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Kurzfassung 

Der steigende Energiebedarf sowie der damit verbundene rasante Anstieg der 

Treibhausgasemissionen verursacht durch fossile Brennstoffe erfordern einen Übergang hin 

zu alternativen, sauberen Energiequellen. Dabei spielt die Photovoltaik als reichlich 

verfügbare und vielseitige Energiequelle eine entscheidende Rolle bei der Umsetzung dieses 

Übergangs. Perowskit-Solarzellen mit elektrischen Wandlungswirkungsgraden von über 

25% gehören zu den vielversprechendsten Kandidaten neuer Photovoltaiktechnologien. Es 

wird erwartet, dass sie nicht nur aufgrund ihrer bemerkenswerten Entwicklungen in Bezug 

auf Leistungssteigerung, sondern auch auf Kostensenkung eine Schlüsselrolle in der Zukunft 

der Photovoltaik-Technologie spielen werden. 

Über ein Jahrzehnt an Optimierungen der Bauteilarchitektur und dem Erlangen neuer 

Erkenntnisse zu den Materialeigenschaften haben zur Verbesserung der Wirkungsgrade der 

Perowskit-Solarzellen und so zu deren stetigen Weiterentwicklung geführt. Dennoch sind 

diverse Fragen zum Verständnis der Eigenschaften dieser Materialklasse weiterhin 

ungeklärt. Ein häufig beobachtetes Phänomen ist die spontane Erhöhung des 

Wirkungsgrades frisch hergestellter Perowskit-Solarzellen, die über eine Zeitskala von 

einigen Tagen bis Wochen bei Lagerung bei Raumtemperatur auftritt. Der Ursprung dieses 

umstrittenen Phänomens ist eine Fragestellung, der im ersten Teil dieser Arbeit 

nachgegangen werden soll. Eine detaillierte Untersuchung zeigt, dass die spontane Erhöhung 

des Wirkungsgrades für eine Vielzahl von Multikationhalogenid Perowskit-Solarzellen mit 

unterschiedlichen Absorberzusammensetzungen und Bauteilarchitekturen auftritt. 

Trotz ihrer rasanten Entwicklung ist der Wirkungsgrad von einfachen Perowskit-Solarzellen 

nach oben theoretisch begrenzt (<30%). Tandemtechnologien zeigen jedoch einen Weg auf, 

dieses fundamentale Limit zu überwinden (>35%). Kürzlich haben vollständig Perowskit-

basierte Tandemsolarzellen, bestehend aus einer oberen Perowskit-Solarzelle mit hoher 

Bandlücke und einer unteren Perowskit-Solarzelle mit geringerer Bandlücke, eine neue 

Möglichkeit hin zu hocheffizienten aber gleichzeitig kostengünstigen Solarzellen eröffnet. 

In dieser Arbeit werden die Herausforderungen der Perowskit-Solarzellen mit geringer 

Bandlücke im Hinblick auf der Erzielung hocheffizienter Solarzellen diskutiert und 

Strategien zu deren Überwindung entwickelt.  

Zu Beginn dieser Arbeit wird durch Optimierung der Absorberzusammensetzung eine 

deutliche Verbesserung der Photostabilität in diesen Solarzellen erzielt. Dies ermöglicht die 

Herstellung stabiler Perowskit-Absorber mit Bandlücken von 1,26 eV, was einem breiten 

Photonenabsorptionsbereich entspricht, der sich bis zu ca. 1000 nm erstreckt. Eine generelle 

Einschränkung bei der effizienten Nutzung des Potenzials dieser Absorber sind die optischen 

Verluste durch alle vor dem Absorber mit geringer Bandlücke befindlichen Schichten in der 

Tandemkonfiguration.  

Diese Arbeit stellt sich der Herausforderung, die optischen Verluste auf zwei Arten zu 

reduzieren: (i) Ersatz der kommerziellen transparenten Frontelektrode durch eine gesputterte 
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hochtransparente Elektrode mit deutlich geringerer parasitärer Absorption im nahen 

infraroten Bereich (<2%) und (ii) Beseitigung der lochselektiven Transportschicht der 

Solarzelle mit geringer Bandlücke welche die optischen Verluste im kurzwelligen Bereich 

begrenzt. Als Ergebnis können stabile und effiziente vollständig Perowskit-basierte 

Tandemsolarzellen mit Wirkungsgraden von bis zu 24,8% demonstriert werden, was zu den 

höchsten bisher berichteten Werten für dieses Bauteilkonzept gehört. 
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Abstract 

Rising energy demand as well as a rapid increase in greenhouse gas emission emanating 

from fossil fuels call for a transition to alternative clean energy resources (renewables). 

Photovoltaics as an abundantly available and versatile source of energy plays a prominent 

role in maximizing the forward momentum of this transition. Perovskite solar cells with 

power conversion efficiencies exceeding 25% are among the most promising candidates for 

the new photovoltaics technologies. They are expected to play a key role in the future of 

photovoltaic technology not only due to their remarkable developments in terms of 

performance enhancement but also cost reduction. 

Over a decade, countless investigations into improving the performance of perovskite solar 

cells through optimizing device architecture and understanding the material properties have 

resulted in the constant development of perovskite solar cells. Nevertheless, a few effects 

still shadow our comprehension of the properties of this class of material. A common 

phenomenon is the spontaneous enhancement of power conversion efficiency of pristine 

perovskite solar cells that occurs over a timescale of a few days to weeks storage at room 

temperature. The genesis of this phenomenon, which has been under debate, is a question 

the first part of this thesis sets out to explore. A detailed investigation reveals that 

spontaneous enhancement of power conversion efficiency occurs for a variety of multi-

cation-halide perovskite solar cells with different perovskite compositions and device 

architectures. The structural analysis uncovered that a reduction in stain-induced trap states 

within the lattice structure of perovskite thin films is the origin of this phenomenon.  

Despite their rapid growth, the power conversion efficiency of single-junction perovskite 

solar cells is fundamentally limited (<30%). Fortunately, tandem technologies reveal a path 

to surpass this limitation (>35%). Recently, all-perovskite tandem solar cell configurations, 

consisting of a wide-bandgap top and a narrow-bandgap bottom perovskite solar cell, have 

opened a window into highly efficient yet cost-effective solar cells. In this thesis, the 

challenges of narrow-bandgap perovskite solar cells with respect to improving photo-

stability and achieving high efficiency solar cells are discussed and strategies to overcome 

them are developed.  

From the outset, composition engineering exhibits a pronounced improvement in the photo-

stability of narrow-bandgap perovskite solar cells. This allows for the development of a 

stable narrow-bandgap perovskite thin film, whose bandgap of 1.26 eV corresponds to a 

broad photon absorption range extending up to ≈1000 nm. One limitation in the way of 

exploiting the potential of this absorber is the optical losses in electrodes and top layers of a 

tandem configuration. This thesis meets the challenge of reducing the optical losses in two 

ways: (i) replacing the commonly used transparent electrodes with a sputtered highly 

transparent electrode with significantly low parasitic near-infrared absorption (<2%) and 

(ii) removing the hole transport layer of the narrow-bandgap bottom perovskite solar cells 

that limits the optical losses in the short wavelength region. As a result, stable and highly 

efficient four-terminal all-perovskite tandem solar cell attain power conversion efficiencies 
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as high as 24.8%, which is amongst the highest values reported for all-perovskite tandem 

solar cells to date.  
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Pb 
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SRH 

Sn 

SnBr2 

SnCl2 

SnF2 

SnI2 
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SQ 

STC 

TCO 
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UV 

UV-vis 

VAGC 

XPS 

XRD 
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maximum power point 

near-infrared 

nanoparticles of SnO2 

nanoparticles of TiO2 

lead 

lead iodide 

lead bromide 

lead thiocyanate 

[6,6]-Phenyl-C61-butyric acid methyl ester 

power conversion efficiency 

photoluminescence 

poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] 

perovskite solar cell 

photovoltaics 

physical vapor deposition 

spin coating deposition 

scanning electron microscopy 

Shockley-Read-Hall 

tin 

tin bromide 

tin chloride 

tin fluoride 

tin iodide 

stabilized power conversion efficiency 

2,2.,7,70-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,90-spirobifluorene 

Shockley-Queisser  

standard test condition; 100 mW/cm2, 25 C 

transparent conductive oxide 

thermally evaporated current 

ultraviolet 

ultraviolet-visible 

vacuum-assisted growth control 

X-ray photoelectron spectroscopy 

X-ray diffraction 
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1. Introduction 

 

Global demand for energy (electricity and heat) is expected to grow by 20-30% or more 

through 2040 and beyond.1 This growth is driven by population and economic development 

in developing countries, as energy consumption in developed countries is anticipated to 

remain constant.1 Fossil fuels (coal, oil, and natural gas) are the current dominant energy 

resources and provide 80% of humanity’s needs today.1 However, they are not suitable for 

addressing future energy demands. On the one hand, continued use will inevitably deplete 

them,2 and on the other hand, they have exacted a heavy price on our planet, from air and 

water pollution to climate change. They produce large quantities of greenhouse gases when 

burned, which trap heat in the atmosphere and lead to global warming.3 

Since pre-industrial times, the planet has warmed about 1 °C at a substantially faster rate 

than it warmed over the previous 7000 years.4 Without ambitious climate policies, adopted 

at an international scale to slow down the current rate of heating, global warming will be on 

track to increase the earth’s temperature by 3-5 °C by the end of this century.4 For the current 

global warming trend, all other natural explanations have been eliminated using direct 

observations.5 Instead rising concentrations of greenhouse gases, led by growing fossil fuel 

consumption, is the definitive main cause.5 The Paris Agreement united all nations in an 

ambitious undertaking to limit the rise in global temperatures to 2 °C in order to avert 

increases in extreme weather, rising sea levels, and the extinction of plant and animal 

species.6 To accomplish this, a determined focus on bringing down fossil fuel consumption 

is urgently needed. This calls for alternative clean energy resources (renewables), not only 

to sustain the future of the planet but also to reliably fulfill rising energy demands.7 

Renewable energies are expected to overtake coal and gas in power generation in the mid-

2030s and become the dominant source of electricity generation by 2040 (Figure 1.1a). 

Among the renewables, solar power is a versatile source of energy and abundantly available. 

Although solar power currently contributes to <20% of the total electricity generation from 

renewables, it will dominate electricity generation by 2050 with a share of 40% 

(Figure 1.1b).8 
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Between 1980 and 2019, economies of scale and technological improvements meant each 

doubling of the accumulated photovoltaic (PV) module output (in GWp), which was 

associated with a 25% relative reduction in price for commercially available solar PV 

technologies.9 In Germany, for example, prices for a typical PV rooftop-system decreased 

in average from 14,000 €/kWp in 1990 to 1,050 €/kWp in 2019, which is a net price 

regression of 92% over a 29-year period.9 Cost reduction is key to further development of 

PV across all markets and improving power conversion efficiency (PCE) of solar 

cells/modules is key to decrease costs. The PCE of the market-dominant silicon-based PV 

has nearly reached its theoretical limit in laboratory conditions,10 therefore, the industry is 

urged to continue working on alternative PV technologies to currently established crystalline 

silicon (c-Si) in order to continue obtaining gains. Tandem PV has been developed as a 

pathway to surpassing the theoretical limits for single-junction devices. It utilizes a 

combination of absorbers with different optical bandgaps that enables efficient harvesting of 

different shares of the Sun spectrum, outperforming the PCE of single-junction PV. Hence, 

tandem technologies are expected to maximize the forward momentum of the PV technology 

as it transitions into the leading source of electricity generation in the future.11 Perovskite 

solar cells (PSCs) with a tunable bandgap are the most promising film-based tandem partners 

for silicon.11 PSCs have been successfully partnered with c-Si solar cells in tandem 

configurations, with a current PCE record of 29.1% exceeding the PCE record of single-

junction c-Si (27.6%) and perovskite (25.5%) solar cells.12  

PSCs are expected to play a key role in the future of PV solar energy system due to the 

impressive developments in terms of performance enhancement and cost reduction. The PCE 

of single-junction PSCs has rapidly raised from only 3.8% in 200913 to its current record of 

25.5%12 over a decade of intense research. PSCs are becoming more pronounced because 

aside from their rapid growth of efficiency, they are highly cost-effective and therefore a 

possible alternative for silicon-based PV (with a market dominance of 95%). Perovskites can 

be processed from inexpensive precursor materials using a variety of low-temperature and 

Figure 1.1. (a) growth in electricity generation by renewables. (b) share of solar energy in electricity 

generation from renewables. Based on the International Energy Outlook 2019 with projections to 2050.8 

(www.eia.gov/outlooks/ieo/pdf/ieo2019.pdf. All rights reserved.) 
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scalable fabrication methods ranging from solution- to vacuum-based.14–17 Moreover, thanks 

to their tunable bandgap,18–23 they are also ideal candidates to replace the c-Si bottom cell in 

a tandem configuration. Consequently, all-perovskite tandem solar cells (all-PTSCs), 

composed of semi-transparent top and narrow-bandgap bottom PSCs, have been promoted 

as possible strategies to surpass the theoretical limits of single-junction PSCs while 

benefiting from low-temperature and low-cost fabrication methods.  

Despite recent advances, all-PTSCs with a current PCE record of 25%,21 lag behind their Si-

based tandem counterparts, and therefore further intensive research efforts and new 

strategies are still needed to exploit the potential of this new technology. So far most studies 

have been focused on developing and optimizing wide-bandgap PSCs and their applications 

as the top cell in perovskite/Si tandem solar cells.24–28 Meanwhile the PCE of the single-

junction narrow-bandgap PSC, which is used as the bottom cell in all-PTSC configurations, 

has recently reached 20%.21–23,29,30 Aside from the comparatively lower efficiency of 

narrow-bandgap PSCs, their stability is another key challenge in the way of all-PTSCs to 

commercialization. The crystal structure of perovskite semiconductors strongly affects the 

stability of perovskite thin films and compositional engineering is an established strategy to 

adapt the crystal structure of perovskite materials to improve the stability of the respective 

PSCs.31 In this thesis, the possible effects of Cs incorporation on improving the efficiency 

and operational photo-stability of narrow-bandgap perovskite solar cells is one of the 

research questions set to be investigated.  

Followed by the application of the highly stable and efficient narrow-bandgap PSCs as 

bottom cells in four-terminal (4T) all-PTSCs, we explored the possible pathways in 

improving the PCE of the all-PTSCs. Although the top and bottom solar cells in a 4T tandem 

device can work independently, they are optically interlinked such that the optical losses in 

the layer stack of the top cell can directly influence the performance of the bottom cell and 

consequently the overall performance of the tandem solar cell. The primary factors 

increasing the optical losses in all-PTSCs are parasitic absorption (caused primarily by the 

front and rear transparent conductive oxide (TCO) electrodes)32–36 and unfavorable 

reflection (partly caused by TCO electrodes and partly by various interfaces within the 

tandem stack structure).37,38 These losses diminish the transmission of the semi-transparent 

top PSC, consequently reducing the share of the solar spectrum reached by the bottom PSC 

and therefore its PCE. This work aims to reduce the optical losses caused by TCO front 

electrodes in both top and bottom solar cells of all-PTSC devices by utilizing a TCO with 

high transmittance and low parasitic absorption.33,36 Furthermore, removing the hole 

transport layer (HTL) in the narrow-bandgap bottom PSC is determined as a method to 

further reduce the absorption loss at this layer without compromising other PV 

characteristics. In this context, this thesis investigates the second research question, i.e., what 

are the possible pathways to decrease optical losses introduced by transparent conductive 

oxide electrodes and the layer stack in a four-terminal all-perovskite tandem solar cell? 

The constant development in efficiency, stability, and scalability of PSCs over a decade is a 

consequence of countless investigations into improving perovskite material compositions, 
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morphology, interfaces, and device architecture; as well as understanding material properties 

and device-relevant effects such as degradation mechanisms associated with various factors 

(e.g., light, heat, bias, moisture, oxygen, or their combinations). Nevertheless, there are still 

some effects that shadow our comprehension of perovskite material properties. One of these 

effects is a very common observation whereupon the PCE of pristine PSCs tends to 

spontaneously enhance and reach its highest value a few days after device fabrication.39–44 

Despite several efforts, a systematic study on the genesis of this phenomenon is still missing. 

We refer to this phenomenon as spontaneous enhancement within this thesis and aim at 

providing a systematic study that can shed light on the underlying mechanisms of this 

phenomenon by applying a combination of characterizations. This leads us to the next 

research question of this thesis: What are the underlying mechanisms initiating spontaneous 

enhancement of the power conversion efficiency of pristine multi-cation perovskite solar 

cells? 

The scope of this thesis is outlined as follows: 

Chapter 2: This chapter starts with a detailed discussion on structural, optical, and electronic 

properties of metal-halide perovskite materials, followed by a fundamental review of the 

working principle of single-junction and tandem solar cell configurations. 

Chapter 3: This chapter introduces the material, fabrication methods, and the 

characterization tools implemented in this thesis. 

Chapter 4: The scope of this chapter is an evaluation of underlying mechanisms initiating 

spontaneous enhancement of the power conversion efficiency of multi-cation perovskite 

solar cells.  

Chapter 5: This chapter deals with optimizing narrow-bandgap perovskite solar cells with 

improved stability as well as its application in an all-perovskite tandem solar cells 

configuration, providing respectable power conversion efficiency compared to recent 

reports. 

Chapter 6: This chapter presents further research in improving the performance of all-

perovskite tandem solar cells with a focus on reducing parasitic absorption losses from the 

top and bottom perovskite solar cells. The first part of this chapter is an experimental 

investigation of hole-transport-layer-free narrow-bandgap perovskite solar cells, followed 

by characterizations on this class of perovskite solar cells fabricated on different transparent 

conductive oxide in the absence of a hole transport layer. The second part explores 

alternative transparent conductive oxide electrodes for the top cell and their influence on the 

overall performance of all-perovskite tandem solar cells. 

Chapter 7: This chapter outlines the key findings of this study and provides an outlook for 

the discussed topics. 
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2. Theoretical Background 

 

A photovoltaic solar cell is an electrical device that generates electricity when exposed to 

electromagnetic solar radiation (photons). In general, a thin slice of a semiconductor 

material, which is connected to an external circuit through two contacts, generates free 

charge carriers upon interaction with incident radiation. The effectiveness of a solar cell 

highly depends on the choice of the light-absorbing semiconductor material and the way 

whereby the semiconductor is connected to the external circuit.  

Metal-halide perovskite semiconductors, which are the focus of this thesis, are proved to be 

promising light-absorbing semiconductor candidates for solar cell photovoltaics due to their 

excellent optical and electronic properties, such as tunable bandgap,45,46 high absorption 

coefficient,47 low exciton binding energy,48,49 long diffusion length,50 high charge carrier 

mobilities,51,52 and low non-radiative recombination rates,51,52 which are essential for 

photovoltaic applications.53 This chapter begins with an overview of the structural properties 

of this class of material, followed by a detailed discussion on their superior photovoltaic 

properties and their application in single-junction and all-perovskite tandem solar cell 

devices. 

2.1. Hybrid organic-inorganic perovskite semiconductors  

A family of compounds with a general formula of ABX3 are called perovskites, named after 

the mineralogist Count Lev Aleksevich Perovski. A and B are cations (usually large- and 

middle-sized, respectively) and X is an anion. Perovskites are realized to possess very useful 

physical and chemical properties that, more importantly, can be modified in a controlled way 

by replacement of any of the A, B, and X ions. A complex composition of this family is 

called organic-inorganic metal-halide perovskites. This section summarizes the most 

important properties of these materials. 

2.1.1. Structural properties of ABX3 halides 

The crystal structure of ABX3 is generally described as an arrangement of the A-site located 

in the center of a cuboctahedral with corner-sharing BX6 octahedra (Figure 2.1, left). From 

a crystallographic perspective, an idealized perovskite structure is a cubic structure 
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(Figure 2.1). The size and interaction of the A-site and BX6 octahedra determine the structure 

of an ABX3 compound.54 The Goldschmidt tolerance factor (𝑡) and octahedral factor (𝜇), 

which is a measure of octahedral stability, are suggested to predict whether a combination 

of A, B, and X forms a stable perovskite structure.54 These factors are defined as follows: 

where 𝑟A, 𝑟B, and 𝑟X are the ionic radii of the respective atoms. A 𝑡-𝜇 structure map, which 

is a plot of 𝑡 vs. 𝜇 can be used to assess whether an ABX3 is a perovskite structure. Figure 2.2 

shows such a 𝑡-𝜇 structure map which was established on a study in which 96% of 186 

different compounds were correctly classified.54 According to this map, a stable ABX3 halide 

perovskite structure with (X = F, Cl, Br, and I) forms if 0.87 < 𝑡 < 1.1 and 𝜇 > 0.44, 

approximately. When 𝑡 = 1, the perovskite structure is adopted to an ideal cubic structure. 

In the lower range (𝑡 ≈ 0.87) the cubic structure might be distorted due to tilting of the BX6 

octahedra and leading to less symmetric tetragonal and orthorhombic structures. If 𝑡 > 1, the 

A-site is too large, and if 𝑡 < 0.8, the A-site is too small, which leads to a formation of non-

perovskite structures.53 For perovskite materials with more complex compositions, the 

concept of 𝑡 and 𝜇 can be extended. For example, for a mixed-cation perovskite with a 

composition AyAʹ1-yBX3, the tolerance factor can be determined as 𝑡 =  
𝑦 𝑟A + (1−𝑦) 𝑟𝐴ʹ + 𝑟X

√2 (𝑟B + 𝑟X)
.55  

Furthermore, the ABX3 perovskite structures are temperature- and pressure-sensitive, which 

will be briefly discussed in the next section. Detailed studies about the phases of a perovskite 

structure and its correlation with ambient temperature and pressure conditions are beyond 

the scope of this thesis and can be found in references [55] and [56].  

2.1.2. Structural stability of metal-halide perovskites 

Metal-halide perovskite semiconductors possess a chemical structure of ABX3 with an 

idealized cubic crystal structure shown in Figure 2.1. The A-site is large enough to 

 𝑡 =  
𝑟A + 𝑟X

√2 (𝑟B + 𝑟X)
     ,     𝜇 =

𝑟B

𝑟X
 2.1 

Figure 2.1. Idealized cubic structure of ABX3 perovskite (left panel), unit cell with A at the corner of 

the cubic cage, B at the body-center, and X at the face-center positions (center panel), and BX6 octahedra 

(right panel). 
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accommodate complex organic ions like formamidinium (NH2=CHNH2)
+, written as FA+, 

and methylammonium (CH3NH3)
+, written as MA+, as well as inorganic ions like cesium 

(Cs+). B-site is occupied with a divalent metal from elements of group 14 germanium (Ge2+), 

tin (Sn2+), and/or lead (Pb2+). X-site is filled with halogen chloride (Cl−), bromide (Br−), 

and/or iodide (I−). The combination of these ions in the A-, B-, and X-sites not only 

determines the structural phase and stability of ABX3 metal-halide perovskites but also 

determines whether the properties of the resulting structure are suitable for photovoltaic 

applications.  

In general, organic-inorganic metal-halide perovskites are realized to have three perovskite 

(black) phases with cubic (denoted as α-phase), tetragonal (denoted as β-phase), and 

orthorhombic (denoted as γ-phase) structures as well as non-perovskite (yellow) phases with 

hexagonal (denoted as δH-phase) and orthorhombic (denoted as δO-phase) structures.31,53 

Different compositions may stabilize in one of these phases at different temperatures. The 

archetypal MAPbI3 composition (referred to as MAPI) shows phase transitions at 165 and 

327 K. It has a non-perovskite (orthorhombic) δO-phase for T < 165 K, a perovskite 

(tetragonal) β-phase between 165 < T < 327 and a perovskite (cubic) α-phase for 

T > 327 K.57 FAPbI3 composition is an example of a non-perovskite structure at room 

temperature. This composition is only stable in a perovskite (cubic) α-phase at a high 

temperature of 423 K, while the large ionic radius of FA+ (𝑟𝐴 = 2.53 Å) causes a transition 

to a non-perovskite (hexagonal) δH-phase at room temperature. CsPbI3, on the other hand, 

has a too-small tolerance factor (𝑡) due to the relatively small ionic radius of Cs+ 

(𝑟𝐴 = 1.74 Å) and at room temperature stabilizes in a non-perovskite orthorhombic 

(δO-phase), while its perovskite (cubic) α-phase is only attainable at a temperature higher 

than 573 K.58  

Compositional substitution, as a well-established approach, enables us to tune the tolerance 

(𝑡) and octahedra (𝜇) factors in the relevant ranges to form a stable perovskite structure at a 

Figure 2.2. The 𝑡-𝜇 structure map; tolerance factor (𝑡) vs. octahedral factor (𝜇) for ABX3 halides. 

Reproduced from [54]. 
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finite temperature with desired properties. For example, the unwanted phase transition of 

FAPbI3 at room temperature, from cubic (α-phase) to hexagonal (δH-phase), can be 

prevented by partial substitution of FA+ with Cs+ with a relatively smaller ionic radius.59 

Incorporation of Cs+ results in a contraction of cuboctahedral volume which consequently 

enhances the interaction between FA+ and I− and leads to a better photo- and moisture-

stability.59 In general, using mixed cations has been realized as a convenient strategy to 

create stable perovskite structures. In particular, using a triple-cation mixture (CsFAMA) 

with a perovskite (cubic) α-phase at room temperature, was introduced as a novel strategy 

to effectively suppressing yellow phase impurities and facilitating a pure defect-free 

perovskite thin film.60 

2.1.3. Optoelectronic properties of metal-halide perovskites 

Bandgap tunability 

While the organic and/or inorganic components (A-site) mainly determine the structural 

phase stability of an ABX3 composition, the divalent metal cation (B-site) and halogen anion 

(X-site) and their interaction determine whether the electronic properties (e.g., electronic 

bandgap) of the resulting perovskite would be advantageous for photovoltaic applications. 

Theoretical investigations, particularly based on the density functional theory (DFT) method 

revealed that (i) organic/inorganic metal-halide perovskites (ABX3) are semiconductors with 

direct bandgaps for which (ii) the valence band maximum forms by an antibonding 

combination of s-orbitals of the metal and p-orbitals of the halide, whereas (iii) the 

conduction band minimum is a combination of less antibonding and more nonbonding 

p-orbitals of the metal and halide.61 Therefore, a compositional substitution that leads to 

alteration in the B−X overlap changes the bandgap of the resulting perovskite. If the 

alteration (substitution or phase transition) reduces the distance between metal (B-site) and 

halogen (X-site), the energy of the valence band maximum increases more than the energy 

of the conduction band minimum.45,62 Therefore, a larger B−X overlap results in a smaller 

bandgap and a decreased B−X overlap increases the bandgap.45  

Bandgap alteration upon phase transition is reported, as would be expected. For example, at 

a phase transition from tetragonal (at room temperature) to orthorhombic (at low 

temperature), the bandgap of MAPI increases by ~100 meV.63 In contrast, band-edge states 

of MASnI3 do not change at its phase transitions from cubic (at room temperature) to 

tetragonal to orthorhombic (at low temperature).64 However, compositional engineering, 

which is a way to control perovskite structure, can also tune its bandgap conveniently in a 

controlled way. Experimental work has shown that a wide range of bandgaps between 1.10-

1.55 eV (by tuning the ratios of Sn:Pb)45,65,66 and 1.5-2.3 eV (by tuning the ratios of 

I:Br)27,46,67 is attainable. Increasing Br content results in a larger bandgap. Substitution of Pb 

with Sn (partial or total) can decrease the bandgap to very low values, although reduced 

stability due to the formation of Sn4+ (an oxidation product of Sn2+) is an issue. Bandgap 

tunability is an advantage for metal-halide perovskite semiconductors making them suitable 

candidates for photovoltaic applications such as solar cells. 



Theoretical Background 

9 

 

High absorption coefficient 

Whereupon interaction of a semiconductor with incident photons (i) all photons with energy 

equal to or greater than the bandgap of the semiconductor (ℎ𝜈 ≥  𝐸g) can be absorbed and 

(ii) all photons with energy less than the bandgap of the semiconductor (ℎ𝜈 <  𝐸g) are 

transmitted. Absorbed photons generate excitons (electron-hole pairs) by exciting electrons 

from the valence band to the conduction band of the semiconductor. If the photon energy is 

much larger than the bandgap, the excited electron or generated hole releases the excess 

energy (ℎ𝜈 − 𝐸g) to reach thermal equilibrium (conduction band minimum (𝐸C) for electrons 

or valence band maximum (𝐸V) for holes) and the released energy transforms into lattice 

vibration and creates heat. This process is called thermalization. Figure 2.3 illustrates these 

processes schematically.  

If 𝐼0 is the intensity of the incident light at the top surface (neglecting reflection at the 

interface) of a semiconductor with an absorption coefficient of 𝛼 (in cm-1), the intensity of 

light at a distance in the material (𝑥) can be calculated according to Beer-Lambert law: 

This equation shows that the light intensity decreases exponentially within a semiconductor 

and drops to 1/𝑒 of its initial value at 𝑥 = 1/𝛼. This distance is called absorption depth at 

which 63% of the incident light is absorbed through the material. As schematically shown 

in Figure 2.3, photons with much larger energies (shorter wavelength) are absorbed within a 

short distance inside the semiconductor, while photons with lower energies (longer 

wavelength) penetrate deeper into the material. Therefore, the semiconductor is required to 

be sufficiently thick (𝑑 > 1/𝛼) to absorb most of the incident light.  

