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Abstract: Fluorescence microscopy images are inevitably contaminated by background intensity
contributions. Fluorescence from out-of-focus planes and scattered light are important sources
of slowly varying, low spatial frequency background, whereas background varying from pixel to
pixel (high frequency noise) is introduced by the detection system. Here we present a powerful,
easy-to-use software, wavelet-based background and noise subtraction (WBNS), which effectively
removes both of these components. To assess its performance, we apply WBNS to synthetic
images and compare the results quantitatively with the ground truth and with images processed
by other background removal algorithms. We further evaluate WBNS on real images taken with a
light-sheet microscope and a super-resolution stimulated emission depletion microscope. For both
cases, we compare the WBNS algorithm with hardware-based background removal techniques
and present a quantitative assessment of the results. WBNS shows an excellent performance in
all these applications and significantly enhances the visual appearance of fluorescence images.
Moreover, it may serve as a pre-processing step for further quantitative analysis.
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1. Introduction

Over the past decades, fluorescence microscopy has developed into a key enabling experimental
technique in life sciences research. Especially the advent of super-resolution microscopy
techniques in recent years has stirred enormous excitement, as these powerful new methods
offer entirely new opportunities to explore biological processes at the subcellular level [1–3].
A wide variety of imaging modalities have become available that markedly differ in regard to
their spatial and temporal resolution, signal-to-background ratio and sample health due to light
exposure. Thus, the particular technique has to be wisely chosen to best fulfil the demands of
an imaging experiment aimed at solving the biological question at hand. Ideally, fluorescence
microscopy images depict structures of biological samples as (mathematical) convolutions with
the point spread function (PSF) of the microscope, which introduces blur due to the limited spatial
resolution of the microscope (caused by the diffraction of light in classical microscopy). Real
images are, in addition, contaminated by low spatial frequency background intensity, especially
due to out-of-focus fluorescence and scattered light. Moreover, the detection process introduces
high-frequency noise that further deteriorates the image quality (Fig. 1(a)). Various approaches
have been devised to suppress these adverse effects, either as hardware-based modifications to an
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Fig. 1. The WBNS software and its application to fluorescence images. (a) DSLM image
from a 3D image stack showing cell nuclei of a zebrafish embryo (head section) labelled
with GFP. Data are taken from Ref. [6]. (b) The corresponding image after processing with
WBNS. Scale bar, 100 µm. (c) Flowchart of the WBNS algorithm. First, the input image
(red box) is decomposed by consecutively applying two wavelets acting as high-pass (h) and
low-pass (g) filters, followed by subsampling by a factor of two (↓2). The details of the first
level contain high-frequency noise (cyan box) on characteristic length scales smaller than
the PSF. This decomposition is repeated multiple times, here we show only two levels for
brevity. Higher level approximations contain the low-frequency background. We set the
details to zero and reconstruct an image by upsampling (↑2) and applying the inverse wavelet
transform (g̃, h̃) at all levels to obtain the background estimate (green box). A Gaussian
filter (blue box) smooths discontinuities. Finally, the background (magenta) and the noise
(orange) are subtracted from the image. (d)-(i) Close-ups of the image (white boxes in panels
a and b) during different stages of the algorithm. The colors of the image frames agree
with those of the corresponding boxes in panel (c). (d) Original image (scale bar, 8 µm),
(e) unfiltered and (f) Gaussian filtered background estimate, (g) extracted noise image, (h)
image after background subtraction and (i) image after background and noise subtraction.
Panels (g), (h) and (i) are shown with enhanced contrast to visualize the effects on the noise.
The pixel intensities are encoded as indicated by the color bars below the images.
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existing microscope design or software solutions for post-processing of images. Here we have
developed a powerful, wavelet-based background and noise subtraction (WBNS) algorithm that
removes background as well as noise from the image (Fig. 1(b)). To evaluate its performance, we
have processed synthetic ground-truth images with WBNS and compared the results quantitatively
with the ground truth and images processed by other background removal algorithms. We have
further applied WBNS to real fluorescence images. To this end, we have selected, on the one hand,
a widefield technique with camera detection, digital scanned light sheet microscopy (DSLM) [4]
and, on the other hand, a raster scanning confocal technique capable of super-resolution, namely
stimulated emission depletion (STED) microscopy [5]. For both modalities, hardware-based
background removal techniques are also available, so that we can compare the efficacy of the
hardware and software solutions in a quantitative fashion.

