etc) to determine the level
of effectiveness of the proposed methodology with rigorous confidence intervals (i.e. block
bootstrapping) on data that the method and the practitioner have not previously used. This
includes separating the training, testing, and validation data into temporal slices to ensure that
no temporal correlation can cause artificially inflated skill between testing and training. Standard
techniques exist in the weather community to evaluate both probabilistic (continuous ranked
probability score, rank histograms, etc.) and deterministic (RMSE, bias, correlation, etc.) skills.
However, the correct metrics must be chosen for the target variable. For example, RMSE can be
largely ineffective for precipitation, a field dominated by null values and can lead to erroneous
results, where thresholded relative operating characteristics might be much more appropriate.
Rigorous and tedious testing will help to ensure each method’s worth and elucidate the true
value added by the post-processing.

(b) Interpretability
Related to the previous section, trust in AI methods is also affected by a lack of interpretability
due to the complex structure of typical AI architectures. AI is plagued by the so-called ‘black box’
syndrome, although this perception is often quoted without domain knowledge. In response,
a scientific effort has emerged to demystify the inner workings of the AI methods and instill
community-wide trust in their use [74–76]. More recently, the environmental sciences community
has also taken up this challenge and is striving to develop trust and acceptance around AI
interpretability and to demonstrate an understanding of the underlying physics at play [69,77].
This emphasis on explainable AI is beginning to resonate with the funding agencies, which is
now accelerating research in this area. For instance, specific success has been seen in interpretable
machine learning in the weather community, including Jacobian methods of saliency, backwards
optimization and class activation [48,67], and input permutation for feature importance [6,41,78].
Another area revolves around novelty detection in conjunction with principal component
analysis [79].

(c) Data usability
A statistical post-processing task begins with data cleaning. This process is often unnecessarily
tedious owing to the structure and unique ‘edge-cases’ inherent to output model data. Clear
documentation and use cases in the output forecast file would expedite the cleaning process
exponentially. This includes metadata and any processing (regridding, averaging, etc.) that has
been performed on a given dataset, including missing values and the accurate date and time
stamps. We recommend that modelling centres adopt the ‘FAIR principles’ ([80]; https://www.
go-fair.org/fair-principles/), namely data must be 1) Findable, 2) Accessible, 3) Interoperable
and 4) Reusable.

Machine and statistical learning require long and consistent datasets without shifting
systematic distribution relationships between forecasted and observed conditions. Thus, new
model development is detrimental to the post-processing techniques. Experiments have shown
that two seasons of homogeneous data (approx. 300 forecasts) are required to elucidate stable
statistical biases using traditional linear approaches [12], while bootstrap experiments with
surface wind data indicated that more than 200 cases would be required to control overfitting
of the development sample [81]. Linear methods (like MOS) could potentially benefit from
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this short of a training set, but deep learning methods require much more data to develop
the conditional bias relationships that we hope to discriminate. We, therefore, urge that each
new model development system creates and retains long historical reforecast data sets. These
reforecasts should be planned as part of the iterative model improvement and release cycle. To
that end, we call for a systematic study of reforecast length versus post-processing skill in order
to more accurately capture the required length of reforecast data. The question then becomes: is
it more valuable to develop better NWP or better post-processing? How should weather services
balance their efforts and weigh the potential improvements from additional training data against
potential improvements from NWP model improvements [82]? Additionally, we should consider
developing and assessing modelling systems by the skill of the post-processed model output,
rather than that of the model alone.

All supervised AI post-processing techniques require ground truth data to develop a
linking function between the forecast and observations. The continued development of new
long-running reanalysis products [83] provides many desired ground truth variables (i.e.
temperature and precipitation). However, less common ground truth variables are often tedious
to calculate due to massive data download requirements. The post-processing workflow could
be expedited if modelling centres continued communication with end-users about desired
labelled output variables. Efforts by modelling centres are already underway to integrate
user feedback and produce desired variables (i.e. lightning, integrated vapour transport and
Max CAPE/CAPES https://www.ecmwf.int/sites/default/files/elibrary/2018/18260-ecmwf-
product-development.pdf), and the authors commend and encourage this collaboration.

In order to further develop successful techniques, weather benchmarking datasets need to be
developed and curated for fast technique development. Standardized datasets that have been
post-processed with classic methods should be made available to the community to quickly
test the efficacy of new ideas and methods. Such datasets will enable rapid prototyping and
architecture testing.

Lastly, research may demonstrate the enhanced skill of a new technique, but will that skill
be successfully realized in an operational system? Thus, engineering a post-processing library is
vital for proper technology transfer. Additionally, communicating early with the intended end-
user to determine needs will expedite the entire process. Finally, the movement toward a culture
of sharing code and model implementations could push science forward at a much faster rate.

