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Abstract
In this paper, we introduce a new smooth estimator for continuous distribution 
func-tions on the positive real half-line using Szasz–Mirakyan operators, similar to 
Bern-stein’s approximation theorem. We show that the proposed estimator 
outperforms the empirical distribution function in terms of asymptotic (integrated) 
mean-squared error and generally compares favorably with other competitors in 
theoretical com-parisons. Also, we conduct the simulations to demonstrate the 
finite sample perfor-mance of the proposed estimator.

Keywords Distribution function estimation · Nonparametric · Szasz–Mirakyan 
operator · Hermite estimator · Mean squared error

1 Introduction

This paper considers the nonparametric smooth estimation of continuous distribu-
tion functions on the positive real half line. Arguably, such distributions are the 
most important univariate probability models, occurring in diverse fields such as 
life sci-ences, engineering, actuarial sciences or finance, under various names 
such as life, lifetime, loss or survival distributions. The well-known 
compendium of (Johnson et  al. 1994) treats in its first volume solely 
distributions on the positive half line with the exception of the normal and the 
Cauchy distribution. In the two volumes (Johnson et al. 1994, 1995) as well as in 
the compendiums about life and loss distri-butions of (Marshall and Olkin 2007) 
and (Hogg and Klugman 1984), respectively, 
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an abundance of parametric models for the distribution of nonnegative random vari-
ables and pertaining estimation methods can be found. However, there is a paucity 
of nonparametric estimation methods especially tailored to this situation. It is the 
aim of this paper to close this gap by introducing a new nonparametric estimator for 
distribution functions on [0,∞) using Szasz–Mirakyan operators.

Let X1,X2,… be a sequence of independent and identically distributed (i.i.d.) ran-
dom variables having an underlying unknown distribution function F and associated 
density function f. In this paper, all the considered distribution function estimators 
are of nonparametric type. The best-known distribution function estimators with 
well-established properties are the empirical distribution function (EDF) and the 
kernel estimator. The EDF is the simplest way to estimate the underlying distribu-
tion function, given a finite random sample X1,… ,Xn, n ∈ ℕ . It is defined by

where � is the indicator function. This estimator is obviously not continuous. The 
kernel distribution function estimator

is continuous, where �(t) = ∫ t

−∞
K(u)du is a cumulative kernel function of a ker-

nel K ∶ ℝ → ℝ , which has to fulfill specific properties (see, e.g., (Gramacki 2018)). 
The parameter h > 0 is called the bandwidth. This estimator was first introduced by 
(Yamato 1973). The corresponding kernel density estimator fh,n was first introduced 
by (Rosenblatt 1956) and (Parzen 1962). An important task in kernel density estima-
tion is the choice of the bandwidth. In (Duin 1976) and (Rudemo 1982), this topic 
was addressed. (Slaoui 2014) presented a method to automatically select the param-
eter with the help of the stochastic approximation algorithm by (Mokkadem et al. 
2009). Different methods to choose the bandwidth in the case of the distribution 
function are given in (Altman and Léger 1995), (Bowman et  al. 1998), (Polansky 
and Bake 2000), and (Tenreiro 2006).

The two estimators can estimate distribution functions on any arbitrary real inter-
val. The Bernstein estimator, on the other hand, is designed for functions on [0, 1]. 
(Babu et al. 2002) and (Leblanc 2012) studied the Bernstein estimator

where Pk,m =

(
m

k

)
xk(1 − x)m−k are the Bernstein basis polynomials. In (Jmaei 

et  al. 2017), a recursive estimator using Bernstein polynomials was introduced. 
(Helali and Slaoui 2020) used Lagrange polynomials with Tchebychev–Gauss 
points, instead of Bernstein polynomials. A further estimator is the Hermite distri-
bution function estimator on the real half line, see Sect.  4 and (Stephanou et  al. 