Here we demonstrate that the WBNS program is a powerful tool that can be applied to all
sorts of images, regardless of the particular imaging modality chosen. It is versatile and easy to
use as it requires as input only a two-dimensional (2D) image or three-dimensional (3D) image
stack plus a single additional parameter, R, the full width at half-maximum (FWHM) of the PSF,
which specifies the optical resolution.

2. Wavelet-based image analysis algorithm

WBNS uses the discrete wavelet transform to decompose the image into high- and low-frequency
components at multiple, logarithmically spaced resolution levels. Brief, insightful introductions
to this algorithm, which can be implemented elegantly as a digital filter bank, can be found in Refs.
[7–9]. We employ the small Haar wavelet to transform the information contained in the image into
high-frequency components, the so-called “detail coefficients”, and low-frequency components,
the “approximation coefficients”, by consecutively applying the wavelets as high-pass and
low-pass filters, respectively. Thereby, the pixel number is implicitly reduced by a factor of two
in both dimensions. The low-pass filtered image serves as input for the next level of analysis.
This process is repeated for m ≤ log2(n) levels, n being the image size in pixels. A user-specified
parameter, R, controls the number of decomposition levels, m= ⌈log2(R)⌉, and thus defines the
spatial frequency cut-off between image information and background. The standard choice for R
is the FWHM of the PSF (in units of pixels) as a measure of image resolution. However, R can
be increased if the image content is broadly dispersed in frequency to avoid assignment of lower
frequency information to background. As a result, background removal becomes less effective
(see below). An image containing only low-frequency background is reconstructed by setting the
detail coefficients in all levels of the decomposed images to zero and applying the inverse wavelet
transform to all levels. The resulting background image is low-pass filtered and subtracted from
the original one to yield the background-cleared image. The detail coefficients of the first level
represent high-frequency noise produced by the detection system (more levels may be necessary
for low-resolution images). This component is extracted by setting the approximation coefficients
to one so that an image containing only high-frequency noise is reconstructed from the first-level
details, which is subsequently subtracted from the original image for noise removal. A diagram
of the algorithm is depicted in Fig. 1(c) (for two levels of wavelet decomposition). To illustrate
its action on the images, close-ups calculated during different stages of processing are shown
in Fig. 1(d)-(i). Further details of the WBNS algorithm are included in the flow chart in Fig.
S1 and in the associated caption. In the remainder of the paper, we refer to the algorithm with
switched-off noise suppression as wavelet-based background subtraction (WBS).

Why did we use the simple Haar wavelet transform for WBNS rather than more sophisticated
multiresolution analysis methods that have been introduced for image processing, which are
typically based on or related to the wavelet transform? For example, the curvelet and the
contourlet transforms have been developed to capture smooth curves and edges and, therefore,
are excellent for processing densely pixeled, oversampled images such as photographs [10,11]. In
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biological fluorescence microscopy, however, oversampling is usually avoided as it decreases the
signal-to-noise ratio. In this case, the Haar wavelet transform is advantageous because it offers
the smallest support (two pixels), allowing us to separate the characteristic length scales of noise
(one or two pixels), signal (in fluorescence microscopy images typically between three and five
pixels, as a trade-off between image resolution and signal-to-noise ratio) and background (more
than five pixels). Moreover, in comparison to other approaches, the Haar wavelet transform is
conceptually simple, computationally cheap and memory efficient.

