
Exploring Scheduling for On-demand File
Systems and Data Management within HPC

Environments

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Dipl.-Inf. Mehmet Soysal
geb. in Heidelberg

Tag der mündlichen Prüfung: 21.12.2020

Hauptreferent: Prof. Dr. rer. nat. Achim Streit
Korreferent: Prof. Dr. rer. nat. Martin Frank

This work is licensed under a Creative Commons
“Attribution-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Eidesstattliche Erklärung

Erklärung zur selbständigen Anfertigung der Dissertationsschrift
Hiermit erkläre ich, dass ich die Dissertationsschrift mit dem Titel

Exploring Scheduling for On-demand File Systems and Data Management within
HPC Environments

selbständig angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt sowie die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich
gemacht und die Regeln zur Sicherung guter wissenschaftlicher Praxis am Karlsruher
Institut für Technologie (KIT) beachtet habe.

Karlsruhe, 14.3.2021
Ort, Datum

Mehmet Soysal
Name

To my family

Acknowledgement

This work would not have been possible without the help of a number of important people,
whom I would like to thank warmly at this point. The thanks that go to these wonderful
people can hardly be put into words and you will always be in good memories for me.

First of all I would like to thank Prof. Dr. Achim Streit for his supervision and
Prof. Dr. Martin Frank for his support and co-supervising this work.

I would especially like to thank Prof. Dr. Achim Streit for giving me the opportunity
to do my doctoral thesis under his supervision. It should be mentioned that before I
already worked for several years as a system administrator at SCC. I have had the desire
to pursue a PhD for quite some time. Therefore, I am very grateful that Prof. Streit has
expressed his trust in me and made this opportunity possible. During the four and a half
years of my doctoral thesis you were at my side with valuable advice. You always kept
the quality of my research in mind and enabled me to publish my work. I would also like
to express my deep appreciation to Prof. Dr. Martin Frank. Your continuous support of
my doctoral studies have always given me a good feeling and that my work is recognized.

I am especially grateful to Dr. Marco Berghoff for all the time, patience (especially) and
energy he has put into supervising my work. Without him, my work would probably
still be in its early stages. His patience in reading and correcting my papers cannot
be expressed in words. His suggestions to improve my “creative” plots are always in
good memory. I will also not forget that he never let me down, despite my stubbornness
and always found uplifting words. And not unmentioned should be that he is the only
LATEX artist I know and a real virtuoso in dealing with it, thanks a lot for your support
in dealing with my LATEX problems.

I would also like to thank colleagues, who gave me important information and contribu-
tions for my work. Thorsten Zirwes, Michael Weimer, Samuel Braun, Marco Bergoff,
Marie Weiel and Markus Götz which contributed their use cases to confirm the arguments
of my work. Also I want to thank Doris Ressmann and Roland Laifer which provided
detailed information about storage systems and procurements. In particular I was able to
talk to Roland about storage systems and parallel file systems. With his experience he
was always a good colleague to talk to and he was a great support in the collecting key
data in the domain of parallel file systems. I would also like to thank Richard Walter,
who sacrificed his time and helped to do the tests regarding the network topologies.

Thanks again Marco Berghoff and Thorsten Zirwes for your time, which you both spent
to proofread my work and to note only “very few” corrections ;).

i

Acknowledgement

I would also like to thank all the department heads I had in this department:
Prof. Dr. Rudolf Lohner, Dr. Holger Marten, Dr. Olaf Schneider and now more recently
Dr. Jennifer Buchmüller for always having an open door for discussions. In particular, I
would like to mention Horst Gernert and how he always took care of employees in his
position as deputy head of department. Hope you enjoy your retirement.

Special thanks goes to: Maren Hattebuhr for being the most jolly and cheerful person,
and for the weird singing during the boring car rides, Thorsten Zirwes for his “wonderful”
cinema film decisions in which he sometimes dragged us along. Karl-Heinz Schmidmeier
and Frauke Bösert for beeing really wonderful colleagues, Rolf Mayer und Ngan Long
Tu for the best coffee to scrounge in the Campus South building, Markus Götz for having
a open ear when needed and for being one of the friendliest and helpful colleagues.
Elnaz Azmi and Markus Strobel for the nice company on the way to work and that
Markus gave me a taste for high quality rums.

I am also thankful to all my current and former colleagues, for countless enjoyments,
lively lunch break discussions, which created a warm and inspiring atmosphere. Many
colleagues and doctoral researchers with whom I have spent a lot of free time outside
work, from social evenings to sports activities. During my time as a doctoral researcher,
my attitude changed and I often got a different perspective on a lot of things. This is
due to the colleagues with whom I spent a lot of time, both on and off the job. So I
would like to thank these colleagues again for the great time. Also thank you very much:
Thorsten Zirwes, Michael Weimer, Samuel Braun, Marie Weiel, Markus Götz, Eileen
Kühn, Markus Fischer, Maren Hattebuhr, Matthias Schnepf, Kirsten Wohak, Benjamin
Ertl, Nico Schlitter, Marco Berghoff, Diana Gudu, Peter Krause, Matthias Schnepf, Karl-
Heinz Schmidmeier, Frauke Bösert, Roland Laifer, Hartmut Häfner, Nikolai Pfisterer,
Elnaz Azmi, Markus Strobel, Elizaveta Dorofeeva and everyone else I forgot to mention.

ii

Zusammenfassung

Immer mehr wissenschaftliche Bereiche verwenden zunehmend High-performance
computing (HPC)-Systeme. Computersimulationen sind oft kostengünstiger als echte
Experiemte und ermöglichen einen Einblick, welcher in der realen Welt oft nicht
verfügbar ist. Als Beispiele wären Crashtests in der Automobilindustrie, Erdbeben-
forschung, oder die aktuelle SARS-Covid-19 Forschung zu nennen. Es ist weitaus
günstiger eine Crashtest zu simulieren, als ein Auto gegen eine Wand fahren zu lassen.
Im Falle der Erdbebenforschung wird hier eine Möglichkeit gegeben, einen Einblick
in die Erde zu bekommen, welche sonst nicht möglich wäre. Aufgrund der aktuellen
Lage bzgl. SARS-Covid-19 werden verstärkt Supercomputer genutzt, um Erkenntnisse
über den Virus zu gewinnen.

HPC-Systeme und ihre Anwendungen unterliegen einer stetigen Veränderung. Die
Systeme werden immer größer, heterogener und damit komplexer. Darüber hinaus
sind neue Anwendungsfälle und Nutzungsprofile entstanden. Der Wandel bei den
Anforderungen lässt sich anhand der Nutzung der Systeme erkennen. Bei den tradi-
tionellen HPC-Anwendungen handelt es sich primär um rechenintensive, parallele und
skalierende Simulationen. Dabei ist es üblich Datenoperation soweit wie möglich zu
reduzieren. In jüngster Zeit gibt es neue Nutzer Communities, welche riesige Daten-
mengen erzeugen, verarbeiten und analysieren. Dieser Trend wird als daten-intensives
Rechnen bezeichnet. HPC Systeme und die bisherigen parallelen Speichersysteme sind
gewöhnlich nicht für diese neuartigen Workloads ausgelegt. Zusätzlich haben immer
mehr wissenschaftliche Communities einen erhöhten Kapazitätsbedarf, welcher sich mit
den parallelen HPC-Filesystemen nur mit enormen Kosten realisieren lassen.

Aus der bisher geschilderten Situation ergeben sich gleich mehrere Herausforderungen.
(i) Das Speichersystem muss eine sehr hohe Spitzenleitung bereitstellen, sowohl beim
Durchsatz als auch bei der Metadaten Leistung. (ii) Die Speichersysteme müssen
effizienter ausgenutzt werden, um mehr freie Kapazität auf den schnellen Speicher-
systemen zu haben.

In meiner Arbeit habe ich unter diesen Rahmenbedingungen, welche in HPC Zentren
vorhanden sind, Konzepte erarbeitet. Für die unter (i) geschilderte Herausforderung
werden dynamisch per Software erzeugte Dateisysteme (On-Demand-Dateisystem)
genutzt. Für die Herausforderungen unter (ii) wurde ein Konzept zum Datenmanagement
entworfen. Dadurch können die verschiedenen Hierarchieebenen stärker miteinander
gekoppelt und erweitert werden. Für Benutzerinnen der HPC-Systeme wird durch das
Konzept eine transparente Nutzung der verschiedensten Speichersysteme ermöglicht. Die

iii

Zusammenfassung

HPC-Betreiberin hat hierbei die Möglichkeit, neue Speichersysteme und -technologien
transparent zu integrieren.

In meiner Dissertation präsentiere ich Strategien und Leistungsuntersuchungen in einer
Simulationsumgebung, um die oben genannten Herausforderungen zu adressieren. Teile
der Dissertation sind im Rahmen des DFG-Projektes ADA-FS1 entstanden, welches
ein Teil des Schwerpunktprogramms Software for Exascale (SPPEXA) [1] war. ADA-
FS zielt darauf ab, die I/O-Leistung für hoch-parallele Anwendungen durch verteilte
On-demand-Dateisysteme zu verbessern. Dazu wurde erforscht, wie jobspezifische
temporäre Dateisysteme effizient für HPC-Umgebungen bereitgestellt werden können.

1Advanced Data Placement via Ad-hoc File Systems at Extreme Scales

iv

Abstract

More and more scientific disciplines are increasingly using HPC systems. Computer
simulations are often less expensive than real experiments and provide insight that
is often not available in the real world. Examples are crash tests in the automotive
industry, earthquake research, or the current SARS-Covid-19 research. It is far more
economical to simulate a crash test than to let a car crash into a wall. In the case of
earthquake research, this is a way to get a view of the earth that would otherwise not
be possible. Due to the current situation regarding SARS-Covid-19, supercomputers
are used to gain knowledge about the virus.

High-performance computing (HPC) systems and their applications are subject to
constant change. The systems are becoming larger, more heterogeneous and thus more
complex. In addition, new use cases and usage profiles have emerged. The change in
requirements can be seen in the use of the systems. The traditional HPC applications are
primarily compute-intensive, parallel and scalable simulations. It is common practice
to reduce data operations as much as possible. In addition, there have recently been
new user communities that generate, process and analyze huge amounts of data. This
trend is called data-intensive computing. HPC systems and existing parallel storage
systems are usually not designed for these new types of workloads. In addition, more
and more scientific communities have an increased capacity requirement, which can
only be realized with the parallel HPC file systems at enormous costs.

Several challenges arise from the situation described above. (i) The storage system
must provide a very high peak performance, both in terms of throughput and metadata
performance. (ii) The storage systems must be used more efficiently to provide more
free capacity on the fast storage systems.

In my work, I have developed concepts under these conditions, which are available in
HPC centers. For the challenge described under (i), dynamically software-generated file
systems (on-demand file system) are used. For the challenges under (ii) a concept for
data management was designed. This allows the different hierarchical levels to be more
closely linked and extended. For users of HPC systems, the concept enables transparent
use of the most diverse storage systems. The HPC operator has the opportunity to
integrate new storage systems and technologies transparently.

In my dissertation I present strategies and performance tests in a simulation environment
to address the above mentioned challenges. Parts of the dissertation are part of the

v

Abstract

DFG project ADA-FS1, which was part of the priority program Software for Exascale
(SPPEXA) [1]. ADA-FS aims to improve I/O performance for highly parallel applications
through distributed on-demand file systems. For this purpose, research was conducted
on how to efficiently provide job-specific temporary file systems for HPC environments.

1Advanced Data Placement via Ad-hoc File Systems at Extreme Scales

vi

Table of Content

Acknowledgement i

Zusammenfassung iii

Abstract v

Glossary xi

1 Introduction 1
1.1 State of the Art . 2
1.2 Scientific Contributions . 4
1.3 List of Publications . 6
1.4 Thesis Outline . 7

2 Basics of Supercomputing 9
2.1 HPC Applications . 9
2.2 HPC Systems . 11

2.2.1 Hardware Architectures . 11
2.2.2 Network Architectures . 13
2.2.3 File Systems . 20
2.2.4 Batch Systems . 22
2.2.5 Metadata . 23

2.3 Scheduling . 23
2.3.1 HPC Job Classification . 24
2.3.2 Job Metadata . 25
2.3.3 Scheduling Algorithms . 25
2.3.4 Accounting, Fairshare and more 27

2.4 Wall Time Prediction . 27
2.4.1 Machine Learning . 28

2.5 Storage and File Systems . 29
2.5.1 Parallel File Systems . 31
2.5.2 Innovation and Current Situation 32

2.6 Data Management . 34
2.7 Summary . 36

vii

Table of Content

3 Evaluation Environment 37
3.1 HPC System . 37

3.1.1 Hardware . 37
3.1.2 Storage and File Systems . 38
3.1.3 Metadata Performance of the Parallel File Systems 40

3.2 System Software and Tools . 41
3.3 Applications . 43
3.4 Summary . 45

4 On-demand File System 47
4.1 Related Work On-demand File System 48
4.2 Deployment of the On-demand File System 51
4.3 Generic Benchmarks . 52
4.4 Scientific Use Cases . 57

4.4.1 super_SPH . 57
4.4.2 NAStJA . 58
4.4.3 OpenFOAM . 59
4.4.4 Swarm-based Meta-heuristic 64

4.5 Data Staging . 65
4.6 Summary . 68

5 Data Scheduling 71
5.1 Related Work . 72

5.1.1 Background on Walltime Prediction 72
5.1.2 Background on Scheduling Simulator 74

5.2 Real World Situation . 76
5.3 Parallel Workloads Archive . 77

5.3.1 Additional Metadata . 79
5.4 Method and Metrics . 80

5.4.1 Metrics for Wall Time Prediction 81
5.4.2 Resource Allocation Metrics 82

5.5 Evaluation . 84
5.5.1 Wall Time Prediction using ML 84
5.5.2 Resource Allocation Prediction 87

5.6 Implications for Real Scenarios . 88
5.7 Summary . 91

6 Automatic Data Management 93
6.1 Related Work . 94
6.2 Reasons for Data Management within HPC Environments 96

6.2.1 Storage Capacity . 96

viii

Table of Content

6.2.2 File System Statistics . 98
6.2.3 Example User Behaviors . 100
6.2.4 Requirements for Data Staging 104

6.3 Prototype Data Management Tool – JAWS 105
6.3.1 JAWS Elements . 105
6.3.2 Design and Architecture . 107

6.4 JAWS usage on HPC Systems . 109
6.5 Summary . 112

7 Conclusion and Outlook 113
7.1 Outlook . 115

A Appendix 117
A.1 Metadata of Swarm-based Meta-heuristic Job 117
A.2 Scheduling Simulator (BOB) . 118
A.3 JAWS . 118
A.4 Tables . 123

ix

Glossary

Glossary & Acronyms

AVX Advanced Vector Extensions (AVX) is an extension of the x86 instruction set for
microprocessors from Intel and AMD..

CBB Constant Bisectional Bandwidth.

DFG The Deutsche Forschungsgemeinschaft (DFG) (English: German Research Foun-
dation) is a German research funding organization.

FCFS First Come First Serve (FCFS) is a scheduling algorithm that executes tasks in
order of their arrival. It is an easy and simple scheduling algorithm.

HCA The Host Channel Adapter (HCA) is a component of the InfiniBand that serves
as the connecting component between the processors and external peripherals.
The HCA has direct access to processors and memory and is responsible for data
transport..

HPC High-performance computing.

IEC The International Electrotechnical Commission (IEC) is an international standard-
ization organization for standards in electrical engineering and electronics..

LHC The Large Hadron Collider (LHC) is a particle accelerator at the European Nuclear
Research Centre CERN near Geneva..

MPI Message Passing Interface (MPI) is a standardized and portable standard to function
on a variety of parallel computing architectures.

MPP A Massively Parallel Processing (MPP) System is a parallel computer that has a
large number (thousands) of independent execution units..

NAStJA Neoteric Autonomous Stencil code for Jolly Algorithms.

NVMe Non-volatile memory express (NVMe) is an logical-device interface specification
for accessing non-volatile storage media. Storage devices can have serveral physical
form factors, including solid-state drives (SSDs), PCI Express (PCIe) add-in cards
and other forms. Up-to-date NVMe devices are using PCIe with a 4 lanes interface
which offers a transfer rate of approx. 7.8 GiB/s.

xi

Glossary

ODFS On-demand file system (ODFS) are created dynamically on request. These only
serve a specific purpose and in contrast to dedicated storage only exist during a
short period.

OpenFOAM Open-source Field Operation And Manipulation (OpenFOAM) is a C++
toolbox for the development of numerical solvers, and pre-/post-processing utilities
for the solution of continuum mechanics including computational fluid dynamics.

PFS A parallel file system is designed to store data across multiple servers and to offer
high-performance access..

POSIX The Portable Operating System Interface (POSIX) is a family of standards
specified by the IEEE Computer Society for maintaining compatibility between
operating systems. In this thesis we always refer to file system compatibility.

SATA Serial ATA (SATA / Serial AT Attachment)[3] is a computer interface that
connects to mass storage devices such as hard disk drives, optical drives, and
solid-state drives. Third-generation SATA (released in 2008) interfaces has a
transfer rate of 6 Gibit/s.

SCC The Steinbuch Centre for Computing (SCC) is the central computing center of the
Karlsruhe Institute of Technology.

SI The International System of Units (SI, abbreviated from the French Système interna-
tional (d’unités)) is the modern form and widely used system of units for physical
quantities..

SIMD Single instruction, multiple data (SIMD) is a classification of parallel computers
by Flynn.

SMP Symmetrical multiprocessor system (SMP) is a multiprocessor architecture in
which two or more identical processors share a common address space..

SSD A solid-state drive (SSD) is a solid-state storage device that uses integrated
circuit assemblies to store data persistently, typically using flash memory, and
functioning as secondary storage in the hierarchy of computer storage. It is known
as a solid-state device or a solid-state disk, even though SSDs lack the physical
spinning disks and movable read–write heads used in hard drives (“HDD”) or
floppy disks.

SWF The standard workload format (SWF) was defined in order to ease the use of HPC
workload logs and models. Programs need only to parse a single format to analyze
workloads or simulate system scheduling.

xii

Glossary

Units

Units based on International System of Units (French Système international (d’unités)
(SI) and International Electrotechnical Commission (IEC) [2]

1 B Byte: 8 bit

1 KiB Kibibyte (Kbyte) according to IEC: 210 Byte

1 kB Kilobyte according to SI: 103 Byte

1 MiB Mebibyte (Mbyte) according to IEC: 220 Byte

1 MB Megabyte according to SI: 106 Byte

1 GiB Gibibyte (Gbyte) according to IEC: 230 Byte

1 GB Gigabyte according to SI: 109 Byte

1 TiB Tebibyte (Tbyte) according to IEC: 240 Byte

1 TB Terabyte according to SI: 1012 Byte

1 PiB Pebibyte (Pbyte) according to IEC: 250 Byte

1 PB Petabyte according to SI: 1015 Byte

Some conversion 1 PiB ⇐⇒ 1 PB

1 PiB/1 PB =
250

1015 ≈ 1.13 ≈ 114 TB

1 PiB ≈ 1 PB + 114 TB

1 PB ≈ 0.888 PiB ≈ 909 TiB 506 GiB 588 MiB 416 kB

xiii

1
Introduction

“A supercomputer is a device for converting compute-
bound problems into I/O-bound problems.”

— Ken Batcher [3]

High-performance computing (HPC) systems, or so-called supercomputers 1, and their
applications are subject to constant change. The systems are becoming larger, more
heterogeneous and thus more complex. In addition, new use cases and usage profiles are
emerging. The changing requirements are evident in the use of the systems. Traditional
HPC applications are primarily computationally intensive, parallel, and scalable. It is
common practice to reduce data operations as much as possible [4, 5]. Recently, new
user communities are emerging that generate, process, and analyze huge amounts of
data [6–10]. This trend is called data-intensive computing and presents a challenge for
classic HPC architectures [11]. HPC systems and existing parallel storage systems are
generally not designed for these new types of workloads. In contrast to computational
capacity, which can be used exclusively, data storage is a shared resource and is used
in a shared manner by all users of an HPC system. The drawback is, that individual
users with data-intensive workflows can slow down the overall system.

In classical HPC applications, file operations often take place in intervals, typically
with snapshots of the simulation stored on a storage system [10]. During data-intensive
simulations, a large number of file operations is continuously generated, which creates
constant pressure on the storage system [10]. Due to the increasing demand of classical
applications and the new data-intensive communities, storage systems are increasingly
becoming a bottleneck. In addition, data-intensive communities have an increased
capacity requirement. The situation described above presents several challenges. (i)

1In this thesis, the terms HPC system and supercomputer are used as synonyms.

1

Chapter 1 Introduction

Global
Buffers

c) Global PFS

e) Background Storage

f) Archive/HSM Storage

d) Project Storages

Node-local

a)

b)Performance Tier

Capacity Tier

Archive
Tier

Compute-node

Multi-cluster/
Site

Cluster/Multi-
cluster

Site-wide

Multi-cluster

Cluster-wide

Figure 1.1: Storage Tier Pyramid

The storage system must provide a very high peak-performance, both in terms of
throughput and metadata performance. (ii) The storage systems must be used more
efficiently, to provide more free capacity on faster storage systems. The opening
quote defines a supercomputer, as a device to turn compute-bound problems to I/O-
bound. Therefore, the overall goal of this work is to turn I/O-bound problems back
into compute-bound problems.

1.1 State of the Art

A common solution, to meet the new challenges, is to arrange storage systems in different
tiers [12]. Tiered storage refers to a data storage environment, that consists of two or
more types of storage. The differences between the tiers can be distinguished by four
attributes: price, performance, capacity and function. These tiers can be presented as
a storage pyramid. Figure 1.1 shows a possible storage pyramid within HPC centers.
A very powerful storage system, a global parallel file system (PFS) is usually directly
connected to the HPC system (c). Fast caches and buffers (b) can be used to reduce the
load on the parallel file system. With the appearance of solid-state drives (SSDs) they
have also found their way into computing nodes. For example, each compute node of
the ForHLR II [13] has a SSD. These SSDs (a) can only be used locally in each node.
Parallel use across nodes is not intended or possible (so far).

In addition, HPC centers often already have various types of storage that extend the
hierarchy downwards (d–f see Figure 1.1). On the right side the visibility of the storage

2

State of the Art 1.1

systems is marked. Cluster or Multi-cluster means here, that a storage system is directly
connected to the clusters and can only be used by them. Often policy rules decide
whether a storage is connected to multiple clusters. In contrast, there is storage which can
be used independently of the clusters and also serve other purposes, so-called site-wide
storage. These storages can be used with different protocols and tools. However, there is
no general automatism that allows the data to be transferred to different storage levels
and systems. Users must act manually here.

In this work, concepts have been developed under the conditions that typically can
be found in HPC centers. To address the challenge described under (i), dynamically
software generated file systems (on-demand file system) are used [14]. A temporary
file system is created, with node-local SSDs, that can be used across nodes. This file
system can be created for a single HPC job, a project or a campaign as needed. In this
way, it is possible to create an on-demand file system tailored to the user’s needs. This
allows the HPC operator to provide an extremely fast file system at no extra cost. To
meet the challenges under (ii), a data management concept was developed. For users of
HPC systems, this data management concept enables transparent use of various storage
systems. The HPC operator has the possibility to integrate new storage systems and
technologies without the need to train the users.

To meet the above-mentioned challenges, different solutions have to be developed that
extend the storage levels “upwards” (i) and more tightly link them “downwards” (ii):

Challenge 1
Conceptual design for deployment and integration of an on-demand file

system (upper tier) and evaluation of its impact on applications.

The first step is to integrate an on-demand file system into HPC systems. Normal
operation of HPC systems and the previous operating model should not be affected.
Since there are different setups of such systems, a way to offer such a concept has to be
designed for different environments. It must also be shown, if and how the performance
of an application is affected. Until now, the requested resources have been available
exclusively for a user job. With an additional on-demand file system, the computing
resources now have also to serve an on-demand file system.

Challenge 2
Analysis of HPC job workloads to determine when data must be available

on various storage systems.

Planning and coordination of data staging is one of the challenges. It is necessary to
plan, when data is going to be copied to an on-demand file system. The timing of
copying data plays a decisive role here. In the case of data staging, it is important to

3

Chapter 1 Introduction

minimize its influence on running jobs. It is particularly important, that the resources
must be known in advance, if data should be staged in advance.

Challenge 3
Development of a concept for data management across hierarchical levels

(lower tier).

The final challenge is data management in HPC environments. Here, various storage
systems must be made available to users by means of a simple abstraction layer.
Furthermore, the solution must be able to easily integrate into the environment without
complicating existing workflows.

1.2 Scientific Contributions

Overall, the contributions of this thesis focus on the conceptual design, its evaluation and
demonstration in real-world scenarios. The provision of a very powerful on-demand file
system and data management of large-volume data, are technology-open and therefore
generally applicable. New technological developments can be incorporated with minimal
effort. Furthermore, studies have been published which clearly show that premature
data staging is hardly possible without affecting the operating model. On the other
hand, it was demonstrated that the advantages of on-demand file systems outweigh the
disadvantages. Each paper is discussed in more detail below.

Contribution 1
Analysis of job metadata for enhanced wall time prediction.

Various job metadata and their impact on wall time predictions were investigated. For
job wall time prediction, machine learning methods and workload traces of large HPC
systems have been used. Metadata which were previously ignored and not examined
were considered. The evaluation shows that the accuracy of the wall times can be
improved with automated methods. For both workloads examined, the deviation was
drastically reduced. For 60 % of the users, the deviation was reduced from about 7.4
hours to about 1 hour and 1.4 hours. This contribution is associated with Challenge 2.

Contribution 2
Using On-demand File Systems in HPC Environments.

A simple solution for applications with very high I/O demands were presented in this
publication. The proposed solution is to create a private parallel file system on-demand
for an HPC job. This private file system uses the node-local storage devices, e.g.,

4

Scientific Contributions 1.2

solid-state-disks (SSD). The developed solution is easy to add to HPC environments
and requires only minimal configuration to the system setup. The conclusion of that
work is, that the impact on running applications is manageable and the advantages
for applications that generate a high load, outweigh the disadvantages. In some cases,
applications may run slower, but the reduction of pressure on the global file system is
prevailing in these cases. This contribution is associated with Challenge 1.

Contribution 3
On the Quality of Wall Time Estimates for Resource Allocation Prediction.

The node allocation behavior of a HPC batch scheduling system was evaluated in this
publication. The goal is to determine, whether it is possible to stage data in advance,
based on scheduler predictions. It is shown, that wall time estimates must be excellent
to reliably predict node allocations. In reality, the required accuracy for data staging in
advance is hard to achieve. Therefore, the behavior of a (standard) batch scheduler has
to be modified in order to enable efficient data staging in advance. Following this work,
different methods have been conceptualized to allow on-demand file systems and data
staging. These solutions serve as proof of concept and demonstrate that the basic ideas
work on production systems. This contribution is associated with Challenge 2.

Contribution 4
Ad-hoc file systems at extreme scales.

Methods for integrating the approach, of an on-demand file system (ODFS), into an
HPC system were evaluated in this publication. It was demonstrated as a feasibility
study on a real machine. The advantages and disadvantages of such an approach were
shown. It was demonstrated, that an ODFS can be integrated into the normal operation,
without affecting the operation model. In addition, the influence of on-demand file
systems on the execution of HPC jobs and user applications were investigated. This
contribution is associated with Challenge 1 and 2.

Contribution 5
JAWS: Just Another Workspace Suite

To meet the challenge for data management a framework has been developed – “JAWS”.
As a centralized data management service, JAWS orchestrates the movement of data
between the different storage tiers. It can be easily integrated into HPC environments
to facilitate scientific work. JAWS simplifies the data management by abstracting the
different storage types and technologies as well as the infrastructure. By using a batch
system for data movement, the efficient use of the infrastructure is increased. The data
and directories are merged into a logical unit, so-called workspaces. These workspaces

5

Chapter 1 Introduction

will be provided with additional metadata in the central JAWS service and improve the
data management for operator and user. JAWS is not a new type of storage or file system.
Instead it helps users to orchestrate the amounts of data that are generated in scientific
computing. It provides an abstraction layer of the various data storages available. In
addition, it is possible to set additional metadata in the central service, which improves
the retrieval and management of the data. A prototype implementation of JAWS has
been developed which is freely available and licensed under the MIT license. This
contribution is associated with Challenge 3.

1.3 List of Publications

Most of the contributions in this thesis have already been published in peer-reviewed
conference proceedings. The publications relevant to the content presented in this thesis
are listed in the following. This list only show publication with me as main author.

• Mehmet Soysal, Marco Berghoff, and Achim Streit. Analysis of job metadata for
enhanced wall time prediction. In Workshop on Job Scheduling Strategies for
Parallel Processing, pages 1–14. Springer, 2018.

• Mehmet Soysal, Marco Berghoff, Thorsten Zirwes, Marc-André Vef, Sebastian
Oeste, Andre Brinkman, Wolfgang E. Nagel, and Achim Streit. Using On-demand
File Systems in HPC Environments. 2019 International Conference on High
Performance Computing and Simulation (HPCS), 2019.

• Mehmet Soysal, Marco Berghoff, Dalibor Klusáček, and Achim Streit. On the
Quality of Wall Time Estimates for Resource Allocation Prediction. In Proceedings
of the 48th International Conference on Parallel Processing: Workshops, ICPP
2019, pages 23:1–23:8, New York, NY, USA, 2019. ACM.

• Mehmet Soysal and Achim Streit. Ad-hoc file systems at extreme scales. High
Performance Computing in Science and Engineering’19 (HLRS), 01 2019. (ac-
cepted)

• Mehmet Soysal and Achim Streit. JAWS: Just Another Workspace Suite. Inter-
national Conference on High Performance Computing and Simulation (HPCS),
2020 (submitted)

Software Availability. Corresponding software and developed tools are publicly
available.

• JAWS: https://github.com/mehsoy/jaws

• Walltime prediction tools:
https://github.com/mehsoy/walltime-prediction-tools

• On-demand file system tools: https://github.com/mehsoy/ODFS-tools

6

https://github.com/mehsoy/jaws
https://github.com/mehsoy/walltime-prediction-tools
https://github.com/mehsoy/ODFS-tools

Thesis Outline 1.4

1.4 Thesis Outline

The remainder of this thesis is structured as follows:
Chapter 2 provides the necessary background for the thesis. The basic principles and
the structure of the environment are explained. Basic introduction to supercomputers
and the environment is given here. In addition, the basics for the data management
are explained. Chapter 3 explains the used environment. Here the user applications
are explained as well as the system. Chapter 4 continues with the discussion of the
on-demand file system concept. At first a short introduction to related work is given.
Afterwards the concepts for the deployment and first general applications are tested.
Finally, scientific applications are used to demonstrate how a on-demand file system can
be used and the advantages and disadvantages of using it are shown. Chapter 5 presents
the investigation of the scheduling behavior. After a short overview in the related work,
it is shown how wall time estimates can be improved. Afterwards, an evaluation of
how good wall time estimates have to be in order to reach the goal of advanced data
staging. Chapter 6 deals with the data management. Here the concepts are introduced
and use cases were shown, why data management is needed and why it is important
in this environment. In Chapter 7, a summary of this thesis is given and an overview
of open questions and possibilities for future work is presented.

7

2
Basics of Supercomputing

“#3 pencils and quadrille pads.”
— Seymour Cray [15],

(when asked what CAD tools he used
to design the Cray I supercomputer.)

This work covers a wide scope in the area of HPC environments: the systems, operation
model, production environment, user applications, and system software such as the
batch job scheduler or parallel file systems. In addition to the setup of such an HPC
systems, the operating and usage model is also important. Therefore, in this chapter
an overview of such HPC systems and the environment is given, so that the required
background knowledge for this thesis is available.

Before basics of supercomputing are explained, the terms supercomputing and super-
computer should be differentiated. Supercomputers are the systems themselves, i.e., the
physical machine. The term supercomputing covers the whole field of supercomputing,
i.e., the machines, applications, operation, etc.

2.1 HPC Applications

Supercomputers support research and technical development by enabling scientists to
perform simulations, analyze data, or apply numerical methods to solve computational
problems. To accomplish this, scientists execute their scientific applications on HPC
systems and evaluate the results. Scientific simulations have always been a powerful
tool and can provide insights, which laboratory experiments cannot offer. Often,
these computer simulations are also much cheaper than real experiments. Computer
simulations have changed the fundamental way of gaining insights. Whether some

9

Chapter 2 Basics of Supercomputing

phenomena in the Universe are only suspected or exceed the life span of mankind, we are
able to simulate them or prove them through computing capabilities. As such an example,
the IllustrisTNG project [16] simulates the formation of cosmological galaxies. Each
of these simulations covers a large time span of a universe, from shortly after the Big
Bang to the present day. IllustrisTNG simulations make it possible to investigate a wide
range of issues related to the temporal evolution of the Universe. Supercomputers are
also used in the engineering field. Development of new airplanes would be impossible
without supercomputers. Here, simulations of whole aircrafts [17] down to simulation
of liquid fuel inside the combustion chamber [18] are performed to explore and improve
every single aspect. We also see the results of supercomputers in everyday life, although
not everyone is aware of this. An example are weather simulations. These require large
computing power that only can be provided on HPC systems. In Germany, these are
conducted by “Deutscher Wetterdienst” (DWD) using supercomputers [19, 20].

When using supercomputers, a distinction is made between different types of payload.
These payloads are distinguished by resource requirements of the applications.

Parallel applications: Some highly-scalable and tightly-coupled scientific applications
run many parallel processes with synchronized execution steps. Some specific hardware
and software requirements must be met to achieve good performance under a synchro-
nization model of this kind. As an example, it is important that the computing resources
are homogeneous to allow a synchronous execution [21]. Furthermore, the system must
have a very fast connection between the individual resources with a low latency. In
addition, the resources of the system must be large enough to run the applications. Finally,
a simple low-latency communication framework or messaging interface (e.g., Message
Passing Interface (MPI) [22]) is required to ease the development of applications, that
require communication and synchronization between processes.

High-throughput computing supports scientific applications that require to solve many
small tasks for their research. Such applications do not need to be closely coupled
and can be run concurrently. Usually the tasks are independent of each other. Such
applications are typically very small in terms of resource requirements, but may require
more resources in terms of execution time or I/O. An example of such high throughput
payloads, are simulation jobs from the Large Hadron Collider (LHC) project [23]. Here,
a lot of small jobs are created and distributed to the available resources. These LHC
jobs usually only need a single node (or even core) for their computation.

Some scientific workflows are based on a different number of applications, which
have to be executed in a specific order. After each individual section, an intermediate
result is passed to a next stage of the workflow. It can happen that specific parts
have different resource requirements. A very simple variant of such a workflow is the
classic pre-processing – simulation – post-processing. In many simulations, the data
is prepared before the actual simulation (pre-processing) and after the simulation the
results may visualized (post-processing). To prepare the data in visual form, special
hardware can be used, such as graphics accelerators. For more complex workflows,
frameworks can simplify the workflow for the user [24, 25]. However, for workflows

10

HPC Systems 2.2

to be possible at all, it is important that a system scheduler supports the expression
of dependencies between jobs.

Applications spending most of their time on I/O are called data-intensive [26]. Such
applications are not compute-bound, but use most of their run time moving and
manipulating data. Parallel processing can be achieved in data-intensive work, e.g., by
segmenting the data sets, which are then distributed, processed and finally reassembled.
The basic challenges for data-intensive computing are the management and processing
of exponentially growing amounts of data as well as the number of metadata operations.

2.2 HPC Systems

The use of high-performance computers (HPC), i.e., computer systems with particularly
high memory and performance, is commonly used in many scientific disciplines. Such
systems, also known as supercomputers, can have different architectures and design
concepts. The acquisition, construction and operation of such a HPC system can be
very expensive [27]. To keep these costs as low as possible, it is therefore necessary
to operate the computer in multi-user mode. To use the machine simultaneous with
multiple users, system resources are handled by a management component, a so-called
batch system. Section 2.2.4 explains in detail the components of a batch system.

2.2.1 Hardware Architectures

There are different conceptual architectures of supercomputers. In this section, a short
overview of the different architectures is given. To get an overview of supercomputers,
the TOP 500 [28] list of the fastest supercomputers is suitable. Twice a year, the 500
fastest systems in the world are published on the TOP 500 list. However, it should be
kept in mind that the list is created on the basis of computing power.

Figure 2.1 shows the percentage share of the TOP 500 list from June 1993 to June 2020,
based on the design concepts. Single instruction, multiple data (SIMD), and single-
processor systems have not been among the TOP 500 since 1997. Large Symmetrical
multiprocessor system (SMP) systems were represented until 2003, but have been
replaced by clusters, Massively Parallel Processings (MPPs) and constellation systems.
Towards the end of the last decade it is clearly visible that only MPP and cluster systems
are in the TOP 500. However, a trend can also be seen that the presence of MPP systems
in the TOP 500 continues to decline. Today, most of the supercomputer architectures
are clusters. The different architecture types are defined below.

In the early days of supercomputing, single processor systems were a common option
for a supercomputer. In some cases, special processors were developed which were
only intended for use in supercomputers. An example for such a system was the

11

Chapter 2 Basics of Supercomputing

1996 2000 2004 2008 2012 2016 2020
Date

0

20

40

60

80

100

Pe
rc

en
ta

ge
Cluster
MPP
Constallations
SMP
SIMD
Single Processor

Figure 2.1: Design concepts change within the TOP 500 List. Data Source: www.top500.org

Hitachi S3800 [29] which was still represented in the TOP 500 in 1996. SIMD [30]
is an architecture of mainframe computers or supercomputers, also known as array
processors or vector processors. SIMDs are used for the fast execution of similar
computing operations on several simultaneously arriving or available input data streams.
It is important to note that such machines exploit data level parallelism. There are
simultaneous computations, but only a single instruction at a given moment. An example
of such a system is the Maspar supercomputer [31]. Today, SIMD supercomputers
have disappeared from the TOP 500, but the idea of SIMD is available in today’s
popular processors as an extended instruction set, such as Advanced Vector Extensions
(AVX) [32] in x86 based processors.