Fn(x) =
1

n

n∑

i=1

�(Xi ≤ x),

Fh,n(x) = ∫
x

−∞

fh,n(u)du = ∫
x

−∞

1

nh

n∑

i=1

K

(
u − Xi

h

)
du =

1

n

n∑

i=1

�

(
x − Xi

h

)

F̂m,n(x) =

m∑

k=0

Fn

(
k

m

)
Pk,m(x),



2017). The Hermite density estimator was first defined by (Schwartz 1967). More 
information on the different estimators can be found in the cited literature and in 
(Hanebeck 2020). For ease of reference, many properties of the estimators are listed 
in Sect. 4.

In this paper, we consider the Szasz estimator, as an alternative estimator of the 
distribution function on [0,∞) . The kernel estimator can also estimate functions on 
[0,∞) but is not specifically designed for this interval. To get satisfactory results, 
special boundary corrections in the point zero are necessary (see (Zhang et  al. 
2020)), which is not the case for the Szasz estimator. The Hermite estimator on the 
real half line is designed for [0,∞) , but theoretical results and simulations later show 
that the Szasz estimator performs better on the positive real line.

The paper is organized as follows. In Sect. 2, the approach and most important 
properties of the proposed estimator are explained. Then, in Sect.  3, we derive 
asymptotic properties of the estimator. In Sect. 4, the properties are compared with 
other estimators in a theoretical comparison and then in a simulation study in Sect. 5. 
Section  6 concludes the paper. Most of the proofs are similar to (Leblanc 2012), 
except for the use of Poisson probabilities (Szasz–Mirakyan operators for the semi-
infinite interval [0,∞) ), instead of binomial probabilities (Bernstein operators for the 
interval [0, 1]). There are, however, differences and extensions that are mentioned 
after the respective results if necessary. All proofs can be found in the authors’ arXiv 
paper (Hanebeck and Klar 2020), with the same title “arXiv:2005.09994”.

Throughout the paper, the notation f = o(g) means that lim |f∕g| = 0 as 
m, n → ∞ . A subscript (for example f = ox(g) ) indicates which parameters the 
convergence rate can depend on. Furthermore, the notation f = O(g) means that 
lim sup |f∕g| < C for m, n → ∞ and some C ∈ (0,∞) . A subscript in this case 
means that C could depend on the corresponding parameter.

2 � The Szasz Distribution Function Estimator

The idea of the estimator presented in this paper is similar to the Bernstein approach. 
The main difference is that instead of the Bernstein basis polynomials, we use Pois-
son probabilities. Hence, in the former case, we consider supp (f ) = [0, 1] , while the 
latter case assumes supp (f ) = [0,∞) . We make use of the following claim that can 
be found in (Szasz 1950).

Claim  If u is a continuous function on (0,∞) with a finite limit at infinity, then, as 
m → ∞,

uniformly for x ∈ (0,∞) , where Vk,m(x) = e−mx
(mx)k

k!
 for k,m ∈ ℕ.

The operator Sm(u;x) is called the Szasz–Mirakyan operator of the function u 
at the point x. One can the extend above claim to a function u being continuous 
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on [0,∞) with u(0) = 0 . Then, Sm(u;0) = 0 and with the continuity it holds that 
Sm(u;x) → u(x) uniformly for x ∈ [0,∞) . In particular, given a continuous distribu-
tion function F on [0,∞) , Eq.  1 remains valid, uniformly for x ∈ [0,∞) . Then, a 
possible estimator of F on [0,∞) is

replacing the unknown distribution function F in the operator Sm(F;x) by the EDF 
Fn . We call F̂S

m,n
 the Szasz estimator. The sum is infinite but can be written as a finite 

sum as shown in the next subsection.
In the remainder of this paper, we make the following general assumption:

Assumption 1  The distribution function F is continuous. The first and second deriv-
atives f and f ′ of F are continuous and bounded on [0,∞).