 𝐼 (𝑥) = 𝐼0 𝑒−𝛼𝑥 2.2 

Figure 2.3. Absorption of photons with different wavelengths in a semiconductor. If the energy of the 

photon (ℎ𝜈) is much higher than the bandgap (𝐸g), the excited electron is thermalized to the conduction 

band minimum. 𝐸V and 𝐸C represent the valence band maximum and conduction band minimum, 

respectively. 
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Conclusively, semiconductors with very high absorption coefficient are not required to be 

too thick to absorb most of the incident light. Thinner thickness means shorter paths for 

charge transport in the material, and therefore a reduction in the possibilities of 

recombination. Very thin metal-halide perovskite semiconductors with higher absorption 

coefficient, compared to other semiconductors such as GaAs (direct bandgap) and c-Si 

(indirect bandgap), are excellent choices to be used as the absorber layers in solar cells. The 

absorption coefficient of a MAPI film with only 220 nm was shown to be >104 cm-1 for 

wavelength below 700 nm (Figure 2.4).47 This guarantees high absorption particularly in the 

visible light range, which is critical for high efficiency solar cell devices. Furthermore, the 

absorption onset occurs at higher absorption coefficients than all the other most comparable 

semiconductors explaining why even a very thin perovskite film is sufficient for solar cell 

applications. The most efficient perovskite solar cells (PSCs) with high efficiencies have 

employed perovskite thin films in the range between 300-600 nm which is almost three 

orders of magnitude thinner than silicon solar cells.  

Exciton generation 

Equation 2.2 can be used to calculate the number of photogenerated electron-hole pairs. 

Assuming that the absorption of photons directly generates electron-hole pairs, then the 

generation rate (𝐺) in a thin slice of material (𝑑𝑥) is determined by finding the change in 

light intensity across this slice (𝑑𝐼). Therefore, the generation rate at any point in the device 

(𝑥) can be calculated as follows: 

where 𝑁0 is photon flux at the surface and 𝛼 is the absorption coefficient. The above equation 

shows that at the surface of the material (𝑥 = 0), the generation rate is maximum, while 

further into the solar cell the generation rate becomes nearly constant. Since the incident 

light consists of a combination of many different wavelengths, the generation rate at each 

 𝐺 (𝑥) = 𝛼 𝑁0 𝑒−𝛼𝑥 2.3 

Figure 2.4. Absorption coefficient of a 200-nm perovskite thin film (MAPI) compared with other 

common photovoltaic materials such as gallium arsenide (GaAs) and crystalline Silicon (c-Si), all 

measured at room temperature. Reproduced from [47]. 
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wavelength is different, and therefore the net generation is the sum of the generation for each 

wavelength.  

Low exciton binding energy  

Exciton binding energy determines whether the primary charges are free carriers or bound 

as excitons (electron-hole pairs). Due to their high dielectric constant,68 organic-inorganic 

metal-halide perovskites have low exciton binding energy, which results in an ultra-fast and 

spontaneous exciton dissociation upon light absorption and consequently a balanced high 

population of free charge carriers (both electrons and holes).48,49 

Using a high magnetic field, the exciton binding energy of MAPI was measured to be only 

16 ± 2 meV at low temperature and even smaller (a few millielectronvolts) at room 

temperature.48,49 Additionally, femtosecond pumped transient THz spectroscopy revealed 

that free charge carriers in MAPI thin films are generated within 2 ps, indicative that the 

absorption essentially generates free carriers.69  

Low charge recombination rate 

After being generated, a free charge carrier can recombine with another charge carrier of the 

opposite type. There are three kinds of recombination in the bulk of a semiconductor: 

radiative band-to-band, non-radiative Shockley-Read-Hall (SRH), and non-radiative Auger 

recombination (Figure 2.5). Upon band-to-band recombination, an electron from the 

conduction band recombines with a hole in the valence band and releases a photon with an 

energy equal to the bandgap. Therefore, it is radiative and dominates in semiconductors with 

direct bandgaps. Band-to-band recombination, which involves two particles, is bimolecular. 

SRH occurs through defects in the crystal lattice of the material. An electron (hole), which 

is trapped by a defect-induced energy state located in the bandgap (energetically), can non-

radiatively recombine with a trapped hole (electron) at the same energy state. SRH 

Figure 2.5. Schematic of, from left to right, radiative band-to-band, trap-assisted nonradiative 

Shockley-Read-Hall (SRH), and non-radiative Auger recombination. 



Theoretical Background 

12 

 

recombination is monomolecular recombination and dominates at low charge carrier 

densities. Those traps which are located near any either of two band edges (conduction band 

minimum and valence band maximum) are called shallow traps and are less likely to cause 

SRH recombination because the trapped electron (hole) is more likely to be re-emitted to the 

conduction (valence) band. By contrast, near mid-gap (deep) traps are very effective for SRH 

recombination. Upon Auger recombination, the energy of electron-hole recombination is 

given to another electron (hole) in the conduction (valence) band rather than emitting a 

photon. This electron (hole) thermalizes back to the conduction (valence) band edge. Auger 

recombination, which involves three particles, is trimolecular and dominates at high charge 

carrier densities. 

Perovskite semiconductors have shown all three recombination pathways.70 However, the 

charge recombination rates are surprisingly low in these materials. An excellent 

experimental work revealed that the monomolecular recombination rate ranges between 5 

and 15 μs-1 for metal-halide perovskites, which is indicative of low trap- or impurity-assisted 

recombination in contrast with other commonly used materials such as GaAs.52,71  

Long charge carrier diffusion length 

Low non-radiative recombination rates of metal-halide perovskites are associated with long 

lifetimes and are consistent with long electron-hole diffusion lengths. Diffusion length (𝐿𝐷) 

is a distance that a free photogenerated charge carrier (electron or hole) travels inside a 

semiconductor before recombining. Mobility (𝜇) and lifetime (𝜏) of a free charge carrier are 

the main factors in determining the diffusion length, such that: 

where 𝑘B is the Boltzmann constant, 𝑞 is the electron charge, and 𝑇 is the sample 

temperature. As discussed earlier, the absorption coefficient (𝛼) is a factor to determine the 

required minimum thickness of the absorber layer of a solar cell device. The diffusion length 

of the free charge carriers, on the other hand, sets an upper limit to the thickness such that, 

1 𝛼⁄ < 𝑑 < 𝐿𝐷.  

The charge carrier diffusion length of metal-halide perovskite semiconductors is estimated 

(experimentally and theoretically) to be of the order of microns, while their absorption 

coefficient requires their minimum thickness to be only several hundreds of 

nanometers.50,52,72 More importantly, the diffusion length for electrons and holes is well-

balanced, which is essential for extracting both carriers efficiently in thin film solar cell 

configurations.73 Therefore, from this perspective, perovskite semiconductors are excellent 

absorbers for solar cell applications. Experimental results, validated with density functional 

theory (DFT) calculation, show that the charge carrier diffusion length exceeds 10 µm with 

an associated lifetime of ~1 µs.21,72 Related to the carrier diffusion lengths is the charge 

carrier mobility. Although theoretical calculations estimate high values for mobilities of 

charge carriers in perovskite, comparable to those of crystalline inorganic semiconductors, 

 

𝐿𝐷 = √
𝜇 𝑘B 𝑇

𝑞
. 𝜏 2.4 
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experimental values derived from different characterization methods, such as Hall effect,51 

field-effect transistors,74 and time of flight,75 are not always coherent.  

The unbalanced transport of free carrier in most semiconductors is due to different effective 

masses of electrons and holes (𝑚𝑒
∗  and 𝑚ℎ

∗ ). Startlingly, free electrons and holes in metal-

halide perovskite semiconductors are evidenced to have similar effective masses (𝑚e
∗ =

0.23 𝑚0 and 𝑚h
∗ = 0.29 𝑚0) that leads to their balanced transport.76 These values, which 

are estimated for MAPI including spin-orbit coupling effects, are slightly greater than the 

theoretical values (𝑚e
∗ = 0.12 𝑚0 and 𝑚h

∗ = 0.15 𝑚0).77 The slightly larger hole’s effective 

mass compared to electron, leads to its slightly shorter diffusion length (lower mobility).  

2.2. Application of metal-halide perovskites in solar cells 

Tunable bandgap, high absorption coefficient, low exciton binding energy, low non-

radiative recombination rates, high charge carrier mobilities, and long diffusion length are 

all superior optoelectronic properties making organic-inorganic metal-halide perovskites 

excellent candidates as the absorber layer in solar cell configurations, which is the focus of 

the following section. 

2.2.1. Working principles of perovskite solar cells 

A PSC is a p-i-n (or n-i-p) junction consisting of a metal-halide perovskite as the intrinsic 

(i) semiconductor sandwiched between two doped selective layers: a p-type and an n-type 

semiconductor. As illustrated in Figure 2.6, the operational principle of a PSC includes four 

basic attributes: (i) photon absorption by perovskite absorber layer, (ii) ultra-fast 

spontaneous exciton dissociation into free charge carriers (electrons and holes), (iii) charge 

extraction through selective layers (p and n layers), and (iv) charge collection at respective 

electrodes.  

Charge Extraction 

As discussed earlier, photon absorption in perovskite semiconductors leads to generation of 

free carriers. Therefore, in contrast to organic and dye-sensitized solar cells, PSCs do not 

Figure 2.6. Schematic of the physical processes in a p-i-n perovskite solar cell: (1) absorption of 

photons, (2) generation of free charge carriers, (3) selective extraction of charges, and (4) collection 

of charges by the contacts. 
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Figure 2.7. Schematic model of energy levels of an n-type (with a low work function 𝜙𝑛), an intrinsic, 

and a p-type (with a high work function 𝜙𝑝) semiconductor in (a) isolation and when connected as a 

p-i-n heterojunction (b) in equilibrium (in the absence of light and bias voltage), (c) upon illumination 

at open circuit condition. 



Theoretical Background 

15 

 

require heterojunction interfaces to dissociate the electron-hole pair. However, the n-type 

and p-type selective layers in Figure 2.6, which are often termed as electron transport layer 

(ETL) and hole transport layer (HTL), respectively, act to modify the electrodes’ work 

functions and assist in efficient extraction of free charge carriers by reducing the electrode-

junction potential barriers. Figure 2.7a illustrates the energy levels of an n-type, an intrinsic 

(perovskite), and a p-type semiconductor in isolation. When connected as a p-i-n solar cell 

in equilibrium (in the absence of light and biased voltage), Fermi levels of n and p layers 

align across each other at the same height. The difference in the work functions of the n and 

p selective layers (ETL and HTL) build a built-in field (𝑞𝑉bi) across the active layer 

(perovskite) which acts as a driving force for charge carrier extraction (Figure 2.7b). 

However, upon illumination (Figure 2.7c) electrons in the perovskite layer are promoted 

from 𝐸V to 𝐸C. The light causes the Fermi level to split into two separate Fermi levels, so-

called quasi-Fermi levels for the electrons (𝐸F
𝑛) and holes (𝐸F

𝑝
). This light-induced quasi-

Fermi level separation creates a photovoltage, which is equal to the difference between the 

two quasi-Fermi levels. At open-circuit condition (not connected to an external load) this 

photovoltage defines the maximum voltage of a photovoltaic device (𝑉OC). At the open-

circuit condition, the conduction and valence bands of the semiconductor shift and create an 

equilibrium (flat bands). When connected to an external circuit, separated electrons and 

holes are selectively extracted from perovskite by ETL and HTL, respectively, and finally 

collected at the electrodes. 

Band-alignment engineering at the ETL/perovskite and perovskite/HTL plays a prominent 

role in efficient charge extraction (or charge blocking) and affects the performance of the 

resulting PSC.78,79 An ETL with a shallower conduction band (HTL with deeper valence 

band) than that of the perovskite semiconductor acts as a potential barrier, and therefore 

hampers electron (hole) extraction at the ETL/perovskite (HTL/perovskite) interface. While 

electrons (holes) will be extracted effortlessly if the conduction band (valence band) of ETL 

Figure 2.8. Schematic illustration of single-junction perovskite solar cells with typical (a) p-i-n and 

(b) n-i-p structures. 
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is deeper (shallower) than that of the perovskite semiconductor. Additionally, ETLs and 

HTLs also play the role of blocking charges of the opposite types. As illustrated in 

Figure 2.7c, an ETL with a deeper valence band (an HTL with shallower conduction band) 

than that of the perovskite semiconductor acts as a potential barrier and effectively blocks 

holes (electrons) preventing them from recombination at the ETL/perovskite 

(HTL/perovskite) interface. Therefore, from an energetic perspective, ideal ETLs (HTLs) 

are those with deeper (shallower) conduction and valence bands.78,79 Here, shallower and 

deeper bands are compared to the vacuum energy level (𝐸vac). 

P-i-n and n-i-p single-junction perovskite solar cells  

Depending on the order of the stacked layers, a typical single-junction PSC has two common 

structures (Figure 2.8): n-i-p (standard) and p-i-n (inverted). A transparent conductive oxide 

(TCO) is typically used as the front electrode, while a metal electrode (gold (Au), silver 

(Ag), or copper (Cu)) is used as the back contact. The most common TCOs, ETLs, HTLs, 

and metal contacts as well as their band diagrams are illustrated in Figure 2.9. As shown in 

this figure, SnO2 and TiO2, which are the most common ETLs in n-i-p structures, have 

significantly deeper valence band maximums than the archetypal MAPI, which means they 

are very good hole blockers. On the other side, the most common HTLs like spiro, NiO, and 

PTAA with remarkably shallower conduction band minimums are very good electron 

blockers. C60 is the most common ETL in a p-i-n structure that is usually coated with a thin 

layer (~3 nm) of BCP atop as a hole blocker at the ETL/metal contact interface and avert 

recombination at this interface.  

2.2.2. Photovoltaic characteristics of a solar cell 

Current-density–voltage characteristics 

In its simplest way, a solar cell is modeled by an electrically equivalent circuit composed of 

a single-diode in parallel with a current source, which is the photogenerated current under 

Figure 2.9. The band diagrams of the most common ETLs (green bars) and HTLs (blue bars) as well as 

transparent front (ITO, FTO) and metal back (Au, Ag, Cu) electrodes, compared to the archetypal MAPI 

perovskite. 
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sunlight illumination (Figure 2.10).80 Furthermore, a shunt (𝑅sh) and a series (𝑅s) resistance 

are added to represent any leakage current path due to imperfections and electrical resistance 

of the solar cell, respectively. The current produced by this circuit (equivalent to the current 

produced by the solar cell) is equal to photogenerated current (𝐼ph) and dark current of a 

diode (𝐼d) determined by the Shockley diode equation and shunt current (𝐼sh) determined by 

Ohm’s law: 

Minus in Equation 2.5 shows that 𝐼d and 𝐼sh are in the opposite direction. Considering the 

active area of the solar cell (𝐴), the output current density (𝐽 = 𝐼 𝐴⁄ ) of this circuit is then 

given by: 

where 𝐽0 is the dark saturation current density, n is the ideality factor of the diode, q is the 

electron charge, 𝑘B is the Boltzmann constant and T is temperature. The current-density–

voltage (J–V) characteristics of an ideal solar cell are approximated assuming that the effects 

of parasitic resistances are neglected (𝑅s = 0 and 𝑅sh → ∞). Hence, Equation 2.7 is 

simplified to: 

If the applied voltage is zero (𝑉 = 0), the current flowing through the solar cell (so-called 

short-circuit current (𝐽SC)) is 𝐽(0) = 𝐽SC ≈ 𝐽ph. This is the maximum current a solar cell can 

produce. At open-circuit condition (𝑉 =  𝑉OC) no current is flowing through the solar cell 

(𝐽 = 0) and therefore:  

 

 𝐼 = 𝐼ph − 𝐼d − 𝐼sh 2.5 

 𝐽 = 𝐽ph − 𝐽d − 𝐽sh 2.6 

 
𝐽(𝑉) = 𝐽ph − 𝐽0 [exp (

𝑞(𝑉 + 𝐽(𝑉) 𝐴 𝑅s)

𝑛 𝑘B 𝑇
) − 1] −

𝑉 + 𝐽(𝑉) 𝐴 𝑅s

𝑅sh
 2.7 

 
𝐽(𝑉) ≈ 𝐽ph − 𝐽0 [exp (

𝑞 𝑉

𝑛 𝑘B 𝑇
) − 1] 2.8 

 
𝐽(𝑉𝑂𝐶) ≈ 𝐽ph − 𝐽0 [exp (

𝑞 𝑉𝑂𝐶

𝑛 𝑘B 𝑇
) − 1] = 0 2.9 

Figure 2.10. An equivalent scheme of a solar cell based on a single-diode model. 
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Hence, open-circuit voltage (𝑉OC) can be approximated by: 

here the (+1) term can be neglected because the 𝑉OC of PSCs is typically large (in the range 

of several hundreds of microvolts). 

The J–V characteristics determine the performance of a solar cell. Figure 2.11 shows typical 

J–V characteristics and the corresponding generated power output density of a solar cell. The 

generated power density of a solar cell is given by 𝑃 = 𝐽𝑉. It is apparent that at short-circuit 

(𝑉 = 0) and open-circuit (𝐽 = 0) conditions no power is extracted from a solar cell. 

However, power output density reaches its maximum at an operating optimum point referred 

to as maximum power point (MPP), where the product of the current and voltage is 

maximum, therefore:  

Fill factor (FF) is defined as a proportionality constant describing the ratio between 

𝑉MPP 𝐽MPP and 𝑉OC 𝐽SC: 

This equation determines the squareness of the J–V characteristics (the ratio of the dark red 

and the light red rectangles in Figure 2.11a). The influence of 𝑅s and 𝑅sh on the J–V 

characteristics is shown in Figure 2.12. It is apparent that these resistances influence FF 

significantly. Therefore, FF can be a measure of imperfections in a solar cell, such that a 

solar cell with lower FF suffers from high 𝑅s and low 𝑅sh. 

 
𝑉OC ≈

𝑛 𝑘B 𝑇

𝑞
ln (

𝐽ph

𝐽0
+ 1) 

2.10 

 𝑃MPP = 𝐽MPP 𝑉MPP 2.11 

 
FF =

𝐽MPP 𝑉MPP

𝐽SC 𝑉OC
< 1 

2.12 

Figure 2.11. (a) typical current-density–voltage (J–V) characteristics. (b) Corresponding power output 

density of a solar cell under illumination. Denoted are the short-circuit current (𝐽SC), the open-circuit 

voltage (𝑉OC), as well as current-density (𝐽MPP) and voltage (𝑉MPP) at maximum power point (MPP). 
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The power conversion efficiency (PCE), which is the most important characteristic of a solar 

cell, is the power density at MPP as a fraction of the incident light power density: 

Based on this equation, the PCE of a solar cell depends on the power and the spectrum of 

the incident light. Therefore, to facilitate an accurate comparison between efficiencies of 

different solar cells a well-defined standard test condition (STC) is required for measuring 

the J–V characteristics (see Section 3.2.2). 

The J–V characteristics (Figure 2.11a) is determined by sweeping an applied bias across the 

terminals of a solar cell over a predetermined voltage range and measuring the current 

flowing through the external circuit, while the solar cell is exposed to an ‘AM1.5G’ spectrum 

at 25 °C. The ‘AM1.5G’ spectrum with an integrated power density of 1000 W/m2 is the 

standard spectrum, which simulates the sun’s radiation at the earth’s surface (Figure 2.13a). 

G stands for global and AM1.5 stands for air mass, which quantifies the reduction in the 

power of the sunlight as traveling through the atmosphere before reaching the earth’s surface 

at an angle of 48.2° (Figure 2.13b). Therefore, the PCE is commonly expressed as a 

percentage of the total incident light power density: 

Hysteresis in the J–V characteristics of perovskite solar cells  

The J–V characteristics of a PSC exhibit different responses depending on the scan direction, 

forward scan (from the short-circuit to open-circuit condition), and backward scan (from 

open-circuit to short-circuit condition). The difference is mainly observed in FF and 

sometimes 𝑉OC that manifest as hysteresis in the J–V characteristics (Figure 2.14a). 

 
PCE =

𝑃MPP 

𝑃incident
 

2.13 

 
PCE =

𝑃MPP 

𝑃incident
=

FF 𝑉OC 𝐽SC

100 mW cm2⁄
 

2.14 

Figure 2.12. Effect of series and shunt resistances on the J–V characteristics of a solar cell. For the dark 

gray curves 𝑅s = 0 (a) and 𝑅sh → ∞ (b). 



Theoretical Background 

20 

 

Therefore, determining the MPP and consequently the PCE of a solar cell from the J–V 

characteristics is problematic in the presence of hysteresis. In this case, deriving a stabilized 

power output from an MPP tracking measurement (Figure 2.14b) together with the J–V 

characteristics provides a more reliable understanding of the performance of a PSC. To 

quantify hysteresis, determining the hysteresis factor (𝐹Hys =
𝑃𝐶𝐸BW − 𝑃𝐶𝐸FW 

𝑃𝐶𝐸BW
) or hysteresis 

index (HI =
𝐴FW 

𝐴BW
), are common. 𝑃𝐶𝐸FW, 𝑃𝐶𝐸BW, 𝐴FW, and 𝐴BW are the PCEs extracted 

from forward and backward scans and the area under each, respectively. 

Hysteresis is known to be a property of perovskite absorbers.81 There is a growing consensus 

that this phenomenon is governed by ion migration in the perovskite absorber layer, although 

an experimental direct proof is still missing.82 Ion migration cause accumulation of ions at 

the interfaces of perovskite and the charge transport layers (ETL and HTL). Accumulation 

of the ions can introduce trap states at these interfaces and accordingly hamper the charge 

extraction and reduce the FF of a PSC. Furthermore, the charge transport layers which are 

not selective efficiently (extracting and blocking), can cause surface recombination and 

therefore hysteresis can also affect 𝑉OC.83 This highlights the importance of the energy band 

alignment of perovskite and the charge transport layers, as well as quality of the interfaces.84  

External quantum efficiency 

The external quantum efficiency (EQE), or incident photon-to-electron conversion 

efficiency (IPCE), is the ratio of the photogenerated electrons in a solar cell (at short-circuit 

condition) to the number of incident photons at a specific wavelength. Therefore, the 

integration of EQE is used to calculate the maximum current available by a solar cell (𝐽𝑆𝐶): 

 

 𝐽SC = 𝑞 ∫ EQE(𝜆) 𝜙AM1.5G(𝜆) 𝑑𝜆

𝜆2

𝜆1

 
 

2.15 

Figure 2.13. (a) Radiation of air-mass (AM) spectra. (Excel data from Wikipedia. Accessed on 

2020.12.15) (b) An illustration of the definition of air-mass AM spectra. AM0 spectrum with an 

integrated power density of 1353 W/m2 is measured outside the earth’s atmosphere, while AM1.5G with 

an integrated power density of 1000 W/m2 is measured at the earth’s surface. 
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where 𝑞 is the electron charge, 𝜙AM1.5G is the wavelength-dependent photon flux of the solar 

spectrum (AM1.5G) per unit area at wavelength (𝜆). A typical EQE spectrum is shown in 

Figure 2.15. Analyzing this spectrum over different wavelength regions provides us with 

information about optical (parasitic absorption) and electronic (recombination) losses.  

Limited EQE in shorter wavelengths indicates that only small fractions of the photons with 

shorter wavelengths are absorbed by the absorber layer and converted into excitons 

(electron-hole pairs), which could be due to reflection losses at the interfaces and/or parasitic 

absorption by the layer stack prior to the absorber layer, such as the TCO front electrode, the 

ETL (in n-i-p structures), and/or the HTL (in p-i-n structures). Reduced EQE in longer 

wavelengths indicates incomplete absorption that occurs when the absorption depth (1/α) 

exceeds the optical thickness of the absorber layer, and therefore photons with longer 

wavelength leave the absorber before they can be absorbed (see Section 2.1.3). In addition 

to the optical loss mechanisms, short carrier diffusion length compared to the absorber 

thickness and/or surface recombination will limit the EQE spectrum to lower values.  

2.2.3. Theoretical efficiency limit of a single-junction solar cell 

Shockley and Queisser calculated an energy conversion efficiency limit (termed SQ limit) 

for a single-junction solar cell as a function of the bandgap of the absorber layer 

(Figure 2.16), assuming: 

(i) 100% absorption of all the photons with ℎ𝜐 ≥ 𝐸g 

(ii) 0% absorption of all the photons with ℎ𝜐 < 𝐸g 

(iii) 100% electron/hole generation upon absorption 

(iv) 100% collection of all the photogenerated electrons and holes 

(v) Only radiative recombination 

Figure 2.14. For a perovskite solar cell, (a) typical J–V characteristics measured from short-circuit to 

open-circuit (forward scan) and from open-circuit to short-circuit (backward scan) with a pronounced 

hysteresis. The colored area in (a) represents the discrepancy between forward and backward scans. 

(b) a typical power conversion efficiency as a function of time. 
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This model is known as the detailed balance limit model, which was first proposed by 

Shockley and Queisser in 1961.85 According to this model, if radiative recombination is only 

a fraction of all the recombination, the efficiency is reduced below the SQ limit. In addition 

to radiative recombination losses, the model also considers the thermalization losses (which 

occur for the photons with energies larger than the bandgap) and the optical losses (occurring 

for the photons with energies smaller than the bandgap).86 Figure 2.16 depicts the SQ 

efficiency limits as a function of bandgap, which reaches a maximum value of 33.5% (at 

~1.1 eV).  

Although a PCE of 25.2% is certified for PSCs to date,87 it is still lower than the SQ limit. 

The foremost reason for the efficiency distance for a given bandgap is losses in 𝑉OC and FF, 

which is mainly caused by defect-induced non-radiative SRH recombination in the bulk of 

the perovskite (see Section 2.1.3) and interface non-radiative recombination losses 

emanating from all of the interfaces involved in the PSC.70 Based on the detailed balance 

model, any non-radiative recombination will reduce the efficiency below the SQ limit. 

Therefore, strategies to suppress the non-radiative recombination channels are of most 

interest in the field. The list of all the proposed strategies so far is too long and beyond the 

scope of this thesis. Reference [70] is a very detailed review that provides comprehensive 

discussions in this matter for interested readers.  

2.3. Tandem solar cells 

Based on the SQ model, if the absorber’s bandgap of a single-junction solar cell is too wide, 

the optical losses will increase, and if it is too narrow the thermalization losses will dominate. 

Utilizing two absorber layers with different optical bandgaps in a tandem configuration 

provides a route to minimize these losses and accordingly surpass the SQ limit. As 

schematically illustrated in Figure 2.17a, if a tandem configuration is exposed to the light, 

first, the top absorber with a wide-bandgap (𝐸g
𝑊) absorbs all the photons with ℎ𝜈 ≥ 𝐸g

𝑊, 

while transmitting all the other photons with ℎ𝜈 < 𝐸g
𝑊. Then, the bottom absorber with a narrow-

Figure 2.16. Shockley-Queisser limit for 

conversion efficiency of a single-junction solar cell 

under AM1.5G spectrum. 

Figure 2.15. External quantum efficiency spectrum 

of a typical perovskite solar cell with a narrow-

bandgap of 1.26 eV. 
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bandgap (𝐸g
𝑁 < 𝐸g

𝑊) absorbs all the transmitted photons with (ℎ𝜈 ≥ 𝐸g
𝑁). Therefore, a wide-

bandgap absorber reduces the thermalization losses while the narrow-bandgap absorber 

improves the utilization of the solar spectrum. This very simple but smart idea can improve 

the SQ limit, such that the calculated maximum efficiency of a tandem solar cell with 

𝐸g
𝑊 = 1.9 eV and 𝐸g

𝑁 = 1.0 eV under AM1.5G is 42.3%. For such a tandem solar cell the 

spectrum will be absorbed up to ~1240 nm (Figure 2.17b) with minimum thermalization loss.88 

Four-terminal (4T) and two-terminal (2T) tandem solar cells (Figure 2.18) are the most 

common tandem configurations, while each has advantages and disadvantages. Sub solar 

cells of a 4T configuration are fabricated separately and then stacked mechanically, while 

the top solar cell of a 2T configuration is fabricated atop the bottom solar cell. Therefore, 

the maximum achievable PCE of a 2T tandem solar cell highly depends on the current 

matching between the two solar cells which are connected in series. That limits the range of 

the bandgap selection for each sub solar cell. In contrast, current matching is not an issue for 

a 4T configuration, and therefore they are less restricted to the bandgap selection and deliver 

relatively higher efficiencies compared to their 2T counterparts.20 Although the top and 

bottom solar cells in a 4T tandem configuration work independently, they are optically 

interlinked such that the optical losses (particularly in longer wavelength) in the layer stack 

of the top solar cell can directly influence the performance of the bottom solar cell and 

accordingly the total performance of the tandem solar cell. Thus, to minimize the optical 

losses in a 4T configuration implementing TCOs with nearly zero parasitic absorption and 

an intermediate light coupling layer between the two sub solar cells are required.  

2.3.1. All-perovskite tandem solar cells 

As discussed in Section 2.1, the bandgap of metal-halide perovskite semiconductors is 

tunable. Hence, they are excellent choices for both top and bottom absorbers of a tandem 

solar cell. Since replacing Pb with Sn in the B-site can reduce the bandgap down to very low 

Figure 2.17. (a) Schematic illustration of a tandem configuration composed of two absorbers with wide 

and narrow-bandgaps (𝐸g
𝑊 > 𝐸g

𝑁). (b) AM 1.5G spectrum, and the corresponding absorption fraction 

absorbed by the wide-bandgap (blue) and the narrow-bandgap (red) absorber layers of a typical tandem 

configuration. 