A symmetric multiprocessor (SMP) [33] system is a multiprocessor architecture in
which two or more identical processors have a common address space. This means, that
every processor shares the same memory or register with the same physical address.
But as every CPU needs to be able to execute every process, the memory-bus becomes
a bottleneck. With every additional CPU, the relative gain of performance decreases,
because the bandwidth of the storage system is distributed to all processors. In order
to avoid this, so-called NUMA (Non-Uniform Memory Architecture) was developed
to reduce these problems. An example for such a system was the Sun Fire 6800 which
contained up to 192 processors in one system and was listed in the TOP 500 until 2002 [34,
35]. Although these systems have disappeared from the TOP 500, the idea of SMP is
more widespread than ever. All desktop computer, laptop, and even smartphones are
basically a SMP system, because they have a CPU with multiple cores of the same type.

The terms constellation, cluster, and MPP are based on the classification used in the
TOP 500 list. Depending on the point of view, such systems are similar and are classified

12

www.top500.org

HPC Systems 2.2

in the same way by others [36]. The commonality lies in the idea of using identical
commodity hardware which are installed in a significant number. The processing
elements of such system are often refereed to as “nodes”.

A cluster [37] is made up of regular standard components. The individual systems
are interconnected using standardized hardware and software technologies, such as
Ethernet for networking or the Linux as operating system. In the beginning, so called
Beowulf clusters [38] were common, which used a large number of interconnected
simple desktop computers or workstations. Today standardized, rack mounted server
systems are common, as they are built by many manufacturers. These server systems
are not exclusive to HPC, but can be used for this purpose.

MPP [39] systems are similar in structure but usually use proprietary solutions. This
can for example relate to the connection network or the operating system. For example:
Tianhe-2 [40] is considered a cluster because it uses x86-64 nodes and a regular operating
system (Kylin Linux). Sunway TaihuLight is considered as a MPP system, because
the nodes have the special architecture SW26010 and operate on their own operating
system called Sunway Raise OS [41, 42].

In contrast, Constellation [36] systems are classified as having a special design. Such
systems usually have a blade center structure. There are several slots/nodes in one chassis.
In contrast to cluster and MPP systems, the individual nodes are not independent of the
overall system, i.e., they cannot be booted individually and the entire chassis has to be seen
as single unit. An example of a successful constellation system is the HP Superdome [43],
which made a significant contribution to the TOP 500 performance around 2003/2004.

By considering the classification of constellation systems, cluster, and MPP and compare
it with Figure 2.1, a trend is clearly visible. HPC systems consist of individual
components (nodes), which do not have the highest computing power. However, a large
number of them are coupled with each other and thus offer enormous computing power.
This coupling is decisive for the computing power of such systems and is explained in the
next section. The three classes differ only in the selection of the individual components.
Constellations have components that are proprietary and individual nodes can only be
run in a blade center-like structure. The components (processors, network or operating
system) of MPP systems may be individually operable, but they are usually proprietary
and only make sense in a clustered network. Clusters on the other hand, are made of
standardized commodity components that can even be mixed by different manufacturers.

2.2.2 Network Architectures

As mentioned in the previous section, the connection network of a supercomputer plays
a crucial role. Here, only a brief introduction to such networks is given and the most
interesting topologies are depicted, and explained in detail.

13

Chapter 2 Basics of Supercomputing

Network topologies

Dynamic

Crossbar Fat Tree

CBB

BUS

Hybrid

Dragonfly

Static

Fully Connected Torus Hypercube Ring Grid

Figure 2.2: Hierarchy of interconnect topologies [44].

As shown in Figure 2.2, topologies can be divided into static and dynamic topologies and a
mixture called hybrid [44]. Static network topologies provide fixed connections between
the nodes, which means that the links between nodes cannot be changed or reconfigured
easily. Dynamic topologies, in contrast, provide re-configurable connections between
nodes using switch boxes. The connection path between two nodes is defined through
the configuration of all included switches between the nodes. In recent times, hybrid
solutions have also emerged. Hybrid networks [45] combine two or more topologies
in such a way that the resulting network represents a new topology. Combining a
tree topology with another tree is not resulting in a hybrid topology but instead still
considered a tree. A hybrid topology is created whenever two different basic network
topologies are connected, e.g., many individual trees are combined with a star-topology.

Metrics

To evaluate the usefulness of topologies, there is a huge set of metrics. The metrics
describe the quality of a topology with respect to a specific property. In the following
some metrics and their relevance are described. For better understanding, the metrics
are distinguished into three main attributes: cost, performance, and reliability. These
are explained here with corresponding metrics.

Cost The cost attribute contains metrics, that correspond to the resources used and thus
reflect the cost of realization. Here the required connection points, switches, and links are
determined. It is assumed, that each compute node is an endpoint that requires a number
of inbound or outbound edge network cards. A link simply represents a cable, that
connects two components of the topology. So with this, the main factors for the costs of a
network topology are: number of network cards required per computation node, number
of required links, number of switches (if needed). The degree of a topology indicates the
number of links per node. The number of links (cables) needed to realize the topology.

14

HPC Systems 2.2

Degree Links Diameter Bisection Connect-
width ivity

Fully connected 𝑛 − 1 𝑛(𝑛 − 1)/2 1 𝑛2/2 𝑛 − 1
Ring 2 𝑛 𝑛/2 2 2

d-dim Torus 2𝑑 𝑛𝑑 𝑑 (𝑑√
𝑛 − 1)/2 2 𝑑√

𝑛
𝑛−1

2𝑑
Fat-tree 𝑛 + 1/2 (log2 (𝑛+1)−1) (𝑛+1)

2 2(log2(𝑛 + 1) − 1) 𝑛 + 1/4 1

Table 2.1: Overview of categorized metrics for various network topologies. 𝑛 denotes the number
of nodes.

Performance In addition to the costs, the performance of a network is another
important criterion in the HPC environment. The following metrics provide a number
of properties for estimating the bandwidth and latency of a network. The diameter of
a topology describes the maximum direct distance between two nodes in hops. The
bisection width specifies the minimum number of links, which must be cut, to split the
network into two halves with equal size. Thus, it is a measure for the performance of a
network. The bisection bandwidth results out of the bisection width, which represents a
bottleneck in the worst-case communication scenario. In switch-based networks, the
number of uplinks and downlinks determines the blocking factor. If the ratio is 1 to 1,
then it is called fully non-blocking. If, for example, there are half as many uplinks as
downlinks, then this is a 1:2 blocking factor. More uplinks than downlinks make no sense.

Reliability Another important feature of a network is its reliability. Reliability
describes the security in case of failure of individual components. It is obvious that
additional resources are needed for redundancy, to increase the reliability of a network.
Connectivity specifies the minimum number of components or links that must be cut
so that the network as such is no longer functional. This means that with higher
connectivity, the network is more fail-safe.

These metrics are only a few selected ones, which are important for the discipline of
HPC. More details and metrics about topolgies can be found in the literature [45–49].

Topologies

Here some basic topologies for static and hybrid networks are introduced. Table 2.1
shows the formula for the metrics [50] of the selected topologies.

A fully connected network [51] is a static topology where every node is connected
to each other, and therefore sets the connectivity to 𝑛 − 1 with n for the number of
nodes. Figure 2.3 shows a fully connected network for 8 nodes. Since every node is
connected to each other no switching components are needed. The number of links

15

Chapter 2 Basics of Supercomputing

Figure 2.3: Fully connected topology with eight nodes.

is 𝑛(𝑛 − 1)/2, for 8 nodes there are 23 links needed. If a connection is blocked and
fails, the network can communicate around it. The data is redirected and the network
is still operational. This ensures very high reliability in a fully connected network.
However, a node cannot have unlimited networking cards. So this topology is only
practical for a very small number of nodes.

A ring topology is a closed array of nodes. A ring is a static topology, where every
node is connected to its neighbors via two-point connections, thus creating a closed
ring. Figure 2.4 shows a ring topology for 8 nodes. A ring does not need any switching
components. The data to be transmitted is forwarded from node to node until it reaches
its destination. The connectivity is 2 and the number of links is 𝑛, 8 links for 8 nodes.

The Fat-Tree-Network is a universal dynamic network for very efficient communi-
cation [52]. Figure 2.5 shows fully non-blocking with 8 nodes and 3 switch layers.
Every layer needs switching components with increasing number of ports per layer.
This is impractical since very large switches are hard to realize or not even available.
Also the reliably is reduced, e.g., if the root switch fails, a global communication
is no longer possible.

A multi-dimensional torus interconnect is a switch-less static network topology. It is
preferably used within very large supercomputers. As an example, the Blue Gene/L and
Cray XT3 systems used a 3d-torus network and Bluegene/Q used a 5d-torus [53–55]. A
proprietary variant of a torus network is the Tofu topology developed by Fujitsu. The
latest variant is a 6d-torus network, called TofuD, used for the Fugaku supercomputer,
which is the fastest system in June 2020 [56, 57]. Figure 2.6 shows a 3d-torus network
with 4 × 4 × 4 nodes.

For physical installations a Constant Bisectional Bandwidth (CBB) topology is com-
mon [52]. Also a lot of supercomputers are installed using a CBB Network, from

16

HPC Systems 2.2

Figure 2.4: Ring topology with eight nodes.

Switch (8)

Switch (4)

Switch (2)

Node Node

Switch (2)

Node Node

Switch (4)

Switch (2)

Node Node

Switch (2)

Node Node

Figure 2.5: Fat-Tree network with 8 nodes.

17

Chapter 2 Basics of Supercomputing

Figure 2.6: Three-dimensional torus interconnection of 4 × 4 × 4 nodes. The connection in each
dimension has a loop from the first to the last node. Artwork by Marco Berghoff [58].

entry level supercomputers like bwUniCluster [59], over mid-ranged systems like
ForHLR I+II [60, 61], up to the fastest systems in the world like Summit und Sierra [62,
63]. Two versions of a CBB topology are introduced below, one fully non-blocking
and one with a blocking factor of 1:8, both with 512 nodes.

An example of a fully non-blocking CBB topology with 512 nodes is shown in Figure 2.7.
The interconnect shows a two-level fully non-blocking CBB network. Here, 36 port
switches are selected as switching components. A communication, as worst case
scenario, has to pass a maximum of 3 switches and 4 links. Regarding the hardware used
for the scenario, 29 switches are needed on the first level, the so-called leaf switches.
Each of these leaf switches has 18 compute nodes (one has only 8 compute nodes,
28 × 18 + 1 × 8 = 512) and is equipped with 18 uplinks (links to upper level). So each
node has logically its own uplink, hence the name fully non-blocking. On the second
level are the so-called core switches (sometimes root switch), there are 18 switches. So
512 nodes in a fully non-blocking CCB network need, 29 + 18 = 47 switches and 512
links to the nodes plus 29 × 18 = 522 links on the second level. So a total of 1034 links
and 47 switches are needed for 512 nodes, when configured as fully non-blocking.

In contrast, Figure 2.8 shows a case where 512 nodes are also realized with a 1:8
blocking CBB network. Here, only 16 leaf switches are necessary. Each leaf switch
has 32 nodes connected (downlinks) and has 4 uplinks, resulting in the mentioned 1:8
blocking factor. Since this case has only 64(16 × 4) uplinks to the second network layer,
only 2 core switches are needed. So for 512 nodes in a 1:8 blocking CBB network
16 + 2 = 18 switches and 512 links to the nodes plus 16 × 4 = 64 links on the second

18

HPC Systems 2.2

18 Core Switches

29 Leaf Switches

18 Nodes
per Leaf Switch

36 ports
per switch

Figure 2.7: A CBB fully non-blocking topology with 512 nodes. Note, the last leaf switch has only
8 nodes.

2 core switches

16 leaf switches

32 nodes
per leaf switch

36 ports
per switch

Figure 2.8: A CBB 1:8 blocking topology with 512 nodes.

19

Chapter 2 Basics of Supercomputing

level. A total of 566 and 18 switches are needed for 512 nodes, when configured in
a 1:8 blocking CBB network. Of course, the 1:8 blocking topology has a drastically
reduced overall network capacity, but also a drastically reduced number of network
components. Almost half of the components are needed to built a 1:8 CCB network,
than a fully non-blocking CBB network, with 512 nodes. Thus the procurement costs
sink significantly, although the same number of computing nodes is available. Network
topologies are a compromise between the cost, performance and reliability characteristics
mentioned above. The example of two CBB networks presented here, show that, the
cost of a fully non-blocking network increases significantly without adding more nodes.
Therefore, it is crucial to choose the right topology for a supercomputer. In order to
determine the best fitting topology, an enormous amount of domain knowledge and
some preliminary investigations are necessary. For example, it is important to know
used applications and how good they can scale or if they are topology aware.

2.2.3 File Systems

Since the early days of supercomputers, there has been a move to combine computers with
the aim of pooling their computing and storage capacities. For distributed computing
and communication between processes, there is, e.g., MPI which facilitates the work.
However, it is difficult to run a program on several distributed computers with their own
local storage, if the processes have to work on shared data. Here, clustered file systems
are used, which are supposed to abstract from this problem of coordinating accesses
and consistency problems. Within a cluster, such a file system ensures orderly access
and provides the clients with a coherent view of the data distributed on several physical
storage nodes in the form of a large contiguous file system. Such file systems can provide
parallel access, as the data is distributed across multiple storage targets for redundancy
and performance reasons. Often striping and chunking is used, a method that divides
files into a large number of blocks (chunks), with each block being stored on a different
storage target. This allows high transfer rates to be achieved even for individual files.
Such file systems allow parallel access to individual data chunks. Therefore, such file
systems are also called - parallel file systems (PFS).

Although the files and storage elements are distributed, parallel file systems abstract
from this distribution and provide a Portable Operating System Interface (POSIX) [64]
compliant access to the data. Some PFS, e.g., Lustre [65] and BeeGFS [66] use local
file systems (ext4, XFS etc.) to manage their data with remote access and abstract from
them. Parallel file systems differ from desktop file systems mainly through separation
of metadata and actual data. The difference between metadata and data is explaned in
Section 2.2.5.

Figure 2.9 shows a general PFS. A PFS usually has the following main components

20

HPC Systems 2.2

Compute Nodes Metadata Services
File and Directory

Management ..

Abstraction Layer / Object Storage

Management

Metadata

Client

Client

Figure 2.9: Generic illustration of a parallel file system. Compute nodes are connected to the
object storage via a client. Object storage contains the data. Metadata are located within metadata
services, here also files and directories are managed.

1. Management and metadata services include various services to manage the file
system. There is one (or more) Metadata Server (MDS) which holds the metadata
of the data to be stored. This usually includes a Metadata Target (MDT) which
identifies the physical location of the metadata. In addition, various services can
be available which ensure monitoring or fail-over.

2. Object Storage Server is the service, that stores the actual data. A distinction
is made between an Object Storage Server (OSS) and an Object Storage Target
(OST). An OSS refers to a server that provides the service and an OST refers to
the actual device for storing the data. An OSS can therefore have several OSTs.

3. Compute Nodes use a file system client to access the global file system. These
clients are often available as a kernel module and allows a system to mount the
global file system.

The client only access the file system through a abstraction layer, which hides the
complexity of a distributed file system.

21

Chapter 2 Basics of Supercomputing

2.2.4 Batch Systems

Usually, the execution of processes and management of resources of a HPC system are
managed by a Batch System. The following is a brief overview of batch system concepts.

Most of us know how to run our program by typing the name of the executable file at the
command prompt or simply clicking on an icon. In the same way, users would like to
log-in to their HPC system, run their application at the command prompt. Given their
popularity and investment, HPC clusters do not sit idle and wait for a user to execute
any commands. Instead, they maintain a waiting list that includes so-called jobs. This
waiting list and many other things are managed by Batch Systems.

A Batch System is responsible for receiving and parsing the user submitted jobs. If
there are no resources available to run the job immediately, the job is added to a queue.
A Batch System describes multiple components which work together. These usually
consist of a Scheduler and a Resource Manager, as well as tools to use the Batch
System, such as submitting jobs.

A Job is not simply the user’s application, an executable file or a single command. The
application needs input data, parameters, environment variables, and so on All
these specifications are collectively referred to as a job. The user creates a job script and
submits it to the batch system. This job script is simply called “job” in this thesis.

The Scheduler identifies waiting jobs to execute, selects the resources for the job, and
decides when to start a job. The scheduler commonly provides commands for displaying
the limits, access permissions, and service agreements it enforces. In Chapter 2.3
more details about schedulers are given.

The Resource Manager is the part of a Batch System, which starts the execution of
jobs. It is typically used to control resource usage policies, such as the number of cores
or requested memory. A resource manager also maintains and monitors the resources
managed and used by the batch system. The task of preparing nodes for the next job
or cleaning the nodes after a job, e.g., from left over files, is also done by a Resource
Manager. For this purpose, a mechanism is available, so-called job prologue and
epilogue. This mechanism is executed, shortly before and after a job, on the allocated
resources. Job prologue and epilogue are basically shell scripts used to clean, prepare or
test the full functionality of the allocated nodes. An example, for such a tool to clean
the nodes is the widly used node health check [67]

There is a variety of software that performs Batch System tasks, such as Portable Batch
System [68], Moab Cluster Suite [69], Platform LSF [70] and the open source scheduler
Slurm [71]. With these products, the boundary between scheduler and resource manager
is blurry. Slurm includes a scheduler, called Slurm scheduler, and the resource manager
which is called Slurm daemon. Most of the time both are simply called Slurm. In
contrast, Moab is a pure scheduler which is not able to execute jobs by itself. Moab
is usually used together with the resource manager TORQUE [72]. In the following,

22

Scheduling 2.3

the terms scheduler, resource manager and batch system are used as synonyms for each
other. If it is necessary to separate the terms, it is explicitly pointed out.

2.2.5 Metadata

In this thesis, the term metadata is used very often and here is a short overview how
it is are used in the context of this work.

First of all, data and metadata have to be distinguished. Metadata are structured data
and information about data, such as books, videos or pictures. In the case of an image,
for example, the content shown would be the actual data, and the image size or whether
it is a black-and-white photograph would be metadata information. In the field of
computer science, metadata provides information on resources and data, so that they
can be processed automatically. In the context of this work there are different types
of metadata. Job metadata is such structured information about jobs and is explained
in Section 2.3.2. Furthermore, the Chapter 6 explains metadata about the so-called
workspaces in more detail.

In addition, there are the metadata related to PFS. Here, metadata describes, e.g., the file
owner, or the creation date of a file and is stored by a separate service. So metadata and
data do not have to be in the same place. And this separate service is called metadata
server in the context of PFSs. When talking about metadata operations, these are
requests or commands sent to the metadata service. This can be, for example, that a
file should be created, deleted, moved or renamed, or even just a request to receive
the ownership of a file. Within PFS the high bandwidth is achieved by many storage
servers and scales with the number of server. In contrast, the metadata service is a
central service of a PFS and therefore quickly becomes a bottleneck. When metadata
operations are mentioned, it is not about the amount of data written to a PFS, but the
number of requests sent to metadata service.

2.3 Scheduling

The creation of a schedule is an important part of all computer systems, where several
actors compete for the same resources.

For the different disciplines where schedules are needed, highly optimized schedulers
are developed. Accordingly, schedulers can be distinguished both by the way they work
and by their specific field of application.

Following are examples of important domains with highly optimized schedulers:

23

Chapter 2 Basics of Supercomputing

• The Process Scheduler is a component of operating systems. It is responsible
for the fair management of multiple processes running on a computer [73]. In
process scheduling, there is a distinction between short, medium and long term
scheduling.

• The Hard Disk Scheduler is used to manage reading and writing data on hard
disks. An example for the Serial AT Attachment (SATA) protocol is the Native
Command Queuing (NCQ) [74].

• Job-scheduling is about the correct control of jobs (batch jobs, program starts etc.)
in mostly larger IT environments, which are in temporal and other dependencies
among each other [75].

For HPC systems, and in particular for this thesis, only the discipline of job scheduling
is considered.

2.3.1 HPC Job Classification

HPC batch jobs can be divided into two basic categories according to Feitelson and
Rudolph [76]. These two main categories are static and dynamic allocations.

Static allocations include “rigid” and “moldable” job types. Rigid jobs are the most
common type of jobs in today’s cluster environments. A rigid job is passed to a batch
system with a request in the form of a fixed number of nodes and cores. The number
of nodes cannot be changed after the request is passed and during the entire execution.
A moldable job is similar to a rigid job except that the batch system may change its
resource requirements between the time the job is submitted and started. Therefore,
moldable jobs are submitted with a range of requested resources and the desired job run
time. As an example, a job asks for a range of 2–4 cores for a run time of 2 to 1 hours.
So based on the allocated cores, the run time is adjusted by the Batch System. Both types
of jobs have in common that they do not change their allocated resources after job start.

The second form of job is dynamic. Again, there are two types of dynamic jobs – evolving
and malleable. An evolving job can change its resource allocation (or reservation)
during job execution. Here, the job initiates a change of the allocated resources by
dynamically requesting or releasing resources. An example could be that the application,
during its simulation, comes to a specific point, where additional resources are needed.
Malleable jobs are similar to moldable jobs. The crucial difference is that the batch
system can expand or reduce the job’s resources here at any time. The application
adapts itself to the changed resources.

The difference between static and dynamic jobs is that once the jobs have been started,
the allocated resources cannot be changed. In the case of dynamic jobs, the two
types (evolving and malleable jobs) decide whether the job itself changes the resource
allocation or whether it can be changed by the batch system. During this work, only

24

Scheduling 2.3

rigid jobs have been considered. The evaluated machines and workloads contain only
such rigid jobs and dynamics are not available in the operating model.

2.3.2 Job Metadata

HPC jobs have so-called job metadata, which are used to manage and organize jobs.
Such metadata can be assigned by the batch system, such as the time of submission, or
set by the user, such as a name for the job. Job metadata is also used to indicate resource
requirements, such as the number of nodes or wall time. Some job metadata are only
known after a job has finished, e.g., the actual value for “Used Memory”. The various
metadata are explained in more detail in Chapter 5. In the following only a few metadata
are explained, so that the terms are understood in the context of this work.

• request wall time or wall time estimate. Requested time in seconds, minutes, or
hours to be allocated to a job. Usually given by a user.

• submit time represents the time of job submission.

• start time the time when the job starts to execute.

• end time the time when the job has finished.

• run time end – start time, actual time a job was executed.

• The requested nodes and taskcount—the number of requested cores—is a user
requested value. Depending on the system configuration, these values (tasks/nodes)
can be converted into each other. Also, depending on the operating model, only
whole nodes can be requested and thus the corresponding cores (tasks) are assigned.
In the further course of this work, requested tasks and cores are used as synonyms
for each other.

Which metadata is available for our investigation can be read in Section 5.3.

2.3.3 Scheduling Algorithms

There is a wide range of scheduling algorithms for HPC batch job schedulers. To
explain them all in detail exceeds the scope of this work. Therefore, only a small
overview of the scheduling algorithms used in this work is given. A comprehensive
overview of scheduling algorithms is given by Lueng [77]. Two common algorithms
are described here, a simple FCFS and a back-filling algorithm (see Figure 2.10).
These were used in this work for evaluating scheduler behavior. Also, a few important
scheduling techniques are explained.

25

Chapter 2 Basics of Supercomputing

Node 1

Node 2

Node 3

Node 4

Node 5

First Come First Serve (FCFS)

FCFS with back-fill

Job 3
Job 1Job 1

Job 2

Job 3
Node 1

Node 2

Node 3

Node 4

Node 5

Job 3
Job 1

Job 4

Job Queue

Job 2

Job 2

Job 4

Job 4

Time

Figure 2.10: Example of Scheduling: FCFS and FCFS + Back-filling. Four jobs of different size
are submitted to the job queue (left). On the right are the resulting scheduling for the First Come
First Serve (FCFS) algorithms (top) and FCFS with back-filling (bottom).

First Come First Serve (FCFS) is a very simple algorithm. Jobs are queued and
processed one after the other. FCFS is therefore fair and predictable1, but causes drastic
fragmentation of the system and therefore a low utilization.

Back-fill Algorithms: Simple algorithms like FCFS can lead to a bad utilization of the
system, e.g., if a very large job is waiting for resources. Therefore, back-fill methods
are often used to increase the utilization of the system. If a large job is waiting for
resources, smaller jobs can be pushed forward. Two common back-filling strategies
are “conservative backfilling” [78] and “EASY back-filling” [79]: With conservative
back-filling (cons+BF), each job receives a reservation when it arrives in the queue, and
jobs are back-filled as long as they do not cause a queued job to be delayed beyond its
reserved start time. EASY back-filling is a more aggressive strategy, only the job at
the top of the queue receives a reservation. Jobs may jump to the front in the queue
as long as they do not delay the job with a reservation [80]. As an extension to the
EASY-BF, modern schedulers can, for example, set the number of top prioritized jobs to
be reserved. Thus, several high prioritized jobs can have a fixed reservation [81]

Schedule Compression refers to the method used to shorten the duration of a schedule.
If a job is completed earlier than expected, the schedule is updated using a schedule
compression algorithm [78]. During the update, the jobs are checked one by one and the

1Execution order of the jobs is predictable.

26

Wall Time Prediction 2.4

start time of each job is adjusted, i.e., it is moved to the earliest possible time window
with respect to previously adjusted jobs.

Priority Based Algorithms: There are a variety of factors that can be configured that
can affect the priority of a job [82, 83]. Priority can allow for more fairness between
users, for example by taking into account the historical resource usage of each user. In
this way, users with too much usage can be reduced in priority.

2.3.4 Accounting, Fairshare and more

HPC schedulers contain a number of mechanisms and functions that are necessary
for the operation of a HPC system, but which go beyond this work and are therefore
not considered further. Among other things, they contain functions and algorithms
that determine which resources should be used for specific jobs. The algorithms can
take into account, for example, the network topology or special job requirements.
For example, in supercomputers with a blocking CBB interconnect topology [84], a
large-scale application will run faster if all allocated nodes are not distributed across
the whole network.

HPC systems also require some form of accounting or billing to track the usage of
consumed resources. Based on this usage, schedulers may adjust the priorities for
users and their jobs. This ensures a fair share of computing time. Of course, workload
managers and schedulers include functions for basic operations to operate HPC systems,
such as managing or checking computing resources (node-health-checks). All these
features of HPC batch systems and schedulers are not considered further.

2.4 Wall Time Prediction

Efficient schedulers are characterized by a scheduling, that makes the most efficient use
of resources possible. Today’s schedulers meet this requirement by rearranging jobs
in queues depending on free resources. In practice, however, the efficiency of such an
approach is severely impaired by inaccurate user wall time estimates. Often, users could
do a reasonable job runtime estimation, because of detailed knowledge about their jobs.
Nevertheless, users tend to overestimate time, to prevent jobs being terminated too early
by the scheduler. This detailed knowledge is not available without interviewing the user.
Without this knowledge, it is difficult for the scheduler to perform exact resource planning.
These inaccurate wall times also hinder timely data staging to the computing resources.
Therefore, much of this work focuses on improving wall time estimates. A detailed
insight into related work regarding wall time predictions is given in Section 5.1. Below
is a small general overview of the field of machine learning, as it was used in this thesis.

27

Chapter 2 Basics of Supercomputing

Dimension
reduction

Regression

Clustering
Classi�cation
Categorization

Ca
te
go

ric
al

Co
nt
in
ou

s

SupervisedUnsupervised

Figure 2.11: Distinction of Machine Learning (ML) concepts.

2.4.1 Machine Learning

Machine learning (ML) is about knowledge retrieval from data. It can also be understood
as statistical learning and predictive analytics. In general, machine learning is a method
to learn from a set of 𝑛 samples with a target value and use the learned data to predict
the target value from unknown samples. Machine learning has become a favorite tool
for solving problems, and is also used for predicting wall times estimates [85, 86].
Machine learning methods can be divided to a few categories for solving different kinds
of problems: Supervised and unsupervised learning [87, 88]. Figure 2.11 shows an
overview. In unsupervised learning, only the input data is known and no known output
data is given to the algorithm. This method is used to cluster similarities within the given
data. Another use case is to visualize high dimensional data in two or three dimensions.
Unsupervised learning is not covered any further, since it is not used in this thesis.

In supervised learning, an algorithm is used to train a model with input data and its
associated output. This training process is also called model fitting. A trained model
predict the desired output value from new input samples. There are two major types of
supervised machine learning methods, called classification and regression. Classification
handles problems where a given input is predicted to a predefined category, typical
examples are sample datasets for iris flowers or recognition of hand written digits [89,
90]. Predefined wall time categories like short, medium and long are too inaccurate
for a good prediction of a wall time.

To predict the wall time in seconds, a regression is suitable. There are several regression
algorithms to choose from, e.g., Linear Regression, ARDRegression, Lars, Lasso,
and Ridge [91–93].

28

Storage and File Systems 2.5

The linear models offered by scikit [94], are based on generalized supervised linear
regression. For these methods, a training set of target value and input variables 𝑥𝑖 is used
to determine the regression coefficients 𝑤𝑖 of the linear combination. The predicted
value �̂� is a linear combination of the input variables 𝑥𝑖,

�̂�(𝑤, 𝑥) = 𝑤0 + 𝑤1𝑥1 + · · · + 𝑤𝑝𝑥𝑝 . (2.1)

Prediction takes 𝑂 (1) time for trained linear models.

A second kind of regression algorithm is based on decision tables/trees (DT). This is
a class of divide-and-conquer strategies that utilizes a tree structure to separate data
according to their characteristics. The nodes of the tree store rules that determine how
their children have been split and the leaves store either the actual outcome, a function that
determines the outcome, or the actual data from where the prediction can be made [95].

Automatic Machine Learning The success of machine learning relies on expert
knowledge to pre-process the input data, select a suitable algorithm for the ML model,
and optimization of hyper-parameters. These tasks are very complex, time consuming,
and often beyond the skills of non ML experts. Therefore, there is a high demand for
automating the machine learning process, so the use of Automatic Machine learning
(AUTOML) has gained high acceptance in a variety of disciplines [96–98]. In this thesis,
two different AUTOML libraries were used – auto-sklearn [99] and TPOT [100]. Both
are using scikit-learn [101, 102] as ML library. In a classical ML process, different
models and systems have to be explored until the best is found. AUTOML tools automate
the complex work of machine learning optimization and estimates the best performing
model out of a range of various classifiers or pre-processors. The training of the model
can be time and resource consuming, until an accurate model is found. After training,
predictions take only 𝑂 (1) for a trained model.

2.5 Storage and File Systems

As already mentioned, the various storage systems are categorized into tiers [12]. In
addition, the various storage subsystems can be divided into further categories, depending
on their configuration and use in HPC centers. Figure 2.12 shows how such storages can
be categorized in HPC environments. First, it should be explained, that the capacity
increases and cost per byte decreases towards the bottom of the pyramid, so the large
capacity storage is at the bottom. In contrast, performance (both bandwidth and latency)
increases at the top, but the price also increases at the top of the pyramid.

Storage systems are usually a compromise between performance, capacity and price.
Therefore, storage layers can also be classified into such “compromises” [12]. In
Figure 2.12, these are referred to as performance, capacity, and archive tier. In the
Performance Tier, storage systems are present whose main focus is on performance at

29

Chapter 2 Basics of Supercomputing

Cluster-wide

Cluster/Multi-cluster

Multi-Cluster / Site

Node-local storage:
NVMe, SSD ...

Global Buffers:
DDN IME, Cray DataWarp ...

Background Storage:
Ceph, Object storages,
Gluster FS, NFS

Cluster storage PFS:
Lustre, GPFS, BeeGFS ...

Site Archive:
Tape, HSM ...

Multi-cluster Project Storages:
PFS, NFS ...

Performance Tier

Capacity Tier

Archive Tier

Node-local

H
ot

 S
to

ra
ge

C
ol

d
St

or
ag

e

Figure 2.12: Storage tiers available in HPC centers. Tiers can be divided into different categories
according to requirements.

the expense of capacity. In the Archive Tier, the focus is on maximum capacity, where
it is important to provide cost-efficient storage as long-term storage, while performance
such as bandwidth and latency play a minor role. As a compromise of the upper and
lower tiers, the Capacity Tier is in-between. Here, large capacities with acceptable
speed to process data is provided. On the left side of the figure, there is a distinction
between Hot and Cold Storage. This distinction refers to the operation of a HPC system.
The distinction is not based on metrics like throughput and latency. A classification
is made, whether jobs should start when required data is located on a specific storage
system. Of course, a user only wants to start jobs when the data is on a very powerful
storage system, but due to the workflow process it may be necessary to get small setup
files from a slower storage. So a hot storage classifies a suitable storage for a HPC job. A
cold storage, is either not used or not wanted due to policy rules, to be used within a job.

On the right side, different storage solutions are listed, which are used as typical
representatives for the tier. Again, it can be seen that there is not always a clear
assignment, as a storage solutions could be used in several tiers depending on the
configuration. At the top of the pyramid the node local storages are shown. After the
market breakthrough of NAND-based hard disks, SSDs or NVMe are very often used
here. In recent years, a new tier has been established between the compute nodes and the
Global PFSs, known as Global Buffers or Burst Buffers. Here, usually NAND-based
storage systems are used. These are supposed to intercept short write bursts and thus
relieve the global file system. How Burst Buffers are precisely used in HPC systems
is explained in detail in the related work in Chapter 4.

The latest solutions include DataWarp from Cray [103] and Integrated Memory Engine
(IME) from DDN [104]. The function and use of both buffers is fundamentally different.

30

Storage and File Systems 2.5

DDN’s IME is used as a transparent buffer between the clients and the global storage
system, e.g., Lustre. For a user, the usage is transparent. The IME system shifts heavy
I/O operations to the buffer and thus relieves the global storage system. However, for
reasons of coherence, every access to the storage system must be routed through the IME
buffer. In contrast, the CRAY Datawarp Burst Buffer are dedicated hardware resources
in a cluster, which can be requested by the user. The data must then be transferred to
these Datawarp nodes before the job is started. This can be specified to the batch system.

The next two tiers, Cluster and Project Storages, are very similar. The same storage
systems can be used on both tiers, but the cluster storages are usually configured with
more performance than capacity. Here the usual parallel file systems such as Lustre [65],
BeeGFS [66] or IBM’s Spectrum scale (formerly known as GPFS) [105] are widely used.
These have now become established in this discipline, as they offer high throughput and
are also very robust. Since parallel file systems are relatively expensive to operate and
purchase, so-called Background storages are used in larger centers. These are slower
in terms of performance but offer good latency, since they usually still use rotating
disks. Often there are various storages which offer a wide range of access modes,
such as Ceph, which can be used directly as object storage or as POSIX file system.
Often these storage systems also serve other services and are operated with various
appliances. At the very bottom, the long-term storage is located, refered as Archive
Storage. These offer very cheap storage as long-term storage. Tapes are often used
here, which are used in large tape libraries.

Of course, it is important to note that different storage types and file system should be
used in a different manner for efficient usage. For example, it is best practice to move
data in a archived format to a tape based storage, e.g., tarball or zip-archive.

2.5.1 Parallel File Systems

In this section, a closer look on parallel file systems is given. BeeGFS and Lustre
are similar in their architecture (see Figure 2.13 and 2.14). Both file systems offer an
MDS service, which can also be used in a distributed way for load balancing reasons.
An MDS manages one or more Metadata Targets (MDT). Both offer Object storage
servers and associated OSTs. Lustre has a long history and tradition in the field
of computing and BeeGFS is a rather young file system, which was first developed
by the “Fraunhofer-Institut für Techno- und Wirtschaftsmathematik” with the name
FhGFS [106]. In 2014, the spin-off ThinkParQ was founded, which took over the
distribution, customer service and professional support for the file system [107]. 2016
FhGFS now named BeeGFS was made open source [108].

31

Chapter 2 Basics of Supercomputing

Clients
MDS MDT

OSS OST

POSIX Layer

Management
Service

Figure 2.13: Simple overview of BeeGFS file system components. Storage services consist of
Object Storage Server (OSS) and Object Storage Targets (OST). Clients access the storage
services via a POSIX Layer. BeeGFS can have multiple Metadata Server (MDS) and Metadata
Target (MDT). A central management service serves as registry for clients and servers.

2.5.2 Innovation and Current Situation

There are several reasons why the I/O bottleneck has become more severe in recent
years. One reason is, that NAND-based storage systems have emerged onto the market.
Table 2.2 shows the technical specifications of selected devices. As comparison for
a spinning disk, an enterprise product with a SAS interface [109] was selected. The
difference between the SATA-SSD and Non-volatile memory express (NVMe)-SSD
are the connection and communication interface. SATA-SSD are connected via SATA
(Serial AT Attachment), as were the rotating hard disks at that time. The computer
communicates via an AHCI (Advanced Host Controller Interface) protocol with the
memory controller. Nevertheless, for modern SSDs a new way was developed to reduce
this overhead with a communication protocol. With the introduction of NVMe, the use
of controllers was completely dispensed. NVMe-enabled SSDs are connected directly
to the PCIe bus. Compared to SATA, this reduces latencies and raises bandwidth
limits [113]. The gap between read/write throughput of NAND-based and rotating hard
drives is significant. NAND-based drives are almost reaching the connection interface
speed limit, with up to date PCIe 4.0 with 4 lanes able of providing around 7.877 GiB/s.
Significant is also the IOPS increase from rotating disks to SSD. Even the fastest spinning
disks available, are only able to deliver a few hundred IOPS. NVMe SDDs are able to
deliver up to a million IOPS. One of the main reasons for this gap is, that with spinning
disks a read/write head has to be moved physically to the exact position. A SSD does not

32

Storage and File Systems 2.5

Clients

MDS MDT

OSS OST

POSIX Layer

MGS MGT

Figure 2.14: Simple overview of Lustre file system components. Storage services consist of
Object Storage Server (OSS) and Object Storage Targets (OST). Clients access the storage
services via a POSIX Layer. Lustre can have multiple Metadata Server (MDS) and Metadata
Target (MDT). Multiple Lustre Management Services (MGS) serves as a management service.
Servers and clients connect to a MGS on startup to retrieve the configuration for the Lustre file
system.