2.1 � Basic Properties of the Szasz Estimator

The behavior of the Szasz estimator F̂S
m,n

(x) at x = 0 is appropriate, since we get
F̂S
m,n

(0) = 0 = F(0) = Sm(F;0) . This means that bias and variance at the point x = 0

are zero.
In the sequel, we use the gamma function � (z) = ∫ ∞

0
xz−1e−xdx , as well as the 

upper and lower incomplete gamma functions, defined by

respectively. Note that lim
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Sm(F;x) , since

where the random variable Y has a Poisson distribution with expected value mx 
( Y ∼ Po (mx) for short). Since the above representation only contains a finite num-
ber of summands, it can be used to easily simulate the estimator.

It is worth noting that F̂S
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(x) yields a proper continuous distribution function 
with probability one and for all values of m. The continuity of F̂S
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(x) is obvi-

ous. Moreover, it follows from the above equations and the next theorem that 
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Theorem 1  The function F̂S
m,n

(x) is non-decreasing in x on [0,∞).

Proof  This proof is similar to the proof for the Bernstein estimator that can be found 
in (Babu et al. 2002), but now applied to Poisson probabilities instead of Bernstein 
polynomials. Let

and

Then,

The claim follows as gn
(

k

m

)
 is nonnegative for at least one k and Uk(m, x) is increas-

ing. 	� ◻

The next theorem shows that F̂S
m,n

(x) is uniformly strongly consistent. Its proof
follows the proof of Theorem 2.1 in (Babu et al. 2002).

Theorem 2  If F is a continuous probability distribution function on [0,∞) , then

for m, n → ∞ . We use the notation ‖G‖ = sup
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3 � Asymptotic properties of the Szasz estimator

3.1 � Bias and variance

We now calculate the bias and the variance of the Szasz estimator F̂S
m,n

 on the inner 
interval (0,∞) , as we already know that bias and variance are zero for x = 0 . The 
following lemma is similar to (Lorentz 1986, Sect. 1.6.1).

Lemma 1  We have, for x ∈ (0,∞) that

where bS(x) = xf �(x)

2
.

The following theorem establishes asymptotic expressions for the bias and the 
variance of the Szasz estimator F̂S

m,n
 as m, n → ∞ . The statement is similar to Theo-

rem 1 in Leblanc (2012) but applied to the Szasz estimator. The bias follows directly 
from Lemma 1. For the proof of the variance, ideas of (Ouimet 2020) and (Leblanc 
2012) have to be combined.

Theorem 3  For each x ∈ (0,∞),

and

where bS(x) is defined in Lemma 1 and

3.2 � Asymptotic normality

Here, we turn our attention to the asymptotic behavior of the Szasz estimator F̂S
m,n

(x) , 
similar to Theorem 2 in (Leblanc 2012).

Theorem 4  Let x ∈ (0,∞) , such that 0 < F(x) < 1 . Then, for m, n → ∞,

where �2(x) is defined in Theorem 3.
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Note that as in the settings before, this result holds for all choices of m with 
m → ∞ without any restrictions.

We now take a closer look at the asymptotic behavior of F̂S
m,n

(x) − F(x) , where 
the behavior of m is restricted. With Lemma 1, it is easy to see that

This leads directly to the following corollary, which is similar to Corollary 2 in 
(Leblanc 2012).

Corollary 1  Let m, n → ∞ . Then, for x ∈ (0,∞) with 0 < F(x) < 1 , it holds that 

(a) if mn−1∕2 → ∞ , then

(b) if mn−1∕2 → c , where c is a positive constant, then

where �2(x) and bS(x) are defined in Lemma 1 and Theorem 3.

3.3 � Asymptotically optimal m with respect to mean‑squared error

For the estimator F̂S
m,n

 , it is interesting to calculate the mean-squared error (MSE)

and the asymptotically optimal m with respect to MSE. The MSE at x = 0 is zero. 
For (0,∞) , the asymptotic MSE and the optimal m can easily be obtained from The-
orem 3, i.e.,

for x ∈ (0,∞) . Using Eq. 2 and assuming f (x) ≠ 0 and f �(x) ≠ 0 , the asymptotically
optimal choice of m for estimating F(x) with respect to MSE is

Therefore, the optimal MSE can be written as
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for x ∈ (0,∞) , where �2(x), bS(x) , and VS(x) are defined in Lemma 1 and Theorem 3.