Theoretical Background 

24 

 

values (1.10-1.5) and substituting I with Br in the X-site of a Pb-based perovskite 

semiconductor can increase the bandgap (1.5-2.3 eV), an all-perovskite tandem solar cell 

(all-PTSC) is composed of a pure-Pb mixed halide perovskite and a mixed Sn/Pb halide 

perovskite as the absorber layers of the top and bottom solar cells, respectively.  

Although utilizing a tandem configuration provides a path to further exploiting the potential 

of perovskites, all-PTSCs experience a set of challenges compared to a single-junction PSC. 

On the one hand, Sn, which is used to achieve narrow-bandgap perovskites is prone to 

oxidation (from Sn2+ to Sn4+). This results in a degradation of optoelectronic performance of 

the narrow-bandgap perovskite and hinders both efficiency and stability of the narrow-

bandgap PSCs. On the other hand, wide-bandgap perovskites tend to form a high density of 

deep traps and therefore suffer from voltage losses. Moreover, a high ratio of Br in wide-

bandgap perovskites causes poor photo-stability due to halide segregation. Despite all these 

challenges, with recent advances, all-PTSCs have attained high certified PCEs of 25% and 

23.1% for 4T and 2T configuration, respectively.21 

 

 

 

Figure 2.18. Schematic illustrations of tandem solar cell with a (a) 4T and (b) 2T structure. 
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3. Materials and Characterization Methods 

 

This chapter includes two sections. First section presents the materials and deposition 

methods (spin-coating, thermal evaporation, and sputtering) we used for fabricating the 

perovskite solar cells and thin films. Second section describes the experimental methods we 

applied for characterizing the perovskite solar cells and thin films, including ellipsometry, 

spectrophotometry, photoluminescence spectroscopy, X-ray diffraction, X-ray 

photoelectron spectroscopy, scanning electron microscopy, cathodoluminescence, atomic 

force microscopy, profilometer measurement, four-point probe measurement, and Hall-

effect measurement (for thin films) as well as current-density–voltage characteristics, 

maximum power point tracking measurement, external quantum efficiency, ideality factor, 

and thermally stimulated current (for perovskite solar cell devices). 

3.1. Materials and deposition methods 

This section addresses the material and deposition techniques used for preparing the 

perovskite solar cells (PSCs) and thin films in this thesis. Figure 3.1 illustrates the deposition 

sequence of the PSCs with (i) n-i-p structures with pure-Pb perovskite absorber layers, which 

are prepared with two different back contacts including metal back electrodes (Figure 3.1a) 

and in-house sputtered transparent conductive oxide (TCO) rear electrodes, denoted as semi-

transparent PSCs (Figure 3.1b) as well as (ii) p-i-n structures (Figure 3.1c) with mixed Sn/Pb 

absorber layers, denoted as narrow-bandgap PSCs. The semi-transparent Pb-based PSCs and 

narrow-bandgap Sn/Pb-based PSCs are used as the top and bottom PSCs in four-terminal 

all-perovskite tandem solar cell (4T all-PTSC) configurations in Chapters 5 and 6. In the 

following, we explain the preparation of the solutions for the charge transport and perovskite 

absorber layers.  

3.1.1. Solution preparation 

Preparation of electron transport solutions 

Nanoparticles of TiO2 (np-TiO2) solution were prepared through a chemical synthesis from 

the following recipe. In a glovebox, add 4.5 mmol of titanium (IV) chloride (TiCl4; Acros 

Organics) dropwise to 2 ml of anhydrous ethanol (EtOH; Acros Organics) solution. Stir the 
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resulting mixture continuously, afterward add 10 mL of benzyl alcohol (BnOH; Acros 

Organics) to the solution. Upon continuous heating at ∼70 °C for 16 h, a slightly hazy 

solution is obtained. After cooling down, transfer 4 mL of the solution to a 50 mL centrifuge 

tube. Add 10 ml of diethyl ether (Et2O; Honeywell) to the tube for precipitation of np-TiO2 

and centrifuge at 8000 rpm for 3 min. Wash the np-TiO2 with 10 ml of EtOH while stirring 

the centrifuge tube to disperse the np-TiO2 in EtOH. Repeat the last step (Et2H and EtOH) 

two more times. In the last cycle, add EtOH and 12 ml of 1-butanol (Sigma Aldrich) to 

disperse the np-TiO2. Finally, add 180 µl of titanium diisopropoxide bis(acetonylacetate) 

(Ti(O-iPr)2(acac)2; Sigma Aldrich) in order to prevent the np-TiO2 from agglomeration. Stir 

at room temperature for 1 h to obtain a greenish semi-transparent solution.  

Nanoparticles of SnO2 (np-SnO2) solution were prepared by diluting 15% aqueous colloids 

of SnO2 nanoparticles (Alfa Aesar) with distilled water to a concentration of 2.04%. 

Buckminsterfullerene (C60) solution was prepared by dissolving 10 mg/ml of C60 (Sigma 

Aldrich) in 1,2-dichlorobenzene (DCB; Sigma Aldrich, anhydrous) and filtered using a 

0.45 µm PVDF filter. 

[6,6]-Phenyl-C61-butyric acid methyl ester (PCBM) solution was prepared by dissolving 

5 mg PCBM (Sigma Aldrich) in 1 ml DCB and filtered using a 0.45 µm PVDF filter.  

 

 

Figure 3.1. Preparation sequence and deposition methods for fabrication of PSCs and their top views 

with three different structures: (a) n-i-p PSC, (b) n-i-p semi-transparent PSCs, and (c) p-i-n narrow-

bandgap PSCs. SCD and PVD stand for spin-coating deposition and physical vapor deposition, 

respectively. 
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Preparation of hole transport solutions 

2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (Spiro-MeOTAD) 

solution was prepared by dissolving 80 mg spiro-MeOTAD (Luminescence Technology) 

dissolved in 1 ml chlorobenzene (CB, Sigma Aldrich) with the additives 4-tert-butylpyridine 

(4-tBP) (28.5 µl per 1 ml CB) and lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) 

(17.5 µl per 1 ml CB from a 520 mg/ml acetonitrile stock solution). 

Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) solution was prepared by 

dissolving 1.5 mg of PTAA (𝑀w = 17,800 g/mol, EM INDEX) in 1 ml toluene. 

Preparation of perovskite solutions 

In this thesis, we used perovskite thin films with different compositions, all prepared 

with following precursors: 

Formamidinium iodide (FAI; Dyesol) 

Methylammonium bromide (MABr; Dyesol) 

Methylammonium iodide (MAI; Dyesol) 

Lead iodide (PbI2; TCI) 

Lead bromide (PbBr2; TCI) 

Lead thiocyanate (Pb(SCN)2, Sigma Aldrich) 

Tin iodide (SnI2; Alfa Aesar) 

Tin fluoride (SnF2, Sigma Aldrich) 

Cesium iodide (CsI; Alpha Aesar) 

Dimethylformamide (DMF; Sigma Aldrich, anhydrous) 

Dimethyl sulfoxide (DMSO; Sigma Aldrich, anhydrous) 

In the following, the recipes we used to prepare the perovskite solutions with different 

compositions are explained. 

Csx(FA0.83MA0.17)(1-x)Pb(I0.83Br0.17)3 

First, by dissolving 1 M FAI, 0.2 M MABr, 1.1 M PbI2, and 0.2 M PbBr2 in a 4:1 

(v:v) mixture of DMF:DMSO, we prepared a double-cation precursor solution with a 

stoichiometric formula of FA0.83MA0.17Pb(I0.83Br0.17)3. By adding 42.1 μl, 88.9 μl, and 

141.2 μl from a 1.5 M CsI stock solution (in DMSO) into 1 ml of the double-cation 

FA0.83MA0.17Pb(I0.83Br0.17)3 solution, we achieved the final triple-cation perovskite 

solution of Csx(FA0.83MA0.17)(1-x)Pb(I0.83Br0.17)3 for x = 0.05, 0.1, and 0.15, 

respectively. The resulting perovskite thin films were used as absorber layers for the 

PSCs (Figure 3.1a) in Chapter 4. Perovskite thin films with 

Cs0.1(FA0.83MA0.17)0.9Pb(I0.83Br0.17)3 with a bandgap of 1.62 eV were used as the 

absorber layer for the semi-transparent PSCs (Figure 3.1b) in tandem configuration 

in Chapter 6. 
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Cs0.1(FA0.83MA0.17)0.9Pb(I0.67Br0.33)3 

First, we diluted FAPbI2Br (0.87 M FAI, 0.43 M FABr, 0.957 M PbI2, 0.43 M PbBr2) 

and MAPbI2Br (0.87 M MAI, 0.43 MABr, 0.957 M PbI2, 0.43 M PbBr2) in 4:1 (v:v) 

mixture of DMF:DMSO, while CsPbI2Br (0.87 M CsI, 0.43 M CsBr, 0.957 M PbI2, 

0.43 M PbBr2) was diluted in pure DMSO. Next, by mixing FAPbI2Br, MAPbI2Br, 

and CsPbI2Br stock solutions with ratios of 0.75%, 15% and 10%, respectively, we 

formed the final perovskite solution. Perovskite thin films with the composition 

Cs0.1(FA0.83MA0.17)0.9Pb(I0.67Br0.33)3 have a wide-bandgap of 1.73 eV and were used 

for the PSCs (Figure 3.1a) in Chapter 4. 

Cs0.17FA0.83(I(1-y)Bry)3 

By dissolving 0.83 M FAI, 0.17 M CsI, and 1.49 M PbI2 and 0.51 M (for y = 0.17) or 

0.64 M PbI2 and 0.36 M PbBr2 (for y = 0.24) in a 4:1 (v:v) mixture of DMF:DMSO, we 

prepared double-cation perovskite solutions with the stoichiometric formulas of 

Cs0.17FA0.83(I0.83Br0.17)3 or Cs0.17FA0.83(I0.76Br0.24)3, respectively. Perovskite thin films with 

the compositions Cs0.17FA0.83(I0.83Br0.17)3 and Cs0.17FA0.83(I0.76Br0.24)3 have bandgaps of 

1.63 and 1.65 eV and were used as absorber layers for the PSCs (Figure 3.1a) in Chapter 4 

and semi-transparent PSCs (Figure 3.1b) in tandem configuration in Chapter 5, respectively. 

Csx(FA0.8MA0.2)(1-x)Pb0.5Sn0.5I3 

First, we prepared the double-cation FA0.8MA0.2Sn0.5Pb0.5I3 perovskite precursor solution by 

dissolving 1.1 M FAI, 0.3 M MAI, 0.7 M SnI2, 0.7 M PbI2, 0.008 M Pb(SCN)2, and 0.045 M 

SnF2 in a 9:1 (v:v) mixture of DMF:DMSO. Next, we prepared CsI stock solution by 

dissolving 1.5 M CsI in DMSO. By adding 8.8, 21.8, 42.4, and 80.4 μl from the CsI stock 

solution into 1 ml of the double-cation FA0.8MA0.2Sn0.5Pb0.5I3 solution, we prepared the final 

triple-cation Csx(FA0.8MA0.2)(1-x)Sn0.5Pb0.5I3 perovskite solution for x = 0.01, 0.025, 0.05, 

and 0.1, respectively. We stored the solution in a nitrogen-filled glovebox (with 

O2 < 0.2 ppm and H2O < 0.4 ppm) for 1 hour before fabrication. The resulting triple-cation 

has a bandgap of 1.26 eV and was used as the absorber layer for the narrow-bandgap PSCs 

(Figure 3.1c) in the tandem configuration in Chapters 5 and 6. 

For the Csx(FA0.8MA0.2)(1-x)Sn0.5Pb0.5I3 perovskite thin films with Sn and Pb excess, which 

were investigated in Chapter 5, we added additional PbI2 and SnI2 to FA0.8MA0.2Sn0.5Pb0.5I3 

in order to achieve the required 7.5% excess Sn0.5Pb0.5I2, followed by adding Cs from a 1.5 M 

stock solution to reach 3%, 7.5%, and 12.5% Cs concentrations.  

3.1.2. Deposition of perovskite solar cells  

Preparation of the transparent conductive oxides 

In this thesis, we used three different TCOs as front electrodes including pre-patterned 

indium tin oxide (ITO; Luminescence Technology), fluorine-doped tin oxide (FTO; Sigma 

Aldrich), hydrogen-doped indium oxide (IO:H; sputtered by a collaboration partner (ZSW)) 

(see Table 3.1). We patterned FTO and IO:H substrates by laser scribing using a pulsed laser 

ablation for the defined cell area. For all the PSCs, we prepared 16 × 16 mm2 glass substrates 
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coated with pre-structured TCOs (ITO, FTO, or IO:H) in an ultrasonic bath with acetone and 

isopropanol for 10-15 min each, followed by oxygen plasma treatment at 100 W power for 

3 min before deposition of the ETL (HTL) for the PSCs with n-i-p (p-i-n) structures.  

Fabrication of perovskite solar cells with n-i-p structures 

For the PSCs with n-i-p structure (Figure 3.1a and b), we spin-coated np-TiO2 ETLs on the 

IO:H (only for semi-transparent PSCs) and ITO substrates at a speed of 7000 rpm for 30 s 

followed by 100 °C annealing step for 30 min in ambient atmosphere with a relative 

humidity of 45% at room temperature. We set the rpm and annealing temperature to 

4000 rpm and 200 °C in case of using np-SnO2 ETLs and to improve their wettability used 

oxygen plasma treatment (at 30 W for 1 min) shortly before deposition of perovskite. We 

processed C60 ETLs by spin-coating the solution at a rate of 1500 rpm for 1 min followed by 

an annealing step at 75 °C for 2 min in an inert atmosphere, subsequently.  

For all pure-Pb perovskite thin films, we spin-coated the solution by a two-step process on 

top of the ETL: (1) 1000 rpm for 10 s, (2) 6000 rpm for 20 s. We poured 100 µl of CB on 

the spinning substrate 10 s prior to the end of the second step followed by an annealing 

process at 100 °C for 60 min in an inert atmosphere. Next, we deposited the spiro-MeOTAD 

HTL using a spin-coating process (4000 rpm for 30 s), followed by overnight oxygen doping 

in a box with a relative humidity of <25%. 

For the PSCs with metal back electrodes, we swiped the edges using γ-butyrolactone (GBL; 

Merck) to allow the back electrode to connect the front electrode while depositing. Next, 

we used a Vactec Coat 360 evaporator to evaporate 70 nm gold (Au) layer through shadow 

masks to complete the fabrication of the PSCs with an active area of 10.5 mm2 and a layer 

stack of glass / ITO / np-TiO2 or np-SnO2 or C60 / perovskite / spiro-MeOTAD / Au, for 

which perovskite varies in composition: Csx(FA0.83MA0.17)(1-x)Pb(I0.83Br0.17)3 (with x = 0, 

0.05, 0.1, and 0.15), Cs0.1(FA0.83MA0.17)0.9Pb(I0.67Br0.33)3, or Cs0.17FA0.83(I0.83Br0.17)3.  

Table 3.1. Sputtering parameters of the IO:H front as well as ITO and IZO rear electrodes. 

* DC: direct-current, RF: radiofrequency 
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For the semi-transparent PSCs, we continued the layer sequence with thermal evaporation 

(see Figure 3.1) of 10 nm molybdenum oxide (MoOx; Sigma Aldrich) at a rate of 0.8 A/s 

using a Lesker Spectros system at 6 × 10−6 mbar pressure. MoOx is used as a buffer layer to 

protect the spiro-MeOTAD while sputtering the rear electrodes in the next step. Before 

sputtering the ITO (for PSCs in Chapter 5) or IZO (for PSCs in Chapter 6) rear electrodes 

we swiped the edges using GBL to allow the rear and front electrode to connect. Table 3.1 

summarizes all the sputtering parameters we used. To increase the conductivity of the rear 

electrode, we thermal-evaporated ~75-nm Au fingers at a rate of 2 Å/s using a shadow mask. 

Finally, we completed the stack by depositing ≈165 nm magnesium fluoride (MgF2; Sigma 

Aldrich) thermally using Lesker Spectros PVD system at a rate of 3–4 Å/s at 6 × 10−6 mbar 

pressure. MgF2 plays the role of an anti-reflection layer on top of the rear electrode.27 As a 

result, we achieved semi-transparent PSC with an active area of 10.5 mm2 and a layer stack 

of glass / ITO / np-SnO2 / perovskite / spiro-MeOTAD / MoOx / ITO / MgF2, for which 

perovskite is Cs0.17FA0.83Pb(I0.76Br0.24)3 (Chapter 5) or Cs0.1(FA0.83MA0.17)0.9Pb(I0.83Br0.17)3 

(Chapter 6). For the PSCs with the composition Cs0.17FA0.83Pb(I0.76Br0.24)3 (Chapter 5), we 

spin-coated 100 μl n-butylammonium bromide (BABr, Dysol) dissolved in isopropanol 

(2 mg/ml) at 5000 rpm for 30 s on top of the perovskite thin film after annealing step to 

obtain a 2D/3D perovskite heterostructure. 

Fabrication of perovskite solar cells with p-i-n structures 

For the PSCs with p-i-n structure (Figure 3.1c), we spin-coated PTAA HTLs on the TCO 

substrates (ITO, FTO, or IO:H) at 4000 rpm for 30 s followed by annealing at 100 ℃ for 

30 min. Next, we spin-coated the narrow-bandgap Csx(FA0.8MA0.2)(1-x)Sn0.5Pb0.5I3 

perovskite thin film on PTAA at 5000 rpm for 10 s. We immediately vacuum-exposed the 

layers for 10 s in a vacuum chamber (≈10 Pa) with a 150 ml volume size. We, sequentially, 

annealed the perovskite thin films at 100 ℃ for 7 min. Next, we spin-coated 5 nm PCBM at 

4000 rpm for 60 s on the perovskite. PCBM, which we used in the narrow-bandgap mixed 

Sn/Pb PSCs (Figure 3.1c) is meant to prevent electron-hole recombination at the perovskite/ 

C60 interface.89  

In sequence, we used a Lesker PVD system to thermally evaporate ≈20 nm of C60 and ≈5 nm 

of bathocuproine (BCP; Luminescence Technology) as the electron transport material, in 

6 × 10−6 mbar pressure and at a rate of 0.1-0.2 and 0.2-0.3 Å/s, respectively. After swiping 

the edges with GBL, we completed the PSC stack by evaporating a back contact of Ag 

(≈100 nm) through shadow masks using a Vactec Coat 360 evaporator. As a result, we 

achieved PSCs with active area of 10.5 mm2 and a layer stack of glass / ITO or FTO or IO:H 

/ perovskite / PCBM / C60 / BCP / Ag. 

For HTL-free narrow-bandgap PSCs (Chapter 6), we spin-coated the perovskite thin film 

with the composition Cs0.025(FA0.8MA0.2)0.975Sn0.5Pb0.5I3 directly on the TCO substrates 

(ITO, FTO, and IO:H), in the absence of any HTL. 
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3.2. Characterization techniques 

This section describes experimental techniques we used for characterizing thin films and 

PSCs in this thesis. 

3.2.1. Characterization of thin films 

Ellipsometry 

Ellipsometry measures the alteration in the reflected polarization of an incident light upon 

reflection or transmission at an interface. In an ellipsometry measurement, a defined 

polarization (produced by a polarizer) is reflected or transmitted from the sample and the 

output elliptical polarization is measured (Figure 3.2). The polarization of the incident light 

may have two components, perpendicular and parallel to the plane of incidence. The 

ellipsometry measures the change in the phase difference (Δ) between these two components, 

which is introduced by the reflection, and the change of their amplitude ratio (Ψ). Thus, the 

complex reflectance ratio (𝜌), which is the ratio of the parallel and perpendicular reflection 

coefficients (𝑟∥ and 𝑟⊥) is given by:  

The measured parameters (Δ and Ψ) cannot be directly used to determine the optical 

constants of a material. Using an appropriate model based on Maxwell’s equations is needed 

to calculate the parameters of interest and determine the dielectric properties, i.e., complex 

refractive index (𝑛̃ = 𝑛 + 𝑖𝑘) and complex dielectric function (𝜀̃ = 𝑛̃2) of a thin film.  

In this thesis, we determined the refractive index (𝑛) and extinction coefficient (𝑘) of TCO 

thin films (ITO, FTO, and IO:H) by implementing a Woolam Variable Angle Spectroscopic 

Ellipsometer (WVASE). We used the software provided by the manufacturer to analyze the 

data. 

 

 𝜌 =
𝑟∥

𝑟⊥
= tan Ψ . 𝑒𝑖Δ 3.1 

Figure3.2. Schematic illustration of a typical ellipsometry setup. 
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Spectrophotometry 

Spectrophotometry is widely used to analyze the optical properties of thin films in terms of 

transmittance and reflectance. Most commonly ultraviolet, visible, and infrared radiation 

(300-1200 nm) passes through a monochromator, whereupon the adjusted wavelength is sent 

to the sample (Figure 3.3). The transmitted and reflected lights are then detected. The 

transmittance is determined as 𝑇 = 𝐼 𝐼0⁄ , where 𝐼0 and 𝐼 are the intensity of the light before 

and after passing through the sample, respectively. The intensity of the light after being 

reflected from a sample (𝐼) is compared to the intensity of light after being reflected from a 

reference material (𝐼0) such as a silicon solar cell, and the reflectance is determined as 𝑅 =

𝐼 𝐼0⁄ . The transmittance and reflectance are commonly expressed as a percentage. The 

absorptance is calculated as 𝐴 = 1 − 𝑇 − 𝑅. Moreover, the absorption coefficient of a thin 

film with a thickness of 𝑑 can be calculated from: 

By using 𝛼 and ℎ𝜈 as the photon energy, the optical bandgap (𝐸g) of the thin film can be 

extracted from a plot of (𝛼ℎ𝜈)1/𝑛 vs. (ℎ𝜈), which is known as Tauc plot. 𝑛 denotes the nature 

of transition and equals 1/2 for thin films with direct bandgap. Therefore, using the Tauc 

relation: 

the bandgap (𝐸g) can be estimated as the intercept of (𝛼ℎ𝜈)2 = 0. 

In this thesis, we used a Bentham PVE300 photovoltaic characterization system (located in 

a nitrogen-filled glovebox) to measure the transmittance and reflectance spectra of the 

perovskite and TCO thin films upon illumination with modulated monochromatic light 

source.  

 

 
𝛼 =

1

𝑑
 ln

(1 − 𝑅)2

𝑇
 

3.2 

 (𝛼ℎ𝜈)2  = 𝐶 (ℎ𝜈 − 𝐸g) 3.3 

Figure 3.3. Schematic illustration of a typical spectrophotometry setup.  
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Photoluminescence spectroscopy 

Photoluminescence (PL) spectroscopy is a non-destructive technique, commonly used for 

characterizing the optical and electronic properties of a semiconductor. A sample is 

illuminated with a laser beam, whereupon photons with energies higher than the bandgap of 

the examined material are absorbed and electrons are excited to conduction bands. After 

being thermally relaxed, these electrons radiatively recombine with holes in the valence 

band and emit light with an energy in the range of bandgap. The light signal is then dispersed 

by a monochromator and the spectrum is detected by a camera (Figure 3.4). 

In general, a PL spectroscopy characterization is performed as steady-state (SSPL) and time-

resolved (TRPL). SSPL spectroscopy explores the average emission from the sample upon 

excitation with a detection window in the range of micro- to milli-second. TRPL 

spectroscopy measures the decay in the PL spectra with respect to time while reducing the 

detection window to pico-seconds. SSPL and TRPL are widely used to provide insights into 

dominant recombination processes and determine the carriers’ lifetime. When the material 

is photoexcited, the excited charges either relax through band-to-band radiative 

recombination or fill the defect-induced traps (see Section 2.1.3). The latter results in trap-

assisted non-radiative recombination that reduce the intensity of a SSPL signal, and therefore 

can be indicative of defect density in the material. 

In this thesis, we recorded the PL kinetics by a Hamamatsu Universal Streak Camera C10910 

operated in single sweep mode and coupled to an Acton SpectraPro SP2300 spectrometer. 

We used two different time windows (200 ns and 1 µs) respectively. Excitation with a pulse 

width of 140 fs was done by a mode-locked Ti:sapphire laser (Coherent, Chameleon Ultra). 

Its output of 960 nm was frequency doubled by a second harmonic generator (Coherent, 

Chameleon Compact OPO-Vis) and the repetition rate of 80 MHz reduced to 2 MHz for the 

200 ns and 2/3 MHz for the 1 µs time window using a pulse picker (APE, pulseSelect). We 

recorded the SSPL spectra by a fiber-coupled UV-vis spectrometer (Avantes, AvaSpec-

2048L). We measured all SSPL and TRPL spectra with a pump fluence of 30 nJ/cm2. The 

samples were under dynamic vacuum at pressures of ~10−5 hPa during each measurement. 

 

Figure 3.4. Schematic illustration of a typical photoluminescence spectroscopy setup. 
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X-ray diffraction 

X-ray diffraction (XRD) is a non-destructive analytical technique which is widely used to 

determine the crystal structure of a thin film by providing information about intensity, 

position, and width of diffraction peaks. Peak intensity indicates the total scattering from 

each crystal planes and therefore determines the preferential crystal orientation of the 

material in interest. The peak position reveals the crystal structure (lattice parameters) and 

the contributing phases. Moreover, a shift in the peak position demonstrates a change in the 

interplanar d-spacing. Therefore any macrostrains (also termed as homogenous strain) can 

be determined by analyzing shift of the peak positions.90 A peak shift to smaller angles 

reflects a tensile crystallite, while a shift to larger angles indicates a compressive crystallite 

(Figure 3.5). Therefore, homogenous strain can be simply determined as follows: 

Peak width is associated with crystallite size and inhomogeneous strain (also termed as 

microstrain). The broadening of a peak can be identified by its full width at half maximum 

(FWHM). Williamson-Hall equation relates the peak broadening to crystallite size and 

microstrain as follows: 

where K is the scale factor depending on the shape of the grains (typically 0.9), 𝜆 is the X-ray 

wavelength, 𝐷 is the crystallite size, 𝜃 is the Bragg angle of the detected peak, C is a constant 

(≈4 or 5), and ε is the microstrain. The first and second terms of Equation 3.5 are correlated 

with size- and strain-induced broadening, respectively. Therefore, for a crystal structure in 

the absence of inhomogeneous strain the first term, which is known as Scherrer equation, 

determines the crystallite size. By multiplying Equation 3.5 by cos 𝜃, and denoting FWHM 

as 𝛽 (in radians) we rewrite it as follows: 

Therefore, by plotting 𝛽 cos 𝜃 vs. sin 𝜃 we can determine the strain component (Cε) from 

the slope and the size component (K𝜆 𝐷⁄ ) from the intercept. Such a plot is known as a 

Williamson-Hall plot. 90 

In this thesis, we utilized a Bruker D2Phaser system with Cu-Kα radiation (𝜆 = 1.5405 Å) to 

determine the crystallite structure, composition, and strain of perovskite thin films 

(Chapters 4, 5, and 6), as well as TCO thin films (Chapter 6). For PbI2, SnI2, and Sn0.5Pb0.5I2 

thin films (Chapter 5), we use a nitrogen-filled sealed holder to prevent the samples from 

degradation in ambient air while being measured. 

 𝜖 = Δ𝑑 𝑑⁄  3.4 

 
FWHM =

K 𝜆

𝐷 cos 𝜃
+ C ε tan 𝜃 

3.5 

 
𝛽 cos 𝜃 = C ε sin 𝜃 +

K 𝜆

𝐷
 

3.6 
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X-ray photoelectron spectroscopy 

X-ray photoelectron spectroscopy (XPS) is one of the most common surface 

characterizations in material science, which is used to determine the atomic composition of 

a sample’s surface non-destructively. It also provides information about binding energies 

and oxidation states by subjecting a sample to a high-energy X-ray irradiation that penetrates 

through the sample for 2 to 10 nm. As illustrated by Figure 3.6a, a high-energy X-ray photon 

excites an electron from a core level into the vacuum. The energy conservation for the 

photoelectric effect dictates that:  

where 𝐸b is the binding energy of the excited electron (photoelectron), ℎ𝜈 is the energy of 

the X-ray photon (~1.49 keV for Al Kα X-ray and 1.25 keV for Mg Kα X-ray), 𝐸K is the 

kinetic energy of the photoelectron measured by the instrument, and 𝜙 = 𝐸vac − 𝐸F is the 

work function of the sample (see Figure 3.6a). The energies relative to the Fermi level are 

achieved by grounding the sample to the detector. The binding energy of the detected 

photoelectrons serves as a fingerprint for the chemical composition of the sample’s surface. 

An XPS spectrum (known as survey spectrum) is usually plotted as intensity (in count) vs. 

binding energy (in eV) of the detected photoelectrons (Figure 3.7). Each element produces 

a set of XPS peaks corresponding to the electron’s configuration, e.g., 1s, 2s, 2p, etc. The 

background beneath the peaks in the spectrum is due to electrons that are inelastically 

scattered before leaving the sample’s surface. Such inelastic scatterings, which reduce the 

kinetic energy of the photoelectron, are mainly originated from interaction of the 

photoelectron with another electron, a photon, and/or composition impurity.91 The distance 

an excited electron can travel within a material while keeping its kinetic energy is called 

inelastic mean free path, which determines surface sensitivity and can be roughly determined 

by a universal curve.92  

In this thesis, we used XPS measurements to determine composition and oxidation states of 

mixed Sn/Pb metal-halide perovskite and TCO thin films. We utilized an Omicron Argus 

CU electron analyzer, a non-monochromatized DAR 450 twin anode X-ray source providing 

  𝐸b = ℎ𝜈 − (𝐸K +  𝜙) 3.7 

Figure 3.5. A peak shift from its original position (middle panel) to smaller (left panel) and larger (right 

panel) reflection angles (θ) indicative of a tensile- and compressive-strained crystallite.  
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Mg Kα and Al Kα X-rays, and a SIGMA Surface Science MECS X-ray source providing 

monochromatized Al Kα X-rays. The samples were transported and transferred without any 

air exposure into the ultra-high-vacuum (UHV) surface analysis system. The base pressure 

of the analysis chamber was ≈7×10-11 mbar. The Fermi levels of sputter-cleaned Au, Ag, and 

Cu foils were used to calibrate the energy axis.93 For all measurements, no charging was 

observed. The emission angle of the photoelectrons was perpendicular to the surface leading 

to a characteristic attenuation length (𝜆) of 1-3 nm.94 To prevent an influence of 

beam-induced changes from the X-rays on the spectra, the measurement times did not exceed 

10 min (for the non-monochromatized x-ray source) and 40 min (for the monochromatized 

X-ray source, due to lower photon flux).  