Drive Type HDD[109] SSD[110] NVMe SSD[111] NVMe SSD[112]
SAS-3 SATA PCIe 3.0 (x4) PCIe 4.0 (x4)

IOPS <100 up to 100 000 ∼360 000–400 000 ∼1 000 000
interface 1500 750 ∼3 900 ∼7 800
throughput (MiB/s)
Read (MiB/s) 257 550 3 500 7 000
Write (MiB/s) 250 520 2 100 6 850

Table 2.2: IOPS and Read/Write throughput for selected devices.

33

Chapter 2 Basics of Supercomputing

System Sequioa Summit ForHLR II HoreKa
Year 2008 2018 2016 2021

Computing performance ∼16 ∼150 ∼1 ∼17
Storage throughput (Gib) 1000 2500 50 ∼110
Storage capacity (PiB) ∼55 ∼250 ∼4.8 ∼13.8

Table 2.3: Depicted four HPC systems. Sequioa and Summit were the world wide fastest HPC
system in the corresponding year. ForHLR II and HoreKa are the fastest systems at KIT.

have any mechanical components. As more and more SSDs have been used in desktops,
the I/O bottleneck seems to have disappeared for users. But when users move from their
desktop to a HPC system, and thus to the spinning disks, they fall into the I/O trap.

Another reason, for the increasing I/O bottleneck, is the growing gap between the
computing and storage part. Table 2.3 shows four systems, two world’s top systems and
two mid-range systems. As examples, two of the fastest HPC systems “Sequoia” [114,
115] and ‘Summit” [62, 116] are shown. Sequoia went into in 2012 and Summit in
2018, both systems were the fastest HPC systen at that time. As comparison, two of
the mid-ranged system installed at SCC are shown, ForHLR II [13] which went into
production in 2016 and HoreKa [117] which is going to be productive in Q4 2020/Q1
2021. Sequoia had a computing power of 16 PFLOPS (Peta Floating Point Operations
Per Second) and a storage system data throughput of 1 TiB/s. Summit offers a computing
power of about 150 PFLOPS with a data throughput of 2.5 TiB/s. Computing power
has increased by a factor 10 and the throughput of the data storage by factor 2.5. From
2016 (ForHLR II - 1 PFLOPS) to 2020 (HoreKa - 17 PFLOPS), the computing power
increased 17 times. In contrast, the performance of the fastest data storage increased
from approx. 50 GiB/s to 110 GiB/s. Here, the computing power increased by factor
10 and the throughput of the data storage by factor of 2.2. In both classes, fastest and
mid-ranged systems, the computation power increases multiple times faster than the
storage throughput. Compared to the growth in available storage capacity, it is obvious
that file system throughput is lagging behind.

2.6 Data Management

Data management and general research data management has always been a major task. In
2014, the German Rectors’ Conference adopted a recommendation entitled “Management
of research data – a central strategic challenge for university management” [118]. This
emphasizes also the importance of research data management. It takes particular account
for the increasing complexity of research data and the exponential growth in data volumes.

34

Data Management 2.6

Data management in HPC environments must be viewed from several angles. There
is the view of the user, the operator and the scientific view on data management. As
an example for the the scientific perpective, The Deutsch Forschungsgemeinschaft
(DFG) recommends in its document “Sicherung guter wissenschaftlicher Praxis” to
keep data for 10 years [119].

“Primary data as a basis for publications should be stored on durable and
secure media for ten years in the institution where they were created.”

– DFG Recommendation

Other institutions such as the Helmholtz Association [120] or the KIT [121] are also
following this recommendation. However, more points are covered in these documents
from a scientific point of view. A scientific result is usually a complex product
of many individual work steps and each step has to be cared of. Observation and
experiments, including numerical calculations, whether as an independent working
method or to support evaluation and analysis, initially produce data. Also legal topics
are taken up here, e.g., how data has to be handled if several institutions are involved.
Also, specifications are made, if scientists leave their institutions, how to handle data
afterwards – “digital heritage”.

The HPC Centers’ operator perspective is bound to the specifications of the scientific
facilities and institutions. Therefore, storage for long-term archiving must be offered.
Tape solutions are still the best choice for such storage systems, as they usually have
less power consumption and tapes last longer than disks [122]. With the amount of
data to be stored, special attention must be paid to efficient use of the individual storage
devices. Also the price for storing data, should be considered. In addition, to the price
per capacity, network infrastructure also plays an important role. It is important to
utilize the infrastructure as efficiently as possible. So the primary interest from the
operator’s point of view is to provide the user with storage at the lowest possible cost
and only if necessary a cost-intensive storage. One problem that recurs is the digital
heritage of a scientific user. Due to the environment and structure of the scientific staff,
it often happens that after the completion of a research phase, the employees change their
jobs and/or institutes. In this case, manual intervention is often required to handle the
left-over data. It would certainly be helpful if it could be clarified how to handle the data.

From the user perspective it is primarily important to pursue scientific activity. This
means a user has to prepare data (pre-processing), run simulations, and post-process
results. How and where the data is located plays a minor role for the user. Only when
progress is no longer possible, due to data management, users are getting interested
in it. The user often does not care what kind of storage system is used, as long as
a progress is made. If new types of storage are used, users often have to use new
tools to copy and manage data. They often do not pay attention to efficient use of
infrastructure and storage systems, causing problems such as putting many small files
on tape libraries, which is a bad decision.

35

Chapter 2 Basics of Supercomputing

One reason for bad performance with small files. is tape drive must seek to the position of
a file. This seeking reduces the the performance. Therefore, it is recommended to create a
archive file containing small files [123, 124]. HPC users have become accustomed to the
time it takes to copy their high-volume data. They often do this interactively and therefore
often have to run an interactive shell. A queue-based universal data management tool
would help the users to simplify the complex task of large volume data management.

2.7 Summary

In this chapter, basics about supercomputing and systems were introduced. It was
explained, why supercomputing is needed and for what it is used. Afterwards, an
introduction to HPC systems was given as well as the different concepts of such
supercomputers were shown. Also the trend towards cluster-like supercomputers has
been shown, with the importance of cluster-interconnect for such systems. Basics of
network topologies have been introduced as well as an example for a typical network
configuration. Afterwards, the components of a supercomputer have been explained,
like parallel file systems (PFS), batch systems, scheduling, and the research topic of
wall time predictions. At last, a small introduction in the topic of data management
within such environments was given.

36

3
Evaluation Environment

“Evaluation by others is not a guide for me.”
— Bruce Lee [125]

So far, only general explanations about supercomputers have been given and this chapter
will go into detail about such a system and its environment. In addition, a large number
of system software and tools have been used, which will be explained in this chapter
together with the environment. At the end, scientific applications are presented, which
were examined in this thesis.

3.1 HPC System

For the evaluation, msathe ForHLR II [13] cluster at the Karlsruhe Institute of Technology
was used. The second stage of the ForHLR was commissioned on March 4, 2016. The
ForHLR II system is the successor of the ForHLR I [126] cluster, which was put into
operation in mid-2014 and shut down in April 2020.

3.1.1 Hardware

ForHLR II consists of 1186 nodes and has multiple Global PFS (cmp. Figure 3.1).

The system consists of the following nodes:

• 5 login nodes, each with two 10-Core Intel Xeon E5-2660 v3 [127] processors
with 256 GiB main memory and 480 GB local SSD.

37

Chapter 3 Evaluation Environment

• 1152 computing nodes, each with two 10-Core Intel Xeon E5-2660 v3 with 64 GiB
main memory and 480 GB local SSD.

• 21 fat nodes for rendering, each with four 12-core Intel Xeon E7-4830 v3 [128],
four NVIDIA GeForce GTX980 Ti [129] graphics cards, 1 TiB main memory and
4 × 960 GB local SSD

• 8 service nodes, each with two 10-Core Intel Xeon E5-2660 v3 with 64 GiB main
memory

Figure 3.1 shows that compute nodes (purple) are divided into several partitions. There
is a so-called “Fat” partition with nodes, which are equipped with graphics cards, for
rendering tasks and with 1 TiB/s. Besides fat nodes, normal compute nodes with 64 GiB/s
constitute the computing power to approx. 1 PFLOP/s. The normal computing nodes are
divided into two islands, a small island with 336 and a large island with 816 nodes. Each
island has a two-layer CBB network [130]. The nodes are connected to the network by
an InfiniBand Host Channel Adapter (HCA). A detailed schematic diagram of the small
island topology is depicted in Figure 3.2. 24 nodes are connected with 56 Gibit/s link
to leaf switches, and 12 × 100 Gibit/s uplinks from each leaf switch are connected to
the upper core switches. This configuration results in a very small blocking factor of
1 : 1.12, which is negligible and the network can be considered fully non-blocking.

Besides the computing nodes, there are further service nodes (yellow), which do not
contribute to the computing power of the cluster. These service nodes are intended for
administrative purposes. On one hand there are so-called login nodes, which serve as an
entry point for users. On the other hand, there are other service nodes running services
that ensure the operation of the system, e.g., a batch system for job management or
different monitoring tools for checking health of the whole system.

3.1.2 Storage and File Systems

Different storage systems are available for users to store their data. Figure 3.1 shows the
available storage systems to users of the ForHLR II [13] cluster. Here the hot storage
systems (red) are directly connected via the InfiniBand network. Other storages are
accessible using a Ethernet network and these storages can be considered as cold storage
(blue). The SCC operates multiple clusters that have a similar setup.

On HPC systems there is usually a so called home file system, which hosts the home
directories of users. Here users can store their applications and configurations for their
work. This storage system could be used as hot storage on ForHLR II, but it is preferred
to use the much faster scratch/workspace file systems for this purpose [131]. The IMK
file system is actually a project storage, installed and only available for users of the
“Institute für Meterologie und Klimaforschung” (IMK). It is directly connected to the
InfiniBand network and it is operated like a hot storage. The figure also shows retention
policies for some of the global PFS. While the home file system does not have a data

38

HPC System 3.1

Ar
ch

iv
e

Ti
er

Ar
ch

iv
e

Ti
er

C
ap

ac
ity

 ti
er

C
ap

ac
ity

 ti
er

La
rg

e
Is

la
nd

81
6

N
od

es
H

as
w

el
l

In
te

rc
on

ne
ct

 F
D

R
 5

6G

2
x

Xe
on

 E
5-

26
60

 (2
0c

)
64

 G
iB

 R
AM

48
0

G
B

SS
D

Sm
al

l I
sl

an
d

33
6

N
od

es
H

as
w

el
l

In
te

rc
on

ne
ct

 F
D

R
 5

6G

2
x

Xe
on

 E
5-

26
60

 (2
0c

)
64

 G
iB

 R
AM

48
0

G
B

SS
D

Fa
t P

ar
tit

io
n

21
 N

od
es

H
as

w
el

l
In

te
rc

on
ne

ct
 F

D
R

 5
6G

4
x

Xe
on

 E
7-

48
20

 (4
8)

1
Ti

B
R

AM
4

x
96

0
G

B
SS

D
4

N
VI

D
IA

 G
TX

 9
80

 T
I

In
fin

ib
an

d
FD

R
 (b

lo
ck

in
g)

Lo
gi

n
N

od
es

5
N

od
es

H
as
w
el
l

FD
R

 5
6G

2
x

Xe
on

 E
5-

26
60

25
6

G
iB

 R
AM

48
0G

B
SS

D

Se
rv

ic
e

N
od

es

6
N

od
es

H
as

w
el

l
FD

R
 5

6G

2
x

Xe
on

 E
5-

26
60

64
 G

iB
 R

AM

H
O

M
E

G
lo

ba
l P

FS
 (L

us
tre

)
61

0
Ti

B
10

 G
B/

s

R
et

en
tio

n
Po

lic
y:

N
on

e

Fo
rH

LR
 II

In
fin

ib
an

d
FD

R
(n

on
-b

lo
ck

in
g)

In
fin

ib
an

d
FD

R
(n

on
-b

lo
ck

in
g)

W
O

R
K

 (s
cr

at
ch

)

G
lo

ba
l P

FS
 (L

us
tre

)
12

20
 T

iB
20

 G
B/

s

R
et

en
tio

n
Po

lic
y:

28
 d

ay
sW

or
ks

pa
ce

s

G
lo

ba
l P

FS
 (L

us
tre

)
30

50
 T

iB
50

 G
B/

s

R
et

en
tio

n
Po

lic
y

24
0

da
ys

LS
D

F
O

nl
in

e
St

or
ag

e

Ba
ck

gr
ou

nd
 S

to
ra

ge
30

50
 T

iB
<1

0
G

B/
s

IM
K

 F
S

G
lo

ba
l P

FS
 (L

us
tre

)
50

0
Ti

B
20

 G
B/

s

R
et

en
tio

n
Po

lic
y

N
on

e

Si
te

 S
to

ra
ge

s

Pr
oj

ec
t S

to
ra

ge
s

bw
D

at
aA

rc
hi

ve

H
SM

/T
ap

e

Ethernet

Fi
gu

re
3.

1:
Sc

he
m

at
ic

re
pr

es
en

ta
tio

n
of

th
e

Fo
rH

LR
II

clu
st

er
wi

th
at

ta
ch

ed
st

or
ag

e
sy

st
em

s.
Pu

rp
le

:C
om

pu
tin

g
no

de
s

wi
th

di
ffe

re
nt

pa
rti

tio
ns

(fa
t,

la
rg

e
an

d
sm

al
li

sla
nd

),
ye

llo
w:

Se
rv

ice
No

de
s

fo
rl

og
in

an
d

ru
nn

in
g

th
e

sy
st

em
,g

re
en

:c
lu

st
er

in
te

rc
on

ne
ct

,R
ed

:h
ot

st
or

ag
es

di
re

ct
ly

co
nn

ec
te

d
to

In
fin

iB
an

d
ne

tw
or

k,
Bl

ue
:v

ar
iu

os
st

or
ag

es
ac

ce
si

bl
e

ov
er

et
he

rn
et

.

39

Chapter 3 Evaluation Environment

6 Core Switches

14 Leaf Switches

12 x 100 Gibit/s
per leaf switch

 24 Nodes
per Leaf Switch

56 Gibit/s
per node

Figure 3.2: The small island consists of 6 core switches and 14 leaf switches. Each leaf switch
has 24 nodes with 56 Gbit/s and 2x100 Gbit/s links to each core switch.

retention policy, work and workspaces file systems have a policy for data retention. On
the work file system, a maintenance script is checking the modification date of files. If
the data was not changed for more than 28 days, they are considered as unused and are
removed [131]. This short period is not uncommon for such scratch storage [132–134].
Of course, a user is warned shortly before the data is removed. Deleting data in this
way can lead to inconsistent data sets, e.g., if a single file is deleted from the results of
a simulation, pretty much all data of the simulation may become useless. Also, this
method requires recursively checking file timestamps through the entire file system.
This method can generate correspondingly high loads on the file system. The workspace
file system has a slightly different approach. Here, files and directories are aggregated
to a so-called workspace. These workspaces are considered as a unit and all files in a
workspace are treated equally (more about workspaces see Chapter 6) 1. The LSDF
Online Storage [135] has a special role. It is accessible as a side-wide storage over
Ethernet, but has recently got an InfiniBand connection to serve as a hot storage within
the ForHLR II cluster. The connection to the side-wide storage systems are provided
over Ethernet. Here we distinguish between the archive-tier and the capacity-tier. The
archive-tier provides a HSM system and a dedicated tape library (bwDataArchive [136]).
The capacity-tier includes different project and site-wide storages, some of them may be
operated by third parties and can be accessed with tools and protocols from the user space.

3.1.3 Metadata Performance of the Parallel File Systems

In this thesis, often metadata performance of parallel file system were addressed, but
concrete numbers were missing. After installation, benchmarks are usually started

1Newer installation at SCC do not use a classic scratch file system. Instead space for large data sets is
only available with workspaces.

40

System Software and Tools 3.2

to measure the performance of file system. To test the performance of the metadata
service MDtest [137] was used. This benchmark performs various operations on the file
system, such as creating and deleting directories and files, and determines an average
value after several runs. Table 3.1 lists selected values from this benchmark (detailed
list in Appendix A.4)2. Creation and reading files also involves a connection to OSTs.
A “stat” operation is to retrive metadata, such as the owner of a file and only needs
a connection to the metadata service3.

File system Directory Directory File File File
creation stat creation stat read

HOME 13 588 364 989 101 641 183 297 160 128
WORK 12 591 352 069 73 432 248 275 163 157
Workspaces 31 715 332 744 82 120 243 150 137 580

Table 3.1: Chosen metadata benchmark values during the acceptance phase with mdtest (mdtest
-d <dir> -i -n 3600 -i -p 10). More comprehensive list available in Appendix A.4

3.2 System Software and Tools

Different system software and tools have been used and enhanced. In this section a
brief report about these is given.

Scheduling Simulator In order to evaluate the planning behavior and to investigate
whether advanced data staging is possible, software is required that can imitate the
scheduler of an HPC batch system. Such a software is called scheduling simulator.
The simulator reads as input a recorded historical job load and then simulates the
execution order of the job. Based on the parameter set and algorithms used, the behavior
of batch schedulers can be evaluated using various options. The Alea Scheduling
Simulator [138] was used, in this thesis, to investigate scheduling behavior. In addition to
historical workloads provided by SCC, additional workloads from the Parallel Workload
Archive [139] were used. More about this is covered in Chapter 5.

On-demand File System BeeGFS was chosen as the parallel file system for the
dynamically generated on-demand file system (ODFS). There are several reasons why
BeeGFS was chosen. One is that BeeGFS already comes with tools to create BeeGFS

2Please note that both of these benchmarks were done during installation and may have been changed by
improvements and updates to the Lustre software.

3It should be mentioned, when trying to get the size of a file, a connection is also made to OSTs. Only
OSTs know the file size

41

Chapter 3 Evaluation Environment

on-demand and another reason is that it is very lightweight and the server components
can be started as user space daemons. Furthermore, it provides a POSIX abstraction
layer, which is considered to be the state of the art in HPC environments. Another
important reason is, that it can use a usual Linux file system as data storage. This
allows to use the node-local available existing file system as a data storage for BeeGFS
storage daemons [66, 140, 141]. Nevertheless, one of the work packages of the ADA-FS
Project was the development of an on-demand file system, which was especially designed
to be used as an ODFS in HPC environments. Such a file system was developed by
Vef et al. [142] and shows a significant metadata performance increase compared to
conventional file systems. Also the interference is reduced compared to other file systems.
However, in this thesis generally available file systems have been used to demonstrate
the approach. More about deployment of ODFS is covered in Chapter 4.

Loopback Devices As explained in the previous paragraph, BeeGFS uses a normal
local file system to store the data. This simplifies configuration, but can create another
problem if the data stored by BeeGFS, needs to be cleaned up. If a HPC job is creating
several million files, these files are also stored on the local file system and deleting
them may take some time. During the deletion of this temporary data the node is not
available for other jobs. To solve this problem, a so-called loop-back device is used.
UNIX-like system can use a loop device as a virtual block device. This virtual block
device can use a file as underlying storage instead of a physical device [143]. Instead
of removing millions of files, only the large file which serves as loop back has to be
deleted. Additionally a small performance boost due to the internal caching mechanisms
of Linux is received. Similar advantages have been shown by Yamamoto et al. [144].
The global parallel file systems on the compute nodes are mounted again as loop back.
In addition, a loop-back device also helps to manage space consumption on each SSD.
The loop-back file has a certain size and more cannot be stored in this loop-back file.

Listing 3.1 shows an example on how to create a loop-back device and use as a
normal file system.

• 1) create a file filled with zeros and a specified size using the dd command.

• 2) generate a file system structure on the created file.

• 3) mount this fle with loop-back device on /mnt/data.

• 4-6) show the capacity of the mountpoint

Listing 3.1: Example how to create a loop-back drive as virtual disk device
~$ dd i f = / dev / z e r o o f = t e s t . img bs =1MB coun t =1000
~$ mkfs . e x t 4 t e s t . img

42

Applications 3.3

~$ mount −o loop t e s t . img / mnt / d a t a
~$ df −m / mnt / d a t a
F i l e s y s t e m 1M− b l o c k s Used A v a i l a b l e Use% Mounted on
/ dev / loop19 923 3 857 1% / mnt / d a t a

Tools During this thesis mostly standard tools were used, which are usually available
in HPC environments. Many small tools, e.g., to evaluate file system statistics, have
been developed ad hoc and adapted to the environment. However, there are different
ways to start and stop the ODFS within the batch system and published on GitHub:
https://github.com/mehsoy/ODFS-tools. To measure the throughput of a file
system IoZONE [145] was used and to measure the metadata operation performance
MDtest [137] was sued. MDtest is an MPI-based benchmark designed to test parallel
file systems and is also used as a sub component for the I/O 500 [146]4.

3.3 Applications

Various applications and use cases were provided by users. These use cases have been
selected for their I/O behavior. This behavior caused a significant load on the global PFS
and slowed down the whole system. This affects all other jobs and users that are reading
or writing data at the same time. As an example for such a bad behaving application,
the load of the PFS was recorded using a OpenFOAM use cases. Figure 3.3 shows the
average load caused by the use case. The blue line shows the load on the metadata
server and the orange line is the average of all object storage servers. The application
was only run for about 25 minutes, and the load generated can be seen very clearly. In
comparison, the minutes before (0–15) and after (40–60) show the normal load, which
the parallel file system is facing before and after the test run.

Such application are identified during the usual operation by the admins. If monitoring
systems detect a unusual high load, admins investigates what is causing this. After
identifying bad behaving application, corresponding users are getting notified by the
administrators. Such a message is shown in the Figure 3.4. Sometimes users do not
even know, that their applications have such a I/O behavior. Users that could not change
this behavior, were of special interest for further investigation. In the following of this
section the applications and use cases are briefly introduced.

The first application which has been investigated is Open Source Field Operation
and Manipulation (OpenFOAM) [147]. OpenFOAM is a toolkit for computational
fluid dynamics (CFD) written in C++. It is a widely used open-source fluid dynamics
code [148] for engineering applications. OpenFOAM offers tools for many areas of
research, like heat transfer, reacting flows, or multi-phase flows and utilizes MPI for

4I/O 500 is analogue for the fastest storage systems in contrast to TOP500 for computing.

43

https://github.com/mehsoy/ODFS-tools

Chapter 3 Evaluation Environment

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60

av
g.

 s
ys

te
m

 lo
ad

Time in minutes

MDS
OSS

Figure 3.3: Average UNIX load caused on the Lustre file system during a simulation run of 25
min. Minutes 0–15 and 40–60 show the usual load on the Lustre file system.

Hello dear user,

we noticed that your job <jobid> on the ForHLR II
make several 100 million metadata operations:
Job <jobid> has done 330,512,988 getattr operations.
Job <jobid> has done 141,624,203 setattr operations.
Job <jobid> has done 327,735,960 close operations.
Job <jobid> has done 327,781,720 open operations.
Job <jobid> has done 330,460,676 mkdir operations.
Job <jobid> has done write operations with

sum of 1,122,594,488,725 bytes.
[...]

Figure 3.4: Example mail send to a user due to massive metadata operation.

44

Summary 3.4

parallel communication. For this, the computational domain is decomposed into sub-
domains which are distributed among the processes. Investigation of I/O performance
has been performed with two OpenFOAM cases, both using OpenFOAM v1712 and a
custom solver developed for detailed combustion simulations [149, 150].

The second application is the Neoteric Autonomous Stencil code for Jolly Algorithms
(NAStJA) framework. It is a massively parallel stencil code solver developed at SCC. It
is designed for simulations in several scientific domains. Modules for the calculation
of the phase-field and the phase-field crystals as used in mesoscopic or atomistic
computational material science are available, as well as biological cells can be calculated
with the cellular Potts model, a cellular automaton. The framework provides several
modules for writing out the results [151].

As third application super_sph (“Simulation for Smoothed Particle Hydrodynam-
ics”) from Institut für Strömungsmaschinen (KIT) was evaluated. The software scales up
to 15000 cores and 109 particles. The first implementation of the software was writing a
file per process and required data-gathering as post-processing. A new implementation
is now writing directly to time steps using MPI-IO which makes the data-gathering
process unnecessary [18].

The last application is a swarm-based meta-heuristic for optimization of composite
objective functions comprising multiple responses [152]. During the optimization
process, these responses are weighted fully automatically with respect to each other
according to the current knowledge state, yielding a dynamically evolving objective-
function landscape. The algorithm is implemented in python. It was applied to parameter
optimization for data-assisted bio-molecular simulations, a powerful tool to interpret
experimental data on proteins in terms of molecular structures. This use case is still
under development and was provided by the corresponding community at KIT.

3.4 Summary

This chapter explains the environment, applications and tools we used to do our research.
The ForHLR II was described in detail and the storage pyramid was mapped to the
resources available at ForHLR II. Also the cluster interconnect was described in detail.
The storages where introduced with corresponding retention policys and if they were
used as hot or cold storage. The metadata performance of the parallel file systems
was shown as comparison for the ODFS in the next chapter. Furthermore, the tools
and scientific applications were introduced.

45

4
On-demand File System

“A multithreaded file system is only a performance hack.”
— Andrew S. Tanenbaum [153]

Today’s HPC systems use parallel file systems, such as Lustre [65], IBM Spectrum
Scale (GPFS) [105], or BeeGFS [66], that offer POSIX semantics, as the storage
subsystem. Despite the separation of data and metadata to improve performance, metadata
performance cannot scale so easily by adding more hardware to the storage subsystem.
The metadata server is a centralized service and requires a lot of synchronization and is
therefore much more difficult to manage. This metadata bottleneck still exists today. In
addition, parallel file systems (and their I/O subsystems) are often shared by many users
and their tasks, whereas computing resources are exclusively usable. Due to the shared
use of the parallel file system, users can influence each other in a negative way.

Many of the recently installed large-scale HPC systems, e.g., Sierra [63] and Summit [62],
are offering node local storage, ranging from SSDs to NVRAM, as high-bandwidth node-
local storage. Also all clusters at Steinbuch Centre for Computing (SCC) are equipped
with node-local SSDs, e.g., ForHLR II is offering local SATA-SSDs and the upcoming
HoreKa [117] supercomputer will be equipped with faster NVMe-SSDs. As already
described in Section 2.2.1, clusters or cluster-like systems are the preferred configuration
for supercomputers today. It is becoming more and more popular to equip such systems
with node-local storage, because the nodes are mostly standardized components and can
be easily and cost-effectively equipped with NAND-based storage. SSDs are also known
to have lower failure rates and are therefore well suited for use in compute nodes [154].

This part of the work deals with the goal of expanding the storage pyramid upwards.
As already mentioned in the introduction, the approach is to achieve this by creating
a fast parallel on-demand file system. Figure 4.1 illustrates the concept. Here are two

47

Chapter 4 On-demand File System

jobs which occupy three nodes each. In the first case (Figure 4.1(a)), jobs write directly
to the global parallel file system. In the second case (Figure 4.1(b)), a private parallel
file system is created for each job. This private ODFS is only available on the allocated
nodes of a job and uses the node-local storage (in this case the SSDs).

In order to achieve this, some questions and concerns must be answered and possibly
disproved. On the one hand, it must be shown that this approach delivers performance
at all. Additionally, the interference with the application must be determined, because
the resources are no longer exclusively available for the application. The advantages
and disadvantages in normal operation must be demonstrated or it should be shown
that the advantages of an ODFS outweigh possible disadvantages.

This chapter first gives a short overview of the related work to solve the I/O bottleneck.
Then it is introduced how a ODFS can be added as an additional feature to HPC systems.
In doing so, the operational model should be affected as little as possible. Following this,
results with general benchmarks are shown and how a ODFS behaves in real use cases
with scientific applications. At the end, a brief summary and some remarks are given.

The approach for an on-demand file system and some of the results discussed in this
Chapter have originally been published:

• M. Soysal, M. Berghoff, T. Zirwes, M.-A. Vef, S. Oeste, A. Brinkman, W. E.
Nagel, and A. Streit. “Using On-demand File Systems in HPC Environments”. In:
2019 International Conference on High Performance Computing and Simulation
(HPCS) (2019) [155],

• M. Soysal and A. Streit. “Ad-hoc file systems at extreme scales”. In: High
Performance Computing in Science and Engineering’19 (HLRS) (10/2019). Ac-
cepted [156].

4.1 Related Work On-demand File System

In the past, there have been many developments and innovations to improve I/O
throughput and metadata performance. In this section an overview of basic approaches
is given with a few examples of each. Although it is difficult to strictly separate the
solutions, four categories can be distinguished: hardware solutions, file system functions,
and dynamic system reconfiguration and libraries.

Hardware solutions Today’s wide spread use of SSDs in compute nodes of HPC
systems has provided a new way of accelerating storage. SSDs provide higher throughput
and better random I/O performance than spinning hard disks. SSDs have been considered
for parallel file system metadata, as the metadata performance of PFS is a major
bottleneck in HPC environments storage [157, 158].

48

Related Work On-demand File System 4.1

Job 2Job 1

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Global Parallel File Systems

(a) Without on-demand file system. Both jobs writing directly to global file system.

Job 2Job 1

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Global Parallel File Systems

On-demand File System 1 On-demand File System 2

(b) Both jobs have a private on-demand file system.

Figure 4.1: Storage usage (a) direct access to global PFS (b) using ODFS.

49

Chapter 4 On-demand File System

A different kind of hardware solutions are burst buffers, which aim to reduce the load on
the global file system [159]. These type of burst buffers can be categorized into two
groups [160]: remote-shared and node-local. While remote-shared burst buffers [104,
161] use central, dedicated I/O nodes to forward I/O operations.The function and use
of both buffers is fundamental different. DDN’s IME is used as a transparent buffer
between the clients and the global storage system, e.g., Lustre. For a user, the usage is
transparent. The IME system shifts heavy I/O operations to the buffer and thus relieves
the global storage system. However, for reasons of coherence, every access to the
storage system must be routed through the IME buffer. In contrast, the CRAY Datawarp
Burst Buffer are dedicated hardware resources in a cluster, which can be requested by
the user. The data must then be transferred to these Datawarp nodes before the job is
started. This can be specified to the batch system. However, analysis has shown that
burst buffers cannot prevent congestion under all circumstances. [162]. Node-local
burst buffers are typically used within compute nodes and may be managed by the PFS,
e.g., parallel log structured file system (PLFS) [163]). Examples for such node-local
burst buffers are BurstFS [160] or BeeOND [140].

File system features File systems offer interesting new features to improve I/O
bottlenecks. GPFS has introduced a highly available write cache (HAWC)[164]. HAWC
uses node-local solid-state drives (SSDs) as buffers for the global file system. Lustre has
received the Progressive File Layouts (PFL) [165] feature. PFL dynamically adjusts
the chunk size and stripe pattern depending on I/O traffic. BeeGFS offers storage
pools [166] and allows to group storage targets in different classes, e.g., one pool with
small but fast solid state drives, and another large pool for spinning disks. However,
such solutions are only available when using the vendor software solution and coupled
with the global file system.

Libraries There is a large number of libraries available for improving I/O behavior of an
application. High-level libraries, such as HDF5 [167], NETCDF [168] or ADIOS [169],
are trying to help users to express I/O as data structures and not only as bytes and
blocks. Middleware libaries, such as MPI-IO [170], help to improve usage of parallel
storage systems, e.g., data sieving and collective I/O [171]. SionLib [172] is another
library for task local file I/O, developed by Forschungszentrum Jülich. When files are
accessed in parallel, only the open and close functions are collective while writing
and reading files can be done asynchronously.

System reconfiguration Like an ODFS, there are serveral approaches which require
a dynamic system reconfiguration. A dynamic remote scratch [173] implementation
was developed to create an on-demand block device and use it with local SSDs as a
LVM [174] device. A similar solution is recently built, where a central flash storage
serves for data-intensive workloads. Logical volumes are created dynamically and

50

Deployment of the On-demand File System 4.2

can be mounted on compute nodes. This NVMe based storage is able to offer 2 TiB/s
throughput [175]. These approaches mentioned above, rely on a dedicated storage system.
Using an ODFS such a dedicated storage is not needed for temporary storage. Another
software based solution is the RAM-disks Storage Accelerator [176]. It introduces an
additional cache layer into HPC systems. It uses the available memory of commodity
servers to build a PFS using RAM-disk. The PFS constructed on the RAM-disk is
offered to the computing nodes as a very high-speed and low-latency temporary storage.
While this is a similar approach, an ODFS uses the node-local disks of compute nodes
and do not require other servers to build an on-demand file system.

4.2 Deployment of the On-demand File System

Usually HPC systems use a batch system, such as SLURM [71], MOAB [69], or
LSF [70]. The batch system manages the resources of the cluster and starts user jobs
on allocated nodes. At the start of the job, a prologue script may be started on one
or all allocated nodes and, if necessary, an epilogue script at the end of a job (see
Figure 4.2(a)). This, prologue and epilogue mechanism, makes it easy to develop a
solution that can be used in almost every environment. Figure 4.2(b) shows the job
workflow when using a simple solution. The resource manager executes the prologue on
the allocated nodes. During this process, an ODFS is started on the allocated nodes.
After the job has finished the ODFS is stopped during epilogue. Afterwards the allocated
nodes are made available to other jobs.

The MOAB scheduler is offering a mechanism to inherit once allocated resources and
nodes, to other queued jobs. This allows to run different jobs on exactly the same nodes.
Additional to this, a staging mechanism [177] is available. However, this mechanism is
limited to jobs with only one node as resource request. For this, a job is split into 3 parts,
which run as separate jobs and are then linked together. The job scheduler then ensures,
by resource inheritance, that all 3 separate job parts are started on the same resources.
The staging mechanism has been modified accordingly. The new workflow, using the
feature of resource inheritance is shown in Figure 4.2(c)). Here, at the beginning a
resource allocation is created. During the first job part, a, ODFS is created and data
is staged in. After the stage in job has finished, the allocation is inherited to the next
job in the chain. At the end, data is staged out and the ODFS is stopped.

Another solution is to extend the function of the SLURM burst buffer plugin [178].
The plugin executes scripts for allocating dedicated burst buffers and data staging. In
this case the burst buffers are dedicated, besides the computing resources, and can
be requested like another resource. This mechanism is not applicable with an ODFS,
because the nodes for a job are only available from the moment of allocation. To make
this burst buffer plugin usable with the idea of an ODFS, the plugin was extended [179].
When this plugin is used for ODFS, the scheduler reserves the required number of

51

Chapter 4 On-demand File System

Nodes 8 16 32 64 128 256

Startup time in (s) 10.2 16.7 29.3 56.5 152.1 222.4
Shutdown time in (s) 11.9 12.1 9.4 15.9 36.1 81.1

Table 4.1: BeeGFS startup and shutdown speed with default tools.

nodes and initiates an ODFS (cmp. Figure 4.2(d)). This allows to manage on-demand
file systems like burst buffers.

4.3 Generic Benchmarks

In this section, basic benchmarks are shown. These are necessary to answer basic
questions, such as how long does it take to start and stop an ODFS or if there are
other bottlenecks.

As initial benchmark IoZone [145] is used to measure the maximum throughput of
read and write operations. Figure 4.3 depicts the throughput on the on-demand file
system (solid line). The results show, that performance increases linearly with the
number of nodes and that in this environment the SATA-SSDs are the limiting factor.
The small throughput variation, that can be seen, occurs due to normal performance
scattering of the SSDs [180]. The dotted lines indicate the possible throughput with
assumed speeds of 7 000 MB/s read and 5 000 MB/s write performance for announced
NVMe-SSD devices [112].

Another simple, but important procedure is to measure the initialization time of the
on-demand file system. Table 4.1 lists the duration for starting and stopping the on-
demand file system. The starting times increase up to 222 seconds on 256 nodes. The
included tool BeeOND, to start the BeeGFS on-demand file system, has a parallel
mode using a parallel distributed shell [181]. However, at startup a sequential region
is processed, and by parallelizing this section the startup times for 256 nodes could
be reduced to less than one minute [182].

Table 4.2 shows the performance for selected metadata operations. A comprehensive
Table is in the Appendix A.2. Here, an ODFS (in this case BeeGFS) was started with
the respective number of nodes with a default of one metadata server. To benchmark the
metadata performance the MDtest [137] benchmark suite was executed. Three runs were
performed and the mean values are shown in the table. The most important operations
listed are creation, stat, and read of directories and files. Creating an object within a
PFS is an expensive operation. To create an object an entry in the metadata server has to
be created, also an initial object has to be created on an object storage server. Also the
number file reads are important, because these operations also cause “locking” and “file
open” operations. The values in Table 4.2 show that the number of metadata operations

52

Generic Benchmarks 4.3

Jo
b

Pr
ol

og
Jo

b
Ex

ec
ut

io
n

Jo
b

Ep
ilo

g
Sc

he
du

le
r

Jo
b

Q
ue

ue
Al

lo
ca

te
R

es
ou

rc
es

Fr
ee

R
es

ou
rc

es

R
es

ou
rc

e
M

an
ag

er

(a
)S

im
pl

e
jo

b
flo

w
w

ith
ou

to
n-

de
m

an
d

fil
e

sy
st

em
.

Jo
b

Q
ue

ue
Al

lo
ca

te
R

es
ou

rc
es

Fr
ee

R
es

ou
rc

es

O
D

FS
st

ar
t

O
D

FS
st

op

Sc
he

du
le

r

R
es

ou
rc

e
M

an
ag

er

Jo
b

Pr
ol

og
Jo

b
Ex

ec
ut

io
n

Jo
b

Ep
ilo

g

(b
)S

im
pl

e
jo

b
flo

w
w

ith
on

-d
em

an
d

fil
e

sy
st

em
.

Al
lo

ca
te

R
es

ou
rc

es
In

he
rit

R
es

ou
rc

es
In

he
rit

R
es

ou
rc

es
Fr

ee
R

es
ou

rc
es

Jo
b

Q
ue

ue

Sc
he

du
le

r

R
es

ou
rc

e
M

an
ag

er

O
D

FS
st

ar
t

O
D

FS
st

op

Jo
b

Pr
ol

og
D

at
a

St
ag

e-
in

Jo
b

Ep
ilo

g
Jo

b
Pr

ol
og

Jo
b

Ex
ec

ut
io

n
Jo

b
Ep

ilo
g

Jo
b

Pr
ol

og
D

at
a

St
ag

e-
ou

t
Jo

b
Ep

ilo
g

Jo
b

Ep
ilo

g
Jo

b
Ep

ilo
g

(c
)J

ob
flo

w
w

ith
se

pa
ra

te
d

da
ta

st
ag

in
g

jo
b.