3.4 � Asymptotically optimal m with respect to mean‑integrated squared error

We now focus on the mean-integrated squared error (MISE). As we deal with an 
infinite integral, we use a nonnegative weight function � . Here, the weight function 
is chosen as �(x) = e−axf (x) . Following (Altman and Léger 1995), the MISE is then 
defined by

Technically, MISE
[
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m,n

]
 cannot be calculated by integrating the expression of 

MSE
[
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]
 obtained in Eq. 2 as the asymptotic expressions depend on x. The next 

theorem gives the asymptotic MISE of the Szasz operator and is similar to Theo-
rem 3 in (Leblanc 2012). One big difference is the extension e−ax to the weight func-
tion here.

Theorem 5  We have

with

where �2(x), bS(x) , and VS(x) are defined in Lemma 1 and Theorem 3.

Very similar to Corollary 4 in (Leblanc 2012), the next corollary gives the asymp-
totically optimal m for estimating F with respect to MISE.

Corollary 2  The asymptotically optimal m for estimating F with respect to MISE is
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If we compare the optimal MSE and optimal MISE of the Szasz estimator with 
those of the EDF, we observe the same behavior as for the Bernstein estimator. 
The second term (including the minus sign ahead of it) in Eqs. 3 and 4 is always 
negative so that the Szasz estimator seems to outperform the EDF. This is proven 
in the following.

3.5 � Asymptotic deficiency of the empirical distribution function

We now measure the local and global performance of the Szasz estimator with 
the help of the deficiency. Let

be the local and global numbers of observations that Fn needs to perform at least as 
well as F̂S

m,n
 . The next theorem deals with these quantities and is similar to Theo-

rem  4 in (Leblanc 2012). A result in a similar form for kernel estimators can be 
found in (Falk 1983).

Theorem 6  Let x ∈ (0,∞) and m, n → ∞ . If mn−1∕2 → ∞ , then,

In addition, the following statements are true. 

(a) If mn−2∕3 → ∞ and mn−2 → 0 , then

(b) If mn−2∕3 → c , where c is a positive constant, then

Here, VS(x), �2(x) , and bS(x) are defined in Lemma 1 and Theorem 3, and CS
1
, CS

2
 , 

and CS
3
 are defined in Theorem 5.

Parts a) and b) of this theorem show under which conditions the Szasz estima-
tor outperforms the EDF. The asymptotic deficiency goes to infinity as n grows. 
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This means that for increasing n, the number of extra observations also has to 
increase to infinity so that the EDF outperforms the Szasz estimator. Hence, the 
EDF is asymptotically deficient to the Szasz estimator.

It seems natural that one can also base the selection of an optimal m on the 
deficiency. Indeed, maximizing the deficiency seems a good way to make sure 
that the Szasz estimator outperforms the EDF as much as possible.

Lemma 2  The optimal m with respect to the global deficiency in the case mn−2∕3 → c 
is of the same order as in Corollary 2.

4 � Theoretical comparison

In the following, the properties that were derived in this paper for the Szasz estima-
tor are compared to the different estimators defined in the introduction. The com-
parison can be found in Tables 1,2, 3, and 4. The assumptions in the third column of 
the first table have to be fulfilled for the theoretical results to hold. If there are extra 
assumptions for one specific result, they are written as a footnote. More details can 
be found in (Hanebeck 2020).

For the EDF, the properties mainly follow from famous theorems. The uniform, 
almost sure convergence follows from the Glivenko–Cantelli theorem, while the 
asymptotic normality can be proven with the central limit theorem. The MSE can 
be found in (Lockhart 2013), and the other properties are easy to calculate. For the 
kernel estimator, the asymptotic normality can be found in Watson and (Leadbetter 
1964) and (Zhang et al. 2020), while bias and variance can be found in (Kim et al. 
2006). The optimal MSE and MISE can be found in Zhang et al. (2020). The prop-
erties for the Bernstein estimator mainly follow from (Leblanc 2012), where some 
results are using ideas from (Babu et al. 2002). The ideas and most of the proofs for 
the Hermite estimator can be found in (Stephanou et al. 2017).