3. Methods

3.1. Sample preparation

For DSLM imaging, a stock suspension of red-fluorescent carboxylated polystyrene beads
(excitation/emission wavelengths: 580/605 nm) with a nominal diameter of 100 nm (F8801,
FluoSpheres, Invitrogen, Eugene, OR) was diluted 105-fold in water, sonicated for 10 min to
reduce the number of aggregates and then further diluted in an aqueous solution containing
1.5% (by mass) low melting point agarose (type VII, A6560, Sigma Aldrich, St. Louis, MO)
to a concentration at which individual spots were clearly resolved in 3D DSLM images. The
liquid agarose solution was again sonicated for 10 min and then filled into a fluorinated ethylene
propylene (FEP) tube (Thomafluid HighTech Tubing, outer/inner diameters 1.5/1.1 mm, Reichelt
Chemietechnik GmbH, Heidelberg, Germany) with a syringe. After cooling and polymerization,
part of the gel (ca. 2 mm) was gently extruded from one end of the tube for imaging without the
surrounding FEP tube to exclude optical aberrations introduced by the FEP tube. The tube was
attached to a stainless steel rod, mounted on the rotor stage and dipped into the sample chamber
from above.

For confocal and stimulated emission double depletion (STEDD) imaging, an 8-well chambered
cover glass (thickness: 0.16–0.19 mm) with non-removable wells (155409, Nunc Lab-Tek II,
Thermo Scientific, Waltham, MA) was incubated with 0.1 mg mL−1 poly-L-lysine (PLL, P6282,
Sigma-Aldrich) dissolved in water for 20 min. PLL is a positively charged polymer that tightly
attaches to the glass surface so as to form an adhesive layer suitable for immobilizing negatively
charged (carboxylated) fluorescent beads. A stock solution of dark red polystyrene beads
(excitation/emission wavelengths: 660/680 nm) with a nominal diameter of 40 nm (F8789,
FluoSpheres, Invitrogen) was diluted by a factor of 50,000 with phosphate-buffered saline
(PBS) (14040091, Thermo Scientific). The suspension was sonicated for 10 min, added to the
PLL-treated sample chamber and allowed to react for 20 min. The chamber was washed 3× with
PBS to remove unbound fluorescent beads. Finally, the sample chamber was filled with PBS and
stored at 4°C until use.

3.2. DSLM image acquisition

Our current, home-built DSLM is a significantly upgraded version of the device described in Ref.
[6], featuring Bessel beam illumination [12] and confocal slit detection [13] (DSLM-CS, Fig. S2).
We recorded DSLM image stacks of 100 slices with a mutual spacing of 500 nm and a frame rate
of 10 s−1 of 100 nm fluorescent beads immobilized in agarose gel. Each slice consists of 2048
× 2048 pixels covering a field of view of 176 µm × 176 µm. An image measured beforehand
with all excitation lasers switched off was subtracted from each slice to remove dark camera
background.

3.3. Confocal and STEDD image acquisition

We collected confocal and STEDD images (604 × 604 pixels, pixel dwell times 30 and 100 µs,
respectively, pixel size 10 nm) of 40 nm dark red beads immobilized on glass surfaces with our
home-built STED microscope [14]. Fluorescence was excited by a picosecond laser delivering
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640-nm pulses at 80 MHz (16 µW). For STEDD imaging, the excitation pulse was followed by
two 736-nm pulses from a Ti:Sa laser in succession, the first one (STED1) with a power of 39 mW
was shaped to a “donut” intensity distribution by a vortex phase mask; the second one (STED2),
with a power of 3.9 mW and a time delay of 3 ns with respect to STED1, was simply generated
by focusing the Gaussian laser beam. The STEDD method enables synchronized measurement
of a STED image (in the interval between the STED1 and STED2 pulses) and a background
image (after the STED2 pulse, which erases the high-frequency signal and leaves low-frequency
background) [14]. To obtain the STEDD image, the background image is subsequently subtracted
from the STED image with an appropriate weight factor (here, γ= 2) determined as described in
Ref. [15]. To reduce noise, the heavily oversampled background image was processed with a
Gaussian filter of standard deviation σ= 15 pixels before subtraction. For further details of the
STEDD method, we refer to Ref. [14].

3.4. Software implementation

We implemented the WBNS algorithm in Python 3.7, using the open source “PyWavelets”
software [16]. Furthermore, we developed an easy-to-use ImageJ macro and we also imple-
mented the algorithm as a MATLAB R2019b (The MathWorks, Natick, MA) function. These
implementations are freely available via Github https://github.com/NienhausLabKIT/HuepfelM.
Software implementation guides for Python and ImageJ are included as Supplementary Notes 1
and 2.