Jo
b

Q
ue

ue
R

es
er

ve
R

es
ou

rc
e

Fr
ee

R
es

ou
rc

es
O

D
FS

st
ar

t
O

D
FS

st
op

C
re

at
e

Bu
rs

t b
uf

fe
r

R
em

ov
e

Bu
rs

t b
uf

fe
r

Sc
he

du
le

r

Jo
b

Pr
ol

og
Jo

b
Ex

ec
ut

io
n

Jo
b

Ep
ilo

g

(d
)J

ob
flo

w
w

ith
bu

rs
tb

uff
er

s.

Fi
gu

re
4.

2:
Jo

bfl
ow

se
qu

en
ce

w
ith

di
ffe

re
nt

op
tio

n
to

st
ar

ta
n

on
-d

em
an

d
fil

e
sy

st
em

s.

53

Chapter 4 On-demand File System

4 8 16 32 64 128 256 512 1024
nodes

10

100

1000

10000
Th

ro
ug

hp
ut

 in
 G

iB
/s

50GiB/s

SSD write
SSD read
NVMe write
NVMe read

Figure 4.3: Measured read/write throughput (solid) and extrapolated (dashed) with announced
speeds of NVMe-SSDs [112]. Horizontal red line shows the performance of the fastest PFS
attached to ForHLR II.

Node Directory Directory File File File
creation stat creation stat read

4 6 208 104 989 10 384 69 001 23 542
8 7 649 129 858 19 186 101 042 36 261
16 7 620 123 337 26 761 113 917 38 302
32 7 447 115 644 27 208 114 139 38 056
64 7 217 115 369 26 799 103 164 37 305
128 6 702 113 868 26 464 105 713 34 888

Table 4.2: Depicted metadata operation per seconds with mdtest (mdtest -d <odfs> -u -n
3600 -i 3). A complete table is available in Appendix A.2.

54

Generic Benchmarks 4.3

ODFS
Storage pool

Figure 4.4: On-demand file system with a storage pool per leaf switch.

does not increase with the number of nodes. Comparing the values with Figure 4.3, it
can be concluded that the number of nodes and thus storage targets can increase the
throughput, but the performance of the metadata server remains constant. These values
compared to the values provided by the dedicated global file system clearly show, that
the global file system provides more metadata performance (cmp. Tables 3.1 and 4.2).
However, it must be taken into account that the global PFS has dedicated servers for
the metadata services and these are configured for this purpose. An on-demand file
system uses an ordinary computing node. But using an on-demand file system, this
metadata performance is exclusively available, while the metadata performance of the
global file system is distributed to all users and jobs.

In a further test, the storage pooling feature of BeeGFS [166] has been investigated. The
question here is, whether it is possible to deal with bottlenecks in topology with such
a feature. For this purpose, an ODFS was initialized and so called storage pools were
configured. According to the topology, an individual storage pool was configured for
each leaf switch (see Figure 4.4). Directories can be associated with these storage pools.
All data created within such a directory, will be stored on this specific storage pool. In
other words, when writing to a storage pool, the data is distributed across the storage
pool based on the stripe count and chunk sizes, but remains within the storage pool.

To create an artificial bottleneck within a cluster interconnect, available root switches
were disabled. This reduces the available bandwidth in the network. To make the
bottleneck more effective, the strip count was additionally set to maximum, which is done
by setting the value to -1. This distributes a file across all storage targets and thus reduces
the maximum bandwidth available. Figure 4.5 shows the write throughput for three
scenarios. In the 3 different scenarios the maximum possible write throughput (red line)

55

Chapter 4 On-demand File System

 0

 20

 40

 60

 80

 100

 120

six three one

W
rit

e
th

ro
ug

hp
ut

 in
 G

iB
/s

Number of root switches

without stoarge pools
with storage pools

acc SSD write troughput
Interconnect bottleneck

Figure 4.5: Measured write throughput with IoZone and reduced number of core switches on
240 nodes. Black line shows the accumulated SSD write performance. Black lines show the
corresponding interconnect bottleneck.

Number of root switches 6 3 1

SSD write performance (GiB/s) 93.75 93.75 93.75
max. uplink bandwidth (GiB/s) 150.00 75.00 25.00
write w/o storage pool (GiB/s) 91.37 73.01 21.88
write with storage pools (GiB/s) 90.78 89.35 88.66

Table 4.3: Write throughput performance with reduced network capacity

remains the same. 240 SSD were used with 400 MiB/s per SDD resulting in 93.75 GiB/s
available write throughput. The network capacity when using 6 root switches is around
150 GiB/s. If only 3 root switches are used, the network capacity is reduced to 75 GiB/s
and with only one root switch 25 GiB/s (black line). In the first scenario, with six
root switches there is a very small performance loss when using storage pools, which
indicates a low overhead. With a reduced number of core switches, throughput decreases
due to the lower network capacity without the use of storage pools. If the topology is
taken into account and storage pools are created accordingly, it is possible to achieve the
same performance as with full expansion (cmp. Table 4.3). Of course, it is important to
keep in mind, that the network bottleneck only for I/O is overcome. If the application is
communication intensive, then it will be slowed down by such a network bottleneck.

56

Scientific Use Cases 4.4

4.4 Scientific Use Cases

In this section, scientific use cases from SCC users are shown. The chosen applications
and use cases in question have created enormous loads on the storage system and are
therefore good candidates for evaluation. Details about the application are available
in Section 3.3. The evaluated use-cases are relatively short regarding execution time,
but it has been ensured that the cases are representative. The HPC system, where the
testing has been done was in normal operation, so it had to be ensured that the impact
to the operation and other running jobs is minimal.

4.4.1 super_SPH

The first application, which was investigated with an ODFS, was super_SPH [18]. The
application is used with two workflows. One workflow is writing the results with a
file per process method. The strategy that each process writes intermediate results to
its own files is colloquially called file-per-process, even if one process writes multiple
files. Afterwards, post-processing jobs are executed to aggregate the distributed files and
write the results according to time steps. A new implementation is now writing directly
the results into time steps format, using MPI-IO which makes the data post-processing
unnecessary. Unfortunately the new implementation, using MPI-IO to write the results,
was multiple times slower than using file-per-process. Both implementations were
evaluated to check if better performance, with an ODFS, can be achieved. For both
scenarios, 256 nodes were used, which serve as computing resources as well as storage
for the on-demand file system.

Observation has shown, that file-per-process method is causing heavy load on the
PFS and using MPI-IO is slower but has less impact on global PFS. Figure 4.6(a)
and 4.6(b) show the results of super_sph when writing directly to the global parallel
file system (Lustre) and to an on-demand file system. Both figures show already the
optimal parameter set, for the global PFS (Lustre), using a stripecount = 1 for the FPO
implementation and - 1 when using MPI-IO. While using the simple file-per-process
method, small performance increase is gained. The application is already pretty close
to the maximum throughput of the global file system (50 GiB/s). Interesting here is
the performance leap, that can be achieved if using one extra node, illustrated by the
bar with the option “nolocal” (Figure 4.6(a)). On this extra node, only the metadata
service is started, but not the scientific application. With an extra node for metadata
services, a higher throughput of 8.5 GiB/s can be achieved,

When using MPI-IO it is important to choose the right parameters for the on-demand
file system. With the default values (stripcount = 1) of the on-demand file system
even a deterioration can be seen, although SSDs are used here. Here the throughput
increases from 3.76 GiB/s to 18.14 GiB/s, when changing the default value for the
stripecount from 4 to 32.

57

Chapter 4 On-demand File System

stripecount=1 stripecount=4 stripecount=4
nolocal

0

10

20

30

40

50
W

rit
e

Th
ro

ug
hp

ut
 in

 G
iB

/s

37.24

47.12

55.70Lustre
BeeGFS

(a) Write troughput with file-per-process method.

stripecount
-1

stripecount
4

stripecount
8

stripecount
32

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

W
rit

e
Th

ro
ug

hp
ut

 in
 G

iB
/s

7.43

3.76

8.42

18.14Lustre
BeeGFS

(b) Write troughput with MPI-IO method.

Figure 4.6: Different write throughput, based on implementation on file system configuration.

File system used Lustre BeeGFS

fastest run time in (s) 304 319
slowest run time in (s) 435 326
average run time in (s) 335 323

Table 4.4: NAStJA total run time on on-demand and global file system. Average of 5 runs.

This application was noticed by the operator, as it generated high loads on the file system
for a short time. By using an ODFS the high loads are completely shifted to the ODFS
and by choosing the right parameters, the throughput can be increased significantly.

4.4.2 NAStJA

The second investigated application was NAStJA[151]. The application was selected,
because it caused significant loads on the storage system. In addition to the increased
I/O load, the user has noted, that the application has large variations in its run time.
Here, an investigation how the application and the corresponding use cases perform
with an ODFS was conducted. The application was run 5 times each on the global PFS
and on an ODFS. For the evaluation NAStJA was run with 4800 parallel processes
which are started on 240 compute nodes with 20 processes each node. An extra node
is added and reserved for the metadata service, totaling 241 nodes. 4 800 blocks were
chosen, i.e., one block per core. Also each block has a size of 1 MB each and a write
is performed every 20th time-step for a total of 100 000 time-steps. Table 4.4 shows
the run times of the NAStJA runs. One of the runs on the global file system was the
fastest, but the average run time was faster with an ODFS. The variance in run time
differs significant. On the global PFS, the time varied from 304 s to 435 s. When using
an ODFS, the time varied only from 319 seconds to 326 seconds. It is remarkable, that a

58

Scientific Use Cases 4.4

smaller variance occurs using ODFS. The compute nodes have to manage an ODFS
while running the application. This would usually cause an interference.

During the simulation the execution time of each time-step was recorded. Figure 4.7
shows the average execution time (blue line) per time-step. The black bars represent the
fastest and slowest execution time for the corresponding time-step. Figure 4.7 a) shows
the average time for the time-steps when using the on-demand file system. Figure 4.7 b)
shows the same simulation on the global PFS. Using the global PFS the variation of
the time-steps is significant, here the fastest time steps are around 0.02 seconds and
slowest over 0.1 seconds. By using an on-demand file system, there is almost no
deviation in the execution time visible.

This application generated high loads on the file system during the whole simulation.
The user had to make sure, that only one of these jobs was running at a time. By using
an ODFS the high I/O loads are completely shifted to the ODFS and the execution time
is more stable with a more predictable execution time.

4.4.3 OpenFOAM

Another evaluated application was OpenFOAM [147, 148] and here two different use
cases were evaluated. The respective jobs have usually a run time of about 24 hours.
These use cases were selected because they have created a continuously high load on
the file system. Figure 4.8 shows the load caused on the storage servers. Blue lines
show the UNIX load generated on the metadata server. The average load of all object
storage servers is shown by the orange line.

Use case 1: A simulation of a burner flame of laboratory scale [183]. The user runs
the simulation on 5 000–28 000 CPU cores [184]. On the ForHLR II, the simulations
take place on a few thousand cores. The challenge in terms of I/O comes from the most
efficient I/O strategy OpenFOAM offers for check-pointing: Each time the application
generates intermediate results, each process writes one file per solution variable, which
can be concentration, pressure or temperature. Due to the large scale of this simulation,
a large number of files is generated. In this thesis, the case was run on 240 nodes or
4800 processes, resulting in the creation of 95 files per process or half a million files in
total, with about 0.2 MB per file or 25 MB per process or 120 GB in total. It should be
noted that half a million files are created at each intermediate result. In other simulations
with 28 800 CPU cores the number of files increases to 2.7 million.

Use case 2: In this use case, a mixture of methane and air in a pipe leading to the
burner from use case 1 is simulated. The calculation mesh consists of 150 million cells.
The case was executed and evaluated on 4 800 processes (240 nodes). The number
of solution variables and thus the I/O requirements for check-pointing are much lower

59

Chapter 4 On-demand File System

0 2000 4000 6000 8000 10000
time-steps

0.00

0.02

0.04

0.06

0.08

0.10

Ti
m

e
pe

r t
im

e-
st

ep
 in

 s

(a) NAStJA using on-demand file system

0 2000 4000 6000 8000 10000
time-steps

0.00

0.02

0.04

0.06

0.08

0.10

Ti
m

e
pe

r t
im

e-
st

ep
 in

 s

(b) NAStJA using global file system

Figure 4.7: Average execution of time-steps for five NAStJA runs. Black bars showstmshe
minimum and maximum values of each process.

60

Scientific Use Cases 4.4

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35 40

av
g.

 s
ys

te
m

 lo
ad

Time in minutes

MDS server
OSS server

Figure 4.8: Load generated by the OpenFOAM use case. Minutes 0–5 and 35–40 show usual
load during normal operation.

compared to use case 1, because there is no flame in this setup and therefore much less
equations have to be solved. In this case, the I/O challenge results from the run time
post-processing. This use case is the precursor simulation to use case 1. After each
time step the solution variables are written, which then serve as inlet conditions for the
simulation of use case 1. The post-processing data at run time, which consists of about
20 small files per time step, is written at high frequency during the entire simulation
time. Figure 4.8 shows the load generated of a 30 min run.

Figure 4.9 shows the average execution time for each time step for use case 1. The use
case was started 5 times on 240 nodes, both on the global PFS and the ODFS. The
blue line is the average execution time of the time steps. The black bars represent
the min/max values for the corresponding time steps. The high spikes in both cases
occur when the application is writing intermediate results. Figure 4.9(a) shows the
results when OpenFOAM is writing to the ODFS and 4.9(b) when using the global file
system. The spikes are higher when using the on demand file system. These higher
spikes are caused, by the fact that the on-demand file system has to share resources with
the application. But the deviation (black bars) are higher when using the global file
system. Here the advantage of the dedicated bandwidth and meta data performance
results in less deviation, when using on demand file systems The second use case shows
a slightly different behavior (see Figure 4.10). Using the ODFS leads to less variance
in the execution of the time steps. But in the time steps where intermediate results are
written, the time increases significantly. With the on-demand file system these steps
need about 50 seconds, while using the PFS the same time-steps need on average under
25 seconds (compare Figures 4.10(a) and 4.10(b)).

61

Chapter 4 On-demand File System

0 20 40 60 80 100
time-steps

10.0

100.0

Ti
m

e
pe

r t
im

e-
st

ep
 in

 s

(a) OpenFOAM use case 1 on-demand file system.

0 20 40 60 80 100
time-steps

10.0

100.0

Ti
m

e
pe

r t
im

e-
st

ep
 in

 s

(b) OpenFOAM use case 1 global file system.

Figure 4.9: Average execution of time-steps for OpenFOAM use case 1.Black bars shows the
minimum and maximum values of each process.

62

Scientific Use Cases 4.4

0 50 100 150 200 250 300
time-steps

10.0

100.0

Ti
m

e
pe

r t
im

e-
st

ep
 in

 s

(a) OpenFOAM use case 2 on-demand file system.

0 50 100 150 200 250 300
time-steps

10.0

100.0

Ti
m

e
pe

r t
im

e-
st

ep
 in

 s

(b) OpenFOAM use case 2 global file system.

Figure 4.10: Average execution of time-steps for OpenFOAM use case 2.Black bars shows the
minimum and maximum values of each process.

63

Chapter 4 On-demand File System

Use case 1 Use case 2
File system used Lustre BeeGFS Lustre BeeGFS

Initial time-step in (s) 41 340 12 111
total computation time (s) 1331 1481 1111 1340
Clocktime in ()s) 1416 2335 1195 1906

Table 4.5: Initial time-step for OpenFOAM and total execution time.

Table 4.5 shows the average execution time for both OpenFOAM use cases. Here a
clear slowdown of the two use cases can be seen. The total clock time of both cases
has increased significantly when using the ODFS, for use case 1 from 1416 to 2335
seconds (approx. 65 %) and for the second case from 1195 to 1906 (approx. 60 %). The
total computation time has increased by only 11% for the first case and 20 % for the
second use case. Here the application was slowed down considerably by the I/O to the
ODFS. The first time-step is also interesting. In this step the simulation data is being
read. Here in both cases a multiple of the needed time can be seen (over eight-fold
for use case 1 and nine-fold for use case 2).

Although the total run time of the two OpenFOAM use cases is much longer, the use of
an ODFS is reasonable. Otherwise, the load which would be generated on the global
storage system would be problematic for the whole system and affect all users.

4.4.4 Swarm-based Meta-heuristic

The last application is a swarm-based meta-heuristic search [152]. It was chosen because
it creates an enormous I/O load on the storage systems. The use case was started with
50 nodes and regularly generated so-called Lustre Client evictions on the compute
nodes. This caused the node to fail and the job to be aborted. The failed node had to
be rebooted to resume normal operation. The application simulation is using so-called
generations and after each generation, the intermediate results are evaluated and thus the
next generation is initiated. Usually such a job iterates about 100 generations, which
takes a little over 24 hours. Figure 4.11 shows the total I/O operations that are performed
for the simulation of only one generation. In about 20 minutes (one generation), over
30 000 000 metadata operations are generated. The Figure 4.12 shows the average run
times of jobs, both on the global PFS and the ODFS. Here again two decisive results
can be seen. On the one hand the runs on an ODFS (26:55 min) are slower than on the
global PFS (20:52 min), on the other hand there is less variance in the run time when
using the ODFS (50 seconds). Figure 4.12 lists the file operations over time. The figure
shows a processing of one generation on the ODFS, which is divided into 3 phases. At
the beginning the simulation including processing the intermediate results are performed
(about 800 seconds), with up to 60 000 metadata operations per second are generated.

64

Data Staging 4.5

0 5 10 15 20 25 30
Operation in millions

 Job 1

getattr
setattr

close
open

getxattr
writes

reads
punch

others

Figure 4.11: Total I/O operation created for one generation within approx. 20 min.

ODFS Global PFS0

05:00

10:00

15:00

20:00

25:00

30:00

Ti
m

e

Figure 4.12: Average run time for one generation.

After the peak of IOPS there is a phase in which almost no metadata operations are
performed, but are used for computing (800–1700 seconds). At the end (1700 seconds)
there is a very small bump, these are operations for the stage-out to the global PFS. A
example for executing two generations can be found in Appendix A.1.

Apart from the results, there is no other option for this use case, than to use the ODFS.
The operational problems caused by the vast number of metadata operations make it
almost impossible to use the global file system of an HPC system. Like mentioned
above, due to heavy usage of the global PFS (Lustre), the compute nodes got evicted
from the lustre file system. These compute nodes have to be rebooted.

4.5 Data Staging

Also the case of copying data back to the PFS while the application is running, has to be
considered. For this purpose, a dedicated use case with different NAStJA simulations
has been used. With NAStJA it is very easy to create different setups in order to use
the requested cores to their optimal utilization. In the configured setups NAStJA has
been executed on 23 nodes, which kept the application inside a leaf switch and allowed
to eliminate any interference with other applications.

65

Chapter 4 On-demand File System

0 1000 2000 3000 4000 5000 60000.005

0.010

0.015

0.020

0.025

0.030
a)a)a)

0 1000 2000 3000 4000 5000 60000.005

0.010

0.015

0.020

0.025

0.030

tim
e

pe
r t

im
e-

st
ep

 in
 s b)b)b)

0 1000 2000 3000 4000 5000 6000
time-steps

0.005

0.010

0.015

0.020

0.025

0.030
c)c)c)

w/o data-staging np=1 dcp per node np=4 dcp on MDS

Figure 4.13: Total execution time of NAStJA for (a) 16 cores per node (b) 19 cores per node and
(c) 20 cores per node.

66

Data Staging 4.5

0 50 100 150 200 250 300 350
time in s

20/20

19/20

16/20

ca
se

 (u
se

d
co

re
s /

 a
va

il.
 c

or
es

)

NAStJA runtime

app w/o staging
app runtime
data staging time

app runtime 4@mds
data staging time 4@mds

Figure 4.14: Total execution time (NAStJA) for application w/o data staging.

67

Chapter 4 On-demand File System

Another node has been added to the 23 nodes, which was used as additional storage
node for the ODFS. On this node the scientific application was not running, but the
MDS service of the ODFS was started. NAStJA was started in 3 different setups with
20, 19, 16 cores per node (max 20 available). With these different setups, it can be
examined if free cores reduce the interference of the ODFS.

On each of these setups, three different scenarios were examined.

1. Data stage-out using all nodes with one copy process per node.

2. Data stage-out using the additional MDS node using 4 copy processes.

3. No data stage-out as comparison.

This allows to evaluate the impact of free resources for concurrent data staging. The
remaining resources (cores) on the compute nodes are then available for the on-demand
file system and data staging. To stage the data, during the NAStJA execution, the
parallel copy tool dcp [185] was used. Figure 4.13 shows the average execution time per
time-step of five runs in the different scenarios. With 16 cores for the application, from
available 20 cores, the average execution times are similar whether the run was executed
with or without data staging. When using 19 or 20 cores per node, the application is
slowed down when the copy is executed with one process per node. At the beginning, the
slowdown is significant (orange line) due to the high amount of metadata operations. In
this case, a portion of the data is indexed on every node and this is causing interference
with the application. When using only the MDS-node to copy the generated data (green
line) the indexing is done only on the node with the MDS-service. Here, only a small
influence can be observed, such that the interference to the application is negligible.
Figure 4.14 shows the total time for the application run and data staging experiment.
Using only the MDS node, to copy the data, needs more time than the execution of
the simulation. If there are enough free resources on the compute nodes, the data can
be staged-out without slowing down the application.

4.6 Summary

In this chapter, it has been shown how the node local SSDs can be used to provide a high
performance parallel file system. Different concepts have been presented, which allow a
seamless integration into a HPC system. Depending on the available functionality of
the batch system, different solutions are available. With consideration of the topology,
bottlenecks in the network can be avoided. This allows to create a very high throughput
ODFS with a weak interconnect. The time for starting and stopping the ODFS is a
matter of judgment. A few minutes to start the ODFS is acceptable if the job runs
for several hours, but not suitable if the job takes seconds or minutes. The scientific
applications have all been characterized by the fact, that the use cases investigated have
all caused significant problems for the entire system. Users were asked, to ensure that

68

Summary 4.6

only one of their jobs was running at any given time. In some cases, individual nodes
have frozen and could only be resumed by a reboot. The result for all these cases,
when using an ODFS, is a reduced influence on the entire system and no limitation of
the concurrent jobs. Finally, it was shown that even concurrent copying of the data is
possible under certain conditions. However, it is important to consider whether this
have to be done during the simulation.

Although, the presented applications are somewhat slower with an ODFS, it makes sense
to offer an ODFS as an additional feature. Applications that generate significant I/O
loads are given a chance to use the HPC system without interfering with other users and
applications. A single user might be able to make sure that only one of their I/O-heavy
jobs is running at a time, but they can hardly coordinate this with other users.

69

5
Data Scheduling

“Plans are worthless, but planning is essential.”
— Dwight D. Eisenhower [186]

In the previous chapter, deployment of the ODFS was shown. This chapter answers
the question of how much time is available to stage data. Figure 5.1 illustrates the
approach, to stage data to a temporary on-demand file system. Here the scheduler is
of special interest. Start times of the job are planned in advance by the scheduler. As
already mentioned in Section 2.4, scheduler plans are dependent on user given wall
time estimates. These user-defined wall time estimates will be examined in more detail.
Especially, if wall time estimates can be improved in an automated way. Also, an
evaluation of how good wall time estimates have to be, will allow to make a statement
of how much time is available, to stage data in advance.

This chapter first gives a short overview about related work to improve wall time
predictions as well as an overview of scheduling simulators. Afterwards, metrics are
briefly explained. First an introduction on metrics to measure machine models, and
then metrics regarding resource allocation prediction are introduced. Next, a method
is presented how to better predict the wall times. Whether the accuracy is sufficient
for the intended purpose is shown afterwards.

The investigation and some of the results discussed in this Chapter have originally
been published:

• M. Soysal, M. Berghoff, and A. Streit. “Analysis of Job Metadata for Enhanced
Wall Time Prediction”. In: Workshop on Job Scheduling Strategies for Parallel
Processing. Springer. 2018, pp. 1–14 [187],

71

Chapter 5 Data Scheduling

a*) Job Global PFS

Copy Data

Cluster-wide

Cluster/Multi-cluster

Multi-Cluster / Site

Site

Multi-cluster

Node-local

Figure 5.1: Data staging to an on-demand file system

• M. Soysal and A. Streit. “Ad-hoc file systems at extreme scales”. In: High
Performance Computing in Science and Engineering’19 (HLRS) (10/2019). Ac-
cepted [156],

• M. Soysal, M. Berghoff, D. Klusáček, and A. Streit. “On the Quality of Wall
Time Estimates for Resource Allocation Prediction”. In: Proceedings of the 48th
International Conference on Parallel Processing: Workshops. ICPP 2019, Kyoto,
Japan. New York, NY, USA: ACM, 2019, 23:1–23:8 [188].

5.1 Related Work

Related work in this chapter has to cover two areas. On one hand, the topic of wall time
prediction and on the other hand, the topic of scheduling simulators are briefly introduced.

5.1.1 Background on Walltime Prediction

For efficient utilization of large-scale HPC systems, the task of resource management
and job scheduling is of highest priority. Therefore, modern job scheduling systems
require information about the estimated total wall time of the jobs already at submission
time. Proper wall time estimates are a key for reliable scheduling decisions and can
improve the scheduling performance [189]. However, the user requested wall time
estimates are not close to the real used wall time. The approaches to improve wall time

72

Related Work 5.1

predictions are divided into two areas. The first, are classical mathematical models,
sometimes in combination with rule-based methods. Second, approaches with methods
from the field of machine learning have become popular. In the following a short
introduction to both areas is given.

Traditional Methods Gibbons [189, 190] and Downey [191] used historical workloads
to predict the wall times of parallel applications. They predict wall times based on
templates. These templates are created by analyzing previously collected metadata and
grouped according to similarities. However, both approaches are restricted to simple
definitions. Other approaches try to predict the accuracy of user wall time estimates [192,
193]. Here, the deviation between the user estimated wall time and used wall time is
determined and applied to new jobs from the user. An example, how this method is used,
will be explained on the implementation within the Alea Scheduler [194]. Alea uses
previously known run times, of already completed jobs, to establish a run time estimate
for a newly arriving job. It is working on a per-user basis, i.e., a new run-time estimate
for a given job is computed using information about previous jobs of that user. Each
time a given user’s job completes its execution, the predictor computes the ratio of the
used wall time 𝜎, the fraction of the job’s actual run time and the user’s estimate

𝜎(𝑖) :=
𝑇Run(𝑖)
𝑇Req(𝑖)

, (5.1)

where 𝑖 is the 𝑖-th job by the specific user, i.e., 𝜎 measures to what extent the estimated
wall time was actually used. Since the user’s estimate is the upper bound of job run
time1, 𝜎 is between 0.0 and 1.0 representing the relative usage of requested wall time.
This method measures how much a user overestimates the job’s run time. Once 𝜎 is
computed, it is used to predict wall times. The predictor only uses the last five (most
recently completed) jobs, when computing the prediction. First, it computes the 𝜎 of
those five recently completed jobs and then chooses their maximum. Next, it multiplies
the job’s wall-time estimate 𝑇Req(𝑖) by this maximum. 𝑇Pred(𝑖) is defined as,

𝑇Pred(𝑖) := 𝑇Req(𝑖) max
𝑖−5≤𝑘≤𝑖−1

{𝜎(𝑘)}, (5.2)

the predicted run time.

Machine learning methods In the recent years, machine learning algorithms were
used to predict resource consumption in several studies [78, 190, 195–197]. As an
example, Smith [198] is using greedy and genetic search techniques for estimating queue
wait time and job run time. The method is based on machine learning and genetic
algorithms are used to refine input parameters of the method. This system is used by
XSEDE to predict queue wait time [199].

1The system is configured to kill a job if it exceeds user’s wall-time estimate.

73

Chapter 5 Data Scheduling

Other simple, but popular methods are using linear regression for predictions [200, 201].
Advanced methods such as Nearest Neighbors [202, 203] or Regression Trees [204],
Instance Model Learning [198, 205, 206], or a combination of multiple machine learning
methods as shown by Matsunga [207] which have been used for predicting the execution
time of two bioinformatics applications: BLAST [208] and RAxML [209].

In contrast to these mentioned approaches, this thesis does not optimize machine models
by hand. This would require an unfeasible effort to parameterize and optimize the
models. Therefore, the use of AUTOML to perform this work is of great importance.
This facilitates the work and allows an automated training of models.

5.1.2 Background on Scheduling Simulator

There are several scheduling simulators that imitate the behavior of a batch system.
Using real or artificially generated workloads, it can be examined how, e.g., scheduling
algorithms behaves. Following is a short overview of common scheduling simulators.

SimGrid [210] is a C-based scheduling simulator used for the simulation and development
of distributed applications for heterogeneous systems. It uses a collection of core
abstractions and functionalities to simulate specific application environments and
topologies. Bricks [211] is a performance evaluation system, that allows comparison
and analysis of different scheduling algorithms for HPC systems. Bricks simulates
different patterns of computing systems, including network behavior and scheduling
algorithms. It is designed for the simulation of client-server architectures in grid
systems. GridSim [212] is a Java based flexible and modular grid simulator. It is
platform independent and uses the simulation package SimJava2 to simulate discrete
events. GridSim simulates a grid environment and its behavior. This is done by
using simple implementations of common objects, like job or user. It also supports
simulation of network topologies and data stores. Alea [193] is an extension of the
GridSim toolkit to simulate various scheduling problems in grid systems. Alea simulates
scheduling and execution of non-preemptive jobs. Also, Alea supports a queue-based
and schedule-based scheduling and offers a variety of scheduling algorithms. Additional,
it has a built-in wall time prediction features.

To investigate the resource allocation prediction, Alea was chosen as scheduling simulator
and the feature set was enhanced. During simulation the time, when a node allocation is
created, is now recorded. This enhanced version of the simulator that has been used
in this work can be found at GitHub [194].

74

Real World Situation 5.2

Job 1

Job 2

Job 3
Job 4

Job 5

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Existing Schedule

Job 2 Job 4

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

New Schedule

New JobNew Job
Job 3

Job 1

Job 6

Job 5

Job 6

Figure 5.2: Re-scheduling of jobs to other nodes so that a new job can be back-filled.

Job 1

Job 2

Job 3

Job 4 Job 5

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Job 1

Job 2

Job 3

Job 4 Job 5

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Job 5

Time

Figure 5.3: Job 3 finished early. Job 5 get rescheduled from node 1-3 to node 5-7.

75

Chapter 5 Data Scheduling

Job 1

Job 2

Job 3

Job 4

Job 5

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8
Time

Job 1

Job 2

Job 4
Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Job 3 Job 5

Figure 5.4: Job 3 finishes early. Job 5 jumps forward. Same nodes but earlier start time.

5.2 Real World Situation

One of the main tasks, of such schedulers is to optimize the utilization of resources. A
few examples are illustrated in the Figures 5.2, 5.3, and 5.4. In the first case, Figure 5.2
shows how back-filling a new job, changes the schedule. To keep the workload high,
all jobs are rescheduled. Job 4 is moved to a different set of nodes, but the start time
remains the same. Rescheduling a job on a different set of nodes can also happen due
to jobs finishing too early. An example is given by Figure 5.3. The red bar represents
the time of the job scheduler, everything to the right of it would be the future schedule.
Here Job 5 is shifted to a different set of nodes and the start time is also moved forward.
The third case (Figure 5.4) shows what happens, when jobs finish earlier than scheduled.
In this case, Job 3 ends earlier and therefore Job 5 can be started sooner.
In the first case, a premature ODFS creation would have happened on the wrong nodes
and in the third case, a job might start too early before an ODFS has been created or
data has been staged. The second case represents both problems, a too early job start
and wrong node set. Besides the illustrated reasons, that make allocation predictions of
the HPC scheduler unreliable, there are more events that cause similar situations. For
example, technical failures could cause individual nodes to fail or short-term reservations
set by admins would also cause a re-schedule. In this work such situations have been
ignored. It is quite clear, that such situations occur on real systems. In Appendix A.2,
a scheduling simulator is introduced, that is able to investigate such situations. This
simulator is developed at SCC, and started as a student project. Nevertheless, the focus
during the conducted evaluation, is unreliability of the planned run times.

76

Parallel Workloads Archive 5.3

5.3 Parallel Workloads Archive

The Parallel Workloads Archive (PWA) is a well established HPC workload trace
repository. It contains detailed workload logs collected from large scale parallel systems.
Each archived workload log is formatted in a uniform format – Standard Workload
Format (SWF). The SWF was defined to ease the usage of workload logs and models.
With this format, analyzing workloads or imitating HPC system scheduling need only to
parse a single format [139, 213]. Each data set is represented by a sequence of lines
(jobs) containing 18 columns (job metadata) per line.

1. Job Number – Unique job identifier, also called JobID.
2. Submit Time – seconds starting from workload log time.
3. Wait Time – difference between Submit Time and Start Time in seconds.
4. Run Time – the actual time in seconds the job was running
5. Number of Allocated Processors – integer value of allocated cores or CPU, depends

on configuration
6. Average CPU Time Used – both user and system, in seconds.
7. Used Memory – average used memory per core in kilobytes.
8. Requested Number of Processors
9. Requested Time – Wall time requested for job

10. Requested Memory – requested memory per processor in kilobytes
11. Status – a number indicating the reason why job has finished. 1 = job was

completed normal, 0 = failed, and 5 = canceled. If this field can not be provided it
is -1.

12. User ID – a number identifying a user.
13. Group ID – a number identifying a group.
14. Executable (Application) Number – a number to identify the application. If not

available then -1.
15. Queue Number – a number identifying configured queues. It is suggested to use 0

for interactive jobs.
16. Partition Number – a number identifying configured partitions.
17. Preceding Job Number – a previous Job Number (JobID) which is the job is

waiting to finish. With this a dependency between jobs can be established.
18. Think Time from Preceding Job – a value indicating how long a job has to wait

after a preceding job has finished before the job is started.

During the evaluation, workloads from the Parallel Workloads Archive were used.
Additional, two workloads (ForHLR I+II) were provided by the Karlsruhe Institute of
Technology [188]2. These workloads have been converted into the SWF format and are
available online at PWA. The other used workloads are SanDiego Supercomputer Center
(SDSC) [214], Swedish Royal Institute of Technology (KTH) [215], and Cornell Theory
Center (CTC) [216]. Details about the used workloads can be obtained from Tab. 5.1.

2The workload for ForHLR I is not yet available at the parallel workload archive. It is in the process of
beeing published.

77

Chapter 5 Data Scheduling

The workloads from KIT have been modified to fit into the node-level simulation of
Alea:
The nodes have multi-core CPUs but due to the usage model of the system, the nodes are
always scheduled and allocated as whole nodes, i.e. one node is never shared by two or
more jobs and is always exclusively assigned to one job. Therefore, the nodes have been
changed from 20 cores per node to one, and divided into the requested number of cores
of all jobs accordingly. With this modification, a whole node scheduling is simulated.
Also all jobs have been removed belonging to the partition of memory-heavy fat nodes,
since these are not of interest for the evaluation and both systems (ForHLR I+II) only
allow one fat node per job. This results in simulating approximately 249k jobs for
ForHLR I and 112k jobs for ForHLR II, respectively.

Figure 5.5 shows the ratio between requested and used wall time of the evaluated
workloads. ForHLR II users request about ∼3.8 more time than they consume. The
smallest difference is for the KTH workload with a factor of ∼1.5, CTC with ∼2.1 and
SDSC with a factor of ∼2.6. The highest factor is observed for the ForHLR I workload,
where the user requests ∼7.5 more than needed. The exact values, in core hours, can
be found in the Table 5.2. These values alone indicate that no reliable schedules are
possible. Users are requesting much more time than they need.

As a real world example for over-estimated wall times, two users from the ForHLR II
workload are depicted. Their submitted jobs are shown in Figure 5.6. User A with 214
jobs has always requested the same 48 cores, but requested different wall time (20 and
24 hours). User B submitted 249 jobs with different core counts (100 and 200) and
wall times (12, 15 and 24 hours). On the Y-axis the used wall time is shown. A very
clear difference can be seen between both users. Jobs submitted by User A are spread
over a wide range, from jobs that ran only for a short time and up to the requested 20
to 24 hours. User B shows a different usage. Although the jobs differ considerably
from the time requested by the User B, the run time remains quite similar for different
jobs. For example, User B submitted jobs with a requested 24 hours wall time (green),
but all these jobs take less than 17 hours. Here a better estimation of the wall time

System Months Jobs Users

CTC 11 77 222 679
KTH 11 28 476 214
SDSC 24 59 715 437
ForHLR I 24 249 000 135
ForHLR II 19 112 000 166

Table 5.1: Number of data points, or jobs in the used historic job workload prom the Parallel
Workload Archive and SCC.

78

Parallel Workloads Archive 5.3

ForHLR I ForHLR II SDSC CTC KTH
Workload

0

1

2

3

4

5

6

7

8

Ra
tio

 o
f r

eq
ue

st
ed

/u
se

d
wa

ll
tim

e Requested wall time

Figure 5.5: Ratio of requested and used wall time compared for different historic workloads..

could be easily done, by looking closely. For User A, such a simple estimation is not
possible with the available information.

5.3.1 Additional Metadata

In addition to the available metadata from the PWA, a companion log has been provided
for the workloads from KIT. From this additional log, two additional metadata have been
examined in detail. One is the jobname and the other is the initial working directory
(IWD). It should be mentioned, that this companion log contains privacy-sensitive
information which cannot be published online. Both additional metadata entries are
freely chosen strings from a user.