The next result on the asymptotic normality of the Hermite estimator (Stephanou 
et al. 2017) is new. We first quickly introduce the Hermite estimator. It makes use of 
the so-called Hermite polynomials Hk(x) = (−1)kex

2 dk

dxk
e−x

2

. These polynomials are 
orthogonal under e−x2 . The Hermite distribution function estimator on the real half 
line is defined by
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Theorem 7  For x ∈ (0,∞) with 0 < F(x) < 1 and if f is differentiable in x, we obtain
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It is important to always make sure that the situation fits to compare different 
estimators. A comparison between the Bernstein estimator and the Szasz estima-
tor for example only makes sense when the density function on [0, 1] can be con-
tinued to [0,∞) so that Assumption 1 holds. Of course it is also possible to use 
the Szasz estimator for distributions where F is continuous on [0,∞) and f is not. 
Then, the theoretical results do not hold anymore but convergence is still given. 
But we know that the Bernstein estimator is always better as it has zero bias and 
variance for x = 1 , while the Szasz estimator has the continuous derivative
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Fig. 1   The behavior of the Szasz estimator at x = 1 for n = 500

Table 1   Support of the estimators and assumptions

Support Assumptions

EDF Chosen Freely
Kernel Chosen Freely Density f exists, f ′ exists and is continuous
Bernstein [0, 1] F continuous, two continuous and bounded derivatives on [0, 1]
Szasz [0,∞) F continuous, two continuous and bounded derivatives on [0,∞)

Hermite Half [0,∞) f ∈ L
2

Table 2   Convergence behavior 
and asymptotic distribution of 
the estimators

1 ̂F
n
 stands for all of the estimators, for x ∶ 0 < F(x) < 1

2 For 
(
x −

d

dx

)
r

f ∈ L2, r ≥ 1,�[|X|s] < ∞, s >
8(r+1)

3(2r+1)
,N ∼ n

2

2r+1

3 For 
(
x −

d

dx

)
r

f ∈ L2, r ≥ 1,�
[
|X|2∕3

]
< ∞

Convergence Asymptotic distribution: 
n
1∕2(F̂

n
(x) − F(x))

D

����→ N
(
0, 𝜎2(x)

)1

EDF a.s. uniform
Kernel a.s. uniform For h−2n−1∕2 → ∞

Bernstein a.s. uniform For mn−1∕2 → ∞

Szasz a.s. uniform For mn−1∕2 → ∞

Hermite Half a.s. uniform2 For Nr∕2−1∕4
n
−1∕2

→ ∞3



and cannot approximate a non-continuous function that well. This can be seen in 
Fig. 1. It is obvious that the behavior of the Szasz estimator at x = 1 of the Beta(2, 1)
-distribution is worse.

For the Hermite estimator, the properties f ∈ L2 and 
(
x −

d

dx
f
)r

f ∈ L2 only have 
to hold on the considered interval. Hence, they can be used for smaller intervals than 
what they were designed for.

The EDF and the kernel distribution function estimator can be used on arbi-
trary intervals. However, note that the asymptotic results for the kernel estimator 
hold under the assumption that the density occupies (−∞,∞) . Unless the support 
is (−∞,∞) , the results do not hold for the points close to the boundary. For an 
approach to improve this boundary behavior, see (Zhang et al. 2020) for example.

d

dx
F̂S
m,n

(x) = m

∞∑

k=0

[
Fn

(
k + 1

m

)
− Fn

(
k

m

)]
Vk,m(x)

Table 3   Bias and variance of the estimators

4 For 
(
x −

d

dx

)
r

f ∈ L2, r ≥ 1,�
[
|X|2∕3

]
< ∞

5 For �
[
|X|2∕3

]
< ∞

Bias Variance

EDF Unbiased O(n−1)

Kernel o(h2) O(n−1) + O(h∕n)