(d) Technique
The AI community constantly develops new modelling methods to capture as much predictable
skill from a dataset as possible. The key for the weather community is to leverage domain
knowledge to determine what in these new methods is appropriate and valuable for weather
forecast post-processing. For example, Chapman et al. [68] leveraged convolutional neural
networks, which develop spatial relationships acting on input image data, to capture large-scale
weather features (rather than local forecast features alone) for predictive point measurement
post-processing.

Due to the aforementioned sensitivity to initial conditions, uncertainty quantification has
become a priority of forecasting centres. Thus, the major forecasting centres rely on ensemble
systems in order to capture the uncertainty inherent in the natural variability of the weather
system and model initialization. The rise of Bayesian ML methods (Gaussian processes, etc)
and Bayesian neural networks, which produce distribution-to-distribution regression, can help
quantify the uncertainty in a post-processed value rather than predict the mean state alone. Other
methods are reviewed in §2. Perhaps, we could replace model ensembles with ML post-processing
and substantially decrease the required computational resources by eliminating some ensembles.
Lee et al. [84] showed that for forecasting 2-m temperature and 10-wind, with calibration the
number of members of an NWP ensemble could be cut in half. Subsequent work indicated that the
weighting of ensemble members varies by season, but that a 42-member physics ensemble could
be represented with just 7–10 members [85]. Such an approach would allow computer power to
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be devoted to higher resolution NWP simulations in place of more ensemble members. This work
requires further testing but offers an exciting avenue for probabilistic forecasting. Parallels can be
drawn between this thinking and the popular AnEn methods, which produce well-calibrated and
unbiased ensemble estimates from a single NWP simulation [39].

4. What will constitute success?
The working group considered major goals as metrics for success in the coming years. For the
weather community, successful use of AI will be visible when major centres include AI post-
processing as a step in how they make their forecasts. Several centres are moving in this direction.
For instance, Météo France is currently implementing a random forest for post-processing
ensemble forecasts [26], paving the way towards more full implementation.

For AI to be fully integrated, this would imply that when changes are made to the systems, the
centre would consider the post-processed result rather than the output of the NWP models alone.
It would also involve making computational space and time for the AI method a priority. This
would also imply trust in the methods, which will come with rigorous statistical validation. Such
applications could be in terms of post-processing NWP output, ML downscaling, implementation
as part of satellite products, enhancing prediction for high impact events and anomaly detection.
It may involve conditional correction, such as identifying a regime and providing regime-
dependent corrections. To accelerate such progress requires the ability to not only publish
successful applications but also the failures. If failures are also routinely published, a vast amount
of time could be saved by not having each research group try the same thing. In fact, a repository
of failures could be quite valuable to the community.

In the climate arena, downscaling using AI could save vast amounts of computational power
and time while maintaining the type of accuracy needed if research advances to the place where
the methods are fully trusted. AI can assist with intelligently weighing the models in CMIP runs to
produce a ‘best estimate’ rather than a simple mean or median. Using feature detection as a new
product of the output could aid in better understanding changes in patterns and the potential
emergence of new patterns.

As discussed in the prior section, community trust in the output of AI-post-processed model
runs could lead to faster discovery and deeper understanding of weather and climate simulations.
This acceptance hinges entirely on the development of interpretability methods and statistically
rigorous proof of model improvement.

5. Actionable items
To achieve the vision articulated above, some specific actions could form a roadmap to catalyse
the application of AI post-processing towards achieving the vision articulated above. Specifically,
we call for 1) development of a data repository for fast development of post-processing
techniques, 2) data standardization methods (FAIR), 3) calls for studies on interpretability
methods, 4) metadata and model documentation for labelled training data and 5) a database of
recorded AI failures to limit duplication of effort across the research community.

As a result of these deliberations, we wish to contribute to the actions that we propose.
In particular, we propose an open-access experimental testbed database on which traditional
methods have been implemented in order to set benchmarking points for the rapid development
of new machine learning methods [86]. We have chosen these datasets to represent various
temporal and spatial scales and problems that are of current interest to atmospheric scientists.
To initiate this repository, we provide five separate and clean weather and climate forecast fields
(detailed below) from over eight modelling agencies, along with the verifying forecast values. The
datasets include both ensemble and deterministic forecasts and offer a plethora of avenues for
post-processing research. The data are permanently archived at the University of California San
Diego Libraries (https://doi.org/10.6075/J08S4NDM), and we provide tested Python code to aid
in rapid analysis and evaluation of results (https://github.com/NCAR/PostProcessForecasts).
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Each dataset includes truth data, model data, and an example application. The problems are
summarized in table 1.