4. Performance assessment of WBNS using synthetic images

To assess the performance of WBNS, we started with a synthetic, 3D ground-truth image stack
(512 × 256 × 128 pixels) [17]. A representative slice from the middle of the stack is shown
in Fig. 2(a). We turned this ground-truth 3D image into a “pseudo” microscopy image by first
convolving it with a realistic 3D PSF using the software DeconvolutionLab2 [17]. The shape of
the PSF is depicted in Fig. S3 along with selected cross sections, illustrating the broadening
and background generating effect of the convolution. In addition, we have added Poissonian
and Gaussian noise (Fig. 2(b), Visualization 1) [17]. Setting the parameter R to 4 pixels, as is
appropriate for the chosen PSF, we processed all images of the stack by wavelet decomposition in
three levels (as depicted in Fig. S1). Then, we set all detail coefficients to zero and resynthesized
the images to obtain a background estimate (Fig. 2(c)). The use of the discontinuous Haar wavelet
produces discontinuities in the background intensity; therefore, we included Gaussian filtering of
background images into the WBNS program, with standard deviation σ = 2m, where m is the
number of decomposition levels, so that transitions are smoothened across the characteristic scale
of the low-frequency background (Fig. 2(d)). A high-frequency noise image was calculated by
resynthesizing the first-level wavelet-decomposed images with all approximation coefficients set
to 1 (Fig. 2(e)). We note that oversampled images, which have too many pixels in comparison to
the resolution, may need two (or even more) levels of wavelet decomposition for this analysis. In
the noise images, negative pixel values were set to zero, and outliers, i.e., pixels with abnormally
high values, were limited to the mean plus twice the standard deviation (µ+ 2σ) to reduce
artefacts. The original image (Fig. 2(b)) with the background image subtracted is shown in
Fig. 2(f). Additional noise subtraction yields the image shown in Fig. 2(g) (Visualization 1), in
which the structural details are prominent and the noise is markedly reduced. For a quantitative
assessment of WBNS image processing, we calculated the mean square error (MSE) and the
Pearson correlation coefficient (PCC) [18] between the ground-truth image (Fig. 2(a)) and the
“pseudo” microscopy image (Fig. 2(b)), the background corrected image (Fig. 2(f)) and the
background and noise corrected image (Fig. 2(g)). To this end, all images were normalized to the
same mean intensity. Both quantitative measures indicate that the background corrected image
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has a markedly higher similarity to the ground truth image than the “pseudo” microscopy image
(Fig. 2(b)), and noise clearing further increases the similarity (Fig. 2(h)).

Fig. 2. WBS/WBNS application to simulated data. (a) Single slice of a synthetic, 3D
ground-truth image stack (512 × 256 × 128 pixels). (b) Single slice of a “pseudo” microscopy
image stack, calculated from the synthetic image by convolution with a synthetic PSF (lateral
FWHM= 3 pixels) and addition of Poissonian (average value λ= 1) and Gaussian noise (mean
µ= 0 and standard deviation σ = 1). (c) Background estimate from wavelet decomposition
(R= 4 pixels). Close inspection shows discontinuities between neighboring regions arising
from the use of the (discontinuous) Haar wavelet. (d) Background estimate after Gaussian
filtering with σ = 2m, where m is the number of decomposition levels, so that transitions
are smoothened across the characteristic scale of the background. (e) High-frequency noise
extracted from the details of the first level of wavelet decomposition. Outlier pixels were
clipped to µ+ 2σ to reduce artefacts. Processed images with (f) subtraction of background
only (WBS) and (g) noise subtraction in addition (WBNS), showing more prominent
structural details and markedly reduced noise. (h) Mean square error (MSE) and Pearson
correlation coefficient (PCC) [18], calculated between the ground-truth image (panel (a))
and the “pseudo” microscope image (panel (b)), the background corrected image (panel (f))
and the background and noise corrected image (panel (g)). All images have been normalized
to the same mean intensity.