 

Figure 3.7. A typical x-ray photoelectron microscopy (XPS) pattern of a mixed Sn/Pb narrow-bandgap 

perovskite thin film. 

Figure 3.6. (a) Schematic illustration of the photoelectric effect in an X-ray photoelectron spectroscopy 

measurement. (b) Illustration of the X-ray-matter interaction in a semiconductor. 
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Scanning electron microscopy and cathodoluminescence  

As schematically illustrated in Figure 3.8a, in a typical scanning electron microscope a 

thermionically emitted and accelerated electron beam passes through pairs of condenser 

lenses and is focused over a sample. The beam has a typical energy in the range of 0.2 to 

40 keV and can be focused to a spot about 0.4 to 5 nm. Finally, the beam is deflected to 

raster-scan over a rectangular area of the sample’s surface. Upon interaction of the primary 

electron beam with atoms at different depth within a sample, the primary electrons undergo 

random scattering and absorption and lose their energy. As a result, different types of signals 

(Figure 3.8b) such as reflection of elastically back-scattered electrons, emission of inelastic-

scattered secondary electrons and Auger electrons, as well as emission of electromagnetic 

radiation (X-rays and light) are generated, and each detected by a dedicated detector. The 

detection of the secondary electrons (with low energies in the range of 50 eV), which reveal 

the topographical information, is used to project a scanning electron microscopy (SEM) 

image with a resolution of below 1 nm. Moreover, the back-scattered electron images 

provide information about atomic number and phase differences in a sample.  

Typically, the energy of the primary electrons in this technique is far too high to directly 

excite an electron from valence band to conduction band. However, the secondary electrons 

with energies higher (about three times) than the bandgap of the examined material can 

excite electrons from valence band to conduction band. After thermalization, the electrons 

radiatively recombine with holes in the valence band and emit light. This phenomenon is 

known as cathodoluminescence (CL). A CL detector captures the emitted light and 

characterizes the aspects of the light signal such as intensity, wavelength (CL spectrum), 

color, etc. CL is a powerful technique in detecting phases and tracing impurities and defect 

distribution in semiconductors.  

Figure 3.8. (a) Schematic illustration of a scanning electron microscope setup. (b) Illustration of electron-

matter interaction volume and types of signal generated.  
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In this thesis, we used two different scanning electron microscopes (Zeiss LEO1530 and 

Zeiss Supra60 VP) with an in-lens detector and an aperture size of 20 µm for the SEM 

images captured with a 3-kV acceleration voltage. For CL characterizations, we used an FEI 

Verios scanning electron microscope equipped with a Gatan MonoCL4 Elite CL system. The 

CL spectrum was obtained at a constant accelerating voltage of 5 kV with a beam current of 

22 pA. Although CL is a powerful technique to study the electronic properties of perovskite 

materials, to avoid any beam-induced damage the irradiation conditions should be 

thoroughly controlled. 

Atomic force microscopy 

Atomic force microscopy (AFM) is a technique to identify the topography of a sample’s 

surface in the range of a few nanometers. As illustrated in Figure 3.9, an AFM set-up is 

consisting of a laser beam focused on the tip of a cantilever, which raster scans over the 

surface and probes its topography. A standard AFM can be operated in different modes 

(static contact and dynamic contact) depending on the operation of the tip motion. A tapping 

mode is a dynamic contact mode that enables us to probe the surface of the perovskite thin 

films non-destructively. It was particularly important in this thesis (Chapter 4), where we 

aimed at tracking morphology alterations of perovskite thin films on different days after 

storage. In a tapping mode the cantilever is oscillating up and down at its resonance 

frequency. When the tip comes close to a surface the interaction of the tip with the surface 

in the form of van der Waals forces, electrostatic forces, dipole-dipole interaction, etc. 

changes the amplitude of the cantilever’s oscillation. A raster scan is then produced by 

imaging the force that is needed to adjust the cantilever’s oscillation amplitude to the set 

value as the cantilever is probing over the sample’s surface. 

In this thesis, we used an AFM (Bruker Dimension Icon) in peak force tapping mode and a 

PDNISP diamond tip nano-indenter with a spring constant of 236 N/m, resonance frequency 

of f0 ~67 kHz and a calibrated effective tip radius of rc ~57 nm at a calibrated indentation 

depth of deltac ~5 nm. The AFM was operated by a Nanoscope 5 Controller and Nanoscope 

8.15 SR8 software.  

Figure 3.9. Schematic illustration of a typical atomic force microscopy setup. 
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Profilometer measurement 

A profilometer is an instrument to determine the surface profile and thickness of a thin film. 

A diamond stylus probes the surface of the sample while moving in contact with the surface 

and the changes in the vertical position of the stylus is recorded by the instrument. In this 

thesis, we used a Bruker Dektak XT profilometer to measure the thickness of perovskite and 

TCO thin films. 

Four-point probe measurement 

A four-point probe is composed of four equally spaced probes (Figure 3.10) which are used 

to measure sheet resistance of thin layers or substrates. While a current (𝐼) is forced through 

the outer probes, the voltage (𝑉) across the inner probes is measured. In case the thickness 

of the film (𝑑) is ideally smaller than the distance between the probes (𝑑 << 𝑠) and the lateral 

dimensions of the sample is about 40 times larger than s, the sheet resistance (𝑅sq) in units 

of ohm per square (Ω sq⁄ ) can be calculated using the following equation: 

In this thesis, we utilized a custom-made four-point setup to measure sheet resistances of 

TCO thin films. The setup includes a S-302 four-point probe mounting stand and a Picotest 

M3500A multimeter. 

Hall-effect measurement  

To characterize the electrical properties of TCO thin films, we employed Hall measurement 

based on a deflection of charge carriers in a direction perpendicular to an applied magnetic 

field, which generates a measurable voltage (Hall voltage) across the sample. Using the Hall 

voltage, we calculated the resistivity and Hall coefficient of the samples, and accordingly 

determined the concentration and mobility of the charge carriers for different TCO thin 

films. The samples were cut in 10×10 mm2 and contacted at the corners in a custom-made 

system in van der Pauw configuration with a magnetic field of 0.6 T and currents of tens of 

milliamps. 

 
 𝑅sq =

𝜋

ln 2

𝑉

𝐼
 

3.8 

Figure 3.10. Schematic illustration of a four-point probe setup used for measuring the sheet resistance 

of transparent conductive oxide (TCO) electrodes. 
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3.2.2. Characterization of perovskite solar cells 

Current-density–voltage characteristics 

As discussed in section 2.2.2, the current-density−voltage (J–V) characteristics has to be 

performed in a standard test condition (STC), i.e., constant illumination under air-mass 1.5 

global (AM1.5G) (100 mW/cm2) at 25 °C. We performed this measurement by applying 

xenon-lamp solar simulator (Newport Oriel Sol3A) that provides an AM1.5G spectra 

(100 mW/cm2) at a temperature set to 25 °C using a Peltier element connected to a 

microcontroller while performing the J–V analysis. In all the measurements we set the scan 

rate at 0.6 V/s from open-circuit to short-circuit (backward scan direction) and from short-

circuit to open-circuit (forward scan direction) using a Keithley 2400 source-meter. We 

calibrated the irradiation intensity using a certified silicon reference solar cell (a KG5 for the 

pure Pb PSCs and a KG0 for the narrow-bandgap mixed Sn/Pb PSCs). 

By calculating the power conversion efficiency (PCE) from the J–V, we determined the 

performance of the PSCs. To determine the PCE of a 4T all-PTSCs we added the PCEs of 

the respective semi-transparent top PSC and bottom PSC (under semi-transparent perovskite 

filters with a larger area (16×16 mm2) with the same layer stack and optical properties as the 

semi-transparent top PSC). We did not use any spacers (light coupling layers) between the 

bottom PSC and the filter. We add the PCE of the semi-transparent top and the narrow-

bandgap bottom PSCs to determine the final PCE of the 4T all-PTSCs. 

Maximum power point tracking measurement 

In Section 2.2.2, we explained that deriving a stabilized power output from a maximum 

power point (MPP) tracking measurement together with the J–V characteristics provides a 

more reliable understanding of the performance of a PSC. Using the same set-up as for the 

J–V characteristics, we determined the stable power conversion efficiency of the PSCs by 

measuring the photocurrent at a constant voltage close to the MPP (Chapter 4) and at the 

MPP (Chapters 5 and 6). The MPP tracking measurements were performed under STC. 

External quantum efficiency 

As discussed in section 2.2.2, the external quantum efficiency (EQE) measurement enables 

us to determine the spectral response of a PSC. In this thesis, we performed the EQE 

measurement using a Bentham system with a halogen and xenon lamp while applying a 

chopping frequency of ~930 Hz with an integration time of 500 ms. The devices were not 

subjected to any preconditioning. We noticed that varying the frequency between 200 Hz to 

950 Hz did not significantly affect the results. For measuring the bottom solar cell with a top 

perovskite filter, we used a large illumination spot to average over possible variations in the 

EQE spectrum. The possible variations could be induced by inhomogeneous scattering and 

transmission properties due to typical thickness variations of the perovskite thin film used 

for the filter. 
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Ideality factor 

Ideality factor is a parameter used for interpreting the dominant recombination mechanism 

in a solar cell. Typically an ideality factor close or equal to 1 indicates that band-to-band 

radiative and/or non-radiative surface recombination are the dominant recombination 

mechanisms, while an ideality factor close or equal to 2 suggests that non-radiative trap-

assisted SRH bulk recombination is dominant.95 These values are subjected to vary for PSCs 

with complex multilayers.95,96 Identifying ideality factor from light-intensity dependent 𝑉OC 

analysis is more reliable, since at open-circuit condition the series resistance loss can be 

avoided. In this method ideality factor can be determined from the slope of a logarithmic fit 

of a 𝑉OC vs. light intensity plot, using the following equation (which is derived from 

Equation 2.10):  

where 𝑞 is the electron charge, 𝑘B is the Boltzmann constant, 𝑇 is temperature, and 𝐼 is the 

irradiation intensity.95  

In this thesis, we extracted the ideality factor of PSCs (Chapter 4) from a light-intensity 

dependent 𝑉OC, which were measured using an all-in-one measurement system Paios 

(Fluxim AG). We used a white LED (Cree XP-G) for the illumination in all experiments.  

Thermally stimulated current  

Thermally stimulated current (TSC) technique is a powerful method to reveal information 

about the properties of shallow and/or deep traps of a solar cell. In this method, the device 

is illuminated for a limited time at a very low initial temperature (here 15 K). The 

photogenerated charge carriers fill the trap states. Upon heating the device with a low 

constant rate (here 7 K/min) to room temperature (300 K), the trapped carriers are thermally 

excited and released from the trap states. The released charge carriers are collected through 

the respective electrodes. The transient current originating from the released charge carriers 

is measured as a function of temperature. The resulting plot is called TSC curve consisting 

of peak(s) associated with the trap states (like Figure 4.17). Analyzing the peak(s) provides 

information about the trap states such as activation energy and concentration of carriers in 

the trap centers. Since the examined PSC has an identical configuration, possible changes in 

the current are ascribed to an alteration in the trap density.  

In this thesis, TSC measurements were performed in a closed cycle He cryostat under helium 

gas atmosphere which also acts as heat transfer medium. We illuminated the PSCs with a 

white LED array for 5 min to fill the traps. During device heating, TSC signal was monitored 

using a sub-femtoamp source meter (Keithley-6430) under built-in field without external 

bias. 

 

 
𝑛id(𝐼) =
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4. Spontaneous Enhancement of Power Conversion 

Efficiency 

 

In this chapter, we study the origin of spontaneous enhancement of power conversion 

efficiency of perovskite solar cells that occurs after a few days of sample preparation. We 

observe spontaneous enhancement for a variety of multi-cation-halide perovskite solar cells 

with different perovskite compositions and architectures. The primary contributor to the 

improved efficiency is an increased open-circuit voltage. We employ various 

characterization methods to better understand the intrinsic causes of this effect. The 

generality of spontaneous enhancement for different compositions of multi-cation-halide 

perovskite solar cells highlights the importance of determining the absolute power 

conversion efficiency increase over time initiated by this phenomenon. 

This chapter is based on our publication in the Journal of Materials Chemistry A [97] with 

the title “Spontaneous enhancement of the stable power conversion efficiency in perovskite 

solar cells”. Most of the graphs in this chapter are adapted or reproduced with permission of 

The Royal Society of Chemistry.  

4.1. Motivation 

It is a common observation that in most cases the power conversion efficiency (PCE) of 

multi-cation perovskite solar cells (PSCs) tends to reach its highest value after a few days of 

storage in the dark after device fabrication. Several studies reported the phenomenon for 

PSCs with various perovskite absorber compositions, such as MAPbI3,
42–44 multi-cation-

halide,39–44 Pb-free,98 and mixed Sn/Pb perovskite (see Chapter 5) thin films. Various 

hypotheses were presented in the literature to explain this phenomenon.41–44 One early study 

related the spontaneous enhancement of PCE to a coalescence of smaller crystallites during 

storage.41 As a result, a reduction in non-radiative recombination at the grain boundaries was 

suggested to lead to a better performance of the respective PSCs.41 Another study suggested 

an improved crystallinity in addition to released residual stress and lattice distortion to be 

the origin of the spontaneous enhancement over long-term storage.42 A gradual diffusion of 

sodium (Na+) ions from the ITO-coated glass substrate into the perovskite thin film was 
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presented as another possible explanation.44 Passivation at the grain boundaries initiated by 

Na+ was suggested to result in a reduction in density of trap states during the storage time 

improving the photovoltaic performance of the PSCs.44 Despite all of the above-mentioned 

studies and investigations, yet no consensus was reached on the genesis of the spontaneous 

enhancement and a systematic study was still missing. 

In this chapter, we provide a systematic experimental comparison of different architectures 

and perovskite compositions to ascertain the generality of the spontaneous enhancement and 

its causes. In Section 4.2, we introduce the spontaneous enhancement for a case study using 

a triple-cation composition as the reference perovskite thin film. Afterwards, we investigate 

a variety of perovskite thin films with different compositions, including double-cation MA-

free [CsFAPb(IBr)3] and Cs-free [FAMAPb(IBr)3] as well as triple-cation 

[CsFAMAPb(IBr)3] perovskite thin films with different Cs concentrations. In Section 4.3, 

we study the role of charge transport layers by using different electron transport layers 

(ETLs) like nanoparticles of TiO2 (np-TiO2), buckminsterfullerene (C60) (deposited on top 

of the np-TiO2 layer), and nanoparticles of SnO2 (np-SnO2) as well as varying the point in 

time of the hole transport layer (HTL) deposition.  

In Section 4.4, we analyze the X-ray diffraction (XRD) patterns of pristine and stored 

perovskite thin films, which are suggestive of a reduction in the strain in the perovskite thin 

films after storage. The reduced strain can result in diminished trap-state density discussed 

in Sections 4.5 and 4.6. In Section 4.5, we discuss that the improved open-circuit voltage 

(𝑉OC) of the PSCs upon storage is due to a reduction in non-radiative Shockley-Read-Hall 

(SRH) recombination, which is revealed by a decreased ideality factor as well as enhanced 

charge carrier lifetimes. Moreover, photoluminescence (PL) measurements reveal the 

existence of lower-energy states with 80 meV difference to the bulk bandgap phase that 

disappear after a few days of storage with only the peak of the bulk bandgap phase 

remaining. Lastly, in Section 5.6, we discuss the results provided by thermally stimulated 

current (TSC) measurements applied on complete PSC devices. TSC discloses that the 

density of trap states close to the bandgap is drastically reduced after storage, which can be 

due to strain relaxation over a few days of storage, and thereby results in the spontaneous 

enhancement in the PCE of PSCs.  

4.2. Investigation of perovskite composition 

Using perovskite thin films in the composition Cs0.1(FA0.83MA0.17)0.9Pb(I0.83Br0.17)3, referred 

to as Cs1FM9 hereafter, we fabricated reference PSCs with a layer stack of glass / ITO / np-

TiO2 / Cs1FM9 / spiro-MeOTAD / Au (Figure 4.1a). We measured the reference PSCs on 

the day of sample preparation (day 1) and tracked their performance after having them stored 

for several days at room temperature in the dark in an inert atmosphere (nitrogen-filled 

glovebox).  

The PCE of a Cs1FM9 PSC with a very low initial value (≈13.0%) did not stabilize over 5 

min when measured at a constant voltage close to the maximum power point (MPP) voltage 

(Figure 4.1b). Interestingly, after storage, the PCE gradually increased and stabilized at 



Spontaneous Enhancement of Power Conversion Efficiency 

45 

 

16.0% on day 10 and further increased to 17.0% on day 40. The improvement in PCE 

continued to 17.5% up to day 150, while on day 785 the PCE dropped only by ≈1% absolute 

to 16.6% possibly due to material degradation starting to appear after such long-term storage. 

In order to corroborate the reproducibility of the results, we tracked the performance of 16 

identically prepared Cs1FM9 PSCs. Interestingly, the averaged PCE improved significantly 

from ≈10.0% on day 1 to ≈17.0% on day 40, following the same trend shown in Figure 4.1b 

for the reference PSC. The statistical distribution of the PCEs of these devices after 5 min 

(PCEafter 5 min) are shown in Figure 4.1c, confirming the improved performance on different 

days of storage.  

Notably, as Figure 4.2a depicts open-circuit voltage (𝑉OC) was the main photovoltaic 

characteristic that improved during the storage, which increased from 1.13 V on day 1 (with 

a PCE of 16.7%) to 1.19 V on day 40 (with a PCE of 18.0%) in the backward scan direction 

(solid lines). A 𝑉OC of 1.19 V is a remarkable value for a single-junction PSC with a bandgap 

(𝐸g) of 1.62 eV, relating to a low voltage deficit of only ≈0.43 V (calculated by subtracting 

the 𝑉OC from 𝐸g).99 It is also apparent that the hysteresis in the current-density–voltage (J–

Figure 4.1. (a) A schematic layer stack and a cross-sectional scanning electron microscopy (SEM) image 

of a reference Cs1FM9 PSC. (b) Power conversion efficiency (PCE) at a constant voltage close to the 

maximum power point (MPP) measured on the day of sample preparation (day 1) and after storage (days 

5, 10, and 40) and (c) statistical distribution of the same values after 5 min (PCEafter 5 min) for16 identically 

prepared reference Cs1FM9 PSCs. Open symbols indicate that, on days 1 and 5, the power output does 

not stabilize over 5 min. SEM measurement was performed by Dr. Bahram Abdollahi Nejand. Adapted 

from [97] with permission of The Royal Society of Chemistry. 
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V) characteristics of the PSC decreased over time, which agrees with the quicker stabilization 

of the power output in the MPP measurements shown in Figure 4.1b.100 Comparing the J–V 

characteristics of 40 identically prepared PSCs measured on different days confirmed the 

observed trend in hysteresis. We calculated the hysteresis index (HI) of the PSCs (see 

Section 2.2.2) as HI =  𝐴𝐹𝑊 𝐴𝑏𝑤⁄ , where 𝐴𝐹𝑊 and 𝐴𝐵𝑊 are the areas under forward and 

backward scans in the J–V characteristics, respectively. A HI of 1 represents a PSC without 

hysteresis. As shown in Figure 4.2b, a pronounced hysteresis (low HI) for pristine Cs1FM9 

PSCs on day 1 gradually reduced over time (HI approached 1). Photovoltaic characteristics 

of these PSCs (Figure 4.2c) show that the 𝑉OC and fill factor (FF) are the main contributors 

Figure 4.2. (a) Current-density–voltage (J–V) characteristics of a reference Cs1FM9 PSC in backward 

(solid lines) and forward (dash lines) scan directions, measured on day 1 and several days after storage. 

(b) Calculated hysteresis index (HI) and (c) statistical distribution of power conversion efficiency (PCE), 

fill factor (FF), open-circuit voltage (𝑉OC), and short-circuit current (𝐽SC), for 40 identically prepared 

reference Cs1FM9 PSCs. Adapted from [97] with permission of The Royal Society of Chemistry. 
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to the enhanced PCE. By contrast, the short-circuit current (𝐽SC) is initially improved on day 

5 and started to drop afterwards on days 10 and 40.  

The incorporation of different cations into the metal-halide perovskite structure is known to 

impact the optoelectronic properties and stability of the respective PSCs.60,101–103 The 

incorporation of Cs, for example, decreases the non-radiative recombination rate due to a 

reduction in trap density in the bulk and/or at the grain boundaries of perovskite 

materials.60,101 We investigated a possible effect of Cs in the spontaneous enhancement of 

the PCE by incorporating Cs into double-cation FA0.83MA0.17Pb(I0.83Br0.17)3. Interestingly, 

Figure 4.3. Statistical distribution of power conversion efficiency at a constant voltage close to the 

maximum power point after 5 min (PCEafter 5 min) for 16 identically prepared 

Csx(FA0.83MA0.17)(1-x)Pb(I0.83Br0.17)3 PSCs, where x is the concentration of Cs. Open symbols indicate 

that the power output does not stabilize over 5 min on day 1. PCEave corresponds to the average 

enhancement of the PCE of the PSCs compared to day 1. All the PSCs were processed on np-TiO2 ETL 

under identical conditions. Reproduced from [97] with permission of The Royal Society of Chemistry. 

Figure 4.4. Statistical distribution of power conversion efficiency at a constant voltage close to the 

maximum power point after 5 min (PCEafter 5 min) for double-cation FA0.83Cs0.17Pb(I0.83Br0.17)3 and triple-

cation Cs0.1(FA0.83MA0.17)0.9Pb(I0.67Br0.33)3 PSCs (16 identically prepared samples of each) with bandgap 

(𝐸g) of 1.63 and 1.73 eV, respectively. PCEave corresponds to the average enhancement of the PCE of 

the PSCs compared to day 1. All the PSCs were processed on np-SnO2 ETL under identical conditions. 

Reproduced from [97] with permission of The Royal Society of Chemistry. 
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as depicted in Figure 4.3, the average PCE of PSCs with and without Cs enhanced in the 

range between 4.2% and 6.0% (absolute) over 10-day storage. In order to explore the effect 

of the perovskite composition, we prepared PSCs with wide-bandgap triple-cation 

Cs0.1(FA0.83MA0.17)0.9Pb(I0.67Br0.33)3 and MA-free double-cation FA0.83Cs0.17Pb(I0.83Br0.17)3 

perovskite thin films. As presented in Figure 4.4, our observations revealed that regardless 

of the composition of multi-cation-halide perovskites, the spontaneous enhancement is a 

common effect for PSCs with different compositions. The literature supports this conclusion, 

as it has been previously reported for multi-cation-halide,39–44 MAPbI3,
42–44 and Pb-free98 

PSCs. Moreover, in Chapter 5, we show that this phenomenon occurs for mixed Sn/Pb PSCs 

as well.  

 

4.3. Investigation of charge transport layers 

Charge transport layers play a prominent role in the performance of PSCs. In particular, the 

ETL defines the morphology of perovskite thin films in PSCs with n-i-p structures. As 

discussed in details in section 2.2.1, the type of ETL is also important for the energy level 

alignment, which is critical for extracting electrons and blocking holes at the ETL/perovskite 

junction.104–107 Therefore, in order to examine the possible effect of ETLs on the spontaneous 

Figure 4.5. (a) Statistical distribution of power conversion efficiency at a constant voltage close to the 

maximum power point after 5 min (PCEafter 5 min) and (b) calculated hysteresis index (HI) of 16 Cs1FM9 

PSCs with various electron transport layers. Open symbols in the top panel indicate that the power output 

of the np-TiO2- and np-TiO2/C60-based PSCs does not stabilize over 5 min. PCEave and HI 

corresponds to the average enhancement of the PCE and HI of the PSCs compared to day 1, respectively. 

Reproduced from [97] with permission of The Royal Society of Chemistry. 
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enhancement of the PCE, we prepared PSCs with three different ETLs: np-TiO2, C60 

(deposited on top of np-TiO2), and np-SnO2. TiO2 is one of the most widely used ETLs for 

PSCs with high PCEs due to its efficient electron extraction and hole blocking abilities.108–

111 According to the literature, PSCs including C60 or its derivatives at the ETL side show 

less hysteresis in the J–V characteristics since they are less influenced by ion migration and 

trap-assisted recombination at the ETL/perovskite interface.112–114 More recently, SnO2 

ETLs are widely used due to their high electron mobility,115 enhanced electron extraction,116 

as well as their relatively high stability under ultraviolet (UV) illumination.117,118 Our 

findings showed that the average value of the PCE of PSCs with different ETLs improved 

similarly by at least 2.5% absolute on day 10 (Figure 4.5). However, we note that the 

magnitude of enhancement varies for devices with different ETLs, which might be related 

to the different morphology of perovskite thin film formed on different substrates,104 which 

will be discussed in more details in the following sections.  

We observed that incorporating C60 onto the np-TiO2 substrates decreased the hysteresis, 

and therefore the HI of the np-TiO2/C60-based Cs1FM9 PSCs on day 1 was closer to unity 

compared to that of the np-TiO2-based Cs1FM9 PSCs (see Figure 4.5 for comparison). 

Nevertheless, the reduced hysteresis did not diminish the overall spontaneous enhancement 

of the np-TiO2/C60-based PSCs, indicating that the spontaneous enhancement does not only 

occur for PSCs with enormous initial hysteresis. Moreover, in contrast to the np-TiO2- and 

np-TiO2/C60-based PSCs, the PCE of a pristine np-SnO2-based Cs1FM9 PSC stabilized 

already on day 1 (Figure 4.6a). Based on the J–V characteristics the best-performing np-

SnO2-absed PSC exhibited a PCE of 19.6% on day 50 (which is a respectable value for 

solvent-quenched triple-cation based PSCs)60,119 with a 𝑉OC of ≈1.14 V, 𝐽SC of 

≈22.3 mA/cm2, and FF of ≈77%. In general, evidenced by our observations, PSCs with high 

(low) initial PCEs showed a lower (more prominent) spontaneous enhancement, in line with 

a previous report.41  

Figure 4.7. A schematic illustration of fabrication in terms of the point in time of the hole transport layer  

(spiro-MeOTAD) deposition. Top row (fabrication of control samples with immidiate spiro-MeOTAD) 

and bottom row (fabrication of test samples with delayed spiro-MeOTAD). Reproduced from [97] with 

permission of The Royal Society of Chemistry. 
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According to the literature, organic HTLs (the most employed spiro-MeOTAD) doped with 

lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) and 4-tert-butylpyridine (4-tBP) can 

negatively affect the stability of PSCs.120,121 This is due to the highly diffusive character of 

the additives (especially the Li-ions) that can affect the hysteresis and stability of PSCs under 

external factors like light, temperature, and/or an external bias voltage. We varied the time 

interval between the deposition of the perovskite thin films and the doped spiro-

MeOTAD/Au layers to discriminate whether the spontaneous enhancement is dependent on 

Figure 4.6. (a) Power conversion efficiency (PCE) at a constant voltage close to the maximum power 

point (inset represents the statistical distribution of the same value after 5 min for 16 identically prepared 

PSCs) and (b) current-density–voltage (J–V) characteristics in backward (sloid lines) and forward (dash 

lines) scan directions of the best-performing Cs1FM9 PSC deposited on np-SnO2. (c) Statistical 

distribution of power conversion efficiency (PCE), fill factor (FF), open-circuit voltage (𝑉OC), and short-

circuit current (𝐽SC) for 40 identically prepared np-SnO2-based Cs1FM9 PSCs, with a champion cell 

improving from PCE of 16.0% on day 1 to 19.6% after 50 days. Reproduced from [97] with permission 

of The Royal Society of Chemistry. 
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the presence of spiro-MeOTAD on top of the perovskite thin films. Since the power output 

of devices with np-SnO2 ETL stabilizes on day 1 and to avoid more complexity, we 

employed np-SnO2 as the ETL for all PSCs in the following.  