The Github repository provides a series of Jupyter Notebooks demonstrating how to load,
interpret, prepare and split datasets, train simple benchmark post-processing algorithms and
score the output with appropriate scoring metrics typical within the weather forecasting field.
This combination of technologies means that anyone with access to a Python environment can
quickly install a data catalogue, which will present them with Python objects, representing these
large, distributed datasets. The user also gains access to standard post-processing methods that
can serve as a benchmark reference to test against their developed algorithmic post-processing
solutions. A description of each available dataset is provided below.

This paper is a first method of advertising this repository. A second step is to archive them on
Pangeo (which is in the works). A third step is to engage NCAR, the UKMO, the EUMETNET
working group on post-processing and NOAA in publicizing them as part of their recent
initiatives in AI. For instance, they have been used in two recent EUMETNET workshops on
post-processing and AI, and there is planned use in an NCAR 2021 Summer School. We will also
promote use for student projects in regular university courses. We expect to track downloads,
archive papers that come from the datasets and encourage researchers to communicate with the
dataset owner and perhaps even write papers comparing AI techniques applied to these datasets.
In keeping with our recommendations above, we will encourage documenting failures as well as
successes to accelerate community learning.

(a) Climate variability modes
We offer datasets representing two climate variability modes identified from eight separate
operational weather forecast models for more than a decade worth of forecasts. These datasets
are provided as benchmark datasets for training post-processing algorithms to improve forecasts
of these large-scale modes of variability, and concomitantly, subseasonal forecast skill of other
related weather patterns.

(i) MJO ensemble forecasts

The Madden-Julian Oscillation (MJO—[89,90]), a dominant intraseasonal mode of variability in
the Tropics and a significant source of predictability globally on subseasonal timescales, has been
identified using statistical techniques on forecast variables. We use the zonal winds at 850 hPa,
200 hPa, and outgoing longwave radiation from both the forecast models and observations to
diagnose the MJO and evaluate its forecast skill. The dataset spans multiple ensembles (ranging
from 51 to 10 members, depending on the operational weather forecast model) of daily forecasts
from 2006 to 2019. Figure 2 represents the indices of the empirical orthogonal functions (EOFs) as
a function of latitude for the coupled leading modes of the MJO.

(ii) PNA ensemble forecasts

Similarly, the Pacific North American pattern, which represents large-scale weather variability
over the Pacific Northwest region, has been identified using the geopotential height field in a
method consistent with Wallace & Gutzler [88] in both observations and model forecasts. The
PNA is an important teleconnection pattern and heavily influences North American Weather.
Additionally, the PNA is strongly forced by the El Nino-Southern Oscillation and its forecast skill
is modulated likewise [93,94].

(b) Global forecast system integrated vapour transport
A third dataset is the forecasted magnitude of integrated vapour transport (IVT) from the
National Center for Environmental Predictions Global Forecast System (GFS). IVT is a combined
momentum and thermodynamic metric that integrates specific humidity and u and v components

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 M

ar
ch

 2
02

1 



12

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200091

...............................................................

Ta
bl
e1
.S
um

m
ar
yo
ffi
ve
da
ta
se
ts
ar
ch
ive
di
nr
ep
os
ito
ry.

Da
ta
Se
t

M
ad
de
n-
Ju
lia
n

Os
cil
lat
ion

Fo
re
ca
st

Pa
cifi
cN
or
th

Am
er
ica
nF
or
ec
as
t

In
te
gr
at
ed
Va
po
ur

Tra
ns
po
rt
(IV
T)

Fo
re
ca
st

Ge
rm
an
yT
2m

Fo
re
ca
st

UK
Su
rfa
ce
Ro
ad

Co
nd
iti
on
sF
or
ec
as
t

M
od
ell
ing

Ce
nt
er

CM
A,
CM
C,
CP
TE
CT
,

EC
MW

F,
JM
A,
KM
A,

NC
EP
,U
KM

O

CM
A,
CM
C,
CP
TE
CT
,

EC
MW

F,
JM
A,
KM
A,

NC
EP
,U
KM

O

NC
EP
–G
FS

EC
MW

F
UK
M
O–
M
OR
ST

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

Fo
re
ca
st
ty
pe

En
se
m
ble

En
se
m
ble

De
te
rm
ini
sti
c

En
se
m
ble

En
se
m
ble

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

Fo
re
ca
st
lea
dt
im
e

0–
15
da
ys
(d
ail
y)