Bernstein Zero at {0, 1}, O(m−1) = O(h) Zero at 
{0, 1}, O(n−1) + O

x
(m−1∕2

n
−1)

Szasz Zero at 0 , O
x
(m−1) = O

x
(h) Zero at 0, O(n−1) + O

x
(m−1∕2

n
−1)

Hermite Half Zero at 0, O
x

(
N

−r∕2+1∕4
)4 Zero at 0, O

x
(N3∕2∕n)5

Table 4   MSE and MISE of the estimators

4 For 
(
x −

d

dx

)
r

f ∈ L2, r ≥ 1,�
[
|X|2∕3

]
< ∞

6 Note that the MISE here is defined differently with weight function e−ax
7  For 

(
x −

d

dx

)
r

f ∈ L2, r ≥ 1,𝜇 = ∫ ∞

0
xf (x)dx < ∞

MSE (all consistent) MISE (all consistent)

O(n−1) O(n−1)

O(n−1) + O

(
h
4
)
+ O(h∕n), Optimal: O(n−1) O(n−1) + O(h4) + O(h∕n), Optimal: O(n−1)

Zero at {0, 1}, O(n−1) + O(m−2) + O
x
(m−1∕2

n
−1), 

Optimal: O
x
(n−1)

O(n−1) + O(m−2) + O(m−1∕2
n
−1), Optimal: 

O(n−1)

Zero at 0 O(n−1) + O
x
(m−2) + O

x
(m−1∕2

n
−1), Opti-

mal: O
x
(n−1)

O(n−1) + O(m−2) + O(m−1∕2
n
−1), Optimal: 

O(n−1)

Zero at 0 x
[
O

(
N

1∕2

n

)
+ O(N−r)

]
, Optimal: xO(n

−2r

2r+1 )4 �

[
O

(
N

1∕2

n

)
+ O(N−r)

]
, Optimal: �O(n−

2r

2r+1 )



4.1 � Some observations

In the following, some important observations regarding the theoretical comparison 
are listed. It is notable that for the asymptotic order, h = 1∕m for the Bernstein esti-
mator is always replaced by h2 for the Kernel estimator. Also, the results for the 
Szasz estimator are the same as for the Bernstein estimator with the exception that 
the orders are often not uniform.

There are some properties that some or all of the estimators have in common. 
Regarding the deficiency, the Bernstein estimator, the kernel estimator, and the 
Szasz estimator all outperform the EDF with respect to MSE and MISE. All of 
the estimators convergence a.s. uniformly to the true distribution function, and the 
asymptotic distribution of the scaled difference between estimator and the true value 
always coincide under different assumptions.

However, there are of course also many differences between the estimators that 
are addressed now. For the Bernstein estimator and the Szasz estimator, the order 
of the bias is worse than that of the kernel estimator. For the Szasz and the Hermite 
estimator, the order is not uniform. For the variance, the orders of the Bernstein 
estimator and the Szasz estimator are the same as for the EDF and the kernel estima-
tor but are not uniform. The order of the Hermite estimator is worse than that of the 
other estimators. The optimal rate of the MSE is n−1 for the first four estimators in 
the table, two of them uniform and the others not. The rate of the Hermite estimator 
is worse but for r → ∞ , the rate approaches n−1 . This is very similar for the optimal 
rates of the MISE.

5 � Simulation

In this section, the different estimators are compared in a simulation study with 
respect to the MISE. For the kernel distribution function estimator, the Gaussian 
kernel is chosen, i.e. Fh,n(x) =

1

n

∑n

i=1
�

�
x−Xi

h

�
 , where � is the standard normal dis-

tribution function.
The simulation consists of two parts. In the first part, the estimators are compared 

by their MISE on [0,∞) with respect to

MISE
[
F̂n

]
= �

[

∫
∞

0

(
F̂n(x) − F(x)

)2
⋅ f (x)dx

]
,

Table 5   The range of the 
respective parameters

Estimator Abbr. Parameters

EDF F
n

–
Kernel F

h,n
h = i∕1000 , i ∈ [2, 200]

Szasz F̂
S

m,n
m ∈ [2, 200]

Hermite Half F̂
H

N,n
N ∈ [2, 60]



where F̂n can be any of the considered estimators. In the second part, the asymptotic 
normality of the estimators is illustrated for one distribution.