The usage of the jobname varies considerably, some users set a specific jobname for
each job, others do not use a jobname at all, and some users use a specific jobname for
specific parts of their workflow. To make the jobname usable for machine learning, a
generic regular expression was used to split the string. The jobname was split by one
of the following delimiters “[_|-|\s|.]”. The split string is then converted to a matrix.
An example how strings are converted is shown in Table 5.3

ForHLR I ForHLR II CTC SDSC KTH

Requested time 10 249 993 2 041 322 523 321 288 455 108 073
Used time 1 355 633 555 903 241 900 110 926 70 176

Table 5.2: Total requested wall time by the users and real used wall-time (in hours).

79

Chapter 5 Data Scheduling

 0

 4

 8

 12

 16

 20

 24

 1 2 3 4 5

us
ed

 w
al

l t
im

e
in

 h
ou

rs

Dataset

User A, cores 48, req. wall time 24h
User A, cores 48, req. wall time 20h

User B, cores 100, req. wall time 24h
User B, cores 200, req. wall time 12h
User B, cores 200, req. wall time 15h

Figure 5.6: Real used wall time categorised by user, request wall time and core count. Category
1 and 2 shows a huge variance in the used wall time, while the other categories has a small
variance.

jobname job jun jul 10 16 18

job_jun.16-18 1 1 0 0 1 1
job_jul.10-18 1 0 1 1 0 1

Table 5.3: Example mapping from string to input matrix for two jobnames.

The IWD was split into three parts. The first part points to the parallel file systems. This
separates jobs, using the regular home file system or the optimized and faster scratch
file system. The second and third parts contain the directory, where the third part is the
basename of the working directory. Table 5.4 shows a small example, how directories
are converted into a matrix for the machine learning.

Detailed results how much every metadata contributes to improve the wall time prediction
are shown in the paper [187] and are not further covered in this thesis. However, detailed
results are available in the Appendix A.3.

5.4 Method and Metrics

In order to evaluate the machine learning models, metrics from the corresponding area
have been used. These are explained here briefly.

80

Method and Metrics 5.4

IWD /p1/joe /p3/joe sim data run_a

/p1/joe/sim/run_a 1 0 1 0 1
/p3/joe/data/run_a 0 1 0 1 1

Table 5.4: Example mapping from string to input matrix for directory names.

5.4.1 Metrics for Wall Time Prediction

In this section, the metrics are explained that have been used for the machine learning
(ML) models. First the models are trained using samples (historical jobs). Here the
real run time of a job is given as target value. After a training process, a trained model
can be used for predictions. To predict run time of the jobs, a new sample (job) is
passed to the model (without real run time) and a predicted target value (predicted run
time) is returned. Since the actual used time of the new sample is known, the predicted
time from the ML model and the real used time can be compared. With these two
values, predicted wall time and real used time, it is possible to measure how good a
model is predicting wall times. The built-in metrics from the scikit-learn library [101]
are used to evaluate the trained models. Scikit-learn offers several metrics for the
regression tasks, such as 𝑅2, mean absolute error (MAE), and median absolute error
(MedAE) [217] (cmp. Section 2.4.1).

The 𝑅2 score (coefficient of determination) provides a metric of how well the trained
model will predict new samples. It is defined by

𝑅2(𝑦, �̂�) = 1 −
∑𝑛samples−1

𝑖=0 (𝑦𝑖 − 𝑦𝑖)2∑𝑛samples−1
𝑖=0 (𝑦𝑖 − �̄�)2

, (5.3)

where 𝑦𝑖 is the real used walltime and �̂�𝑖 is the predicted value of the 𝑖-th sample, and

�̄� =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

𝑦𝑖, (5.4)

where �̄� as the average of 𝑦𝑖. The best possible value is 1.0 which corresponds to a
perfect prediction. The 𝑅2 score can also be negative and indicates a badly trained
model [218]. Other metrics are the mean absolute error (MAE) [219] and the median
absolute error (MedAE) [220]. Both measure the difference between predicted and used
wall time. MAE is the mean over all pairs of predicted and used wall time,

MAE(𝑦, �̂�) = 1
𝑛samples

𝑛samples−1∑︁
𝑖=0

|𝑦𝑖 − 𝑦𝑖 |. (5.5)

81

Chapter 5 Data Scheduling

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Te
st

 s
et

 R
2

sc
or

e

Training set R2 score

auto-sklearn (ForHLR I)
auto-sklearn (ForHLR II)

Figure 5.7: The x-axis shows the 𝑅2 score on training samples and the y-axis shows 𝑅2 score
on test samples for the work load files from ForHLR I+II. Models trained with automatic Machine
learning for 20 min each model.

MedAE is the median value of these pairs,

MedAE(𝑦, �̂�) = median(|𝑦1 − �̂�1 |, . . . , |𝑦𝑛 − �̂�𝑛 |). (5.6)

In contrast to MAE, MedAE is robust against outliers.

Figure 5.7 shows the results of AutoML trained models with all above mentioned
metadata (see Section 5.3.1): requested wall time, task count, initial working dir,
jobname, class, start time, and submit time. Each point represents a pair of the 𝑅2

scores, from the training and test set for a specific user of the machines (ForHLR I+II).
In Figure 5.7 an accumulation of the pairs in the right upper half can be seen, which
indicate that a well-trained model for most of the users has been found.

5.4.2 Resource Allocation Metrics

To relate the wall times predicted by Machine Learning (ML), artificially improved wall
times were used. This is used to investigate how scheduling behavior changes, when the
requested wall times become more accurate. Especially interesting is, whether resource
allocation remains stable and therefore can be predicted longer. During the investigation,
job wall time estimates have been subsequently improved. Starting with very inaccurate
wall time estimates, as provided by real users of the system, up to completely accurate
job run time estimates. These refined wall times were used to investigate in detail the

82

Method and Metrics 5.4

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
9

0.0
8

0.0
7

0.0
6

0.0
5

0.0
4

0.0
3

0.0
2

0.0
1

0.0
0

0

500 k

1 M

1.5 M

2 M

tim
e

in
 h

ou
rs

RunTime
ReqWallTime

.
Figure 5.8: ForHLR II workload with improved estimates. Y-axis shows the sum requested and
used hours.

scheduler behavior regarding to the improved wall time estimates. For the purpose the
“refined” requested wall time 𝑇Req is introduced,

𝑇Req = 𝑇Run + 𝜆(𝑇Req − 𝑇Run) with 𝜆 ∈ [0, 1], (5.7)

where 𝑇Req is the user-provided wall time and 𝑇Run is the job run time. Each job in the
workload is then adjusted by the same 𝜆, effectively simulating different precision of
provided wall time estimates. For example, if a user requests 10 hours but only needs
1, then for 𝜆 = 1.0 (𝜆1.0) would be 𝑇Req = 10 hours and for 𝜆 = 0.2 (𝜆0.2) the refined
wall time 𝑇Req = 1 + 0.2 · (10 − 1) = 2.8 hours. Clearly, for 𝜆 = 0 the 𝑇Req becomes a
perfect estimate, i.e., 𝑇Req = 𝑇Run. Of course, improving wall time estimates this way
is rather unrealistic, as shown repeatedly by Tsafrir [221] and Feitelson [222]. It is
obvious, that users cannot improve their wall time estimates in such fine-grained ways.
But as mentioned before, only impact of accuracy on the node allocation prediction is
important, thus such a refinement of wall times is sufficient for the investigation. In
Figure 5.8 it is shown how with different lambda values, the requested time (blue bar)
and the run time (red line) converge. 𝜆 = 1 reflects the user specified requested wall
times and 𝜆 = 0 indicates that requested time and run time are identical.

To measure the accuracy of the node allocation prediction, 𝑇NAP as the Node Allocation
Prediction Time is introduced. This metric defines the time the allocation has not
changed until the actual start of the job. In other words, 𝑇NAP is the difference between
the time the job started and when the last prediction was made. This time is used
as a metric to evaluate the results. In this context, 𝑇NAP is a per job metric, and for
example, job parallelism does not affect the way it is calculated. For example, if 𝑇NAP =
1 hour, then the allocated nodes were correctly predicted one hour before job execution
was started. In the remainder of this section, results are divided into different groups
according to the value of 𝑇NAP. 𝑇NAP below one second (< 1s), 𝑇NAP over one second

83

Chapter 5 Data Scheduling

and below one minute (1–60s), 𝑇NAP between 60–600s, and 𝑇NAP over ten minutes
(long-term predictions). A 𝑇NAP below one second, indicates that a job, e.g.,

• started immediately after job submission due to free resources
• was picked up by a back-filling algorithm, or
• was rescheduled on free resources (previously unavailable).

The reason, why ten minutes were selected is based on previous work. It was shown
that parallel file systems can be created in a very short time. BeeGFS in less than a
minute on 256 nodes (cmp. Section 4.3) and GekkoFS in less than 30 seconds on 512
nodes [223]. In the remaining time, the required data could be copied an ODFS. The
10-minute limit should be interpreted as an arbitrary estimate. A meaningful value can
only be determined by considering further factors, e.g., the maximum throughput of the
global file system or the performance of the node local storage. In particular, the amount
of data that can be copied is limited by the sum of all allocated node-local storage. Of
course, this time depends on how much data needs to be copied, but 10 minutes seems
to be a reasonable threshold, based on practical experience in a large HPC data center.

These workloads with varying degree of wall time accuracy, were then used as input
for a scheduling simulator. The simulator uses the 𝑇NAP metric to measure prediction
accuracy of each simulation. All experiments have been conducted using the Alea job
scheduling simulator [193]. To emulate the system-level job batch scheduler two widely
adopted scheduling algorithms were used to create job schedules — a simple First-Come-
First-Serve (FCFS) algorithm and the Conservative back-filling algorithm [78].

At the end, several approaches to predict wall times were compared to these synthetic
refinements. With the artificial improvements, it is possible to make exact statements
about how accurate wall time estimates have to be. By comparing the predictions with
the previously achieved predictions, a final statement can be made, as to whether the
desired advanced data staging is possible without intervention in the scheduling behavior.

5.5 Evaluation

In this section the predictions of the trained machine models and resource allocations
are presented. First, it is shown how to create models using automated methods and
how the predictions are improved depending on job metadata. Then it is shown which
accuracies are needed to predict the computing resources planned by the scheduler and
if the accuracies are sufficient to achieve data staging.

5.5.1 Wall Time Prediction using ML

First the accuracy using the 𝑅2 value is shown. Afterwards, a comparison of AutoML
trained models with the user estimates are shown using the MAE and MedAE metric.

84

Evaluation 5.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

di
st

rib
ut

io
n

R2 score

ForHLR I - User
ForHLR II - User

ForHLR I - AUTOML
ForHLR II - AUTOML

Figure 5.9: 𝑋-axis 𝑅2 score on test samples, 𝑌 -axis cumulative distribution for ForHLR I+II. Solid
line show 𝑅2 for user estimates. Dashed lines show 𝑅2 for AutoML trained models.

Figure 5.9 shows a cumulative distribution plot of the accuracy for trained models
compared to user estimates. Dashed lines show 𝑅2 score for the AutoML trained
models. To train the models all metadata as described in Section 5.3.1 were used. As a
comparison, the 𝑅2 score was calculated by taking the user requested wall time as the
user’s prediction (solid lines). Ideally, a curve should be flat at the beginning and rise late
(high 𝑅2 prediction scores). In contrast, 80 % of users have a negative 𝑅2 score based
on user estimated wall times on ForHLR I (purple). Based on user estimated wall times
on ForHLR II over 90 % of the users have a negative 𝑅2 score. A more comprehensive
table, with detailed results for each metadata is available in the Appendix A.3.

In Figures 5.10 and 5.11, a comparison of the user prediction and AutoML trained models
can be seen. Figure 5.10 shows the mean absolute error (MAE) in hours. Figure 5.11
shows the cumulative distribution for the median absolute error (medAE) in hours. In
both figures a horizontal line at 0.6 on the 𝑌 -Axis represents 60 % of the users. The
user estimation of both clusters, has a medAE deviation of about 7.4 hours. A model
trained with AutoML, shows for 60 % of the users a medAE of approximately 1 hour
on the ForHLR I and 1.4 hours for the ForHLR II. Figure 5.10 shows the difference for
60 % of the users using MAE as a metric. Using AutoML improves the accuracy from
15.4 hours (user estimation) to 4.6 hours (AutoML). The accuracy of the predictions for
the ForHLR II improves from almost 16 hours to only 3 hours by AutoML. Taking into
account, that only job metadata is used without a knowledge of the payload, this is a
good result. More detailed knowledge about the job could result in better predictions,
but requires in-depth knowledge about the tools and applications of the users. This
cannot be done in an automated way for the vast number of users.

85

Chapter 5 Data Scheduling

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18

C
um

ul
at

iv
e

di
st

rib
ut

io
n

MAE in hours

ForHLR II ALL Metadata AutoML
ForHLR II User req. wall time

ForHLR I ALL Metadata AutoML
ForHLR I User req. wall time

Figure 5.10: Comparison of MAE for ForHLR I+II. X-axis: mean absolute error in hours, Y-axis
cumulative distribution.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

C
um

ul
at

iv
e

di
st

rib
ut

io
n

medAE in hours

ForHLR II ALL Metadata AutoML
ForHLR II User req. walltime

ForHLR I ALL Metadata AutoML
ForHLR I User req. walltime

Figure 5.11: Comparison of medAE for ForHLR I+II. X-axis: Median absolute error in hours,
Y-axis cumulative distribution.

86

Evaluation 5.5

User auto-sklearn TPOT

ForHLR I 128 181 7 755 5 311
ForHLR II 47 744 10 471 7 362
CTC 13 151 5 572 4 658
KTH 4 817 3 812 3 307
SDSC 9 401 2 493 1 848

Table 5.5: MAE deviation of wall time estimates and predictions in seconds. User given wall time
estimates are compared to auto-sklearn and TPOT predictions.

Table 5.5 shows the average MAE deviation for the evaluated workloads. Especially, the
improvement for the two systems ForHLR I+II is noticeable. TPOT is able to predict
24 times better than the user for ForHLR I and 6.5 times better for ForHLR II. For the
other workloads, the improvement is not as good. SDSC workload has a improvement
above 2.8× CTC workload has almost a 4× improvement and KTH has only a 1.45×
improvement. It can also be observed, that in this case TPOT shows better results. Both
AutoML packages had 12 hour time to find the best model during their training..

5.5.2 Resource Allocation Prediction

The evaluation of node allocation predictions are shown in this section. This allows
a statement if the node list is known in time.

The simulation results, with the refined wall times, are shown in Figure 5.12 and 5.13.
Detailed results are available in the Appendix (see Tables A.6- A.9). Every workload
was simulated using two different scheduling algorithms — FCFS (Figure 5.13) and
conservative back-filling (Figure 5.12). The results are categorized within 𝑇NAP classes
(see Section 5.4.2). Each bar represents a simulation with a different 𝜆 value. The last
bar, labeled “ALEA”, is a simulation using Alea’s built-in walltime predictor. The bars
are categorized into the following groups based on the 𝑇NAP:

• Blue: jobs that are started immediately after the job is submitted (instant)

• Orange: jobs with a 𝑇NAP between 0 and 1 seconds.

• Green: jobs with a 𝑇NAP larger than 1 and up to 60 seconds.

• Red: jobs with 𝑇NAP larger than 60 seconds and up to 10 minutes

• Purple: jobs with 𝑇NAP larger than 10 minutes (long term predictions)

The long term predictions (purple bars) are in the focus. These predictions increase
significant only at very small 𝜆 ≤ 0.1, which already proves that very good run time
estimates are needed.

87

Chapter 5 Data Scheduling

Using back-filling, the class of long term predictions (purple) for CTC (Figure 5.12a)
workload increases from ∼10 % to ∼26 %, for 𝜆1.0 to 𝜆0.1. From 𝜆0.1 to 𝜆0.01 this class
improves from ∼26 % to ∼50 %. Even with perfect wall time predictions 𝜆0.0, long-term
predictions are not possible for half of all jobs. The results for the CTC workload using
FCFS algorithm 5.13a show a continuous prediction improvement from 𝜆1.0 to 𝜆0.01.
On all FCFS results (Figures 5.13a – 5.13e) a large movement, for long term predictions,
can be seen when using perfect wall time estimates (𝜆0.0). Almost only instantly starting
jobs (blue) or with long term predictions (purple) remain when using 𝜆 = 0. Since
operators like to keep the utilization of their system high, back-filling is often used, which
makes node predictions more difficult. It improves utilization, but during this process
it reshuffles node allocations of previously planned job, as was shown in Figure 5.2.
This rearrangement then impedes all efforts to create an ODFS on the right set of nodes.
From this point of view, a simple FCFS scheduling algorithm is a safer choice.

The result when using Alea’s run time estimate predictor are varying. For the ForHLR I+II
(Figure 5.12d – 5.12e and 5.13d – 5.13e) workloads the built-in predictor shows pretty
impressive results. This is caused by the ratio between the requested and used walltime
(see Figure 5.5). With such a high ratio between the requested and used run time, the
effect of predictions on scheduling and thus on the node prediction is significant. For
the remaining workloads, with better user-provided estimates the bar related to Alea’s
predictions is located, at least, behind the 𝜆0.3 simulations. Clearly, the simple Alea’s
predictor does not improve the accuracy very much in such cases.

During the simulations small details were noticed, which should be mentioned. In
Figure 5.12 and 5.13 it can be observed that when using the back-filling algorithm with
improved 𝜆 values, the number of jobs which start immediately (blue) slightly increases.
This has two reasons. First, job throughput improves with more accurate wall time
estimates as more waiting jobs are started by back-filling. Second, newly submitted jobs
may fit better into available free slots. On the other hand, these values hardly change for
FCFS algorithm, since it does not use such back-filling optimization. Clearly, jobs that
are started instantly cannot profit from any advance data stage-in method.

The results in Figure 5.12d – 5.12e and 5.13d – 5.13e show a high rate of jobs that
are started immediately after the job submission. There are several reasons for this.
First, the workload’s time-frame is approximately 1.5 years and various maintenance
slots have not been simulated, i.e., the queue is processed normally during maintenance.
Second, a part of the nodes has been separated for a limited time for various campaigns
whose consumption is not included in the workload.

5.6 Implications for Real Scenarios

The results above, with artificial wall time refinements, have shown that very accurate
predictions are needed.

88

Implications for Real Scenarios 5.6

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
09

0.
08

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01 0.

0

ALEA
0 %

20 %

40 %

60 %

80 %

100 %
P

er
ce

nt
ag

e
of

Jo
bs

instant

[0, 1.0]

(1.0, 60.0]

(60.0, 600.0]

(600.0, inf)

(a) CTC

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
09

0.
08

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01 0.

0

ALEA
0 %

20 %

40 %

60 %

80 %

100 %

P
er

ce
nt

ag
e

of
Jo

bs

instant

[0, 1.0]

(1.0, 60.0]

(60.0, 600.0]

(600.0, inf)

(b) SDSC

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
09

0.
08

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01 0.

0

ALEA
0 %

20 %

40 %

60 %

80 %

100 %

P
er

ce
nt

ag
e

of
Jo

bs

instant

[0, 1.0]

(1.0, 60.0]

(60.0, 600.0]

(600.0, inf)

(c) KTH

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
09

0.
08

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01 0.

0

ALEA
0 %

20 %

40 %

60 %

80 %

100 %

P
er

ce
nt

ag
e

of
Jo

bs

instant

[0, 1.0]

(1.0, 60.0]

(60.0, 600.0]

(600.0, inf)

(d) ForHLR I

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
09

0.
08

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01 0.

0

ALEA
0 %

20 %

40 %

60 %

80 %

100 %

P
er

ce
nt

ag
e

of
Jo

bs

instant

[0, 1.0]

(1.0, 60.0]

(60.0, 600.0]

(600.0, inf)

(e) ForHLR II

Figure 5.12: Conservative + Back-fill algorithm. Job distributions according to the 𝑇NAP class for
all used workloads. X-axis: shows different 𝜆 values. Blue color denotes instant jobs, orange
means job having 𝑇NAP ≤ 1 s, green denotes jobs with 1 s < 𝑇NAP ≤ 60 s, red jobs with 60 s<
𝑇NAP ≤ 600 s, and purple denotes long-term predictions (600 s < 𝑇NAP).

89

Chapter 5 Data Scheduling

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
09

0.
08

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01 0.

0

ALEA
0 %

20 %

40 %

60 %

80 %

100 %
P

er
ce

nt
ag

e
of

Jo
bs

instant

[0, 1.0]

(1.0, 60.0]

(60.0, 600.0]

(600.0, inf)

(a) CTC

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
09

0.
08

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01 0.

0

ALEA
0 %

20 %

40 %

60 %

80 %

100 %

P
er

ce
nt

ag
e

of
Jo

bs

instant

[0, 1.0]

(1.0, 60.0]

(60.0, 600.0]

(600.0, inf)

(b) SDSC

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
09

0.
08

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01 0.

0

ALEA
0 %

20 %

40 %

60 %

80 %

100 %

P
er

ce
nt

ag
e

of
Jo

bs

instant

[0, 1.0]

(1.0, 60.0]

(60.0, 600.0]

(600.0, inf)

(c) KTH

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
09

0.
08

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01 0.

0

ALEA
0 %

20 %

40 %

60 %

80 %

100 %

P
er

ce
nt

ag
e

of
Jo

bs

instant

[0, 1.0]

(1.0, 60.0]

(60.0, 600.0]

(600.0, inf)

(d) ForHLR I

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
09

0.
08

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01 0.

0

ALEA
0 %

20 %

40 %

60 %

80 %

100 %

P
er

ce
nt

ag
e

of
Jo

bs

instant

[0, 1.0]

(1.0, 60.0]

(60.0, 600.0]

(600.0, inf)

(e) ForHLR II

Figure 5.13: First Come First Serve (FCFS) algorithm. Job distributions according to the 𝑇NAP
class for all used workloads. X-axis: shows different 𝜆 values. Blue color denotes instant jobs,
orange means job having 𝑇NAP ≤ 1 s, green denotes jobs with 1 s < 𝑇NAP ≤ 60 s, red jobs with
60 s< 𝑇NAP ≤ 600 s, and purple denotes long-term predictions (600 s < 𝑇NAP).

90

Summary 5.7

50000

100000

M
ea

n
ab

so
lu

te
 e

rro
r (

se
co

nd
s)

Walltime predictions
User
ALEA FCFS
ALEA CONS
auto-sklearn
TPOT
0.05

ForHLR I ForHLR II CTC KTH SDSC0

2500

5000

7500

10000

12500

15000

Figure 5.14: The mean absolute error (MAE) for different predictions on different workloads.

Thus, the next important investigation is whether the required accuracy can be achieved,
through the use of modern machine learning methods. For this, models with the two
AutoML tools were trained for every workload. These AutoML tools were introduced in
Section 2.4.1. The models were trained on a 20 core (2× E5-2660) with 64 GiB RAM
system. The limitation was a 12 hour training time. The result is shown in Figure 5.14.
The mean absolute error (MAE) value is used as metric in the figure. To compare to
synthetically refined wall times, the wall times for 𝜆0.05 are also depicted. With the
exception of ForHLR I, the bar for 𝜆0.05 is far away from the attainable accuracy. The
results for ForHLR I are promising at first glance. But it should not forgotten, that users
heavily over-estimating the run time of their jobs. Here the TPOT model still shows a
mean absolute error of over 5300 seconds, although this is the best model for predicting
wall times for ForHLR I. This would mean, that the job start can only be predicted with
an average deviation of about 1.5 hours. This makes the approach of creating an ODFS
and copying data shortly before the job start practically impossible.

5.7 Summary

In this chapter, it was examined whether an ODFS can be created on the nodes prematurely
and whether data can be staged to the nodes in advance. To achieve this, the scheduler
must know the exact run times of the jobs. First it was shown how easy and automated
improved wall times can be predicted. It was also shown, how well a scheduler can

91

Chapter 5 Data Scheduling

make its plans depending on accurate wall times. Here the recorded jobs were simulated
with artificially improved requested wall times. The results have shown, that very good
wall times have to be predicted, if not perfect times. Since this is hardly achievable in
reality, it makes the approach of copying data to an ODFS in time rather pointless. Here
it is necessary to choose a different approach and to interfere with the behavior of the
scheduler. Conceptual prototypes have been presented in Section 4.2.

92

6
Automatic Data Management

“You cannot mandate productivity, you must provide the
tools to let people become their best.”

— Steve Jobs [224]

The huge increase in scientific data obtained from large-scale simulations or processed
during data-intensive computing is raising a problem in data management. Data
volumes are constantly growing and must be managed in complex environments by
users. Additionally, in the previous chapter, an approach of using an on-demand file
system in HPC environments was shown. An on-demand file system adds a temporary
new storage layer to the environment. Simply because it is only temporarily, the data
must be copied back and forth, which adds more complexity to the workflows. With
growing volumes and more data movements, it is important to maintain control.

When managing large amounts of data in HPC environments, it is important to distinguish
whether the data is actively used or not. With this information, it is possible to make
a decision whether the data should remain on the expensive parallel file system. The
primary goal of data management in HPC environments is to support and simplify the
familiar processes of data management and to offer additional options to managing data.
In addition, existing storage systems and infrastructures must be used efficiently.

In this chapter, a short overview of comparable approaches is given. Afterwards, reasons
for data management within HPC environments are shown. Here, the SCC is used
as an example, to show the real conditions that exist in HPC centers. The usage of a
HPC system is shown, including the usage of the storage systems. The requirements
to be met by a data management system are explained. With the shown examples,
requirements for a data management tool are collected. Then, a concept for managing
data in HPC environments is introduced and demonstrated how the framework facilitates
work for operators and users.

93

Chapter 6 Automatic Data Management

This chapter is based on the submitted publication:

• M. Soysal and A. Streit. “JAWS: Just Another Workspace Suite”. In: International
Conference on High Performance Computing and Simulation (HPCS) (12/2020).
Submitted [225].

6.1 Related Work

In the past, there have been many developments and innovations to manage large scale
scientific data. Although it is difficult to strictly separate the solutions, three categories
can be distinguished: scientific community repositories, storage solutions, and scientific
frameworks. All approaches have in common, that these want to manage or organize large
amounts of data. Some approaches have a very specific focus and aim at these problems.

Scientific Community Repositories Scientific communities build their own solutions,
either as a storage for results or as an interface to data sources. These community solutions
are often used across institutes, therefore these repositories are also located outside of
actual HPC centers. Such solutions often offer an interface or other possibilities, to
provide access to the data. As an example, the Open Source Data Hub System (OS
DHuS) is such a scientific repository solution [226]. OS DHuS is a service developed
with the purpose to support access to the ESA Copernicus data. The OS DHuS provides
two ways of accessing data. An Application Programming Interface (API) and a simple
web interface [227]. There are similar scientific repositories for a wide range of domains
available [228]. These solutions are tailored for a scientific community. This makes it
hard to use such solutions as a generic data management solution. Nevertheless, such
scientific community repositories should not be ignored.

Storage Solutions Storage solutions denote approaches, that are integrated into a
storage system. These can be implemented nativly in file systems or represent an
appliance. However, they have in common the idea to combine different storage
technologies, e.g. disks and tapes. With this, either capacity is expanded or top
performance is improved. The file system namespace is preserved and therefore, it
remains transparent for the user.

An approach for such solutions are so-called Hierarchical Storage Management (HSM)
systems. Here, often disk-based solutions are combined with tapes. This allows unused
data to be swapped out to tapes. When this data is accessed, the data from the tapes
is restored to disk. An example for such a HSM solution is the High Performance
Storage System (HPSS). HPSS is a flexible, scalable, and policy-based Hierarchical
Storage Management product developed by the HPSS Collaboration [229]. Other
HSM appliances are IBM Spectrum Protect (formerly IBM Tivoli Storage Manager)

94

Related Work 6.1

or SAM-QFS [230, 231]. These solutions are very closely tied to the hardware and
software of the vendor. Therefore they are not easily adaptable to the conditions in HPC
environments. But like the community solution, a HSM itself can be used as data storage.

The above mentioned HSM solutions, aim to increase the usable capacity when combining
disks with tape storages. The other direction would be to combine disks with SSDs to
increase performance. BeeGFS recommends to use the functionality of their storage
pools for such a scenario [166]. SSDs can be linked into a pool. This pool can then
be made available to data-intensive applications.

One example of a hybrid solution that supports both directions is Lustre HSM. Lustre
provides the capability to have multiple storage tiers within a single file system namespace
and can offer capacity with slower tiers as well as peak performance with faster tiers. As
storage tier it can use tape based systems, to offer a traditional HSM functionality and
move files off the disk file system. If the files are moved successfully, it can be deleted
from the disk file system, leaving only a link that references the copy on tape. In addition
OSTs can be configured with SSDs, while still having the same namespace. Using the
policy engine it can be defined which data should be stored on the SSDs [232, 233].

All these storage solutions are only available within a file system or an appliance.
Although some connectors are available, e.g., Lustre HSM can connect to different
storage systems like HPSS and TSM [234, 235], they are not suitable for higher-level
data management within HPC centers. The features are coupled within the namespace
of a file system. This makes it difficult to integrate third-party storage systems such
as the scientific repositories.

Scientific Frameworks and Tools To solve the lack of freely available and generic
HPC environments, frameworks and tools have been developed to address the manage-
ment problem. Many of these tools also aggregate individual files and directories into
logical units, sometimes called dataset or workspace. Rucio is a project that provides
services and associated libraries for allowing scientific collaborations to manage large
volumes of data spread across facilities at multiple institutions and organizations. Rucio
has been developed by the ATLAS experiment [236]. Rucio is a are very complex
tool and need a tight integration, where a very lightweight framework is preferred.
Pegasus [237] is a framework for mapping complex scientific workflows onto distributed
systems. It uses catalogs to map files to their physical locations but does not allow
any advanced data placement. Pwrake [238] and ADIOS [169] are used for efficiently
transferring data over wide area networks.

Data Jockey [239] is a tool, which aggregates files and directories to a logic unit, so
called datasets. Data Jockey was developed to automate the task of bulk data movement
and placements of scientific workflows within HPC centers. A disadvantage of Data
Jockey is that it lacks policies on how long data should be stored somewhere or a
role based administration.

95

Chapter 6 Automatic Data Management

The HPC-Workspace tools [240] also use the basic idea of workspaces, but have no data
movement implemented. They offer a lifetime for workspaces, which helps to prevent
that users do not store their data forever on the storage. While HPC-Workspace offers
very limited metadata it is easily usable in HPC environments1. For efficiently using the
infrastructure a queue-based data movement is missing, also it does not offer roles.

6.2 Reasons for Data Management within HPC
Environments

The reasons why an advanced data management tool is needed within HPC environments,
is explained in the following. The storage solutions, that have been discussed in the
related work before, are not supposed to be replaced. It is desired to use the existing
storage solutions efficiently and to be able to make new storage types available, in a
simple manner. Also the already mentioned scientific community repositories should
be accessible or easily adaptable by a data management tool. From this, the first
requirements for such a data management tool can already be derived. On the one hand,
already existing storage technologies and solutions should be used efficiently and on
the other hand, new storage types must be easily adaptable.

6.2.1 Storage Capacity

Key numbers regarding capacity and price are important to understand why different
strategies exist. For this, the development of the capacity of parallel storage systems
as well as the prices paid at that time are shown. The numbers are derived from the
purchases made at SCC. Due to the mechanism of public tendering, the prices are only a
snapshot and should not be understood as world market prices.

Growth of PFS Storage First the growth of PFS capacity is shown in Figure 6.1. Only
the PFS storage systems, that were directly purchased for the supercomputers, at SCC,
are depicted. The net capacity has grown from 11.4 TiB in the year 2005 up to 5 427 TiB
in 2019. During the 5 years from 2015 to 2019, usable PFS capacity increased from
2 118 TiB to 5 427 TiB, more than twice as much. It is expected, that the growth of
these storage systems will increase at the same rate in the future.

1It should be mentioned that almost all HPC systems in the federal state Baden-Württemberg are using
this tool [241].

96

Reasons for Data Management within HPC Environments 6.2

Figure 6.1: Net capacity growth (TiB) of parallel file system for HPC at SCC.

Price per Capacity Figure 6.2(b) shows the price development of procurements at
SCC. The two lines show the price / GiB capacity for the purchase of tapes (blue
line) and PFS storage (orange line). Before comparing the numbers, some aspects
must be considered:

• The prices are converted with the Euro / USD exchange rate at that time
• With PFS procurement, the InfiniBand hardware for the connection to the corre-

sponding cluster is also purchased and included in the price.
• The tape purchases are only the tapes themselves, since the tape library is still in

use and is upgraded independently.
• Over the years, tapes have evolved in technology.
• For PFS, only the net capacity that is made available to the user was taken into

account.
• For Tape, only uncompressed capacity is considered.

From 2007 up to the year 2014 only LTO Tapes [242] were purchased. In the year
2014 LTO price per GB was 40 times cheaper than the PFS per GB. Afterwards the
used technology for tapes switched to Jaguar Tapes [243] with a small price increase.
Tapes are still more than 10 times cheaper than PFS storage. Of course the comparison
between tape and PFS is not fair. With the given values for PFS the complete installation
including server, network, support contracts etc... is included in the price.

Figure 6.2(a) show the price per gigabyte for spinning hard disks. These prices are
provided by the company Blackblaze, a large cloud storage provider [244]. According to
backblaze, the prices are the average quarterly cost per gigabyte which has been paid [245].
Compared to these values, tape prices are up to 4 times cheaper than hard drives.

97

Chapter 6 Automatic Data Management

Similar conditions can also be found in the commercial sector for hard disks and
tapes [122]. Again, the comparison is not quite fair. In this case, only the purchase
prices for tapes and disks are quoted, but not the operating costs. The mentioned
sums for PFS are complete prices including maintenance and server etc. ... For a fair
comparison the TCO should be calculated. Such an calculation was made by Microsoft
for their Azure archive [122]. Here a 10-year total cost of operation calculation for 1 PB
storage has been made. Hard drives would cost about $5.5 million and for tape-based
storage about $810,000 for a 10 year period. So the total cost of ownership for tapes
is almost 7 times cheaper.

Considering the prices and the trends in capacity, the data management tool must be able
to handle the capacity growth and therefore expected data volumes. Data management
should also “encourage” the use of slower (cheaper) storage systems.

6.2.2 File System Statistics

It is also important, to take a close look at the use of parallel storage systems. The focus
here is on the distribution of the file sizes and how much storage space is occupied
by corresponding file sizes. Additionally, it is of interest how long the data is kept
on the available storage systems.

There are a few points that should be taken into account when looking at the presented
figures. Only hot storages on the ForHLR II are considered (see Section 3.1.2). The
storages have different retention policies and the IMK file system can only be used by
users of the respective institute. The Figures 6.3 show the file distribution for all PFSs
attached to ForHLR II. Here it can be observed, that most of the files on all PFS are
rather small, as shown in Figure 6.3(a). Most files are smaller then 2 MiB, but capacity
is mostly occupied by larger files. Table 6.1 shows the relationship between the stored
files and the capacity usage, based on the file split of 2 MiB. It is visible that a few large
files occupy the capacity but the majority of the files are rather small.

Figure 6.4 shows the ages of the stored files. HOME and IMK file system do not have a
retention policy and a vast amount of files older than 64 days. On the IMK file system
more than 50 % of the files are older than 512 days, which is not surprising because it was
installed before the ForHLR II and is used as a source storage for climate data. The IMK
file system was also attached to the predecessor system ForHLR I. Interesting are the
values of the two storage systems scratch and workspaces. On both systems, retention
policies are used to prevent data from being stored in storage forever2. Especially, the
workspace file system is interesting. Although a maximum of 240 days is possible here,
hardly any files are older than 64 days. Here users must regularly extend the lifetime
of workspaces. If the user does not extend lifetime, the workspaces are deleted by the
admins when needed. The reason why there are no files older than 64 days, is due to a

2It should be mentioned that the retention policy is only a minimum guarantee. Data is not deleted
immediately

98

Reasons for Data Management within HPC Environments 6.2

$ 0.11

$ 0.045

$ 0.040

$ 0.026

(a) Blackbaze average price per GiB paid. Source: backblaze.com

2008 2010 2012 2014 2016 2018
Year

$0.01

$0.10

$1.00

1.2971

0.6851
0.49630.4104 0.3458

0.1594

0.08030.0635

0.0156
0.0109

0.0242

0.0122

LTO Tapes
Jaguar Tapes

PFS
Tape

(b) Average price perGiB. Source: SCC

Figure 6.2: Price comparison of PFS storage (orange) and Tape storage (blue) per GiB.

99

backblaze.com

Chapter 6 Automatic Data Management

file size HOME scratch workspaces IMK

count
< 2MB 79.71 % 93.34 % 96.46 % 70.20 %
> 2MB 20.29 % 6.66 % 3.54 % 29.80 %
capcity used
< 2MB 0.57 % 0.42 % 5.86 % 0.80 %
> 2MB 99.43 % 99.58 % 94.14 % 99.20 %

Table 6.1: Storage usage by file size.

cleanup of that file-system, shortly before the file system statistics where taken. The
statistics were created in autumn 2016, after the system was in production for a half year.

Similar observations can be obtained from other HPC sites [246]. With these file system
statistics, additional requirements can be identified for a data management framework.
It needs to be able to handle many small files as they make up the largest part of the files
and large files as they consume most of the capacity. The data management framework
should offer methods to identify unused data or users should indicate somehow, if
they still need that data.

6.2.3 Example User Behaviors

Without detailed key information on the scientific usage of the systems, it is often difficult
to identify the problem precisely. It is also not possible to collect and store arbitrary
data about users due to data protection guidelines. But with the existing log files and
after personal contact with two users, it was possible, to reconstruct their usage on HPC
systems. The submitted jobs have been categorized, by the users, into test jobs, pre- and
post-processing, and payload jobs where real simulations were executed. The temporary
data consumption for both users could be well investigated, for the given time period.

User 1 was a PhD student from Q1/2016 to Q4/2019 and mainly used the ForHLR II. In
autumn 2019, he successfully finished his PhD in natural sciences at the KIT Faculty
of Physics. The research area for his PhD thesis [247] was from the discipline of
atmospheric sciences. His topic was polar stratospheric clouds and ozone in the polar
stratosphere, which he simulated and investigated with the ICON-ART software [19].