We fabricated (1) the control samples (as explained in Section 3.1.2) and (2) test samples 

without spiro-MeOTAD and Au, comprised of only ITO/np-SnO2/Cs1FM9, and stored them 

in a nitrogen-filled glovebox (see Figure 4.7). By measuring the control samples every day 

Figure 4.8. (a) Statistical distribution of power conversion efficiency after 5 min (PCEafter 5 min) at a 

constant voltage close to the maximum power point (MPP) for Cs1FM9 PSCs with immediate (control 

samples) and delayed (test samples) spiro-MeOTAD deposition. (b) PCE at a constant voltage close to 

the MPP for the best performing PSCs (control and test samples). (c) Statistical distribution of PCE, fill 

factor (FF), open-circuit voltage (𝑉OC), and short-circuit current (𝐽SC) for 16 identically prepared Cs1FM9 

PSCs (control and test samples) measured on the day of preparation (day 1) and after storage (days 7 

and 14). Reproduced from [97] with permission of The Royal Society of Chemistry. 
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after preparation, we found a remarkable improvement of the PCE on day 5 by 1.5% absolute 

on average as exhibited in Figure 4.8a. Therefore, we completed the layer stack of the test 

samples with spiro-MeOTAD (deposited on day 6) and Au (deposited on day 7 after 

Figure 4.9. (a) Atomic force microscopy (AFM) of the exact same spot on the surface of a Cs1FM9 

perovskite thin film using a diomand tip indentation. (b) Left column images manifest the data of the 

height sensor, containing information of the surface topography of the sample. Right column images 

exhibit the amplitude error, shown for a better illustration of the contrast. The roughness of the layer is 

≈18.4 nm with no considerable changes on different days. Reproduced from [97] with permission of 

The Royal Society of Chemistry. 
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overnight oxygen doping) and measured them. Interestingly, they immediately exhibited a 

stable power output comparable to that of the control samples (Figure 4.8a and b). After 

another week of storing the completed samples (day 14), all the J–V characteristics improved 

for both control and test samples (Figure 4.8c). It was noticeable that the 𝑉OC and FF were 

the parameters dominating the PCE enhancement over time. This experiment leads to the 

conclusion that the spontaneous enhancement of the PCE during storage is not relying on 

the presence of an HTL and an electrode or the specific characteristics of doped spiro-

MeOTAD. In the following sections, we systematically characterize the pristine and stored 

perovskite thin films to understand the causes. To begin with, in the next section, we apply 

atomic force microscopy (AFM) measurements and XRD analysis on pristine and stored 

perovskite thin films to impart further information about the surface and the crystallinity of 

the perovskite thin films before and after storage.  

4.4. Suppression of strain-induced trap states 

The spontaneous enhancement of the PCE of PSCs was attributed to the coalescence of small 

perovskite crystallites resulting in fewer grain boundaries.41,43 Although there is a long-term 

literature debate on whether grain boundaries are benign or detrimental to the performance 

of PSCs,122,123 based on some studies, grain boundaries account for trap-induced non-

radiative SRH recombination in PSCs.124–130 They discuss that perovskite thin films with a 

fewer number of grain boundaries (larger grains)124–127 and/or passivated grain 

boundaries128–130 are less influenced by non-radiative SRH recombination and consequently 

the respective PSCs exhibits better performance.125–131 

We conducted a series of tapping-mode AFM images (see Section 3.2.1) of a perovskite thin 

film on day 1 and various days after storage. This experiment provided us with insights into 

the above-mentioned possibility of crystallites’ coalescence as the genesis of the 

spontaneous enhancement. By performing an indentation with a diamond AFM tip on the 

surface of the perovskite thin film (Figure 4.9a), we could approach the indented sample spot 

(in a range of micrometers) and collect the scans from roughly the same spot of the 

perovskite thin film at different days. We did not observe any topographic alteration (i.e., 

coalescence or surface roughening) on the surface of the samples before and after storage. 

Figure 4.9b shows the AFM images on different days for an exemplary sample. This 

observation agrees with another study for which no coalescence was evidenced for 

perovskite thin films stored under ambient or inert conditions for two weeks.44  

The morphology and crystallinity of the perovskite thin films were particularly characterized 

after two weeks of interaction with air and nitrogen at room temperature in the dark.132 As 

evidenced, in the presence of moisture and oxygen at room temperature the perovskite grains 

grow larger spontaneously.132 By contrast, no considerable changes in the grains and 

crystallite sizes of the perovskite films that were stored in nitrogen for the same period were 

observed, which agrees with our findings from AFM. However, in those studies reporting 

on coalescence, the samples were stored in air.41,43 In conclusion, the spontaneous 
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enhancement occurs regardless of storing the devices in ambient air (in the presence of 

oxygen) or inert atmosphere (e.g., nitrogen-filled glovebox).  

To study the crystallinity properties for the perovskite thin films in more details, we 

performed XRD measurements on our perovskite thin films. Figure 4.10 compares the XRD 

patterns of a Cs1FM9 perovskite thin film on day 1 and after a few days of storage (on days 

5 and 10). In accordance with the literature, all X-ray reflections are indexed in cubic space 

group Pm-3m.133 Using the Scherrer equation (see Section 3.2.1), we measured the crystallite 

sizes on different days (Table 4.1). The crystallite size of the perovskite altered after storage 

because the width of the reflections, which among other effects is the main reminiscence of 

the crystal size, slightly changed. Moreover, the relative intensities of the perovskite 

diffraction peaks collected on different days remained consistent (Figure 4.10, right panel). 

Therefore, in line with the AFM results, the XRD characterizations revealed no signs of 

coalescence.  

Nevertheless, we observed a prominent shift in the XRD reflection peaks of the perovskite 

thin film at different days. Using the X-ray reflections of the ITO substrates at 2𝜃 = 21.5° 

and 30.4° as reference,134–136 we could exclude a sample height misalignment and detect a 

similar shift for all the perovskite peaks from day 1 to day 10. Figure 4.10, left panel, exhibits 

an exemplary of the shift in the (001) reflection from 2𝜃 = 14.2° (on day 1) to larger 

diffraction angles 2𝜃 = 14.2° (on day 5) and 14.3° (on day 10) (Figure 4.10, left panel). A 

shift to larger angles in the XRD patterns of a triple-cation perovskite thin film after storage 

was also reported elsewhere,42 and was taken as an indication of a plane shrinkage and more 

compact atomic packing. As discussed in Section 3.2.1, a shift to larger diffraction angles 

implies a smaller d-spacing, which could be associated with a homogenous strain release. 

Therefore, we hypothesized that a gradual release of initial strain in the perovskite thin film 

leads to the observed shift in the XRD pattern from day 1 to day 5 and day 10. We estimated 

the relative strain (listed in Table 4.1) according to the following expression: 90 

Figure 4.10. Right panel: X-ray diffraction (XRD) patterns of a Cs1FM9 perovskite thin film deposited 

on glass/ITO/np-SnO2, collected on the day of sample preparation (day 1) and after storage (days 5 and 

10). Left panel: shift of (001) perovskite peak from 2θ = 14.16° on day 1 to larger diffraction angles 

2θ = 14.23° on day 5 and 2θ = 14.30° on day 10. Reproduced from [97] with permission of The Royal 

Society of Chemistry. 
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where 𝑑strained is the mean d-spacing of the (001) and (002) reflections 

(= d(001) + d(002) / 2) for the strained sample on day 1 or day 5 and 𝑑unstrained is the mean 

d-spacing of the (001) and (002) reflections for the unstrained sample on day 10. Thereby, 

𝜖𝑟 was equal to 0.73% (0.0073 Å = Å 6.234 Å – 6.189 Å / 6.189 Å) on day 1 and 0.39% 

(0.0039 Å = 6.123 Å – 6.189 Å / 6.189 Å) on day 5, compared to day 10.  

Organic-inorganic perovskite thin films deposited by solution-based methods including 

antisolvent-quenching and annealing (for solvent removal) steps, which are required for high 

efficiency PSCs, are strained.137 While antisolvent-quenching step leads to a fast nucleation 

and crystallization of the perovskite thin films and may leave residual strain in the film, 

annealing temperature and mismatch in thermal expansion coefficient between perovskite 

and substrates is the mainspring of the residual strain in the spin-coated perovskite thin 

films.138,139 The mismatched thermal expansion coefficient also explains the different 

magnitude of spontaneous enhancement observed for the PSCs with different ETLs 

(Figure 4.5) since the strain level is expected to depend on the substrate (here the ETLs).140 

A typical substrate like glass and ITO as well as ETLs such as SnO2 and TiO2 have smaller 

thermal expansion coefficient than metal-halide perovskite thin films.140 Therefore, upon 

cooling down, the substrate (which was annealed) shrinks back faster than perovskite and 

restricts perovskite lattice from a full shrinkage to its origin size, which results in tensile 

strain in the film.139 However, the strain in the lattice is gradually relaxed upon storage. The 

strain relaxation, which results in plane shrinkage, manifests itself in the peak positions 

shifted to the larger diffraction angles. 

 
𝜖𝑟 =

𝛥𝑑

𝑑
=

𝑑strained − 𝑑unstrained

𝑑unstrained
 

4.1 

Table 4.1. Crystallographic parameters extracted from X-ray diffraction (XRD) patterns of a Cs1FM9 

perovskite thin film on days 1, 5, and 10. Reproduced from [97] with permission of The Royal Society 

of Chemistry. The strain analysis was performed in collaboration with Amir. A. Haghighirad. 
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Lattice strain was reported to increase deep and shallow trap concentrations that cause non-

radiative recombination. As reported, a local non-radiative decay revealed by time-resolved 

PL was associated with a reduction in strain-induced defects.141 Therefore, in the following, 

we used a variety of characterization methods including PL emission, ideality factor 

measurement, and TSC for identifying recombination mechanisms and calculating defect 

density in pristine and stored perovskite thin films and PSC devices. The results enabled us 

to reveal alteration in (strain-induced) trap density and recombination rates within the 

perovskite thin films upon storage.  

4.5. Investigation of charge recombination mechanisms 

As mentioned in Section 2.2.3, band-to-band radiative recombination, non-radiative SRH 

recombination in the bulk of perovskite thin films, as well as non-radiative recombination at 

grain boundaries and interfaces heavily impact the final device performance, especially the 

𝑉OC and FF of a PSC (see Section 2.2.3).70,142–144 We demonstrated that spontaneous 

enhancement of the PCE of PSCs is mainly governed by an improvement in the 𝑉OC and FF 

(Sections 4.2 and 4.3). Therefore, having insights into recombination mechanisms may 

provide us with information about the origin of the spontaneous enhancement. 

Steady-state and time-resolved PL characterizations conducted on perovskite thin films 

reveal valuable information about charge recombination properties of PSCs (see 

Section 3.2.1).70,145 Here, we used PL measurement to gain more insights into charge 

recombination properties of perovskite thin films regarding the spontaneous enhancement. 

As presented in Figure 4.11, we observed a two-fold stronger PL intensity and a remarkably 

enhanced charge carrier lifetime after 10-day storage for Cs1FM9 perovskite thin films 

deposited on bare glass, which implies a reduction in non-radiative SRH recombination.70,146 

As mentioned earlier, the strain was reported to result in trap-induced non-radiative 

recombination.139,141,147,148 Therefore, the decreased PL intensity for the pristine sample can 

Figure 4.11. (a) Photoluminescence (PL) spectra and (b) normalized time-resolved PL kinetics of a 

Cs1FM9 perovskite thin film deposited on bare glass. The data were collected on the day of sample 

preparation (day 1) and a few days after storage. The measurements were perforemd by Dr. Diana 

Rueda-Delgado. Reproduced from [97] with permission of The Royal Society of Chemistry. 
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Figure 4.12. Photoluminescense (PL) spectra (top row) and normalized time-resolved PL kinetics 

(bottom row) of perovskite thin films deposited on ITO/np-TiO2 (np-TiO2 sample) and ITO/np-SnO2 

(np-SnO2 sample). The data were collected on the day of samples preparation (day 1) and after storage 

(days 5 and 10). The measurements were perforemd by Dr. Diana Rueda-Delgado. Reproduced from 

[97] with permission of The Royal Society of Chemistry.  

Figure 4.13. Photoluminescense (PL) spectra of Cs1FM9 perovskite thin films stored with (left panel) 

and without (right panel) spiro-MeOTAD measured on the day of samples preparation (day 1) and 

after storage (day 7). We uses 0.15 ml chlorobenzene to wash the spiro-MeOTAD layer off the sample 

before measurement. The measurements were perforemd by Dr. Diana Rueda-Delgado. Adapted from 

[97] with permission of The Royal Society of Chemistry. 
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be indicative of the existence of strain-induced (as revealed by XRD) trap states, which 

diminish upon strain relaxation resulting in intensified PL emission. 

As mentioned in previous section, lattice strain is initiated by a mismatched thermal 

expansion between perovskite thin films and the substrates. Therefore, in order to determine 

if only a different amount of strain relaxation on the glass substrates could lead to the 

aforementioned observations, we conducted PL measurement on Cs1FM9 perovskite thin 

films deposited on glass substrates coated with ITO/np-TiO2 and ITO/np-SnO2. A similar 

trend (improved PL intensity and lifetime) ruled out this possibility. As shown in 

Figure 4.12, the PL intensity and lifetime enhanced more prominently for the np-TiO2 

samples as compared to the np-SnO2 samples (Figure 4.12), which correlates with the 

different magnitude of spontaneous enhancement of the PCE in the PSCs with these ETLs 

(see Figure 4.5). Hence, in agreement with the literature,140 we conclude that the choice of 

substrate can alter the level of strain initiated in the perovskite thin film and accordingly the 

magnitude of spontaneous enhancement of the PCE.  

Figure 4.14. (a) Wavelength-scaled time-resolved photoluminescense (PL) spectra (normalized to peak 

A) integrated in a time delay between 100 to 600 ns after the excitation pulse for a Cs1FM9 perovskite 

thin film deposited on bare glass. The data were collected on the day of sample preparation (day 1) and 

after storage (day 10). (b) Energy-scaled PL spectra of day 1 (left panel) and day 10 (right panel) fitted 

with a two-peak pseudo-Voigt profile for the lower-energy (LE) and the higher energy (HE) peaks. The 

measurements were performed by Marius Jackoby. Reproduced from [97] with permission of The 

Royal Society of Chemistry. 
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Interestingly, as shown in Figure 4.13, the enhancement of the PL intensity of perovskite 

thin films was apparent for the samples stored both with and without a doped spiro-

MeOTAD layer atop (the HTL of the sample with spiro-MeOTAD was washed away before 

the measurements). Therefore, enhancement of the PL intensity for the perovskite thin films 

after storage was independent of the presence of the spiro-MeOTAD HTL, which is strongly 

in line with the results presented in Section 4.2. PL results indicated that trap-assisted bulk 

recombination is dominating the total recombination in the PSCs, and its reduction explains 

the increased 𝑉OC and FF of the respective PSCs.  

To study the effect of the spontaneous enhancement on the PL spectra in more details, we 

performed a delayed emission spectrum, which was integrated from 100 to 600 ns after 

excitation, derived from a perovskite thin film before and after storage. The result revealed 

the coexistence of two distinct emission peaks (peak A at 763 nm and peak B at 804 nm) for 

the pristine perovskite thin film on day 1 (Figure 4.14a). Interestingly, after storage the same 

sample exhibited a remarkably intensified peak A, while peak B was completely diminished.  

To identify the maximum of these peaks, at first, we converted the original wavelength-

scaled PL spectra (Figure 4.14a) to energy-scale (Figure 4.14b) by applying a Jacobian 

transformation:149 

Additionaly, to delineate a comprehensive picture, we applied a pseudo-Voigt profile (see 

Appendix A for more details) to fit the energy-scaled PL spectra (Figure 4.14b). Based on 

the findings, peaks A and B were positioned at 1.62 and 1.54 eV, respectively. Although it 

may not be directly correlated, the energy difference between these two peaks is comparable 

with the improvement in the average 𝑉OC of the respective PSCs (from ~1.10 V on day 1 to 

~1.17 V on day 10, see Figure 4.2c). The position of peak A at 1.62 eV correlates to the 

expected bandgap of the triple-cation Cs1FM9 perovskite thin film (as also revealed by Tauc 

 𝐸 = ℎ𝑐
𝜆⁄    ,   𝑓(𝐸)~𝜆2𝑓(𝜆) 4.2 

Figure 4.15. (a) Normalized absorbance of a Cs1FM9 perovskite thin film on the day of sample 

preparation (day 1) and after storage (day 10). (b) Direct optical bandgap (𝐸g) of the film determined by 

Tauc plot. Adapted from [97] with permission of The Royal Society of Chemistry. 
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plot shown in Figure 4.15). The ratio of these peaks contributing to the total PL peak can be 

investigated by comparing the areas under the PL peaks (after their deconvolution) for 

different days. Peak analysis (see Appendix A) determined that on day 1, 66% of the PL 

emission comes from the lower-energy peak (peak B at 1.54 eV) and only 34% emanates 

from the bulk emission (peak A at 1.62 eV). While, on day 10, this ratio decreases to only 

21% for Peak B and increases to 79% for the bulk emission associated to peak A.  

It was recently revealed that local strain can result in phase segregation (separation of halide 

ions of different types).140,150 Therefore, the low-energy PL emission (peak B) might be 

associated with a lower-energy phase, which could be explained by strain-induced phase 

segregation for pristine samples right after film formation.150 Therefore, a decrease in the 

intensity of peak B upon storage could be related to a volumetric reduction of the low-energy 

phase after strain relaxation that correlates well to the increased intensity of the bulk 

emission (peak A). However, even if such a lower-energy phase coexists on day 1, its volume 

fraction must be very low, because absorption measurements of the perovskite thin film 

revealed that the bandgap is equal to the bulk bandgap (~1.62 eV) on day 1 as well as day 10 

(Figure 4.15). Thereby, even for a pristine sample the major fraction of the material must be 

in the bulk bandgap phase, although a small fraction of the lower-energy phase is sufficient 

to dominate the PL emission.  

Identifying the ideality factor values of a complete solar cell is a common way to interpret 

the dominant recombination mechanisms.70,95,151,152 However, for devices with complex 

multilayers like PSCs, it is important to avoid misinterpreting this parameter.95,96 As 

discussed in the literature, if SRH bulk recombination is dominant, an ideality factor 

approaching 1 is indicative of less trap-assisted non-radiative SRH recombination and 

therefore desirable for PSCs.96 As explained in Section 3.2.2, the ideality factor values can 

be derived from the slope of a logarithmic fit of a plot based on 𝑉OC vs. light intensity (𝐼). 

Figure 4.16 shows the 𝑉OC of the Cs1FM9 PSCs (with different ETLs) as a function of light 

Figure 4.16. Open-circuit voltage (𝑉OC) vs. light intensity (I) measurements derived from Cs1FM9 PSCs 

with np-TiO2 (left panel) and np-SnO2 (right panel) electron transport layers, measured on the day of 

samples preparation (day 1) and after storage (days 5 and 10). Dashed lines manifest logarithmic fits 

and the numbers indicate the ideality factor (nid) deduced from the slopes using Equation 4.3. 

Reproduced from [97] with permission of The Royal Society of Chemistry. 
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intensity for pristine devices (day 1) and after storage (days 5 and 10). Implementing the 

following expression:  

where 𝑚 is the slope of the fits of the plots in Figure 4.16. We identified a gradual decrease 

in the ideality factor of the PSCs (independent of the ETLs) on different days of storage. As 

concluded from PL results, the bulk recombination is the dominant recombination 

mechanism in the perovskite thin films, therefore the gradual decrease of the ideality factor 

is indicative of a reduction in trap-assisted SRH recombination in the bulk of the perovskite 

thin films. Thereby, the voltage losses induced by the non-radiative SRH recombination are 

alleviated and can be correlated to the strain relaxation upon storage (revealed by XRD 

results) in the perovskite thin films deposited on different substrates. Following section will 

provide us with more insights into the matter.  

4.6. Reduction of electronic trap states in the perovskite bulk 

Thermally stimulated current (TSC) is a powerful method for characterizing complete solar 

cell devices to provide detailed information about electronic trap states and/or recombination 

centers (see Section 3.2.2).101,153,154 Here, we applied TSC characterization to track changes 

in the trap densities of the perovskite thin films of pristine and stored Cs1FM9 PSCs. 

Figure 4.17a shows the TSC responses of a PSC which was probed on day 1 (after device 

fabrication) and on days 5 and 12 (after the PSC demonstrated a spontaneous enhancement 

in its PCE) over a temperature range of 25 K to 270 K. On day 1, two distinct TSC signals 

were revealed at around 88 K (denoted as S1) and 215 K (denoted as S2) as well as a broad 

TSC signal at around 245 K (denoted as S3) that implies a broad distribution of trap states 

 𝑛id =
𝑞𝑚

𝑘B𝑇
= 38.76 𝑚 (4.3) 

Figure 4.17. (a) Thermally stimulated current (TSC) spectra of a Cs1FM9 PSC measured directly after 

device preparation (day 1) and after storage (days 5 and 12). (b) Arrhenius plot of the respective TSC 

spectrum showing the activation energy (𝐸t) of the Cs1FM9 PSC measured on day 1. The red line 

represents the data range used for fitting initial rise associated with signal T3. The measurement were 

performed by Dr. Motiur Rahman Khan. Reproduced from [97] with permission of The Royal Society 

of Chemistry. 
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in the pristine device. Same measurement on the same sample showed that S3 completely 

disappeared on days 5 and 12, while S1 did not alter and S2 reduced negligibly. Since we 

detected the first two signals (S1 and S2) for other PSCs with the same transport layer 

sequence but different perovskite absorber layers, we only considered S3 to originate from 

the Cs1FM9 perovskite thin film. Thereby, the current reduction associated with S3 is 

indicative of an overall suppression in trap density in the bulk and/or at the grain boundaries 

of the Cs1FM9 perovskite thin film over time.  

We analyzed this signal by applying the initial rise method to estimate the activation energy 

of the corresponding trap states.153,154 Based on this method, the initial rise of the TSC signal 

is assumed to correspond to the moment when the trap states start to empty at a certain 

temperature (𝑇) and the current (𝐼TSC) is determined as follows:  

where 𝐸t is the activation energy of trap states and 𝑘B is the Boltzmann constant.153,154 

Therefore, the activation energy can be estimated from a natural logarithmic plot of the 

current associated with signal S3 (ln(𝐼TSC)) vs. reciprocal of the temperature (1 𝑇⁄ ), known 

as Arrhenius plot. As shown in Figure 4.17b, this plot gives a straight line in the beginning 

of the TSC peak with a slope value of −𝐸t 𝑘B⁄ . Using this method, we found a trap activation 

energy of 𝐸t ≈ 186.0 ± 2.2 meV corresponding to the signal S3 for a pristine PSC on day 1. 

The lower limit of the trap density (𝑁t) can be obtained by integrating the TSC spectrum 

over time for each peak according to the following expression:  

where 𝑡0 is the time at which heating begins, 𝑏 is the heating rate, and 𝑉 is the volume of the 

sample (calculated by multiplying the device thickness by the active area).153,154 Here, we 

determined the lower limit of trap density (𝑁t) as 1.6 × 1016 cm-3 from the time integral of 

the TSC signal. The reduced trap signal is in line with the enhanced 𝑉OC of the respective 

PSC upon storage. We emphasize that the trap concentration value was probably 

underestimated here due to the following limiting factors: (1) the peak profile was only 

partially observed within the measured temperature range and (2) the charge carriers might 

have recombined without contributing to the thermally stimulated current flow.154  

Overall, the TSC results revealed a reduced number of traps within the bulk at grain of the 

perovskite thin film after a few days of storage. Taken together with XRD analyses, we 

hypothesized that trap states in pristine PSCs were induced by initial strain in the lattice of 

the perovskite thin film directly after film fabrication. Strain relaxation over time explains 

the disappearance of the trap states detected by TSC characterization. The reduction in trap 

density comes along with a diminution of the lower-energy state detected by PL. Although 

no straightforward methods are providing direct proof that the observed lower-energy state 

 𝐼TSC ∝ exp(−𝐸t 𝑘B𝑇⁄ ) (4.4) 

 
∫ 𝐼TSC𝑑𝑡

𝑡final

𝑡0

= 𝑏𝑞𝑁t𝑉 
(4.5) 
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is due to the existence of strain, we hypothesize that the decrease in the low-energy PL peak 

is related to reduced strain in the bulk of the perovskite thin films upon storage. 

4.7. Summary 

In this chapter, spontaneous enhancement of PCE of PSCs with multi-cation-halide 

perovskite thin films is studied. We examined the spontaneous enhancement for different 

perovskite compositions as well as different ETLs. We also investigated whether the 

spontaneous enhancement is dependent on the existence of doped spiro-MeOTAD and Au. 

Our observations exhibited that the magnitude of spontaneous enhancement in PCE differs 

for PSCs with different perovskite compositions and different ETLs. We noted that devices 

with initially-poor PCEs tend to enhance further over time, such that the highest PCEs we 

observed in this study were 18.94% on day 40 (enhanced from 14.21% on day 1) and 19.60% 

on day 50 (enhanced from 16.30% on day 1) for PSCs with np-TiO2 and np-SnO2 ETLs, 

respectively. Moreover, by delaying the time of deposition, we ruled out effects of spiro-

MeOTAD and Au on the spontaneous enhancement in PCE. Measuring J–V characteristics 

determined that 𝑉OC and FF are the main contributors to the enhanced PCE, correlating with 

a significant increase in the PL intensity and charge carrier lifetime of the perovskite thin 

films as well as a shift in the ideality factor towards radiative recombination. Moreover, as 

revealed by time-resolved PL spectra, initially-present low-energy state, which dominate the 

PL emission immediately after film formation, disappeared after a few days of storage.  

Structural characterization deduced from XRD measurements disclosed a shift in the XRD 

patterns of a pristine perovskite thin film after storage to larger diffraction angles. Based on 

detailed XRD analysis, this shift is suggestive of a reduction in lattice strain in the perovskite 

thin films upon storage, which could be attributed to the mismatched thermal expansion 

between the perovskite thin films and the ETLs as the substrates. Therefore, the reduction of 

the low-energy state (revealed by PL measurement) could be attributed to a suppressed 

strain-induced phase segregation. TSC characterization supported the existence of strain-

induced trap states in pristine PSC. However, strain relaxation over time (revealed by XRD 

analysis) leads to a reduction of these traps. From the aforementioned results, we proposed 

that the spontaneous enhancement of the PCE of multi-cation PSCs is attributed to a gradual 

reduction in strain in the bulk of perovskite thin film overtime during storage. 
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5. Narrow-bandgap Multi-Cation Mixed Tin/Lead 

Perovskite Solar Cells 

 

In this chapter, we demonstrate that by incorporating minute quantities of Cs as a cation into 

FA0.8MA0.2Sn0.5Pb0.5I3 perovskite absorber layer, the operational photo-stability of the 

respective narrow-bandgap perovskite solar cells significantly improves such that the power 

conversion efficiency maintains up to 99% of its initial value after 120 min constant 

illumination. A detailed study on the perovskite thin film suggests that the improved photo-

stability correlates with a reduction in residual nanosized SnyPb(1-y)I2 aggregates on the 

surface of the perovskite thin films due to reactions with Cs resulting in a volumetric growth 

of the perovskite thin films. Furthermore, a beneficial stoichiometric composition and better 

crystallinity of the perovskite absorber leads to improved photo-stability of the narrow-

bandgap perovskite solar cells. 

This chapter is based on our publication in the Journal of Materials Chemistry A [155] with 

the title “Triple-cation low-bandgap perovskite thin-films for high-efficiency four-terminal 

all-perovskite tandem solar cells”. Most of the graphs in this chapter are adapted or 

reproduced with permission of The Royal Society of Chemistry. The semi-transparent top 

perovskite solar cells employed in this chapter were developed by Saba Gharibzadeh and 

Ihteaz M. Hossain. 

5.1. Motivation 

Metal-halide perovskite semiconductors with a wide range of bandgaps (1.1-2.3) 27,65–67,156 

are suitable candidates for the top (with pure Pb mixed-halide perovskite) and the bottom 

(with mixed Sn/Pb perovskite) sub-cells in a tandem structure. So far, pure Pb-based 

perovskite solar cells (PSCs) and their applications as the top sub-cell in perovskite/Si and 

perovskite/CIGS tandem solar cells were the main focus of the most studies.24,26–28,157 

However, recent advances have promoted mixed Sn/Pb narrow-bandgap PSCs with 

reasonable efficiencies (>20%),21–23,29,30 as the new candidates to replace Si and CIGS 

bottom sub-cells in tandem solar cell configurations benefiting from low-temperature and 

low-cost fabrication methods. 
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Despite the recent advances, the low operational stability of mixed Sn/Pb narrow-bandgap 

PSCs is still an obstacle for the alternative all-perovskite tandem solar cell (all-PTSC) 

configurations. Hence, strategies that address the poor stability of narrow-bandgap PSCs are 

essential. Although partial substitution of Sn2+ for Pb2+ lowers the bandgap of the perovskite 

absorber to the values suitable for the bottom sub-cell in all-PTSCs (1.1-1.3 eV),65,158–161 it 

results in poor stability because unlike Pb, Sn is prone to oxidation from Sn2+ to Sn4+ even 

in an inert atmosphere with a trace amount of oxygen.22,162,163 Apart from oxygen-induced 

degradation, light-induced degradation,164,165 thermal decompositions,164,166 and crystal-

structure transition167,168 are the other degradation mechanisms less explored for mixed 

Sn/Pb PSCs. Applying 2D components as passivation layers,169–171 utilizing Sn-reduced 

precursor solutions,22,29 incorporating antioxidant additives such as SnF2,
163,172–175 

SnBr2,
163,172,176 SnCl2,

172,177 GuaSCN,21 ascorbic acids,178 and sulfonic acid group,179 as well 

as compositional engineering180 are established strategies to prevent oxidation. 