We next asked how our wavelet-based method compares with other low-frequency background
clearing algorithms. We selected the rolling ball algorithm (RBA) [19] and the difference of
Gaussians method (DoG) [20] for this test. In the RBA, a sphere with a specified radius is moved
underneath and in permanent contact with the intensity landscape corresponding to the image.
As the sphere cannot intrude into narrow features (signal), the algorithm effectively acts as a
low-pass filter and returns a background image. In the DoG algorithm, a background image is
calculated by blurring the original image with a Gaussian filter, which is then subtracted from the
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original image. Figure 3 shows, for the three algorithms, the background images on the left and
the background-subtracted images on the right. Of course, we used WBS (without high-frequency
noise suppression) here for a fair comparison. Visual inspection of the cleared images shows that
all three methods effectively remove background. For a quantitative comparison, we calculated
the similarity measures MSE and PCC of the background-subtracted images with respect to the
ground truth (GT) image for the entire 3D image stack. The data in Table 1 show that WBS
performs best in this comparison, as judged from the lowest MSE and highest PCC values of the
three methods. Additional noise subtraction using WBNS leads to an even closer similarity to
the ground truth.

Fig. 3. Comparison of WBS with the RBA and DoG background removal algorithms based
on the synthetic image in Fig. 2(b). (a) Background estimate of WBS; R= 4 pixels. (b)
Image after background removal with WBS. (c) Background estimate of RBA using an
ImageJ plugin (https://imagej.nih.gov/ij/plugins/rolling-ball.html) and a ball radius of 4
pixels. (d) Image after background removal with the RBA. (e) Background estimate of the
DoG method, using a standard deviation of 4 pixels. (f) Image after background removal
with the DoG method.

Table 1. Comparison of the ground truth (GT) image with background-cleared images calculated
with the WBNS, RBA and DoG methods by using MSE and PCC as quality measures.

GT / RBA GT / DoG GT / WBS GT / WBNS

MSE 34.7 34.3 29.6 22.0

PCC 0.50 0.48 0.57 0.69

5. Application of WBNS to DSLM images

For a performance assessment of WBNS in widefield imaging, we acquired 3D image stacks
covering a volume 176 × 176 × 50 µm3 of 100-nm fluorescent beads in agarose gel on our
home-built DSLM setup (Fig. S2). It employs a Bessel beam [12] that is laterally scanned to
form a light sheet for illumination; the fluorescence is detected by a camera capable of confocal
slit (CS) detection, a well-established hardware-based modality for background reduction [13].

https://imagej.nih.gov/ij/plugins/rolling-ball.html
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For each 3D image, 100 camera frames (2048 × 2048 pixels) were taken along the z-direction
with a mutual spacing of 500 nm and a frame rate of 10 s−1. A dark (laser off) image was
subtracted from each slice to remove dark camera background. A first image stack was measured
with a wide detection slit (35.2 µm, wslit >> wbeam) so that there was no confocal effect, i.e.,
axial sectioning, implying that background emission from outside the focal plane reaches the
camera. The second stack was taken with a narrow slit (5.3 µm, wslit ≈ wbeam) causing effective
suppression of background due to CS detection, as is evident from comparing close-ups from a
single image slice in Fig. 4(a) and (b). The image stack taken with a wide slit was processed with
WBS and WBNS (Fig. 4(c),(d)); the effective background and noise clearing capability of the
software is obvious from comparison with Fig. 4(a). For a quantitative analysis of hardware- and
software-based background suppression, we determined the apparent bead sizes, which tend to
increase in the presence of background and noise, from the 3D image stacks. To this end, we
identified and preselected local intensity maxima by their prominence, size and brightness so as
to avoid inclusion of aggregates. For each bead image, we quantified its extensions (FWHM)
along all three axes (through the center position of each bead) to be about 0.5 µm in the image
plane (x, y) and 2 µm perpendicular to the image plane (z). All FWHM values were compiled in
cumulative histograms and fitted by the cumulative normal distribution function to obtain mean
values and standard deviations over ensembles of 63–77 beads (Table 2). The data clearly show
that the axial sectioning of DSLM-CS reduces the apparent extensions of the beads markedly,
especially along the z-direction (>12%). Comparison of raw DSLM-CS images with those
processed by WBS reveals that software processing resulted in bead sizes that were slightly
smaller than those from DSLM-CS, suggesting that WBS is even more effective for background
reduction than DSLM-CS. Finally, WBNS can also be applied to DSLM-CS images such as
Fig. 4(b) and leads to significant noise reduction (Fig. S4).