User 2 has been a PhD student since Q3/2016 and will soon finish his doctorate. His
research area for his PhD thesis [248] is from the discipline of turbulent combustion,
which he simulates and investigates with OpenFOAM. He uses besides the ForHLR I+II,
also other systems outside KIT. The use of the HPC systems outside of the KIT cannot
be investigated in detail. However, the user stores the scientific data on archive systems
at SCC, including data generated outside the SCC.

100

Reasons for Data Management within HPC Environments 6.2

0 2 KiB
4 8 KiB

16 32 KiB

64 128 KiB

256 512 KiB
1 2 MiB

4 8 MiB

16 32 MiB

64 128 MiB

256 512 MiB
1 2 GiB

4 8 GiB

16 32 GiB

64 128 GiB

256 512 GiB
0%

5%

10%

15%

20%

25%

30%

35% HOME
scratch
workspaces
IMK

(a) Percentage of files regarding to filesize.

0 2 KiB
4 8 KiB

16 32 KiB

64 128 KiB

256 512 KiB
1 2 MiB

4 8 MiB

16 32 MiB

64 128 MiB

256 512 MiB
1 2 GiB

4 8 GiB

16 32 GiB

64 128 GiB

256 512 GiB
0%

5%

10%

15%

20%

25%

30%

35% HOME
scratch
workspaces
IMK

(b) Disk capacity used by filesize.

Figure 6.3: Distribution of file sizes and file system capacity used by large files.

101

Chapter 6 Automatic Data Management

0 2 2 4 4 8
8 16

16 32
32 64

64 128

128 256

256 512

512 1024

Age of files (days)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%
HOME

(a) HOME file system.

0 2 2 4 4 8
8 16

16 32
32 64

64 128

128 256

256 512

512 1024

Age of files (days)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%
scratch

(b) Scratch file system.

0 2 2 4 4 8
8 16

16 32
32 64

64 128

128 256

256 512

512 1024

Age of files (days)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%
workspaces

(c) Workspaces file system.

0 2 2 4 4 8
8 16

16 32
32 64

64 128

128 256

256 512

512 1024

Age of files (days)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%
IMK

(d) IMK file system.

Figure 6.4: Age of files since creation on different file systems.

102

Reasons for Data Management within HPC Environments 6.2

0 2000 4000 6000 8000 10000
Jobsize (Cores)

1

10

100

1000
Nu

m
be

r o
f J

ob
s

User 1
User 2

Figure 6.5: Distribution of jobsizes for two scientists based on their HPC usage at SCC. Details
can be taken from Table A.1.

Table 6.2 shows the number of jobs and generated amount data. Figure 6.5 shows the
distribution by CPU core number for both users. User 2 clearly submitted much larger
jobs more often. User 1 submitted a total of 4038 jobs on the ForHLR II, of which
2715 were short jobs that were either used as a test or aborted too early. The rest can
be seen as real payload and of these 252 were climate simulations and 1071 were pre-
and post-processing. So the scientist needed about four times more jobs to pre- and
post-processing, analyses, and copying his data than real simulations. In total User 1
generated about 113 TiB of data in the recorded period (about 1.5 years). His doctorate
took approximately twice as long (3 years) and according to his own statements the
total amount of data generated will correspond to twice as much, i.e., roughly 225 TiB.
Approximately 14.2 TiB are stored in the archive for long-term storage.
User 2 submitted a total of 6402 jobs on the ForHLR II, of which 4044 were short jobs, that
were either used as a test or aborted too early. The rest can be considered as real payload
(∼850) or pre- and post-processing jobs (∼1500). Altogether, User 2 has generated in
the recorded period (approx. 1.5 years) around 70 TiB of data. According to his own
statements the total amount of data generated up today is roughly estimated at 140 TiB.
Until the writing of this thesis about 20 TiB are stored in the archive for long-term
storage. What is also interesting, is that around 5 million files are stored in the archive.

Both users are from completely different fields of science, climate research and com-
bustion technology, but some conclusions can be drawn from these numbers. Both
users submit much more pre- and post-processing, than actual simulation (payload)
jobs. After personal contact with the operators of the HPC systems, this ratio is not
unusual and applies to the majority of users. Both users are top users of ForHLR II
systems and use rather classical HPC applications. The applications are large scale and
highly parallel. Both have done code development and therefore submitted many jobs

103

Chapter 6 Automatic Data Management

User 1 User 2

Total Jobs 4038 6402
Test Jobs 2715 4044
Payload Jobs 1323 2358

�

Simulation Jobs 252 ∼850

�

Pre/Post-processing 1071 ∼1500
Generated Amount of Data
(TiB from 06/2016–01/2018)

∼113 ∼70

Total Amount of Data
(TiB)

∼226 ∼140

Archived (TiB) ∼14.2 ∼20
Archived (# Files) ∼48K >5M

Table 6.2: Historical usage of two scientist. User 1 used ForHLR II, active between 06/2016-
12/2019. User 2 used ForHLR 1+II, active between 06/2016–10/2020.

for testing. The ratio between test and payload jobs is also not unusual, but the absolute
numbers are much lower for other users. Also, only a small part of the total generated
data volume remains for archiving, approximately for User 1 ∼ 1

16 and for User 2 it is
∼ 1

7 . As mentioned before, both users also developed and tested code. For other users,
which only use HPC systems for simulations, higher data volumes are expected.

Taking this small example for two users, additional requirements can be identified for a
data management framework. Users submitting a large number of jobs. Test jobs and
payload jobs are generating data, even if they are submitted for testing purposes. The
large amount of data generated by the simulation needs to be organized. Users need more
than just directories to organize their data. Users are submitting jobs for data movement,
as data transfer can take some time due to the volume of data. Data movement should be
back-grounded, without the need for an interactive session. Users are submitting vast
numbers of test jobs, an ease of removing the generated results would be desired. As
shown, users do a lot of pre- and post-processing. The data could be pushed to cheaper
storage in the meantime and staged back to PFS when needed. A method to simplify
this workflow can help reducing the usage on the expensive PFS storages.

6.2.4 Requirements for Data Staging

With the reasons described above for data management in HPC environments, the
following requirements are imposed on a data management tool. It is important to use
existing storage systems efficiently and new storage solutions should be easily adaptable.
The data management tool must be able to handle the capacity growth and therefore

104

Prototype Data Management Tool – JAWS 6.3

expected data volumes. PFS storages are a very expensive storage and users should be
“encouraged” to use slower (cheaper) storage systems, such as tape archives. Users are
submitting vast number of jobs with pre- and post-processing. Here tools are required to
manage the data and, e.g., if data is not immediately post-processed move it to a slower
(cheaper) storage. As mentioned above, users are submitting jobs for data movement,
because data transfer can take some time due to the data volume. Here a non-interactive
data transfer would be preferred. Data management should help to identify unused data.
A way where users could indicate, if data is important or not, is desired. Most files
are very small, but capacity is used by large files. This ratio of small and large files
should not be a problem for the data management framework.

6.3 Prototype Data Management Tool – JAWS

From the previous sections, various requirements for an automated data management
tool have now emerged. To meet these requirements the concept of JAWS was developed.
JAWS is designed to automate the data management process within HPC environments.
The key design aspects are (i) simplify the usage of the different storage systems, (ii)
efficient use of infrastructure and storage systems, (iii) a simple way to identify unused
data, (iv) a role based system, and (v) an easy integration into HPC environments. To
archive this, first some elements of JAWS are introduced.

6.3.1 JAWS Elements

Before the JAWS framework is explained in detail, the basic concepts are introduced
here. Configuration options for the introduced elements can be found in Appendix A.3

Workspace The concept of a “workspace” is the central element. Files and folders
are linked to a logical unit. A workspace is defined as a set of directories and files. This
can be the result of a single simulation or a whole campaign. However, everything that
belongs to a workspace depends on the user’s workflow, but all files and folders within a
workspace can be treated in the same way. The workspaces have a status through their
lifetime, e.g., active or expired. Depending on the policy, this status can be extended,
but the user has to be active to extend lifetime. If the user does not care about this, this
is an indication that the data can be deleted or moved to a slower storage system.

Besides these mandatory metadata (see Appendix A.3), arbitrary entries can be config-
ured. Thus workspaces can be assigned via any metadata. For example, an additional
field can be used to specify the funding for this work, e.g. whether it is a DFG or
Helmholtz funded project, or a DOI identifier can be used to indicate whether the data
belongs to a publication. This option should help the operator to manage appropriate
workspaces depending on the general environment and usage scenario.

105

Chapter 6 Automatic Data Management

Target A target describes a storage type, storage location, and properties. In addition,
the way the storage is accessed is predefined, so a user does not need to know how
to access the storage efficiently. Targets have also configured properties, such as a
maximum lifetime for workspaces, and number of allowed extensions of this lifetime. A
special property classifies the target as hot or cold. As already explained in Section 2.5,
a hot storage indicates a suitable storage for HPC jobs.

Queuing System A simple queuing system is implemented to efficiently use the
infrastructure and storage systems [249]. The queuing system consists of a master
and distributed workers. So-called data jobs are generated, by the JAWS daemon and
submitted to the master. The master acts as scheduler and controls the queue and the
workers. It allocates data jobs to free workers and keeps track of the progress. The
workers act like a resource manager and execute data jobs. Every worker is configured
with targets, which they can serve. Multiple workers can serve the same targets. When
starting a worker, it registers itself at the master and indicates which targets it can serve.

Data Job For physical operations on the workspaces, like moving and deleting a
workspace, a data job is created and submitted to the above mentioned queuing system.

Roles A role defines the privileges of different user groups. Beside a user and admin
role, a group manager role is provided. A group manager is associated with users and
has configurable privileges over these users’ workspaces.

As mentioned at the beginning of this section, the key design aspects (i-v) can be
designed with the few elements presented. The simplified use of storage systems (i) is
achieved by abstracting them with so-called (storage) targets. The target configuration
also determines the tools and method how data should be stored. With a queue based
system and distributed workers the infrastructure can be used efficiently (ii). For example,
limits for maximum data jobs can be set, to prevent congestion of networks and storage
systems. Whether data is still being used can be easily checked by its lifetime (iii). The
workspaces are given a lifetime that a user has to take care of. They can extend it or
move the data to other storage systems where a longer lifetime is possible. With the role
based system, delegation of work to group managers is possible (iv). This is helpful, if a
scientist leaves the institution and someone can take care of the digital legacy, such as a
designated person at the institute. JAWS is not introducing a new storage type or systems,
it orchestraes data within HPC environments. The workspaces are a logical view on data,
the data itself is stored as usual on the storage systems, for example as normal files and
directories on a POSIX based storage system (v). JAWS daemons do not need special
hardware or resources, they use the existing nodes (e.g., service nodes) and infrastructure.

106

Prototype Data Management Tool – JAWS 6.3

Rest-API

WEB

CLI

Client

Master /
Job Queue

JAWS-Daemon

Metadata
Storage

Worker

Data Mover

JAWS Application

Rest-API

Worker
Rest-API

Worker
Rest-API

Figure 6.6: Design of the JAWS framework. Clients (Web/CLI) access the main daemon via
REST API. JAWS Daemon communicates via REST API with distributed worker.

6.3.2 Design and Architecture

JAWS is developed using PYTHON 3 [250] and the Flask framework [251]. Flask is a web
micro-framework, which helps developing web-based application with a template engine.

Figure 6.6 illustrates the components of the JAWS framework. These consist of a main
daemon, workers for data moving and clients. The main daemon is accessible by a
REST API [252] and communicates with the workers using REST. Two different clients,
a web-interface and a Command Line Interface (CLI), are provided and both use the
same API calls of the JAWS daemon..

JAWS Daemon The main daemon is composed of several components. The JAWS
Application components contain the complete logic for managing and controlling the data
management. Another important component is the queuing system consisting of the job
queue and the corresponding master. The master acts as a scheduler and communicates
with the workers. All jobs that make any physical changes on workspaces are placed
in the job queue. A central storage is available for storage metadata such as lifetime
or aliases of storages. During development a SQLite database as the metadata storage
has been used. While using SQLAlchemy [253] as an abstraction layer the database is
easily exchangeable with other SQL based databases. Modifications to the metadata of
workspaces are done within the main daemon and no data job has to be created.

Workers Workers are responsible for physical actions on workspaces, like moving,
compression or deleting. Any number of workers can be deployed. Every worker can be
configured for multiple targets. At startup, workers register themselves to the master and
wait until a job is allocated. During registration, workers indicate which targets they serve.

107

Chapter 6 Automatic Data Management

Figure 6.7: Screenshot of web-frontend shows past data movement jobs.

Authentication JAWS offers different ways to authenticate users with the main daemon,
based on the access methods. The command line interface offers two optional methods.
(i) A random string is created and stored as a file in the user home and in the JAWS
database. This string then can be used as a credential to authenticate the user by
appending it as a key to the REST API calls. (ii) A more secured method uses the
authentication service MUNGE [254] (MUNGE Uid ’N’ Gid Emporium). It is highly
scalable and often used in HPC cluster environments, since e.g., schedulers also use
MUNGE. When enabling MUNGE, the whole communication between the CLI-clients,
the daemon, and the workers are encrypted by MUNGE. Furthermore, additional safety
features offered by MUNGE are also used, e.g., replay protection or time-to-live.

To login to the web interface a username and password is needed. After successful
authentication a session key is created and stored in the browser. For the user password
two optional methods were implemented. (iii) The user password from the system.
(iv) The string from (i).

Please note that the solution (i) and (iv) are fallback methods. The generation of the string
could be insecure if the JAWS daemon is running on a different host. Therefore, this
method should be only used in testing environments. For (iii) the JAWS daemon requires
extended privileges. This might be too insecure for some HPC centres, but adding
additional methods for authentication for a web-based login are easy to implement.

Client JAWS provides two different clients. The web client is derived from the Flask
daemon, which is the base for the JAWS daemon. Therefore, technically speaking, the
web-frontend is part of the JAWS daemon. Figure 6.7 is showing a screenshot of the
web-interface, showing the last workspace movements. Here users can also view the
available storages as well as a listing of the users’ workspaces. The statistics section
shows collected stats about moved workspaces. As already mentioned both, web and
CLI, use the same REST API. Figure 6.8 shows the CLI with all available commands.
The explanation for the CLI options are available in Appendix A.3.

108

JAWS usage on HPC Systems 6.4

~$ jaws --help
usage: jaws <command> [<args>]

The JAWS - Command Line Tool

----- Currently available Command -----
move, activate, active, cancel, configuration, deactivate,
queue, job, log, resume, rights, resume, setPriority,
workers, share, shareInfo, workspaces, storages

positional arguments:
command Subcommand to run

optional arguments:
-h, --help show this help message and exit

Figure 6.8: JAWS CLI-frontend listing the available command.

6.4 JAWS usage on HPC Systems

As described above the REST API that can be accessed via a browser and CLI. Use
scenarios of general processes are explained below. The detailed commands and all
options can be found in the documentation (https://github.com/mehsoy/jaws).

Metadata & ACL As mentioned above there are different meta data for workspaces
and storages. According to the requirements, new metadata can be added and users as
well admins can be given appropriate rights for it. Figure 6.9 shows such an example
configuration. Here an administrator is only allowed to set the specified values for
storages. For workspaces there are additional to the above mentioned mandatory entries.
A user can set a value for DOI and could indicate, that the workspace content belongs to
a publication. Also the workspace contains an entry (student) which only can be set
by a admin. This could be used to indicate if the workspace is created by a student
and different polices should be applied.

Creation and use of workspaces First the user creates a workspace on a target.
Therefore, the user specifies an alias that is unique for him/her. The JAWS daemon then
creates a directory for the user on a default target. Based on the target configuration,
the workspace is assigned with a lifetime. After the workspace is created, the directory
can be used as usual. To make sure the workspace name is unique it is assembled of
username, alias, and a counter. A counter is needed when a user chooses multiple times

109

https://github.com/mehsoy/jaws

Chapter 6 Automatic Data Management

[storages]
storages are never allowed to be modified by simple users
Administrator=[’alias’, ’accept_jobs’, ’max_extensions’]

[workspaces]
User=[’DOI’]
Administrator=[’student’]

Figure 6.9: Example metadata ACL configuration for storages and workspaces. Only admins are
allowed to change the keys for storages. For workspaces different keys are available for user and
admin.

~$ jaws workspace create mysimdatat-2020
Created new Workspace joe-mysimdatat-2020-0
~$ jaws workspace locate joe-mysimdatat-2020-0
/mnt/jaws/acratch/joe-mysimdatat-2020-0/
~$ cd /mnt/jaws/home/mehmet-mysimdatat-2020-0/
~$ touch test

Figure 6.10: Creation of workspace and using after it.

the same alias. The JAWS daemon can be queried to obtain the absolute path. This
absolute path only changes when the workspace is moved to another target.

Archive and move workspaces After simulation and evaluations are completed,
access to the workspace is at first no longer necessary. To keep the workspace for
future use, it can be moved to storages which offer a longer lifetime. Therefore, the
user selects the workspace and chooses the destination target. JAWS now creates a
data movement job and appends it to the queue. In the background, the JAWS deamon
processes the queue. It assigns the job to a free worker that is connected to both (source
and destination) targets. Afterwards the worker checks the data on consistency and then
deletes the source. The user can check the state of the data movement job. Statistics
on the number of files and data volume are collected.

Lifetime of workspaces A user can list an overview of all workspaces and check
lifetimes. Before the end of the lifetime, the user can extend the lifetime to indicate
that the data is currently in use. If the user does nothing the workspace will be marked
as expired. A user can delete a workspaces at any time if it is not longer needed. The
process of workspace deletion is also handled by the workers.

110

JAWS usage on HPC Systems 6.5

Administrative tasks The admin can display a filtered list of all workspaces. Expired
workspaces can be deleted immediately or moved to a background storage. If the
workspace is moved to a background storage, users could just restore it by themselves.
This is a very common scenario, as users sometimes forget to extend the lifetime in
advance. This can quickly free up capacity on expensive storage.

Beside the control of the workspaces there are many other functions available to the admin.
For example, if a storage is in maintenance, the relevant targets can be marked as offline.
This will block all data jobs that have an offline storage as source or destination target.

Role of Group Manager The group managers are admins for a specific user group.
They can view a list of workspaces and delete or move a workspace to another storage.
However, the view is restricted to certain users in an associated group. This can be
useful to delegate work to the group managers, e.g., to manage specific institutes or
projects storages.

Additional metadata Besides the mandatory metadata, such as lifetime, any other
metadata can be configured. These are not predefined and can be customized by the
HPC center. It is possible to link metadata to role privileges. For example, the faculty
affiliation can only be set by admins. Other metadata can be configured to be modifiable
by the user or group managers. This way workspaces can be better organized. The
additional metadata can be set by a command with key–value pair.

Deployment The deployment is easy to realize in existing environments. The daemon,
CLI-clients and workers can be distributed to corresponding login/service nodes. The
storage systems in use can also be configured as targets. For this purpose, the storage
systems in the configuration should point to different root directories to avoid collision
with the previous usage. The web interface can be considered optional. JAWS can
be limited to the use of the CLI tools.

Adding new Storages Making a new storage available to jaws is quite simple. First
is must be configured as a new target, with the corresponding config file. In addition,
the workers who will serve this target must be configured. After that the target is
available for the users.

Replace a storage If a storage system needs to be replaced, the JAWS framework
makes it relatively seamless. The first thing to do is to make the new storage available
to JAWS. Now there are two options. Either users move their workspaces from the
old storage system to the new target, or the administrator moves all workspaces for the
users. If a user logs in and can not find the data in the usual place, they can locate
the workspace using the JAWS CLI.

111

Chapter 6 Automatic Data Management

6.5 Summary

In this chapter, an overview of different forms of data management was given. Different
approaches have been shown, which all manage a large amount of data, each with
different objectives. Using detailed data from the SCC, it was shown where a data
management tool can be helpful and what requirements it has to meet. The data
presented includes detailed statistics on storage systems and the work of 2 scientists
from different disciplines. Also the historical development was presented, regarding
the development of capacity and the prices for procurements. The trend to more and
more data volume has been visible for a long time. In order to keep the costs for data
management within reasonable limits, a special data management tool is needed, which
fits seamlessly into these general conditions. The development of concepts for data
management led to the prototype JAWS.

JAWS is a simple framework that provides end users with a simple abstraction layer
for managing their data, and provides operators with a practical tool for managing
their users’ data sets and efficiently exploiting the infrastructure. Large storage will
become more heterogeneous and complex. To reduce costs, cheaper back-end storage
must also be used in HPC environments. With JAWS, the use of these different types
of storage can be abstracted and will help users and operators. The complexity of a
storage system can be hidden by a framework like JAWS.

The benefits for users and operators were demonstrated using a framework like JAWS.
The operators now have the ability to identify unused records. They do not have to go
recursively through directories and check the age of a file as described in Section 3.1.2,
admins can now check the lifetime of the workspaces. The operator can transparently
make new storage systems available to the users and the users do not need to be trained
how to access the storage. Through arbitrary workspace metadata, the user is given
a way to organize his data. This metadata can also serve as an indicator of how to
handle the data in case of expiration.

112

7
Conclusion and Outlook

“I see little commercial potential for the Internet for at
least 10 years.”

— Bill Gates 1994 [255]

The trend in scientific computing is clearly visible. On the one hand, new data-driven
sciences are emerging and on the other hand, traditional communities need more and
more data storage. To support data-driven science a very powerful data storage system
has to be provided. To satisfy the needs for increasing data volumes much more storage
capacity has to be offered. Due to this situation three corresponding topics have been
identified. First, the feasibility of an on-demand file system was demonstrated, which
can provide peak performance for applications. Second, a seamless integration into
the batch system is needed to achieve an advanced data staging to the temporary file
systems. Third, a concept needs to be developed to manage and move data in HPC
environments to satisfy the need for ever-increasing data volumes.

It was shown that on-demand file systems can be easily integrated into an HPC system.
An ODFS can immediately reduce the load on the global file systems. Start and stop
times are rather not suitable for very short jobs, but experience shows that large jobs
usually have longer wall times. The trend in the HPC world clearly shows that ever
faster solid state disks are entering the compute nodes. This should further demonstrate
the benefits of on-demand file systems on the compute nodes. Despite the additional
processes on the computing nodes, the tested applications ran more stable and with less
variance in run times. In addition, the applications are less affected by side effects and
generate less load on the global PFS. In the applications tested, it happened that some
use cases were slower with the use of an on-demand file system, but the advantages
for the overall system outweighed the disadvantages of slower execution time. At the
same time, the use of on-demand file systems is quite straightforward and changes to

113

Chapter 7 7 Conclusion and Outlook

the system configuration are minimal. The advantage of this approach over others is
that the application code does not need to be changed. The most important effect that
occurs immediately is the reduction of the load on the PFS.

Current batch systems can create an ODFS but cannot do an advanced data staging. For
this purpose, the resource allocation behavior of schedulers were investigated. Focus here
was to determine the time available to stage data. The work shows that all the chosen job
metadata contains information which improves the wall time predictions. In particular,
the previously unnoticed metadata provide an additional source of information. Good
prediction models can be trained with very simple job metadata without having precise
knowledge of the user’s work. Further questions are, if the prediction models accurate
enough to achieve advanced data staging into a temporary on-demand file system.
Detailed simulations using existing HPC workloads were conducted. The influence of
(in)accurate wall time estimates on the prediction’s reliability were investigated. It was
shown that ML and the use of multiple job metadata can improve the prediction. Further
investigations have shown that, very accurate wall time estimates are needed to deliver
precise node allocation predictions. These are hardly reachable and some alternatives
have to be found. Different concepts were developed to accomplish these challenges.

Besides the data management between a PFS and an ODFS, the data orchestration within
the whole storage pyramid is important. The development of a data management system
is triggered by the trend towards data-intensive computing and ever-increasing data
volumes in HPC environments. In addition there are more and more heterogeneous
storage systems and a confusing jungle of newly installed storage systems, tools, protocols,
policies and best practice guides that overwhelm the user. For this purpose, the behavior
of users was examined and a detailed look at the file system usage was made. Thus the
requirements for a data management tool could be determined. From this requirement
the concept for the lightweight framework JAWS was developed. JAWS empowers
the users to manage their scientific data across various storage architectures within a
HPC center. It transparently provides access to these storages, reducing the need to
get familiar with the heterogeneous storage types. Large scale storages are going to
get more heterogeneous and more complex. This tool will help users and operators to
use these different storages by abstracting the usage of these different storages. The
complexity of a storage system can be hidden by frameworks like JAWS.

With the designed concepts for providing a very powerful on-demand file system and
for data management of large-volume data, this dissertation contributes to efficient
resource and data management within large HPC centers. These concepts are kept open
to technology and are therefore generally applicable. New technological developments
can be used with minimal effort.

114

Outlook 7.1

7.1 Outlook

The subject of wall-time predictions is an area that is constantly evolving with new
methods and approaches. Collaboration have developed during this thesis in which we
continue to pursue the field of scheduler predictions. A repository is in the process of
being created, which collects different methods for run time predictions. This will allow
to compare new methods in the future. https://github.com/mehsoy/walltime-
prediction-tools.

Also during this thesis the idea arose to do research and development of a scheduling
simulator which can simulate interruptions, such as node failures, software errors or
any events that could occur on real systems. A simple scheduling simulator is already
developed and is able to simulate node failures and reservations. A first version is
planned to be published soon.

The functionality of an on-demand file system is already in general productive use.
Depending on the application, the positive influence is enormous and facilitates the
operation of the system. Also users have to worry lessamsbout I/O and can continue with
scientific work. As an example, climate researchers have already started using ODFS
in their scientific workflow and gain faster executions times for their data-intensive
workflows [256]. In the future, new hardware will provide further advantages, which
can be evaluated in appropriate cases. An investigation of new applications allows a
better adaptation of the on-demand file system and should be done for new applications.

At last the JAWS data management framework should be put into production operation.
During this work a prototype was developed. This prototype should be designed to be
robust enough to be deployed accordingly. For the prototype a simple queue manager is
implemented. This queue manager is only equipped with the most necessary functions.
For the future it is planned to use an established HPC batch system which is usually
used within supercomputers. This would reduce complexity and would be a more
convenient way to use existing software.

115

https://github.com/mehsoy/walltime-prediction-tools
https://github.com/mehsoy/walltime-prediction-tools

A
Appendix

A.1 Metadata of Swarm-based Meta-heuristic Job

Figure A.1 show the metadata operation created by a swarm-based meta-heuristic search.
Figure show the execution of two generations. Each generation is causing more than 30
million metadata operations. Every generation is creating a vast number of metadata
operation at the beginning and then following by a computation phase.

0 500 1000 1500 2000 2500 3000 3500
runtime [s]

0

20000

40000

60000

80000

100000

ac
c.

 O
pe

ra
tio

ns
 /

s

[sum]
[close]
[rddir]
[open]
[stat]
[trunc]
[statLI]
[revalLI]
[createLI]
[ack]
[entInf]
[sChDrct]
[sDirPat]
[sAttr]
[mkdir]
[ren]
[unlnk]

Figure A.1: IOPS over time for two generation. (Swarm-based meta-heuristic)

117

Appendix A A Appendix

A.2 Scheduling Simulator (BOB)

BOB (Bob Offers Benchmarks) is a new scheduling simulator, started as a student project
at SCC in 2019 [257]. It was developed by a student team during the Lecture “Practice of
Software Engineering” (PSE). The aim was to create a rudimentary scheduler, as a basis
for further research and development. As initial algorithms it offers a simple First Come
First Serve (FCFS) and FCFS with back-filling on configurable HPC systems. The main
advantage over other comparable simulators is the information-rich and comprehensive
visualization of the simulation results. Is uses modern tools and frameworks such
as Python, SimPy, Flask, VueJS. As a bachelor thesis the Scheduling Simulator was
enhanced with the feature of simulating node failures and reservations. With this
the effects of failures and reservations on the scheduling in HPC systems can be
evaluated [258]. Figures A.2 A.3 A.4 show screenshot of the scheduling simulator.

A.3 JAWS

Here are examples for JAWS options and configurations.

A workspace is a logical instance and has the following mandatory metadata.

• alias: a meaningful alias
• username: owner of this workspace
• mountpoint: absolute location
• storage: the target location of the workspace
• max_extensions: how many extensions are allowed
• times_extended: integer value indicating how many time this workspace has been

extended on this storage target
• time created: Time when this workspace has been created
• expiration date: when this workspace is going to expire
• max_extension_period: integer value of maximum allowed days to extend the

workspace
• status: Possible values are “expired” or “active”

Following configuration options are available:

• alias: a string to use as meaningful name, e.g. “long-term archive” or “scratch
space”

• mountpoint: point the location of the target
• is_archive: boolean value to indicate if data has to be packed and compressed

(can be configured)
• type: describes the storage type, at the moment only POSIX and tar is possible
• description: a longer string to explain the purpose of this storage

118

JAWS A.3

Fi
gu

re
A

.2
:B

O
B

Sh
ow

in
g

jo
b

“te
tri

s”
an

d
life

m
et

ric
s.

119

Appendix A A Appendix

Figure
A

.3:BO
B

screenshotshow
ing

the
job

“tetris”.Red
hatching

are
node

reservations.

120

JAWS A.3

Fi
gu

re
A

.4
:B

O
B

Sc
re

en
sh

ot
sh

ow
in

g
life

m
et

ric
s

an
d

op
tio

n
to

ex
po

rt
si

m
ul

at
ed

da
ta

.

121

Appendix A A Appendix

• max_extensions: integer value of maximum allowed lifetime extension for
workspaces located on this storage

• max_extension_period: integer value of maximum allowed days to extend the
workspace

• accept_jobs: bool value if the storage targets are available. If set to 0 no data jobs
executed, that require this storage.

• is_hot: bool value to indicate if this value storage is a hot storage.

Workers have following options for configuration:

• targets: specifies the targets which the worker serves
• token: A token to authenticate with the master
• copytools: configuration which binary to use for specific transfer method.

The options for the JAWS CLI are:

• move: moving a workspace to new target
• activate: command to activate a paused Worker/Master (admin only)
• active: shows active jobs
• cancel: cancels a job
• configuration: shows the configuration of daemon
• deactivate: Administrative command to disable the data job queue or a worker

(admin only)
• queue: show the data job queue
• job: get details of a job
• log: shows logs
• resume: pause a job
• rights: set roles (admin only)
• setPriority: set priority for a data job (admin only)
• workers: show workers and status (admin only)
• share: Command to set access rights for workspaces to other users (only supported

on POSIX)
• shareInfo: Displayed information on access rights for workspaces
• workspaces: command for workspace

– create: create a new workspace
– locate: locate a given workspace
– list: list all workspaces
– extend: extend lifetime
– remove: remove workspace
– set: set metadata with key=value pair

• storages:
– list: show all available storages
– set: set metadata for storage with key=value pair (admin only)

122

Tables A.4

When a data job is created it has the following metadata:

• user_name: who initiated this data job
• action: what physical action should be done, e.g., move or delete
• workspace_identifier: which workspace
• target: optional if workspace has to be moved.

A.4 Tables

123

Appendix A A Appendix

Cores
#Jobs
User 1

#Jobs
User 2

Cores
#Jobs
User 1

#Jobs
User 2

1 702 337 620 1 0
2 2 16 740 4 0
4 52 0 768 0 2
10 0 14 860 1 0
18 1 0 960 0 150
19 1 0 1000 4 388
20 1210 2021 1152 0 2
32 8 1510 1500 4 0
36 0 2 2000 5 259
40 51 91 2400 0 10
48 3 364 2560 0 3
60 9 79 3000 6 0
80 760 11 3020 1 0
100 240 388 3100 1 0
120 2 0 3140 1 0
140 12 0 3160 1 0
150 1 0 3180 1 0
160 20 4 3200 3 0
200 61 194 3840 0 4
240 2 8 4000 1 62
250 1 0 5000 0 16
280 1 0 5120 0 16
300 515 0 6000 0 1
320 268 0 6480 0 10
375 1 0 7680 0 6
400 16 40 8000 0 13
480 0 8 10000 0 11
500 61 347 10200 0 4
600 4 8 10240 0 3

Table A.1: Job distribution for both users based on core count.

124

Tables A.4

Nodes Directory Directory Directory File File File File Tree Tree
creation stat removal creation stat read removal creation removal

4 6208 104989 6944 10384 69001 23542 17310 644 42
8 7649 129858 7496 19186 101042 36261 24587 344 20
16 7620 123337 7147 26761 113917 38302 29988 144 10
32 7447 115644 7363 27208 114139 38056 31813 51 5
64 7217 115369 7394 26799 103164 37305 31957 54 2
128 6702 113868 7082 26464 105713 34888 31401 25 1

Table A.2: ODFS metadata benchmark performed with mdtest (mdtest -d <odfs> -u -n 3600 -i 3)

ForHLR I ForHLR II
MAE range 30min 30min-3h 3h-6h 6h-∞ 30min 30min-3h 3h-6h 6h-∞

req. Walltime 22 42 29 84 28 40 25 42
+IWD 28 44 34 71 32 47 14 42

+StartTime 29 49 41 58 30 45 25 35
+SubmitTime 32 47 43 55 31 42 25 37
+TaskCount 28 39 29 81 32 42 18 43
+Jobname 24 45 33 75 30 40 21 44

+Class 26 41 32 78 32 39 19 45
ALL 31 52 42 52 33 46 21 35
User 8 22 20 127 10 21 21 83

Table A.3: Number of users categorized in mean absolute error (MAE) values for the ForHLR I+II.

Nodes Directory Directory Directory File File File File Tree Tree
creation stat removal creation stat read removal creation removal

HOME 13588 364989 73268 101641 183297 160128 50086 347 84
WORK 12591 352069 78649 73432 248275 163157 132318 305 78
Workspaces 31715 332744 88935 82120 243150 137580 103584 202 58

Table A.4: Metadata benchmark during the acceptance phase with mdtest (mdtest -d <dir> -i -n
3600 -i -p 10)

125

Appendix A A Appendix

SDSC
Conservative + Backfill FCFS

𝜆 instant [0, 1.0] (1.0, 600.0) (600.0, ∞] instant [0, 1.0] (1.0, 600.0] (600.0, ∞)

1.0 19.91 48.21 13.48 18.40 10.34 42.52 15.75 31.39
0.9 19.43 45.76 15.18 19.64 10.26 39.79 16.36 33.60
0.8 19.63 44.55 15.34 20.48 9.90 38.57 16.81 34.72
0.7 19.51 42.96 16.02 21.51 9.72 36.62 17.38 36.29
0.6 19.01 42.05 16.92 22.02 9.56 36.40 17.67 36.37
0.5 20.69 39.44 16.66 23.21 9.30 33.78 18.24 38.68
0.4 19.96 38.01 17.40 24.63 8.82 31.95 18.69 40.54
0.3 19.61 35.82 17.88 26.69 8.41 29.65 18.79 43.14
0.2 20.04 32.26 18.95 28.75 7.59 26.51 19.15 46.75
0.1 19.92 28.05 19.77 32.26 7.55 20.18 19.04 53.23
0.09 20.13 27.13 19.67 33.07 7.30 19.72 19.59 53.38
0.08 20.62 25.88 19.95 33.55 7.15 19.15 19.26 54.44
0.07 20.60 25.65 20.02 33.73 7.47 17.81 19.23 55.48
0.06 21.21 25.48 19.41 33.90 7.26 17.13 19.26 56.35
0.05 20.95 23.63 20.57 34.85 7.17 15.92 18.69 58.22
0.04 20.65 23.05 20.49 35.81 7.36 14.59 18.51 59.54
0.03 21.48 21.98 19.97 36.57 7.22 12.97 18.47 61.34
0.02 20.93 20.31 21.24 37.52 7.21 10.85 17.97 63.97
0.01 20.60 19.50 21.55 38.35 7.16 7.86 17.09 67.89
0.0 22.73 15.26 21.91 40.09 9.73 0.72 10.59 78.96

ALEA 19.16 37.74 18.96 24.14 10.11 34.28 21.02 34.59

Table A.5: Percentage of jobs based on 𝜆 value. Categorization into 4 groups.
instant: Jobs that started immediately after submitting.
[0,1.0]: Jobs with a change of node allocation one second before job start.
(1,600]: Node allocation which did not change 1 and 600 seconds before job start.
(600,∞): Jobs with a valid prediction over 600 seconds.

126

Tables A.4

CTC
Conservative + Backfill FCFS

𝜆 instant [0, 1.0] (1.0, 600.0] (600.0, ∞) instant [0, 1.0] (1.0, 600.0] (600.0, ∞)

1.0 6.58 69.47 13.48 10.48 1.40 67.62 16.56 14.42
0.9 7.51 66.13 14.41 11.95 1.37 65.55 17.09 15.99
0.8 7.83 64.81 15.04 12.32 1.35 63.88 17.88 16.89
0.7 9.81 61.59 15.77 12.83 1.34 62.99 18.20 17.47
0.6 9.27 60.52 16.26 13.95 1.38 60.77 18.75 19.10
0.5 9.96 58.91 16.26 14.88 1.34 58.80 19.62 20.24
0.4 9.78 56.55 17.66 16.01 1.36 56.57 20.05 22.01
0.3 11.65 52.75 17.81 17.80 1.33 53.74 20.92 24.01
0.2 10.94 48.26 19.15 21.65 1.35 49.33 22.52 26.80
0.1 14.20 39.32 20.30 26.19 1.35 40.26 24.23 34.16
0.09 14.48 37.93 19.89 27.7 1.35 39.44 24.36 34.84
0.08 14.87 35.87 20.65 28.62 1.32 38.21 24.15 36.33
0.07 14.51 34.37 20.84 30.28 1.31 36.68 24.36 37.64
0.06 14.51 33.22 20.51 31.77 1.32 35.36 25.23 38.09
0.05 15.65 30.36 20.91 33.08 1.32 33.14 24.75 40.79
0.04 15.60 28.42 21.14 34.84 1.31 30.28 24.65 43.76
0.03 15.78 26.08 21.00 37.14 1.30 27.69 24.02 46.98
0.02 14.51 23.88 21.41 40.20 1.32 23.55 24.12 51.01
0.01 15.75 19.37 21.54 43.34 1.32 16.78 22.64 59.25
0.0 17.04 10.76 19.71 52.49 1.34 0.52 6.81 91.32

ALEA 5.53 48.81 26.93 18.73 1.38 47.50 29.89 21.22

Table A.6: Percentage of jobs based on 𝜆 value. Categorization into 4 groups.
instant: Jobs that started immediately after submitting.
[0,1.0]: Jobs with a change of node allocation one second before job start.
(1,600]: Node allocation which did not change 1 and 600 seconds before job start.
(600,∞): Jobs with a valid prediction over 600 seconds.