The crystal structure of perovskite semiconductors (ABX3) plays a prominent role in their 

thermal and phase-stability (see Section 2.1.2).31 Compositional engineering in the A-site is 

a proven method to tune the tolerance factor to have a stable structure. Incorporating Cs into 

crystalline lattice of double-cation FAxMA(1-x), for example, improves the structural stability 

and the optoelectronic properties of pure Pb-based perovskite semiconductors.60,101 

Integration of Cs into the lattice structure of the perovskite alters the structural properties 

beneficially and results in a reduction in trap density in the bulk and at the grain boundaries 

of the perovskite.60,101 Incorporating Cs into mixed Sn/Pb-based perovskite semiconductors 

is also beneficial for the photovoltaic performance of narrow-bandgap PSCs.30,161,180,181 For 

example, incorporating Cs into mono-cation mixed Sn/Pb-based perovskite reduces the 

crystallization rate that leads to an enhanced film formation and effectively restrains the Sn2+ 

oxidation even if exposed to the ambient environment.180 Moreover, Cs incorporation was 

reported to improve the 𝐽SC and 𝑉OC of MASn0.5Pb0.5I3 and FASn0.5Pb0.5I3 PSCs 

remarkably.180 In another study, replacing MA with Cs in FA0.6MA0.4Sn0.6Pb0.4I3 was 

demonstrated to enhance the thermal and operational stability of the corresponding PSCs.181 

A recent study investigated the role of Cs when integrated into a double-cation 

FA0.5MA0.5Sn0.5Pb0.5I3 perovskite.30 As proposed, Cs incorporation leads to a reduction in 

strain-induces trap densities and therefore improved performance of the PSCs.30 

In this chapter, we investigate the role of Cs in improved photo-stability when incorporated 

into a double-cation mixed Sn/Pb perovskite for the first time. In Section 5.2, we demonstrate 

that the photo-stability of Csx(FA0.8MA0.2)(1-x)Sn0.5Pb0.5I3 narrow-bandgap PSCs remarkably 

improves upon introducing minute amounts of Cs, x = 2.5% and 5%, maintaining 92% and 

99% of their initial power conversion efficiencies (PCEs), respectively. In Sections 5.3 and 

5.4, we verify that the formation of nanosized SnyPb(1-y)I2 aggregates is mitigated upon Cs 

incorporation based on scanning electron microscopy (SEM) and cathodoluminescence (CL) 

characterizations. The role of Cs in mitigation of SnyPb(1-y)I2 aggregates (with 0 < y < 1), is 

investigated by X-ray diffraction (XRD) characterizations in Section 5.5. In the last section 

of this chapter, Section 5.6, we combine the highest-performing triple-cation mixed Sn/Pb 

narrow-bandgap PSCs (𝐸g ≈ 1.26 eV) with semi-transparent double-cation PSCs 
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(𝐸g ≈ 1.65 eV) and report on four-terminal (4T) all-PTSCs with PCEs as high as 23.6% 

(25.4% in case of using an anti-reflection coating at the front side of the top sub-cell).  

5.2. Improved photo-stability of narrow-bandgap perovskite 

solar cells 

Compared to the pure Pb-based perovskite thin films, the formation of high-quality solution-

processed Sn-based perovskite thin films is more challenging to control.182 The antisolvent-

quenching, which is the most common method used in spin-coating perovskite thin films, is 

not favorable for Sn-based perovskite thin films. Antisolvent-quenching initiates fast 

nucleation and crystallization and produces very small crystallites with increased grain 

boundaries which is not beneficial for Sn-based PSC in contrast to their Pb-based 

counterparts.158,183 Vacuum-assisted growth control (VAGC) is an efficient approach to 

processes uniform and pinhole-free Sn-based perovskite thin films even on extremely 

hydrophobic substrates such as PTAA (see Section 3.1.1).184 Therefore, we used this method 

to prepare mixed Sn/Pb narrow-bandgap perovskite absorber layers in the composition 

Csx(FA0.8MA0.2)(1-x)Sn0.5Pb0.5I3, hereafter denoted as Csx with x = 0%, 1%, 2.5%, 5%, and 

10%. Figure 5.1a exhibit a schematic illustration of the layer stack of a narrow-bandgap PSC 

consisting of glass / ITO / PTAA / perovskite / PCBM / C60 / BCP / Ag and a cross-sectional 

SEM image of the same layer stack for x = 2.5% (denoted as Cs2.5%).  

We compared the PCE of the best-performing narrow-bandgap PSCs prepared with different 

Cs concentrations (denoted as Cs0%, Cs1%, Cs2.5%, Cs5%, and Cs10%) (Figure 5.1b) from 

maximum power point (MPP) tracking measurement. Cs2.5% PSC provided the highest 

PCE of 17.5%, which is a respectable value for narrow-bandgap PSCs. Notably, as presented 

in Figure 5.1c, a clear trend in the operational photo-stability of these devices exhibited a 

significant improvement upon incorporation of Cs. The PSCs with Cs2.5% and Cs5% 

maintained 92% and 99% of their initial efficiencies after 120 min MPP tracking (in a 

nitrogen-filled glovebox with an oxygen level of ≈50 ppm). By contrast, a PSC without Cs 

(denoted as Cs0%) degraded to 61% of its initial value under the same measurement. We 

confirmed the reproducibility of the observed trend regarding the PCE with different Cs 

concentrations by measuring the efficiency of six identically prepared PSCs (for each Cs 

concentration) under MPP tracking conditions (see Figure B1 in Appendix B).  

The current-density–voltage (J–V) characteristics (Figure 5.1d) revealed that the highest 

PCE (≈18.2%) provided by a Cs2.5% PSC was enabled by a short-circuit current (𝐽SC) of 

32.0 mA/cm2. The integrated 𝐽SC values calculated from the external quantum efficiency 

(EQE) responses of the PSCs with Cs0%, Cs1%, Cs2.5%, Cs5%, and Cs10% (Figure 5.1e) 

were 29.4, 29.5, 31.4, 29.0, 27.3 mA/cm2, respectively, confirming the observed trend in the 

𝐽SC derived from the J–V characteristics. Moreover, statistical distribution of the J–V 

characteristics (Figure 5.2) from 30 identically prepared PSCs (for each Cs concentration) 

verified that the PCE of PSCs with Cs2.5% was the highest in average. The J–V 

characteristics of the champion PSCs and the average values of the PSCs from Figure 5.2 

are also summarized in Table 5.1.  
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To be mentioned, the PCE of the mixed Sn/Pb PSCs improved slightly after one night storage 

in a nitrogen-filled glovebox (with an oxygen level of ≈50 ppm). As shown in Figure B2 

(Appendix B), the enhancement in PCE was driven by the slightly enhanced 𝑉OC and FF. 

Figure 5.1. (a) A schematic illustration of the layer stack and a cross-sectional scanning electron 

microscopy (SEM) image of a narrow-bandgap PSC with 2.5% Cs concentration (denoted as Cs2.5%). 

(b) Power conversion efficiency (PCE) from maximum power point (MPP) tracking of the best 

performing narrow-bandgap PSCs with Csx(FA0.8MA0.2)(1-x)Sn0.5Pb0.5I3 perovskite thin films prepared 

with different Cs concentrations varying from 0% to 1%, 2.5%, 5%, and 10% (denoted as Cs0%, Cs1%, 

Cs2.5%, Cs5% and Cs10%) at MPP tracking condition. (c) PCE from MPP tracking for 120 min of the 

same PSCs normalized to their initial values (when the light is switched on). (d) Current-density–voltage 

(J–V) characteristics and (e) external quantum efficiency (EQE) spectra of the same PSCs. The SEM 

measurement was perforemd by Dr. Tobias Abzieher. Reproduced from [155] with permission of The 

Royal Society of Chemistry. 
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Earlier in Chapter 4, we introduced this phenomenon as ‘spontaneous enhancement’. We 

showed that it is a common observation for multi-cation Pb-based PSCs with different 

perovskite compositions possibly attributed to gradual relaxation of lattice strain over time. 

However, the magnitude of the spontanoues enhancement of PCE was negligible for mixed 

Sn/Pb PSCs. We explain this by considering the different fabrication method we used for 

preparing the mixed Sn/Pb perovskite thin films. Strain arises during the annealing and 

cooling process, which was 1 hour at 100 °C for the perovsite thin films we investigated in 

Chapter 4. However, here, we used vacuum-assisted method followed by only 7 min at 

100 °C annealing step, which could possibly lead to less amount of residual strain.  

5.3. Morphology and surface characterizations 

Studying the morphology of the perovskite thin films can reveal valuable information about 

the effect of Cs in the photovoltaic enhancement of the PSCs. Therefore, we compared the 

morphology of the surface of the perovskite thin films prepared with different Cs 

concentrations. SEM images (Figure 5.3a) revealed that the perovskite thin films with Cs0% 

to Cs5% were all compact and pinhole-free. By contrast, a perovskite thin film with Cs10% 

possessed a poor morphology with inhomogeneous coverage composed of pinholes and 

cracks between the grains. As evidenced by SEM images, the size of the perovskite grains 

gradually enlarged from 217 nm for Cs0% to 570 nm for Cs10%, upon increasing the 

Figure 5.2. Statistical distribution of (a) power conversion efficiency (PCE), (b) fill factor (FF), 

(c) short-circuit current (𝐽SC), and (d) open-circuit voltage (𝑉OC) of Csx(FA0.8MA0.2)(1-x)Sn0.5Pb0.5I3 narrow-

bandgap PSCs with different Cs concentrations varying from 0% to 10%. The black dots show the average 

values of 30 PSCs that are identically prepared in 10 different batches. Reproduced from [155] with 

permission of The Royal Society of Chemistry. 
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amount of Cs concentration. Larger grains are indicative of fewer grain boundaries. As 

mentioned in Chapter 4, the role of grain boundaries on the performance and the stability of 

the PSCs is still under debate.122,123 In several studies, grain boundaries were reported to act 

as trap centers that cause recombination losses, and therefore decrease device stability under 

illumination.124,185,186 This is in line with our observations for narrow-bandgap PSCs with 

different Cs concentrations. For the investigated range, the perovskite thin films with higher 

Cs concentration (up to 5%) had larger grains (fewer grain boundaries) and the 

corresponding PSCs showed better photo-stability. PSCs with Cs10%, however, showed 

poor stability due to pin-holes and poor morphology of the perovskite thin films. 

More importantly, SEM images revealed the existence of bright nanosized aggregates 

(<100 nm) on the perovskite thin films. These aggregates were reduced with increasing Cs 

and completely disappeared for perovskite thin films with Cs10%. By comparing the relative 

area (RA) of the bright aggregates (RA = area of the aggregates/area of the grains) with the 

stability factor (SF = SPCEfinal/SPCEinitial; SPCE stands for stabilized PCE extracted from 

Figure 5.3. (a) Top-view scanning electron microscopy (SEM) images of Csx(FA0.8MA0.2)(1-x)Sn0.5Pb0.5I3 

narrow-bandgap perovskite thin films with Cs concentrations varying from x = 0%, to 1%, 2.5%, 5%, 

and 10% (denoted as Cs0%, Cs1%, Cs2.5%, Cs5%, and Cs10%, respectively). The scalebar is indicative 

of 1 µm. (b) Comparison of the relative area (RA) of the bright nanosized aggregates (RA = area of the 

aggregates/area of the grains), the stability factor (SF = SPCEfinal/SPCEinitial), and the average PCE 

(PCEave) of the PSCs as a function of Cs content. SPCEfinal and SPCEinitial are the initial and final values 

of the stabilized PCE (SPCE) derived from maximum power point tracking for 120 min. SEM 

measurements were performed by Dr. Bahram Abdollahi Nejand. Reproduced from [155] with 

permission of The Royal Society of Chemistry.
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MPP tracking measurement) and the average PCE (PCEave, from J–V characteristics) of the 

narrow-bandgap PSCs for different Cs concentrations in the investigated range, we realized 

that an optimal amount of Cs (5%) is beneficial for device stability, while a lower amount 

of Cs (2.5%) is sufficient to attain the highest PCE.  

Having verified that the reduction of these aggregates relates to the improvement in the 

operational photo-stability of the respective PSCs upon increasing Cs, one hypothesis for 

the origin of the bright aggregates would be residual PbI2. PbI2 crystals were shown to suffer 

from an intrinsic photo-instability triggered by photo-decomposition under illumination.187–

189 Residual PbI2 in Pb-based perovskite thin films was reported to cause photo-induced 

degradation under illumination even in an inert atmosphere.187,188,190,191 Here, for the mixed 

Sn/Pb perovskite, the bright aggregates might be composed of residual PbI2, SnI2, or a 

mixture of both. This motivated us for further investigations to provide more insights into 

the origin of these aggregates, which will be discussed in the following sections.  

5.4. Reduction of residual SnyPb(1-y)I2 

Several studies have utilized cathodoluminescence (CL) characterization (see Section 3.2.1) 

as a suitable technique to detect phase segregations and residual materials such as PbI2 in 

the perovskite thin films.192–194,195 Here, we collected the CL spectra of the mixed Sn/Pb 

perovskite thin films with different Cs concentrations within the spectral range from 400 to 

900 nm (Figure 5.4a). An emission peak at around 600 nm implied the presence of a wide-

bandgap phase or a material with a bandgap of about 2.1 eV, which is much higher than the 

bulk bandgap of the narrow-bandgap perovskite thin films (≈1.26 eV). Interestingly, this 

peak gradually diminished by increasing the Cs concentration from 0% to 10%.  

To corroborate the above-mentioned hypothesis regarding the existence of PbI2, SnI2, or a 

mixture of both, we prepared SnyPb(1-y)I2 thin films with y = 0, 0.5, and 1 for CL 

Table 5.1. Current-density–voltage (J–V) characteristics of champion (Ch.) narrow-bandgap PSCs with 

different Cs concentrations varying from 0% to 10%. The average (Ave.) values are derived from 30 

narrow-bandgap PSCs identically prepared in 10 different batches. Reproduced from [155] with 

permission of The Royal Society of Chemistry. 
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measurement. The results (Figure 5.4b) revealed narrow peaks at 505 nm (for PbI2; y = 0) 

and 518 nm (for SnI2; y = 1). Whereas the mixed Sn0.5Pb0.5I2 (y = 0.5) displayed a broad CL 

peak positioned at around 600 nm that matches well with the CL emission peak (at 618 nm) 

associated to the narrow-bandgap perovskite thin films (Figure 5.4a). The anomalous trend 

that we observed in the bandgap of SnyPb(1-y)I2 (2.46, 2.07, and 2.39 eV for y = 0, 0.5, and 

1, respectively) does not fulfill Vegard’s law.196 The deviation from the linear behavior in 

the bandgap (with respect to y) is probably due to the ‘band inversion’ model.197,198 

According to this model, a band inversion occurs with varying ‘y’, which is correlated to the 

bandgap of SnI2 being ‘inverted’ relative to the bandgap of PbI2. This occurs because the 

conduction band minimum in SnI2 and the valence band maximum in PbI2 has a similar 

orbital composition. A similar trend was also detected for MASnxPb(1-x)I3 perovskite thin 

films due to the same reason, where the bandgap was determined as 1.55, 1.17, and 1.30 eV 

for x = 0, 0.5, and 1, respectively.65  

To conclude, the CL results together with the SEM images suggested that the observed bright 

aggregates were mixed SnyPb(1-y)I2 composite with 0 < y < 1 that gradually decrease by 

adding more Cs. Being located atop perovskite thin film, the SnyPb(1-y)I2 aggregates with a 

bandgap of about 2.1 eV (as detected by CL) can impede the extraction of electrons from 

perovskite into PCBM electron transport layer (ETL) and hinder the photo-stability of the 

PSCs. In the following, we investigate the possible mechanisms resulting in the appearance 

of the SnyPb(1-y)I2 by studying the effect of Cs on the crystal structure of the mixed Sn/Pn 

narrow-bandgap perovskite thin films.  

Regardless of the amount of Cs, XRD patterns of Csx(FA0.8MA0.2)(1-x)Sn0.5Pb0.5I3 thin films 

(Figure 5.5a) exhibited two dominant perovskite peaks at 14.1° and 28.3° that were assigned 

to the (002)/(110) and (004)/(220) planes of the tetragonal perovskite crystal structure, 

respectively.199 A gradual growth in the intensity of these two peaks upon increasing Cs is 

indicative of an improved crystallinity and/or a change in the preferential crystal orientation 

Figure 5.4. Cathodoluminescence (CL) spectrum obtained from (a) Csx(FA0.8MA0.2)(1-x)Sn0.5Pb0.5I3 

narrow-bandgap perovskite thin films prepared with different Cs concentrations varying from x = 0%, to 

1%, 2.5%, 5%, and 10% (denoted as Cs0%, Cs1%, Cs2.5%, Cs5%, and Cs10%, respectively) and (b) PbI2, 

SnI2, and Sn0.5Pb0.5I2 thin films. The CL measurements were perforemd by Huyen Phan in collaboration 

with Dr. The Duong at Australian National University. Reproduced from [155] with permission of The 

Royal Society of Chemistry. 
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of the perovskite thin film, which correlates with the observed increase in the grains’ sizes 

for higher Cs concentrations (up to 5%). However, too high cation excess in the perovskite 

precursor solution189,191 and/or approaching the substitution limit (spinodal 

decomposition)60,200,201 are possible reasons for explaining the weak intensity of the XRD 

peaks detected for the perovskite thin films with Cs10%.  

Most importantly, as shown in the left panel of Figure 5.5a, we realized that the intensity of 

a peak at 12.77° weakened as the concentration of Cs increased from 0% to 5% and 

disappeared for 10%. The XRD results derived from SnyPb(1-y)I2 thin films with y = 0, 0.5, 

and 1 (Figure 5.5b), which were deposited on ITO-coated glass substrates, revealed 

dominant peaks at 12.56°, 12.76°, and 12.67°, respectively. The signal quality of the XRD 

data was not sufficient to discriminate between these materials. However, taken together 

with the CL results, we ascribed the peak at 12.77° detected in XRD patterns of the mixed 

Sn/Pb narrow-bandgap perovskite thin films to SnyPb(1-y)I2 with (0 < y < 1) diminishing 

gradually upon adding Cs, in line with the number of bright aggregates detected in SEM 

images for higher Cs concentrations.  

Figure 5.5. (a) X-ray diffraction (XRD) patterns of Csx(FA0.8MA0.2)(1-x)Sn0.5Pb0.5I3 narrow-bandgap 

perovskite thin films with different Cs concentrations varying from x = 0%, to 1%, 2.5%, 5%, and 10% 

(denoted as Cs0%, Cs1%, Cs2.5%, Cs5%, and Cs10%, respectively); left panel exhibits suppression of 

the XRD peak at 12.77° by increasing Cs content. (b) XRD patterns of SnI2, PbI2, and mixed Sn0.5Pb0.5I2; 

left panel compares the position of the first (main) XRD peak of each film. XRD measurement presented 

in figure b were performed by Dr. Tobias Abzieher. Reproduced from [155] with permission of The 

Royal Society of Chemistry. 
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A shift in the XRD peaks into the larger reflection angles (Figure 5.6a) is indicative of a 

lattice contraction upon the incorporation of Cs (with a much smaller ionic radius of 1.81 Å 

compared to FA+ and MA+ with ionic radii of 2.79 Å and 2.70 Å, respectively) into the 

lattice structure of the perovskite thin film.180 The incorporation of Cs into the lattice, which 

was also confirmed by X-ray photoelectron microscopy (XPS) characterization 

(Figure 5.6b), was reported to reduce the crystallization rate and slow down the Sn2+ 

oxidation to Sn4+ due to a lattice contraction and a denser morphology of the perovskite thin 

films.180 In agreement with the literature,180 the Sn 3d5/2 core level XPS spectra of the 

Csx(FA0.8MA0.2)(1-x)Sn0.5Pb0.5I3 narrow-bandgap perovskite thin films (Figure 5.6c) 

portrayed that Sn4+ was reduced by a factor of ≈2 by increasing Cs concentration from 

x = 0% to 10% (Figure 5.6d).  

5.5. Investigation of SnyPb(1-y)I2 excess in perovskite thin films 

In this section, we carried out further XRD analyses to understand the effectiveness of Cs 

incorporation in decreased residual SnyPb(1-y)I2. Figure 5.7 depicts XRD patterns of 

Figure 5.6. (a) X-ray diffraction (XRD) peaks assigned to (114)/(310) planes of the 

Csx(FA0.8MA0.2)(1-x)Sn0.5Pb0.5I3 narrow-bandgap perovskite thin films shifting to larger diffraction angles 

by increasing Cs concentration. X-ray photoelectron spectroscopy (XPS) spectra of (b) the Cs 3d5/2 and 

(c) the Sn 3d5/2 core levels of the narrow-bandgap perovskite thin films with different Cs concentrations 

varying from 0% to 2.5%, 5%, and 10% (denoted as Cs0%, Cs2.5%, Cs5%, and Cs10%) . (d) Relative 

change of Sn4+ as a function of Cs concentration. The XPS measurements were performed by Dr. Dirk 

Hauschild and Dr. Lothar Weinhardt. Figures a and b are reproduced from [155] with permission of The 

Royal Society of Chemistry. 
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Figure 5.7. X-ray diffraction (XRD) patterns of Csx(FA0.8MA0.2)(1-x)Sn0.5Pb0.5I3 prepared with a 

varying excess of Sn and Pb (ySn0.5Pb0.5I2) from y = 7.5%, to 4.5% and 0% depending on the Cs 

concentrations, which varies from x = 0%, to 3%, 7.5%, and 12.5%. Reproduced from [155] with 

permission of The Royal Society of Chemistry. 

Figure 5.8. (a) Absorptance spectra (A), (b) Tauc plots, (c) the average thicknesses (dAve.), and (d) 

pictures of Csx(FA0.8MA0.2)(1-x)Sn0.5Pb0.5I3 thin films prepared with excess Sn and Pb for different Cs 

concentrations of x = 0%, 3%, 7.5%, and 12.5%. All the layers are deposited on glass substrates. The 

average thickness (dAve) of each layer is an average of ten values obtained from two different samples 

on five different spots on each. Reproduced from [155] with permission of The Royal Society of 

Chemistry. 
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Csx(FA0.8MA0.2)(1-x)Sn0.5Pb0.5I3 thin films that we intentionally prepared with pronounced 

amounts of Sn and Pb excess (≈7.5%) while varying the Cs concentration from x = 0% to 

3%, 7.5%, and 12.5%. A dominant peak at 12.77° and two small peaks at 25.5° and 38.5° 

appeared in the absence of Cs (x = 0%), in accordance with the peaks detected for Sn0.5Pb0.5I2 

thin film (compare Figures 5.5b and 5.7), which is indicative of the existence of a 

considerable amount of SnyPb(1-y)I2. More importantly, the dominant peak at 12.77° agrees 

with the small XRD peak detected for the narrow-bandgap perovskite thin films (compare 

Figures 5.5a and 5.7). By adding a minute amount of Cs, this peak that is ascribed to the 

existence of a large amount of residual SnyPb(1-y)I2 subsided significantly, while the main 

perovskite peaks at 14.1° and 28.3° intensified remarkably. Increasing the amount of Cs to 

further values resulted in a further decrease (for x = 7.5%) and a complete disappearance 

(for x = 12.5%) of the SnyPb(1-y)I2 XRD peak. The perovskite peaks also started to abate upon 

increasing Cs.  

Ultraviolet-visible (UV-vis) measurements of the samples (Figure 5.8a) revealed an increase 

(for x = 3% and 7.5%) and a significant drop (for x = 12.5%) in the absorption of the thin 

films, compared to that for a perovskite layer with no Cs (x = 0%). This agrees with the 

average thickness of the perovskite thin films, i.e., 490, 516, 534, and 300 nm for x = 0%, 

3.5%, 7.5%, and 12.5%, respectively (Figures 5.8c and 5.8d). As mentioned earlier, the 

reduced absorption and the average thickness of the thin film with too large Cs concentration 

could be attributed to a too high cation excess in the precursor solution189,191 and/or 

substitution limit (spinodal decomposition)60,200,201. Considering that the calculated bandgap 

of the thin films (according to Tauc plots) was independent of the Cs concentration 

(Figure 5.8b), we assumed that the increase in the absorption of the layers is indicative of a 

volumetric growth of the perovskite material in agreement with the intensified perovskite 

XRD peaks for x = 3% and 7.5% (Figure 5.7). These observations correlated well with the 

improved 𝐽SC (Figure 5.2) of the PSCs with sufficient Cs concentrations and significantly 

diminished 𝐽SC for too high Cs concentration (Cs10%).  

Figure 5.9. X-ray diffraction (XRD) pattern of a Cs1Sn0.5Pb0.5I3 thin film. Reproduced from [155] with 

permission of The Royal Society of Chemistry. 
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A reaction between residual SnyPb(1-y)I2 and CsI that could lead to formation of CsSnyPb(1-y)I3 

impurity is an alternative explanation for the reduction of the nanosized  aggregates. XRD 

measurement conducted on Cs1Sn0.5Pb0.5I3 thin film exhibited the typical perovskite peaks 

detected at 14.5° and 29.1° (Figure 5.9) attesting that incorporating Cs in 

(FA0.8MA0.2)Sn0.5Pb0.5I3 narrow-bandgap perovskite with residual SnyPb(1-y)I2 in principle 

might also form a CsSn0.5Pb0.5I3 perovskite. However, even if any CsSn0.5Pb0.5I3 perovskite 

existed, its volume fraction must have been very low, and therefore hard to detect its peaks 

in the XRD patterns of the bulk narrow-bandgap perovskite thin films shown in Figure 5.5a.  

In brief, our findings demonstrated that the introduction of small quantities of Cs into the 

FA0.8MA0.2Sn0.5Pb0.5I3 narrow-bandgap perovskite thin films considerably reduced the 

formation of residual nanosized SnyPb(1-y)I2 (with 0 < y < 1) aggregates on the surface of the 

perovskite thin film. This reduction could be attributed to the reaction of Cs with the residual 

SnyPb(1-y)I2 resulting in a volumetric growth of the narrow-bandgap perovskite thin films and 

an improved crystallinity. As a result, the respective PSCs exhibited improved photovoltaic 

performance and operational photo-stability.  

5.6. Four-terminal all-perovskite tandem solar cells  

Having verified that adding a sufficient amount of Cs into FA0.8MA0.2Sn0.5Pb0.5I3 narrow-

bandgap perovskite thin film resulted in the enhanced photovoltaic performance of the mixed 

Sn/Pb narrow-bandgap PSCs, we combined the best performing of these PSCs with Cs2.5% 

(with a PCE of 18.2%) as the bottom cell in a 4T all-PTSC. Figure 5.11a shows a schematic 

illustration of the 4T all-PTSC layer stack. We implemented a semi-transparent top cell 

composed of a 2D/3D perovskite heterostructure (see Section 3.1.2 for the details) with a 

layer stack of glass / ITO / np-SnO2 / Cs0.17FA0.83Pb(I0.76Br0.24)3 / spiro-MeOTAD / MoOx / 

ITO / MgF2 as the top PSC.27 As explained earlier in Section 3.2.1, MoOx protected Spiro-

MeOTAD from ion bombardment while sputtering the rear ITO and MgF2 acted as an anti-

reflection on the ITO increasing the optical transmittance of the top PSC.202 As a result, a 

Figure 5.10. (a) Ultraviolet-visible (UV-vis) absorbance spectra and (b) Tauc plots of perovskite thin 

films (on glass) with double-cation Cs0.17FA0.83Pb(I0.76Br0.24)3 and a triple-cation 

Cs0.025(FA0.8MA0.2)0.075Sn0.5Pb0.5I3 compositions with bandgaps of 𝐸g ≈ 1.65 eV and 𝐸g ≈ 1.26 eV, 

respectively. Adapted from [155] with permission of The Royal Society of Chemistry. 
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semi-transparent PSC with a PCE of 18.0% was achievable. Figure 5.10 exhibits the 

absorbance spectra and Tauc plots of the perovskite absorber layers in the composition 

Cs0.17FA0.83Pb(I0.76Br0.24)3 (with 𝐸g ≈ 1.26 eV for the top cell) and 

Cs0.025(FA0.8MA0.2)0.975Sn0.5Pb0.5I3 (with 𝐸g ≈ 1.65 eV for the bottom cell).  

To determine the PCE of the 4T all-PTSC, we measured the narrow-bandgap bottom PSC 

while applying a semi-transparent perovskite filter atop and achieved a PCE of 5.6%. The 

substrate area of the filter, which was fabricated under the same conditions with the same 

layer stack of the semi-transparent top PSC, was 225 mm2. UV-vis analyses of a semi-

transparent filter and a semi-transparent PSC showed a negligible difference in their 

spectrophotometry parameters (see Figure B3 in Appendix B). The 𝐽SC values integrated 

from the EQE responses (Figure 5.11b) of the semi-transparent top and narrow-bandgap 

Figure 5.11. (a) A schematic illustration of the layer stack of a four-terminal all-perovskite tandem solar 

cell (4T all-PTSC) configuration with a semi-transparent top PSC (𝐸g ≈ 1.65 eV) and a narrow-bandgap 

bottom PSC (1.26 eV). (b) Current-density−voltage (J–V) characteristics in backward scan direction, 

(c) external quantum efficiency (EQE), and (d) power conversion efficiency (PCE) from maximum 

power point (MPP) tracking, for the semi-transparent top PSC and the narrow-bandgap bottom PSC 

(stand-alone and filtered). PCE4T and SPCE4T are the calculated PCE and stabilized PCE derived from 

the J–V characteristics and the MPP tracking measurements for the champion 4T all-PTSC, respectively. 

The calculated 𝐽SC values from EQE responses for the semi-transparent top, stand-alone narrow-

bandgap, and filtered narrow-bandgap bottom PSCs are 19.5, 31.4, and 9.6 mA/cm2, respectively. 

Reproduced from [155] with permission of The Royal Society of Chemistry. 
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Figure 5.12. (a) A schematic illustration of the layer stack of a four-terminal all-perovskite tandem solar 

cell (4T all-PTSC) with a PDMS foil atop. (b) Atomic force microscopy (AFM) of the PDMS foil. 