Fig. 4. Comparison between WBS/WBNS and DSLM-CS. (a)-(d) Close-up views (153 ×

219 pixels) of an exemplary slice from a 3D DSLM image of 100-nm fluorescent polystyrene
beads immobilized in agarose gel, acquired using (a) a wide detection slit (35.2 µm, wslit
>> wbeam), so that there is high background due to the lacking rejection of the emission
from outside the focal plane. (b) With a narrow slit (5.3 µm, wslit ≈ wbeam), background is
markedly suppressed due to CS detection. Image in panel (a) processed with (c) WBS and
(d) WBNS (R= 5.5 pixels, noise subtraction based on the first detail level). Scale bar, 2 µm.
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Table 2. Apparent sizes of 100-nm fluorescent latex beads in an agarose gel from DSLM image
stacks measured with two confocal slit (CS) widths, without and with processing by WBS/WBNS.

FWHM x / nm FWHM y / nm FWHM z / nm # beads

CS 35.2 µm (“no CS”) 530± 80 520± 70 2450± 380 77

CS 5.3 µm 480± 110 500± 120 2150± 560 66

WBS 35.2 µm 440± 80 460± 70 2090± 330 63

WBNS 35.2 µm 440± 80 460± 70 2040± 340 63

6. Application of WBNS to STED images

To assess the performance of WBNS for background and noise removal from super-resolution
STED images, we imaged 40-nm fluorescent polystyrene beads immobilized on glass surfaces.
In STED microscopy [5], a tightly focused Gaussian laser beam is raster-scanned across

Fig. 5. Comparison between WBS/WBNS and STEDD. (a)-(e) Close-ups (219 × 210 pixels)
of the same region of a 2D image (604 × 604 pixels, pixel size 10 nm) of surface-immobilized
40-nm fluorescent polystyrene beads, visualized as (a) confocal image, (b) regular STED
image and (c) STEDD image. (d) The STED image processed with WBS (R= 7 pixels)
closely resembles the STEDD image. (e) The STED image processed with WBNS (noise:
first detail level) additionally shows reduced high-frequency noise. (f) Image resolution and
parameter, A0 (correlated with the SNR), as obtained by decorrelation analysis using an
ImageJ plugin (https://github.com/Ades91/ImDecorr) [22].

https://github.com/Ades91/ImDecorr
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the sample to excite fluorescence. This spot is spatially and temporally overlaid with a
red-shifted, high-power beam focused to a “donut” intensity distribution, which selectively
deexcites fluorophores in the periphery of the excitation spot by stimulated emission. Thus, the
scanning probe is sharpened because only fluorophores within the central region of the spot
remain electronically excited after application of the depletion pulse. Apart from out-of-focus
and scattered light, STED images always include an additional low-frequency background
component that originates from incomplete depletion as well as reexcitation by the powerful
depletion beam. We recently introduced stimulated emission double depletion (STEDD) as
a hardware-based technique that effectively removes this component [14], which facilitates
super-resolution fluorescence correlation spectroscopy experiments on solution samples, and
also greatly helps remove background in 3D imaging of densely labeled structures [21]. The
significant resolution enhancement between confocal and STED/STEDD modes and the effective
background suppression of STEDD are obvious from visual inspection of the images taken on
our 40-nm bead samples (Fig. 5(a)-(c)). Processing the STED image with WBS (R= 7 pixels,
noise: first detail level) resulted in an image (Fig. 5(d)) closely resembling the STEDD image
(Fig. 5(c)). High-frequency noise is strongly reduced when applying WBNS to the STED image
(Fig. 5(e)). For a quantitative comparison of the images, we determined the image resolution
by decorrelation analysis using an ImageJ plugin [22]. In addition, this software also provides
a parameter, A0, which is positively correlated with the signal-to-noise ratio (SNR); however,
it is presently not yet clear if A0 can serve as a SNR metric [22]. The results, presented in
Fig. 5(f), reveal that the regular STED image has a more than two-fold higher image resolution
over confocal microscopy. STEDD leads to a further improvement to about three-fold because
low-frequency components in the power spectrum of the image are suppressed. With respect to
STEDD, processing of the STED image with WBS and WBNS yields similar, in fact slightly
worse and better resolutions, respectively (Fig. 5(f)). The A0 values successively decrease in the
sequence confocal, STED, and STEDD imaging. This behaviour reflects the overall numbers of
photon counting events that make up the image. While the largest number of emitted photons
is collected by confocal microscopy, their number decreases for STED imaging due to a large
fraction of depletion events, which is the price to pay for the higher resolution, and even more so
for STEDD due to the additional background subtraction. Interestingly, we obtain identical A0
values for STEDD and WBS-processed images, whereas WBNS shows a greater A0, as expected
upon high-frequency noise removal. WBNS results for the confocal image shown in Fig. 5(a)
are included in Fig. S5 for completeness. To summarize, we found a comparable performance
for background removal with the WBNS software and the hardware solution STEDD on these
images. Naturally, WBNS can also be applied to STEDD images such as Fig. 5(c), yielding
significant noise reduction (Fig. S6).