127

Appendix A A Appendix

KTH
Conservative + Backfilling FCFS

𝜆 instant [0, 1.0] (1.0, 600.0] (600.0, ∞) instant2 [0, 1.0] (1.0, 600.0] (600.0, ∞)

1.0 29.82 36.77 13.02 20.39 7.58 41.94 16.97 33.51
0.9 29.27 34.82 14.05 21.86 9.05 37.63 17.71 35.61
0.8 30.02 33.17 14.60 22.22 9.80 34.85 18.40 36.96
0.7 30.09 32.21 14.66 23.03 9.46 33.72 18.73 38.09
0.6 29.14 32.27 14.80 23.79 8.59 33.34 18.97 39.09
0.5 28.27 30.63 15.71 25.39 8.28 31.22 19.46 41.04
0.4 30.73 27.65 15.71 25.91 8.14 30.14 18.74 42.98
0.3 31.28 25.20 15.79 27.73 7.61 27.13 19.22 46.03
0.2 28.46 24.66 16.20 30.68 8.14 22.62 18.19 51.04
0.1 28.52 21.16 15.86 34.46 7.61 18.88 17.79 55.72
0.09 29.86 20.02 16.38 33.75 9.43 17.13 17.35 56.09
0.08 30.21 19.61 16.42 33.77 7.70 17.61 17.56 57.14
0.07 30.51 18.89 16.26 34.34 9.41 15.46 17.33 57.80
0.06 30.53 18.44 16.09 34.95 8.33 14.7 17.27 59.70
0.05 31.36 17.89 15.87 34.89 9.79 13.81 17.04 59.36
0.04 31.26 16.38 16.21 36.14 9.44 11.43 17.12 62.01
0.03 31.91 16.79 16.24 35.06 10.27 10.79 16.28 62.66
0.02 32.01 15.45 16.60 35.95 9.38 9.19 15.47 65.96
0.01 31.93 14.24 16.59 37.24 8.83 7.71 14.68 68.78
0.0 32.15 13.02 16.66 38.16 9.49 0.43 9.46 80.62

ALEA 26.54 33.94 17.06 22.45 10.37 34.17 21.25 34.21

Table A.7: Percentage of jobs based on 𝜆 value. Categorization into 4 groups.
instant: Jobs that started immediately after submitting.
[0,1.0]: Jobs with a change of node allocation one second before job start.
(1,600]: Node allocation which did not change 1 and 600 seconds before job start.
(600,∞): Jobs with a valid prediction over 600 seconds.

128

Tables A.4

ForHLR I
Conservative + Backfilling FCFS

𝜆 instant [0, 1.0] (1.0, 600.0] (600.0, ∞) instant [0, 1.0] (1.0, 600.0] (600.0, ∞)

1.0 57.74 34.04 4.31 3.91 53.22 28.56 7.93 10.28
0.9 58.25 32.66 4.93 4.16 54.19 26.91 8.37 10.52
0.8 58.85 31.34 5.39 4.42 54.52 26.30 8.50 10.68
0.7 58.69 31.21 5.27 4.83 54.15 25.43 9.17 11.25
0.6 58.92 30.25 5.41 5.42 54.06 25.74 8.75 11.45
0.5 58.59 29.84 5.61 5.96 53.83 24.65 9.26 12.25
0.4 60.49 27.02 6.23 6.26 53.95 24.04 9.46 12.56
0.3 59.59 26.98 6.52 6.92 52.96 22.07 11.41 13.57
0.2 59.71 24.75 7.21 8.33 54.14 21.33 10.06 14.47
0.1 60.94 21.09 7.80 10.17 53.56 19.46 10.51 16.47
0.09 60.66 20.90 7.80 10.64 53.63 18.85 11.02 16.51
0.08 61.09 19.84 7.98 11.09 52.82 18.40 11.82 16.96
0.07 60.68 19.93 7.89 11.51 53.19 18.32 11.25 17.23
0.06 60.77 18.71 8.48 12.04 52.70 17.62 11.92 17.76
0.05 61.35 17.86 8.19 12.59 53.33 16.11 12.09 18.48
0.04 61.21 16.10 8.91 13.78 52.89 16.46 12.20 18.45
0.03 60.70 15.98 8.70 14.63 52.92 13.59 13.62 19.86
0.02 61.16 12.98 9.46 16.39 53.35 14.31 11.41 20.93
0.01 61.58 8.20 10.13 20.09 53.28 10.98 12.87 22.87
0.0 62.08 1.41 6.15 30.36 53.24 2.62 8.47 35.66

ALEA 56.68 4.88 18.04 20.40 53.31 5.35 20.02 21.32

Table A.8: Percentage of jobs based on 𝜆 value. Categorization into 4 groups.
instant: Jobs that started immediately after submitting.
[0,1.0]: Jobs with a change of node allocation one second before job start.
(1,600]: Node allocation which did not change 1 and 600 seconds before job start.
(600,∞): Jobs with a valid prediction over 600 seconds.

129

Appendix A A Appendix

ForHLR II
Conservative + Backfilling FCFS

𝜆 instant [0, 1.0] (1.0, 600.0] (600.0, ∞) instant [0, 1.0] (1.0, 600.0] (600.0, ∞)

1.0 65.28 24.59 6.49 3.63 58.89 13.90 12.17 15.05
0.9 65.47 23.52 7.22 3.79 59.02 13.43 12.43 15.12
0.8 65.72 23.32 7.24 3.72 58.81 13.04 12.36 15.79
0.7 66.09 22.60 7.15 4.16 58.85 12.06 12.89 16.20
0.6 66.09 21.98 7.42 4.51 58.94 11.79 12.79 16.48
0.5 66.39 20.85 7.96 4.81 58.89 11.07 13.39 16.65
0.4 67.31 19.32 8.59 4.78 58.98 10.44 13.09 17.48
0.3 67.99 17.79 8.83 5.38 58.71 9.30 13.31 18.68
0.2 68.47 16.28 9.25 6.01 58.88 8.71 13.32 19.09
0.1 68.75 13.47 9.80 7.97 58.77 7.39 13.21 20.63
0.09 68.71 13.05 9.85 8.38 58.82 7.03 13.22 20.93
0.08 68.79 12.40 9.89 8.92 58.78 6.92 13.19 21.11
0.07 68.68 12.09 10.11 9.12 58.79 6.79 13.18 21.24
0.06 68.68 11.93 9.78 9.61 58.72 6.38 13.21 21.68
0.05 68.75 11.17 9.74 10.33 58.65 6.34 12.57 22.45
0.04 68.72 9.52 10.18 11.58 58.77 5.94 12.73 22.55
0.03 68.39 8.63 10.39 12.59 58.63 5.51 12.20 23.67
0.02 68.66 6.95 9.92 14.48 58.75 4.95 12.02 24.27
0.01 68.31 3.66 9.68 18.35 58.76 3.93 11.10 26.21
0.0 67.84 1.29 5.68 25.18 58.71 0.03 2.61 38.65

ALEA 60.65 4.18 12.01 23.16 58.85 2.31 12.51 26.32

Table A.9: Percentage of jobs based on 𝜆 value. Categorization into 4 groups.
instant: Jobs that started immediately after submitting.
[0,1.0]: Jobs with a change of node allocation one second before job start.
(1,600]: Node allocation which did not change 1 and 600 seconds before job start.
(600,∞): Jobs with a valid prediction over 600 seconds.

130

Bibliography

[1] H.-J. Bungartz, W. E. Nagel, P. Neumann, S. Reiz, and B. Uekermann. “Software
for Exascale Computing: Some Remarks on the Priority Program SPPEXA”. In:
Software for Exascale Computing-SPPEXA 2016-2019. Springer, 2020.

[2] International Electrotechnical Commission. https : / / www . iec . ch/.
09/23/2020.

[3] Wikipedia - Ken Batcher. https : / / en . wikipedia . org / wiki / Ken _
Batcher. 09/23/2020.

[4] E. L. Miller and R. H. Katz. “Input/output behavior of supercomputing applica-
tions”. In: Proceedings of the 1991 ACM/IEEE conference on Supercomputing.
1991, pp. 567–576.

[5] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller, D. D. Long, and T. T.
McLarty. “File system workload analysis for large scale scientific computing
applications”. In: Proceedings of the 21st IEEE/12th NASA Goddard Conference
on Mass Storage Systems and Technologies. 2004, pp. 139–152.

[6] G. C. Fox, S. Jha, J. Qiu, and A. Luckow. “Towards an understanding of facets
and exemplars of big data applications”. In: Proceedings of the 20 Years of
Beowulf Workshop on Honor of Thomas Sterling’s 65th Birthday. 2014, pp. 7–16.

[7] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel, R.
Ramakrishnan, and C. Shahabi. “Big data and its technical challenges”. In:
Communications of the ACM 57.7 (2014), pp. 86–94.

[8] R. T. Kouzes, G. A. Anderson, S. T. Elbert, I. Gorton, and D. K. Gracio. “The
changing paradigm of data-intensive computing”. In: Computer 42.1 (2009),
pp. 26–34.

[9] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and
A. Byers. “Big data: The next frontier for innovation, competition, and
productivity”. In: http://www.mckinsey. com/Insights/MGI/Research/Technol-
ogy_and_Innovation/Big_data_The_next_frontier_for_innovation (2011).

[10] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and R. Ross.
“Understanding and improving computational science storage access through
continuous characterization”. In: ACM Transactions on Storage (TOS) 7.3
(2011), pp. 1–26.

[11] D. A. Reed and J. Dongarra. “Exascale computing and big data”. In: Communi-
cations of the ACM 58.7 (2015), pp. 56–68.

131

https://www.iec.ch/
https://en.wikipedia.org/wiki/Ken_Batcher
https://en.wikipedia.org/wiki/Ken_Batcher

Appendix A Bibliography

[12] L. Freeman. “What’s Old Is New Again-Storage Tiering”. In: SNW Spring2012
(2012).

[13] ForHLR II, KIT/SCC. 06/19/2017. url: https : / / www . scc . kit . edu /
dienste/forhlr2.php.

[14] A. Brinkmann, K. Mohror, W. Yu, P. Carns, T. Cortes, S. A. Klasky, A. Miranda,
F.-J. Pfreundt, R. B. Ross, and M.-A. Vef. “Ad Hoc File Systems for High-
Performance Computing”. In: Journal of Computer Science and Technology
35.1 (2020), pp. 4–26.

[15] About Seymour Cray. 09/19/2020. url: https://www.computer.org/
volunteering/awards/cray/about-cray.

[16] A. Pillepich, V. Springel, D. Nelson, S. Genel, J. Naiman, R. Pakmor, L.
Hernquist, P. Torrey, M. Vogelsberger, R. Weinberger, and et al. “Simulating
galaxy formation with the IllustrisTNG model”. In: Monthly Notices of the Royal
Astronomical Society 473.3 (10/2017), pp. 4077–4106.

[17] A. Abbas-Bayoumi and K. Becker. “An industrial view on numerical simulation
for aircraft aerodynamic design”. In: Journal of Mathematics in Industry 1.1
(2011), p. 10.

[18] S. Braun, S. Holz, L. Wieth, T. F. Dauch, M. C. Keller, G. Chaussonnet, C.
Schwitzke, R. Koch, and H.-J. Bauer. “HPC Predictions of Primary Atomization
with SPH: Validation and Comparison to Experimental Results”. In: 12th
International SPHERIC Workshop. 2017, pp. 314–321.

[19] G. Zängl, D. Reinert, P. Rípodas, and M. Baldauf. “The ICON (ICOsahe-
dral Nonhydrostatic) modelling framework of DWD and MPI-M: Description
of the nonhydrostatic dynamical core”. In: Quarterly Journal of the Royal
Meteorological Society 141 (01/2015).

[20] Das aktuelle numerische Wettervorhersage- und Notfallsystem. url: https:
//www.dwd.de/DE/forschung/wettervorhersage/num_modellierung/
06_num_wettervorhersage_notfallsyste/num_wettervorhersage_
notfallsystem_node.html.

[21] L. Adhianto and B. Chapman. “Performance modeling of communication
and computation in hybrid MPI and OpenMP applications”. In: Simulation
Modelling Practice and Theory 15.4 (2007), pp. 481–491.

[22] W. Gropp, W. D. Gropp, E. Lusk, A. Skjellum, and A. D. F. E. E. Lusk. Using
MPI: portable parallel programming with the message-passing interface. Vol. 1.
MIT press, 1999.

[23] W. E. Johnston, E. Dart, M. Ernst, and B. Tierney. “Enabling high throughput
in widely distributed data management and analysis systems: Lessons from the
LHC”. In: TERENA Networking Conference (TNC). 2013.

132

https://www.scc.kit.edu/dienste/forhlr2.php
https://www.scc.kit.edu/dienste/forhlr2.php
https://www.computer.org/volunteering/awards/cray/about-cray
https://www.computer.org/volunteering/awards/cray/about-cray
https://www.dwd.de/DE/forschung/wettervorhersage/num_modellierung/06_num_wettervorhersage_notfallsyste/num_wettervorhersage_notfallsystem_node.html
https://www.dwd.de/DE/forschung/wettervorhersage/num_modellierung/06_num_wettervorhersage_notfallsyste/num_wettervorhersage_notfallsystem_node.html
https://www.dwd.de/DE/forschung/wettervorhersage/num_modellierung/06_num_wettervorhersage_notfallsyste/num_wettervorhersage_notfallsystem_node.html
https://www.dwd.de/DE/forschung/wettervorhersage/num_modellierung/06_num_wettervorhersage_notfallsyste/num_wettervorhersage_notfallsystem_node.html

Bibliography A.4

[24] A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman, G.
Petretto, G.-M. Rignanese, G. Hautier, D. Gunter, and K. A. Persson. “FireWorks:
a dynamic workflow system designed for high-throughput applications”. In:
Concurrency and Computation: Practice and Experience 27.17 (2015). CPE-14-
0307.R2, pp. 5037–5059.

[25] R. F. da Silva, R. Filgueira, I. Pietri, M. Jiang, R. Sakellariou, and E. Deel-
man. “A characterization of workflow management systems for extreme-scale
applications”. In: Future Generation Computer Systems 75 (2017), pp. 228–238.

[26] W. E. Johnston. “High-speed, wide area, data intensive computing: A ten year
retrospective”. In: Proceedings. The Seventh International Symposium on High
Performance Distributed Computing (Cat. No. 98TB100244). IEEE. 1998,
pp. 280–291.

[27] J. Dongarra, T. Sterling, H. Simon, and E. Strohmaier. “High-performance
computing: clusters, constellations, MPPs, and future directions”. In: Computing
in Science & Engineering 7.2 (2005), pp. 51–59.

[28] TOP500. The TOP500 List. https://www.top500.org/.
[29] K. Ishii, H. Abe, S. Kawabe, and M. Hirai. “An overview of the hitachi S-3800

series supercomputer”. In: Supercomputer’92. Springer, 1992, pp. 65–81.
[30] M. J. Flynn. “Some computer organizations and their effectiveness”. In: IEEE

transactions on computers 100.9 (1972), pp. 948–960.
[31] J. R. Nickolls. “The design of the MasPar MP-1: a cost effective massively

parallel computer.” In: Compcon. 1990, pp. 25–28.
[32] H. Jeong, S. Kim, W. Lee, and S.-H. Myung. “Performance of SSE and AVX

instruction sets”. In: arXiv preprint arXiv:1211.0820 (2012).
[33] D. Culler, J. P. Singh, and A. Gupta. Parallel computer architecture: a hard-

ware/software approach. Gulf Professional Publishing, 1999.
[34] Sun Fire 6800/4810/4800/3800 Systems Overview. url: https : / / docs .

oracle.com/cd/E19095-01/sf4810.srvr/805-7362-13/805-7362-
13.pdf.

[35] FIRE 15K/FIRE 6800/SUN FIRE LINK. url: https://www.top500.org/
system/167255/.

[36] J. Dongarra, I. Foster, G. Fox, K. Kennedy, and L. Torczon. Sourcebook of
Parallel Computing. The Morgan Kaufmann Series in Computer Architecture
and Design Series. Morgan Kaufmann, 2003.

[37] A. Vrenios. Linux cluster architecture. Sams, 2002.
[38] T. L. Sterling. Beowulf cluster computing with Linux. MIT press, 2002.
[39] K. E. Batcher. “Design of a massively parallel processor”. In: IEEE Transactions

on Computers 9 (1980), pp. 836–840.

133

https://www.top500.org/
https://docs.oracle.com/cd/E19095-01/sf4810.srvr/805-7362-13/805-7362-13.pdf
https://docs.oracle.com/cd/E19095-01/sf4810.srvr/805-7362-13/805-7362-13.pdf
https://docs.oracle.com/cd/E19095-01/sf4810.srvr/805-7362-13/805-7362-13.pdf
https://www.top500.org/system/167255/
https://www.top500.org/system/167255/

Appendix A Bibliography

[40] TOP 500 list - June 2013. https://top500.org/lists/top500/2013/06/.
2012.

[41] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang, W. Xue, F. Liu, F.
Qiao, et al. “The Sunway TaihuLight supercomputer: system and applications”.
In: Science China Information Sciences 59.7 (2016), p. 072001.

[42] Z. Xu, J. Lin, and S. Matsuoka. “Benchmarking sw26010 many-core processor”.
In: 2017 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE. 2017, pp. 743–752.

[43] G. Gostin, J.-F. Collard, and K. Collins. “The Architecture of the HP Superdome
Shared-Memory Multiprocessor”. In: Proceedings of the 19th Annual Interna-
tional Conference on Supercomputing. ICS ’05. Cambridge, Massachusetts:
Association for Computing Machinery, 2005, 239–245.

[44] A. Grama, V. Kumar, A. Gupta, and G. Karypis. Introduction to parallel
computing. Pearson Education, 2003.

[45] B. Sosinsky. Networking bible. Vol. 567. John Wiley & Sons, 2009.
[46] J. Kim, W. J. Dally, S. Scott, and D. Abts. “Technology-driven, highly-scalable

dragonfly topology”. In: 2008 International Symposium on Computer Architec-
ture. IEEE. 2008, pp. 77–88.

[47] J. Peter and T. Perttunen. Network topologies. https://www.stl.tech/
sterlite - live / application _ notes / 1 / original / Network _
Topologies.pdf.

[48] B. Schürmann. Grundlagen der Rechnerkommunikation: technische Real-
isierung von Bussystemen und Rechnernetzen; für alle Studiengänge: Informatik,
Elektrotechnik und Informationstechnik. Springer-Verlag, 2004.

[49] B. Jia. Contention free pipelined broadcasting within a constant bisection
bandwidth network topology. US Patent 8,274,987. 09/2012.

[50] J. Duato, S. Yalamanchili, and L. Ni. Interconnection networks. Morgan
Kaufmann, 2003.

[51] T. Lammle. CompTIA Network+ Study Guide Authorized Courseware: Exam
N10-005. John Wiley & Sons, 2012.

[52] C. E. Leiserson. “Fat-trees: universal networks for hardware-efficient super-
computing”. In: IEEE transactions on Computers 100.10 (1985), pp. 892–
901.

[53] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Giampapa,
P. Heidelberger, S. Singh, B. D. Steinmacher-Burow, T. Takken, et al. “Blue
Gene/L torus interconnection network”. In: IBM Journal of Research and
Development 49.2.3 (2005), pp. 265–276.

134

https://top500.org/lists/top500/2013/06/
https://www.stl.tech/sterlite-live/application_notes/1/original/Network_Topologies.pdf
https://www.stl.tech/sterlite-live/application_notes/1/original/Network_Topologies.pdf
https://www.stl.tech/sterlite-live/application_notes/1/original/Network_Topologies.pdf

Bibliography A.4

[54] N. R. Adiga, G. Almási, G. S. Almasi, Y. Aridor, R. Barik, D Beece, R. Bellofatto,
G. Bhanot, R. Bickford, M Blumrich, et al. “An overview of the BlueGene/L
supercomputer”. In: SC’02: Proceedings of the 2002 ACM/IEEE Conference on
Supercomputing. IEEE. 2002, pp. 60–60.

[55] J. S. Vetter, S. R. Alam, T. Dunigan, M. R. Fahey, P. C. Roth, and P. H. Worley.
“Early evaluation of the Cray XT3”. In: Proceedings 20th IEEE International
Parallel & Distributed Processing Symposium. IEEE. 2006, 10–pp.

[56] Y. Ajima, T. Kawashima, T. Okamoto, N. Shida, K. Hirai, T. Shimizu, S.
Hiramoto, Y. Ikeda, T. Yoshikawa, K. Uchida, et al. “The tofu interconnect D”.
In: 2018 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE. 2018, pp. 646–654.

[57] TOP500. Supercompouter - Supercomputer FUGAKU TOP500 List. https:
//www.top500.org/system/179807/.

[58] M. Berghoff. 3d Torus for 4 X 4 X 4 nodes.
[59] Steinbuch Centre for Computing. bwUniCluster 2.0+GFB-HPC. http :

//www.scc.kit.edu/en/services/bwUniCluster_2.0.php.
[60] Forschungshochleistungsrechner ForHLR 1. 2018. url: www.scc.kit.edu/

dienste/forhlr1.php.
[61] Forschungshochleistungsrechner ForHLR 2. 2018. url: www.scc.kit.edu/

dienste/forhlr2.php.
[62] OAK RIDGE National Laboratory. Summit Fact Sheet. Accessed: August

23, 2016. 2014. url: https : / / www . olcf . ornl . gov / wp -
content/uploads/2014/11/Summit_FactSheet.pdf.

[63] Lawrence Livermore National Laboratory. CORAL - Sierra. Accessed: August
23, 2016. url: https://asc.llnl.gov/coral-info.

[64] S. R. Walli. “The POSIX family of standards”. In: StandardView 3.1 (1995),
pp. 11–17.

[65] P. J. Braam and P. Schwan. “Lustre: The intergalactic file system”. In: Ottawa
Linux Symposium. 2002, p. 50.

[66] J. Heichler. An introduction to BeeGFS. 2014. url: http://www.beegfs.com/
docs/Introduction\%5Fto\%5FBeeGFS\%5Fby\%5FThinkParQ.pdf.

[67] LBNL Node Health Check (NHC). 10/04/2020. url: https://github.com/
mej/nhc.

[68] I. Altair Engineering. PBS Professional Open Source Project. https://www.
pbspro.org/.

[69] Adaptive Computing. http://www.adaptivecomputing.com.
[70] IBM - Platform computing. url: http : / / www . ibm . com / systems /

platformcomputing/products/lsf/.

135

https://www.top500.org/system/179807/
https://www.top500.org/system/179807/
http://www.scc.kit.edu/en/services/bwUniCluster_2.0.php
http://www.scc.kit.edu/en/services/bwUniCluster_2.0.php
www.scc.kit.edu/dienste/forhlr1.php
www.scc.kit.edu/dienste/forhlr1.php
www.scc.kit.edu/dienste/forhlr2.php
www.scc.kit.edu/dienste/forhlr2.php
https://www.olcf.ornl.gov/wp-content/uploads/2014/11/Summit_FactSheet.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2014/11/Summit_FactSheet.pdf
https://asc.llnl.gov/coral-info
http://www.beegfs.com/docs/Introduction\%5Fto\%5FBeeGFS\%5Fby\%5FThinkParQ.pdf
http://www.beegfs.com/docs/Introduction\%5Fto\%5FBeeGFS\%5Fby\%5FThinkParQ.pdf
https://github.com/mej/nhc
https://github.com/mej/nhc
https://www.pbspro.org/
https://www.pbspro.org/
http://www.adaptivecomputing.com
http://www.ibm.com/systems/platformcomputing/products/lsf/
http://www.ibm.com/systems/platformcomputing/products/lsf/

Appendix A Bibliography

[71] Slurm - SchedMD. http://www.schedmd.com.
[72] Torque Resource Manager. 2016. url: http://www.adaptivecomputing.

com/products/open-source/torque-resource-manager.
[73] P. Krzyzanowski. Process Scheduling. 2015. url: http://www.cs.rutgers.

edu/\~pxk/416/notes/07-schedulinghtml.
[74] S. Intel. “Serial ATA Native Command Queuing: An Exciting New Performance

Feature for Serial ATA”. In: Intel and Seagate (July 2003) (2003).
[75] M. Hovestadt, O. Kao, A. Keller, and A. Streit. “Scheduling in HPC Resource

Management Systems: Queuing vs. Planning”. In: Job Scheduling Strategies for
Parallel Processing. Vol. 2862. 06/2003, pp. 1–20.

[76] D. G. Feitelson and L. Rudolph. “Toward convergence in job schedulers for
parallel supercomputers”. In: Workshop on Job Scheduling Strategies for Parallel
Processing. Springer. 1996, pp. 1–26.

[77] J. Y. Leung. Handbook of scheduling: algorithms, models, and performance
analysis. CRC press, 2004.

[78] A. W. Mu’alem and D. G. Feitelson. “Utilization, Predictability, Workloads,
and User Runtime Estimates in Scheduling the IBM SP2 with Backfilling”. In:
IEEE Trans. Parallel Distrib. Syst. 12.6 (06/2001), pp. 529–543.

[79] D. A. Lifka. “The ANL/IBM SP scheduling system”. In: Workshop on Job
Scheduling Strategies for Parallel Processing. Springer. 1995, pp. 295–303.

[80] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan. “Selective
Reservation Strategies for Backfill Job Scheduling”. In: Job Scheduling Strategies
for Parallel Processing. Vol. 2537. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2002, pp. 55–71.

[81] S. Hoopes. Moab Reservations. https : / / cug . org / proceedings /
cug2014_proceedings/includes/files/tut107.pdf. 2014.

[82] B. G. Lawson and E. Smirni. “Multiple-queue backfilling scheduling with
priorities and reservations for parallel systems”. In: Workshop on Job Scheduling
Strategies for Parallel Processing. Springer. 2002, pp. 72–87.

[83] Slurm - Multifactor Priority Plugin. https : / / slurm . schedmd . com /
priority_multifactor.html. 2020.

[84] S. D. Pollard, N. Jain, S. Herbein, and A. Bhatele. “Evaluation of an Interference-
free Node Allocation Policy on Fat-tree Clusters”. In: SC18: International
Conference for High Performance Computing, Networking, Storage and Analysis.
2018, pp. 333–345.

[85] W. Smith, I. Foster, and V. Taylor. “Predicting application run times using
historical information”. In: Job Scheduling Strategies for Parallel Processing.
Springer, 1998, pp. 122–142.

136

http://www.schedmd.com
http://www.adaptivecomputing.com/products/open-source/torque-resource-manager
http://www.adaptivecomputing.com/products/open-source/torque-resource-manager
http://www.cs.rutgers.edu/\~pxk/416/notes/07-scheduling html
http://www.cs.rutgers.edu/\~pxk/416/notes/07-scheduling html
https://cug.org/proceedings/cug2014_proceedings/includes/files/tut107.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/tut107.pdf
https://slurm.schedmd.com/priority_multifactor.html
https://slurm.schedmd.com/priority_multifactor.html

Bibliography A.4

[86] E. Gaussier, D. Glesser, V. Reis, and D. Trystram. “Improving backfilling by
using machine learning to predict running times”. In: SC’15: Proceedings of
the International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE. 2015, pp. 1–10.

[87] R. O. Duda, P. E. Hart, and D. G. Stork. “Unsupervised learning and clustering”.
In: Pattern classification (2001), pp. 517–601.

[88] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning.
MIT press, 2012.

[89] F. Alimoglu, E. Alpaydin, and Y. Denizhan. “Combining multiple classifiers for
pen-based handwritten digit recognition”. In: (1996).

[90] E. Anderson. “The species problem in Iris”. In: Annals of the Missouri Botanical
Garden 23.3 (1936), pp. 457–509.

[91] C. Viswesvaran. “Multiple Regression in Behavioral Research: Explanation and
Prediction”. In: Personnel Psychology 51.1 (1998), p. 223.

[92] J. L. Barlow. “Numerical aspects of solving linear least squares problems”. In:
Computer Science Department, The Pennsylvania State University, University
Park, PA, USA (1999).

[93] R. B. Darlington and A. F. Hayes. Regression analysis and linear models:
Concepts, applications, and implementation. Guilford Publications, 2016.

[94] scikit - Generalized Linear Models. http://scikit-learn.org/stable/
modules/linear_model.html. 06/19/2017.

[95] scikit - Decision Trees. http://scikit-learn.org/stable/modules/
tree.html. 06/19/2017.

[96] X. He, K. Zhao, and X. Chu. AutoML: A Survey of the State-of-the-Art. 2019.
arXiv: 1908.00709 [cs.LG].

[97] P. Gĳsbers, E. LeDell, J. Thomas, S. Poirier, B. Bischl, and J. Vanschoren. An
Open Source AutoML Benchmark. 2019. arXiv: 1907.00909 [cs.LG].

[98] I. Guyon, L. Sun-Hosoya, M. Boullé, H. J. Escalante, S. Escalera, Z. Liu, D.
Jajetic, B. Ray, M. Saeed, M. Sebag, et al. “Analysis of the AutoML Challenge
Series”. In: Automated Machine Learning (2019), p. 177.

[99] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter.
“Efficient and Robust Automated Machine Learning”. In: Advances in Neural
Information Processing Systems 28. Ed. by C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett. Curran Associates, Inc., 2015, pp. 2962–2970.

[100] R. S. Olson and J. H. Moore. “TPOT: A tree-based pipeline optimization tool for
automating machine learning”. In: Workshop on automatic machine learning.
PMLR. 2016, pp. 66–74.

137

http://scikit-learn.org/stable/modules/linear_model.html
http://scikit-learn.org/stable/modules/linear_model.html
http://scikit-learn.org/stable/modules/tree.html
http://scikit-learn.org/stable/modules/tree.html
https://arxiv.org/abs/1908.00709
https://arxiv.org/abs/1907.00909

Appendix A Bibliography

[101] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Machine
Learning in Python”. In: Journal of Machine Learning Research 12 (2011),
pp. 2825–2830.

[102] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V.
Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas,
A. Joly, B. Holt, and G. Varoquaux. “API design for machine learning soft-
ware: experiences from the scikit-learn project”. In: ECML PKDD Workshop:
Languages for Data Mining and Machine Learning. 2013, pp. 108–122.

[103] D. Henseler, B. Landsteiner, D. Petesch, C. Wright, and N. J. Wright. “Architec-
ture and design of cray Datawarp”. In: Cray User Group CUG (2016).

[104] DataDirect Networks. IME - Flash native cache. 2018. url: https://www.
ddn.com/products/ime-flash-native-data-cache/.

[105] F. Schmuck and R. Haskin. “GPFS: A Shared-Disk File System for Large
Computing Clusters”. In: Proceedings of the 1st USENIX Conference on File
and Storage Technologies. FAST ’02. Berkeley, CA, USA: USENIX Association,
2002.

[106] F. J. Pfreundt and S. Breuner. A parallel file system – made in Germany.
09/27/2020. url: https : / / storageconference . us / 2012 /
Presentations/M08.Pfreundt.pdf.

[107] ThinkparQ. 09/27/2020. url: https://thinkparq.com/.
[108] BeeGFS Parallel File System Now Open Source. 09/27/2020. url: https :

//www.hpcwire.com/off-the-wire/beegfs-parallel-file-system-
now-open-source/.

[109] W. Digital. Ultrastar DC HC500 Series. 09/14/2020. url: https://www.
westerndigital.com/products/data- center- drives/ultrastar-
dc-hc500-series-hdd.

[110] Samsung. Samsung SSD 850 PRO. 09/14/2020. url: https://www.samsung.
com/semiconductor/minisite/ssd/product/consumer/850pro/.

[111] Samsung. NVMe SSD 960 PRO | EVO. 09/14/2020. url: https : / / www .
samsung . com / semiconductor / minisite / ssd / product / consumer /
ssd960/.

[112] Samsung. Samsung 980 PRO. 09/23/2020. url: https://news.samsung.
com / global / samsung - delivers - next - level - ssd - performance -
with-980-pro-for-gaming-and-high-end-pc-applications.

[113] Q. Xu, H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi, Z. Guz, A. Shayesteh, and
V. Balakrishnan. “Performance analysis of NVMe SSDs and their implication
on real world databases”. In: Proceedings of the 8th ACM International Systems
and Storage Conference. ACM. 2015, p. 6.

138

https://www.ddn.com/products/ime-flash-native-data-cache/
https://www.ddn.com/products/ime-flash-native-data-cache/
https://storageconference.us/2012/Presentations/M08.Pfreundt.pdf
https://storageconference.us/2012/Presentations/M08.Pfreundt.pdf
https://thinkparq.com/
https://www.hpcwire.com/off-the-wire/beegfs-parallel-file-system-now-open-source/
https://www.hpcwire.com/off-the-wire/beegfs-parallel-file-system-now-open-source/
https://www.hpcwire.com/off-the-wire/beegfs-parallel-file-system-now-open-source/
https://www.westerndigital.com/products/data-center-drives/ultrastar-dc-hc500-series-hdd
https://www.westerndigital.com/products/data-center-drives/ultrastar-dc-hc500-series-hdd
https://www.westerndigital.com/products/data-center-drives/ultrastar-dc-hc500-series-hdd
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/850pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/850pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/ssd960/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/ssd960/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/ssd960/
https://news.samsung.com/global/samsung-delivers-next-level-ssd-performance-with-980-pro-for-gaming-and-high-end-pc-applications
https://news.samsung.com/global/samsung-delivers-next-level-ssd-performance-with-980-pro-for-gaming-and-high-end-pc-applications
https://news.samsung.com/global/samsung-delivers-next-level-ssd-performance-with-980-pro-for-gaming-and-high-end-pc-applications

Bibliography A.4

[114] Lawrence Livermore National Laboratory. ASC Sequoia. 10/2012. url:
https://asc.llnl.gov/publications/Sequoia2012.pdf.

[115] B. Behlendorf. Sequoia’s 55PB Lustre+ZFS Filesystem. 10/08/2020. url:
https://asc.llnl.gov/publications/Sequoia2012.pdf.

[116] Tom Papatheodore. Summit System Overview. Accessed: Oktober, 2018.
06/01/2018. url: https://www.olcf.ornl.gov/wp-content/uploads/
2018/05/Intro_Summit_System_Overview.pdf.

[117] HoreKa - KIT Procures New Supercomputer. https://www.scc.kit.edu/
en/services/horeka.php. 09/22/2020.

[118] Management of research data – a key strategic challenge for university man-
agement. 09/14/2020. url: https : / / www . hrk . de / resolutions -
publications / resolutions / beschluss / detail / management - of -
research - data - a - key - strategic - challenge - for - university -
managemen.

[119] Deutsche Forschungsgemeinschaft. Guidelines for Safeguarding Good Research
Practice. Code of Conduct. Available in German and in English. 09/2019. url:
https://doi.org/10.5281/zenodo.3923602.

[120] Helmholtz Open Science External Organizations and Library, Scientific Infras-
tructure and Platforms. “Recommendations for guidelines at the Helmholtz
centres on handling research data. Approved in the 109th General Assembly of
the Helmholtz Association on 13-14 September 2017”. In: (2019).

[121] Satzung zur Sicherung guter wissenschaftlicher Praxis am 160 Karlsruher
Institut für Technologie (KIT). https://www.sle.kit.edu/downloads/
AmtlicheBekanntmachungen/2018_AB_032.pdf. 05/2018.

[122] J. Weingand. IBM - Tape the future of tape. 10/08/2020. url: https :
//de.slideshare.net/JosefWeingand/ibm-tape-the-future-of-
tape.

[123] F. J. Pfreundt and S. Breuner. Designing a high performance tape archive.
10/08/2020. url: https://www.versity.com/blog/designing-a-high-
performance-tape-archive.

[124] HP. HP StoreEver Tape Library - Performance Problems. 10/08/2020. url:
https : / / storageconference . us / 2012 / Presentations / M08 .
Pfreundt.pdf.

[125] B. Lee. Bruce Lee Jeet Kune Do: Bruce Lee’s Commentaries on the Martial
Way. Vol. 3. Tuttle Publishing, 2020.

[126] ForHLR I, KIT/SCC. 06/19/2017. url: https : / / www . scc . kit . edu /
dienste/forhlr1.php.

[127] Intel Xeon Processor E5-2660 v3. 06/19/2017. url: https://ark.intel.
com / content / www / us / en / ark / products / 81706 / intel - xeon -
processor-e5-2660-v3-25m-cache-2-60-ghz.html.

139

https://asc.llnl.gov/publications/Sequoia2012.pdf
https://asc.llnl.gov/publications/Sequoia2012.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2018/05/Intro_Summit_System_Overview.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2018/05/Intro_Summit_System_Overview.pdf
https://www.scc.kit.edu/en/services/horeka.php
https://www.scc.kit.edu/en/services/horeka.php
https://www.hrk.de/resolutions-publications/resolutions/beschluss/detail/management-of-research-data-a-key-strategic-challenge-for-university-managemen
https://www.hrk.de/resolutions-publications/resolutions/beschluss/detail/management-of-research-data-a-key-strategic-challenge-for-university-managemen
https://www.hrk.de/resolutions-publications/resolutions/beschluss/detail/management-of-research-data-a-key-strategic-challenge-for-university-managemen
https://www.hrk.de/resolutions-publications/resolutions/beschluss/detail/management-of-research-data-a-key-strategic-challenge-for-university-managemen
https://doi.org/10.5281/zenodo.3923602
https://www.sle.kit.edu/downloads/AmtlicheBekanntmachungen/2018_AB_032.pdf
https://www.sle.kit.edu/downloads/AmtlicheBekanntmachungen/2018_AB_032.pdf
https://de.slideshare.net/JosefWeingand/ibm-tape-the-future-of-tape
https://de.slideshare.net/JosefWeingand/ibm-tape-the-future-of-tape
https://de.slideshare.net/JosefWeingand/ibm-tape-the-future-of-tape
https://www.versity.com/blog/designing-a-high-performance-tape-archive
https://www.versity.com/blog/designing-a-high-performance-tape-archive
https://storageconference.us/2012/Presentations/M08.Pfreundt.pdf
https://storageconference.us/2012/Presentations/M08.Pfreundt.pdf
https://www.scc.kit.edu/dienste/forhlr1.php
https://www.scc.kit.edu/dienste/forhlr1.php
https://ark.intel.com/content/www/us/en/ark/products/81706/intel-xeon-processor-e5-2660-v3-25m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/81706/intel-xeon-processor-e5-2660-v3-25m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/81706/intel-xeon-processor-e5-2660-v3-25m-cache-2-60-ghz.html

Appendix A Bibliography

[128] Intel Xeon Processor E7-4830 v3. 06/19/2017. url: https://ark.intel.
com / content / www / us / en / ark / products / 84678 / intel - xeon -
processor-e7-4830-v3-30m-cache-2-10-ghz.html.