(c) Depth profile of the AFM image (d) Reflectance spectra of an ITO-coated glass substrate with and 

without a textured PDMS foil implemented on the front-side of the ITO-coated glass substrate. (e) 

Current-density–voltage (J–V) characteristics and (f) power conversion efficiency from maximum 

power point (MPP) tracking, of a semi-transparent top PSC (𝐸g ≈ 1.65 eV) and a filtered narrow-

bandgap bottom PSC (𝐸g ≈ 1.26 eV) while the PDMS foil was applied on the front electrode during the 

measurements. PCE4T and SPCE4T are the calculated PCE and stabilized PCE derived from the J–V 

characteristics and MPP tracking measurements for the champion 4T all-PTSC, respectively. Figures 

d, e, and f are reproduced from [155] with permission of The Royal Society of Chemistry. 
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bottom PSCs were 19.5 mA/cm2 and 31.4 mA/cm2 (stand-alone) and 9.6 mA/cm2 (filtered), 

respectively. By adding the PCE of the semi-transparent PSC (18.0%) with that of the 

filtered narrow-bandgap PSC (5.5%), we realized a 4T all-PTSC with a PCE4T of 23.6% 

(Figure 5.11c). The SPCEs from the MPP tracking measurement (Figure 5.11d) for the top 

and bottom cells were 17.5% and 5.5%, respectively. Therefore,  the SPCE of the 4T all-

PTSCs was equal to 23.0% (= 17.5% + 5.5%). Table 5.2 summarizes the J–V characteristics 

of the best performing semi-transparent top and the narrow-bandgap bottom sub-cells as well 

as calculated values for the 4T all-PTSC.  

Mixed Sn/Pb narrow-bandgap perovskite thin film, as the light absorber layer of the bottom 

cell in a 4T all-PTSC possessed a bandgap as low as ≈1.26 eV (Figure 5.1), which resulted 

in an absorption range up to around 1000 nm. To exploit this benefit, avoiding any 

absorption losses is essential. Polydimethylsiloxane (PDMS) anti-reflection foils can 

significantly reduce the reflection loss if applied on the front-side of the top electrode.203–206 

Therefore, we repeated the photovoltaic characteristics of the 4T all-PTSCs, while applying 

a PDMS foil on the top of the layer stack (Figure 5.12a). The PDMS, we used here, is a 

silicon-based foil with a randomly-inverted pyramid texture. Figure 5.12b shows an atomic 

force microscopy (AFM) image (20 × 20 µm) of the PDMS foil. Based on the depth profile 

of the AFM image (Figure 5.12c), which is taken at the position of the black and red lines in 

the AFM image, the depth of the pyramid texture is between 1 to 2 µm. PDMS reduces the 

reflection loss from the ITO front electrode as shown in Figure 5.13d. As a result, a boost in 

the 𝐽SC by 1 mA/cm2 (for the semi-transparent top PSC) and 1.5 mA/cm2 (for the filtered 

Table 5.2. Photovoltaic parameters derived from current-density–voltage (J–V) scans measured at a fixed 

rate of 0.6 V/s from the open-circuit voltage (𝑉OC) to the short-circuit current (𝐽SC) (backward scan) and 

from 𝐽SC to 𝑉OC (forward scan) for champion semi-transparent top and narrow-bandgap (NBG) bottom 

(stand-alone and filtered) PSCs with and without implementing an anti-reflection PDMS foil in front side 

of the top sub-cell. The stabilized PCEs (SPCEs) of the top and filtered bottom PSCs and the 

corresponding calculated 4T all-perovskite tandem solar cell (all-PTSC) are given in bold. Reproduced 

from [155] with permission of The Royal Society of Chemistry. 
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narrow-bandgap bottom PSC) led to an improvement in the PCE from 18.0% and 5.6% to 

18.9% and 6.5%, respectively (Figure 5.12c). Consequently, the PCE of the 4T all-PTSC 

was improved from 23.6% to 25.4% (= 18.9% + 6.5%) with an enhanced SPCE from 23.0% 

to 24.7% (Figure 5.12d). Table 5.2 summarizes the achieved photovoltaic characteristics 

with and without implementing a PDMS anti-reflection foil.  

5.7. Summary 

In this chapter, we investigated the effect of incorporating Cs into double-cation 

FA0.8MA0.2Sn0.5Pb0.5I3 narrow-bandgap perovskite thin films and its role in improving the 

photovoltaic performance and the operational photo-stability of the respective PSCs with a 

layer stack of glass / ITO / PTAA / Csx(FA0.8MA0.2)(1-x)Sn0.5Pb0.5I3 / PCBM / C60 / BCP / 

Ag, while varying Cs concentration from x = 0% to 1%, 2.5%, 5%, and 10%. We determined 

that a minute amount of Cs improves the photovoltaic performance and the operational 

photo-stability of the PSCs, such that the PSCs with 2.5% and 5% Cs concentrations 

maintained 92% and 99% of their initial values while measured under MPP tracking 

condition for 120 min. In contrast, the PCE of the PSCs without Cs concentration (x = 0%) 

degraded to 61% of their initial values.  

Top-view scanning electron microscopy (SEM) images of the narrow-bandgap perovskite 

thin films revealed a reduction in residual nanosized aggregates on the surface of the 

perovskite thin films upon increasing the concentration of Cs. CL characterizations 

conducted on narrow-bandgap perovskite thin films with different Cs concentrations as well 

as pure PbI2, pure SnI2, and mixed Sn0.5Pb0.5I2 suggested that the aggregates observed in the 

SEM images were residual SnyPb(1-y)I2 (with 0 < y < 1) that reduced upon adding more Cs. 

In line with the CL results, XRD analyses confirmed the reduction of the residual SnyPb(1-y)I2 

upon adding more Cs suggesting a reaction between the incorporated Cs and the residual 

SnyPb(1-y)I2.  

To understand the effect of Cs in diminution of the SnPbI2 aggregates and how it correlates 

to the enhanced performance and photo-stability of the respective PSCs, we prepared 

Csx(FA0.8MA0.2)(1-x)Sn0.5Pb0.5I3 perovskite thin films with prominent Sn and Pb excess. UV-

vis spectroscopy on these samples exhibited higher absorption for higher Cs concentrations 

suggestive of increased volumetric growth of the perovskite material. A reaction between 

the incorporated Cs and the residual SnyPb(1-y)I2 could explain the volumetric growth. 

Nevertheless, too large amount of Cs resulted in a significantly reduced absorptance 

denoting that there is a substitution limit for the cation concentrations. Whereas, for an 

optimized amount of Cs in the investigated range, a beneficial stoichiometric composition 

and a perovskite thin film with a better crystallinity was achievable leading to PSCs with 

improved operational photo-stability as confirmed by MPP tracking measurements.  

Briefly, we demonstrated the potential of triple-cation mixed Sn/Pb narrow-bandgap 

PSCs with improved photo-stability. By combining the best performing triple-cation narrow-

bandgap PSCs with PCE of 18.2%, which were prepared with 2.5% Cs concentration, with 
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semi-transparent top PSCs with PCE of 18.0%, we achieved 4T all-PTSCs with PCEs as 

high as 23.6%, comparable to the highest PCE (25%) reported to date for 4T all-PTSCs.21  
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6. Hole-Transport-Layer-Free Tin/Lead Perovskite for 

Four-Terminal All-Perovskite Tandem Solar Cells 

 

The focus of this chapter is on reducing the optical losses in the top and bottom sub-cells of 

a four-terminal all-perovskite tandem solar cell configuration. Using sub-layers with low 

parasitic near-infrared absorption is essential to exploit the performance potential of narrow-

bandgap perovskite solar cells composed of mixed Sn/Pb perovskite thin films with a broad 

absorption range up to about 1033 nm. In this chapter, we approach this target by (i) applying 

a highly transparent conductive oxide front electrode in both semi-transparent top and 

narrow-bandgap bottom sub-cells; and (ii) removing hole transport layer in the narrow-

bandgap bottom sub-cell. We demonstrate that (i) hydrogen-doped indium oxide with an 

ultra-low near-infrared optical loss and a high charge carrier mobility stands out as a suitable 

front contact in both sub-cells increasing the photocurrents; and (ii) removing hole transport 

layer reduces optical losses in the shorter wavelength without compromising the 

photovoltaic parameters of the narrow-bandgap perovskite solar cells. 

This chapter is submitted and currently under review with the title “In2O3:H-based Hole-

Transport-Layer-Free Tin/Lead Perovskite Solar Cells for Efficient Four-Terminal All-

Perovskite Tandem Solar Cells”. Most of the graphs in this chapter are adapted or 

reproduced from the submitted paper. The In2O3:H front electrodes employed in this chapter 

were developed by Dr. Moritz Loy and Dr. Jan-Philipp Becker in collaboration with the 

group of Dr. Erik Ahlswede at ZSW. 

6.1. Motivation 

To date, single-junction mixed Sn/Pb narrow-bandgap perovskite solar cells (PSCs) have 

reached efficiencies slightly more than 20%.21–23,29,30 However, for attaining all-perovskite 

tandem solar cells (all-PTSCs) with efficiencies >30%, the single-junction mixed Sn/Pb 

narrow-bandgap PSCs have to provide efficiencies of at least 21% to 22%. Thus, research 

focus and strategies are required to further improve the performance of these solar cells. 

Mixed Sn/Pb perovskite thin films have a narrow-bandgap (≈1.2 eV) that corresponds to a 

favorable absorption up to 1033 nm and allows a larger fraction of the solar spectrum to be 

absorbed. However, high parasitic absorption losses by various layers inside the narrow-
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bandgap PSC stack impedes the benefit of the narrow-bandgap PSCs in all-PTSCs. 

Therefore, implementing strategies to avoid parasitic absorption in the top layers (i.e., front 

electrode, electron transport layer (ETL) in n-i-p, and hole transport layer (HTL) in p-i-n 

structures) is essential and opens a pathway for designing narrow-bandgap PSCs with 

enhanced efficiencies. 

The ideal choices for charge transport layers in the narrow-bandgap PSC structures are still 

under debate. Commonly used ETLs in n-i-p structures such as TiO2 and SnO2 presumably 

increase Sn oxidation due to the presence of oxygen in their stoichiometry.207,208 For the 

p-i-n structures, PSCs with inorganic NiOx HTLs are reported to be very promising, 

however, they suffer from a lack of reproducibility because the oxidation state of the NiOx 

depends on the exact conditions of processing.209 Alternative HTLs such as PEDOT:PSS 

and PTAA are becoming more common in mixed Sn/Pb narrow-bandgap PSCs.23,29,30,155,184 

However, it was reported that thermal aging (at 85 °C) causes degradation at the interface 

between PEDOT:PSS as an HTL and mixed Sn/Pb perovskite absorber leading to device 

instabilities and poor charge extraction.210 Replacing PEDOT:PSS with PTAA as an HTL 

was shown to boost the open-circuit voltage (𝑉OC) and improve the thermal stability of the 

respective PSCs (by retaining 80% of their initial power conversion efficiency (PCE) after 

4000 h at 85 °C).211 Unfortunately, the extreme hydrophobicity of PTAA is a big challenge 

that causes unsatisfactory perovskite growth and inhibits device reproducibility.212,213 

Additionally, prolonged ultraviolet (UV) light exposure was reported to degrade PTAA, 

which hampers charge carrier extraction.214 Furthermore, in terms of optics, unwanted 

parasitic absorption losses that PTAA and PEDOT:PSS introduce in shorter and longer 

wavelength, respectively, results in a limited photocurrent of the PSCs.215  

Recently, HTL-free PSCs (without a dedicated HTL) with mixed Sn/Pb perovskite absorbers 

deposited directly onto ITO were reported to attain a respectful PCE of 16.4% (with only 

0.2% drop in the absolute efficiency compared to their counterparts including PEDOT:PS as 

HTL).210 In this chapter, we expand this investigation by employing a highly transparent 

hydrogen-doped indium oxide (In2O3:H), denoted as IO:H, as a front electrode in an HTL-

free narrow-bandgap PSC for the first time and compare the performances with HTL-free 

PSCs deposited onto commonly used commercial ITO and FTO front electrodes. IO:H 

electrode, with excellent thermal and chemical stability,216 has high carrier mobility and 

nearly zero near-infrared (NIR) absorption. Therefore, it is an ideal candidate for solar 

cells,217,218 as it has been successfully used as the front electrode in Si solar cells,219,220 CIGS 

solar cells,216,221 and in the top sub-cells in perovskite/Si and perovskite/CIGS tandem 

configurations.33,222,223  

In Section 6.1, we first compare the optical properties of an ITO substrate with an ITO 

substrate coated with PTAA. We investigate the photovoltaic performances of a PTAA-

based narrow-bandgap PSC compared to an HTL-free narrow-bandgap PSC in the absence 

of PTAA. In the following section, Section 6.2, we study the optical properties of three 

different TCOs, commercial ITO, commercial FTO, and sputtered IO:H. We realize that 

IO:H substrates with ultra-low parasitic NIR absorption and high charge carrier mobility are 
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favorable candidates to be used as the front contact in PSC devices. In Section 6.4 and 6.5, 

we demonstrate the photovoltaic performances of HTL-free narrow-bandgap and semi-

transparent PSCs applying different TCO electrodes. Combining these sub-cells, in Section 

6.6, we compare photovoltaic performances of an IO:H-based 4T all-PTSC (composed of an 

IO:H-based HTL-free bottom PSC with an IO:H-based semi-transparent top PSC) with an 

ITO-based 4T all-PTSC and determine that replacing the ITO front contacts with IO:H 

results in a boost in the photocurrent of PSCs and consequently their overall efficiencies. 

6.2. Hole-transport-layer-free narrow-bandgap perovskite 

solar cells 

In this section, we introduced HTL-free PSCs with a layout illustrated in Figure 6.1a 

composed of a triple-cation narrow-bandgap (𝐸g ≈ 1.26 eV) perovskite thin film with the 

composition Cs0.025(FA0.8MA0.2)0.975Sn0.5Pb0.5I3, which we investigated in Chapter 5. It is 

apparent that the current-density−voltage (J–V) of the stack with and without PTAA are 

comparable (Figure 6.1b). Interestingly, despite the lack of an HTL, we demonstrated a 

slightly improved fill factor (FF) and a comparable 𝑉OC close to 0.8 V, which can be 

explained by the reported upward band-bending at the ITO/perovskite interface.210 More 

notably, short-circuit current (𝐽SC) improved from 27.9 mA/cm2 for the PSC with PTAA to 

28.3 mA/cm2 for the HTL-free PSC. Overall an improvement in the PCE from 15.7% (with 

PTAA) to 16.6% (without PTAA) was attainable. 

Removing the PTAA layer, we observed an enhancement in the external quantum efficiency 

(EQE) responses (Figure 6.1c) for shorter wavelengths (300-500 nm), resulting in an 

increase in the integrated 𝐽SC (by ≈0.5 mA/cm2). Both devices showed similar EQE responses 

above 500 nm. This suggest that removing PTAA is not detrimental for the quality of the 

mixed Sn/Pb perovskite thin film when deposited directly on bare ITO. In agreement with 

the literature,215 we observed that PTAA introduces unwanted parasitic absorption in the 

shorter wavelength region when used as an HTL in p-i-n structures, and therefore led to a 

reduction in the EQE of the respective PSCs. Figure 6.1d depicts absorptance and 

transmittance of glass/ITO/PTAA stack (in red) compared to that of a glass/ITO stack (in 

dark gray). Coating ITO substrates with PTAA thin film (6 nm) increased the parasitic 

absorption loss (in line with reduced transmittance) mainly between 350 nm and 500 nm 

(Figure 6.1d). Therefore, the lower parasitic absorption in the absence of PTAA can explain 

the enhancement in the photocurrent and the EQE of the HTL-free PSC compared to that of 

a PSC with PTAA HTL.  

6.3. Highly transparent conductive oxide as a front electrode 

In the previous section, we showed that removing PTAA decreases unwanted parasitic 

absorption in the short wavelength and therefore improves the photo-current, without 

compromising any other photovoltaic parameters of the HTL-free PSCs. In this section, we 

investigated the parasitic NIR absorption for the commonly used TCOs: ITO (Luminescence 
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Technology), FTO (Sigma Aldrich), and sputtered IO:H (see Section 3.1.2 for details of 

sputtering the IO:H front electrodes).  

Spectrophotometric measurements of glass/TCO stack, for which TCO differs from ITO to 

FTO and IO:H, are given in Figures 6.2a to 6.2c. High reflectance for IO:H is due to its 

higher refractive index (n) compared to ITO and FTO (Figure 6.2d). Thus, due to the higher 

refractive index of IO:H, a small refractive index contrast between the IO:H and the 

perovskite absorber layer (typically in the range 2.5) exists,48,157,224,225 which in principle 

ensures a reduced reflection loss as the light is coupled into the perovskite layer. More 

importantly, IO:H with an improved transmittance in the NIR region (700-1100 nm) 

demonstrates the lowest (<2%) absorptance, since its extinction coefficient (k) in the NIR 

wavelength is extremely low compared to ITO and FTO electrodes (Figure 6.2e).33 The 

optical and electrical properties of TCOs are fundamentally interlinked. The lower extinction 

coefficient (k) or in other words the lower parasitic NIR absorption of IO:H is associated 

with its reduced number of charge carriers (see Table 6.1) because most of the free charge 

carriers absorb the incident photons in NIR wavelengths (lower energies). Therefore, in 

comparison to ITO and FTO, the charge carrier concentration (nc) of IO:H is lowered by 1 

order of magnitude. The low charge carrier concentration, however, comes at the expense of 

Figure 6.1. (a) A schematic illustration of a layer stack of an HTL-free PSC. (b) Current-density−voltage 

(J–V) characteristics and (c) external quantum efficiency (EQE) spectra of identically prepared narrow-

bandgap PSCs with and without PTAA as an HTL. (d) Transmittance (T) and absorptance (A) of 

glass/ITO substrates coated with and without PTAA (performed in the air). 
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higher resistivity. Though, higher mobility () of IO:H can compensate partially for the low 

charge carrier concentration. In addition, the thickness of the layer must also be increased to 

reduce the overall sheet resistance (Rsh). Therefore, a significantly thicker IO:H layer was 

used and as a result an IO:H with only a slightly higher sheet resistance was obtained. The 

thickness difference of the TCOs is manifested as a shift in the interferences of the 

reflectance and transmittance spectra of the TCOs (Figure 6.2a and c). Evident from the Tauc 

plots (Figure 6.2f), the bandgap (𝐸g) of IO:H thin film was found to be only slightly lower 

(≈0.1 eV) than that of ITO and FTO (Figure 6.2f and Table 6.1).  

Figure 6.2. (a) Reflectance (R), (b) absorptance (A), (c) transmittance (T), (d) refractive index (n), 

(e) extinction coefficient (k), and (f) Tauc plots of glass substrates coated with ITO (140 nm), FTO 

(550 nm), and IO:H (230 nm) thin films. The ellipsometry measurements were performed by Dr. Adrian 

Mertens. All the characterizations were perfomred in the air. 
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According to atomic force microscopy (AFM) measurements, IO:H substrates used here had 

the lowest surface roughness (<1 nm) compared to that of ITO (≈3-4 nm) and FTO 

(15±5 nm), which makes IO:H a more suitable substrate for better nucleation of perovskite 

thin films. X-ray diffraction (XRD) measurement on the TCOs (Figure 6.4a) exhibited that 

all three TCOs were crystalline with preferential orientation along (222) planes (for ITO and 

IO:H) and (110) plane (for FTO). We calculated the crystallite size (𝐷) for each TCO using 

the Scherrer equation (see Section 3.2.1 for the details). Table 6.2 summarizes the related 

parameters. IO:H with the lowest FWHM (≈0.172°) had the most intensified reflection peaks 

and therefore better crystallinity compared to commercial ITO and FTO. This high 

crystallinity of the IO:H thin film was associated with the post-deposition annealing 

treatment of the IO:H substrates as discussed in reference [33]. The better crystallinity (lower 

FWHM) is indicative of larger crystallites of IO:H (𝐷 = 48 nm) compared to ITO 

(𝐷 = 18.8 nm) and FTO (𝐷 = 37.3 nm), which is beneficial for an improved interface and 

accordingly a better charge transport at the TCO/perovskite interface in the HTL-free PSCs. 

In general, a substrate has a prominent effect on the quality of the perovskite thin film and 

the substrate/perovskite interface.226 We characterized the TCO/perovskite interface as well 

as the crystallinity and the morphology of the Cs0.025(FA0.8MA0.2)0.975Sn0.5Pb0.5I3 perovskite 

thin films when directly deposited on ITO, FTO, and IO:H, to understand the working 

principles of the HTL-free PSCs with different TCO front electrodes, which will be 

discussed in the next section.  

Figure 6.3. Atomic force microscopy (AFM) of commercial ITO, commercial FTO, and sputtered IO:H 

electrodes, with surface roughness (Srms) of 3±1, 15±5, and <1 nm, respectively. The AFM measurements 

were performed by Yidenekachew Donie. 

Table 6.1. Layer thickness (d), bandgap (𝐸g), charge carrier concentration (nc), sheet resistance (Rsh), charge 

carrier mobility (µ), and surface roughness (Srms) of the front transparent conductive oxide (TCO) 

electrodes. 
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Regardless of the TCO substrates, XRD measurements of the 

Cs0.025(FA0.8MA0.2)0.975Sn0.5Pb0.5I3 perovskite thin film (Figure 6.4b) revealed two dominant 

reflection peaks at 14.1° and 28.3°. In agreement with the literature,199 we assigned this 

peaks to the (002)/(110) and (004)/(220) planes of the tetragonal perovskite crystal-structure, 

respectively, as also seen in Chapter 5. Although these two peaks existed for all three TCOs, 

they differed in intensity associated to different crystal orientations. In particular, the 

perovskite films deposited on IO:H and ITO showed more intensified reflection peaks, which 

correlates with larger grains as evidenced by scanning electron microscopy (SEM) images 

given in Figure 6.5. Therefore, IO:H and ITO with improved crystallinity (compared to 

FTO) are potentially better substrates for perovskite thin films. SEM images showed that 

perovskite thin films grow slightly larger grains on IO:H and ITO (implying fewer grain 

boundaries), which based on some studies could lead to fewer trap states at the grain 

boundaries, and therefore limited non-radiative recombination.124–127  

Besides the quality of the perovskite thin film itself, the TCO/perovskite interface plays a 

prominent role in the photovoltaic performance of the HTL-free PSCs as well, and therefore 

must be investigated.227–232 X-ray photoelectron microscopy (XPS) measurements can 

provide us with some insights into the TCO/perovskite interface (see Section 3.21). We 

Figure 6.4. X-ray diffraction (XRD) patterns of (a) commercial ITO, commercial FTO, and sputtered IO:H 

electrodes, and (b) Cs0.025(FA0.8MA0.2)0.975Sn0.5Pb0.5I3 narrow-bandgap perovskite thin films deposited 

directly on the commercial ITO, commercial FTO, and sputtered IO:H electrodes. ITO-, FTO-, and IO:H-

related peaks are detected in the XRD pattern of the perovskite film (compare a and b). 
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characterized three different sets of samples: (1) TCO substrates, (2) TCO substrates coated 

with thin (≈3 nm) mixed Sn/Pb perovskite films, and (3) TCO substrates coated with thick 

(≈600 nm, i.e., same as the perovskite films used for the respective PSCs) mixed Sn/Pb 

perovskite films, with TCO varying from ITO to FTO and IO:H.  

We noticed that all the TCO-related signals were present in the XPS survey derived from all 

the samples (Figure 6.6), while abating with increasing the thickness of the perovskite films. 

All the perovskite-related signals in the XPS spectra of the thick samples were similar, 

indicating that the TCO substrates had a negligible effect on the chemical structure of the 

bulk perovskite films. For having insights into the start point of the perovskite growth on the 

TCO substrates, we analyzed the XPS spectra of the thin samples. Assuming that the ‘thin’ 

perovskite has homogeneous thicknesses over a TCO substrate, we used the following 

equation to estimate the thickness of the ‘thin’ perovskite films, 

where 𝐼 is the intensity of In 3d and/or O 1s core-level spectra derived from the TCO/thin 

perovskite samples, 𝐼0 is the intensity of In 3d and/or O 1s core-level spectra for bare TCO, 

𝑑 is the thickness of the perovskite film, 𝜑 is the XPS take-off angle (90° in our 

measurements), and 𝜆 is the inelastic mean free path (Figure 6.7). We determined 𝜆 by using 

the ‘QUASES-IMFP-TPP2M’ software.233 We found the thickness of the ‘thin’ perovskite 

 
𝐼 =  𝐼0 exp(−

𝑑

𝜆𝑠𝑖𝑛𝜑
) 

6.1 

Table 6.2. The full width at half maxima (FWHM) and the crystallite size (D) of the transparent 

conductive oxide (TCO) electrodes. The XRD analysis is done for the main peak assigned to the (222) 

plains for ITO and IO:H, and the (110) plain for FTO. 

 

Figure 6.5. Scanning electron microscopy (SEM) images of narrow-bandgap (NBG) perovskite thin films 

with composition Cs0.025(FA0.8MA0.2)0.975Sn0.5Pb0.5I3 deposited directly on commercial ITO, commercial 

FTO, and sputtered IO:H electrodes. The SEM mesurements were perforemd by Dr. Bahram Abdollahi 

Nejand. 
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on IO:H (5 ± 2 nm) to be twice as large as that on ITO or FTO (2 ± 1 nm). This is indicative 

of a more homogenous and faster growth of the perovskite on IO:H substrates, which agrees 

with the AFM results given in Figure 6.3.  

Analyzing the most prominent XPS core levels of the narrow-bandgap perovskite films (i.e., 

Sn 3d5/2, Cs 3d, I 3d, N 1s, C 1s, and Pb 4f), gave us information about the impact of the 

TCOs on (1) the band-bending induced by the TCO/perovskite interface (indicated by peak 

shifts in the XPS survey of the thin and thick perovskite samples) and (2) the chemical 

species present at this interface (by comparing the spectral shapes of the XPS spectra of the 

thin and thick perovskite samples). Figure 6.8 shows that there are small peak shifts 

comparing the XPS spectra of the thin and thick perovskite samples, with an exception in 

the C 1s spectra. The strong spectral shift observed for the C 1s core level in the lower 

binding energy region (282-290 eV) could be due to different C species. Excluding this 

region, all the XPS core levels revealed a shift of +0.06 ± 0.04 eV (for ITO), +0.01 ± 0.03 eV 

(for IO:H), and −0.04 ± 0.04 eV (for FTO) in average, going from thin to thick perovskite 

films. This suggests that the type of the TCO impacts the band bending at the 

TCO/perovskite interface only slightly.  

Figure 6.6. Al K X-ray photoelectron spectroscopy (XPS) survey spectra conducted on three sets of 

samples including bare TCO, TCO/thin perovskite (≈3 nm), and TCO/thick perovskite (600 nm) (bottom 

to top in a respective colored group): ITO (gray), IO:H (purple), and FTO (green). The perovskite films 

have a nominal composition of Cs0.025(FA0.8MA0.2)0.975Sn0.5Pb0.5I3. The XPS measurements were 

performed by Dr. Dirk Hauschild and Dr. Lothar Weinhardt. 
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Looking at the spectral shapes of the XPS peaks, we found a slight asymmetry for the 

Sn 3d5/2 of all three thick perovskite samples (orange lines in Figure 6.9), which could be 

associated with a small contribution from Sn4+.184 In contrast to ITO and FTO substrates 

samples that showed Sn 3d5/2 peak (blue lines in Figure 6.9) at binding energies of 486.7 and 

487.0 eV, respectively, no Sn-related peak was observed for the IO:H substrate sample. We 

tried to reproduce the Sn 3d5/2 signals of the thin perovskite samples (open circles in 

Figure 6.9) by a weighted sum of the XPS spectra of the TCO substrate samples and the 

respective thick perovskite samples, which allowed us to analyze the Sn-related signal of the 

thin perovskite. Interestingly, the Sn 3d5/2 spectra of the thin perovskite samples were 

reproduced for the ITO and FTO substrate samples, as shown in Figure 6.9 (overlap of the 

red fit lines and the open circles). Whereas, using this method for the IO:H substrate sample 

did not reproduce the Sn 3d5/2 signal of the thin perovskite sample because it only consisted 

of one spectral component indicative for Sn2+, while the IO:H substrate had no Sn signal and 

the thick perovskite exhibited Sn2+ and some Sn4+. This result suggests that the mixed Sn/Pb 

narrow-bandgap perovskite on Sn(-O) free substrate benefits from less oxidation, due to 

reduced Sn4+ formation at the IO:H/perovskite interface during the growth’s start. The 

reduced amount of Sn4+ at this interface could possibly be beneficial for the charge carrier 

transport and in general for the stability of the mixed Sn/Pb narrow-bandgap PSCs.22,234 

6.4. Narrow-bandgap perovskite solar cells with alternative 

front electrodes 

At the beginning of the previous section, we showed that IO:H possess significantly 

improved optical properties compared to the commonly used ITO and FTO. In this section, 

we determine how the improved optical performance correlates to the photovoltaic 

performance of the respective PSCs. We fabricated three different sets of HTL-free narrow-

bandgap PSCs with the following layer stack (see Section 3.1.2 for details): glass / TCO 

(ITO, FTO, or IO:H) / Cs0.025(FA0.8MA0.2)0.975Sn0.5Pb0.5I3 / PCBM / C60 / BCP / Ag. The 

perovskite composition used here has a bandgap of ≈1.26 eV, as shown earlier in Chapter 5, 

(see Figure 5.10).  