7. Conclusion

The presence of artificial intensity contributions in fluorescence microscopy images can greatly
deteriorate and even entirely obfuscate their information content. As a consequence, considerable
efforts have been devoted to background and noise suppression, either by introducing special
hardware into the imaging system or by developing software for post-processing of the images.
Here we have presented WBNS, a software for background and noise removal from microscopy
images, which employs multiscale wavelet decomposition of the experimental image to identify
background and noise. Resynthesis of two images containing high-frequency (noise) and low-
frequency (background) components allows their subsequent subtraction from the original image.
To properly remove noise artifacts, the algorithm uses prior knowledge, i.e., that the microscope
itself is an optical low pass filter and cannot transmit spatial frequencies beyond a certain limit,
i.e., the diffraction limit in classical microscopy. Thus, intensity components with higher spatial
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frequencies than allowed by the PSF must be artefacts and originate from the detection system;
they are assigned to noise. For low-frequency background, the situation is more ambiguous
because there is no clear-cut separation between signal and background based on physical law.
However, objects of interest, e.g., biological samples, are often well structured and feature a fairly
narrow band of spatial frequencies. By choosing the adjustable parameter R to be the image
resolution in pixels, blurry intensity from outside the focal plane or light scattering is assigned
to low-frequency background. However, if the object of interest presents a wide spectrum of
spatial frequencies, the parameter R must be increased to avoid removing lower-frequency image
components as background. As a consequence, the separation between image and background is
shifted to lower spatial frequencies and background can only partially be suppressed. To illustrate
this important issue, we have processed images of a developing zebrafish embryo containing both
sharp and broad image features with WBNS (Fig. S7). Variation of R shows how preserving the
low-frequency image information by increasing R results in less effective background removal.
Notably, the examples shown in Fig. S7 are somewhat special, featuring an enormous bandwidth
in their image content. In most applications, however, WBNS will just work well using R as
the image resolution in pixels. Indeed, in our ongoing biological projects, WBNS has shown
great promise, enhancing the visual appearance of a variety of images without deteriorating their
content.

In recent years, deep learning-based algorithms have gained considerable popularity for image
restoration purposes including background removal [23–26]. These algorithms require training
with suitable image data displaying the desired image features, i.e., real microscopy images or
synthetic data [24]. The performance of the neural network and thus the accuracy of image
restoration crucially depend on the quality and suitability of the training set for the particular
image content. WBNS is a general and conceptually simple yet sophisticated filtering algorithm
that is applicable to any microscopy image or 3D image stack. Accordingly, the resulting
modifications applied to the images are completely traceable, in contrast to deep learning-based
algorithms.

To summarize, we have quantitatively compared WBNS to other algorithms and imaging
modalities that provide hardware-based background suppression, and we have observed an
excellent performance. The software is easy to use, as it only requires a single additional
parameter specifying the spatial-frequency separation between image and background. Therefore,
we hope that this program will be widely appreciated by the imaging community.
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