[129] GEFORCE® GTX900 SERIES. 06/19/2017. url: https://www.nvidia.
com/en-us/geforce/900-series/.

[130] Arden and H. Lee. “Analysis of Chordal Ring Network”. In: IEEE Transactions
on Computers C-30.4 (04/1981), pp. 291–295.

[131] ForHLR - Hardware and Architecture. 2020. url: https://wiki.scc.kit.
edu/hpc/index.php?title=ForHLR_-_Hardware_and_Architecture\
#File_Systems.

[132] J. A. von der Gönna. Introduction to the LRZ HPC Infrastructure. 09/14/2020.
url: https : / / www . lrz . de / services / compute / courses / x _
lecturenotes/191008_Intro-LRZ-HPC_web.pdf.

[133] TTU HPC Center Data Policy. 09/14/2020. url: https://www.depts.ttu.
edu/hpcc/operations/datapolicy.php.

[134] NREL HPC Center Data Retention Policy. 09/14/2020. url: https://www.
nrel.gov/hpc/data-retention-policy.html.

[135] bwDataArchive - long-term archival storage of research data. 06/19/2017. url:
http://www.scc.kit.edu/en/services/11228.php.

[136] bwDataArchive - long-term archival storage of research data. 06/19/2017. url:
https://www.rda.kit.edu/english/.

[137] A. Torrez, B. Kettering, W. Loewe, and R. Klundt. MDtest metadata benchmark.
https://sourceforge.net/projects/mdtest/. Accessed: September 4,
2016. 2015.

[138] D. Klusáček and H. Rudová. “Alea 2: job scheduling simulator”. In: Proceedings
of the 3rd International ICST Conference on Simulation Tools and Techniques.
2010, pp. 1–10.

[139] Parallel Workloads Archive. http : / / www . cs . huji . ac . il / labs /
parallel/workload/. 02/12/2018.

[140] BeeGFS. BeeOND™: BeeGFS On Demand. Accessed: August 18 2018. url:
http://www.beegfs.io/wiki/BeeOND.

[141] BeeGFS. BeeGFS. Accessed: September 21 2020. url: https : / / www .
beegfs.io/docs/BeeGFS_Flyer.pdf.

[142] M.-A. Vef, N. Moti, T. Süß, T. Tocci, R. Nou, A. Miranda, T. Cortes, and A.
Brinkmann. “GekkoFS-a temporary distributed file system for HPC applications”.
In: 2018 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE. 2018, pp. 319–324.

[143] losetup - set up and control loop devices. https://www.linux.org/docs/
man8/losetup.html. 09/22/2020.

140

https://ark.intel.com/content/www/us/en/ark/products/84678/intel-xeon-processor-e7-4830-v3-30m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/84678/intel-xeon-processor-e7-4830-v3-30m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/84678/intel-xeon-processor-e7-4830-v3-30m-cache-2-10-ghz.html
https://www.nvidia.com/en-us/geforce/900-series/
https://www.nvidia.com/en-us/geforce/900-series/
https://wiki.scc.kit.edu/hpc/index.php?title=ForHLR_-_Hardware_and_Architecture\#File_Systems
https://wiki.scc.kit.edu/hpc/index.php?title=ForHLR_-_Hardware_and_Architecture\#File_Systems
https://wiki.scc.kit.edu/hpc/index.php?title=ForHLR_-_Hardware_and_Architecture\#File_Systems
https://www.lrz.de/services/compute/courses/x_lecturenotes/191008_Intro-LRZ-HPC_web.pdf
https://www.lrz.de/services/compute/courses/x_lecturenotes/191008_Intro-LRZ-HPC_web.pdf
https://www.depts.ttu.edu/hpcc/operations/datapolicy.php
https://www.depts.ttu.edu/hpcc/operations/datapolicy.php
https://www.nrel.gov/hpc/data-retention-policy.html
https://www.nrel.gov/hpc/data-retention-policy.html
http://www.scc.kit.edu/en/services/11228.php
https://www.rda.kit.edu/english/
https://sourceforge.net/projects/mdtest/
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.beegfs.io/wiki/BeeOND
https://www.beegfs.io/docs/BeeGFS_Flyer.pdf
https://www.beegfs.io/docs/BeeGFS_Flyer.pdf
https://www.linux.org/docs/man8/losetup.html
https://www.linux.org/docs/man8/losetup.html

Bibliography A.4

[144] K. Yamamoto, F. Shoji, A. Uno, S. Matsui, K. Sakai, F. Sueyasu, S. Sumimoto,
and F. Limited. Analysis and Elimination of Client Evictions on a Large Scale
Lustre Based File System. en.

[145] D. Capps and W. Norcott. IOzone filesystem benchmark. 2008. url: http:
//iozone.org/.

[146] I/O 500. 2020. url: https://www.vi4io.org/start.
[147] OpenCFD. OpenFOAM: The Open Source CFD Toolbox. User Guide Version

1.4, OpenCFD Limited. Reading UK, 04/2007.
[148] The OpenFOAM Foundation. https://openfoam.org/. 2018.
[149] T. Zirwes, F. Zhang, J. Denev, P. Habisreuther, and H. Bockhorn. “Improved

Vectorization for Efficient Chemistry Computations in OpenFOAM for Large
Scale Combustion Simulations”. In: High Performance Computing in Science
and Engineering ’17. Ed. by W. Nagel, D. Kröner, and M. Resch. Springer,
2018.

[150] T. Zirwes, F. Zhang, T. Häber, and H. Bockhorn. “Ignition of combustible
mixtures by hot particles at varying relative speeds”. In: Combustion Science
and Technology 0.0 (2018), pp. 1–18. eprint: https://doi.org/10.1080/
00102202.2018.1435530.

[151] M. Berghoff, I. Kondov, and J. Hötzer. “Massively Parallel Stencil Code Solver
with Autonomous Adaptive Block Distribution”. In: IEEE Transactions on
Parallel and Distributed Systems 29.10 (2018), pp. 2282–2296.

[152] Hybrid Data Analysis and Integration for Structural Biology. 10/09/2020. url:
http://www.helmholtz-analytics.de/helmholtz_analytics/EN/
UseCases/StructuralBiology/_node.html.

[153] C. DiBona and S. Ockman. Open sources: Voices from the open source revolution.
Appendix A - The Tanenbaum-Torvalds Debate. O’Reilly Media, Inc., 1999.

[154] S. Maneas, K. Mahdaviani, T. Emami, and B. Schroeder. “A Study of {SSD}
Reliability in Large Scale Enterprise Storage Deployments”. In: 18th {USENIX}
Conference on File and Storage Technologies ({FAST} 20). 2020, pp. 137–149.

[155] M. Soysal, M. Berghoff, T. Zirwes, M.-A. Vef, S. Oeste, A. Brinkman, W. E.
Nagel, and A. Streit. “Using On-demand File Systems in HPC Environments”. In:
2019 International Conference on High Performance Computing and Simulation
(HPCS) (2019).

[156] M. Soysal and A. Streit. “Ad-hoc file systems at extreme scales”. In: High
Performance Computing in Science and Engineering’19 (HLRS) (10/2019).
Accepted.

[157] J. Xing, J. Xiong, N. Sun, and J. Ma. “Adaptive and Scalable Metadata
Management to Support a Trillion Files”. In: Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis. SC ’09. New
York, NY, USA: ACM, 2009, 26:1–26:11.

141

http://iozone.org/
http://iozone.org/
https://www.vi4io.org/start
https://openfoam.org/
https://doi.org/10.1080/00102202.2018.1435530
https://doi.org/10.1080/00102202.2018.1435530
http://www.helmholtz-analytics.de/helmholtz_analytics/EN/UseCases/StructuralBiology/_node.html
http://www.helmholtz-analytics.de/helmholtz_analytics/EN/UseCases/StructuralBiology/_node.html

Appendix A Bibliography

[158] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock. “I/O
performance challenges at leadership scale”. In: Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis. 11/2009,
pp. 1–12.

[159] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, and C.
Maltzahn. “On the role of burst buffers in leadership-class storage systems”. In:
012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST).
04/2012, pp. 1–11.

[160] T. Wang, K. Mohror, A. Moody, K. Sato, and W. Yu. “An Ephemeral Burst-
Buffer File System for Scientific Applications”. In: SC ’16: Proceedings of
the International Conference for High Performance Computing, Networking,
Storage and Analysis. 11/2016, pp. 807–818.

[161] CRAY. Cray® DataWarp™ Applications I/O Accelerator. 2018. url: https:
//www.cray.com/datawarp.

[162] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir. “Scheduling
the I/O of HPC applications under congestion”. In: 2015 IEEE International
Parallel and Distributed Processing Symposium. IEEE. 2015, pp. 1013–1022.

[163] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez, M.
Polte, and M. Wingate. “PLFS: a checkpoint filesystem for parallel applications”.
In: Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis. 11/2009, pp. 1–12.

[164] IBM. GPFS - Highly available write cache (HAWC). 2018. url: https :
//www.ibm.com/support/knowledgecenter/en/STXKQY\%5F5.0.0/
com.ibm.spectrum.scale.v5r00.doc/bl1adv\%5Fhawc.htm.

[165] R. Mohr, M. Brim, S. Oral, and A. Dilger. “Evaluating progressive file layouts
for Lustre”. In: Cray User Group Conference (CUG 2016). 2016.

[166] BeeGFS. BeeGFS Storage Pool. Accessed: August 18 2018. 2018. url:
https://www.beegfs.io/wiki/StoragePools.

[167] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson. “An overview
of the HDF5 technology suite and its applications”. In: Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases. ACM. 2011, pp. 36–47.

[168] R. Rew and G. Davis. “NetCDF: an interface for scientific data access”. In:
IEEE computer graphics and applications 10.4 (1990), pp. 76–82.

[169] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin. “Flexible IO
and integration for scientific codes through the adaptable IO system (ADIOS)”.
In: Proceedings of the 6th international workshop on Challenges of large
applications in distributed environments. ACM. 2008, pp. 15–24.

[170] R. Thakur, W. Gropp, and E. Lusk. “On implementing MPI-IO portably and
with high performance”. In: Proceedings of the sixth workshop on I/O in parallel
and distributed systems. ACM. 1999, pp. 23–32.

142

https://www.cray.com/datawarp
https://www.cray.com/datawarp
https://www.ibm.com/support/knowledgecenter/en/STXKQY\%5F5.0.0/com.ibm.spectrum.scale.v5r00.doc/bl1adv\%5Fhawc.htm
https://www.ibm.com/support/knowledgecenter/en/STXKQY\%5F5.0.0/com.ibm.spectrum.scale.v5r00.doc/bl1adv\%5Fhawc.htm
https://www.ibm.com/support/knowledgecenter/en/STXKQY\%5F5.0.0/com.ibm.spectrum.scale.v5r00.doc/bl1adv\%5Fhawc.htm
https://www.beegfs.io/wiki/StoragePools

Bibliography A.4

[171] R. Thakur, W. Gropp, and E. Lusk. “Data sieving and collective I/O in ROMIO”.
In: Frontiers of Massively Parallel Computation, 1999. Frontiers’ 99. The
Seventh Symposium on the. IEEE. 1999, pp. 182–189.

[172] W. Frings. SIONlib. 2009. url: https://www.fz-juelich.de/ias/jsc/
EN/Expertise/Support/Software/SIONlib/_node.html.

[173] M. Neuer, J. Salk, H. Berger, E. Focht, C. Mosch, K. Siegmund, V. Kushnarenko,
S. Kombrink, and S. Wesner. “Motivation and Implementation of a Dynamic
Remote Storage System for I/O Demanding HPC Applications”. In: International
Conference on High Performance Computing. Springer. 2016, pp. 616–626.

[174] D. Teigland and H. Mauelshagen. “Volume Managers in Linux.” In: USENIX
Annual Technical Conference, FREENIX Track. 2001, pp. 185–197.

[175] TU Dresden. HPC FOR DATA ANALYTICS. https : / / doc . zih . tu -
dresden.de/hpc-wiki/bin/view/Compendium/HPCDA.

[176] T. Wickberg and C. Carothers. “The RAMDISK Storage Accelerator: A Method
of Accelerating I/O Performance on HPC Systems Using RAMDISKs”. In:
Proceedings of the 2Nd International Workshop on Runtime and Operating
Systems for Supercomputers. ROSS ’12. New York, NY, USA: ACM, 2012,
5:1–5:8.

[177] Adaptive Computing - Data staging. http://www.adaptivecomputing.
com/blog-hpc/data-staging/.

[178] SchedMD. Slurm Burst Buffer Guide. [Online; last accessed am 2020-09-21].
url: https://slurm.schedmd.com/burst_buffer.html.

[179] V. Voigt. “Entwicklung eines on-demand Burst-Buffer-Plugins für HPC-Batch-
Systeme”. Bachelor. Steinbuch Centre for Computing (SCC), 04/10/2019.

[180] E. Kim. SSD Performance-A Primer: An Introduction to Solid State Drive
Perfromance, Evaluation and Test. Tech. rep., Storage Networking Industry
Association, 2013.

[181] J. Garlick. PDSH. https://github.com/chaos/pdsh. 2018.
[182] M. Soysal. Speeding up BeeOND startup - Google Groups. 2018. url:

https://groups.google.com/g/fhgfs-user/c/g8ysFS35Ucs/m/E-
RtxKyiCAAJ.

[183] R. S. Barlow, S. Meares, G. Magnotti, H. Cutcher, and A. R. Masri. “Local
extinction and near-field structure in piloted turbulent CH4/air jet flames with
inhomogeneous inlets”. In: Combust. Flame 162.10 (2015), pp. 3516–3540.

[184] T. Zirwes, F. Zhang, J. Denev, P. Habisreuther, and H. Bockhorn. “Automated
Code Generation for Maximizing Performance of Detailed Chemistry Calcu-
lations in OpenFOAM”. In: High Performance Computing in Science and
Engineering ’17. Ed. by W. Nagel, D. Kröner, and M. Resch. Springer, 2017,
pp. 189–204.

143

https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/SIONlib/_node.html
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/SIONlib/_node.html
https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/HPCDA
https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/HPCDA
http://www.adaptivecomputing.com/blog-hpc/data-staging/
http://www.adaptivecomputing.com/blog-hpc/data-staging/
https://slurm.schedmd.com/burst_buffer.html
https://github.com/chaos/pdsh
https://groups.google.com/g/fhgfs-user/c/g8ysFS35Ucs/m/E-RtxKyiCAAJ
https://groups.google.com/g/fhgfs-user/c/g8ysFS35Ucs/m/E-RtxKyiCAAJ

Appendix A Bibliography

[185] D Sikich, G Di Natale, M LeGendre, and A Moody. mpiFileUtils: A Parallel
and Distributed Toolset for Managing Large Datasets. Lawrence Livermore
National Lab.(LLNL), Livermore, CA (United States), 2017.

[186] L. Galambos. The papers of Dwight David Eisenhower, Columbia University:
Volume XI. 1984.

[187] M. Soysal, M. Berghoff, and A. Streit. “Analysis of Job Metadata for Enhanced
Wall Time Prediction”. In: Workshop on Job Scheduling Strategies for Parallel
Processing. Springer. 2018, pp. 1–14.

[188] M. Soysal, M. Berghoff, D. Klusáček, and A. Streit. “On the Quality of Wall
Time Estimates for Resource Allocation Prediction”. In: Proceedings of the
48th International Conference on Parallel Processing: Workshops. ICPP 2019,
Kyoto, Japan. New York, NY, USA: ACM, 2019, 23:1–23:8.

[189] R. Gibbons. “A historical application profiler for use by parallel schedulers”. In:
Job scheduling strategies for parallel processing. Springer. 1997, pp. 58–77.

[190] R. Gibbons. “A historical profiler for use by parallel schedulers”. In: Master’s
thesis, University of Toronto (1997).

[191] A. B. Downey. “Predicting queue times on space-sharing parallel computers”.
In: Parallel Processing Symposium, 1997. Proceedings., 11th International.
IEEE. 1997, pp. 209–218.

[192] W. Tang, N. Desai, D. Buettner, and Z. Lan. “Analyzing and adjusting user
runtime estimates to improve job scheduling on the Blue Gene/P”. In: IEEE
International Symposium on Parallel and Distributed Processing (IPDPS). IEEE,
2010, pp. 1–11.

[193] D. Klusáček, v. Tóth, and G. Podolníková. “Complex Job Scheduling Simulations
with Alea 4”. In: Ninth EAI International Conference on Simulation Tools and
Techniques (SimuTools 2016). ACM, 2016, pp. 124–129.

[194] Alea 4: Job Scheduling Simulator. https://github.com/aleasimulator. 02/2019.
[195] N. H. Kapadia and J. A. Fortes. “On the design of a demand-based network-

computing system: The Purdue University Network-Computing Hubs”. In: The
7th International Symposium on High Performance Distributed Computing.
IEEE, 1998, pp. 71–80.

[196] F. Nadeem and T. Fahringer. “Using templates to predict execution time of
scientific workflow applications in the grid”. In: Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid. IEEE
Computer Society, 2009, pp. 316–323.

[197] D. Tsafrir, Y. Etsion, and D. G. Feitelson. “Backfilling using system-generated
predictions rather than user runtime estimates”. In: IEEE Transactions on
Parallel and Distributed Systems 18.6 (2007).

144

Bibliography A.4

[198] W. Smith. “Prediction services for distributed computing”. In: Parallel and
Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International.
IEEE. 2007, pp. 1–10.

[199] XSEDE. https://www.xsede.org/. 04/27/2018.
[200] B.-D. Lee et al. “Run-time prediction of parallel applications on shared

environments”. In: 2003 Proceedings IEEE International Conference on Cluster
Computing. IEEE. 2003, pp. 487–491.

[201] S. Seneviratne and D. C. Levy. “Task profiling model for load profile prediction”.
In: Future Generation Computer Systems 27.3 (2011), pp. 245–255.

[202] N. H. Kapadia, J. A. Fortes, and C. E. Brodley. “Predictive application-
performance modeling in a computational grid environment”. In: Proceedings.
The Eighth International Symposium on High Performance Distributed Comput-
ing (Cat. No. 99TH8469). IEEE. 1999, pp. 47–54.

[203] M. A. Iverson, F. Ozguner, and L. C. Potter. “Statistical prediction of task
execution times through analytic benchmarking for scheduling in a heterogeneous
environment”. In: Proceedings. Eighth Heterogeneous Computing Workshop
(HCW’99). IEEE. 1999, pp. 99–111.

[204] T. Miu and P. Missier. “Predicting the execution time of workflow activities
based on their input features”. In: 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis. IEEE. 2012, pp. 64–72.

[205] H. Li, D. Groep, and L. Wolters. “An evaluation of learning and heuristic
techniques for application run time predictions”. In: Proceedings of 11th
Annual Conference of the Advance School for Computing and Imaging (ASCI),
Netherlands. Citeseer. 2005.

[206] R. F. Da Silva, G. Juve, M. Rynge, E. Deelman, and M. Livny. “Online
task resource consumption prediction for scientific workflows”. In: Parallel
Processing Letters 25.03 (2015), p. 1541003.

[207] A. Matsunaga and J. A. Fortes. “On the use of machine learning to predict the
time and resources consumed by applications”. In: Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing.
IEEE Computer Society, 2010, pp. 495–504.

[208] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. “Basic
local alignment search tool”. In: Journal of molecular biology 215.3 (1990),
pp. 403–410.

[209] A. Stamatakis. “RAxML version 8: a tool for phylogenetic analysis and post-
analysis of large phylogenies”. In: Bioinformatics 30.9 (2014), pp. 1312–1313.

[210] H. Casanova. “Simgrid: a toolkit for the simulation of application scheduling”. In:
Proceedings First IEEE/ACM International Symposium on Cluster Computing
and the Grid. 2001, pp. 430–437.

145

https://www.xsede.org/

Appendix A Bibliography

[211] A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, and U. Nagashima. “Overview of
a performance evaluation system for global computing scheduling algorithms”.
In: Proceedings. The Eighth International Symposium on High Performance
Distributed Computing (Cat. No.99TH8469). 1999, pp. 97–104.

[212] A. Sulistio, U. Cibej, S. Venugopal, B. Robic, and R. Buyya. “A toolkit for
modelling and simulating data Grids: an extension to GridSim”. In: Concurrency
and Computation: Practice and Experience 20.13 (2008), pp. 1591–1609.

[213] The Standard Workload Format. 04/27/2018. url: https://www.cs.huji.
ac.il/labs/parallel/workload/swf.html.

[214] The San Diego Supercomputer Center (SDSC) SP2 log. 01/30/2019. url:
http://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/.

[215] The Swedish Royal Institute of Technology (KTH) IBM SP2 log. 01/30/2019. url:
http://www.cs.huji.ac.il/labs/parallel/workload/l_kth_sp2/.

[216] S. Hotovy. “Workload evolution on the Cornell Theory Center IBM SP2”. In:
Job Scheduling Strategies for Parallel Processing. Ed. by D. G. Feitelson and
L. Rudolph. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 27–40.

[217] scikit - Regression Metrics. http://scikit-learn.org/stable/modules/
model_evaluation.html#regression-metrics. 06/19/2017.

[218] scikit - R2 Score. http : / / scikit - learn . org / stable / modules /
generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_
score. 06/19/2017.

[219] scikit - Mean absolute error. http : / / scikit - learn . org / stable /
modules/generated/sklearn.metrics.mean_absolute_error.html#
sklearn.metrics.mean_absolute_error. 06/19/2017.

[220] scikit - Median absolute error. http : / / scikit - learn . org / stable /
modules / generated / sklearn . metrics . median _ absolute _ error .
html#sklearn.metrics.median_absolute_error. 06/19/2017.

[221] D. Tsafrir. “Using inaccurate estimates accurately”. In: Workshop on Job
Scheduling Strategies for Parallel Processing. Springer. 2010, pp. 208–221.

[222] D. G. Feitelson. Workload Modeling for Computer Systems Performance
Evaluation. 1st. New York, NY, USA: Cambridge University Press, 2015.

[223] M.-A. Vef, N. Moti, T. Süß, T. Tocci, R. Nou, A. Miranda, T. Cortes, and
A. Brinkmann. “GekkoFS - A Temporary Distributed File System for HPC
Applications”. In: 2018 IEEE International Conference on Cluster Computing
(CLUSTER). 2018 IEEE International Conference on Cluster Computing
(CLUSTER). 2018, pp. 319–324.

[224] Chairman Jobs? The Guessing Goes On. 1997. url: https://www.wired.
com/1997/07/chairman-jobs-the-guessing-goes-on/.

146

https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
http://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/
http://www.cs.huji.ac.il/labs/parallel/workload/l_kth_sp2/
http://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.mean_absolute_error
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.mean_absolute_error
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.mean_absolute_error
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html#sklearn.metrics.median_absolute_error
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html#sklearn.metrics.median_absolute_error
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html#sklearn.metrics.median_absolute_error
https://www.wired.com/1997/07/chairman-jobs-the-guessing-goes-on/
https://www.wired.com/1997/07/chairman-jobs-the-guessing-goes-on/

Bibliography A.4

[225] M. Soysal and A. Streit. “JAWS: Just Another Workspace Suite”. In: International
Conference on High Performance Computing and Simulation (HPCS) (12/2020).
Submitted.

[226] E. Copernicus. Copernicus open access hub. 2017. url: https://scihub.
copernicus.eu/.

[227] C. Tona and R. Bua. “Open Source Data Hub System: free and open framework
to enable cooperation to disseminate Earth Observation data and geo-spatial
information.” In: Geophysical Research Abstracts 20 (2018), p. 3808.

[228] Nature - Recommended Data Repositories. 09/26/2020. url: https://www.
nature.com/sdata/policies/repositories.

[229] R. W. Watson and R. A. Coyne. “The Parallel I/O Architecture of the High-
Performance Storage System (HPSS)”. In: Proceedings of the 14th IEEE
Symposium on Mass Storage Systems. MSS ’95. USA: IEEE Computer Society,
1995, p. 27.

[230] IBM - Spectrum Protect. 09/26/2020. url: https : / / www . ibm . com /
support/knowledgecenter/SSEQVQ_8.1.10/tsm/welcome.html.

[231] Sun QFS and Sun Storage Archive Manager 5.3 Information Library. 09/26/2020.
url: https://docs.oracle.com/cd/E22586_01/html/E22571/gkwas.
html.

[232] Hierarchical Storage Management in the Lustre* Filesystem. 09/26/2020. url:
http : / / lustrefs . cn / wp - content / uploads / 2018 / 08 / HSM _
Zhanghongchao.pdf.

[233] Lustre Projects. 09/26/2020. url: https://wiki.lustre.org/Projects.
[234] LUSTRE/HSM BINDING IS THERE! 09/26/2020. url: https://www.eofs.

eu/_media/events/lad13/10_aurelien_degremont_lustre_hsm_
lad13.pdf.

[235] TSM Copytool for Lustre HSM. 09/26/2020. url: https://www.eofs.eu/
_media/events/lad16/08_tsm_copytool_for_lustre_stibor.pdf.

[236] V. Garonne, R Vigne, G Stewart, M Barisits, M Lassnig, C Serfon, L Goossens,
A Nairz, A. Collaboration, et al. “Rucio–The next generation of large scale
distributed system for ATLAS Data Management”. In: Journal of Physics:
Conference Series. Vol. 513. IOP Publishing. 2014, p. 042021.

[237] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K.
Vahi, G. B. Berriman, J. Good, and et al. “Pegasus: A Framework for Mapping
Complex Scientific Workflows onto Distributed Systems”. In: Sci. Program.
13.3 (07/2005), pp. 219–237.

147

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://www.nature.com/sdata/policies/repositories
https://www.nature.com/sdata/policies/repositories
https://www.ibm.com/support/knowledgecenter/SSEQVQ_8.1.10/tsm/welcome.html
https://www.ibm.com/support/knowledgecenter/SSEQVQ_8.1.10/tsm/welcome.html
https://docs.oracle.com/cd/E22586_01/html/E22571/gkwas.html
https://docs.oracle.com/cd/E22586_01/html/E22571/gkwas.html
http://lustrefs.cn/wp-content/uploads/2018/08/HSM_Zhanghongchao.pdf
http://lustrefs.cn/wp-content/uploads/2018/08/HSM_Zhanghongchao.pdf
https://wiki.lustre.org/Projects
https://www.eofs.eu/_media/events/lad13/10_aurelien_degremont_lustre_hsm_lad13.pdf
https://www.eofs.eu/_media/events/lad13/10_aurelien_degremont_lustre_hsm_lad13.pdf
https://www.eofs.eu/_media/events/lad13/10_aurelien_degremont_lustre_hsm_lad13.pdf
https://www.eofs.eu/_media/events/lad16/08_tsm_copytool_for_lustre_stibor.pdf
https://www.eofs.eu/_media/events/lad16/08_tsm_copytool_for_lustre_stibor.pdf

Appendix A Bibliography

[238] M. Tanaka and O. Tatebe. “Pwrake: A Parallel and Distributed Flexible Workflow
Management Tool for Wide-Area Data Intensive Computing”. In: Proceedings
of the 19th ACM International Symposium on High Performance Distributed
Computing. HPDC ’10, Chicago, Illinois. New York, NY, USA: Association for
Computing Machinery, 2010, pp. 356–359.

[239] W. Shin, C. D. Brumgard, B. Xie, S. S. Vazhkudai, D. Ghoshal, S. Oral, and
L. Ramakrishnan. “Data Jockey: Automatic Data Management for HPC Multi-
tiered Storage Systems”. In: 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). ISSN: 1530-2075. 05/2019, pp. 511–522.

[240] H. Berger. HPC Workspaces. https://github.com/holgerBerger/hpc-
workspace. 2020.

[241] https://wiki.bwhpc.de/e/Workspace. 09/26/2020. url: https://wiki.bwhpc.
de/e/Workspace.

[242] G. A. Jaquette. “LTO: A better format for mid-range tape”. In: IBM Journal of
Research and Development 47.4 (2003), pp. 429–444.

[243] B. Haeusser, E. Winters, and E. Zwemmer. IBM System Storage Tape Library
Guide for Open Systems. IBM, International Technical Support Organization,
2006.

[244] Blackblaze. 10/04/2020. url: https://www.backblaze.com/.
[245] Backblaze - Hard Drive Cost Per Gigabyte. 10/04/2020. url: https://www.

backblaze.com/blog/hard-drive-cost-per-gigabyte/.
[246] Los Alamos National Laboratory. Ultrascale Systems Research Center (USRC)

Data Sources. https://usrc.lanl.gov/data-sources.php.
[247] M. Weimer. “Towards Seamless Simulations of Polar Stratospheric Clouds

and Ozone in the Polar Stratosphere with ICON-ART”. PhD thesis. Karlsruher
Institut für Technologie (KIT), 2019. 165 pp.

[248] T. Zirwes, F. Zhang, Y. Wang, P. Habisreuther, J. A. Denev, Z. Chen, H. Bockhorn,
and D. Trimis. “In-situ flame particle tracking based on barycentric coordinates
for studying local flame dynamics in pulsating Bunsen flames”. In: Proceedings
of the Combustion Institute (2020).

[249] J. Mantel, J. Ohm, A. Beer, M. Beichter, A. Fedorchenko, D. Dehtyarov, and
M. Soysal. “DMD - Data Movement Daemon”. Steinbuch Centre for Computing
(SCC).

[250] M. Pilgrim and S. Willison. Dive Into Python 3. Vol. 2. Springer, 2009.
[251] M. Grinberg. Flask web development: developing web applications with python.

O’Reilly Media, Inc., 2018.
[252] R. T. Fielding. “REST: architectural styles and the design of network-based

software architectures”. In: Doctoral dissertation, University of California
(2000).

148

https://github.com/holgerBerger/hpc-workspace
https://github.com/holgerBerger/hpc-workspace
https://wiki.bwhpc.de/e/Workspace
https://wiki.bwhpc.de/e/Workspace
https://www.backblaze.com/
https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/
https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/
https://usrc.lanl.gov/data-sources.php

Bibliography A.4

[253] R. Copeland. Essential SQLalchemy. O’Reilly Media, Inc., 2008.
[254] C Dunlap. Munge Uid N Grid Emporium. Tech. rep. Lawrence Livermore

National Lab.(LLNL), Livermore, CA (United States), 2004.
[255] K. Krarup, N. C. Nielsen, S. B. Larsen, and S. L. Bak. “Kommunikation erstatter

transport: den digitale revolution i danske forskningsbiblioteker 1980-2005:
festskrift til Karl Krarup”. In: vol. 30. Museum Tusculanum Press, 2005, p. 321.

[256] S. Versick, O. Kirner, J. Meyer, H. Obermaier, and M. Soysal. “Performance
gains in an ESM using parallel ad-hoc file systems”. In: EGU General Assembly
Conference Abstracts. 2020, p. 18121.

[257] A. Xiang, M. Deitersen, M. Potthoff, P. Brosemer, R.-M. Hanne, and M. Soysal.
“BOB - Bob offers Benchmarks - A new Scheduling Simulator”. Steinbuch
Centre for Computing (SCC).

[258] D. Dehtyarov. “Simulation der Knotenausfälle und Reservierungen in HPC
Systemen”. Bachelor. Steinbuch Centre for Computing (SCC), 09/23/2019.

149

Mehmet Soysal
Veröffentlichungen

Veröffentlichung
2016 Exploring opportunities for job-temporal file systems with ADA-

FS, Sebastian Oeste, Michael Kluge, Mehmet Soysal, Achim Streit, Marc-
André Vef, and André Brinkmann, 1st Joint International Workshop on
Parallel Data Storage and Data Intensive Scalable Computing Systems,
2016..

2018 Analysis of Job Metadata for Enhanced Wall Time Prediction,
M. Soysal, M. Berghoff, and A. Streit, In Job Scheduling Strategies
for Parallel Processing: 22nd International Workshop, JSSPP 2018,
Vancouver, BC, Canada.

2018 Batch job scheduling using enhanced walltime prediction., Dalibor
Klusáček and Mehmet Soysal, In CGW Workshop ’18 (CGW’18).

2019 ADA-FS – Advanced Data Placement via Ad hoc File Systems
at Extreme Scales, Sebastian Oeste, Marc-André Vef, Mehmet Soysal,
Wolfgang E. Nagel, André Brinkmann, and Achim Streit, Software for
Exascale Computing - SPPEXA 2016-2019, Lecture Notes in Compu-
tational Science and Engineering, page 29–59, Springer International
Publishing, 2020.

2019 Alea–complex job scheduling simulator, Dalibor Klusáček, Mehmet
Soysal, and Frédéric Suter., In International Conference on Parallel
Processing and Applied Mathematics, pages 217–229., Springer.

2019 Using On-demand File Systems in HPC Environments, Mehmet
Soysal, Marco Berghoff, Thorsten Zirwes, Marc-André Vef, Sebastian
Oeste, Andre Brinkmann, Wolfgang E. Nagel, In 2019 International
Conference on High Performance Computing Simulation (HPCS), pages
390–398, Dublin.

B mehmet.soysal@kit.edu 1/2

2019 On the Quality of Wall Time Estimates for Resource Alloca tion
Prediction, Mehmet Soysal, Marco Berghoff, Dalibor Klusáček, and
Achim Streit, In Proceedings of the 48th International Conference on
Parallel Processing: Workshops, ICPP 2019, pages 23:1–23:8,, New York,
NY, USA, ACM.

2019 Ad-hoc file systems at extreme scales, Mehmet Soysal and Achim
Streit, Accepted for publishing – High Performance Computing in Science
and Engineering’19 (HLRS).

2020 Walltime prediction and its impact on job scheduling perfor-
mance and predictability, Dalibor Klusáček and Mehmet Soysal, In
Job Scheduling Strategies for Parallel Processing: 22nd International
Workshop, JSSPP 2020.

2020 JAWS: Just Another Workspace Suite, Mehmet Soysal and Achim
Streit, International Conference on High Performance Computing and
Simulation (HPCS) 2020, Submitted.

Vorträge und Poster
2017 Poster: SBD Workshop, ADA-FS Advanced Data Placement via

Ad-hoc File Systems, Jülich.
2018 Vortrag: Analysis of Job Metadata for Enhanced Wall Time

Prediction, M. Soysal, M. Berghoff, and A. Streit, In Job Schedul-
ing Strategies for Parallel Processing: 22nd International Workshop,
Vancouver, BC, Canada.

2019 Vortrag: Using On-demand File Systems in HPC Environments,
Mehmet Soysal, Marco Berghoff, Thorsten Zirwes, Marc-André Vef,
Sebastian Oeste, Andre Brinkmann, Wolfgang E. Nagel, In 2019 Interna-
tional Conference on High Performance Computing Simulation, Dublin,
Ireland.

2019 Vortrag: On the Quality of Wall Time Estimates for Resource Al-
location Prediction, Mehmet Soysal, Marco Berghoff, Dalibor Klusáček,
and Achim Streit, The 48th International Conference on Parallel Pro-
cessing: Workshops, Kyoto, Japan.

2019 Poster: ADA-FS – Advanced Data Placement via Ad hoc File
Systems at Extreme Scales, HLRS.

B mehmet.soysal@kit.edu 2/2

	Acknowledgement
	Zusammenfassung
	Abstract
	Glossary
	Introduction
	State of the Art
	Scientific Contributions
	List of Publications
	Thesis Outline

	Basics of Supercomputing
	HPC Applications
	HPC Systems
	Hardware Architectures
	Network Architectures
	File Systems
	Batch Systems
	Metadata

	Scheduling
	HPC Job Classification
	Job Metadata
	Scheduling Algorithms
	Accounting, Fairshare and more

	Wall Time Prediction
	Machine Learning

	Storage and File Systems
	Parallel File Systems
	Innovation and Current Situation

	Data Management
	Summary

	Evaluation Environment
	HPC System
	Hardware
	Storage and File Systems
	Metadata Performance of the Parallel File Systems

	System Software and Tools
	Applications
	Summary

	On-demand File System
	Related Work On-demand File System
	Deployment of the On-demand File System
	Generic Benchmarks
	Scientific Use Cases
	super_SPH
	NAStJA
	OpenFOAM
	Swarm-based Meta-heuristic

	Data Staging
	Summary

	Data Scheduling
	Related Work
	Background on Walltime Prediction
	Background on Scheduling Simulator

	Real World Situation
	Parallel Workloads Archive
	Additional Metadata

	Method and Metrics
	Metrics for Wall Time Prediction
	Resource Allocation Metrics

	Evaluation
	Wall Time Prediction using ML
	Resource Allocation Prediction

	Implications for Real Scenarios
	Summary

	Automatic Data Management
	Related Work
	Reasons for Data Management within HPC Environments
	Storage Capacity
	File System Statistics
	Example User Behaviors
	Requirements for Data Staging

	Prototype Data Management Tool – JAWS
	JAWS Elements
	Design and Architecture

	JAWS usage on HPC Systems
	Summary

	Conclusion and Outlook
	Outlook

	Appendix
	Metadata of Swarm-based Meta-heuristic Job
	Scheduling Simulator (BOB)
	JAWS
	Tables