Figure 6.7. Derived thicknesses of the ‘thin’ perovskite films deposited on bare ITO, FTO, and IO:H 

transparent conductive oxide (TCO) electrodes. 
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The EQE spectrum of the IO:H-based PSC exhibited a broadband enhancement from 520 to 

950 nm compared to the EQE spectra of the ITO- and FTO-based PSCs (Figure 6.10b). As 

discussed in the previous section, this enhancement in the EQE of the IO:H-based PSCs 

mainly arises from the reduced reflection (see Figure 6.10b) originating from the increased 

refractive index of the IO:H front electrode and lower parasitic NIR absorptions. As a 

Figure 6.8. Monochromatized Al K XPS spectra of perovskite-related core levels of thin (light colors) 

and thick (dark colors) narrow-bandgap Cs0.025(FA0.8MA0.2)0.975Sn0.5Pb0.5I3 perovskite films fabricated 

on different TCOs (ITO, IO:H, and FTO from bottom to top, respectively). The XPS measurements were 

performed by Dr. Dirk Hauschild and Dr. Lothar Weinhardt. 

Figure 6.9. Monochromatized Al Kα XPS spectra (open circles) of the Sn 3d5/2 region of the ‘thin’ 

perovskite for (from bottom to top) ITO, FTO, and IO:H substrate. Fits (red) are shown describing the 

spectra as a weighted sum of the substrate (blue) and thick perovskite (orange) spectra. Underneath each 

spectrum, the residuum is shown in gray. The XPS measurements were performed by Dr. Dirk Hauschild 

and Dr. Lothar Weinhardt. 
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consequence, the integrated 𝐽SC from the EQE spectra revealed an improvement in the 

photocurrent when replacing the ITO (from 27.5 mA/cm2) or FTO (from 26.0 mA/cm2) front 

electrodes with a highly transparent IO:H (to 29.4 mA/cm2). This improvement in the 

photocurrent was also confirmed by the 𝐽SC values derived from the J–V characteristics of 

the respective PSCs (Figure 6.10c).  

Figure 6.11 depicts the J–V characteristics derived from 40 identically prepared PSCs of 

each TCO. It is apparent that the PCE of the IO:H-based HTL-free PSCs was slightly higher 

than the PCE of the ITO-based PSCs. We noticed that although the 𝐽SC of the IO:H-based 

PSCs was higher than that of the ITO-based PSCs, by ≈2 mA/cm2 on average, the higher FF 

of the ITO devices compensated for their lower 𝐽SC. As discussed earlier in this chapter, this 

could be explained by the slightly higher sheet resistance of the IO:H compared to ITO and 

FTO substrates (see Table 6.1). Higher sheet resistance correlates with lower FF, which 

consequently affects the overall performance of the IO:H-based PSCs despite their 

remarkably higher 𝐽SC. 

Furthermore, we noticed that despite the lack of an HTL, the generated 𝑉OC by all three 

TCOs were reasonable, as previously compared for an ITO-based device with and without 

Figure 6.10. (a) A schematic illustration of the layer stack of an HTL-free PSC. (b) External quantum 

efficiency (EQE) spectra, (c) current-density−voltage (J–V) characteristics, and (d) stabilized power 

conversion efficiency (SPCE) from maximum power point (MPP) tracking measurements of the HTL-

free narrow-bandgap PCSs with Cs0.025(FA0.8MA0.2)0.975Sn0.5Pb0.5I3 perovskite absorber layers deposited 

directly on commercial ITO, commercial FTO, and sputtered IO:H front electrodes. 
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PTAA as an HTL (see Section 6.2). This indicates that the missing HTL is not affecting the 

band alignment at the TCO/perovskite interface significantly, which is in line with the XPS 

results. Compared to ITO or IO:H, the hysteresis was more pronounced in the FTO-based 

PSCs. This severe hysteresis of the FTO-based PSCs could be introduced by ion migration 

at the FTO/perovskite interface.235 Interestingly, removing HTL was not detrimental to the 

stabilized PCE (SPCE) of these PSC devices as shown in Figure 6.10d.  

6.5. Four-terminal all-perovskite tandem solar cells with 

alternative front electrodes 

Although the top and bottom cells of a 4T tandem solar cell work individually, the 

performance of the bottom sub-cell and consequently the overall performance of the tandem 

solar cell is correlated to the choice of the front and rear TCO electrodes of the top cell. The 

front and rear electrodes of the semi-transparent top cell introduce parasitic absorption and 

unfavorable reflection, which diminish the transmission of the top cell and reduce the share 

of the solar spectrum reached by the bottom cell.32–38 Therefore, reducing these optical losses 

can effectively improve the overall efficiency of the tandem solar cell. 

To prove the point, we compared the performance of ITO- and IO:H-based 4T all-PTSCs, 

for which the front electrodes of both sub-cells are ITO and IO:H, respectively. At the outset, 

Figure 6.11. (a) Power conversion efficiency (PCE), (b) short-circuit current (𝐽SC), (c) fill factor (FF), 

and (d) open-circuit voltage (𝑉OC) of 40 identically prepared HTL-free narrow-bandgap PSCs deposited 

directly on different TCO front electrodes: commercial ITO, commercial FTO, and sputtered IO:H. The 

middle lines show the average values. 
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the ITO- and IO:H-based (HTL-free) narrow-bandgap PSCs were partnered with semi-

transparent PSCs consisting of a layer stack as follows: glass / TCO (ITO or IO:H) / 

np-SnO2 / Cs0.1(FA0.83MA0.17)0.9Pb(I0.83Br0.17)3 / spiro-MeOTAD / MoOx / IZO / MgF2. The 

perovskite absorber layer used for the top cell was previously introduced in Chapter 4. As 

shown earlier in Chapter 4 (Figure 4.15), this perovskite composition 

(Cs0.1(FA0.83MA0.17)0.9Pb(I0.83Br0.17)3) has a bandgap of 1.62 eV. An in-house sputtered IZO 

layer played the role of the rear electrode for both ITO- and IO:H-based semi-transparent 

top PSCs (see Table 3.1 in Section 3.1.1 for the deposition parameters). Spectrophotometric 

measurements (see Figure 6.12) conducted on glass/IZO revealed that the NIR absorptance 

is significantly low (<5%), which is the reason we substituted it for the in-house sputtered 

ITO rear electrode previously used for the 4T all-PTSC in Chapter 5. We used a 10-nm thick 

layer of MoOx, which has a good band-alignment with spiro-MeOTAD, to protect the spiro-

MeOTAD layer during IZO sputtering process.236 Moreover, a 165-nm thick layer of MgF2 

was used acting as an anti-reflection coating to enhance the transmittance of the photons 

with energies below the bandgap of the top perovskite absorber layer.27  

As expected, replacing the ITO front electrode with IO:H substrates in the semi-transparent 

top PSCs led to an enhanced PCE driven by a remarkable increase in the 𝐽SC from 19.7 to 

20.8 mA/cm2 and a slight improvement in the 𝑉OC from 1.11 to 1.15 V on average (for 25 

identically prepared PSCs), while the averaged values of the FF remained comparable 

Figure 6.12. From bottom to top, transmittance (T), reflectance (R), and absorptance (A) of an ITO and 

IZO rear electrode sputtered on bare glass. The characterizations were performed in air. The ITO and 

IZO rear electrodes were prepared by Ihteaz M. Hossain.  
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(Figure 6.13). For the best performing semi-transparent top PSC, enhanced 𝐽SC (from 20.2 

to 20.9 mA/cm2) enabled the IO:H-based PSC to maintain a PCE of 19.0% compared to the 

best performing of an ITO-based counterpart PSC with a PCE of 18.2%. To evaluate the 

performance of the 4T all-PTSC, we used a triple-cation semi-transparent PSC filter 

(𝐸g ≈ 1.62 eV) atop the triple-cation HTL-free narrow-bandgap PSC (𝐸g ≈ 1.26 eV) (see 

Figures 6.14a). We fabricated two semi-transparent PSC filters (with substrate areas of 

256 mm2) under identical conditions and layer stacks as the semi-transparent PSCs (with 

both ITO and IO:H front electrodes). Applying the filters, we determined the PCE of the 

narrow-bandgap PSCs as follows: 5.8% (for an IO:H-based narrow-bandgap PSC) under an 

IO:H-based filter) and 5.1% (for an ITO-based narrow-bandgap PSC under an ITO-based 

filter). This improvement from ITO-based to IO:H-based PSCs is a consequence of an 

enhanced 𝐽SC from 8.5 mA/cm2 (for an ITO-based narrow-bandgap PSC) to 10.5 mA/cm2 

(for an IO:H-based narrow-bandgap PSC), when measured under an ITO- and an IO:H-based 

semi-transparent PSC filters, respectively (Figures 6.14b and c).  

Finally, by adding PCEs of the best performing semi-transparent top PSCs with that of the 

best performing filtered bottom PSCs, we determined a significant improvement in the PCE 

from 23.3% (= 18.2% + 5.1%) for an ITO-based 4T all-PTSC to 24.8% (= 19.0% + 5.8%) 

for an IO:H-based 4T all-PTSC. Table 6.3 summarizes all the photovoltaic parameters of the 

top and bottom sub-cells and their respective 4T all-PTSCs. Moreover, we calculated the 

SPCEs of the 4T all-PTSCs as the sum of the SPCEs of the semi-transparent top and the 

Figure 6.13. (a) Power conversion efficiency (PCE), (b) short-circuit current (𝐽SC), (c) fill factor (FF), 

and (d) open-circuit voltage (𝑉OC) of 25 identically prepared semi-transparent PSCs with two different 

TCO front electrodes: commercial ITO and sputtered IO:H. The middle lines show the average values. 
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filtered narrow-bandgap PSCs from maximum power point (MPP) tracking measurements 

over 300 s (Figure 6.14d and e). An IO:H-based 4T all-PTSC attained a PCE of 23.3% 

outperforming that of an ITO-based 4T all-PTSC with a PCE of 21.9%.  

To justify the improved PCEs of the IO:H-based 4T all-PTSC, we carried out 

spectrophotometric measurements on the semi-transparent perovskite filters with both ITO 

and IO:H filters. Similar to the narrow-bandgap bottom PSCs, substituting the ITO front 

electrode with IO:H resulted in an overall enhancement in the EQE spectra of the semi-

transparent top PSCs (Figure 6.15a) from 500 nm to 760 nm (above the bandgap - 1.62 eV - 

of the triple-cation Cs0.1(FA0.83MA0.17)0.9Pb(I0.83Br0.17)3 perovskite). This increase, as shown  

Figure 6.14. (a) Schematic cross-sectional images of an ITO- and IO:H-based 4T all-PTSCs. (b and c) 

Current-density−voltage (J–V) characteristics and (d and e) stabilized power conversion efficiency 

(SPCE) from MPP tracking measurements of the best performing ITO- and IO:H-based single-junctions 

and the resulting 4T all-PTSCs. 
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in Figure 6.15b, is correlated with the reduced reflections of the IO:H-based top PSC 

compared to the ITO-based top PSC. The reduced reflection led to an improved absorptance 

up to the bandgap of the perovskite (<760 nm) for the IO:H-based top PSC (Figure 6.15a).  

Comparing the EQE spectra of the ITO- and IO:H-based filtered bottom PSCs 

(Figure 6.15c), we realized that the EQE of the ITO-based filtered bottom PSCs are 

suppressed in longer wavelength (≈870 nm) when filtered by an ITO-based filter 

(Figure 6.14c), due to (1) reduced NIR transmittance of the semi-transparent top filter with 

an ITO front electrode (Figure 6.14c) as well as (2) reduced EQE of the ITO-based bottom 

PSC itself due to low transmittance of its ITO front electrode compared to an IO:H-based 

narrow-bandgap bottom PSC (Figure 6.10b). 

These results highlight IO:H (with very low NIR parasitic absorption) as a beneficial front 

electrode for both top and bottom PSCs in a tandem configuration resulting in a boost in the 

photocurrent of the sub-cells and consequently the overall performance of the 4T all-PTSCs.  

6.6. Summary 

In the first part of this chapter, we introduced HTL-free narrow-bandgap PSCs in the absence 

of a dedicated HTL. By comparing the performance of an HTL-free PSC with a narrow-

Figure 6.15. (a) Absorptance (A), (b) reflectance (R), and (c) transmittance (T) spectra of the 

semi-transparent perovskite filters with ITO and IO:H front electrodes. External quantum efficiency 

(EQE) spectra of the (ITO- and IO:H-based) top PSCs and filtered bottom PSCs are given in figures a 

and c, respectively. 
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bandgap PSC based on a PTAA HTL (both solar cells deposited on ITO), we showed that 

removing PTAA HTL does not hamper the photovoltaic characteristics of the respective 

PSCs.  

Next, we investigated the optical and electrical properties of commonly used commercial 

TCOs (ITO and FTO) and compared them with sputtered IO:H substrates. We determined 

that IO:H has significantly higher transmittance especially in the NIR wavelengths, which is 

maintained by lower charge carrier concentration since most of the free charge carriers 

absorb photons in lower energies. Furthermore, we found that compared to ITO/perovskite 

and FTO/perovskite interfaces, IO:H/perovskite is a better interface particularly for HTL-

free PSCs with mixed Sn/Pb perovskite because XPS exhibited that a lower amount of Sn4+ 

was formed at this interface during the growth of the perovskite. This reduced the oxidation 

of the mixed Sn/Pb perovskite thin film at the interface. Moreover, in line with AFM images, 

XPS results identified IO:H as a better substrate for a more homogenous growth of 

perovskite.  

Having demonstrated that IO:H is a better electrode for mixed Sn/Pb perovskite thin film 

and has the highest transmittance compared to traditional ITO and FTO, we investigated the 

effects of these TCOs as the front electrodes on the performance of the HTL-free PSCs. 

Firstly, we realized that despite a lack of an HTL at the TCO/perovskite interface, all three 

Table 6.3. Photovoltaic parameters of champion ITO- and IO:H-based semi-transparent top and HTL-free 

bottom perovskite solar cells (stand-alone and filtered by ITO and IO:H) derived from J–V characteristics 

(backward scan: top row, forward scan: bottom row). The SPCE of the top and bottom (standalone and 

filtered) PSCs and the respective calculated 4T all-PTSC are in bold. 
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configurations with different TCOs work properly. However, the IO:H-based HTL-free 

PSCs showed better performances with improved photocurrent due to low NIR absorbance 

losses, as expected.  

Finally, to maximize the PCE of a 4T all-PTSC, we replaced the commonly used ITO front 

electrodes in both sub-cells with highly transparent IO:H. This is the first study on the 

performance of 4T all-PTSCs, for which both sub-cells have IO:H front electrodes. Here, an 

IO:H-based HTL-free PSC with triple-cation mixed Sn/Pb narrow-bandgap perovskite thin 

film (with a bandgap of 1.26 eV) played the role of a tandem partner for an IO:H-based semi-

transparent PSC with triple-cation pure Pb perovskite thin film (with a bandgap of 1.62 eV). 

The use of IO:H instead of ITO enabled us to improve the photocurrent in both sub-cells, 

and accordingly the PCE from 23.3% (for an ITO-based 4T all-PTSC) to 24.8% (for an 

IO:H-based 4T-all PTSC).  
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7. Conclusion and Outlook  

 

Thin-film photovoltaics (PV) has drawn enormous attention as a sustainable and versatile 

source of electricity and will supposedly remain a focus of future research in the field. 

Perovskite thin films, in particular, interest the researchers most not only due to their rapid 

development in the power conversion efficiency (PCE) but also being highly cost-effective 

compared to their counterparts. Nevertheless, commercialization of this new technology 

relies on improving the efficiency and stability of perovskite solar cells (PSCs), which is 

feasible through having a deeper comprehension of the properties of perovskite materials 

and optimizing device architecture in the form of a single-junction as well as tandem 

configurations. 

The contribution of this work is to (i) provide a better understanding of the most commonly 

used multi-cation perovskite materials by exploring a common phenomenon whereupon the 

PCE of pristine PSCs improves simply by storing the devices for a few days after fabrication, 

(ii) investigate the effects of Cs incorporation on improving the efficiency and photo-

stability of narrow-bandgap PSCs, and (iii) determine pathways to reduce optical losses in 

four-terminal all-perovskite tandem solar cells (4T all-PTSCs). 

Spontaneous enhancement of power conversion efficiency 

PCE is the key characteristic of a solar cell commonly used to compare the performance of 

one solar cell to another. Therefore, it is of significant importance to thoroughly investigate 

any phenomena influencing this characteristic. A commonly observed phenomenon has been 

reported in the literature whereupon the PCE of PSCs enhances spontaneously only by 

storing the pristine devices for several days to weeks at room temperature, yet a 

comprehensive study on this phenomenon is still missing. 

Based on the findings in this thesis (Chapter 4), the spontaneous enhancement of PCE is not 

restricted to specific PSC structures or perovskite compositions. Nevertheless, the magnitude 

of spontaneous enhancement in PCE differs for PSCs with various perovskite compositions 

and electron transport layers (ETLs). The enhancement of PCE is mainly driven by open-

circuit voltage (𝑉OC) and fill factor (FF), which is in line with a remarkable enhancement in 

photoluminescence (PL) intensity and charge carrier lifetime. These observations 
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demonstrate that spontaneous enhancement is accompanied by a reduction in non-radiative 

recombination in the bulk of the perovskite. 

Morphological and structural analyses provide evidence that no pronounced changes occur 

in perovskite grain size upon storage. Thus, we rule out spontaneous coalescence of the 

perovskite crystallites as a possible reason for spontaneous enhancement, as was proposed 

in the literature by a few studies. Though, we observe a shift of the perovskite reflection 

peaks to the larger diffraction angles in the X-ray diffraction (XRD) pattern of the perovskite 

thin film before and after storage. Performing strain analysis, we attribute this shift to a 

reduction in lattice strain in the perovskite thin films upon storage. Lattice strains generally 

emerge during film formation due to a mismatched thermal expansion between the 

perovskite thin films and the substrates. Strain induces defect concentration and trap states 

causing non-radiative recombination. Thermally stimulated current (TSC) results confirm 

the existence of trap states in pristine PSCs and their disappearance after storage, which 

could be due to strain relaxation in the perovskite material. 

Moreover, according to the literature, strain can lead to a phase segregation in mixed halide 

perovskite thin films. Therefore, the observed low-energy state in the PL emission of the 

pristine perovskite thin films can be attributed to phase segregation induced by initially-

present strain in the pristine perovskite thin films. However, strain relaxation upon storage 

lead to a volumetric reduction of the low-energy phase and accordingly disappearance of the 

low-energy state in the PL emission. In brief, the characterizations provided in this thesis 

demonstrate that the spontaneous enhancement of PCE is due to a gradual strain-relaxation 

in the bulk of the perovskite leading to a reduction in strain-induced trap density and/or 

suppression of strain-induced phase segregation.  

The generality and magnitude of spontaneous enhancement for different compositions of 

multi-cation-halide perovskite and device structures of PSCs, which is realized in this thesis, 

highlights the importance of specifying the absolute PCE increase initiated by spontaneous 

enhancement when reporting the efficiency of a solar cell in the literature. Moreover, future 

studies on developing strategies that could accelerate this phenomenon are highly 

encouraged. Strategies for quickly inducing morphological changes that could accelerate 

strain relaxation and accordingly accelerate spontaneous enhancement might be of 

significant interest in such a context. 

Stability improvement of narrow-bandgap perovskite solar cells 

The second part of this thesis (Chapters 5) is focused on improving the stability of narrow-

bandgap PSCs. At the outset, we realize that incorporating minute quantities of Cs into a 

double-cation FA0.8MA0.2Sn0.5Pb0.5I3 perovskite significantly improves the operational 

photo-stability of narrow-bandgap PSCs. Through a comparative study on the optimum Cs 

concentration, we establish that narrow-bandgap PSCs with triple-cation 

Cs0.025(FA0.8MA0.2)0.975Sn0.5Pb0.5I3 perovskite absorbers can achieve PCEs as high as 18.2% 

while maintaining 92% of their initial efficiencies after 120 min of maximum power point 

(MPP) tracking, whereas the PCEs of double-cation FA0.8MA0.2Sn0.5Pb0.5I3 narrow-bandgap 
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PSCs (in the absence of Cs) degrade to 61% of their initial values after 120 min MPP 

tracking.  

While investigating the role of Cs in improved performance of narrow-bandgap PSCs, 

scanning electron microscopy (SEM) images reveal the existence of bright aggregates atop 

perovskite thin film in the absence of Cs that disappear by increasing Cs concentration. 

Evidenced by XRD and cathodoluminescence (CL), these aggregates are identified as 

residual SnyPb(1-y)I2 (with 0 < y < 1) with a bandgap of ≈2.1 eV, which can hamper charge 

extraction at the perovskite/PCBM interface and therefore hinder the stability of PSCs. A 

detailed study on perovskite thin films with pronounced amount of Sn and Pb excess reveal 

that reactions between Cs and residual SnyPb(1-y)I2 results in increased volumetric growth of 

the perovskite material with a beneficial composition leading to an improved photo-current 

that increases the PCE of the PSCs with sufficient amount of Cs accordingly. 

Using the triple-cation mixed Sn/Pb narrow-bandgap PSC (with a bandgap of 1.26 eV and a 

PCE of 18.2%) as a tandem partner with a semi-transparent PSC (with a bandgap of 1.65 eV 

and a PCE of 18.0%), we realize a 4T all-PTSC with a respectable PCE of 23.6%, which is 

comparable with the highest PCE (25.0%) ever reported for a 4T all-PTSC in the literature.  

Briefly, we demonstrate the potential of triple-cation mixed Sn/Pb narrow-bandgap PSCs 

with improved photo-stability. It should be noted that compared to the recently published 

high-efficiency narrow-bandgap PSCs (with PCEs>20%),21–23,29 our results have been 

attained in the absence of any additives such as GuaSCN,21 ascorbic acid,178 sulfonic acid 

group,179 and cadmium ions (Cd2+).23 Therefore, future studies to potentially improve the 

efficiency and stability of the triple-cation narrow-bandgap PSCs through establishing 

strategies such as incorporating antioxidant additives, Sn-reduced precursor solutions,22,29 

and/or applying 2D components as passivation layers are suggested as future projects.  

Mitigation of optical losses in all-perovskite tandem solar cells 

On the path to further improve the performance of the 4T all-PTSCs stablished in Chapter5, 

we effectively increase the PCE to 24.8% through (i) removing the hole transport layer 

(HTL) from the narrow-bandgap bottom PSC and (ii) reducing the optical losses introduced 

by the front and rear electrodes of the semi-transparent top PSC (Chapter 6). 

To begin, we fabricate HTL-free narrow-bandgap PSCs by removing the PTAA layer, which 

we used as an HTL in the bottom cell of the 4T all-PTSC in Chapter 5. In line with the 

literature, we realize that PTAA introduces unwanted parasitic absorption in the shorter 

wavelengths (350-500 nm), which results in a decrease in the external quantum efficiency 

(EQE) responses of the narrow-bandgap PSCs. Removing PTAA improves short-circuit 

current (𝐽SC) integrated from the EQE spectra (by ≈0.5 mA/cm2) without hampering other 

photovoltaic characteristics (𝑉OC and FF), leading to an improvement (by ≈1%) in absolute 

PCE. 

To reduce optical losses induced with the commonly used ITO front electrode, we replace it 

with a sputtered IO:H front electrode as an alternative with remarkably high transmittance 
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(>85%) and nearly zero parasitic absorption (<2%) in the near-infrared (NIR) wavelengths, 

maintained by a lower charge carrier concentration. Replacing the ITO front electrode with 

IO:H for HTL-free and semi-transparent PSCs enhances the averaged 𝐽SC by ≈2 and 

1 mA/cm2, respectively. The higher transmittance of IO:H comes with a higher sheet 

resistance that lowers the FF. However, the very high current enhancement compensates for 

the low FF of the IO:H-based HTL-free narrow-bandgap PSCs. Finding strategies to improve 

the FF of the IO:H-based narrow-bandgap PSCs can be the focus of future studies in this 

matter. 

Having realized that IO:H-based PSCs perform better than ITO-based PSCs, we compare 

the performance of an ITO-based 4T all-PTSC (with ITO-based top and bottom PSCs) with 

an IO:H-based 4T all-PTSC (with IO:H-based top and bottom PSCs). As a result, the PCE 

of the tandem solar cell significantly enhances from 23.3% (for an ITO-based 4T all-PTSC) 

to 24.8% (for an IO:H-based 4T-all PTSC). This PCE is one of the highest PCEs ever 

reported for a 4T all-PTSC, and this is the first study on a 4T all-PTSC with only IO:H front 

electrodes (in the top and bottom PSCs). Furthermore, we replace the in-house sputtered ITO 

rear electrode, used for the semi-transparent top cell in Chapter 5, with a highly NIR 

transparent in-house sputtered IZO rear electrode, which further enhances the transmission 

of the semi-transparent top cell in the NIR wavelengths. 

Aside from the optical benefits of IO:H substrates, we also demonstrate that IO:H/perovskite 

serves as a better interface compared to ITO/perovskite and FTO/perovskite interfaces, 

particularly for HTL-free PSCs with mixed Sn/Pb perovskite. X-ray photoelectron 

spectroscopy (XPS) exhibits formation of a lower amount of Sn4+ at this interface 

(IO:H/perovskite) during the growth of the perovskite, which can mitigate the oxidation of 

the mixed Sn/Pb perovskite thin film at this interface resulting in structurally more stable 

perovskite thin films. 

Future work can be dedicated to replacing the IZO rear with an IO:H rear electrode that has 

even lower absorption in the NIR region and is expected to potentially increase the 

transmittance of the semi-transparent top PSC. Nevertheless, depositing highly crystalline 

IO:H requires a post-deposition annealing treatment at ≈200 °C, which is a challenge as 

perovskite thin films tend to degrade at this temperature. Therefore, developing strategies to 

deposit high-quality IO:H rear electrode without compromising the quality of the IO:H as 

well as perovskite thin films are highly encouraged. However, improving other photovoltaic 

characteristics of the IO:H-based sub-cells, such as hysteresis and poor FF, can be another 

focus of the future studies. 

 

 



Appendix 

107 

 

Appendix 

A. Appendix of Chapter 4 

Pseudo-Voigt Profile  

A pseudo-Voigt function is a linear contribution from both Gaussian and Lorentzian 

components. We define the following fitting equation - in Origin (version: 2018b 9.55) - for 

two bands:  

𝑓(𝑥; 𝐴1, 𝑋𝑐1, 𝑤1, 𝜇1, 𝐴2, 𝑋𝑐2, 𝑤2, 𝜇2) =  

𝐴1 [𝜇1  
2

𝜋
 

𝑤2

4 (𝑥 −  𝑋𝑐1)2 + 𝑤1
2

+ (1 −  𝜇1)
√4 ln(2)

√𝜋 𝑤1

 𝑒
−4 ln(2)

𝑤1
2  (𝑥− 𝑋𝑐1)2

] + 

𝐴2 [𝜇2  
2

𝜋
 

𝑤2

4 (𝑥 −  𝑋𝑐2)2 + 𝑤2
2

+ (1 − 𝜇2)
√4 ln(2)

√𝜋 𝑤2

 𝑒
−4 ln(2)

𝑤2
2  (𝑥− 𝑋𝑐2)2

] 

where x is energy in eV, 𝐴1 and 𝐴2 are the amplitudes, 𝑋𝑐1 and 𝑋𝑐2 are the center positions, 

and 𝑤1 and 𝑤2 are the FWHM of the two bands. 0 ≤ 𝜇1 ≤ 1 and 0 ≤ 𝜇2 ≤ 1 are the 

fractions of Lorentzian profiles in the function, such that if 𝜇 equals one the band is pure 

Lorentzian, and if it equals zero the band is pure Gaussian.  

We carry out the fitting computation for the delayed PL spectra on days 1 and 10 

(Figure. 4.14) using two-peak pseudo-Voigt profiles, wherein the peak positions, widths, and 

contributing factors are shared between fitting profiles used for day 1 and 10, whereas the 

area is allowed to change. Relative area (R. Area) under PL peaks extracted from the fitting 

analysis of the PL spectra on days 1 and 10 is listed in the following table: 

 

Storage Time R. Area(1.54 eV) R. Area(1.62 eV) 

Day 1 81641 41820 

Day 10 15260 56353 
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B. Appendix of Chapter 5 

 

 

 

 

 

 

Figure B1. Stabilized power conversion (SPCE) from maximum power point (MPP) tracking 

measurements at 0 min (when the lamp is on), and after 5 and 120 min derived from narro bandgap PSCs 

with different Cs concentrations varying from 0% to 10% (top to bottom), which were identically 

prepared in different batches. The initial values (at 0 min) are normalized to 1. Reproduced from [155] 

with permission of The Royal Society of Chemistry.
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Figure B2. From top to bottom, power conversion efficiency (PCE), fill factor (FF), short-circuit current 

(𝐽SC), and open-circuit voltage (𝑉OC) of champion narrow-bandgap PSCs (from different batches) with 

different Cs concentrations measured on day 1 (day of device preparation) and day 2 (after one night of 

storage in a dark inert atmosphere). Reproduced from [155] with permission of The Royal Society of 

Chemistry. 



Appendix 

110 

 

 

 

 

 

 

 

 

Figure B3. From top to bottom, absorptance (A), reflectance (R), and transmittance (T) spectra of a semi-

transparent perovskite filter and a semi-transparent top PSC, composed of a double-cation 

Cs0.17FA0.83Pb(I0.76Br0.24)3 perovskite thin film with a bandgap of 𝐸g ≈ 1.65 eV. The relative difference 

in transmittance and reflectance on average (derived from three filters and three PSCs) is equal to ±1.1% 

and ±0.1%, respectively (weighted to AM1.5G). Reproduced from [155] with permission of The Royal 

Society of Chemistry. 
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