All of the estimators except for the EDF have a parameter in addition to n. For 
these estimators, the MISE is calculated for a range of the parameters, which are 
given in Table 5. We obtain a vector of MISE values for each estimator. Searching 
for the minimum value in this vector provides the minimal MISE and the respective 
optimal parameter.

Note that a selection of m could be based on mopt , defined in Corollary 2, using 
ideas from automatic bandwidth selection in kernel density estimation. Rule-of-
thumb selectors replace the unknown density and distribution function with a refer-
ence distribution, for example the exponential distribution in our case. For plug-in 
selectors, the unknown quantities are estimated using pilot values of m. However, 
the analysis of such proposals is clearly far beyond the scope of this work.

Every MISE is calculated by a Monte Carlo simulation with M = 10 000 repeti-
tions. To be specific, let

and with M pseudo-random samples, the averaged ISE is calculated by

where ISEi is the integrated squared error calculated from the ith randomly gener-
ated sample. For the Hermite estimator, the standardization explained in (Hanebeck 
2020) is used. In this simulation, we do not estimate the mean � and the standard 
deviation � as we already know the true parameters.

5.1 � Comparison of the estimators

For comparison, the exponential distribution with parameter � = 2 is chosen as well 
as three different Weibull mixture distributions. The bi- and trimodal mixtures that 
are considered are:

For the exponential distribution, the different sample sizes that are used are 
n = 20, 50, 100 , and 500. For the Weibull distributions, only n = 50 and n = 200 are 
considered. An example of the different estimators for the exponential distribution 
can be seen in Fig. 2 for n = 20 and n = 500 . It is obvious that the Hermite estima-
tors do not approach one, which is due to the truncation. Table  6 shows that the 
Szasz estimator has a best performance.

ISE
[
F̂n

]
= ∫

∞

0

[
F̂n(x) − F(x)

]2
⋅ f (x)dx,

ISE
[
F̂n

]
=

1

M

M∑

i=1

ISEi[F̂n] ≃ MISE
[
F̂n

]
,

Weibull 1: 0.5 ⋅Weibull(1, 1) + 0.5 ⋅Weibull(4, 4)

Weibull 2: 0.5 ⋅Weibull(3∕2, 3∕2) + 0.5 ⋅Weibull(5, 5)

Weibull 3: 0.35 ⋅Weibull(3∕2, 3∕2) + 0.35 ⋅Weibull(4.5, 4.5) + 0.3 ⋅Weibull(8, 8).



5.2 � Illustration of the asymptotic normality

The goal here is to illustrate the asymptotic normality

of the different estimators, where F̂n can be any of the estimators. The expression 
can be rewritten as

This representation is used in the plots below for a Beta (3, 3)-distribution in the 
point x = 0.4 for n = 500 . The value is F(0.4) = 0.32 . In Fig. 3, the red line shows 
the distribution function of the normal distribution. Furthermore, the histogram 
of the value p = F̂n(0.4) is illustrated. The parameters used for the estimators are 
derived from the optimal parameters calculated in the simulation.

√
n
�
F̂n(x) − F(x)

� D
����→ N

�
0, 𝜎2(x)

�

F̂n(x) ∼ AN

(
F(x),

𝜎2(x)

n

)
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Fig. 2   Plot of the considered estimators for n = 20 and n = 500

Table 6   The averaged ISE values, multiplied by 10−3

n EDF Kernel Szasz Hermite Half Hermite Norm.