0–
15
da
ys
(d
ail
y)

00
6h
,0
48
h,
16
8h

48
h

0–
16
8h

(h
ou
rly
)

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

Re
gio
no
fin
te
re
st

Co
m
bin
ed
EO
F1
&
2o
f

15
°S
–1
5°
N
av
er
ag
e

U2
00
&
U8
50
as
in

(W
he
ele
ra
nd

He
nd
on
20
04
[8
7])

PN
A
La
t/L
on
loc
at
ion
s

as
in
(W
all
ac
ea
nd

Gu
tlz
er
19
81
[8
8]
)

Gr
idd
ed
La
t[1
0°
N,

60
°N
],

Lo
n[
18
0°
,11
0°
W
]

(0
.5°

×
0.6
25
°)

53
7G
er
m
an

ob
se
rv
at
ion

sta
tio
n

loc
at
ion
s

Fo
ur
un
dis
clo
se
d

loc
at
ion
s

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

Tim
es
pa
n

20
06
–2
01
9

20
06
–2
01
9

20
06
–2
01
8

20
07
–2
01
6

De
c2
01
8–
M
ar
20
19

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

Gr
ou
nd
tru
th

Fo
re
ca
st
ho
ur
0R
M
M
1

an
dR
M
M
2i
nd
ex

an
aly
sis

Fo
re
ca
st
ho
ur
0P
NA

ind
ex
An
aly
sis

Gr
idd
ed
M
ER
RA
2

re
an
aly
sis
IV
T

(0
.5°

×
0.6
25
°)

T2
m
sta
tio
ns

St
at
ion

su
rfa
ce

te
m
pe
ra
tu
re

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

Va
ria
ble

of
In
te
re
st

RM
M
1a
nd
RM

M
2I
nd
ex

Fo
re
ca
st

PN
A
In
de
xA
na
lys
is

Gr
idd
ed
GF
SI
VT

fo
re
ca
st

(0
.5°

×
0.6
25
°)

T2
m
Fo
re
ca
st

Ro
ad
su
rfa
ce
fo
re
ca
st

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 M

ar
ch

 2
02

1 



13

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200091

...............................................................

EOF 1 21.9%

U200

U850

OLR

EOF 2

–0.12
0 60 E 120 E 120 W 60 W180

0 60 E 120 E 120 W 60 W180

–0.08

0.08

0.12

–0.04

0.04

0.00

–0.12

–0.08

0.08

0.12

–0.04

0.04

0.00

21.0%

U200

U850

OLR

(a)

(b)

Figure 2. All-seasonmultivariate (a) first and (b) second combined empirical orthogonal function (CEOF)modes of 20–100 day
15° S-15° N-averaged zonal wind at 850 hPa and 200 hPa from NCEP Reanalysis and OLR from the NOAA satellite for 1980–1999.
The total variance accounted for by each mode is shown in parenthesis at the top of each panel. See Subramanian et al. [91,92]
for a further exploration of the MJO.

of the wind speed from 1000 to 300 hpa. Predictions from the GFS [95] at a 0.5-degree horizontal
spatial resolution on 64 vertical levels for daily 0000 and 1200 UTC model initializations are
provided for this calculation. We present three forecast lead times of 6 h, 2 days and 1 week
from 2006 to 2018. This includes approximately 8000 data fields for every forecast lead time
or approximately 24 000 forecasted fields across all lead times. The region of interest spans
coastal North America and the Eastern Pacific from 180° W to 110° W longitude, and 10° N to
60° N latitude. As a verifying observation field, we provide IVT from the National Aeronautics
and Space Administration’s Modern-Era Retrospective Analysis for Research and Applications
version 2 (MERRA-2) reanalysis. MERRA-2 data are resolved on a 0.625 × 0.5 degree grid
and interpolated to 21 pressure levels between 1000 and 300 hpa for IVT calculation [96,97].
For consistency, GFS predictions are then remapped to this grid resolution using a first- and
second-order conservative remapping scheme. Further details can be found in figure 3 [68].

(c) ECMWF Two-meter temperature ensemble over Germany
An example of short-range forecasts and verifying observations is a dataset of temperature
observations at 537 stations over Germany and predictors derived from the ECMWF ensemble
prediction system from 2007 to 2016. Predictors are the mean and standard deviation of 48-h
ahead 50-member ECMWF ensemble forecasts of temperature and other variables, interpolated
to station locations. The corresponding observations (valid at 00UTC) are obtained from surface
synoptic observations stations operated by the German weather service. Details (including a list
of predictors) are available in Rasp and Lerch [6]. Figure 4 indicates the locations and altitudes of
the stations used for training.
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Figure 3. Root-mean-squared error of Global Forecast System’s integrated vapour transport field 6 h forecasts issued 2006–
2017. See Chapman et al. [68] for more detail.