Exponential(2) 20 8.29 6.09 5.3 8.68 7.57
50 3.3 2.71 2.41 5.61 3.58
100 1.68 1.47 1.32 4.6 2.26
500 0.34 0.32 0.3 3.73 1.15

Weibull 1 50 3.32 2.92 2.55 3.26 3.45
200 0.83 0.76 0.71 0.99 1.33

Weibull 2 50 3.32 2.96 2.59 3.08 2.76
200 0.83 0.75 0.72 0.79 0.79

Weibull 3 50 3.36 3.11 2.55 3.26 2.91
200 0.83 0.77 0.73 0.81 0.8



6 � Conclusions

In this paper, we have introduced an estimator for distribution functions on [0,∞) 
based on Szasz–Mirakyan operators. We have studied asymptotic properties of 
the Szasz estimator, and conducted the simulations to demonstrate its finite sam-
ple performance.

Appendix

The following theorem can be found in Ouimet (2020). He pointed out a mis-
take in the paper of Leblanc (2012) which also has an impact on this paper. The 
asymptotic behavior of RS

1,m
 in Lemma 3 has been corrected compared to Lemma 

3 in Hanebeck and Klar 2020, arXiv v.1.

Theorem 8  We define

Pick any � ∈ (0, 1) . Then, we have uniformly for k ∈ ℕ0 with 
����

�k√
mx

����
≤ � that

Vk,m(x) =
(mx)k

k!
e−mx, �(x) =

1√
2�

e−x
2∕2, and �k =

k − mx√
mx

.
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Fig. 3   Illustration of the asymptotic normal distribution



as n → ∞.

We now present various properties of Vk,m that are needed for the proofs. The 
following lemma and its proof are similar to Lemma 2 and Lemma 3 in Leblanc 
(2012). As mentioned before, parts (e) and (h) take the suggestions in Ouimet (2020) 
into account. The proofs for these parts are adjusted accordingly.

Lemma 3  Define

and

and Vk,m(x) = e−mx
(mx)k

k!
 . It trivially holds that 0 ≤ LS

m
(x) ≤ 1 for x ∈ [0,∞) . In addi-

tion, the following properties hold. 

(a) LS
m
(0) = 1 and lim

x→∞
LS
m
(x) = 0,

(b) RS
j,m
(0) = 0 for j ∈ {0, 1, 2},

(c) 0 ≤ RS
2,m

(x) ≤ x

m
for x ∈ (0,∞),

(d) LS
m
(x) = m−1∕2

[
(4�x)−1∕2 + ox(1)

]
for x ∈ (0,∞),

(e) R̃S
1,m

(x) = −
√

x

𝜋
+ ox(1) for x ∈ (0,∞) and RS

1,m
(x) = m−1∕2

[
−
√

x

4�
+ ox(1)

]
,

(f) m1∕2 ∫
∞

0

LS
m
(x)e−axdx =

1

2
√
a
+ o(1) for a ∈ (0,∞),

(g) m1∕2 ∫
∞

0

xLS
m
(x)e−axdx =

1

4a3∕2
+ o(1) for a ∈ (0,∞),

Vk,m(x)

1√
mx
�(�k)

= 1 + m−1∕2 1√
x

�
1

6
�3
k
−

1

2
�k

�

+ m−1 1

x

�
1

72
�6
k
−

1

6
�4
k
+

3

8
�2
k
−

1

12

�
+ Ox,�

��1 + �k�9

m3∕2

�

LS
m
(x) =

∞∑

k=0

V2
k,m

(x),

RS
j,m
(x) = m−j

∑∑

0≤k<l≤∞
(k − mx)jVk,m(x)Vl,m(x) for j ∈ {0, 1, 2},

R̃S
1,m

(x) = m1∕2

∞∑

k,l=0

(
k ∧ l

m
− x

)
Vk,m(x)Vl,m(x),



(h) For  any  con t inuous  and  bounded  func t ion  g  on  [0,∞) ,

m1∕2 ∫
∞

0

g(x)RS
1,m

(x)e−axdx = −∫
∞

0

g(x)

√
x

√
4�

e−axdx + o(1) for a ∈ (0,∞) and 

∫
∞

0

g(x)R̃S
1,m

(x)e−axdx = −∫
∞

0

g(x)

√
x

√
𝜋
e−axdx + o(1).
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