2000
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1000

0

Figure 4. Station locations for the temperature dataset over Germany for the 2007–2015 training period. Shading of the dots
indicates altitude. See [6] for more details. (Online version in colour.)

(d) UK surface road conditions
The fifth dataset contains numerical weather prediction forecasts from all models in the UK Met
Office’s Road Surface Temperature (MORST) forecasting system, along with corresponding road
network temperature observations from Highways England. Data are provided for four random
sites (location undisclosed) and spans 98 days from mid-December 2018 to late March 2019
on an hourly forecast lead basis from 0 to 168 h. Ground truth data are provided by the road
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Figure 5. An example from the road surface temperature dataset. The solid black line shows observations up to ‘time zero’
(the vertical dashed line), beyond which various NWP forecasts (coloured lines) provide estimates of future outcomes. (Online
version in colour.)

surface temperature observed at the road network weather station for the concurrent forecast
time. The dataset spans 2342 forecasting hours for each of the four sites. Spanning all lead times
and owing to the fact that a multitude of forecasts are made for each hour by the time it is
observed, the dataset spans over 1.34 million forecasts. This site-specific dataset highlights the
challenges involved in providing fully probabilistic forecasts from NWP outputs. Kirkwood et al.
[98] provide more details of the dataset and propose a machine learning-based solution to this
forecasting problem. Figure 5 presents an example time series from this dataset.

(e) Data archives
Our initiative to archive data in a repository to better enable testing AI methods is not unique. For
instance, the Pangeo ecosystem (https://pangeo.io/) promotes open, reproducible and scalable
science. The community provides documentation, develops and maintains the software and
provides computing system architectures, focusing on open-source tools. It is in use by several
national centres in meteorology, including the US National Center for Atmospheric Research
(NCAR) and the UK Met Office (UKMO), as well as The Alan Turing Institute (the UK’s
national institute for data science and artificial intelligence) and the British Antarctic Survey
(BAS), among others. Note that parallel data archive efforts are underway in other communities,
including Environnet [99], Weatherbench [100] (https://arxiv.org/abs/2002.00469), Spacenet
(https://arxiv.org/abs/1807.01232) and various authors who make their datasets public [71]
among others.

6. Concluding thoughts
Post-processing weather and climate output using AI engenders an active and well-established
community that has already provided a host of research demonstrating value for weather
forecasting. In that sense, it is the most mature sector of machine learning and artificial intelligence
used in the weather and climate community. This conference review was framed around the
conversations between machine learning and post-processing experts; we have focused on the
future impact of pursuing modern machine learning techniques and what it would look like to
successfully implement these methods widely.

We have set in motion a call to action to further explore modern machine learning techniques
and their applicability in the weather and climate communities. We hope to inspire further study
and resources to be dedicated to model improvement through post-processing.
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Specifically, we call for 1) development of a data repository for fast development of post-
processing techniques, 2) data standardization methods (FAIR), 3) studies on interpretability
methods, 4) metadata and model documentation for labelled training data and 5) a database of
recorded AI failures to limit any duplication of effort across the research community.

An actionable outcome of this effort is the initialization of a repository beginning with five
datasets that represent an interesting range of weather and climate problems, both deterministic
and probabilistic, to test AI methods [86]. In addition, we have provided Jupyter notebooks to aid
processing these datasets and comparing them to a documented baseline. The authors invite the
readers to test their own methods on these datasets and contribute additional interesting datasets
to this archive.

The issues brought forth here suggest a roadmap for AI to become ubiquitous in post-
processing weather and climate model output. Specifically, a first step is initiating repositories
such as the one offered here, together with a set of notebooks and datasets to standardize testing
new methods. These repositories can be advertised and promoted, such as in this paper and
through workshops and courses, such as those offered by the institutions represented by the
coauthors of this paper. Offering a dedicated website and portal to facilitate benchmarking,
collaboration and publication of the results, including negative results to assure that time is
best leveraged. Through making such datasets available, promoting the FAIR principals, and
encouraging full use of these methods, we expect that AI will continue to expand and become
a yet more necessary component of weather and climate prediction.

Data accessibility. The datasets described in §5 are stored at https://doi.org/10.6075/J08S4NDM. Jupyter
notebooks to process those data and to evaluate methods using the data are available at https://github.com/
NCAR/PostProcessForecasts.
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